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Abstract 
The McKibben style artificial muscle is a type of pneumatic artificial muscle. When the muscle is 

pressurized a length contraction and contractive force occur. Modeling a McKibben style muscle 

presents many challenges. The physical dynamics of the muscle are highly nonlinear, which makes 

accurate modeling difficult. Modeling using experimentally determined coefficients enables the creation 

of an equation that ignores the nonlinear nature of the system, but it can have a limited range or 

accuracy and cannot adjust for changing system properties. Modeling using the system properties 

requires the consideration of the nonlinear dynamics of the muscle; however, it provides the ability to 

run numeric simulations before constructing muscles. This thesis focused on dynamic modeling of a two 

muscle system using system properties. 

In order to develop a two muscle dynamic system model, the following steps were taken. Models using 

physical properties for individual static muscles were examined. Two muscles were linked around a 

pulley to form a two muscle system with an output of angular displacement and torque. Finally, the 

effect of valves was added to allow for modeling of transient system response. 

In order to validate the model, an experimental system was constructed. The muscle system was 

simulated using MATLAB and outputs were compared to experimental results. Good agreement 

between theoretical and experiment results was obtained.  A PID controller was then implemented on 

the new model to demonstrate the feasibility of using the model for control of a two muscle system. The 

controller was run through an optimization routine to determine the gains which gave the least position 

error. 

This work is the first to provide a dynamic model for a system of two of opposed McKibben style 

muscles based on the physical properties of the muscle system.    



4 
 

Table of Contents 

Acknowledgements ................................................................................................................................. 2 

Abstract .................................................................................................................................................. 3 

Nomenclature ......................................................................................................................................... 6 

Table of Figures ....................................................................................................................................... 8 

Introduction ............................................................................................................................................ 9 

Problem Statement ........................................................................................................................... 11 

Modeling the McKibben Style Muscles .................................................................................................. 12 

Modeling with Experimental Coefficients (Method 1) ........................................................................ 12 

Modeling Using Muscle Properties to Determine Coefficients (Method 2) ......................................... 15 

Creation of a Dynamic Muscle Model .................................................................................................... 16 

Physical System Components............................................................................................................. 17 

Muscle Model Foundation ................................................................................................................. 18 

Exploring Dynamic Use of a Static Muscle Model ............................................................................... 19 

Modeling Considerations ................................................................................................................... 20 

Zero Internal Pressure Condition .................................................................................................... 20 

Maximum Braid Angle.................................................................................................................... 20 

Decomposition of the Force Term ...................................................................................................... 21 

Integration of Individual Muscle Models into a System Model ............................................................... 22 

Assumptions to Simplify the System Model Equation ......................................................................... 22 

Incorporating Valves .......................................................................................................................... 23 

Force Linking of the Muscles .............................................................................................................. 23 

Numeric Simulation of the System Model ...................................................................................... 24 

Experimental Apparatus for Validation .................................................................................................. 25 

Hardware Setup................................................................................................................................. 25 

Experimental Apparatus Operation .................................................................................................... 28 

Results .................................................................................................................................................. 32 

State Space Model Form .................................................................................................................... 33 

Development of Controls for Simulation ............................................................................................ 34 

Valve estimation ................................................................................................................................ 35 

Discussion ............................................................................................................................................. 37 

Extension of the Model ...................................................................................................................... 37 

Controlling the Muscle System .......................................................................................................... 39 



5 
 

Strengths and Weaknesses of the New System Model ....................................................................... 40 

Future work ....................................................................................................................................... 40 

Conclusions ........................................................................................................................................... 41 

References ............................................................................................................................................ 42 

Appendixes ........................................................................................................................................... 44 

Appendix A: MATLAB Code ................................................................................................................ 44 

Appendix B: Simulink Tgraphs.slx ....................................................................................................... 47 

Appendix C: Simulink TgraphsT.slx ..................................................................................................... 48 

Appendix D: Arduino Code ................................................................................................................. 49 

Appendix E: Table of simulation values .................................................................................................. 56 

 

  



6 
 

Nomenclature 

F = force 

P = pressure 

L = muscle length 

L0 = initial muscle length 

n, N = number of braid wraps on muscle 

b = braid strand length 

r, Rp = radius of pulley (opposed muscle system) 

𝛼, 𝜃 = angle of rotational displacement around pulley (opposed muscle system) 

T = torque 

y = muscle length 

m, M = mass 

B = damping effect coefficient 

K = spring element coefficient 

Fcc = contractile force 

g = acceleration due to gravity 

D = muscle diameter 

D0 = initial muscle diameter 

𝜖 = contraction ratio 

a, A  = experimentally determined parameter 

b, B = experimentally determined parameter 

C = experimentally determined parameter 

D = experimentally determined parameter 
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∆𝑝 = driving pressure 

𝜃 = braid angle 

D0 = muscle diameter at braid angle = 90o  

tk = braid thickness 

Ds = diameter of braid srand 

E = elastic modulus of the braid material 

ER = elastic modulus of the muscle bladder 

Vb = volume of muscle 

t = thickness of tube 

V = volume 

R = specific gas constant 

T = absolute temperature 

PID = Proportional Integral and Derivative 

PWM = Pulse Width Modulation 
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Introduction 

The McKibben style muscle was first developed in 1950 by Joseph L. McKibben [1]. The artificial muscle 

was originally intended for orthopedic use to aid weakened muscles in the upper arm. The muscle uses a 

large amount of compressed air for actuation, requiring a gas tank of significant size to accompany the 

user. This form of utilization and the muscle itself fell out of favor as electric motors became smaller and 

easier to use. Electric motors can use light weight batteries instead of a bulky air tank. Recent works 

have turned back to the McKibbben style muscle for use as a biomimetic actuator [19]. Klute et al. show 

the ability of the muscle to mimic the properties of an organic muscle through the addition of a damping 

element [2]. Dzahir et al. have returned to the study of the McKibben muscle for applications in 

orthotics, now focusing on gait training rather than the original use in hand muscle strengthening [3]. 

Figure 1 shows a typical construction of a McKibben style muscle, which consists of an elastic bladder 

(rubber tube in this case) with a surrounding braided sheath [4]. One end of muscle has a fitting to allow 

for the input and exhaust of air, while the other end is sealed. The actuation of the McKibben style 

muscle comes from an increase in internal pressure, as seen in Figure 2. As the internal pressure 

increases, the muscle radius increases. The radial increase creates a tension in the braid, causing a 

length contraction and contractile force.  

The basic equation for modeling a McKibben style muscle comes from an analysis of the system using 

virtual work. The concept takes all the energy provided by the input pressure and transforms it into the 

length contraction and force production [5] such that  

𝐹 =
𝑃

4𝑛2𝜋
(3𝐿2 − 𝑏2)      (1) 

where F is force, P is gauge pressure and L is muscle length. In Equation (1), n and b are muscle 

constants that refer to number of wraps and braid strand length respectively. The constants are 

associated with the specific braid material chosen for use in the muscle. 
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Figure 1: Construction of the McKibben artificial muscle [6]. 

  

Figure 2: (a) McKibben style muscle at rest and (b) Pressurized muscle [3]. 
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This thesis examines the mathematical modeling of a dynamic system consisting of an opposed 

McKibben style muscle pair for robotic applications. The setup mimics the human form so it lends itself 

to use in robotic armatures. 

Problem Statement 

Current models of McKibben style muscles do not address the needs for modeling a system containing a 

pair of opposed McKibben style muscles, as seen in Figure 3. The opposed muscle system requires a 

model which can predict its dynamic nature, but currently no adequate model exists. Most previously 

developed models are for a single, static muscle [7-8]. The models perform well under static conditions, 

but have significantly different behavior when given a dynamic excitation. A limited number of dynamic 

models of the McKibben style muscles have been developed using experimentally determined 

parameters to identify the dynamic effects not considered in the static models [7-8]. The experimentally 

developed models show good agreement with experimental data; however, the models do not have the 

sizing and scaling capabilities that a model derived from physical properties would have to adequately 

predict system dynamics. 

