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Abstract

Processors have evolved and grown more complex to serve enormous computational needs. Even
though modern-day processors share same dna with processors half century ago, verifying them
today is the huge wall to scale. Verification dominates production cycle even with advances both
in software (programming as well as CAD tools) and manufacturing (fabrication) as there are
too many test scenarios to cover. Testing complex devices like processors with manual-testing
alone in certainty missing the dead lines. Automatic verification is a great way to overcome
hurdles of manual testing viz. speed, manpower, and ultimately cost. The work described in this
paper targets verification of processors which have in-order instruction execution. Verification is
done using SystemVerilog testbench which compares output of device under test to the output of

SystemC model, when random instructions are applied.
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Forward

The paper describes a configurable Random Instruction Generator developed as part of a larger
Graduate Research project called Project Heliosphere. The overarching goal of Project Helio-
sphere is to develop a robust, configurable, verification and validation environment to further the
study of various RISC processor architectures. The initial phase of this project was undertaken
by Krunal Mange (Configurable Random Instruction Generator for RISC Processors), Namratha
Pashupathy Manjula Devi (Configurable Verification of RISC Processors), and Thiago Pinheiro
Felix da Silva e Lima (Reconfigurable Model for RISC Processors). Indeed I am proud, and

humbled by the research work produced by this group of students.

Mark A. Indovina
Rochester, NY USA

17 December 2017



Chapter 1

Introduction

High quality verification by directed test-benches is a very difficult task to complete within lim-
ited time constraint. Directed test-benches with simulation will get the results quickly but may
not cover areas outside the target, if a certain area is missed so are the bugs associated with
it. Also directed test-benches do not accurately simulate the real world applications a processor
might encounter. Random vector testing helps solve the problem faced by the directed test-
benches as instructions are created at random which mimic real world application and if the
verification is carried on long enough then it can be sufficiently said as verified. Another advan-
tage of random vector testing is that bugs are found faster, because of the random nature even the
bugs not thought of before can be found. The device under test (DUT) in this paper are either 12
or 14-bit in order execution processors which can be of Harvard or Von Neumann architecture.
The goal is to build a flexible test-bench such that any of the configurations can be tested and
can be scalable to even larger designs. The process is divided into 3 parts viz. random instruc-
tion generation, SystemVerilog test-bench and SystemC model. Random instruction generator
will generate random instructions depending on the configuration specified in configuration file.

Instructions, even though being random, should make sense in relation to spatially neighboring



1.1 Research Goals 2

instructions. Perl is chosen as the language to produce instruction because of its text processing
abilities and other features like associative array, etc. Configuration file is also used by SystemC
model to calculate expected output for the particular instruction. SystemVerilog is chosen for the
test-bench because of its modularity and scalability. A change in test-bench will require only a

change in a particular module of SystemVerilog test-bench rather than a complete overhaul.

1.1 Research Goals

The goal of this work is to have a random instruction generator capable of generating instruction
for variety of processor which are part of test set and have provisions for other designs. This

objective is achieved as:

* Specify the basic requirements for the random instruction generator.

* Classify the processor design variations and come up with steps to create an instruction

generator to span all the requirements.

* Incorporate user switches to generate specific category of instruction, which are stored in

files compatible with processors and test-bench.

* Generate random instructions and verify two sample processor from set of eight processor,

as proof of concept.

A script is also developed to collect data from all the test runs, tabulate the data and generate

recommendations for debugging.

1.2 Contributions

The major contributions to the project Heliosphere are:
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1.

1.3

A fully functioning random instruction generator is built in Perl.

. Error detection and correction for two processors (12 & 14-bits) is carried out by various

tests to eliminate all the errors. These two processor samples are considered standard for

the rest of the set.

. Reused a part of instruction generator script to develop result database generator, which

organizes and classify errors.

Organization

Chapter 2: Research relating to the project outline and technology is presented in this

chapter.

Chapter 3: The test environment overview with brief introduction to each component is

discussed in this chapter.

Chapter 4: This chapter describes in detail processor architecture, instruction set and op-

eration of the processors used in this work.

Chapter 5: Configuration file structure along with description of each data field is ex-

plained.

Chapter 6: Random Instruction Generator is described in detail in this chapter. This chapter
provides a brief overview of the design followed with explanation of design choices and

function descriptions.

Chapter 7: This chapter describes the procedure to get results and gives explanation on

how to interpret them. Explanation is supported by relevant data and graphs.
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* Chapter 8: This chapter concludes the paper and discusses possible future work.



Chapter 2

Bibliographical Research

An important part of any research project is review current material related to the project speci-
fications and the relevant search results used are discussed in this chapter. The tools needed for
the development of intended work are one of the first material under research. The quest is to
validate the feasibility of the tools meeting the requirement. After reviewing related work done
with similar tools an affirmation is obtained and focus is shifted to the techniques/methods used
to accomplish project in processor verification, model design and instruction generation. Lan-
guages such as SystemVerilog, SystemC and Perl are selected and used with verificatoin tools by
Cadence to accomplish the work.

Processor verification is an intensive task, especially given that increasingly complex designs
can be designed and realized via state of the art manufacturing. In order to promote these designs,
they must be verified for correctness. Writing test cases for such complex systems manually is
quite challenging. If written to exhaustively check the system, this results in quite a large time
overhead in realizing the necessary test cases [3, 4]. This is not suitable to market the product
or use it in other project as the timeline is missed. This time penalty warrants automated test

case generation, which form the basis of the work done in this paper. Various methods are used



to generate instructions/test-cases for processor verification viz. random instruction generation
and randomizing a fixed set of test groups. The randomizing of the fixed set of test groups can
yield better results if the design has medium complexity since writing all the individual cases
will be increasing difficult. Directed manual tests have a short turn around time as they can
be easily designed for a particular case. As discussed earlier this method is not suitable for
exhaustive testing. Random Instruction testing is in stark contrast to manual testing in terms of
setup time. A random instruction generator requires a greater amount of time as randomness in
generation has to be constrained to bound tests within system design parameters and not generate
meaningless cases while at the same time reaching corners. In order to have best of both worlds
some methods researched use a novel way of randomizing part of a test case is done by making
selection of opcodes from a table but making the operands randomized [5, 6]. This method gives
a short setup time for the first test but will become time consuming as opcode table for all cases
need to supplied.

Random instructions can reach all the possible states including the ones not thought by the
test designer [7]. These tests when supplied with bias can give an acceptable coverage as against
pure random tests [3]. Genetic algorithms are suggested and used in [8] to test a PowerPC
architecture. This includes an execution trace buffer giving feed back to the bias generator, a
better set of random instructions are generate which force corner cases. Paper [9, 10] discusses
generating biases with respect to the instruction groups rather than each instruction to reduce
complexity and get better coverage, which is similar to the work done in this paper. The user
has capabilities of generating a group of instruction using mode selector discussed in 6.1 of this
paper. A different way of generating random instruction is discussed in [11]; this method uses a
Linear Feedback Shift Register (LFSR) to generate pseudo-random stream of bits which is given
as input to the DUT after being verified as a legal instruction as it is possible to generate illegal

instruction with this method. A work similar to [11] is described in [12] which uses graph theory



to estimate test length so that desired coverage is achieved without going overboard with test
runs. Paper [13] carries the bias generation a step further with much more customization e.g.
test length, instruction biases, memory maps, choice of directing tests to a particular processor
element. All this customization helps target tests and also helps while debugging as only a
particular area can be identified as a problem and thoroughly tested. The research affirmed the
choice of using random instructions generator in this work, as it is versatile and can be automated
to give superior testing time.

The test environment in this work is divided into three parts: generator, model and test-
bench. This structure is chosen as it is proven, and it can be argued that the generator and
model can be combine together like in [14]. But combining the model and generator together
introduces negative bias in both as they are dependent. Independently developing the model is
more flexible and brings in robustness. The model is written in SystemC as it has the modularity
and flexibility of software but can be used to model hardware, were as HDL (Hardware Definition
Languages) can do a better job but sacrifice software features of classes, objects [15]. The
model is considered as reference in verification and zero errors are expected from it. Various
techniques to verify SystemC model are discussed in [16—18] viz. assertion based test, explicit
state model test. The flow in verification is that the output of model is considered golden vector
and compared to DUT’s output, which depending on environment are generated and stored in a
file or verified cycle by cycle. The final piece which ties all the parts together in test environment
is the test-bench. The test-bench in this paper is developed in SystemVerilog. SystemVerilog is
chosen for its versatile nature and re-usability and the test-bench developed in SystemVerilog is
scalable as all the parts of the test-bench need not change to accommodate testing of new design
[19, 20]. The structure of test-bench is divided as assertion, scoreboard, monitor, interface,
driver [21]. Each part is a class and performs a job e.g. driver provides input vectors to the DUT,

while scoreboard compare DUT values to golden vector [22]. The work discussed in the paper



also tabulates results and produces graphs, an important observation made from research that

presentation of result play equally important role as the testing work itself.



Chapter 3

Test Environment

The test environment houses all the components required for verification. Test environment is
divided into three parts Random Instruction Generator (RIG), Model and Test-bench. Random
Instruction Generator is written in Perl v5.20 and generates set of instructions in accordance
to specifications of the device (processor) under test (DUT). Model is built in SystemC and its
function is to generate reference outputs. Test bench is written in SystemVerilog and checks
DUT output for errors. Figure 3.1 shows the block diagram of the system.

Testing/verification starts with the configuration file. The tester or owner of DUT populates
the information fields in the file depending on the specs. Configuration file in itself is not a
functional unit but provides information, viz. processor architecture, register size, number of
registers, mnemonic-opcode pair, etc. useful for functioning of the three components. The con-
figuration file is explained in Chapter 5. The RIG generates an instruction set which is read by
both the model and test bench. The Model produces ideal outputs and the test bench compares
DUT outputs to model’s and reports errors if any.

The test environment has eight test samples which are mix of 12 or 14 bits, and Harvard or

Von Neumann architecture. Two DUT samples are corrected to have no errors which assisted in
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the building of test environment and is proof of concept. After all the simulations have run, the
Report Database Generator (RDG) program cleans and arranges the report in final presentation

format.

3.1 Random Instruction Generator

RIG is the first to run. It extracts information from configuration file and reports of any errors
in file information. This error reporting helps so that syntax errors are avoided. Depending
on information extracted viz. processor architecture, bits, etc, instructions are generated as one
or two memory files. For Von Neumann architecture only one memory file is generated with
memory size in accordance to configuration file specifications. Whereas for Harvard, two files,
instruction & data memory file is created as shown in Figure 3.1. The number of instructions are
controlled by the user, if no input is associated with instruction number then a 1000 instruction
size is default. RIG also has features which protect against a number of instructions larger than
possible to fit, limit number of branch instruction so that the stack doesn’t overflow, exception
prevention as the DUT’s tested could not handle exceptions like divide by zero. Instructions
generated can be a mix of all instruction types or any combination like data manipulation, branch
- data manipulation, etc. This flexibility eases bug finding as efforts can be focused on a particular
instruction type. Since RIG calculates the result of instructions generated to prevent exceptions
and control other parameters it also generates files with registers values. The result files aid in

environment building as one more checkpoint in testing as extra test vectors.
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3.2 Model

The model is built to emulate the processors under the test and is written in SystemC. The model
configures itself with the data extracted from the configuration file. Model takes instruction file/s
generated by instruction generator and calculates the results. Model writes out the register values
in files for each register. Model also generates files with program counter values, which helps
test-bench determine if the DUT’s flow of execution long is correct, and status flag values. Model
checks for exceptions as second safety check after RIG and other errors in instructions if any.
Output files generated are input to test-bench as shown in Figure 3.1. The outputs generated by

model are compared to the DUT outputs by test-bench [23].

3.3 Test-bench

The test-bench does the verification and reporting of error after simulation. test-bench is written
in SystemVerilog due to its modular nature [24, 25]. test-bench is the only common interface
between different parts of environment and DUT. The test-bench receives instruction files from
the generator and provides stimulus viz. clock, instruction input. This is done by instantiat-
ing DUT in test-bench. The test-bench then monitors the output from the processor under test
and compares it to the output produced by model and instruction generator as shown in Figure
3.1. Simulation is stopped as soon as an error is detected, a report with expected values for
that instruction along with registers values for a set number of instructions is generated. The
information about past results help in debugging if the error is in the current instruction or has it
stemmed from previous instruction/s. After simulation the result are fed to RDG which complies
results and produces tidied report along with ’csv’ file with error density of each instruction and
potential issues with that particular instruction. This helps in plotting graphs making it easier

to interpret the results. test-bench is comprised of environment, test, test case, interface, driver.
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DUT resides in the test module. Driver provides stimulus and interface provides data interface
between modules. As discussed earlier, the modular nature helps as complete test-bench need
not change with change in DUT, this makes it robust and easier to maintain [2, 24]. A Perl script

was written to generate the test-bench depending on specs in the configuration file.

3.4 Report Database Generator

RDG is written in Perl v5.20. After required simulations have been ran, RIG creates various logs
and reports listing error instruction and other relevant data useful in debugging. The report has
opcodes and it is difficult to visually interpret the data. To resolve this RDG inserts in a comment
stating mnemonics for the opcodes and makes other changes to make the report more visual.
RDG also complies frequency of errors and possible cause from the test-bench report, this data
is written to a CSV file making it easier to plot graphs and observe data. RDG is based on RIG
as information extraction from configuration file is the same.

RIG is discussed in the paper. Model and test-bench are part of collaborative work to develop

the configurable test environment for verification of RISC processors.



Chapter 4

Processor Architecture

The RISC processors used in the work are developed as part of course EEEE621 - Design of
Computer Systems supervised by Dr. Patru at Electrical Department, Rochester Institute of
Technology in Fall 2015. The specification were unique to each student according to number
assigned. All the processors were originally developed in Altera’s Quartus Prime using Verilog

or VHDL.

4.1 Overview

The processor architecture overview is seen in Figure 4.1. It contains Memory Unit, Registers
and Arithmetic & Logical Unit (ALU). Input/Output peripherals are memory mapped to the
highest 16 locations. The processors are classified into two types viz. Harvard & Von Neumann
architecture. Further sub classification is done on basis of the Instruction Word (IW) size which
can be 12 bits or 14 bits wide. Table 4.1 lists all the processors used in the work with their major

specifications.
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MEMORY

ALU - PM (rom) & DM (ram) for Harvard

<:> - MM (initialized ram) for Von Neumann
c c - registers
Functional Unit s

- Temporary input & output I/0 Unit
registers - SP (Stack Pointer)
Registers
- 8/16/32 registers
- 12/14/16 bits wide

Figure 4.1: Processor Architecture Overview

Table 4.1: Processor list
| Processor name | Architecture type | Instruction word size | No. of registers | Status reg. size |

paRISC621pipe_v Harvard 14 16 8
kxmRISC621_v Von Neumann 12 8 12
vxkRISC621_v Von Neumann 14 16 8

axtRISC621 Von Neumann 12 8 12
tRISC621 v Harvard 12 8 12

dnm_RISC621 v Harvard 14 16 8

dxpRISC521pipe_v Harvard 14 16 8

nxpRISC621pipe_v Von Neumann 14 16 8
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4.2 Registers

Registers are used in various operations are performed and they also hold results. Depending
on instruction word size, the number of registers is limited as bits required to access them are
constrained. All data manipulation instructions have registers as operands and for write back/s-
torage. A 12-bit processor has a 3-bit register field giving eight registers (RO - R7) whereas a
14-bit processor has a 4-bit register field giving sixteen registers (RO - R15). A design exception
is made for the 12-bit design in flow-control instruction that registerl (operand1) size is limited
to 2-bits making 4 registers usable. This is done in order to accommodate four flag bits while

still having the same number of opcode bits.

4.3 Arithmetic & Logic Unit (ALU)

ALU is host to mathematical, logical operations, and functional unit. For most of the processors
used, mathematical operations and logical operations like shift, rotate, OR, etc are written by the
designer. Whereas multiplication and division operation are used as a unit which is generated
using Quartus’s IP wizard. The ALU in the processors used is not designed to handle exceptions
e.g. divide by zero. Functional unit houses temporary registers for both input and output. Input
operands are held in temporary registers TA and TB which can indicate register used or can hold
constant depending on the instruction. Outputs after an operation are held in temporary registers
TALUH and TALUL to hold upper half and lower half of the result respectively. Number and

types of operations are same across all processors except that data size handled can be different.
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4.4 Memory Unit

The Memory Unit is monolithic for Von Neumann design as both program and data memory
reside in same memory space. Harvard design on the other hand uses separate memory space for
program and data memory. An advantage of Harvard design is that both program and data mem-
ory can be accessed simultaneously. This helps when the instructions are pipelined to increase
throughput. Section 4.6.1 discusses pipeline in detail. The memory units used are generated
using Quartus’s IP wizard. In case of Von Neumann architecture design, initialized ram is used.
Initializing ram is required because program and data memory share space and the program needs
to be loaded before start of operations. The registers like Program Counter (PC), Stack Pointer
(SP), MAeft (Effective memory register) are also a part of memory unit as seen in Figure 4.2.
Program counter keeps track of instruction to be fetched and is incremented every cycle except
for a stall in pipeline. MAeff is calculated as addition of MAB (Memory Address Base register)
and MAX (Memory Address Index register). MAB holds the address offset and MAX holds
index which depends on an addressing mode used in a particular instruction [1]. Stack pointer
points to top of stack and is incremented or decremented depending on direction of growth. Stack
in this work is defined as percentage of memory, it is made even in size by Random instruction
generator as Flow control instruction occupy two location on stack. MAeff is register not avail-
able to user, it holds the address to the location in the memory from which data can be loaded or
stored or jump location. The organization of stack is seen in Figure 4.3.

Input/Output (I/O) peripherals are memory mapped for both the architecture types. The high-
est 16 locations in memory (data-memory for Harvard) are assigned to I/O peripherals. The pe-
ripheral assignment in I/O memory is user defined. A generic memory structure is as shown in
Figure 6.3 the table represents Von Neumann architecture but Harvard is also similar with an

exception that it has separate program memory.
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- Memory Address Base register (MAB)
- Memory Address Index register (MAX)
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(MAeff)

- PM (rom) & DM (ram) for Harvard
- MM (initialized ram) for Von Neumann
- registers

4.5 Instruction Set

Stack
- SP (Stack Pointer)

I/O Unit
- Memory mapped

Figure 4.2: Memory organization

The size of opcode restricts the number of instructions possible. The processors tested in this

work have a 6-bit opcode field giving a maximum of 64 instructions. The actual number of

instructions implemented is smaller than 64. Addressing modes define how the data is fetched

or stored. For the processor used in the work operand1 (Ri) signifies addressing mode. A value

of 0’ in the field of addressing mode indicates direct addressing mode that the offset address

present in next instruction word is the address to either jump, load or store. A value of ’I’

indicates, the final address is addition of program counter value and offset address. The rest of

the values possible for operand] field represent register addressing mode. In register addressing

mode the final address is calculated as addition of value present in register (pointed by value of

operand1) and address offset. The instruction set is classified as follows.
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4.5.1 Manipulation Instructions

Manipulation instructions modify data in registers. They are used to perform mathematical and
logical operations. They can be further divided in to types i.e. two operand instructions and one
operand plus a constant type instruction. Instruction word format for manipulation instructions
is as seen in Figure 4.4. As seen in Instruction Word format register Ri is operandl and stores

result as well, Rj is second operand which can be a register or a constant value.

IWO0 IWO0
significance | Opcode Ri Rj Opcode Ri Rj
Field size 6 3 3 6 4 &
(a)  12-bit (b)  14-bit

Figure 4.4: Instruction word format for manipulation instructions (a) 12-bit and (b) 14-bit pro-

cessor [1]

4.5.2 Data Transfer Instructions

Data Transfer Instructions transfer data to and fro between registers and memory. Since oper-
ations are register based they are likely to be loaded with value from the memory at start of
program and when a value in memory is required. These instructions are also helpful when num-
ber of values being held are greater than number of registers, memory here provides temporary
storage for the value. Instruction word format for data transfer instructions is as seen in Figure
4.5. The offset address is stored at next memory location and is denoted as IW1 where IW0O
would represent the data transfer instruction. Depending on type of addressing mode, IW1 can

be the address of location itself or has to be added to Rj register value to obtain final address.
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WO IWO
Significance | Opcode Ri Rj Opcode Ri Rj
Field size 6 3 3 6 4 4
w1 w1
Significance Address Offset Address Offset
Field size 12 14

(a) 12-bit (b) 14-bit

Figure 4.5: Instruction word format for data transfer instructions (a) 12-bit and (b) 14-bit proces-

sor [1]

4.5.3 Branch Instructions

Branch instructions help skip or go to a different section of a program. *JUMP’ is a branch
instruction which helps skip/jump over set number of instruction forward or backward depending
on the condition. If the condition is met the jump is taken whilst if the condition is evaluated
to be false, program continues sequentially. The conditions in ’JUMP’ instruction are set using
conditional flags. Carry (C), Negative (N), Overflow (V), Zero (Z) are four flags used as the
conditions. With four one bit flag eight unique conditions plus an additional condition when all
the flags are reset. When all four flags are reset then "’JUMP”’ is unconditional and is taken.
"CALL’ and "RET’ (return) are grouped together and are unconditional branch instructions.
Call instructions is used to execute a subroutine which is stored after program memory or other
part of program memory. Subroutines make programs neat as a piece of code to be executed
multiple time need not be replicated at the usage, instead call can be made to the piece of code.
Another use possible is to call a exception handling routine. As exception can occur sporadically
they cannot be incorporated in main program but stored else where in memory and be executed
by call the routine. Branch instructions except 'RET’ have IW1 like data transfer instructions.

And the address to call routine or jump is calculated using IW1 and Rj register value depending
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on addressing mode. 'RET’ doesn’t have IW1 or address offset as it functions to return flow
of program back to caller i.e. to instruction before which call was made. 'RET’ instruction re-
stores the values of PC and flag values stored by CALL instruction on stack during its execution.

Instruction word format for branch instructions is as seen in Figure 4.6 and 4.7.

IWO0 IWO
Significance Opcode [Ri| C N[V ]| Z Opcode |Ri [ C | N |V | Z
Field size 6 2(1(1)1(1 6 4111111
IW1 IW1
Significance Address Offset Address Offset
Field size 12 14
(@) 12-bit (b)  14-bit

Figure 4.6: Instruction word format for JUMP and CALL (a) 12-bit and (b) 14-bit processor [1]

W0 IW0
Significance Opcode Ri [ NotUsed Opcode Ri | NotUsed
Field size 6 2 4 6 4 4
(a)  12-bit (b)  14-bit

Figure 4.7: Instruction word format for RET (a) 12-bit and (b) 14-bit processor [1]

All the instructions part of processor architecture are listed in appendix I and are grouped by

instruction types.

4.6 Processor Operation

Processor Operations are carried out in machine cycles. Machine cycle is a part of overall oper-
ation carried out as per instructions. An instruction operation is considered to be comprised of
four parts: instruction fetch, decode, execute and write back in the processors part of the work.

These four operations are called machine cycles. Instruction fetch is machine cycle 0 (MCO)
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which fetches the first and next new instructions from memory pointed by program counter.
Program counter has single increment after every fetch. All the fetches from the memory need
not be instructions as depending on type of instruction second instruction word can be mem-
ory offset. Instruction decode is machine cycle 1 (MC1) in this cycle depending on instruction
opcode (i.e. after identification of instruction) operands are loaded with values from register
or constant values. It is in this step that the values loaded in operands can be forwarded from
previous instruction to resolve dependencies. Detailed explanation of dependencies is in section
4.6.1 Pipeline Theory. Instruction execution is machine cycle 3 (MC2) where the result for the
instruction is calculated. The calculated result is stored in an internal temporary register ready
to be written back in next cycle or forwarded if required. Write back is machine cycle 4 (MC3)
and is last machine cycle marking end of an instruction cycle. Here the calculated result is either
stored in the memory or the register depending on the instruction.

Processor operation is divided into machine cycle to facilitate pipelining of instruction which
is similar to a product assembly line. Pipelining increases throughput of processor by utilizing

resources efficiently.

4.6.1 Pipeline Theory

Pipeline comes from assembly line used in automobile manufacturing. In manufacturing if a
person does all the steps by himself, the steps are performed in sequence and steps ahead have
to wait for previous ones to complete. Hence a job with 'm’ distinct parts with each part taking
'n’ amount of time will take a total of 'mn’ time without pipeline. In the same example if we
have 'm’ people doing an individual task then for first whole job to complete it’ll still take *mn’
amount of time. But after first complete job the next job will be completed in *n” amount of time.
This is because after completing first step first person can start working on second job’s first part

while second person is working on second part of first job. This goes so on and so forth such that
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when nth person is working on nth part of first job, the first person is working on first part of nth
job. In processors machine cycle replaces a person in completing job i.e. instruction execution.
The time taken to fill the pipeline which in example meant first person doing first part of nth
job is taken only once if the pipeline is not stalled. Here in processor, a stall can occur when
the processor is waiting for an instruction to complete which uses memory and in consequence
the memory cannot be accessed.This is a problem especially with Von Neumann architecture as
there’s a single memory unit and both read-write operation cannot happen at same time. This is
an example of structural dependency where multiple instructions try to access same resources.
Structural dependencies are solved by stalling the execution of next instruction until resources
become available. If there is change in flow of program then the pipeline is reset i.e. flushed.
Flushing means completing last instruction before branch instruction then continuing on from
new address location where pipeline needs to be filled again. Hence a pipeline is useful when
program don’t have many branch instructions and such programs appear more often than ones
with lots of branches which is why most modern processors use pipelining[26, 27].

A sample example of pipeline is as seen in Figure 4.8.
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Instruction Result

1 XOR R7,R7; R7=0;

2 XOR R6, R6; R6=0;

3 NOT R7; R7=0xFFFF;

4 ADDCRG6, 0x3; R6=0x3;

5 CPY R7,Ré6; R7=0x3;

6 MUL R7, R6; R7=0x0; R6=0x9;

Figure 4.8: Sample example for pipeline

The example contains six instructions and it takes nine cycles to complete execution. The

number of cycles is nine because it takes three cycles to fill the pipeline, six cycles to execute

and three trailing cycles to complete remaining instruction execution. Fetch cycle is performed

at every clock event and hence not considered as a cycle on its own. Detailed machine cycle

for entire execution is seen in Figure 4.9. As seen in sample program, first two instruction reset

values in register six and seven. Instruction number three (NOT instruction) which begins at third

machine cycle has decode and operand fetch at next cycle but the first XOR instruction has not

yet written back the value to R7.
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mMC 1 2 3 4 5 6 7 8 9

P-IC XOR-IC XOR-IC NOT-IC ADDC-IC CPY-IC MUL-IC - - -

P-mMCO XOR-IF XOR-IF NOT-IF ADDC-IF CPY-IF MUL-IF - - -

P-MC1 - XOR-OPF | XOR-OPF | NOT-OPF | ADDC-OPF| CPY-OPF | MUL-OPF - -

P-MC2 - - XOR-EXE | XOR-EXE | NOT-EXE | ADDC-EXE| CPY-EXE | MUL-EXE -

P-MC3 - - - XOR-WB | XOR-WB | NOT-WB | ADDC-WB| CPY-WB | MUL-WB
D/H - - - RAW - RAW RAW - -

Figure 4.9: Pipeline stages

This creates a data dependency and it’s of the type Read After Write (RAW) as NOT instruc-
tion can read the data only after XOR does write back. This can be resolved by a stall in pipeline,
but elegant way of handling this is data forwarding. Data forwarding implies that required data is
brought to the required register even before the previous instruction completes write back. With
this pipeline continues without a stall. Other dependency example is of Copy instruction. During
machine cycle six when ’copy’ instruction is in decode cycle it requires data of R6 value for
which is being calculated. So data is forwarded from ALU to the register before write back cycle
even begins. Other types of data hazards are Write after read (WAR) which occur when instruc-
tion over-writes data which is need by one of the previous instruction which needs old data to
complete it’s execution and Write After Write (WAW). WAW occur when two instructions write
data to same register, this happens when instruction are out of order in execution in reference to
their issuance.

In the example with six instruction and four cycles each so the program would have taken
twenty-four cycles to complete. But with pipeline and no branch it is completed in nine cycles.
The speedup of program can be calculated as [total time taken without piepline] / [total execution

time with pipeline] [1]. In the example taken the speedup is 24/9 which is 2.66.
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Configuration File

The configuration file is key to the test environment. It contains information to setup test bench,
generate test instructions and for model to do calculations. The configuration file is populated
from the specification sheet of DUT or by the supplier of the DUT. All the numeric values are
specified in the hexadecimal format except for the percentage value. The following information

18 contained in the file:

name_folder: This field gives directory name in which the files for a particular processor reside.

This is relative address to the directory test bench and resides one level below.

name: Name of the processor under test, helps locate the highest level file in directory. This
name is also used to generate instruction file, logs and reports under same name which

aids accessibility when testing multiple DUT’s.

bits: Size of instruction word for the DUT and is also the size of the registers. In the tests done

this is also the size of data bus and has two variants 12 bits and 14 bits.

registers: The number denotes the number of registers available to be used in instructions.
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architecture: Two types of architecture viz. Von Neumann & Harvard are indicated as, 0’ &’ 1’
respectively. This helps generator decide whether to generate a single or separate program

& data memory file.

opcode_size: Size of the field dictates number of maximum possible instruction mnemonics.

Also helps in generating instruction word and decoding in model.

operandl_size & operand2_size: This denotes the operands max size. For register-register in-
structions it gives register number used, it also can denote constant value if second operand
is constant. For the flow control instruction in processors used, Ri (operand 1) is calculated

as: (Instruction-word size) - (4 + opcode_size).

dm_size: This field only applies to Harvard architecture as it has separate data space. The

memory length is calculated as (2dm_size).

memory_size: Total memory size available is indicated by this filed and calculated as (2"mem-
ory_size). For Von Neumann architecture this gives available size of program & data

memory combined.

pc_in_pc_relative: This information is useful in operations using program-counter(PC) relative
addressing mode. DUT design allows relative address to be calculated with respect to
current or next instruction address. A ’0’ indicates current instruction’s address is used

while ’ 1’ indicates next instruction’s address is used.

SP & Stack_direction: Top of stack is given by this value. Stack direction indicates the growth
of stack i.e. where next element is stored. 0’ indicates that the elements are stored from
lower to higher address whereas ’1” indicates elements stored from higher to lower mem-

ory address. The highest the stack can grow or started at is (total memory - 16 highest
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locations), this is due to the fact that 16 locations are reserved for Input/output Peripherals

(I/0O-Ps) which are memory mapped for processors tested.

Stack_size: It is percentage of total memory available, in case of Harvard its w.r.t data memory

size. The size is made even as usual push on stack is two words for the processors tested.

Mapping: Mapping of mnemonics is done before specifying opcode value for given mnemonic.
Mapping is done between delimiters ’start_mapping’ & ’end_mapping’. This allows the
test environment to be DUT independent in naming the instruction mnemonic and be flex-
ible in handling various designs. The mnemonics on the left are associated with DUT and
the ones on the right are environment specific which are fixed for to be used by instruction

generator.

opcode: Here the opcodes relative to the mnemonics are to be entered. Opcodes are divided into
three categories data transfer, manipulation & branch instructions each has its delimiter
so that the instruction generator can identify different instruction and generate tests with

different combinations of instruction types.

clk_st: This value suggests number of clock cycles taken to fill the pipeline or the clock at which
first output is obtained. This is particularly useful for test bench to set reference to compare

model’s output to DUT’s for testing purposes.

DUT files:

* name_pm: This file gives the name of program memory used by DUT. This file is present
in both Harvard & Von Neumann architecture. For the latter its both program & data

memory.

* name_dm: Data memory used by only Harvard type DUT.
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* name_div: Divider used by the DUT.

* name_mul: Multiplier used by DUT.

* name_cnt: Counter used by DUT.

* All these files are used by the processor under test to run and perform its operations suc-
cessfully. These are also required by the test bench to list in compilation file so that the

environment instantiate or brings in correct file for to run test.

del_Ild & del_st: This field provides information about whether load & store instructions are
stalled. "1’ indicates stall after the instruction and "0’ indicates no stall. This is used by test
bench to make result comparison at correct time clock. In usual case only Von Neumann
architecture requires stalls as instruction and data are in same memory which introduces
one clock cycle latency. Design of Harvard architecture can also stall if designer chooses

to do so.

EOF: End of file delimiter.

Example configuration file is shown in Appendix II.
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Random Instruction Generator

RIG generates instructions used for verification and also writes the values of registers to the file.
Instructions generated at random help find bugs quicker as the tester need not manually think of
combinations. The ability to test with random instructions improves on the test case generation
time, if done manually. Hence from early stages of verification bugs or errors in implementation
can be found speeding up the turn around time. Random instructions can also test cases which
were not thought of if done manually. Manually testing all cases is both labor and time intensive
process. With multiple runs of verification, coverage close to 100 percent can be achieved with
help of the random instruction generator. The general flow of random instruction generator is

shown in Figure 6.2.

6.1 Random Instruction Generator Overview

The RIG is written in Perl v5.20. Perl has powerful text manipulation capabilities while syntax
is similar to C. Text processing helps in retrieving data from configuration file and in writing

instruction data, register values to file. The text formatting in file is also easier. The instruction
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perl gen vt.pl -config filename -mode mode_type

Figure 6.1: Command to generate random instructions

Table 6.1: Modes for instruction generation

’ Mode \ Instructions
a All three types of instruction are generated viz. manipulation, data transfer & branch
m Only manipulation instruction are generated
mb Manipulation and branch instruction are generated
md Manipulation and data transfer instruction are generated

generator is made configurable so that as the input configuration changes, it adapts to it. To
achieve this robustness the instruction generator is kept modular and the calculations are kept
generic and depend on the input configuration file. The instruction generator also has built in
error reporting. If the input configuration file has error in input data syntax or is missing data
field then the user is notified of such error with prompts on how to fix the errors. The command
to run the instruction generator is seen in 6.1:

The minimum input requirement is a configuration file 5, as it contains all the vital infor-
mation to proceed with the instruction generation. The other input parameters are number of
instruction and 'mode’. RIG can generate user defined number of instructions. The default value
for number of instruction is 1000 in this work, to ensure that even without being supplied with
number of instruction the RIG works. The input of 'mode’ is to compare generating a certain
type of instructions, table 6.1 describes 4 modes. The flow of RIG is seen in Figure 6.2. The
process begins with extracting information from configuration file done by Extract function. The
information extracted gives memory limits and information on segments inside memory like
stack, I/0 space. With the processor architecture known the next function, ’'memory_set’, knows

about memory being only data or with program memory as well. So the 'memory_set’ func-
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Figure 6.2: Flowchart for instruction generator
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tion sets the memory limits for next functions to continue the operation. The ’filler’ function
fills the memory with zeros in locations which will contain data later on as the instructions are
generated. It also fills memory locations with ones which are not written on by generator. The
"gen’ function is responsible for generation of instructions. It does so by calling sub-functions
viz. manipulation_gen, data_transfer, branch. Instructions generated are written to the file by
the ’writeout’ function. ’reg_out’ function does the task of writing out values of registers to file
to be used by testbench. The functions shown in Figure 6.2 are discussed in detail in following

sub-sections.

6.2 ’extract’ Function

The ’extract’ function takes the configuration file as an input and extracts all the information
about a particular processor. All the values inside the configuration files are hexadecimal, while
calculation in RIG are in decimal. Hence all the values are converted into decimal. The values
are extracted line by line from the configuration file. Any line beginning with ’#’ is considered a
comment and is ignored. All the configuration file reside in the ’configuration’ directory which is
one directory level below the RIG. All the extraction of information is done via Regular Expres-
sions (regex) [28]. The regex match and extract a part of a string depending on the criteria given.
Mapping of instruction and opcode for mnemonics are written between delimiters e.g. for data
transfer instructions ’start_data_transfer:” and ’end_data_transfer:’ are the start and end limiters
respectively. The delimiters helps in determining a section of data and hence the sections can
be in any sequence in configuration file. Absence of either opening or closing delimiter causes
an error so that errors in configuration file are avoided. "EOF’ marks the end of file and it is

indicator to stop reading data.
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6.3 ’memory_set’ Function

The 'memory_set’ function sets up the memory. The function first calculates the maximum mem-
ory from the information in configuration file. The value of field ’bits’ from the configuration file
is taken as power to base 2 to calculate maximum memory possible from that bit size. Here in
this work memory for a processor is calculated with its bit size. For Von Neumann architecture
only one memory with the calculated size is created, whereas for Harvard architecture two mem-
ory with same size are created to serve as program and data memory. But the random instruction
generator has provision to support user defined memory which can be smaller or greater than
calculated memory size. This custom memory size can be supplied for both program and data
memory, if present.

The stack is given as percentage of total memory size or data memory size for Harvard type
processors. While calculating memory locations to be reserved for the stack care is taken that
the value is even. An even value is chosen as instructions like CALL (branch instruction) use
two stack locations one for storing flags and program counter value. To verify the supplied
number of instructions can be generated reserved memory is calculated. If the space in memory
after subtracting reserved space is greater than desired number of instruction only then RIG
proceeds further. In case of instruction number exceeding the memory space available a warning
is reported along with the memory space available and execution of generator is carried with
maximum memory space possible. Reserved memory is calculated as addition of stack memory,
I/O space if memory mapped, subroutine space, data space in case of Von Nuemann architecture
and two additional memory locations. The subroutine space in this work is 40 memory locations
but can be changed. Data space is reserved in case of Von Neumann type processors so as to
allow instruction to write and read from memory location which would be impossible to do if

instructions occupied all the space. This reservation is not required in Harvard architecture as
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there is separate data memory. Two memory location are reserved as those locations contain one’s
stored which serves as end of program for testbench at which simulation can be stopped and is
completed. At the end of this function memory space is divided accordingly and instructions can

be generated. A typical memory layout for Von Neumann type is shown in Figure 6.3.

6.4 ‘filler’ Function

This function serves as building error checking in memory while generating instructions. It fills
the arrays with character "k’ which hold data to be written to memory to both program memory
and data memory or just to one memory in case of Von Neumann architecture design. The
character is chosen at random and it is written as visual aid. Since no address value or opcode
at the location will have character "k’ it helps catch error in generated instructions if any. Later
on during write out to file this helps in filling memory space with ones where ’k’ is found. The
locations with ones as data, can be address offset if preceded by a associated valid instruction
opcode. At other locations a string of ones mean that the location is not defined. Also this string
of ones can help detect branch error when the instruction word reads a string of ones instead of a

valid instruction.

6.5 ’gen’ Function

The "gen’ function is the largest function written. It is responsible for generation of instructions
and also prevention of exceptions as the processors in this work exclude exception handling.
The ’gen’ function is also made modular so that the development and maintenance in future is
relatively easier. The instructions are randomized in this function. The mnemonic and opcode

of instruction is stored as hash table by ’extract’ function. A random opcode from a set of hash
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keys is selected via ’shuffle’ function which is part of Perl’s *Util’ library which contain general
purpose subroutines. The "gen’ function is also responsible for generation of a certain set of in-
structions depending on user input, with ’a’, i.e. all instructions, being the default option. A set
of only branch or data transfer instructions is not generated as branch instructions need some in-
structions to branch to. And just branching the flow of execution will not reveal any dependency
error which are caused by other instructions when in a combination with branch instructions.
Similarly data transfer alone will not yield much information about errors, as reading or writing
garbage value cannot be verified if the same arbitrary value is written and read back again. Hence
both branch and data transfer instructions are paired with manipulation instructions to provide
data to read or write as well as good variation for dependency check when branching. The ability
to generate instructions with only certain desired types help in debugging a desired part of the
processor design as errors reported will be exclusively from the desired types of instructions. The
function is also intelligent to detect if a branch is to an undefined location. In such event branch
operation is skipped and replaced with one of the manipulation operations. The data transfer is
not chosen in case of an invalid branch because even data transfer from that location will be un-
defined. After choosing a random instruction ’gen’ calls sub-function to generate manipulation,

data transfer or branch instructions.

6.5.1 ’manipulation_gen’ Function

This function to generates manipulation instructions and calculates results for the generated in-
struction. This function then applies another layer of randomization by randomly selecting reg-
isters for the operation. In case of an instruction with constant as the second operand, the register
number generated for operand?2 still applies as the field size is same. After calculating result of
instruction flags need to be set according to the result. The flag assignment is done by "CNVZ’

function, a function is chosen as its functionality is needed by all the instruction and hence it
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prevents code duplication. Another function ’compactor’ resizes the result to fit the width of
instruction word of a particular processor. The resizing of the result is required for certain in-
structions as the entire result is not stored to destination, some information is contained in flags.
An example of such result resizing is adding two 12-bit operands in a 12 bit processor yields a
13-bit result of which the most significant bit (MSB) is carry. Thus result is clipped to 12-bits
while "CNVZ’ function already has carry information. The last function to be called to generate
opcode for the instruction generated is iw1_gen’. The iw1_gen’ function generates instruction
word in format specified by configuration file for a processor. The opcode (instruction word) gen-
erated is stored in an array later to be written in memory. Other information stored is resultant

register values.

6.5.2 ’data_transfer’ Function

The ’data_transfer’ function also generates random values for the operands. In the case of data
transfer instructions, i.e. LOAD & STORE, operand1 represents the addressing mode. Operand2
is the source or destination of data when the operation is STORE or LOAD respectively. The
data transfer instructions are two instruction words wide for the processors under the test. The
first instruction word which defines the instruction is followed by the address offset. The final
address is obtained as an addition of the address offset and base register address (MAB). The
base register address is defined by the addressing mode which is the value of operandl. A value
of 0’ represents direct addressing mode which implies that the final address is equal to the value
of address offset. A value of ’1° represents PC relative addressing mode and the final memory
address is calculated as sum of PC value and address offset. The values from two onwards to the
highest number specified by operand] field (e.g for 12-bit processor it is 7) represents register
addressing mode. The final address is equal to the value held by the register. To generate the

offset address, RIG generates a random number in valid memory range as the final address. Then
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according to the addressing mode, MAB is subtracted to give the offset address. It is ensured
that STORE doesn’t happen to a program memory location in Von Neumann architecture. This
makes sure that the program is not corrupted. If the final memory address is out of memory
bounds then the previous value of operand1 (addressing mode) is changed to one that’ll fit the
memory range. Also since data transfer instructions are allowed in subroutines and before JUMP
a caution is exercised result of which the instruction is skipped if only one memory space is
available at the end of routine or before jump. A provision is also made to put a random value if
a load operation is from a location which is undefined. At the end of the ’data_transfer’ function

a call is made to *wil_gen’ to generate the instruction word.