The goal of this work was to develop a dynamic model based on the physical characteristics of the 

muscle and the system. These characteristics include the muscle length, muscle radius and the materials 

used for the muscle and braid. The model should provide a good estimate of muscle output (force, 

length) to allow for sizing and scaling before muscle creation. Another benefit of having the opposed 

muscle model is the ability to assist in automation. To be successful in automation, the model must be 

small in size so that it is able to be run concurrently with real time sensor readings. Running 

concurrently allows the model to provide interpolation between sensor readings and to detect 

malfunctions in the sensors. A successful model should provide good correlation with experimental 

results using as few terms as possible. 

The objectives of this thesis were thus: 

• Creation of a dynamic muscle model 

• Integration of the muscle model into a system model 

• Validation of the system model using an experimental apparatus 

• Implementation of a simple PID controller in simulation to demonstrate the feasibility of 

controlling a muscle system with respect to a desired angle 
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Figure 3: Opposed McKibben style muscle pair in a system generating torque and rotational displacement [9]. 

 

Modeling the McKibben Style Muscles 

Equation (1) mathematically represents an idealized form of a McKibben style muscle based on energy 

balance. A real system has inefficiencies which cause an error in predicted force produced of up to 30% 

when compared to data generated from Equation (1) [5]. To reduce the error, there are two major ways 

to adjust the model. The first method uses experimental results from actual muscles to determine 

coefficients for a desired equation. The second method utilizes additional corrective terms based on the 

physical properties of the system. These terms are added to Equation (1). This thesis focuses on the 

second modeling approach. The second method will generate a model which allows for manipulation of 

the effects of the physical properties of the system. A key benefit of a physical properties model is the 

ability to run numerical simulations of a muscle’s expected response before construction. A discussion of 

both methods is included below. 

Modeling with Experimental Coefficients (Method 1) 

One of the major ways that the problem of muscle inefficiency is addressed computationally is through 

experimentally determining the model coefficients. The least complex of these models simulates the 

model as a linear three-element system [10] seen in Figure 4.  
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Figure 4: Physical representation of the second order linear equivalent system [10]. 

The model takes the form of a linear, second order differential equation with a forcing function, Fcc, and 

attached mass, such that  

𝑀�̈� + 𝐵�̇� + 𝐾𝑦 = 𝐹𝑐𝑐 − 𝑀𝑔      (2) 

where the coefficients of the derivatives are the experimentally determined mass, M, the damping, B, 

and the spring constant, K. The other values are acceleration due to gravity, g, length, y, and its time 

derivatives, �̇� and �̈�.  The values for B, K and Fcc are determined experimentally. Working with a linear 

model is well documented, making this an appealing choice, particularly when determining system 

response and applying control techniques. The method is limited by its complete dependence on the 

experimental coefficients. The linear estimation that Equation (2) creates will diverge from the highly 

nonlinear model as the system moves further from the regime used to estimate the coefficients. 

Another way that the muscle can be modeled is by using finite element analysis. Bertetto et al. used a 

finite element mesh to create a model for the McKibben style muscle [11]. The model proposed by 

Bertetto et al. uses a mesh to identify positions (nodes) on the muscle. After applying a force to the 

system, the model evaluates the displacements caused at the set nodes. This technique allows for a 

better tracking of the deformation, which is large for this type of system. Calculating the deformation 

function, and thereby the stress function, creates a model in good agreement with experimental data 

obtained from the muscle. The limitation of a finite element mesh, however, is the number of elements 

required to produce valid results. Modeling a system with a high strain like the McKibben style muscle 
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requires many elements, which increases the simulation run time and chance of error in correct element 

definition, especially around the endcaps of the muscle. 

Schroder et al. modeled an opposed muscle system using a hybrid equation developed from physical 

properties and experimentally determined coefficients [9]. The system is generated from the 

Bridgestone model of the energy balance  

𝐹 = 𝐷0
2𝑝[𝑎(1 − 𝜖)2 − 𝑏]     (3) 

where F is the force generated, P is the gauge pressure of the muscle, D0 is initial muscle diameter and 𝜖 

is the contraction ratio. Here a and b are parameters determined through experimentation. The model 

is then transformed into a torque model to describe the system seen in Figure 3 where the torque T is 

calculated using 

𝑇 =
2𝐷0

2𝑎𝑟3

𝑙0
2 ∆𝑝𝛼2 −

2𝐷0
2(𝑝1+𝑝2)𝑎𝑟2

𝑙0
𝛼 + 𝐷0

2𝑟(2𝑎 − 2𝑏)∆𝑝   (4) 

Equation (4), developed by Schroder et al., however, represents a static model for a symmetric, opposed 

muscle system. To determine a dynamic representation, a function dependent on the angular velocity 

must be added. In Equation (4), the angular displacement is assumed to be small so the first term with 

alpha squared is assumed to be too small to have a significant impact on the equation. Schroder et al. 

consolidated the coefficients in Equation (4) and added a correction function producing 

𝑇 = 𝐴𝑟2𝛼 + 𝐵𝑟∆𝑝 + 𝑓(�̇�)     (5) 

Experimentation determined that the correction function has the shape of a third order polynomial 

centered around the origin. Schroder et al. [9] assigned experimentally determined coefficients to the 

correction functions producing 

𝑇 = 𝐴𝑟2𝛼 + 𝐵𝑟∆𝑝 + 𝐶�̇�3 + 𝐷�̇�     (6) 

Here, A, B, C and D are consolidations of experimentally determined and physically derived coefficients. 

The driven wheel is defined by the torque, T, the radius, r, and the rotation angle, 𝛼. The driving 

pressure is given by ∆𝑝. Results from the study by Schroder et al. [9] demonstrate that it is possible to 

have a model with good agreement with data from a controlled muscle pair. However, while Equation 

(6) shows good agreement with a torque model, it does not fulfill the requirements of the model being 
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developed in this thesis. Equation (6) cannot provide scaling, a property of equations based purely on 

the physical properties of the system. 

Modeling Using Muscle Properties to Determine Coefficients (Method 2) 

The earliest form of the virtual work model of the McKibben style muscle is [4], [12], [13] 

𝐹 =
𝜋𝐷0

2𝑃

4
(3𝑐𝑜𝑠2𝜃 − 1)      (7) 

In this equation, F represents the force generated by the system and P is the internal pressure. Here, 𝜃 is 

the braid angle and D0 is the diameter of the muscle at a braid angle of 90°. Braid angle is difficult to 

measure with a sensor so Equation (1) is preferable over Equation (7) for experimental work and 

numerical simulations. Terms can be added to this model to account for losses in the system, such as 

from friction, endcap effects, braid extension and strain effects [5], [12], [14]. 

The use of the physical properties of the muscle in the model equations allows for numerical modeling 

of the muscle system before construction. Physical property based equations make quick changes to the 

muscle design simple to implement. The challenge associated with this modeling method is a sufficient 

knowledge of the dynamics and properties of the physical system. 

Equation (1) is the simplest to implement in a numeric tool, but has an error of 20% to 30% due to  

inefficiencies in the muscle that are ignored [5]. Ching-Ping Chou et al. [5] further develop the static 

model to account for friction between the bladder and braid and the volume lost to tube thickness [15]. 

This leads to the addition of a correction term to Equation (7) to yield  

𝐹 =
𝜋𝐷0

2𝑃

4
(3𝑐𝑜𝑠2𝜃 − 1) + 𝜋𝑃 [𝐷0𝑡𝑘 (2𝑠𝑖𝑛𝜃 −

1

𝑠𝑖𝑛𝜃
) − 𝑡𝑘

2]   (8) 

where D0 is the initial diameter of the muscle, 𝜃 is the braid angle and tk is the braid thickness. Equation 

(8) offers an improvement to the previous model, but still produces errors of up to 15% in some cases 

[5]. 

Another source of loss in force is due to the extension of the braid. The tension force created during 

actuation in the braid causes a strain in the braid strands. Davis et al. [5] found that the strain in braid 

strand length can be found by including the effect of the force and pressure on the braid, such that   
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𝑏 =
𝐾𝑏𝑚𝑖𝑛+√(𝐾𝑏𝑚𝑖𝑛)2+12𝐿2(𝐾+1)

2(𝐾+1)
+

2𝑃𝑏𝑚𝑖𝑛
2 𝑠𝑖𝑛2𝜃

𝐸𝐷𝑠𝑛𝜋2      (9) 

where    𝐾 =
4𝑛2𝜋𝐸𝐴

𝑃𝑏𝑚𝑖𝑛𝐿
 

In Equation (9), b represents the braid length and bmin represents the braid length at rest. Ds is the 

diameter of a braid strand and E represents the elastic modulus of the braid material. Consideration of 

braid extension, while more accurate than Equation (7), can show too much reduction in the output 

force produced. The reduction in force is expected as part of the induced force is causing the braid 

length to extend. 

Consideration of the stresses generated on the bladder material lead to two additional terms which 

were added to Equation (1) by Kothera et al.[7]. Addition of terms to account for stresses yields 

𝐹 =
𝑃

4𝑛2𝜋
(3𝐿2 − 𝑏2) −

𝐸𝑅𝑡𝐿2

2𝑛2𝜋
(

1

𝑅
−

1

𝑅0
) + 𝐸𝑅𝑉𝑏 (

1

𝐿0
−

1

𝐿
)   (10) 

In this equation, Vb is the volume of the muscle, R is the radius, and t is the tube thickness. ER is the 

elastic modulus of the muscle bladder. Equation (10) assumes that the muscle has a cylindrical shape 

and a constant bladder thickness and internal volume throughout actuation. Testing against a muscle in 

free contraction showed an error of over 10%. To reduce the error, the assumption of constant 

thickness was removed to yield 

𝐹 =
𝑃

4𝑁2𝜋
(3𝐿2 − 𝑏2) − 𝑃 (

𝑉𝑏

𝐿
−

𝑡𝐿2

𝜋𝐷𝑁2) − 𝐸𝑟𝑉𝑏 (
1

𝐿0
−

1

𝐿
) −

𝐸𝑅𝐿

𝜋𝐷𝑁2
(𝑡𝐿 − 𝑡0𝐿0)   (11) 

Equation (11), when used with a length adjustment to account for tip effects, provides the most 

accurate prediction of muscle behavior of current models with an error of less than 10%. While Equation 

(11) model is effective for reducing the error in the force output, it is lengthy and only predicts the 

output of a single muscle. For computational efficiency, a new model is required which has fewer terms 

and can be adapted to a two muscle system. 

Creation of a Dynamic Muscle Model 

Creation of a new model begins with consideration of the previous work. The previous equations need 

to be manipulated in order to create a suitable model for the two muscle system discussed in this thesis. 
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The new model will be numerically simulated to test its ability to predict the response of the muscle 

system. 

Physical System Components 

Table 1: Muscle properties 

 Muscle 1 Muscle 2 

Initial length 14 cm 14 cm 

Initial Radius 0.5 cm 0.5 cm 

Bladder thickness 0.1 cm 0.1 cm 

Initial braid angle 20 deg 20 deg 

Bladder elastic modulus 0.001*109 Pa 0.001*109
  Pa 

 

The basic system consists of two pressure valves and two McKibben style muscles connected by a cord 

which is wrapped around a pulley as seen in Figure 5.  The muscles used for the experimental system 

have the properties displayed in Table 1. Before initial pressurization there is some slack in the 

connecting cord allowing the muscle to contract slightly. The initial contraction is what allows 

pressurized muscle to be compliant during actuation. 

 

 

In Figure 5, P1 and P2 are the pressures of muscle 1 and muscle 2, respectively. F1 and F2 are the forces 

generated by muscle 1 and muscle 2, respectively. Consideration of the properties of the valves in the 

dynamic model is required for use in a real system. The valve effects determine the profile of the 

Valve 1 

Valve 2 

Muscle 1 

Muscle 2 

Pulley 

P1 

P2 

F1 

F1 

Figure 5: McKibben style, opposed muscle system including pulley and valves. 
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pressure input which drives the muscle, making it necessary to consider in a transient system. Other 

works do not have the explicit inclusion of valves because valve effects can be ignored in static models 

and become a part of lumped experimental coefficients in experimental models.  

Muscle Model Foundation 

The energy balance Equation (1) is derived from 

𝐹 = −𝑃
𝑑𝑣

𝑑𝐿
      (12) 

where P is pressure, F is force, v is volume and L is length. Equation (12) comes from the work done by a 

control volume. 

 

b L 

θ 

2R𝜋n 2R 
Figure 6: Braid geometry in a McKibben style muscle.  (Left)  A single strand of braid wrapped around the muscle.  (Right) 
The same braid strand if cut away from the muscle and laid flat for observation. 
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Figure 6 shows the physical constants associated with the braid strand. Here b is the braid length and n 

is the number of wraps around the McKibben style muscle. The assumption of the volume of the muscle 

having the form of a perfect cylinder gives  

𝑉 = 𝜋𝑅2𝐿      (13) 

Here V is the volume, R is the muscle radius and L is the muscle length. The muscle length, L, can be 

found from Figure 6 to be 

𝐿 = 𝑏𝑐𝑜𝑠𝜃      (14) 

The muscle radius can be derived as 

𝑅 =
𝑏𝑠𝑖𝑛𝜃

2𝜋𝑛
      (15) 

Substituting Equations (13-15), into Equation (12) gives 

𝐹 =
𝑃

4𝑛2𝜋
(3𝐿2 − 𝑏2)        (1) 

Equation (1) is the form that the energy balance equation takes when the dynamics of the muscle are 

substituted into the equation. Caldwell et al. [16] used this method of “opening” the muscle to help 

determine the characteristics inherent in the muscle design. 

Exploring Dynamic Use of a Static Muscle Model 

Determining the dynamic characteristics of a McKibben style muscle is necessary for developing an 

appropriate model. The dynamic characteristics can be found by observing the behavior of the 

derivatives of the function. From the energy balance equation, Equation (1), three variables have a time 

derivative: force, pressure and length.  Taking the derivative of Equation 1 yields 

�̇� =
�̇�

4𝑛2𝜋
(3𝐿2 − 𝑏2) +

6𝑃𝐿�̇�

4𝑛2𝜋
     (16) 

However, Equation (16) cannot be implemented in simulation in its current form because it contains one 

input variable, pressure, and two interdependent output variables, force and length. A second equation 

is needed to define another relationship between the variables. The equation chosen for this in other 

studies [17] is the ideal gas law, which states, 

𝑃𝑉 = 𝑚𝑅𝑇      (17) 
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where P is the absolute pressure, V is the control volume, m is the mass, R is the dry air specific gas 

constant and T is the absolute temperature. Limited success was achieved with this method in modeling 

of length vs. pressure [17]. As a result, a new method for establishing the relationship between variables 

must be found. 

Modeling Considerations 

A number of factors must be considered when modeling a McKibben style muscle. The following define 

the range of operating conditions where the model is valid for a single McKibben style muscle. 