6.5.3 ’branch’ Function

With a branch instruction selected by ’gen’ function the *branch’ function takes over to perform
checks and to generate an instruction. Just like data transfer instructions, jump location or sub-
routine call addresses are calculated according to addressing modes. For JUMP instruction a
check if the jump is within the program is performed if it is register addressing mode. If the
jump is outside the program, then other registers are checked for providing the address value
within program space. One of the other addressing modes is chosen if the previous check fails.
For direct and PC relative addressing mode jump size is fixed depending on total number of in-
structions. Depending on the jump size, the address offset is calculated. The jump size is fixed
so that long jumps are avoided which would lead to skipping most instructions making overall
test shorter and would increase test time as testing all combinations will take more number of
tests. Jump can be taken in a forward and backward direction. A backward jump is of particular
interest in instruction generation as it must contain a forward jump to jump ahead of backward
jump’s instruction location else it’ll result in infinite loop. Hence to generate a backward jump a

combination of three jumps is generated. The first jump takes flow ahead of second jump which
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is a exit jump to avoid infinite loop. The third jump, i.e. the backward jump, takes flow before
the second jump which jumps ahead of it.

The ’call’ instruction can have its subroutine length as maximum of 10 instructions if it’s
at top level in nested calls. The nested call can have subroutines with maximum length of 6
instructions. This is done because subroutine space is limited and maximum instruction variation
should be checked in a test. A depth level of three nested calls is allowed in this work, depth level
can be increased with change in the code. It is made sure that there is a ‘return’ instruction at the
end of a subroutine block to take the flow of execution back to the main program or a subroutine

higher in nested call. The *branch’ function also calls ’iw1_gen’ to generate the instruction word.

6.6 ’write_out’ Function

The write_out function writes the instructions generated and the register values for those instruc-
tions which were stored in arrays to files. The instructions generated and corresponding resultant
register values are then stored in an array as it makes accessing the data and manipulation easier.
Also, writing a single value in a file would mean having write handle (pointer) open during the
entire writing process increasing risk of data being mishandled. For Von Neumann architecture
only one file named *memory.t’ is created and is written into. For Harvard architecture this file
also serves as program memory and ’data_memory.t’ is the data memory file. These memory
files are created in directory named heliosphere’ which is one directory level below and hosts

all the directories for the entire verification environment.
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6.7 ’reg_out’ Function

The register values are written in same directory as RIG by the 'reg_out’ function. The file name
is same as the register name e.g. for register O its RO.t’ , for stack pointer it is *SP.t’. All the
locations for memory or register may or may not have data in them, those locations are filled
with binary string of one. A separate function is created because the decision to write the register
values out was made later in project to help with verifying the model’s output. This extra set
of values helps ensure that model gave correct values while building the test environment. Also

with a separate function there is freedom to remove the functionality if required.
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Results

The results are obtained after running simulations. The Report database generator (RDG) then
makes visual changes to the reports and generates ’.csv’ files to facilitate graphing. During
first run of simulations, status flag related errors are observed to dominate. Thus majority of
simulation runs are cut short and other errors are not reached. This mandated a second test with
status flags changed to follow a standard according to the specifications. Test two yielded variety
of errors which give helpful insight into design errors and dependencies. The results of two sets
of tests, T1 and T2 are collected and graphs plotted to give visual representation and overview of
problem area in DUT design.

The RDG is also equipped with feature to classify error into four categories viz, status flag,

Program counter, Implementation errors and undefined registers.

Status_Flag: These are the errors in which the status flag don’t match the model’s output. These
errors are prevalent as some design constraint in course EEEE621 - Design of Computer
Systems were left at programmer’s discretion, which resulted in variations in status flag

implementation.

Program_counter: A mismatch in values of program counter are reported under this category.
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A wrong branch results in this error, the cause can be wrong memory address calculation

or incorrect return address.

Implementation_Error: When a register value doesn’t match the expected value it is consid-
ered as implementation error. The probability of the instruction’s functionality is very high
if there is mismatch between expected and observed register value. A few cases where the
error may not be implementation related are when a branch is taken to an incorrect location

or a return to an incorrect memory location. But this field give a good start in debugging.

Undefined_reg: This type of error is recorded when a don’t care ("x’) logic value is observed.
The usual cause of this error is uninitialized register value on reset or wrong data size

transactions between registers.

The above classification of errors are a helpful aid in debugging process as a start point. An
Excel spreadsheet file is created to group data, obtained from test-bench, in a table. This excel
file is used to create graphs using Matlab, presented in IV. The table has a dependency field
related to two operands i.e. Ri, Rj. This field helps identify total occurrences on which an
error coincided with a possible register dependency. This being not a perfect number, can give
insight into a possible register dependency not being resolved in the design. Another important
observation presented to user is total occurrence of an instruction versus total number of errors
of that instruction. An example of a test results in tabular form is in table 7.1 which is test T1 in
mode ’a’.

Two set of tests are run for a DUT. Each test set has a subset of four test corresponding to
four test modes as explained in 6.1. So a total of 8 tests are run for a DUT, each test has 1500
iterations with 1000 instructions each. An example of a script to run 1500 test for a DUT in

mode ’a’ is as follows:

#!/bin/bash
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rm ../ risc/Test_Result.t
rm ../ risc/cplog.t
m ../ pl/perl.log
rm log.t
cp ../ configuration/configuration_2_kxm.txt ../configuration.txt
perl ../test_gen/test_genr.pl —len 4 #call to testbench generator
for i in {0..1499..1}
do
cd ../ pl/
perl gen_vt.pl —config configuration.txt —mode a > perl.log #call to
instruction generator
cd ../ processor/
make
ed ../risc
./sim.csh —r —ng —sv —run
echo

done
cd ../pl
perl error_rpt.pl —config configuration.txt —mode a —num 1500
#call to Report database generator

Listing 7.1: bash version

The results are grouped into four categories depending on mode. Each mode has two tests T1
& T2, T1 being results with original DUT design and T2 with status flag modification. Results

for a processor ’kxmRISC621_v’ are presented and discussed in following sections.

7.1 Mode’a’

In mode ’a’ all the instructions are generated and it gives an overview of errors in the design.
This mode can be used at the start to find the group of instructions with most errors and target
simulation to that group using different simulation mode. This mode is also useful when most of

the errors are cleared and a final sweep can be made to catch errors if any.
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7.1.1 Mode ’a’ - Test T1

As discussed earlier this test is with no corrections to the status flags. From figure 7.1 it is seen
that the status flag error are present for majority of instructions. Errors related to implementation
errors are prevalent as for ’Mul” & ’Mulc’ as well as ’Div’ & *Divc’ instructions the design saves
the result in a different way than the standard defined in this work. Other implementation errors
are due to an instruction incorrectly implemented e.g. SHLA implementing left shift incorrectly.
It can be seen that with help of the figure representing errors it is easier to start debugging .
Figure 7.2 shows total occurrence of a particular instruction versus errors for that instruction,
this gives a overview of a test set as debugging an instruction with low total occurrence having
similar number of errors as an instruction which has more occurrence can be prioritized. The

data represented in Figure 7.1 & 7.2 is shown in table 7.1.

7.1.2 Mode ’a’ - Test T2

This is the test after making the status flag correction in the DUT. A comparison can be made
with test T1 while looking at Figures 7.3 & 7.4 that the number of errors except for status flag
error increase. This observation is important because it indicates the differences in the DUT

design and the standard considered in this work.

7.2 Mode’m’

In this mode only manipulation instructions are generated. Generating manipulation instructions
exclusively helps catch errors faster as they form a major part of the instruction set. Also since
most of these instructions are used in combinations, finding dependencies and eliminating them

decremented the time required to find errors in other type of instructions.
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Figure 7.2: Total error count for Test T1 - mode ’a’

7.2.1 Mode ’m’ - Test T1

In this test the status flag errors are present, as well as possible implementation errors in instruc-
tions like "DIVC’, ’RTRC’, "SHRA’. For test T2 a guess can be made that the status flag error
should almost be zero while only having implementation errors as T2 is carried out after correct-
ing status flag error in design. The classification of errors and density of errors is seen in Figure

7.5 & Figure 7.6 respectively.

7.2.2 Mode ‘'m’ - Test T2

From Figures 7.7 & 7.8 it can be observed that the status flag errors are zeros except for 'SHRA’

because the implementation is incorrect.
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7.3 Mode 'mb’

Manipulation and branch instructions are generated and tested in this mode. Errors in branch
instructions may or may not be reflect in the register values for that instruction, for example a
‘return’ instruction might pop a wrong value from stack into status flag resulting in status flag
error. Usually these errors can be detected by comparing expected program counter (PC) values
to the observed PC value. Hence an error in PC value is a good indicator for branch instruction
related errors. The Table 7.1 prepared by the RDG has column which list PC errors. Errors
related to PC can be found for manipulation instructions, but this is usually when the previous
instruction being *CALL’, "’JUMP’ or 'RET’ resulting in wrong branch location. Another good
indicator to spot a incorrect branch is don’t care values, this is categorized under *Undefined reg’

in the table, found in simulation.
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7.3.1 Mode 'mb’ - Test T1

As seen in Figure 7.9 & 7.10 , "CALL’ and 'JUMP’ have quite number of errors when com-
pared to 'RET’. Errors related to "RET’ in the DUT are less as the instruction correctly popped
the return address but had error in popping status register values. Hence, when the instruction

following the ’"CALL’ didn’t use status flag the error was masked.

7.3.2 Mode 'mb’ - Test T2

In this test after correcting status flag in the DUT design, more errors are logged for the branch

instruction than the previous test runs. This can be observed in Figure 7.11 & 7.12.
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7.4 Mode ’'md’

Manipulation and data transfer instructions are generated and tested in this mode. Errors in PC
value suggest that the data transfer instruction calculated the memory address incorrectly. Other
error for data transfer instruction is incorrect register value, whch can be due to incorrect value

store at the address or memory read/write fault.

7.4.1 Mode 'md’ - Test T1

Figures 7.13 & 7.14 indicate a lot of errors related to both manipulation and data transfer instruc-

tion.
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7.4.2 Mode 'md’ - Test T2

After resolving errors related to status flags, Figures 7.15 & 7.16 in test T2 give a clearer picture
that "'STORE’ along with some manipulation instructions (found in mode m’) have errors. With

this information debugging can be started for the ’'STORE’ instruction by the user.



7.4 Mode *md’

57

No. of Errors

350

300

250

200

150

100

50

Figure 7.11: Errors for Test T2 - mode 'mb’



7

.4 Mode 'md’

58

Instructions

[ Total Occurance
I rrors

400 600 800 1000 1200 1400
Instruction Count

Figure 7.12: Total error count for Test T2 - mode *'mb’



7.4 Mode *md’ 59

Table 7.1: Tabulation of Errors for test 7/ (mode ’a’) in processor kxmRISC621_v

Instructions ‘ Total Occ ‘ Errors ‘ Ri ‘ Rj ‘ Status Flag ‘ PC ‘ Undef. Reg. ‘ Implementation error

ADD 1892 10 31 9 0 0 1
ADDC 1886 25 410 25 0 0 0
AND 1880 10 00 10 0 0 0
CALL 1087 0 00 0 0 0 0
COPY 1898 12 0|0 12 0 0 0
DIV 690 100 121 0 75 0 0 25
DIVC 1917 493 |45 0 246 0 0 247
JUMP 1904 0 01]O0 0 0 0 0
LOAD 1703 0 010 0 0 0 0
MUL 1931 13 00 13 0 0 0
MULC 1847 274 1491 0 8 0 0 266
NOT 1934 21 410 21 0 0 0
OR 1874 12 310 12 0 0 0
RET 502 0 0] 0 0 0 0 0
ROTL 1945 21 10 21 0 0 0
ROTR 1899 17 210 16 0 0 1
RTLC 1939 45 810 12 0 0 33
RTRC 1883 180 191 0 6 0 0 174
SHLA 2027 88 510 59 0 0 29
SHLL 1882 17 210 16 0 0 1
SHRA 1899 73 1510 11 0 0 62
SHRL 1887 14 10 14 0 0 0
STORE 1688 0 00 0 0 0 0
SUB 1981 17 10 17 0 0 0
SUBC 1881 30 410 30 0 0 0
SWAP 1954 12 310 12 0 0 0
XOR 1884 16 310 16 0 0 0
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Chapter 8

Conclusion

In this work a Programmable Random Instruction Generator is developed. The instruction gener-
ator supports 12, 14 bit processor configurations for both Von Neumann and Harvard architecture.
After running tests and looking at the gathered data two of the 8 samples are corrected to not have
errors, this serves as proof of concept and helped development of the test environment. With a
large number of tests run using various modes of instruction generation a very high coverage
can be achieved. With flexible nature of the instruction generator, it can be easily adapted for
higher bit processors e.g. 16 bits, 32 bits. The report database generator is based on instruction
generator, mainly utilizing the file reading and information capture capabilities. Hence, report
database generator also inherits the robustness of the instruction generator. The report and the

graphs obtained after simulation are a powerful tool for debugging the design and architecture.

8.1 Future work

The current design of instruction generator can be further enhanced via following:

1. Option for users to select wider instruction word generation.
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2. Support for floating point instructions.

3. Higher level in "CALL’ instruction nesting with ’JUMP’ support inside subroutine.

4. Better presentation of result, the result should suggest corrective steps along side errors.
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Appendix I

RISC Processor Instructions

I.1 Manipulation Instructions

Table I.1: Manipulation Instructions[1, 2]

Instruction Description Operation Syntax Example Machine
Code for 12
bits
ADD Addition of two || Ri=Rj+Ri || ADD <Ri>, ADD R6, <6-bit
registers <Rj>; R7; opcode for
ADD> 110
111
ADDC Addition of a Ri=Ri + ADDC ADDC R2, <6-bit
register and a CON- <Ri>, 1; opcode for
constant STANT at <Constant at ADDC> 010
Rj Rj field>; 001




I.1 Manipulation Instructions

SUB Subtraction of Ri=Ri-Rj SUB <Ri>, SUB R6, R7 <6-bit
two registers <Rj>; opcode for
SUB> 110
111
SUBC Subtraction of a Ri=Ri - SUBC <Ri>, SUBC R2, <6-bit
register and a CON- <Constant at 1; opcode for
constant STANT at Rj field>; SUBC> 010
R; 001
MUL Multiplication Ri=Rj*Ri || MUL <Ri>, MUL R6, <6-bit
of two registers <Rj>; R7; opcode for
MUL> 110
111
MULC Multiplication Ri=Ri* MULC MULC R2, <6-bit
of a register by CON- <Ri>, 3; opcode for
a constant STANT at <Constant at MULC> 010
Rj Rj field>; 011
DIV Division of a Ri =Ri/Rj DIV <Ri>, DIV R6, R7; || <opcode for
register by <Rj>; DIV> 110
another register 111
DIVC Division of a Ri=Ri/ DIVC <Ri>, DIVCR2, 3 <code for
register by a CON- <Constant at DIVC> 010
constant STANT at Rj field>; 011
Rj




I.1 Manipulation Instructions

I-3

NOT Logical Ri=NOTRi || NOT <Ri>; NOT R7; <code for
Negation of a NOT> 111
register XXX
XOR Logical XOR Ri=Ri XOR <Ri>, XOR R7, <code for
(Exclusive OR) XOR Rj <Rj>; R6; XOR> 111
of two registers 110
SHLL Shift Left Logic Ri=Ri<< SHLL <Ri>, SHLL R7, <code for
the value of a Constant <Constant at 0x2; SHLL> 111
register by a Rj field>; 010
constant
SHRL Shift Right Ri=Ri>> SHRL <Ri>, SHRL R1, <code for
Logic the value Constant <Constant at 0x5; SHRL> 001
of a register by Rj field>; 101
a constant
SHLA Shift Left Ri=Ri << SHLA <Ri>, SHLA R2, <code for
Arithmetic the Constant <Constant at 0x4; SHRL> 010
value of a Rj field>; 100
register by a
constant.




I.1 Manipulation Instructions

SHRA Shift Right Ri =Ri>> SHRA SHRA R3, <code for
Arithmetic the Constant <Ri>, 0x4; SHRA> 011
value of a <Constant at 100
register by a Rj field>;
constant.
ROTL Rotate Left the Ri=Ri ROTL <Ri>, ROTL R2, <code for
value of a ROTL <Constant at 0x4; ROTL> 010
register by a Constant Rj field>; 100
constant
ROTR Rotate Right Ri=Ri ROTR <Ri>, ROTR R6, <code for
the value of a ROTR <Constant at 0x2; ROTR> 110
register by a Constant Rj field>; 010
constant
RTLC Rotate Left the Ri=Ri RTLC <Ri>, RTLC R2, <code for
value of a RTLC <Constant at 0Ox1; RTLC> 010
register through Constant Rj field>; 001
carry by a
constant
RTRC Rotate Right Ri=Ri RTRC <Ri>, RTRC R6, <code for
the value of a RTRC <Constant at 0x7; RTRC> 110
register through Constant Rj field>; 111
carry by a
constant




I.1 Manipulation Instructions

SWAP Swap the data Ri =Rj and SWAP SWAP R2, <code for
of two registers Rj=Ri <Ri>, <Rj>; R3; SWAP> 010
011
COPY Copy data from Ri receives CPY <Ri>, CPY RS, <code for
register into Rj value; <Rj>; R7; CPY> 101
another 111




1.2 Data Transfer Instructions

I.2 Data Transfer Instructions

Table 1.2: Transfer Instructions[1, 2]

Instruction Description Operation Syntax Example Machine
Code for 12
bits
STORE - The value of Memory STORE STORE Inst 1:
Direct the register is Address = RO, RO, M[R4, <code for
addressing written to a R[Rj] M[<Rj>, 0x800]; STORE>
mode memory Address]; 000 010
address Inst 2:
specified by 0100 0000
the instruction 0000
STORE - PC The value of Offset STORE STORE Inst 1:
addressing the register is Address + R1, R1, M[R2, <code for
mode stored at the PC =R[Rj] M[<Rj>, 0x405]; STORE>
memory Address]; 001 010
address, Inst 2:
calculated as 0100 0000
sum of offset 0101
address and
the PC value




1.2 Data Transfer Instructions

STORE - The value of Memory STORE STORE Inst 1:
Stack Pointer the register is Address R2, R2, M[R3, <code for
stored at the referent to M[<Rj>, 0x700]; STORE>
memory SP value = Address]; 010 101
address, R[Rj] Inst 2:
pointed by the 0100 0000
Stack Pointer 0111
STORE - The value of Offset STORE ST R3, Inst 1:
Register the register is Address + <Ri>, M[R2, <code for
addressing stored at the R[Ri] = M[<Rj>, 0x40F7; STORE>
mode memory R[Rj] Address]; 011 010
address, [1] Inst 2:
calculated as 0100 0000
sum of offset 1111
address and
the register
value
LOAD - The value of a R[Rj] = LOAD RO, LOAD RO, Inst 1:
Direct address memory Data at the M[<Rj>, MI[RI, <code for
mode address offset Addr]; 0x860]; LOAD>
specified is address 000 001
loaded in the Inst 2:
register 0100 0000
0000




1.2 Data Transfer Instructions

LOAD - PC The value of a R[Rj] = LOAD RI1, || LOADRI, Inst 1:
addressing memory Data at the M[<Rj>, M[R7, <code for
mode address, (offset Address]; 0x2041]; LOAD>
calculated as address + 001 111
sum of offset PC) Inst 2:
address and 0100 0000
the PC value, 0010
is loaded in
the register
LOAD - Stack || The value of a R[Rj] = LOAD R2, LOAD R2, Inst 1:
Pointer memory Memory M[<Rj>, MJ[RO, <code for
address, Address Address]; 0x600]; LOAD>
pointed by the || referent to 001 110
Stack Pointer Stack Inst 2:
is loaded in Pointer 0100 0000
the register value 0011




1.3 Branch Instructions

LOAD - The value of a R[Rj] = LD <Ri>, LOAD R3, Inst 1:
Register memory Data of the M[<Rj>, M[R7, <code for
addressing address, ( Offset Address]; 0x4FF]; LOAD>
mode calculated as address + [2] 011111
sum of offset R[Ri]) Inst 2:
address and 0100 1111
the register 1111
value is
loaded in the
register

[1] Rirepresents registers from R3 to R7 for 12-bit processor. For 14-bit processor, from registers

R3 to R15.
[2] Ri represents registers from R3 to R7 for 12-bit processor, registers R3 to R15 for 14-bit

Processor.

I.3 Branch Instructions

Table 1.3: Branch Instructions|[1, 2]

Instruction Description Operation Syntax Example Machine

Code for 12

bits




1.3 Branch Instructions

I-10
JMPU - Jump Jump to a PC = New Code line Code line Inst 1:
Unconditional memory Address; 1: IMPU 1: IMPU <code for
location. This @jmp_1 @jmp_2; JIMPU>
location is <xx><0000>
determined by Code line Code line Inst 2:
the current 2: @jmp_1 || 2: @jmp_2 || 0000 0011
value of Ri. <MNEMONICSUBC RO, 1111
[3] 0x1; (4]
JMPC - Jump Jump to a PC = New Code line Code line Inst 1:
if Carry memory Address; 1: JIMPC 1: IMPC <code for
location , if @jmp_1 @jmp_2; IMPC>
carry status bit <xx><1000>
is set. [3] Code line Code line Inst 2:
2: @mp_1 || 2: @ymp_2 || 0000 0000
<MNEM> | SUBCRS, 1111 [5]
0x2;
JMPN - Jump Jump to a PC = New Code line Code line Inst 1:
if Negative memory Address; 1: JIMPN 1: JMPN <code for
location , if @jmp_label | @jmp_c; JMPN>
Negative <xx><0100>
status bit is Code line Code line Inst 2:
set. [3] 2: 2: @jmp_c || 0000 0000
@jmp_label | SUBC R4, 1111
<MNEM> 0x3; [6]




1.3 Branch Instructions

I-11
JMPV - Jump Jump to a PC = New Code line Code line Inst 1:
if Overflow memory Address; 1: IMPV 1: IMPV <code for
location , if @jmp_label @jmp_v; JIMPV>
Overflow <xx><0010>
status bit is Code line Code line Inst 2:
set. [3] 2: 2: @jymp_v || 0000 0000
@jmp_label | SUBC RS, 1111
<MNEM> 0x5; [7]
JMPZ - Jump Jump to a PC = New Code line Code line Inst 1:
if Zero memory Address; 1: IMPZ 1: IMPZ <code for
location , if @jmp_label | @jmp_z; IMPZ>
Zero status bit <xx><0001>
is set. [3] Code line Code line Inst 2:
2: 2: @ymp_z || 0000 0000
@jmp_label | DIVCRI, 1111
<MNEM> 0x2; [8]




1.3 Branch Instructions I-12
JMPNC - Jump to a PC = New Code line Code line Inst 1:
Jump if NOT memory Address; 1: JMPNC || 1: JMPNC <code for
Carry location , if @jmp_label || @jmp_nc; JMPNC>
Carry status <xx><0111>]
bit is zero and Code line Code line Inst 2:
overflow, zero 2: 2: 0000 0000
and negative @jmp_label | @jmp_nc 1111
status bits are <MNEM> SUBC R4, 9]
setas ’1’. [3] 0x3;
JMPNN - Jump to a PC = New Code line Code line Inst 1:
Jump if NOT memory Address; 1: JMPNN | 1: JMPNN <code for
Negative location , if @jmp_label | @jmp_nc; JMPNN>
Negative <xx><1011>
status bit is Code line Code line Inst 2:
zero and carry, 2: 2: 0000 0000
overflow and @jmp_label || @jmp_nn 1111 [10]
negative status <MNEM> DIVC R3,
bits are set as 0x2;
17 [3]




1.3 Branch Instructions I-13
JMPNYV - Jump to a PC = New Code line Code line Inst 1:
Jump if NOT memory Address; 1: JIMPNV | 1: JMPNV <code for
Overflow location , if @jmp_label || @jmp_nc; JMPNV>
Overflow <xx><1101>
status bit is Code line Code line Inst 2:
zero and 2: 2: 0000 0000
Carry, Zero @jmp_label | @jmp_nv 1111
and Negative <MNEM> | MULC R3, [11]
status bits are OxA;
setas '1’. [3]
JMPNZ - Jump to a PC = New Code line Code line Inst 1:
Jump if NOT memory Address; 1: IMPNZ 1: IMPNZ <code for
Zero location , if @jmp_label || @jmp_nc; JMPNZ>
Zero status bit <xx><1110>
is zero and Code line Code line Inst 2:
Carry, 2: 2: 0000 0000
Overflow and @jmp_label | @jmp_nn 1111
Negative <MNEM> || MULC R2, [12]
status bits are 0x9;
setas’1’.
(3]




1.3 Branch Instructions I-14
Call Call PC = call @label || Code Line Inst 1:
instruction Address1 <MNEM> 1: CALL <code for
branches to a > @name; CALL>
specific Address2 XXX XXX
address and Code Line Inst 2:
the current 2: @name || 0000 1111
address & MULC RI1, 1111 [13]
status flags are 0x1;
stored on the
stack
RET Returns back | Address <- RET RET <code for
to the RET RET> xxx
instruction XXX
after CALL

instruction. It
does so by
restoring the
PC value and
status flags
from values
stored on the
stack by Call

instruction
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[3]if Ri = 0, direct addressing.
if Ri = 1, PC addressing.
if Ri = 2, Stack Pointer addressing.

if Ri greater than 2, register addressing.

[4]JMPU: Two machine codes are present for JMPU, one machine code specific for the in-
struction code, Jump unconditional, and other machine code that represents the destination ad-
dress. Rj must be zero.

Obs:The instruction that Jump unconditional is pointing is at address 0xO3F and all bits rela-
tive to CNVZ status (Carry, Negative, Overflow and Zero flags) are zero. According to the value

of Ri, Program Counter value will change.

[S]IMPC: Two machine codes are present for JMPC, one machine code for the instruction
code, Jump if Carry, and other machine code specific for the destination address. The status bits
must be 4’b1000, or 0x8 for 12 and 14-bit processors. For 16-bit processor the status bits must
be 4’b10000 or 0x10 .

Obs:The instruction that Jump if Carry is pointing is at address OxOOF and all bits relative to

CNVZ status is 0x8. According to the value of Ri, Program Counter value will change.

[6]JMPN: Two machine codes are present here, one machine code for the instruction code,
Jump if Negative, and other for the destination address. The status bits must be 4’b0100, or Ox4
for 12 and 14 bits and 4’b01000, or 0x8 for 16 bits.

Obs:The instruction that Jump if Negative is pointing is at address OxOOF and all bits relative

to CNVZ status are 0x4. According to the value of Ri, PC value will change.
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[7]IMPV: Two machine codes are present here for this instruction code, one machine code
for the instruction code, Jump if Overflow, and other for the destination address. The status bits
must be 4’b0010, or 0x2 for 12 and 14 bits and 4’b0100, or 0x4 for 16 bits.

Obs:The instruction that Jump if Overflow is pointing is at address 0xOOF and all bits relative

to CNVZ status are 0x2. According to the value of Ri, Program Counter value will change.

[8]JMPZ: Two machine codes are present for this instruction, one machine code for the in-
struction code, Jump if Zero, and other for the destination address. The status bits must be
4’0001, or 0x1 for 12 and 14 bits and 4’b0010, or 0x2 for 16 bits.

Obs:The instruction that Jump if Zero is pointing is at address OxOOF and all bits relative to

CNVZ status are 0x1. According to the value of Ri, Program Counter value will change.

[9]JMPNC: Two machine codes are present for this instruction, one machine code for the
instruction code, Jump if Not Carry, and other for the destination address. The status bits must
be 4’b0111, or 0x7 for 12 and 14-bit processors. For 16-bit processor the status bits must be
5’b01110 or OxE .

Obs:The instruction that Jump if Carry is pointing is at address OxOOF and all bits relative to

CNVZ status is 0x7. According to the value of Ri, Program Counter value will change.

[10]JJMPNN: Two machine codes are present for this instruction, one machine code for the
instruction code, Jump if Not Negative and other for the destination address. The status bits must
be 4’b1011, or OxB for 12 and 14-bit processors. For 16-bit processor the status bits must be
5’b10110 or 0x16.

Obs:The second instruction represents the offset address for Jump if Not Negative. It is point-

ing is at address OxOOF and all bits relative to CNVZ status are 0xB. According to the value of
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Ri, Program Counter value will change.

[11]JMPNV: Two machine codes are present here, one machine code for the instruction code,
Jump if Not Overflow and other for the destination address. The status bits must be 4’b1101, or
0xD for 12 and 14-bit processors. For 16-bit processor the status bits must be 5’b11010 or Ox1A.

Obs:The second instruction represents the offset address for Jump if Not Overflow. It is
pointing is at address OxOOF and all bits relative to CNVZ status are 0xD. According to the value

of Ri, Program Counter value will change.

[12]JMPNZ: Two machine codes are present, one machine code for the instruction code,
Jump if Not Zero and other for the destination address. The status bits must be 4’b1110, or OxE
for 12 and 14-bit processors. For 16-bit processor the status bits must be 5’b11100 or Ox1C.

Obs:The second instruction represents the offset address for Jump if Not Zero. It is pointing
is at address OxOOF and all bits relative to CNVZ status are OXE. According to the value of Ri,

PC value will change.

[13]Call: Two machine codes are present, one for the instruction code CALL and one for the
next destination address.

Obs: The instruction that Call is pointing is at address OxOFF.
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Configuration File

# Configuration File
#
#name of the folder where the processor files are located
name_folder: 2_kxm
#name of the processor in format <filename.ext> with the extension
name: kxmRISC621_v.v
#number of bits for the processor
bits:0x0C
#number of registers
registers:0x8
#Harvard(0) or Von Neumann (1)
architecture:1
#0pcode size
opcode_size:0x6

#define the operand sizes for manipulation instructions, LOAD, STORE, COPY



I1-2

and SWAP

#for JUMP, CALL and RET, Ri will be defined by: (number of bits) - (4+opcode_size)

operandl_size:0x3

operand2_size:0x3

#operandl_size + operand2_size + opcode_size has to be equal to bits

#data memory address bus size

dm_size:0xA

#Program and Data Memory Size VN in power of 2

memory_size:0x0C

#Value of PC used in calculating effective address: ’0’ if current instruction’s
PC is used, ’1’ if next instruction’s PC is used

pc_in_pc_relative:0

#Stack Pointer top

SP: Ox1FEF

#Stack growth direction up(i.e.lower to higher address "0") or down (i.e.higher
to lower address "1")

Stack_direction: 1

#Percentage of memory reserved for stack

Stack_size: 2

#opcodes

#instruction mapping: the left hand colum represent user mnemonics and right
hand column are reserved mnemonics (with their explaination) reserved by the
test environment

#NOTE: mapping should occur before mnemonic : opcode definition

start_mapping:



I1-3

ADD : ADD ;
SUB : SUB ;
ADDC : ADDC ;
SUBC : SUBC ;
MUL : MUL ;
DIV : DIV ;
MULC : MULC ;
DIVC : DIVC ;
NOT : NOT ;
AND : AND ;
OR : OR ;

XO0R : XOR ;
SHLL : SHLL ;
SHRL : SHRL ;
SHLA : SHLA ;
SHRA : SHRA ;
ROTL : ROTL ;
ROTR : ROTR ;
RTLC : RTLC ;
RTRC : RTRC ;
COPY : COPY ;
SWAP : SWAP ;
LOAD : LOAD ;

STORE : STORE ;

JUMP : JUMP ;
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CALL : CALL ;

RET : RET ;
end_mapping:

opcode:
start_data_transfer:
LOAD :0x00 ;

STORE :0x01 ;
end_data_transfer:

start_manipulation:

ADD : 0x02 ;
SUB : 0x03 ;
ADDC : 0x04 ;
SUBC : 0x05 ;
NOT : 0x06 ;
AND : 0x07 ;
OR : 0x08 ;
XOR : 0x09 ;
SHLL : 0x0A ;
SHRL : 0xOB ;
SHLA : 0x0C ;
SHRA : 0xOD ;
ROTL : OxOE ;
ROTR : 0xOF ;
RTLC : 0x10 ;

RTRC : 0Ox11 ;
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MUL : 0x12 ;
DIV : 0x13 ;
MULC : 0x14 ;
DIVC : 0x15 ;
COPY : 0x16 ;
SWAP : 0x17 ;

end_manipulation:

start_branch:

JUMP : 0x18 ;
CALL : 0x21 ;
RET : 0x22 ;

end_branch:

#clock cycle at which the first instruction output is obtained

clk_st:5

#name of the files used inside processor in format <filename.ext>

#note: use only ’name_pm’ for von neumann arch

name_pm: kxmRISC621_raml.v

name_dm:

name_div: kxmRISC_div.v
name_mul: kxmRISC_mult.v
name_cnt: kxm621_count.v
#are you for stalling 1d, st, jmp, cal or ret?

#i.e., are you delaying the fetch of next instruction?

del_14d:1

del_st:1

’1’-yes, ’0’-no
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del_jmp:1
#del_cal:1
#del_ret:1

EQF:
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Appendix 111

Source Code

III.1 Random Instruction Generator

use ;
use ol

## sf as ZVNC
##declaration

my % = ;
my = ;
my = ;
= 0; ## number of registers
= 0;
= 0; ## 0 = harvard; 1= Von Neumann
= 0’

>

)

oo

my 0;
#my Stemp_1 = ""; ## temporary to store $I
my = ;
% ; ## hash to store mmnemonics with opcodes
%o ;
%o ;
% ;
my = 0;
my = ;
my = 0; ##holds total number of instructions
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my $instruction_no;

my S$instruction;

my $block_indicator = 0;

my $file line = 0;

my Snumber ='";

our $sp_direct;

#gen

my Sskipper;

my $no_inst = 1000; ##default number of instructions to be generated
my $write_handle;

my $outfile = "memory.t";
my Sopl = 0;
my $Sop2 = 0;

my S$flag = 10;

my $oth flag = 0;

my Sdata_flag = 0;

my Sbranch_flag =

my S$selection = "";

my @type = ("data_transfer", "manipulation", "branch");

my $Stemp_inst; my $Stemp_opl; my $Stemp_op2;

my $length; my Spadding;

my @keys;

our $SP_top;

my S$Saddress_off;

my $IWI1 flag = 0;

my S$shize = 0;

my Srepeat = 0;

my @Ildstj;

my @jmp_loc;

my Sflow;

my $condition;

my Sjump;

my @keys jmp;

our $dm_mask;

my @internal_stack;

my Sroutine_top;

my S$Scall; ## keeps count of CALL in progress

my S$routine_start; my $Sroutine_end;

my $dynamic_no_inst;

my @criteria;

#mem_sizing

our $stack _per; ## percentage of overall memory

my Sstack_size; ## Actual memory locations

our $mem_implemented;

our S$custom_mem = 0; ##Flag to indicate custom Program memory (or both if VN
)

our $custom_datamem = 0; ##Flag to indicate custom data memory

our $datamem_implemented;

my $data_memory ;
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my $Smem_IO = 1; ## 'I' = memory mapped I10s

my S$Sreserved_space;

my $num_IO = 16; ##number of memory mapped 10s

my $fixed_data_space = 100; ##Fixed data memory space only in Von Neumann

my Susable mem; ##Available program memory space

my S$routine_space = 40; ##space reserved for sub—routines

my Sfixed_jmp; ##helps to determine jump distance

#writeout

our $SP;

my $IW;

my SIWI;

my @reg; ## this mimics the registers

my @pm; ## this mimics program memory

my @dm; ## this mimics data memory — internal

my @pm_out; ## Program memory to be written out

my @dm_out; ## Data memory to be written out

my @sf; ## this mimics status flag

my @op_reg; ## All register data is store in this array. This is obsolete
now in @reg_array

my @inst;

my @operandl ;

my @operand?2;

my @status_op; ##Array to store all status outputs

#calculation

my @bin;

my @temp_array;

my S$calc_count;

my Stemp_flag;

my $twos_test;

my $twos_comp;

my $Stwos_size;

my S$neg_check;

my $operandl_reg;

my $Soperand?2_reg;

#options
our $now = 0; ## 'l 'for PC relative, considering the current operation as
refrence , '0O' considering next operation as reference

my $debug_handle;

my $bugl; my S$Sbug?;

my %jmp_cond = ("ju", '0000', "jc", '1000', "jneg", '0100', "jov", '0010', "
jz", '0001', "jnc", 'O111', "jpos", '1011', "jnov", '1101', "jnz", '1110'
); ## jump conditions

my $debug_handlel;

my $counter_call; ## my $inst_count = 0;

my Sconstantl ;

my S$inst_sequence;

my @reg_array; my @flag array; my $sf_flag;

my $bck_jmp; my @bck _array;

my @srno_array; my $sr_no;
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require "extract.pl";

if (SARGV[O] =~ /—help/)

{
}

GetOptions ('config=s' => \$config, 'num=i' => \$number, 'mode=s' =>

&help;

print "Hello\nWorking....\n";

if ( $number ne "") { $no_inst = $number; print "NUMBER $number\n";}
if ( Smode eq "") { $mode = 'a'; }

else { $mode = $mode; }

if ($config eq ")

{
}

else

{

die "Configuration file not specified, going to exit\n";

$config = $user_input{—config};
print "$config \n";

\$mode)

blank

open(my $read handle, "<", "../$config") Il die"died trying....
couldn't open file:'$config'";
srand () ;
while (my $input = <$read _handle >)
{
++5{file_line };
chomp (Sinput);
if ($input =~ [/Ms=#.x/) [next;} ## skipping comments
elsif (Sinput =~ /Msx$/) {next;} ## skipping
lines
elsif (Sinput =~ /Msx=(\ws)\sx:\sx(\wx)\sx;%x.x/)
{
$flag = &extract($1,%$2, $flag);
}
else { die "Invalid statement at $line\n";}
1

print "NO of registers: $num_reg\n";
if (${count} > 0) { die "No. of instruction mapped > no. of
instruction definitions by: $count \n"; }

Scall = 0;

&memory_set; ##function to limit segment memory into allocated space
&filler; ##Fills program memory space with 0's and others with

invalid data i.e. F's
Stwos_test = "1".(0 x (${bus_size}—-1));
print "Twos Test: $twos_test\n";
$twos_test = oct("Ob$twos_test");
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}

$dm_mask = (($custom_datamem == 0)&&($arch == 1))? $twos_test
$dm_mask;

$count = 0; ##prep count to represent address in write back

$counter_call = 0;

&gen;

&write_out;

&reg_out;

## 'memory_set' function checks and allocates memory space for program, data

srack and 1/0

## also warns if desired number of intrcutions exceed the number possible
sub memory_set

{

$memory_size = 2#*x$bus_size;

$constantl = $memory_size;

if ($Scustom_mem == 1) {$Smemory_size = $mem_implemented;} ## if memory
implemeted is smaller than largest possible

print "memory size: $memory_size\n";

$data_memory = $memory_size;

if ($Scustom_datamem == 1){$data_memory = $datamem_implemented} ##if
data memory is smaller than largest possible

$temp_opl = (S$arch == 1)? ($stack_per * $memory_size) : ($stack_per

* $data_memory);
$calc_count = Stemp_opl % 100;
$temp_opl = Stemp_opl — $calc_count;
$stack_size = S$Stemp_opl / 100;
if ($calc_count != 0){$stack_size = $stack_size + 1; }
if (($stack_size %2) !'= 0) {$stack_size = $stack_size + 1; }
print "Stack size: $stack_size\n'";

$reserved_space = 0;
if (($Smem_ IO == 1) && ($arch == 1)) {
$reserved_space = $num_IO;
}
if (Sarch == 1){
$reserved_space = $reserved_space + $fixed_data_space +
$stack_size;
}
$reserved_space = $reserved_space + S$routine_space + 2;
$usable_mem = $memory_size — S$reserved_space;
$routine_top = ($arch == 1)? ($usable_mem + $fixed_data_space +2)
($usable_mem + 2);
$routine_start = $routine_top;

if ($no_inst > $usable_mem) {
print "Warning: Number of instructions ($no_inst) greater
than available program memory size($usable_mem).\n";
$no_inst = ($usable_mem —1);
print "\t Only $no_inst number of instructions will be
created.\n";
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}

$dynamic_no_inst = $no_inst;

print "Available program memory size($usable_mem).\n";

memory_set ends —

filler

## 'filler ' function fills program memory

## All other memory space (including data

sub filler

{
$si[0] 0; $sf[1]
$sf[2] 0; $s[3] = 0;
$sf_flag = 0;
$bck_jmp = 0;
$bck_array [0]
$bck_array[5]
$sr_no = 0;
$criteria[0]
$criteria[l]
$routine_end
foreach my 5i

I
=)

[
o o

1
(e e)

$routine_start;
(0..%num_reg){

Sreg[$i] = 0; }
(0 x ${bus_size});

$padding =
$padding =
$calc_count =
$calc_count =

(1 x ${bus_size});
sprintf ("/x",

space with 0's
memory) filled with 1's

sprintf ("%X", oct("0b$padding”));

oct("Ob$calc_count"));

foreach my $i(0..($memory_size —1)){

$pm[$i] = 'k';
$pm_out[$i] =
$status_op[$i] = 'k';
$jmp_loc[$i] = 'k';
$inst[$i] = "'
$operandl1 [$i] = 'j';
$operand2[$i] = 'j';
}
if (Sarch == 0){
for my §i
$dm[$i] = 'k';
$dm_out[$i] =
}
foreach my Si
$op_reg[$i] = 'k';
$reg_array[$i] = 'k';
}
foreach my $i(0..%$no_inst){
$flag_array[$i] = 'k';
$1dstj[$i] = 'k';

Ikl;

Ikl;

(0..(S$data_memory —1)) {

}

(0..(($num_regx$memory_size)—1)){

i.

e.