Zero Internal Pressure Condition 

Modeling the pre-pressurized condition of the McKibben style artificial muscle is difficult for a simple 

model. Various factors contribute to this difficulty, such as, any gap between the inner bladder and the 

braided sheath or the conditions occurring at zero pressure. The gap between the bladder and sheath 

creates a “dead zone” in the muscle response. The extra pressure needed for the bladder to expand to 

touch the braid does no useful work and is difficult to account for when developing equations. 

The zero pressure condition also causes problems. The basic Equation (1) for the muscle is zero at zero 

pressure.  Equation (10) shows that the force output is dependent on the muscle volume, muscle length 

and bladder elastic modulus at zero pressure. The force applied to a muscle at zero pressure produces 

little strain. The effect is caused by the braid angle reaching a minimum, adding the braid elasticity to 

the bladder elasticity. This results in the muscle having a high ability to contract, but almost no ability to 

expand. 

Maximum Braid Angle 

The energy balance muscle model, Equation (1), shows an effective maximum braid angle. The 

maximum occurs at one of the zeros for force in the equation, such that 

0 = (3𝐿2 − 𝑏2)      (18) 

Here L is the muscle length and b is the braid length. The maximum braid angle condition can be seen as 

a parallel to a motor in free run where no force is produced and increasing pressure causes no increase 

in length. The maximum strain of the muscle is thus determined by the maximum braid angle which is 

limited by the braid chosen for muscle construction.   
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Decomposition of the Force Term 

The starting point for the numeric simulation of a single muscle was the energy balance Equation (1). In 

Equation (19) the force term from Equation (1) is broken down to include an axial load and axial 

acceleration applied to the muscle to transform the equation into a differential equation, such that 

𝐹𝑙𝑜𝑎𝑑 − 𝑀�̈� =
𝑃

4𝑁2𝜋
(3𝐿2 − 𝑏2)     (19) 

Here, M is the mass attached to the muscle and �̈� is the second time derivative of the length. The 

transformation changes the force from a dependent variable into a function of the independent 

variable, L, and a known function, Fload. The transformation allows for the use of a single equation to 

define the motion of a single muscle.  

MATLAB simulation results show that Equation (19) produces an undamped spring-like behavior in 

response to a step change in pressure as shown in Figure 7. The displacement results are expected, since 

Equation (1) takes a form similar to the fundamental equation for a linear spring and no damping is 

present. 

 

Figure 7: Simulation of a Muscle length vs. Time in response to step increase in pressure in a 10 centimeter McKibben style 

muscle using Equation (19). 
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Integration of Individual Muscle Models into a System Model 
Successful creation of a single muscle model enabled the two muscle system model to be derived. 

Additional assumptions were needed to integrate the single muscle model into the two muscle system. 

Assumptions to Simplify the System Model Equation 

As previously described, the basic system model consists of two opposed muscles connected around a 

pulley.  By adding and subtracting an equal pressure from the opposed muscles, the effective spring 

constant of the muscles can be approximated as a constant. The result of a constant effective spring 

constant is a constant tension applied to the connecting wire during actuation. Figure 8 shows the 

effects of the change in pressure on the system. 

 

Figure 8: Effects of pressure changes in muscles 1 and 2 on the system [18].   

The muscle model uses a constant value for b, the braid length. The assumption is made to reduce the 

required size and complexity of the muscle. If needed, Equation (9) would be used to determine braid 

extension.  

The muscle model assumes that the muscle pressure during operation will be greater than zero. 

Avoiding zero pressure prevents potential negative effects in Equation (1) and Equation (10), as 

𝜃 
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previously mentioned in the muscle modeling section. These negative effects include the include any 

gap occurring between the braid and bladder of the muscle. 

A constant muscle internal volume assumption is made to greatly simplify Equation (10). If the volume is 

considered to change along with the muscle, then determining the volume during operation requires an 

additional equation, increasing required processor time. Since the strains in the system are small and 

the radius increases along with a decrease in length, a constant value based on the initial volume is a 

reasonable simplification. 

Incorporating Valves 
The inclusion of the effects of valves on the system is a major factor that is required for numeric 

modeling of the real physical system. The consideration of the transfer of air is important because the 

flow rate into the muscle will not be equal to the flow rate out of the opposing muscle.  In this work, 

valves are assumed to produce a steep ramp response of pressure when actuated.  

For the system model, the simulation is started at a pressurized equilibrium state to eliminate any 

complications from the zero-pressure condition. Other assumptions include a constant volume in the 

bladder and a constant tension in the connecting strand after initial pressurization. The constant volume 

assumption can be used because, after initial pressurization, the muscle will maintain a similar shape 

due to the forces generated. This assumption greatly simplifies the dynamic model, allowing the mass 

flow rate to be directly related to the pressure. 

As can be seen in Figure 8, without damping, the system is not useful for the prediction of the steady 

state system length response. To find a simple system equation with damping, Equations (1), (8) and 

(10) were considered. Equation (8) was discarded because braid angle was determined to be difficult to 

use a sensor to detect. The best length response was produced by the simulation of Equation (10) 

derived by Kothera et al. [7]. Equation (10) has an effective damping that is not present in Equation (1) 

and provides a response that is much closer to the real system. The Kothera et al. equation is tied into 

the muscle system through a force equivalence assumption around the muscles. 

Force Linking of the Muscles 

The numeric simulation of the system was accomplished by equating the forces in the opposing muscles, 

muscle 1 and muscle 2 in Figure 8. Linking the equations allows for the calculation of the acceleration 

caused by the pressure difference between the two muscles. Using this method on Equation (19), where 

the subscripts refer to the muscle number, gives 
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𝑀�̈�1 +
𝑃1

4𝑛2𝜋
(3𝐿1

2 − 𝑏2) = 𝑀�̈�2 +
𝑃2

4𝑛2𝜋
(3𝐿2

2 − 𝑏2)   (20) 

To incorporate damping, Equation (10) is manipulated in the same fashion as equation (20)  to yield the 

final system model where  

𝑀𝑒𝑞�̈�1 +
𝑃1

4𝑛2𝜋
(3𝐿1

2 − 𝑏2) −
𝐸𝑅𝑡𝐿1

2

2𝑛2𝜋
(

1

𝑅1
−

1

𝑅01
) + 𝐸𝑅𝑉𝑏 (

1

𝐿01
−

1

𝐿1
)

= 𝑀𝑒𝑞�̈�2 +
𝑃2

4𝑛2𝜋
(3𝐿2

2 − 𝑏2) −
𝐸𝑅𝑡𝐿2

2

2𝑛2𝜋
(

1

𝑅2
−

1

𝑅02
) + 𝐸𝑅𝑉𝑏 (

1

𝐿02
−

1

𝐿2
) 

The valve input is represented using a steep ramp function that represents a change from an initial 

pressure to the desired pressure.  The slope was determined experimentally, using a linear estimation of 

pressure input to muscles of the experimental apparatus during operation. 

Numeric Simulation of the System Model 

The open loop response of the coupled muscle system to a pressure input was simulating using Simulink 

and MATLAB.  All code and diagrams can be found in the appendixes. 

 

  

Figure 9: Open loop response of Equation (20) (left) to a steep ramp pressure input (right). 

Figure 9 shows the simulated changes in muscle lengths using Equation (20) with no damping in 

response to a change in pressure. The graph axis has been changed to enlarge the region of induced 

motion.  In this case, the valve dynamics were estimated using a steep ramp to go from the initial 

pressure to the final pressure. The oscillation that the graph depicts is expected as it mirrors the purely 

oscillatory output from a single muscle as seen in Figure 8. 

(21) 
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Figure 10: Open loop response of Equation (21) (left) to a steep ramp pressure input (right). 