F's



252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

267
268
269
270
271
272
273
274
275
276

277
278
279
280

281
282
283
284

285
286
287
288

289
290
291
292

293

II1.1 Random Instruction Generator II1-7

}

##t——— Filler Ends

## writes

sub write_out{

write_out
instructions and data memory to files

print "WRITE_OUT $dynamic_no_inst\n";
$padding = (1 x S$bus_size);

$padding
$padding

= oct("Ob$padding");
= sprintf("/x", Spadding);

foreach my $i (0..(Smemory_size —1)){

}

if ($arch

Scalc_count = sprintf("7%x", ${i});
if($i < $dynamic_no_inst){
Sbugl = sprintf("%x", Spm_out[$i]);
print $write_handle "\@${calc_count}\t$bugl // $inst[$i]
$operand1[$i] $operand2[$il\n";
}
elsif (%1 <= Sdynamic_no_inst){
print $write_handle "\@${calc_count}\t$padding\n";
}
elsif ($i <= ($dynamic_no_inst +1)){
print $write_handle "\@${calc_count}\t$padding\n";

}
else {
if (Spm_out[$i] eq '"k"){
print $write_handle "\@${calc_countl}\
t$padding\n";
}
else{
$bugl = sprintf ("%x", Spm_out[$i]);
print $write_handle "\@${calc_count}\t$bugl
// $inst[$i] $operandl[$i] $operand2[$i]\
n"; )
}
== 0){
open( $write_handle , ">", "../data_memory.t") ||l die "died
trying... couldn't open file 'data_memory.t'";

foreach my $i (0..(S$data_memory —1)){
Scalc_count = sprintf ("%x", ${i});
if (Sdm_out[$i] eq '"k'"){
print $write_handle "\@${calc_countl}\
t$padding\n";

else{
$operandl _reg = sprintf ("%X", Sdm _out[$i]);
print $write_handle "\@${calc_count}\
t$operandl_reg\n";



294
295
296

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

319

320
321
322
323
324
325
326
327

328

329
330
331
332
333
334

335
336

II1.1 Random Instruction Generator I11-8
}
}
open(S$write_handle , ">"  "reg.t") || die "died trying... couldn't
open file 'reg.t'";
foreach my $i (0..(($num_regx$no_inst)—1)){
Scalc_count = sprintf("%x", ${i});
print $write_handle "\@${calc_count}\t$reg_array[$il\n";
}
}
i — write_out Ends —
e reg_out
## writes register values to files
sub reg_out
{
my Skm;
my S$Sones;
my Soutput;
Sones = (1 x (Sbus_size));
Sones = oct("Ob$ones");
Sones = sprintf("%X", Sones);
foreach my $i (0 .. ($Snum_reg — 1)){
$outfile = '"R'.$i.".t";
$km = 0;
$output = 0;
open($write _handle, ">", Soutfile) |l die "died trying...
couldn't open file '$outfile'";
foreach my $) (($Six$no_inst) .. ((SixSno_inst)+($no_inst—1))
) {
Scalc_count = sprintf("%x", ${km});
if (Skm < ($no_inst — $bck_array [5])){
if (($km == 0) && (Sreg_array[$)] eq "k')){
$Soutput = sprintf("%05x", 0);
elsif (Sreg_array[$)] eq "k'){
$output = $output; }
else { Soutput = Sreg array[$)];
$output = sprintf("%05X", Soutput
)5}
print $write_handle "\@${calc_countl}\
t$output // $srno_array[$km]\n";
}
++5km ;
}
}
$Soutfile = "SR.t";
open( $write_handle, ">", $outfile) Il die "died trying... couldn't

open file 'S$outfile'";
foreach my $i (0 .. (Sno_inst — 1)){
Scalc_count = sprintf("%x", ${i});
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if (($1 == 0)&&($flag array[$i] eq "k')){

Soutput = 0;

$temp_opl = $srno_array[$i]; }

elsif ($flag array[$i1] eq 'k'){
$output = S$output;
$temp_opl = ""; }

else { Soutput = $flag_array[$i];

$temp_opl = $srno_array[$i]; }
print $write_handle "\@${calc_count}\t$output // $temp_opl

\n”.
}
$outfile = "PC.t";
open($write_handle, ">", $outfile) Il die "died trying... couldn't

open file '$outfile'";
foreach my $i (0 .. ($no_inst — 1)){
$calc_count = sprintf("%x", ${i});
if (51 < ($no_inst — Sbek_array [5])){

print $write_handle "\@${calc_count}\t$srno_array[$i

I\n";
}
}
}
HH— reg_out Ends —
Ciiia gen
## generates the required number of instructions
sub gen
{
$skipper = 0; S$jump = 0; $flow = 0;
open($debug handle, ">", "debug.txt") |l die "died trying... couldn'
t open file 'debug.txt'";
open($debug handlel , ">", "debugl.txt") |l die "died trying...
couldn't open file 'debugl.txt'"; ###test
open( $write _handle, ">", "../$outfile") ||l die "died trying...

couldn't open file '$outfile'";

print "Instructions beign generated: $no_inst\n";

@keys = keys %mnemonics;

@keys_jmp = keys %jmp_cond;

my $inst_count = 0;

$instruction = 0;

my @temp_keys; ###jmp

@temp_keys = keys %manip; ###jmp
while ($inst_count <= ($no_inst — 1)){

##print "\n";

$inst_count = (($instruction eq "RET")&& ((S$mode =~ /b/) I1(
$mode =~ /a/)) ) ? ++$inst_count: $inst_count;

$selection = shuffle @keys;

$instruction = $mnemonics{$selection };

if (Sbck_jmp > 0){
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}

if (($bck _jmp == 0)&&(Sjump == 1)&&(($jmp_loc[Scount] eq
[1($jmp_loc[$count] eq
location has no

else{

#++8counter;

if (Scount == ($Sbek_array[2])){
$instruction = $mnemonics{JUMP};
++$bck_jmp;

}

elsif (Scount ==
$instruction =
++$bck_jmp;

($bek_array[3] — 2)){
$mnemonics {JUMP};

}
else {

while (( $selection eq "JUMP") I ( $selection eq

"RET")){##to block jumps inbetween jump—
back pack
$selection = shuffle @keys;

}

$instruction = $mnemonics{$selection };
}

Ik!)
"t"))){ # to skip jump
instruction opcode
$instruction = shuffle @temp_keys;
$instruction_no = $manip{ $instruction };
Sopl = int(rand(Snum_reg—1));

$op2 = int(rand($num_reg—1));

&iwl_gen;

++$inst_count;

if jump

$jump = 0;
if (Smanip{$instruction} && (($mode =~ /m/) Il ( $mode
=~ Jal)) ){ #&& ($mode =~ )
&manipulation_gen;
while (S$repeat == 1) {
@bin = keys %manip;
$instruction = shuffle @bin;
&manipulation_gen;
}
}
elsif ($data_transfer{$instruction} && (($mode =~ /d
/) 11 ($Smode =~ Jal)) ){
if ($inst_count <= ($no_inst — 2)){
&data_transfer;
}
else { Sskipper = 1; }
if (Sskipper != 1) { ++$inst_count; }
}
elsif (Sbranch{S$instruction} && (($mode =~ /b/) I1(
$mode =~ /al)) ){
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}

if (($call
)

1= 0) && (S$instruction eq "JUMP")
$skipper = 1;

}

elsif ($instruction
&branch ;

ne "RET"){

}

else {
$instruction = "\0";
$skipper = 1;

}

if (Sskipper != 1) { ++$inst_count; }

else { Sskipper = 1; }

if ($skipper ==

1) { S$skipper = 0;}

else { ++Sinst_count; }

}
}
}
e gen Ends
- branch
##function to generate branch

sub branch{

my Shexl; my Shex2;
$instruction_no

instructions

my $hex3;

= $branch{$instruction };

Sopl = int(rand($num_reg—1));

if ($Sbus_size
$opl

}

12){

int(rand($opl _size —1)); ##in 12 bits Ri size
in branch

instructions

Sop2 = int(rand($num_reg—1));

$calc_count =
print $debug_handle "\@${calc_count}
if ($instruction

sprintf ("/x",

$count) ;
$instruction \t";

eq "JUMP")({

$IW1_flag = 1;
while (Sopl == 2) { Sopl = int(rand(Snum_reg—1)); }

$calc_count =

if ((Sopl

}

if ($calc_count ne
Sopl = int(rand(1));

'jok';
> 2) && (Sreg[Sopl] > ($Smemory_size — 1))){
$calc_count = 0;

for my $i (3..($num_reg—1)){

if ($reg[Sopl] < ($memory_size — 1)){

$opl = $i; $calc_count = '
jok '}
}
if($bus _size == 12){ S$calc_count = 0; }

"Jok )|
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467 }

468 ##<—— Jump length calc ——>##

469 $fixed_jmp = ($dynamic_no_inst < 40) ? 3 : (

$dynamic_no_inst < 60) ? 4 : ($dynamic_no_inst <
500) ? (5 + int(rand(6))): ($dynamic_no_inst <
1000) ? (5 + int(rand(11))) : (10 + int(rand(11))
)

470 if (Sopl == 0){

471 $address_off = $count + $fixed_jmp + 2; ##
+2 because have to account for iwl &Iw2
of jmp

472 if (Sbck_jmp == 2){

473 print $debug handlel "count: $count
,, bck_jmp: $bck_jmp\n";

474 $address_off = $bck_array[4];

475 $fixed_jmp = $bck_array[4] — $count;
##reverse for negative jmp
length

476 print $debug_handlel "address_off:
$address_off ,, fixed_jmp:
$fixed_jmp ,,";

477 }

478 elsif (Sbck_jmp == 3){

479 print $debug handlel "count: $count
,, bck_jmp: $bck_jmp\n";

480 $address_off = $bck_array[3];

481 $fixed_jmp = $bck_array[3] — $count;

482 print $debug handlel "address_off:
$address_off ,, fixed_jmp:
$fixed_jmp ,,";

483 }

484 $bugl = $address_off;

485 }

486 elsif (Sopl == 1){

487 $address_off = $fixed_jmp;

488 $bugl = S$count + $address_off;

489 if (Snow == 0){ Sbugl = $bugl + 2; }

490 if (Sbek_jmp == 2){

491 $calc_count = ($now == 1) ? S$count
($count + 2);

492 $address_off = $bck_array[4];

493 $operandl_reg = $calc_count —
$address_off;

494 $address_off = $memory_size —
$operandl_reg;

495 $bugl = $bck_array[4];

496 $fixed_jmp = $bck_array[4] —

$calc_count; ##reverse for
negative jmp length
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else {

print $debug_handlel "count: $count
»» bck_jmp: $bck_jmp\n";

print $debug_handlel "address_off:

$address_off ,, fixed_jmp:
$fixed_jmp ,,";
}
elsif ($bck _jmp == 3){
$calc_count = ($now == 1) ? $count

($count + 2);
$address_off = $bck_array[3] —
$calc_count;
$fixed_jmp = $address_off;
$bugl = $bck_array[3];
print $debug handlel "count:
,, bck_jmp: $bck_jmp\n";
print $debug_handlel "address_off:
$address_off ,, fixed_jmp:

"

$fixed_jmp ,,";

$count

$address_off = $count + $fixed_jmp;
if ($bck_jmp == 2){
$address_off = $bck_array[4];

$fixed_jmp = $bck_array[4] — S$count;
##reverse for negative jmp
length

print $debug handlel "count: $count
,, bck_jmp: $bck_jmp\n";

print $debug handlel "address_off:

$address_off ,, fixed_jmp:
$fixed_jmp ,,";
}
elsif ($Sbck_jmp == 3){
$address_off = $bck_array[3];

$fixed_jmp = $bck_array[3] — S$count;
print $debug_handlel "count: $count
»» bck_jmp: $bck_jmp\n";

"address_off:
fixed_jmp:

print $Sdebug handlel
$address_off ,,
$fixed_jmp ,,";
}
$bugl = $address_off;
if ($address_off < Sreg[$opl] ){ ## address
offset by calc roll—over
$operandl_reg = $reg[Sopl] —
$address_off;
$address_off = $memory_size —
$operandl_reg;
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}

}

else { $address_off = $address_off — S$reg|
Sopl]; }

if (Sbck _jmp > 0){ print Sdebug handlel "
after calc address_off: $address_off ,,";

}

if (Sbugl > (Sdynamic_no_inst — 1)){

else{

$skipper = 1;
$IW1_flag = 0; $flow = 0;

print $debug_handle " operands: $opl & $op2\
n\tJmp length(d): $fixed_jmp ,, "; ##

helps to determine jump distance

$hexl = sprintf("%X",Sbugl); $hex2 = sprintf
("%X",$address_off);

print $debug_handle "Final add: $hexl ,,

Address off:
&jump_decide;
if (Sbek jmp > 0){

while ($Sjump == 0){ &jump decide; }

$hex2\t";

}
$flow = 1;

if (($no_inst > 60)&&(Sjump == 1)&&(Scall ==
0)&&($bck _jmp == 0)&&(Scount >= ((
Sbck_array[0])%1000))){

++$bck_jmp;
Scriteria[0] = Scriteria[0] + 1; ##
Check if backward jump has

occured
Sbck_array [0] =
Sbck_array[1] =

Sbek_array [0] + 1;
$bugl;

Shex3 = sprintf ("%x",$bck_array[1]);
print $debug handlel "bck_array[1]:
$hex3 ,, ";

$bck_array [2] = $bugl — 2;

Shex3 = sprintf("%X",$bck_array [2]);
print $debug_handlel "count: $count
., bck_array[2]: $hex3 ,, ";

$fixed _jmp = 6 + int(rand(4));
$calc_count = $bugl + $fixed_jmp;
$bck_array[3] = $calc_count;

Shex3 = sprintf ("%x",$bck_array [3]);
print $debug_handlel "bck_arrayl[3]:
$hex3 ,, ";

$calc_count = $count + 2;
$bck_array[4] = $calc_count;
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Shex3 = sprintf ("%X",$bck_array [4]);
print $debug_handlel "bck_arrayl[4]:
$hex3\n\n";

}
else {
$jmp_loc[$bugl] = ($jump == 1)?
Sbugl : 't'; ##to check if store
jmp location with/out actual jump
}
&iwl_gen;

}
} ## if for JMP
if (Sinstruction eq "CALL"){

while (Sopl == 2) { Sopl = int(rand(Snum_reg—1)); }

$calc_count = 'cok';

if (($opl > 2) && (Sreg[$opl] > (Smemory_size — 1))){
$calc_count = 0;

for my $i (3..(Snum_reg—1)){
if (Sreg[$opl] < ($Smemory_size — 1)){

$opl = $i; $calc_count =
cok';}
}
if (Sbus size == 12){ Scalc _count = 0; }

}
if ($calc_count ne 'cok'){
$opl = int(rand(1));

1

Sfixed_jmp = ($Scall > 0)? (4 + int(rand(2))): (7 +
int(rand(3)));

$address_off = $fixed_jmp + Sroutine_start;

$calc_count = $routine_top + S$routine_space —1; ##
calculating end of routine space

if ((Scounter_call + 1 + $fixed_jmp) > (Sno_inst — 2)

) {
$skipper = 1; ##skipping when routine
exceeds total instruction count
}
if ($count > ($routine_end — 3)){
$Sskipper = 1; ##skipping when call cannot be
accommodated inside routine
}
if ($address_off > ($routine_top + S$routine_space —1)
) {
$calc_count = Sroutine_top + S$routine_space

$skipper = 1; #skipping when running out of
routine space
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598 if ((Sbek_jmp > 0)&&(Scount > ($bek_array[3]—4)) l(
Scount > (S$bck_array[1]1=4)))){

599 $skipper = 1; ##skipping CALL don't fit in
space between jumps

600 }

601 if (${sp_direct} == 1){ S$calc_count = $SP_top —

$stack_size + 2; }

602 else { $calc_count = $SP_top + $stack_size — 2; }

603 if ((SSP — Scalc_count) < 0){ ### thsi will become (

$calc_count — $SP)< 0 if stack growing upwards

604 $skipper = 1; #skipping when running out of
stack space

605 }

606 $skipper = ($call == 3) ?2 1 : S$Sskipper ; ##limiting

nested call to 3 levels

607 if ($skipper != 1){

608 print $debug_handle "opearand: $opi\n";

609 Shex! = sprintf("%X", Sroutine_start);

610 $counter_call = $counter_call + 2 +
$fixed_jmp;

611 $dynamic_no_inst = $dynamic_no_inst —
$fixed_jmp; ## To have accurate end of
program ###14321

612 $call = $call + 1;

613 if(Scall > 1) {

614 ++S$Scounter_call; ##accounting for

offset of nested call

615 $criteria[l] = $Scriterial[l] + 1; ##

Check if nested call has occured

616 }

617 if (Sopl == 0){

618 $address_off = S$routine_start;

619 }

620 elsif (Sopl == 1){

621 $calc_count = ($now == 1) ? $count

(Scount + 2);
622 if ($calc_count >= S$routine_start) {

print Sdebug _handlel "Error in
CALL address this\n";}

623 $address_off = S$routine_start —
$calc_count;

624 }

625 else{

626 if(Sroutine_start < Sreg[Sopl] ){

627 $operandl_reg = $reg[Sopl] —
$routine_start;

628 $address_off = $memory_size —

$operandl_reg;
629 }
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else { $address_off = $routine_start
— Sreg[$opl]; }
}
$hex3 = sprintf("%X", Saddress_off);
$calc_count = $count + 2;
Shex2 = sprintf("%X", $Scalc_count); ##PC in

hex

push @internal_stack , S$calc_count;

$calc_count = join('', @sf);

push @internal_stack , $calc_count; ##stored
PC and Status flags

print $debug_handle "\t Stored, PC: $hex2 ,,
Status flag(ZVNC): @sf ,, ";

$calc_count = shuffle @keys_jmp;

$condition = $jmp_cond{$calc_count };

$flow = 1;

$IW1_flag = 1;

&iwl_gen;

$count = Sroutine_start; ##pointing to the
start of routine

routine_start = ixed _jmp + S$routine_star
$ t tart $fixed_jmp $ t tart
$routine_end = $routine_start — 1;

push @internal_stack , S$routine_end;
$calc_count = sprintf("%x", S$routine_end);

$SP = ${sp_direct} ? (${SP} — 2):(${SP} + 2)

$hex2 = sprintf ("%x", $SP);
print $debug handle "SP: $hex2\n'";
Shex2 = sprintf("%X", Sroutine_end);
print $debug_handle "\t Call to: $hexl ,,
routine length(d): $fixed_jmp ,, End of
routine: $hex2 ,, Offset: $hex3";
}
‘Y##end if for CALL
print $debug handle "\n\n";

}
e — branch Ends
e jump_decide

## calculates wheather jump is taken depending on the condition
sub jump_ decide

{
$jump = O0;
$calc_count = shuffle @keys_jmp;
$instruction = $calc_count;
$condition = $jmp_cond{$calc_count };

print $debug_handle "Status flag(ZVNC) @sf ,, JMP type:
$calc_count";
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if ($calc_count eq "ju"){
$jump = 1;
}
elsif (Scalc_count eq "jec"){
if ($sf[3] == 1) { Sjump = 1;
1
elsif ($calc_count eq "jneg"){
if ($sf[2] == 1) { Sjump = 1;
}
elsif (Scalc _count eq "jov'"){
if ($sf[1] == 1) { Sjump = 1;
}
elsif ($Scalc_count eq "jz"){
if ($sf[0] == 1) { Sjump = 1;
}
elsif ($Scalc_count eq "jnc"){
if ($sf[3] == 0) { $Sjump = 1;
}
elsif (Scalc _count eq "jpos'"){
if ($sf[2] == 0) { Sjump = 1;
}
elsif ($calc_count eq "jnov"){
if ($sf[1] == 0) { Sjump = 1;
}
elsif (Scalc _count eq "jnz"){
if ($sf[0] == 0) { Sjump = 1;
}
else{
$jump = 0;
print "ERROR: Wrong jump conditon detected\n";
}
$calc_count = ($jump == 1) ? "Taken" "Not taken"
print S$debug _handle " $calc_count";
}
i jump_decide Ends
- data_transfer
#function to generate data_transfer instructions
sub data_transfer{
my Shexl; my $Shex2; my S$Shex3;
$instruction_no = $data_transfer{$instruction };
$calc_count = sprintf("%x", $Scount);
print $debug_handle "\@${calc_count}\t$instruction
if (Scall =0 ){
while (Sopl == 2) { $opl = int(rand($num_reg — 1));

} ## comment out this line

}
Sop2 = int(rand($num_reg—1));

to generate all
addressing modes, mode 2 blocked
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716 if ((Scall > 0)&&($Scount > (Sroutine_end — 2))){

717 $skipper = 1; ##skipping when LOAD & STORE cannot be

accommodated inside routine

718 }

719 if (($bck_jmp > 0)&&(Scount > ($bek_array[3]—4)) 11 ( $Scount >

($beck_array[1]1—=4)))){

720 $skipper = 1; ##skipping when LOAD & STORE don 't fit

in space between jumps

721 }

722 if ($skipper 1= 1){

723 if ($instruction eq "LOAD"){

724 $IW1_flag = 1;

725 if (Sopl > 2){

726 $opl = 0;

727 while ($opl < 3){ $opl = int(rand(${

num_reg}—1)); } #to generate reg >= 3

728 if ($Sarch == 1){

729 if (Sreg[Sopl] > ($Susable_mem

+ $fixed_data_space — 1)
) {

730 for my $i (3..(

$Snum_reg—1)){

731 if (Sreg[$opl
I <«
$usable_mem
+
$fixed_data_space
- 1))

732 { $Sopl = $i;
$calc_count
= 'ok';}

733 }

734 }

735 else {

736 $calc_count = 'ok';

}

737 }

738 else {

739 if(Sreg[Sopl] > (

$data_memory — 1)){

740 for my $i (3..(

Snum_reg —1)){

741 if(Sreg[$opl
I <«
$data_memory
- 1))

742 { Sopl = $i;
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$calc_count

= on)
}
}
else {
$calc_count = 'ok';
1
}
if (Scalc_count ne 'ok'){

Sopl = int(rand(1)); ##
Restricted to direct or
pc—relative

1
}
if ($sp direct == 1){ $calc_count =
$SP_top — $stack_size; }
else { S$calc_count = $SP_top + $stack_size;
}
if ((SSP == $SP_top)&&(Sopl == 2)) { Sopl =

int(rand(1)); }
print $debug handle "opearnds:
if (Sopl == 0){ ## direct addressing
print $debug_handle "Direct addressing\t";
if (Sarch == 1){
$address_off = 0;
while (S$Saddress_off <= (
$no_inst + 1)){
$address_off = int(rand($
{usable_mem }+${
fixed_data_space }));} ##
load address restricted
to address after
instructions
if ($pm[$address_off] eq
{

$opl & $op2\t

Ik‘)

$pm[$address_off] =
int (rand ((2#:=${
bus_size })—1));
$pm_out[ $address_off
1 = Spml
$address_off];
}
$reg[$op2] = $pm][
$address_off];
operation

##load

else {
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Saddress_off = int(rand(
$data_memory —1 —
$stack_size — $num_IO));

if (Sdm[Saddress_off] eq 'k")
{

$dm[ $address_off] =
int (rand ((2#:=${
bus_size })—1));

$dm_out[ $address_off
1 = $dm][
$address_off];

1

$reg[$op2] = $dm][
$address_off];

}

Shexl = sprintf("%X", $address off);

Shex2 = sprintf("%x", Sreg[Sop2
s

print $debug_handle "Address: $hexl
,, Value: $hex2";

}
elsif (Sopl == 1) { ## PC-relative
print $debug_handle "PC-relative\t";
if (Sarch == 1){
$address_off = O0;
while ($address _off <= (
Sno_inst + 1)){
Saddress_off = int(rand($
{usable_mem }+${
fixed_data_space }));}
if (3pm[S$address_off] eq
{

Ik‘)

$pm[ $address_off] =
int (rand ((2#:=${
bus_size})—1));
$pm_out[ $address_off
I = Spm|
$address_off];
}
$reg[$op2] = $pm]|
Saddress_off]; ##load
operation

else {

Saddress_off = int(rand(
$data_memory —1 —
$stack_size — $num_IO));

if (Sdm[Saddress_off] eq 'k")
{
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$dm[ $address_off] =
int (rand ((2#=5${
bus_size})—1));
$dm_out[ $address_off
1 = $dm]|
$address_off];
}
$reg[$op2] = $dm[
$address_off];
}
Shexl = sprintf("%X", $Saddress_off);
Shex2 = sprintf("%X", Sreg[$op2
D
print $debug_handle "Address(orig):
$hex1l ,, Value: $hex2\t";
if ($now == 1) { $calc_count = $count
3}
else {S$calc_count = (${count} + 2);}
if ($address_off < S$calc_count ){ ##
address offset by calc roll—over

$operandl_reg = $calc_count
— $address_off;
$address_off = $constantl —

$operandl_reg;
}
else { $address_off = $address_off —
$calc_count; }
Shexl = sprintf("%x", $calc_count);
Shex2 = sprintf("/x",
$address_off);
print $debug handle "PC: $hexl\
t0ffset: $hex2";
}
elsif (Sopl == 2) { ## SP
print $debug_handle "Stack Addressing\t";
$address_off = 0;
$SP = ($SP == $SP_top)? $SP : (${
sp_direct}? (${SP} + 1):(${SP} —
);
Scalc_count = ($arch == 0)? ($SP &
$dm_mask) : $SP;
if (Sarch == 1){
if (Spm[S$calc_count] eq "k'){
$pm[$calc_count] =
0;
$pm_out[ $calc_count]
= $pm|[
$calc_count];
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$reg[Sop2] = $pm[$calc_count
1, ##load operation

$hexl = sprintf("%x", $SP);
$hex2 = sprintf ("%x",
$calc_count); $hex3 =
sprintf ("%x", Sreg[$op2])

print S$debug handle "

St_pointer: $hexl ,, pm[
$hex2]: $hex3";
}
else{
if (Sdm[S$Scalc_count] eq 'k'){
$dm[ $calc_count] =
03
$dm_out[ $calc_count]
= $dm]|
$calc_count];
}
$reg[$op2] = $dm[S$calc_count
1; ##load operation
$hexl = sprintf("%x", $SP);
$hex2 = sprintf("%x",
$calc_count); $hex3 =
sprintf ("%x", Sreg[$op2])
print S$debug_handle "
St_pointer: $hexl ,, dm[
$hex2]: $hex3";
}
}
else {

print $debug_handle "Register Addressing\t

"o
b}

if (Sarch == 1){
if ($reg[Sopl] <= ($no_inst
+1)){
$address_off =
$no_inst + 3;
while ($Saddress_off
<= (($no_inst +
D=Sree[Sopl 1)) {
$address_off =
int (rand ((${
usable_mem }+${
fixed_data_space

P—=Sreg[Sopl])) s}

else{
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else {

Saddress_off = int(
rand ((${
usable_mem }+${
fixed_data_space
P=Sreg[Sopl]));

1
$calc_count = $reg[Fopl] +
$address_off;
if (Spm[S$calc_count] eq '"k'){
$pm[ $calc_count] =
int (rand ((2+=5${
bus_size })—=1));
$pm_out[ $calc_count]
= $pm[
$calc_count];
}
$reg[Sop2] = $pm[$calc_count
13
$hex! = sprintf ("%x",
$calc_count); $hex2 =
sprintf ("/x",
$address_off); $hex3 =
sprintf ("%x", Sreg[Sop2])

print S$debug handle "Address
$hex1l ,, Offset: $hex?2
,, Value: $hex3";

$address_off = int(rand(
$data_memory — 1 —
$stack_size — $num_IO));
if (Sdm[Saddress_off] eq 'k")
{
$dm[ $address_off] =
int (rand ((2##5${
bus_size })—1));
$dm_out[ $address_off
] = Sdm[
$address_off];
1

$operand2_reg = $address_off

if ($address_off < $reg[$opl
DA
$operandl_reg = $reg
[$opl] —
$address_off;
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861 $address_off =
$data_memory —
$operandl_reg;

862 }

863 else { Saddress_off =
$address_off — $reg[Sopl
;)

864 $reg[$op2] = $dm[
$operand2_reg];

865 $hexl = sprintf("%x",
$operand2_reg); S$hex2 =
sprintf ("%x",
$address_off); $hex3 =
sprintf ("7x", Sreg[$op2])

866 print Sdebug handle "Address

$hexl ,, Offset: $hex?2
,, Value: $hex3";

867 }

868 }

869 print $debug handle "\n\n";

870 $ldstj[$count] = S$Scount; ## Storing load location to

be used by jump

871 $op_reg[($op2*$memory_size)+($count+1)] = Sreg[$op2

| ### <—— storing the value in reg file

872 $operandl_reg = ($op2x$no_inst)+($count+1);

873 }

874 elsif ($instruction eq "STORE"){

875 $IW1_flag = 1;

876 if (Sopl > 2){

877 $opl = 0;

878 while ($opl < 3){ $opl = int(rand(${

num_reg}—1)); }

879 if ($arch == 1){

880 if ($reg[Sopl] > (Susable_mem
+ $fixed_data_space — 1)
)

881 for my 51 (3..(

Snum_reg—1)){

882 if(Sreg[Sopl
I <«
$usable_mem
+
$fixed_data_space
- 1))

883 { $opl = $i;

$calc_count
= oxts)
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1
}
else {
$calc_count = 'ok';
}
}
else{
if (Sreg[Sopl] > (
$data_memory — 1)){
for my $i (3..(
Snum_reg —1)){
if ($Sreg[$opl
I <«
$data_memory
- 1))
{ Sopl = $i;
$calc_count
= 'ok';}
}
}
else{
$calc_count = 'ok';
}
}
if (Scalc_count ne 'ok'){

Sopl = int(rand(1)); ##
Restricted to direct or
pc—relative

}
}
if (${sp_direct} == 1){ S$calc_count =
$SP_top — $stack_size + 1; }
else { S$Scalc_count = $SP_top + $stack_size —
1; }

if ((($SP — Scalc_count) < 0)&&(Sopl == 2)) {
$opl = int(rand(1)); }
if (Sopl == 0){ ## direct addressing
print $debug_handle "Direct addressing\t";
if (Sarch == 1){
$address_off = 0;
while (S$Saddress_off <= (${
no_inst}+1)){
$address_off = int(rand($
{usable_mem }+${
fixed_data_space }));} ##
load address restricted
to address after
instructions
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else {

}
}
elsif (Sopl ==
##print

$pm[ $address_off] = $reg]
Sop2]; ##store operation

$hexl = sprintf("jx",
$address_off); $hex2 =
sprintf ("/X", Spm[
$address_off]);

print Sdebug_handle "Address

$hexl ,, store Value:

$hex2 in \$pm[$hexl] ";

$address_off = int(rand(
$data_memory —1 —
$stack_size — $num_IO));

$dm[ $address_off] = S$reg]
$op21;

$hexl = sprintf("%x",
$address_off); $hex2 =
sprintf ("%x", $Sdm[
$address_off]);

print Sdebug handle "Address

$hexl ,, store Value:

$hex2 in \$dm[$hex1] ";

1) { ## PC—relative
"PC—relative\n";

print $debug_handle "PC-relative\t";
if (Sarch == 1){

else {

$address_off = 0;

while ($address off <= (
Sno_inst + 1)){
$address_off =
{usable_mem }+${
fixed_data_space }));}

$pm[ $address_off] = S$reg]
$op21;

$hex! = sprintf("%x",
$address_off); $hex2 =
sprintf ("%x", Spm[
$address_off]);

print Sdebug handle "Address

int (rand($

(orig): $hexl ,, store
Value: $hex2 in \$pml[
$hex1] ";

$address_off = int(rand(
$data_memory —1 —
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$stack_size — $num_IO));
$dm[ $address_off] = S$reg|
$op21;
$hexl = sprintf("%x",
$address_off); $hex2 =
sprintf ("%x", Sreg[Sop2])

print Sdebug_handle "Address

(orig): $hexl ,, store
Value: $hex2 in \$dm[
$hex1] ";

}

if ($now == 1) { $calc_count = $count

3}

else {Scalc_count =
if ($address_off < $calc_count
making it roll over — calc
$operandl_reg = $calc_count

— $address_off;
$address_off = $constantl —

$operandl_reg;

(${count} + 2);}
W ##

}
else { Saddress_off =
$calc_count; }

Shexl = sprintf("%X", $calc_count);
$hex2 = sprintf("%x",
$address_off);

print $debug _handle "PC:
t0ffset: $hex2";

$address_off —

$hex1\

}
elsif (Sopl == 2) { ## SP
print $debug handle "Stack
Addressing\t";
$address_off = 0;
print "$SP\n";
Scalc_count = ($arch == 0)? ($SP &
$dm_mask) : $SP;
if ($arch == 1) {
$pm[ $calc_count] = $reg[$Sop2
], ##store operation
$hexl = sprintf("%x", $SP);
$hex2 = sprintf ("%x",
$calc_count); $hex3 =
sprintf ("%x", Sreg[Sop2])

print S$debug handle "
St_pointer: $hexl
$hex2]: $hex3";

,» pm[
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else {

else{

}

$SP =

$dm[ $calc_count] = $reg[$Sop2
], ##store operation

$hexl = sprintf("%x", $SP);
$hex2 = sprintf ("%X",
$calc_count); S$hex3 =
sprintf ("7X", Sreg[Sop2])

print S$Sdebug handle "
St_pointer: $hexl ,, dm[
$hex2]: $hex3";

S{sp_direct} ?2 (${SP} — 1):(%{

SP} + 1)

print $debug handle "Register
Addressing\t";
if (Sarch == 1){

if ($reg[Sopl] <= ($no_inst +
1))

$address_off = ${
no_inst }+3;

while ($Saddress_off
<= (($no_inst +
D=Sree[$opl 1)) |
$address_off =
int (rand ((${
usable_mem }+${
fixed_data_space

P—=Sreg[Sopl])) s}

}
else{

Saddress_off = int(
rand ((${
usable_mem }+${
fixed_data_space
P—=Sreg[Sopl 1))

}

$calc_count = $reg[Sopl] +
$address_off;

$pm[ $calc_count] = $reg[Sop2
I

$hexl = sprintf("%x",

$calc_count); S$hex2 =
sprintf ("/x",
$address_off); $hex3 =

sprintf ("%x", Sreg[$op2])

)
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print $debug_handle "Address
$hexl ,, Offset: $hex?2
,, Value: $hex3";
}
else {
$Saddress_off = int(rand(
$data_memory — 1 —
$stack_size — $num_IO));
$dm[ $address_off] = S$reg]
$op21;
$hexl = sprintf ("%x",
$address_off);
#it#
if ($address_off < $reg[S$opl
DA
$operandl_reg = $reg
[$opl] —
$address_off;
$address_off =
$data_memory —
$operandl_reg;
}
else { Saddress_off =
$address_off — $reg[Sopl
Is )
#it#
$hex2 = sprintf ("7X",
$address_off); $hex3 =
sprintf ("/x", Sreg[Sop2])
print S$debug handle "Address
$hex1l ,, Offset: $hex?2
,, Value: $hex3";
}
}
print $debug handle "\n\n'";
$ldstj[$count] = S$count;
} ##—— Store Ends ——
&iwl_gen;
V#if for skipper condition
}
HH— data_transfer Ends
e manipulation_gen
#function to generate maipulation instructions
sub manipulation_gen {
$repeat = 0;
$instruction_no = $manip{Sinstruction };

Scalc_count = sprintf("%x",

$count) ;
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print $debug_handle "\@${calc_count}\t$instruction\t";

$opl

int (rand (Snum_reg—1));

if (($instruction eq "ADD") or (S$instruction eq "SUB") or (

}

else {

}

$instruction eq "MUL") or ($instruction eq "DIV") or (

$instruction eq "NOT") or

($instruction eq "AND") or (S$instruction eq "OR") or (
$instruction eq "XOR") or (S$instruction eq "COPY") or
(Sinstruction eq "SWAP")){

$op2 = int(rand($num _reg—1)); #correct register
value can also be obtained by using 2"
operand2_size — 1 if register space is different
from opl

$op2 = int(rand ((2%=${op2_size })—1));

if (Sinstruction eq "ADD"){

}

$bugl = sprintf("%xX", Sreg[Sopl]);
$bug?2 = sprintf("%x", Sreg[$Sop2]);
print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\I\

LR

$operandl_reg = $reg[$opl]; $operand2_reg = $regl
$op21;

$reg[Sopl] = $reg[$opl] + Sreg[$op21];

&CNVZ;

&compactor;
Sbugl = sprintf("%X", Sreg[Sopl]);
Sop_reg[(Sopl«$memory_size)+S$count] = Sreg[Sopl];

elsif ($instruction eq "ADDC"){

}

$bugl = sprintf("%x", Sreg[$opl]);

$bug2 = sprintf ("%xX", $op2);

print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\1\
T

$operandl_reg = $reg[$opl]; $operand2_reg = $op2;

$reg[Sopl] = S$reg[$opl] + $op2;

&CNVZ;

&compactor;

$bugl = sprintf("%x", Sreg[$opl]);

print $debug_handle "Res: $bugl\n\n";

$op_reg[($opl*$memory_size)+S$Scount] = $reg[$opl];

elsif ($instruction eq "SUB"){

Sbugl = sprintf("%2x", Sreg[Sopl]);

Sbug2 = sprintf ("%x", $reg[Sop2]);

print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\I\
t";

$operandl_reg = $reg[$opl]; $operand2_reg = $regl
$op21;
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}

$reg[Sopl] = $reg[$opl] — S$reg[$op2];

&NV,

&compactor;

$bugl = sprintf("%x", Sreg[Sopl]);

print $debug_handle "Res: $bugli\n\n";
$op_reg[($opl+*$memory_size)+$count] = $reg[Sopl];

elsif ($Sinstruction eq "SUBC"){

}

$bugl = sprintf("%x", Sreg[Sopl]);

$bug?2 = sprintf("%x", Sop2);

print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\1\
t";

$operandl_reg = $reg[$opl]; $operand2_reg = $op2;

$reg[Sopl] = S$reg[$opl] — $op2;

&CNVZ;

&compactor;

Sbugl = sprintf("7X", Sreg[Sopl]);

print $debug_handle "Res: $bugl\n\n";

$op_reg[(Sopl«$memory_size)+$count] = $reg[Sopl];

elsif (Sinstruction eq "MUL"){

Sbugl = sprintf("7X", Sreg[Sopl]);
Sbug?2 = sprintf("%xX", Sreg[$op2]);
print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\]\
"
$neg_check = 0;
if (Sreg[Sopl]l>= Stwos_test){
++$neg_check;
$twos_comp = S$reg[Sopl];
$twos_size = $bus_size;
&complement;
$reg[Sopl]

oct("Ob$twos_comp");
}
if (Sreg[Sop2]>= Stwos_test){
++$neg_check;
$twos_comp = S$reg[Sop2];
$twos_size = S$bus_size;
&complement;
Sreg[$op2] = oct("0Ob$twos_comp");
}
$calc_count = $reg[$opl] = Sreg[$op21];
if ($calc_count == 0){ $s{[0] = 1; } ## Zero Flag

else { $sf[0] = 0; }

if (($neg_check == 1)&&(Sopl = $op2)){
$twos_comp = $calc_count;
$twos_size = 2+x$bus_size;
&complement;
$calc_count = $twos_comp;
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}

else{
Scalc_count = sprintf("%b", $calc_count);
$length = length(Scalc _count);
if ($length > (2x$Sbus_size)){
print "Warning: Length exceeding ${
twos_size} at instruction number
$count : $instruction\n";

}
S$padding = (0 x ((2%${bus_size}) — $length))
$calc_count = $padding.$calc_count;

}

$neg_check = 0;

@temp_array split('',Scalc_count);

@temp_array reverse ( @temp_array);

@temp_array = @temp_array [0 .. ((2«${bus_size})—=1)];
@temp_array = reverse( @temp_array);

@bin = @temp_array[0 .. (${bus_size} —1)]; #TALUH
$calc_count = join('', @bin);

Sreg[Sopl] = oct("Ob$calc_count');
$op_reg[($opl+*$memory_size)+Scount] = $reg[$opl];
Sbugl = sprintf ("%x", Sreg[Sopl]);

print $debug_handle "Resl:$opl \[$bugi\l\t";

@bin = @temp_array [${bus_size} .. ((2x${bus_size})
—1)]; #TALUL
Scalc_count = join('', @bin);

Sreg[$op2] = oct("Ob$calc_count");
Sop_reg[($Sop2«$memory_size)+S$count] = Sreg[$op21];
$bug2 = sprintf ("%xX", Sreg[$Sop2]);

print $debug_handle "Res2:$op2 \[$bug2\]\n\n";

elsif (Sinstruction eq "MULC"){

Sbugl = sprintf("7X", Sreg[Sopl]);
Sbug?2 = sprintf ("7x", Sop2);
print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\I\
"
$neg_check = 0;
if (Sreg[Sopl]l>= Stwos_test){
++S$neg_check;
$twos_comp = S$reg[Sopl];
$twos_size = $bus_size;
&complement;
Sreg[$opl]

oct("Ob$twos_comp");

}
$calc_count = $reg[Sopl] = S$op2;
if ($calc_count == 0){ $sf{[0] = 1; } ## Zero Flag

else { $sf[0] = 0; }
if ($neg_check == 1){
$twos_comp = $calc_count;
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else {

}

$twos_size = 2%$bus_size;
&complement;

$calc_count = $twos_comp;

Scalc_count = sprintf("%b", $calc_count);
Slength = length($calc_count);
if (Slength > (2% $Sbus_size)){
print "Warning: Length exceeding ${
twos_size} at instruction number
$count $instruction\n"; }
$padding = (0 x ((2%x${bus_size}) — $Slength))

$calc_count = $padding. $calc_count;

$neg_check = 0;

@temp_array =
@temp_array =
@temp_array =
@temp_array =
$calc_count =
@temp_array [0
$calc_count =
$reg[Sopl] =

@bin

split('',$calc_count);
reverse ( @temp_array);
@temp_array [0 ((2%${bus_size})=D1;
reverse ( @temp_array);
join('',@temp _array);
(${bus_size}
join('', @bin);
oct("Ob$calc_count"); #TALUH

-1

$op_reg[($opl*$memory_size)+S$Scount] = $reg[$opl];

$bugl

sprintf ("/x", Sreg[Sopl]);

print $debug_handle "Resi:$opl \[$bugi\l\n\n";