Figure 10 shows the response of Equation (21) to the same steep ramp pressure input shown in Figure 9. 

The left side of Figure 10 shows the expected damped length response to the pressure input.  

Experimental Apparatus for Validation  

A test apparatus that mimics the setup shown in Figure 5 was fabricated to validate the simulation 

results.   

Hardware Setup 

The experimental system consists of mechanical, electrical, and pneumatic systems as shown in Figures 

11 and 12. The mechanical system consists of the pair of McKibben style muscles, a pulley and an 

actuated arm. The muscles provide the actuation for the system when pressurized. The pulley receives 

the actuation and moves the actuated arm (part A), seen in Figure 11. In Figure 12, parts B and C are 

muscle 1 and muscle 2, respectively. Part D is the pulley and part E is the potentiometer. 
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Figure 11: Experimental system setup consisting of the McKibben muscle pair and actuated arm.  

 

Figure 12: Internal setup of the experimental system showing the McKibben style muscles, pulley and potentiometer. 

The electrical system consists of a microcontroller, battery, valves and sensors. The Arduino 

microcontroller passes commands to the valves and reads data from the sensors. The battery powers 

the system. The valves open and close based on signals passed from the microcontroller. The pressure 

sensors are attached to the muscles and the high-pressure tank. The linear potentiometer measures the 

muscle length. In the described hardware setup, a linear potentiometer is used because the wire 

connecting the two muscles can slip. 

A 

C 

D 

E 

B 
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The pneumatic system is shown in Figure 13 and consists of an air tank, valves and muscles. The air tank 

is the high-pressure source used to actuate the muscles. The valves connect the muscles to the high-

pressure air source or the room pressure to control muscle actuation. The muscles actuate when 

pressure is increased via a connection to the high-pressure source. 

Exhaust

Tank

Valve 2

Valve 1

Valve 4

Valve 5Valve 3

Muscle 1 Muscle 2

Valve 1 on Valve 4 on 

Valve 5 on 

Valve 1 off 

Valve 5 off 

Valve 2 on 

Valve 3 on 

Valve 3 off 

Figure 13: Pneumatic setup used for operation of the experimental apparatus.  Describe more in detail what the 
arrows show.   
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Figure 14: Linear Potentiometer calibration with error bars representing the variance of the potentiometer readings.   

Figure 14 shows the calibration curve used to relate the voltage readings from the potentiometer to 

changes in muscle length.  The points were generated by moving the potentiometer to the desired 

distance and holding position there. An error plot of 100 representative points can be seen in Figure 14. 

The curve generated is a linear estimation through the endpoints. It can be seen to have a good 

correlation with the potentiometer readings. The potentiometer can be seen in Figure 12 attached to 

muscle 1. 

 

Experimental Apparatus Operation 

The experimental system was designed to cycle through a series of desired output angles as shown in 

Figure 8, defined by the output from the linear potentiometer. During the setup of the system, both 

muscles are pressurized to a starting pressure P0. The output angle is determined through a conversion 

from the output of the potentiometer attached to muscle 1. When the desired angle moves from zero to 

a positive angle, valve 2 opens to let pressure build in muscle 1, and valve 5 closes to let pressure 

release from muscle 2. When the desired angle is reached, valve 2 closes and valve 5 opens. If the 
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system overshoots the desired angle, valve 3 is closed and valve 4 is opened. When the system achieves 

the desired angle, valve 3 is opened and valve 4 is closed. The process is repeated until the system is 

within a specified target range around the desired angle.   

If the desired angle is negative, valve 3 is closed and valve 4 is opened. When the system reaches the 

desired negative angle valve 3 is opened and valve 4 is closed. If the desired angle is overshot, then 

valve 2 is opened and valve 5 is closed. Then when the desired angle is reached, valve 2 is closed and 

valve 5 is opened. This process continues until the output angle is within an acceptable boundary layer 

of the desired angle. 

In order to test the code for changing muscle length, a sequence of desired lengths was input into the 

program, seen in Table 2. The sequence was chosen to imitate an expected work cycle for the system. 

One muscle length sequence takes place every 0.7 seconds and consists of three steps. The chosen 

lengths provide the system with a small change, a large change and a return to the neutral position. The 

ability to perform these motions shows that the muscle system model is capable of prediction for more 

complex motion patterns. 

The sequence of desired muscle lengths is shown in Table 2. The hold time for the upper length was 

chosen to be longer because the system undergoes a larger length change. This longer duration gives 

the system a longer time to stabilize before the next desired length is input.  Figure 15 shows the 

experimental muscle length output overlaid with the desired sequence of lengths as a function of time. 

Figure 15 starts at 3 seconds to display an enlarged view of the best representative cycle captured by 

the experimental setup. The graph shows that the code is effective in controlling the valves such that 

the muscle reaches the desired lengths. 

 

Table 2: Input sequence for changing muscle length.   

Step Pot Val Muscle Length (meters) Duration (seconds) 

1 410 0.08 0.3 

2 200 0.071 0.15 

3 600 0.087 0.25 
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Figure 15: Response of experimental system overlaid with desired length. 

The code for the Arduino microcontroller can be found in Appendix D. The sampling step size for the 

Arduino varies between 0.0006 and 0.0008 seconds. 

The experimentally measured pressures in each muscle during actuation are shown in Figure 16. The 

Interpolation of the pressure changes were used to derive the steep ramp functions used as inputs to 

Equations (20) and (21).   
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Figure 16: Measured pressure outputs from muscles 1 and 2 during the sequence of desired lengths.   
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Results 

The simulated results generated using Equation (21) are compared to experimental results in Figure 17. 

The simulation undershoots the experimental system and has a slight ringing before achieving steady 

state. The experimental data can be seen to have some slight noise originating from the analog reading 

of the potentiometer.  

Figure 18 shows the experimentally reported pressure outputs with the pressure interpolation for both 

P1 and P2. The pressure is interpolated so that the simulation and experimental sampling rates are 

identical.  The interpolation of input pressure is used to drive the simulation using Equation (21) to 

produce Figure 17. The output of the experimental system and simulated system are  overlaid to 

determine the system error. 

  

Figure 17: Open loop numeric simulation response overlaid with experimental system response. 
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Figure 18: The pressure readings from muscle 1 and muscle 2 from the experimental work are interpolated so that the sampling 

rate matches the simulation sampling rate. 

The differences between the experimental and simulation results are within 5% of the total muscle 

length. The sampling step size for the model 0.001 seconds. 

State Space Model Form 

To achieve a state space model system, Equation (21) can be transformed using the assumption of a 

fixed total system length. The assumption gives  

𝐿1 = 𝐿0 − 𝑅𝑝𝜃      (22) 

and  

𝐿2 = 𝐿0 + 𝑅𝑝𝜃      (23) 

where 𝜃 is the angle of the pulley and Rp is the pulley radius. With these assumptions, the system only 

needs one potentiometer to define system position. By combining Equations (21-23) the system can be 

rewritten as 
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𝐽�̈� = 𝑅𝑝

[
 
 
 

𝑃1

4𝑛2𝜋
(3[𝐿0 − 𝑅𝑝𝜃]2 − 𝑏2) −

𝐸𝑅𝑡(𝐿0 − 𝑅𝑝𝜃)2

2𝑛2𝜋

(

 
2𝑛𝜋

√𝑏2 − (𝐿0 − 𝑅𝑝𝜃)2

−
1

𝑅0

)

 

+ 𝐸𝑅𝑉𝑏 (
1

𝐿0
−

1

𝐿0 − 𝑅𝑝𝜃
)

]
 
 
 

− 𝑅𝑝

[
 
 
 

𝑃2

4𝑛2𝜋
(3[𝐿0 + 𝑅𝑝𝜃]2 − 𝑏2) −

𝐸𝑟𝑡(𝐿0 + 𝑅𝑝𝜃)2

2𝑛2𝜋

(

 
2𝑛𝜋

√𝑏2 − (𝐿0 + 𝑅𝑝𝜃)2

−
1

𝑅0

)

 

+ 𝐸𝑅𝑉𝑏 (
1

𝐿0
−

1

𝐿0 + 𝑅𝑝𝜃
)

]
 
 
 

 

where J is the mass moment of inertia of the actuated arm. J is the physical equivalent of the sum of the 

Meq terms found in Equation (21). Equation (24) depicts the system in state space form. The utility of the 

state space form is well documented making further manipulation and control of Equation (24) more 

straightforward in its implementation. 

Development of Controls for Simulation 

The proof of controllability is important for nonlinear system models. Many nonlinear models cannot be 

controlled by a simple controller like a PID controller.  Equation (24) is controlled through a feedback 

loop created around the length error. To create the loop, the length of the muscle is compared to the 

desired length of the muscle. The difference between the desired and actual length is the error. The 

error is converted into the duty cycle of a PWM signal for the 4 solenoid valves (2, 3, 4 and 5) of Figure 

13. The valves cycle between on and off, creating the choppy line seen in Figure 19.  The value of J used 

is 0.1 Kg*m2 for this simulation. J is the moment of inertia of the pulley and is estimated for the purpose 

of simulation. 

A PID controller is implemented on the error feedback. The controller modifies the signal passed to the 

valves to help reduce error. The modification is accomplished by changing the duty cycle that is 

delivered to the solenoid valves. The larger magnitude of the error, the greater the duty cycle given to 

the valve. An optimization routine is used on the PID controller gains to find the minimum error.  The 

optimization routine takes a numeric integral of the error and then varies the given parameters, here 

the PID gains, in order to find the minimum. 

(24) 
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Figure 19: PID controlled model overlaid on the desired response. 

The controlled system, shown in Figure 19, has a half second response with no overshoot. The results 

demonstrate controllability.  

Valve estimation 
To estimate the valve response, a complex signal mixing is used alongside the PID controllers.  

 

 

PID 

PID 

Valve 2 

Valve 3 

Valve 4 

Valve 5 

Error 

P2 

P1 
Logic 

Logic 

Logic 

Logic 

Figure 20: Signal mixing for the PID control system.  Angle error is translated into pressure inputs.  
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Figure 20 shows the signal mixing responsible for translating the angular position error into a pressure 

signal that the model can use. Two PID controllers are implemented. One PID is used for the valves that 

increase muscle pressure while the other is used for the valves that decrease muscle pressure. The logic 

block before each valve determines the sign, positive or negative, of the signal from the PID controller. 

The sign determines which valve is turned on in the pair controlled by each PID controller. The logic then 

converts the PID signal into a PWM signal that is sent to the valves for actuation. 

 

Figure 21: Control effort exerted by PID controllers on valves 1-4. 

Figure 21 shows the control efforts, U1-4, that is exerted by the PID controllers that is passed to the 

logic preceding the valves as seen in Figure 20. The logic converts all signals over the value of one to one 

and all negative signals to zero.  
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Discussion 

The model developed in Equation (24) is the first dynamic model to be developed for a two muscle 

system using the physical characteristics of the system. Previous works [9], [18] used experimental 

based modeling techniques on two muscle systems to develop models which were considered easy to 

implement and manipulate. These systems are limited, however, by the need to build and test the 

system before the model coefficients can be determined.  Equation (24) is an equally simple model for a 

two muscle system that shows good agreement with experimental data and incorporates the physical 

characteristic necessary for scaling and extension to similar muscles.  

 

Extension of the Model 
The derived model showed good agreement with experimental results obtained for a muscle of 14 cm 

length and a 0.5 cm radius as shown in Figure 19. For general use, the model should be able to predict 

the behavior of similar muscles with different physical properties.  

Figure 22 shows the length vs. time plot for a muscle 25 cm in length and with a 0.5 cm radius. The 

graph shows that a larger displacement is predicted than for a 14 cm muscle in response to the same  

pressure change. The strain in  the muscle, however, is decreased relative to the 14 cm muscle due to 

the increase in initial muscle volume, which provides no work during actuation. This is expected as the 

increase in initial volume with the same pressure change should have a smaller strain. 

 

Figure 22: Simulated changed in muscle length an increased initial muscle length (Left) and the pressure input to the simulation 
model (right). – 
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Figure 23 shows the results of an increase in initial muscle radius from 0.5 cm to 2 cm in radius with a 10 

cm length. This is a large change in the radius parameter, but, for the same pressure input, the length 

output from the model decreases. The decrease in length is expected since the increase in internal 

volume decreases the amount of pressure that provides useful work in the muscle.  

  

Figure 23: Simulated change in muscle length with an increased initial muscle radius (left) and the pressure input to the 
simulation model (right). 

 

 

Figure 24 shows the predicted change in length for a simulated muscle with an alternate bladder 

material which has a higher elastic modulus. For this simulated muscle, the elastic modulus is increased 

from 0.001 GPa to 0.008 GPa. As expected, the increase in bladder stiffness causes a decrease in output 

displacement when stimulated with the same pressure input.   

Figures 22-24 illustrate how having a model based on the physical characteristics of the system can be 

used to predict responses to a range of system configurations.  Increasing the muscle length, radius, or 

the Young’s modulus of the bladder material for the same pressure inputs decreases the amount of 

useful work being done on the system.   The overall changes in length were less than for the 14 cm 

muscle as expected, thus these tests confirm that the model is useful for prediction. 
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Figure 24: Simulated change in muscle using an increased Young’s modulus for the bladder material (left) and the pressure input 
to the simulated muscle (right). 

 

Controlling the Muscle System 

Implementation of a simple control algorithm was done as a proof of concept to demonstrate that the 

muscle system could be controlled through a simple control system like PID.  The results showed a basic 

level of control could be achieved, however, the controls work was based around the use of solenoid 

valves. The use of solenoid valves is not optimal for precise control of the two muscle system, but these 

were readily available in the lab. Using proportional valves in the future would allow for gradual changes 

in flow rate through the valves, producing smoother outputs to the muscles. Using gradual changes 

would allow for more accurate control without the choppy response, seen in Figure 19, that the solenoid 

valves produce. Further work on control of the muscle system should consider the use of proportional 

valves.  
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A goal of this thesis was to implement a simple control algorithm to prove controllability. The PID 

controller used is a simple control method that was chosen to make the code easy to implement on a 

real system. While another control method may give a faster response, additional complexity in the 

controller could slow down the simulation times.  Future work could focus on investigating the tradeoffs 

between simulation times and the speed of the controller response. 

Strengths and Weaknesses of the New System Model 
The new model is effective at predicting the motion of the two muscle system. The error for the steady 

state response of the system is small, while using a model containing few terms. These abilities fulfil the 

requirements for the desired model for a two muscle system. 

The open loop form of this model has a larger error in length than a well developed experimental model 

will likely have since it is based on the specific response of the muscle. In addition, the model does not 

account for hysteresis in the muscle, which would lead to the eventual reduction of angular and torque 

outputs from the muscle.  Future work should consider the addition of a damping effect and the 

implementation of the model onto a microcontroller. 

Future work 
The model developed here is meant to act as a safety check for an error based controller on an 

autonomous system. Through comparison with the developed model, inconsistencies with the sensor 

readings can be discovered and fixed before catastrophic failure. The developed model needs to give 

meaningful data when run with different sizes and material constraints on the system, to be able to 

assist in construction requirements of the muscles.   