}

elsif (Sinstruction eq "DIV'"){

if ((Sreg[$Sop2] == 0) Il

(Sreg[$op2] == $twos_test)){

##Div by 0 avoided

}

else{

$shize = 1; S$repeat = 1;

$bugl = sprintf ("%x", $reg[Sopl]);

$bug?2 = sprintf ("%x", Sreg[$op2]);

print $debug_handle "$opl \[$bugi\l\t$op2 \[

$bug2\1\t";

$neg_check = 0;

if (Sreg[Sopl]l>= $Stwos_test){
++$neg_check;
$twos_comp =
$twos_size =
&complement;
$reg[Sopl] = oct("0b$twos_comp");
$operandl_reg = $reg[Sopl];
$bugl = "neg";

$reg[Sopl];
$bus_size;

}
if (Sreg[Sop2]>= $Stwos_test){
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++Sneg_check
$twos_comp = S$reg[$op2];
$twos_size = $bus_size;
&complement;
Sreg[$op2] = oct("Ob$twos_comp");
$bug2 = "neg";
}
$operand2_reg = $reg[$op2];
if ((Sreg[Sop2] > Sreg[Sopl])&&(Sreg[Sopl] !=
0)){
$calc_count = (1 x S$bus_size);
$calc_count = oct("Ob$calc_count");
$reg[$op2] = ($bugl eq "neg") ? (
$reg[$op2] — $reg[Sopl]) : S$regl
$opl] ;
$reg[$opl] = ($bugl ne "neg") ? 0
(($bug2 eq "neg") ? 1
$calc_count);
Sbugl = 0; $bug2 = 0;
$op_reg[($op2«$memory_size)+S$Scount]
= Sreg[$op2 1;
$op_reg[($opl«x$memory_size)+S$count]
= $reg[Sopl];

else {

$calc_count = $reg[Sopl] % $reg[$op2
1; ## <— Remainder

$reg[Sopl] = Sreg[$opl] —
$calc_count;

$padding = S$reg[$opl] / S$reg[S$op2];
## <— Quotient

$reg[Sop2] = $calc_count;

$reg[Sopl] = $padding;

if ((($neg_check == 1)&&(Sopl != Sop2
) IT(($Sneg check == 2)&&(
$operandl_reg != $operand2_reg)))
{

if (((Sbugl eq "neg") IlI(
$neg _check == 2))&&((
Soperand2_reg != 1)&&(
Scalc_count != 0))) {
$reg[$opl] = Sregl
Sopl] + 13
$calc_count = ($reg|
$opl]=
$operand2_reg) —
$operandl_reg;
Sreg[$op2] =
$calc_count;
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}
}

elsif ($instruction eq
if (Sop2

Sbugl = 0;
}
if (Sneg_check == 1){
$twos_comp =
$opl1];
$twos_size =
$bus_size;
&complement;
Sreg[Sopl] = oct("0
b$twos_comp"); }

Sreg|

}
$op_reg[($op2«$memory_size)+S$count]
= Sreg[$op21];
$op_reg[($opl«$memory_size)+S$count]
= $reg[$opl];
}
if ($reg[Sopl] == 0){ $sf[0] = 1;
Flag
else { $sf[0] = 0; }
$neg_check = 0;
$bugl = sprintf ("%X", $Sreg[Sopl]);
print $debug_handle "Quo:$opl \[$bugi\I\t";
Sbug?2 = sprintf ("%x", Sreg[$op21);
print $debug_handle "Rem:$op2 \[$bug2\]\n\n"

} ## Zero

5

HDIVCH){

== 0) { while (Sop2 < 1) { Sop2 = int(rand(

Snum_reg—1));1}}
$neg_check = 0;
Sbugl = sprintf("7X", Sreg[Sopl]);

$bug?2 sprintf ("%x", $Sop2);
print $debug_handle "$opl \[$bugl\I\t$op2 \[$bug2
AVANAUS

if (Sreg[Sopl]>= Stwos_test){

}

if ((Sop2 > Sreg[Sopl])&&(Sreg[$opl]

++$neg_check;
$twos_comp =

$twos_size =

&complement;

Sreg[Sopl] = oct("0Ob$twos_comp");
$bugl = "neg";

$reg[Sopl];
$bus_size;

'= 0)){

$calc_count = (1 x $bus_size);

$calc_count = oct("Ob$calc_count");

$reg[$opl] = ($bugl ne "neg") ? 0
$calc_count;

Sbugl = 0;
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}

}
else{
$calc_count = $reg[Sopl] % S$op2;
$reg[Sopl] = S$reg[$opl] — $calc_count;
$reg[$opl] = $reg[Sopl] / S$op2;
if (Sneg _check == 1){
Sreg[$opl] = (Scalc_count == 0)?
$reg[Sopl]: ++Sreg[Sopl];
$twos_comp = S$reg[$opl];
$twos_size = $bus_size;
&complement;
Sreg[Sopl] = oct("Ob$twos_comp");
}
}
$neg_check = 0;

if (Sreg[Sopl] == 0){ $sf[0] = 1; } ## Zero Flag
else { $sf[0] = 0; }
Sop_reg[(Sopl+*$memory_size)+S$count] = Sreg[Sopl];
$bugl = sprintf("%x", Sreg[Sopl]);

print $debug_handle "Quo:$opl \[$bugi\I\n\n";

elsif ($instruction eq "NOT"){

Sbugl = sprintf("%x", Sreg[Sopl]);

print $debug_handle "$opl \[$bugi\I\t";
Scalc_count = sprintf("%b", Sreg[Sopl]);
Slength = length(Scalc _count);

$padding = $padding = (0 x (${bus_size} — $length));

$calc_count = $padding. $calc_count;
@bin = split (//, $calc_count);
for my $nott (@bin) {
if ($nott == 1) { $nott =0;} else {Snott
1}
}
$reg[$opl] join (', @bin);
Sreg[Sopl] = oct("0b".Sreg[Sopl]);
&compactor;
if (Sreg[$opl] == 0){ $sf[0] = 1; } else { $sf[0]
0; } ## Zero Flag
Sop_reg[(Sopl«*$memory_size)+S$count] = Sreg[Sopl];
Sbugl = sprintf ("%2x", Sreg[Sopl]);
print $debug_handle "Res:$opl \[$bugi\I\n\n";
}

elsif ($instruction eq "AND"){

Sbugl = sprintf("%x", Sreg[Sopl]);
Sbug?2 = sprintf ("%x", Sreg[$op21]);

print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\I\

tn;
$reg[$opl] = $reg[Sopl] & $reg[$op2];
&compactor ;
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1293 if (Sreg[$opl] == 0){ $sf[0] = 1; } else { $sf[0] =
0; } ## Zero Flag

1294 $op_reg[(Sopl«$memory_size)+$count] = $reg[Sopl];

1295 Sbugl = sprintf ("%x", Sreg[Sopl]);

1296 print $debug_handle "Res:$opl \[$bugi\I\n\n";

1297 $sf[2] = ($Sreg[$opl] >= S$twos_test) 2 1 : 0; ##
Negative Flag

1298 }

1299 elsif (Sinstruction eq "OR"){

1300 Sbugl = sprintf("%x", $Sreg[Sopl]);

1301 S$bug2 = sprintf ("7X", Sreg[Sop2]);

1302 print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\1\
"

1303 $reg[Sopl] = $reg[Sopl] | $reg[Sop21];

1304 &compactor;

1305 if (Sreg[Sopl] == 0){ $sf[0] = 1; } else { Ssf[0] =
0; } ## Zero Flag

1306 $op_reg[($opl*$memory_size)+$count] = $reg[Sopl];

1307 $bugl = sprintf ("%x", Sreg[$opl]);

1308 print $debug_handle "Res:$opl \[$bugi\I\n\n";

1309 $sf[2] = (Sreg[$Sopl] >= $Stwos_test) ?2 1 : 0; ##
Negative Flag

1310 }

1311 elsif ($instruction eq "XOR"){

1312 $bugl = sprintf ("%x", Sreg[$opl]);

1313 S$bug2 = sprintf ("%x", $Sreg[Sop2]);

1314 print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\1\
t";

1315 $reg[Sopl] = $reg[$opl] ~ Sreg[$op2];

1316 &compactor;

1317 if (Sreg[$opl] == 0){ $sf[0] = 1; } else { S$sf[0] =
0; } ## Zero Flag

1318 $op_reg[($opl+*$memory_size)+$count] = $reg[Sopl];

1319 $bugl = sprintf("7x", Sreg[$opl]);

1320 print $debug_handle "Res:$opl \[$bugi\I\n\n";

1321 $sf[2] = (Sreg[Sopl] >= $Stwos_test) ?2 1 : 0; ##
Negative Flag

1322 }

1323 elsif (($Sinstruction eq "SHLL") or (S$instruction eq "SHLA")){

1324 Sbugl = sprintf("%x", $Sreg[Sopl]);

1325 $bug?2 = sprintf("%x", Sop2);

1326 print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\I\
t";

1327 Sreg[$opl] = (Sreg[Sopl] << Sop2);

1328

1329 &compactor;

1330 if (Sreg[Sopl] == 0){ $sf[0] = 1; } else { S$sf[0] =

0; } ## Zero Flag
1331 $op_reg[($opl+*$memory_size)+$count] = $reg[Sopl];
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1332 Sbugl = sprintf("%xX", Sreg[Sopl]);

1333 print $debug_handle "Res:$opl \[$bugi\]\n\n";

1334 }

1335 elsif ($Sinstruction eq "SHRL"){

1336 Sbugl = sprintf("7X", Sreg[Sopl]);

1337 $bug2 = sprintf("%xX", $op2);

1338 print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\]\
"

1339 Sreg[Sopl] = (Sreg[Sopl] >> Sop2);

1340 &compactor;

1341 if (Sreg[$opl] == 0){ $sf[0] = 1; } else { S$sf[0] =
0; } ## Zero Flag

1342 $op_reg[(Sopl«$memory_size)+$count] = $reg[Sopl];

1343 $bugl = sprintf("%x", Sreg[$opl]);

1344 print $debug_handle "Res:$opl \[$bugi\I\n\n";

1345 }

1346 elsif (Sinstruction eq "SHRA")({

1347 if (Sop2 > ((2%+${op2_size})—1))

1348 { print"Warning: Opearnd 2 size exceeding

length at no $count : $instruction\n";};

1349 ##——decimal to binary (in array) conversion —

1350 Sbugl = sprintf("7X", Sreg[Sopl]);

1351 $bug?2 = sprintf("%x", Sop2);

1352 print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\]\
"

1353 Scalc_count = sprintf("%b", $Sreg[Sopl]);

1354 Slength = length(Scalc _count);

1355 Spadding = (0 x (${bus_size} — Slength));

1356 $calc_count = $padding. $calc_count;

1357 @bin = split (//, $calc_count);

1358 #— END —

1359 @bin = reverse (@bin);

1360 $padding = ((@bin[${bus_size}—1]) x ${bus_size});

1361 $calc_count = $padding. $calc_count;

1362 @bin = split (//, $calc_count);

1363 @bin = reverse (@bin);

1364 @temp_array = @bin[$op2 .. ($op2+${bus_size}—-1)];

1365 @temp_array = reverse( @temp_array);

1366 $calc_count = join('',@temp_array);

1367 $calc_count = oct("Ob$calc_count");

1368 $reg[Sopl] = ${calc_count};

1369 &compactor;

1370 if (Sreg[$opl] == 0){ $sf[0] = 1; } else { S$sf[0] =
0; } ## Zero Flag

1371 $op_reg[($opl«$memory_size)+$count] = $reg[Sopl];

1372 $bugl = sprintf ("%x", Sreg[$opl]);

1373 print $debug_handle "Res:$opl \[$bugi\I\n\n";

1374 }

1375 elsif (Sinstruction eq "ROTL"){
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1376 if (Sop2 > ((2x+x${op2_size})—1))
1377 { print"Warning: Opearnd 2 size exceeding
length at no $count : $instruction\n";};

1378 ##——decimal to binary (in array) conversion —

1379 Sbugl = sprintf("7X", Sreg[Sopl]);

1380 $bug2 = sprintf("%xX", $op2);

1381 print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\]\
"

1382 $calc_count = sprintf("b", Sreg[Sopl]);

1383 Slength = length(Scalc _count);

1384 $padding = (0 x (${bus_size} — S$length));

1385 $calc_count = $padding. $calc_count;

1386 @bin = split (//, $calc_count);

1387 #— END —

1388 @bin = (@bin, @bin) ;

1389 @temp_array = @bin[$op2 .. (($op2+${bus_size}—-1))1;

1390 Scalc_count = join('',@temp_array);

1391 $calc_count = oct("Ob$calc_count");

1392 $reg[$opl] = $calc_count;

1393 if (Sreg[$opl] == 0){ $sf[0] = 1; } else { S$sf[0] =
0; } ## Zero Flag

1394 $op_reg[($opl+*$memory_size)+$count] = $reg[Sopl];

1395 Sbugl = sprintf ("%x", $Sreg[Sopl]);

1396 print $debug_handle "Res:$opl \[$bugi\]\n\n";

1397 }

1398 elsif (Sinstruction eq "ROTR"){

1399 if (Sop2 > ((2#x${op2_size})—1))

1400 { print"Warning: Opearnd 2 size exceeding

length at no $count : $instruction\n";};

1401 ##——decimal to binary (in array) conversion —

1402 Sbugl = sprintf ("%x", S$reg[Sopl]);

1403 $bug2 = sprintf ("%xX", $op2);

1404 print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\1\
L

1405 $calc_count = sprintf("/b", Sreg[Sopl]);

1406 Slength = length($calc_count);

1407 $padding = (0 x (${bus_size} — S$length));

1408 $calc_count = $padding. $calc_count;

1409 @bin = split (//, $calc_count);

1410 #— END —

1411 @bin = (@bin, @bin) ;

1412 @bin = reverse (@bin);

1413 @temp_array = @bin[$op2 .. (($op2+${bus_size}—-1))];

1414 @temp_array = reverse( @temp_array);

1415 $calc_count = join('',@temp_array);

1416 $calc_count = oct("Ob$calc_count");

1417 $reg[Sopl] = $calc_count;

1418 if (Sreg[$opl] == 0){ $sf[0] = 1; } else { S$sf[0] =

0; } ## Zero Flag
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1419 $op_reg[($opl*$memory_size)+$count] = $reg[Sopl];

1420 $bugl = sprintf("/x", Sreg[$opl]);

1421 print $debug_handle "Res:$opl \[$bugi\]\n\n";

1422 }

1423 elsif (Sinstruction eq 'RTLC'){

1424 if (Sop2 > ((2%+x${op2_size})—1))

1425 { print"Warning: Opearnd 2 size exceeding

length at no $count : $instruction\n";};

1426 ##——decimal to binary (in array) conversion —

1427 Sbugl = sprintf("%x", $Sreg[Sopl]);

1428 $bug2 = sprintf ("%X", $op2);

1429 print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\1\
"

1430 $calc_count = sprintf("/b", Sreg[Sopl]);

1431 Slength = length(Scalc count);

1432 $padding = (0 x (${bus_size} — S$length));

1433 $calc_count = $padding. $calc_count;

1434 @bin = split (//, $calc_count);

1435 #— END —

1436 @bin = (@bin, $sf[3], @bin);

1437 $sf[3] = @bin[(${bus_size}+Sop2)];

1438 @temp_array = @bin[$op2 .. (($Sop2+${bus_size}—=1))1;

1439 Scalc_count = join('',@temp_array);

1440 $calc_count = oct("Ob$calc_count");

1441 $reg[Sopl] = $calc_count;

1442 if (Sreg[$opl] == 0){ $sf[0] = 1; } else { S$sf[0] =
0; } ## Zero Flag

1443 $op_reg[($opl*$memory_size)+$count] = $reg[Sopl];

1444 $bugl = sprintf("%x", Sreg[$opl]);

1445 print $debug_handle "Res:$opl \[$bugi\I\n\n";

1446 }

1447 elsif ($Sinstruction eq 'RTRC'){

1448 if (Sop2 > ((2x+x${op2_size})—1))

1449 { print"Warning: Opearnd 2 size exceeding

length at no $count : $instruction\n";};

1450 ##——decimal to binary (in array) conversion —

1451 Sbugl = sprintf("7X", Sreg[Sopl]);

1452 $bug2 = sprintf("%xX", $op2);

1453 print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\]\
"

1454 $calc_count = sprintf("%b", Sreg[Sopl]);

1455 Slength = length(Scalc _count);

1456 $padding = (0 x (${bus_size} — S$length));

1457 $calc_count = $padding. $calc_count;

1458 @bin = split (//, $calc_count);

1459 #— END —

1460 @bin = (@bin, $sf[3], @bin);

1461 @bin = reverse (@bin);

1462 $sf[3] = @bin[(${bus_size}+Sop2)];
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@temp_array = @bin[$op2 .. (($op2+${bus_size}—-1))1;
@temp_array = reverse( @temp_array);
$calc_count = join('',@temp_array);
$calc_count = oct("Ob$calc_count");

$reg[Sopl] = $calc_count;
if ($reg[Sopl] == 0){ $sf[0] = 1; } else { $sf[0] =
0; } ## Zero Flag
$op_reg[(Sopl«$memory_size)+$count] = $reg[Sopl];
$bugl = sprintf("%x", Sreg[Sopl]);
print $debug_handle "Res:$opl \[$bugi\I\n\n";
}
elsif ($instruction eq "COPY"){
$bugl = sprintf ("%x", Sreg[Sopl]);
$bug2 = sprintf("%x", $Sop2);
print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\I\
t";
$reg[Sopl] = S$reg[$op21];
Sop_reg[(Sopl+*$memory_size)+S$count] = Sreg[Sopl];
$bugl = sprintf("%x", Sreg[Sopl]);
print $debug_handle "Resl:$opl \[$bugi\I\t";
Sbug2 = sprintf ("7X", Sreg[Sop2]);
print $debug_handle "Res2:$o0p2 \[$bug2\l\n\n";
}
elsif ($instruction eq "SWAP"){
$bugl = sprintf("%x", Sreg[$opl]);
$bug2 = sprintf ("%x", $op2);
print $debug_handle "$opl \[$bugi\I\t$op2 \[$bug2\1\
t";
$calc_count = $reg[$opl];
$reg[Sopl] = S$reg[$op21];
$op_reg[($opl*$memory_size)+S$Scount] = $reg[$opl];
$reg[$op2] = $calc_count;
$op_reg[($op2+*$memory_size)+S$count]
$bugl = sprintf("%x", Sreg[$opl]);
print $debug_handle "Resl:$opl \[$bugi\I\t";
$bug?2 = sprintf ("%x", Sreg[$op2]);
print $debug_handle "Res2:$op2 \[$bug2\I\n\n";
}
## value calculation end
#putting binary together
if (Sshize == 1) { $shize = 0; }
else {

$reg[Sop2];

@bin = reverse (@st);

$calc_count = join('', @bin);

if ($bus_size == 14)

{ $padding = (0 x 4); }

else {Spadding = (0 x 8); }
$calc_count = $calc_count.$padding;
$calc_count = oct("Ob$calc_count");
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1509 Scalc_count = sprintf ("%X", $calc_count);
1510 $sf_flag = $calc_count;

1511 $status_op[$count] = $calc_count;

1512 &iwl _geny; }

1513}

1514 ##——— manipulation_gen Ends ——

1515

1516 #——— iwl_gen

1517 ## packs instruction word from opcode and operand information
1518 sub iwl_gen{

1519 my S$Shexl;

1520 Stemp_inst = sprintf ("%b", hex(${instruction_no}));

1521 $Slength = length(Stemp_inst); ## find lenth of binary generated to
find 0's padding

1522 $padding = (0 x (${opcode_size} — $length));

1523 $temp_inst = $padding.$temp_inst;

1524 Stemp_opl = sprintf ("%b", ${opl});

1525 Slength = length (Stemp_opl);

1526 if (($bus_size == 12)&&($flow == 1)){

1527 $padding = (0 x (($Sopl_size — 1) — Slength));

1528 }

1529 else{

1530 Spadding = (0 x (${opl_size} — Slength));

1531 }

1532 $temp_opl = $padding.$temp_opl;

1533 Stemp_op2 = sprintf ("%b", ${op2});

1534 $length = length ($temp _op2);

1535 Spadding = (0 x (${op2_size} — Slength));

1536 $temp_op2 = $padding.$temp_op2;

1537 if ($flow == 1){

1538 $IW = S$temp_inst.S$temp_opl. $condition;

1539 }

1540 else{

1541 $IW = S$temp_inst.$temp_opl.S$temp_op2;

1542 }

1543 $IW = sprintf ("7X", oct("0bS{IW}"));

1544 $pm[$count] = $IW;

1545 Spm_out[ $count] = hex($IW);

1546 Sinst[$count] = (Sjump == 1)? ('*'.$Sinstruction): ((S$call 1= 0)? ('
*x' Sinstruction): S$instruction);

1547 $operandl [$count] = $opl;

1548 $operand2 [ $count] = ($flow == 1)? "" : S$op2;

1549

1550 if ((Sjump == 0) 11 ((Sjump == 1)&&(Sbck_jmp > 0)) I(SIWI_flag == 1)){
##condition to skip printing when instructions are jumped over

1551 Shexl = sprintf("%X", $Scount);

1552 $srno_array [$sr_no] = S$hexl;