While damping present in Equation (24) brings the model closer to actual system response, it may not 

be enough to represent the physical system. To reduce error further, additional manipulation of the 

terms may be required. Future work may consider using a complex term for the elastic modulus, 

simulating viscoelastic damping, to further reduce error. 
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Conclusions 
After examining many models derived for a single McKibben style muscle, a simple model was selected 

which showed good agreement with muscle behavior. In order to describe a symmetric opposed muscle 

pair, two muscle models were linked together. To be able to model transient muscle response, valve 

dynamics were added. This inclusion is new for models that are based on physical properties of the 

system.  The consideration of complications due to valves has only been studied in models using 

experimentally determined coefficients to date.   

 

Comparison to experimental results showed that the newly developed model is effective at predicting 

the response of a two muscle system. Using this model allows for the simulation of a proposed system 

before muscles have been built. These benefits make the new model developed here a valuable addition 

to the family of models that currently exist.   

 

Demonstrating the controllability of the new muscle model is important for its continued use. Proving 

controllability confirms that the muscle is well defined and converges. The proof was done in simulation 

with a PID controller implemented on the angle error of the system model. 
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Appendixes 

Appendix A: MATLAB Code 
 

%% Tgraphsm.m 

  
%Muscle constant 

  
L0=0.5; 

  
R0=.005; 
t=.0015; 
Vb=R0*R0*pi*L0; 
ER=1e6; 

  
Pddot=10e4; 
b=L0/cosd(30); 
n=b*sind(30)/(2*R0*pi); 

  
Rp=.04; 
%Simulation constant 

  
Rair=287.058; 
M=1; 
Patm=101325; 
tf=20; 
Ldot0=0; 
T=297; 

  
Vtank=pi*.1*.1*.3; 
P_Hi0=3e5; 

  
Cd=1; 

  
%% Simulation 

  
Terms=1; 
sim('Tgraphs') 

  
%% store terms 

  
L1=L; 
P1=P; 
Fm11=Fm1; 

  
%% Simulation 

  
Terms=3; 
sim('Tgraphs') 

  
%% store terms 

  



45 
 

L3=L; 
P3=P; 
Fm13=Fm1; 

  
%% plots 

  
figure(1) 
plot(tout,L1,tout,L3) 

  
figure(2) 
plot(tout,P1,tout,P3) 

  
figure(3) 
plot(tout,Fm11,tout,Fm13) 

  
%% Torque time 
L01=L0; 
L0=L01*.9; 
F=20; 
P0=F*4*n*n*pi/(3*L0*L0-b*b); 

  
%% Simulation 

  
Terms=1; 
sim('TgraphsT') 

  
%% Term storage 

  
Lm11=Lm1; 
Lm21=Lm2; 
P1=P; 
FmP11=FmP1; 
FmP21=FmP2; 
Torque1=Torque; 

 
%% Simulation 

  

Terms=3; 
sim('TgraphsT') 

  
%% Term Storage 

  
Lm13=Lm1; 
Lm23=Lm2; 
P3=P; 
FmP13=FmP1; 
FmP23=FmP2; 
Torque3=Torque; 
 

%% Plots 

  
figure(21) 
plot(tout,Lm11,tout,Lm21) 
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figure(23) 
plot(tout,Lm13,tout,Lm23) 

  
figure(24) 
plot(tout,FmP11,tout,FmP21) 

  
figure(26) 
plot(tout,FmP13,tout,FmP23) 

  
figure(27) 
plot(tout,P0+P,tout,P0-P) 

  
figure(28) 
plot(tout,Torque1,tout,Torque3) 
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Appendix B: Simulink Tgraphs.slx 
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Appendix C: Simulink TgraphsT.slx 
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Appendix D: Arduino Code 
 
/* 
 Example sketch for the Xbox Wireless Reciver library - developed by Kristian Lauszus 
 It supports up to four controllers wirelessly 
 For more information see the blog post: http://blog.tkjelectronics.dk/2012/12/xbox-360-receiver-
added-to-the-usb-host-library/  
 This open source sketch was used for the Xbox receiver connection 
 */ 
 
#include <XBOXRECV.h> 
#include "definitions.h" 
 
USB Usb; 
XBOXRECV Xbox(&Usb); 
 
void setup() { 
  Serial.begin(115200); 
 
  if (Usb.Init() == -1) { 
    Serial.print(("\r\nOSC did not start")); 
    while (1); //halt 
  } 
  Serial.print(("\r\nXbox Wireless Receiver Library Started")); 
  pins(); 
} 
 
void loop() { 
 //Check to see if the battery on the robot is within its appropriate range, if not it exits the while loop 
 while (digitalRead(batteryLevelHealth) == 1){ 
    Usb.Task(); 
    //confirms Xbox remote control connection 
    if (Xbox.XboxReceiverConnected) { 
      //Keeps V1 on at all times unless deflating the bones and muscles  
      //when all the air from the tank is also released to atmosphere 
      digitalWrite(V1, turnOn); 
      Serial.println(""); 
      pressureSensor(); 
      compressor(); 
      digitalWrite(V2, turnOn); 
      walkingStart(); 
      inflateMuscleResevoir(); 
      deflateMuscleResevoir(); 
 
      //checks for button presses 
      for (uint8_t i = 0; i < 4; i++) { 
        if (Xbox.Xbox360Connected[i]) { 
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          if (Xbox.getButtonClick(B, i)){ 
            Serial.println(F("B")); 
            //for walking() function 
            walkingCommand = !walkingCommand; 
            //Serial.println(millis()); 
          } 
           
          if (Xbox.getButtonClick(X, i)){  
            //Serial.println(F("X")); 
            //for compressor() function 
            compressorCommand = !compressorCommand; 
            //Serial.print("Compressor switched state"); 
          } 
        } 
         
        //report the battery level of the Xbox controller 
        if (Xbox.getButtonClick(XBOX, i)) { 
          Xbox.setLedMode(ROTATING, i); 
          Serial.print(F("Xbox (Battery: ")); 
          Serial.print(Xbox.getBatteryLevel(i)); // The battery level of the Xbox controller in the range 0-3 
          Serial.println(F(")")); 
        } 
      } 
    } 
 } 
 //Turn off everything except for arduino when the battery is dead 
 digitalWrite(compressorPin, turnOff); 
 compressorCommand = false; 
  walkingCommand = false; 
  digitalWrite(V1, turnOff); 
  digitalWrite(V2, turnOff); 
  digitalWrite(V3, turnOff); 
  digitalWrite(V4, turnOff); 
  digitalWrite(V5, turnOff); 
  digitalWrite(V6, turnOff); 
  digitalWrite(V7, turnOff); 
  digitalWrite(V8, turnOff); 
  digitalWrite(V9, turnOff); 
  digitalWrite(V10, turnOff); 
  digitalWrite(V11, turnOff); 
  digitalWrite(V12, turnOff); 
  digitalWrite(V13, turnOff); 
  digitalWrite(V14, turnOff); 
  digitalWrite(V15, turnOff); 
  //turn off everything for the maximum delay allowed 
  delay(32767); 
} 
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void compressor(){ 
  if (compressorCommand == true){ 
    //convert the output to PSI to read the pressure of air tank 
    airTankPressure = ((analogRead(airTankPressureSensor)*0.0049)-0.5)/0.04; 
    if (airTankPressure < 60){ 
      digitalWrite(compressorPin, turnOn);  
      } 
    else if (airTankPressure > 80){ 
      digitalWrite(compressorPin, turnOff); 
    } 
  }  
  else if (compressorCommand == false){ 
    digitalWrite(compressorPin, turnOff); 
  } 
} 
 
 
 
 
//The purpose of this pressure function is to constantly measure the  
//air pressure of the air tank, the muscles airflow, and the bone airflow 
 
void pressureSensor(){ 
  //Measure air tank pressre and convert to PSI using formula from datasheet 
  Serial.print("Air tank (PSI) = \t"); 
  airTankPressure = ((analogRead(airTankPressureSensor)*0.0049)-0.5)/0.04; 
  Serial.print(airTankPressure); 
  Serial.print("\t"); 
 
  //Measure muscle pressre and convert to PSI using formula from datasheet 
  Serial.print("Muscle (PSI) =\t"); 
  musclePressure = ((analogRead(musclePressureSensor)*0.0049)-0.5)/0.04; 
  Serial.print(musclePressure); 
  Serial.print("\t"); 
    
  //Measure bone pressre and convert to PSI using formula from datasheet 
  Serial.print("Bone (PSI) =\t"); 
  bonePressure = ((analogRead(bonePressureSensor)*0.0049)-0.5)/0.04; 
  Serial.print(bonePressure); 
  Serial.print("\t"); 
 
  //Print potentiometer reading 
  Serial.print("Mus Length =\t"); 
  musLength=analogRead(musLenghtPot); 
  Serial.print(musLength); 
  Serial.print("\t"); 
}  
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void walkingStart(){ 
  if (walkingCommand == true ){ 
    if(startWalking == false){ 
      //previousMillis records the time at which the startWalking if loop starts and starts the counter 
      //it also starts the walkingCounter from zero 
      previousMillis = millis(); 
      walkingCounter = 0; 
    } 
    //If startWalking stays true, keep the previously set previousMillis and walkingCounter 
    startWalking = true; 
  } 
  else if (walkingCommand == false){ 
    startWalking = false; 
      //Turing off this set of solenoids first releases all the air from the muscles  
      digitalWrite(V10, turnOff); 
      digitalWrite(V11, turnOff); 
      digitalWrite(V12, turnOff); 
      digitalWrite(V13, turnOff); 
      digitalWrite(V14, turnOff); 
      digitalWrite(V15, turnOff); 
       
      digitalWrite(V4, turnOff); 
      digitalWrite(V5, turnOff); 
      digitalWrite(V6, turnOff); 
      digitalWrite(V7, turnOff); 
      digitalWrite(V8, turnOff); 
      digitalWrite(V9, turnOff); 
  } 
Serial.print(millis()-previousMillis); 
Serial.print("\t"); 
 
  if (startWalking){  
        // initial pressurization 
        if (millis() - previousMillis > 100 + walkingCounter && millis() - previousMillis < 2000 + 
walkingCounter && musclePressure < 35) { 
          digitalWrite(V10, turnOn); // to muscle 
          digitalWrite(V8, turnOn); // to valve 
          Serial.print("inflate"); 
        } 
           
        if (millis() - previousMillis > 100 + walkingCounter && millis() - previousMillis < 2000 + 
walkingCounter && bonePressure < 35) {   
          digitalWrite(V11, turnOn); // to muscle 
          digitalWrite(V9, turnOn); // to valve 
          //Serial.println(millis()-previousMillis); 
          Serial.print("Inflate muscles"); 
        } 
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        // Hold muscle inflation 
        if (millis() - previousMillis > 100 + walkingCounter && millis() - previousMillis < 2000 + 
walkingCounter && musclePressure > 50){ 
          digitalWrite(V8, turnOff); 
          digitalWrite(V10, turnOff); 
          Serial.print("Deflate"); 
          delay(100); 
          digitalWrite(V10, turnOn); 
        } 
 
        if (millis() - previousMillis > 100 + walkingCounter && millis() - previousMillis < 2000 + 
walkingCounter && bonePressure > 50){ 
          digitalWrite(V9, turnOff); 
          digitalWrite(V11, turnOff); 
          //Serial.println(millis()-previousMillis); 
          Serial.print("Deflate muscles"); 
          delay(100); 
          digitalWrite(V11, turnOn); 
        } 
         
        //Right 
        if (millis() - previousMillis > 3000 + walkingCounter && millis() - previousMillis < 4000 + 
walkingCounter && musLength > 700){ 
          digitalWrite(V11, turnOff); 
          digitalWrite(V8, turnOn); 
          //Serial.println(millis()-previousMillis); 
          Serial.print("Right"); 
        } 
             
        //Hold 
        if (millis() - previousMillis > 3200 + walkingCounter && millis() - previousMillis < 4500 + 
walkingCounter){ 
          digitalWrite(V8, turnOff); 
          digitalWrite(V11, turnOn); 
          //Serial.println(millis()-previousMillis); 
          Serial.print("Hold"); 
        }  
         
        //Left 
        if (millis() - previousMillis > 4500 + walkingCounter && millis() - previousMillis < 6500 + 
walkingCounter && musLength < 900) { 
          digitalWrite(V10, turnOff); 
          digitalWrite(V9, turnOn); 
          //Serial.println(millis()-previousMillis); 
          Serial.print("Left"); 
        } 
         
        //Hold 
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        if (millis() - previousMillis > 4700 + walkingCounter && millis() - previousMillis < 7000 + 
walkingCounter){ 
          digitalWrite(V9, turnOff); 
          digitalWrite(V10, turnOn); 
          //Serial.println(millis()-previousMillis); 
          Serial.print("Hold"); 
        } 
         
        //Deflate S 
 
        //counter allows the previous two sequence to continue until stopped by a button press 
        if (millis() - previousMillis > 7000 + walkingCounter){ 
          walkingCounter = walkingCounter + 7000; 
        }     
  } 
}  
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#define turnOn HIGH 
#define turnOff LOW 
 
//pins that work for digital: 22, 24, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 40, 42, 44, 45, 46, 47, 48, 49 
#define V1 22 //Solenoid valve 1 
#define V2 24 //Solenoid valve 2 
#define V3 26 //Solenoid valve 3 
#define V4 28 //Solenoid valve 4 
#define V5 30 //Solenoid valve 5 
#define V6 31 //Solenoid valve 6 
#define V7 32 //Solenoid valve 7 
#define V8 33 //Solenoid valve 8 
#define V9 34 //Solenoid valve 9 
#define V10 35 //Solenoid valve 10 35 
#define V11 36 //Solenoid valve 11 36 
#define V12 37 //Solenoid valve 12 37 
#define V13 40 //Solenoid valve 13 40 
#define V14 42 //Solenoid valve 14 42 
#define V15 44 //Solenoid valve 15 44 
 
#define compressorPin 45 //Compressor  
#define batteryLevelHealth 46 //Digital read of whether battery is in operating levels 
 
#define musLenghtPot A13 //Length of muscle 
#define airTankPressureSensor A12 //Pressure input of air tank A12 
#define musclePressureSensor A11 //Pressure input of air to muscle A11 
#define bonePressureSensor A10 //Pressure input of air to bone A10 
 
int airTankPressure = 0; //PSI value of air tank 
int musclePressure = 0;//PSI value of muscles 
int bonePressure = 0;//PSI value of bones 
int musLength = 0;//Pot muscle length 
int batteryLevelValue = 0; 
 
boolean compressorCommand = false; 
boolean inflateBonesCommand = false; 
boolean deflateBonesCommand = false; 
boolean bendMuscleCommand = false; 
boolean deflateMuscleCommand = false; 
boolean startWalking = false; 
boolean walkingCommand = false; 
boolean musclePressureInRange = false; 
boolean inflateMuscleResevoirCommand = false; 
boolean deflateMuscleResevoirCommand = false; 
boolean standCommand = false; 
 
unsigned long previousMillis = millis(); 
unsigned long walkingCounter = 0; 
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Appendix E: Table of simulation values 
Table 3: Physical properties used for numeric simulation 

Physical parameter Value 

L0 0.1 m 

R0 0.005 m 

Meq 0.01 Kg 

ER 0.001e9 GPa 

t 0.0015 m 

P0 2.76e5 Pa 
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