1553 ++8sr_no;

1554 }
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++$count;
if ((Sjump == 0) I ((Sjump == 1)&&(Sbck_jmp > 0)) I (SIWI_flag == 1)){
&reg_store ;
print $debug_handlel " $count jump: $jump ,, bck_jmp:
$bck_jmp \n";

}
else{
Sbck_array [5] = $bck_array[5] + 1;
}
$counter_call = ($call > 0)? $counter_call : ($counter_call + 1);

if (SIW1 _flag ==1){
$IW1_flag = 0;
Saddress_off = sprintf ("72X",${address_off});
$pm[ $count] = $address_off;
$pm_out[$count] = hex($address_off);

Sinst[$count] = "";#$instruction;
Soperandl [$count] = "";#" Offset"”;
$operand2 [ $count] = "";

Shexl = sprintf("%X", $Scount);
$srno_array [$sr_no] = S$hexl;
++$sr_no;

++S$count;
$counter_call = ($call > 0)? $counter_call : ($counter_call
+ 1);
}
if ((Scall > 0)&& (Scount == Sroutine_end)){
$instruction_no = $branch{RET};
Stemp_inst = sprintf ("%b", hex(${instruction_no}));
$length = length($Stemp inst); ## find lenth of binary
generated to find 0's padding
$padding = (0 x (${opcode_size} — Slength));
$temp_inst = $padding. $temp_inst;
$IW = S$temp_inst.$temp_opl.$temp_op2;
SIW = sprintf ("7xX", oct("0bs{IW}"));
$pm[ $count] = $IW;
Spm_out[$count] = hex($IW);

$inst[$count] = "RETURN";#$instruction;
Soperandl [$count] = "";#" Offset”;
$operand2 [ $count] = "";

Shexl = sprintf("%X", Scount); ##printing purpose

$srno_array [$sr_no] = S$hexl;

++$sr _no;

$routine_end = pop @internal_stack;
$calc_count = pop @internal_stack;

@sf = split('',$calc_count);
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@bin = reverse (@sf);
Scalc_count = join('', @bin);
if ($bus_size == 14)
{ $padding = (0 x 4); }
else {S$padding = (0 x 8); }
$calc_count = $calc_count.$padding;
Scalc_count = oct("Ob$calc_count");
Scalc_count = sprintf("%X", S$calc_count);
$sf_flag = $calc_count;
$count = pop @internal_stack;
$call = $call — 1;
Sroutine_end = ($Scall > 0) ? (pop @internal_stack)
$routine_end;
if(Scall > 0) { push @internal_stack , $routine_end; }
$SP = ${sp_direct} ? (S{SP} + 2):(${SP} — 2);
$instruction = "RET";
&reg _store;
}
$flow = 0;
if ((($bek_jmp == 1)&&(Sjump == 1)) 11 (( Sbck_jmp == 2)&&(Scount ==
Sbek_array [3])) I (($bek_jmp == 3)&&(Scount == $bck_array [1]))){ #
#putother or conditio to chane pc on 2nd & 3rd jump
print $debug_handlel "\tbck: $bck_jmp\n";
if (($bck_jmp == 1)&&(Sjump == 1)){
$count = $bck_array[1];
print $debug_handlel "deO: $bck_jmp ,, count(in retO
): $count\n\n";}
elsif ((Sbck_jmp == 2)&&($Scount == $Sbck_array[3])){
$count = $bck_array[4];
print $debug_handlel "del: $bck_jmp ,, count(in retil
): $count\n\n";}
else {
$count = $bck_array[3];
$bck_jmp = 0;
Sjump = 0;
print $debug_handlel "de2: $bck_jmp ,, count(in ret2
): $count\n\n";}
$jump = 0;

e iwl_gen Ends

e reg_store
Reg_store: store register values in arrays ——
sub reg_store{
$inst_sequence = ($count == 1) ? 0 : Sinst_sequence;
if (Smanip{$instruction }){
$inst_sequence = ($count == 1) ?2 0 : ++S$inst_sequence;

}
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elsif ($data_transfer{S$Sinstruction }){
$inst_sequence = ($count == 1) ? ++Sinst_sequence : (
$inst_sequence + 2);
}
else {
if(Sinstruction eq "RET"){
++$inst_sequence;
}
else {
$inst_sequence = ($count == 1) ? ++$inst_sequence
(Sinst_sequence + 2);
}
}
for my $i (0 .. (Snum_reg — 1)){
$reg_array [($i*$no_inst)+ S$inst_sequence] = S$reg[$i];
}
$flag_array[S$inst_sequence] = $sf_flag;
}
##f—————— Reg_store Ends ———
HH— compactor —————————
#i#t Compactor: to shorten the result to correct bit size ——
sub compactor{
Scalc_count = sprintf("%b", Sreg[Sopl]);
$length = length(Scalc count);
if (Slength < $Sbus_size){
$padding = (0 x ($bus_size — $length));
$calc_count = $padding. $calc_count;
}
@temp_array = split('', S$calc _count);
@temp_array = reverse( @temp_array);
@bin = @temp_array[0 .. ($bus_size — 1)];
@bin = reverse (@bin);
$calc_count = join('', @bin);
Sreg[$Sopl] = oct("Ob$calc_count');
}
- compactor Ends
HH— complement
## 2's complement fucntion

sub complement

{

$twos_comp = sprintf("%b", Stwos_comp);
Slength = length ($twos_comp);
if (Slength > Stwos_size){
print "Warning: Length exceeding ${twos_size} at instruction
number $count : $instruction\n";

}
$padding = (0 x (${twos_size} — Slength));
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1690 $twos_comp = $padding.Stwos_comp;

1691 @temp_array = split (//, $twos_comp);

1692 @temp_array = reverse (@temp_array);

1693 $temp_flag = 0;

1694 for my $i (0..($Stwos_size —1)){

1695 if (Stemp_flag == 1){

1696 $temp_array[$i] = $temp_array[$i] 2 0 : 1;
1697 }

1698 elsif (($temp_flag == 0)&&(Stemp_array[$1] == 1)){
1699 $temp_flag = 1;

1700 }

1701 }

1702 @temp_array = reverse (@temp_array);

1703 $twos_comp = joim('',@temp_array);

1704 '}

1705 #——m—— complement Ends

1706

1707 #—F—— CNVZ

1708 ## CNVZ flag assignment Function
1709 sub CNVZ

1710 {

1711 $calc_count = sprintf("%b", $Sreg[$opl]);

1712 Slength = length($calc_count);

1713 if (Slength < $Sbus_size){

1714 $padding = (0 x ($bus_size — $length));

1715 $calc_count = $padding. $calc_count;

1716 }

1717 @temp_array = split('', $calc_count);

1718 @temp_array = reverse( @temp_array);

1719 if (Slength > $Sbus_size){

1720 $sf[3] = $temp_array[$bus_size]; }

1721 else { $sf[3] = 0; }

1722 @bin = @temp_array[0 .. ($bus_size — 1)];

1723 @bin = reverse (@bin);

1724 $calc_count = join('', @bin);

1725 $calc_count = oct("Ob$calc_count");

1726 if (Scalc_count == 0){ $sf[0] = 1; } else { $sf[0] = 0; } ## Zero
Flag

1727 if ( $bin[0] == 1){ $sf[2] = 1; } else { $sf[2] = 0; } ## Negative
Flag

1728 $calc _count = sprintf("%b", Soperandl reg);

1729 $length = length(Scalc _count);

1730 @temp_array = split("",$calc_count);

1731 @temp_array = reverse( @temp_array);

1732 if (Slength > ($bus_size =2)){

1733 $calc_count = $bus_size —1;

1734 $calc_count = $temp_array[S$calc_count];

1735 $operandl_reg = ($calc_count) ?2 1 : 0 ;

1736 }
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1737 else { Soperandl_reg = 0; }

1738 Scalc_count = sprintf("%b", Soperand2_reg);

1739 $length = length($calc_count);

1740 @temp_array = split("",$calc_count);

1741 @temp_array = reverse( @temp_array);

1742 if (Slength > ($bus_size =2)){

1743 $calc_count = $bus_size —1;

1744 $calc_count = $temp_array[S$calc_count];

1745 $operand2_reg = (S$calc_count) 2 1 : 0 ;

1746 }

1747 else { Soperand2_reg = 0; }

1748 $calc_count = ($Soperandl_reg == $operand2_reg) ? 1 : 0; #XNOR_Ist
1749 $length = $calc_count & $operandl_reg;

1750 $padding = $calc_count & $bin[0];

1751 $calc_count = ($padding == $length) ?2 0 : 1; #XOR_final
1752 $sf[1] = S$calc_count; ## Over—Flow flag

1753 '}

1754 ##————— CNVZ Ends

1755

1756 #H#H———— error_read_out ——

1757 ## Error reporting
1758 sub error_read_out

1759 {

1760 if (${flag} == 1) { die " Mnemonic mapping should be closed before
line no.$file_line in file:$config \n"; }

1761 elsif (${flag} == 2) { die " Manipulation instructions should be
closed before line no.$file_line in file:$config \n"; }

1762 elsif (${flag} == 3) { die " Branch instructions should be closed
before line no.$file_line in file:$config \n"; }

1763 elsif (${flag} == 4) { die " Data Transfer instructions should be
closed before line no.$file_line in file:$config \n"; }

1764 '}

1765 ##———— error_read_out Ends —

II1.2 Extract function

if (S{temp 1} eq "bits")
{

1

2 sub extract($, $, $)

3 {

4 my Stemp_1; my Stemp_2;
5 Stemp_1 = $_[0];

6 $temp_2 = $_[11;

7 $flag = $_[21;

8

9
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111-49

elsif

elsif

elsif

elsif

elsif

elsif

elsif

elsif

if(${flag} != 10 && ${flag} !=0) { &error_read_out; }

S{bus_size} = hex(${temp_21});

print "bits: ${bus_sizel}\n"; ${oth_flag} = 6; }
(${temp_1} eq "registers")

if(${flag} != 10 && ${flag} !=0) { &error_read_out; }

S{num_reg} = hex(${temp_21});

print "registers: ${num_regi\n"; ${oth_flag} = 6;
(${temp_1} eq "architecture")

if (S{flag} != 10 && ${flag} !=0) { &error read out; }

S{arch} = hex(${temp_21});

print "architecture: ${arch}\n"; S{oth _flag} = 6;
(${temp_1} eq "opcode_size")

if(${flag} != 10 && ${flag} !=0) { &error_read_out; }

${opcode_size} = hex(${temp_21});

print "opcode_size ${opcode_size}\n"; ${oth_flag} = 6;
(${temp_1} eq "operandl_size")

if(${flag} != 10 && ${flag} !=0) { &error_read_out; }

S{opl_size} = hex(${temp_21});

print "operandl_size: ${temp_2}\n"; ${oth_flag} = 6;
(${temp_1} eq "operand2_size")

if(${flag} != 10 && ${flag} !=0) { &error_read_out; }

${op2_size} = hex(${temp_21});

print "operand2_size: ${temp_2}\n"; ${oth_flag} = 6;
(${temp_1} eq "memory_size")

if(${flag} != 10 && ${flag} !=0) { &error_read_out; }

$custom_mem = 1;

$calc_count = hex(${temp_21});

$calc_count = (2%%$calc_count);

$mem_implemented = $calc_count;

print "memory_size: ${temp_2} : ${mem_implemented}\n";
oth_flag} = 6; }

(${temp_1} eq "dm_size")

if (${flag} != 10 && ${flag} !=0) { &error_read_out; }
$custom_datamem = 1;
$calc_count = hex(${temp_21});

5

$dm_mask = (1 x $calc_count); print "dm_maskl: $dm_mask \n";
$dm_mask = oct("0b$dm_mask"); print "dm_mask2: $dm_mask\n'";

$calc_count = (2#x$calc_count);
${datamem_implemented} = $calc_count;

print "Data memory_size: ${temp_2} : ${datamem_implemented}\

n'"; ${oth_flag} = 6; }
(${temp_1} eq "pc_in_pc_relative")
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II1.2 Extract function I11-50

{
if(${flag} != 10 && ${flag} !=0) { &ecrror_read_out; }
$calc_count = hex(${temp_21});
Snow = (S$calc_count)? 0 : 1;
print "pc_in_pc_relative: $now\n"; S{oth flag} = 6;
}
elsif (${temp 1} eq "Stack_direction")
{
if(${flag} != 10 && ${flag} !=0) { &error_read_out; }
${sp_direct} = hex(S{temp_21});
print "Stack direction: ${sp_direct}\n"; ${oth flag} = 6;
}
elsif (${temp 1} eq "SP")
{
if(${flag} != 10 && ${flag} !=0) { &error_read_out; }
print "Stack Pointer top: ${temp_2}\t";
${SP} = hex($S{temp_21});
${SP_top} = ${SP};
print ": ${SP}\n"; S${oth_flag} = 6; }
elsif (${temp 1} eq "Stack_size")
{

if(${flag} != 10 && ${flag} !=0) { &error_read_out; }
S{stack_per} = hex(${temp_21});
print "Percentage of memory for Stack: ${stack_per}\n"; ${
oth_flag} = 6; }
if ((${temp_1} eq "start_mapping") or (${temp_l} eq "end_mapping")
or (${flag} == 1))
{
if (${temp_1} eq "start_mapping") {
if (${flag} != 10) {
print "FLAG: $flag \n";
die " Mnemonic mapping should be mnemonic
opcode definitions";
}
else { ${flag} = 1;}
}
elsif (${temp_1} eq "end_mapping")
{ ${flag} = 0; }
elsif ((${temp 1} ne "start_mapping")){
$mnemonics{$temp_1} = "${temp_2}"; ##appending
mnemonic" associative array with 'number’' key &
opcode ' pair
++S$Scount; }

"

}
if ((${temp_1} eq "start_manipulation") or (${temp_1} eq "
end_manipulation") or (${flag} == 2))
{
if (${temp_1} eq "EOF") { die " End of File reached &
maipulation should be closed before EOF; before line no.

'



II1.2 Extract function II1-51

$file_line in file:$config \n"; }

97 if (${temp_1} eq "start_manipulation") {
98 if (${flag} != 0) {
99 if (${flag} == 1) { die " Mnemonic mapping

should be closed before start_maipulation
; before line no.$file_line in file:
$config \n"; }

100 elsif (${flag} == 3) { die " Branch
instructions should be closed before
start_maipulation; before line no.
$file_line in file:$config \n"; }

101 elsif (${flag} == 4) { die " Data Transfer
instructions should be closed before
start_maipulation; before line no.
$file_line in file:$config \n"; }

102 elsif (S{flag} == 6) { die " Manipulation
instructions should be closed before line

no.$file_line in file:$config \n"; }

103 elsif (S{flag} == 10) { die " Mnemonic
mapping should be done & closed before
start_maipulation; before line no.
$file_line in file:$config \n"; }

104 }

105 else { ${flag} = 2;}

106 }

107 if (${temp_1} eq "end_manipulation")

108 { ${flag} = 0; }

109 elsif ((${temp_1} ne "start_manipulation")){

110 if (exists Smnemonics{$Stemp_1}) {

111 $temp_1 = $mnemonics{$temp_1};

112 $manip{"${temp_13}"} = "${temp_2}"; ##

appending "manip" associative array with
"opcode ' key & value pair

113 —S$count;

114 }

115 else

116 { die "Mnemonic ${temp_1} at line no. $file_line in

file:$config not mapped \n"; }

117 }

118 }

119 if ((${temp_1} eq "start_branch") or (${temp_1} eq "end_branch") or(
${flag} == 3))

120 {

121 if (${temp_1} eq "EOF") { die " End of File reached & branch

should be closed before EOF; before line no.$file_line in
file:$config \n"; }

122 if (${temp_1} eq "start_branch") {

123 if (${flag} = 0) {



II1.2 Extract function II1-52

124 if (${flag} == 1) { die " Mnemonic mapping
should be closed before start_branch;
before line no.$file_line in file:$config

\n'"; }

125 elsif (S{flag} == 2) { die " Manipulation
instructions should be closed before
start_branch; before line no.$file_line
in file:$config \n"; }

126 elsif (S{flag} == 4) { die " Data Transfer
instructions should be closed before
start_branch; before line no.$file_line
in file:$config \n"; }

127 elsif (S{flag} == 6) { die " Branch
instructions should be closed before line

no.$file_line in file:$config \n"; }

128 elsif (S{flag} == 10) { die " Mnemonic
mapping should be done & closed before
start_branch; before line no.$file_line
in file:$config \n"; }

129 }
130 else { ${flag} = 3;}
131 }
132 if (${temp_1} eq "end_branch")
133 { S{flag} = 0; }
134 elsif (${temp_1} ne "start_branch"){
135 if (exists Smnemonics{$Stemp_1}) {
136 $temp_1 = $mnemonics{$temp_1};
137 $branch{"${temp_13}"} = "${temp_21}"; ##
appending "branch" associative array with
"opcode ' key & value pair
138 —S$count; }
139 else
140 { die "Mnemonic ${temp_1} at line no. $file_line in
file:$config not mapped \n"; }
141 }
142 }
143 if ((${temp_l} eq "start_data_transfer") or (${temp_1} eq "
end_data_transfer") or(${flag} == 4)) {
144 if(${temp_1} eq "EOF") { die " End of File reached &

data_transfer should be closed before EQOF; before line no
.$file_line in file:$config \n"; }

145 if (${temp_1} eq "start_data_transfer") {
146 if (${flag} = 0) {
147 if(${flag} == 1) { die " Mnemonic mapping

should be closed before
start_data_transfer; before line no.
$file_line in file:$config \n"; }

148 elsif (S{flag} == 2) { die " Manipulation
instructions should be closed before
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II1.2 Extract function

I11-53

}

start_data_transfer;

start_data_transfer;

and ${flag) == 6) { die

before line no.
$file_line in file:$config \n"; }

elsif (S{flag} == 3) { die " Branch
instructions should be closed before

before line no.
$file_line in file:$config \n"; }
elsif ((S{temp_I} ne "start_data_transfer")

" Data Transfer

instructions should be closed before line
no.$file_line in file:$config \n"; }
elsif (S{flag} == 10) { die " Mnemonic
mapping should be done & closed before
start_branch; before line no.$file_line

in file:$config \n";

}
else { S${flag} = 4;}

if(${temp_1} eq "end_data_transfer")

{

S{flag} = 0; }

}

elsif ((${temp_1} ne "start_data_transfer'")){

}

}
return ($flag);

if (exists Smnemonics{Stemp 1}) {

$temp_1 = $mnemonics{$temp_1};

$data_transfer {"${temp_13}"} = "${temp_2}"; #
#appending "data_transfer" associative
array with 'opcode' key & value pair

—S$count; }
else

{ die "Mnemonic ${temp_1} at line no. $file_line in

file:$config not mapped \n";

}




Appendix IV

Matlab Source Code

Matlab is used to generate graphs in this work. The ’csv’ file for a test run is imported into the

Matlab and graphs are generated using the following scripts.

IV.1 Errors for tests-Graphl

1 set(0,'defaultAxesFontName', 'Arial')

2 set(0,'defaultTextFontName', 'Arial')

3 = [ , , , 1;
4 = {'Undefinedreg','ImplementationError', 'ProgramCounter','StatusFlag'};
5 = 0.6;

6 = (ab, )

7 = gca;

8 (—45)

9 (1:1:4)

10 ( )

11 (19)

12 (1:1:27)

13 ( )

14 zlabel('No. of Errors')

15 = get(gef,'colormap'); % Use the current colormap.

16 = 0;

17 for = 1l:length (h)

18 = get(h(jj),'xdata');

19 = get(h(jj),'ydata');

20 = get(h(jj),'zdata');
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IV.2 Total Error count-Graph2

IV-2

delete(h(jj))

idx = [0;find (all (isnan(xd) ,2))];

if jj ==1
S = zeros(length (h)=(length(idx)—1),1);
dv = floor (size(cm,l)/length(S));

end
for 11 = 1l:length(idx)—1

cnt = cnt + 1;

S(cent) = surface(xd(idx(ii)+1:idx(ii+1)—1,:),...
yvd(idx (ii)+1idx(ii+1) —1,:) ,...
zd(idx (ii)+1l:idx(ii+1) —1,:) ,...
"facecolor',cm((cnt—=1Dxdv+1,:));

end
end
rotate3d
rl = S(1:27);
r2 = S(28:54);

r3 = S(55:81);

r4 = S(82:108);

set(rl ,'facecolor' ,[0.98 0 0])
set(r2,'facecolor' ,[1.0 1.0 0.501])
set(r3,'facecolor' ,[1.0 0.627 0.258])
set(r4,'facecolor' ,[0.501 1.0 0.501])

IV.2 Total Error count-Graph2

set(0,'defaultAxesFontName', 'Arial')
set(0,'defaultTextFontName', 'Arial')

widthl = 0.5;

barh (TotalOcc ,widthl , 'FaceColor',[1 1 0.55])

width2 = .25;

hold on

barh (Errors ,width2 ,'FaceColor' [0 O 1])
hold off

ytickangle (0)

yticks (1:1:27)

yticklabels (Instruction)

ylabel (' Instructions')

grid on

xlabel ('Instruction Count')

legend ({ 'Total Occurance','Errors'},'Location', 'northwest');




Appendix V

Simulation graphs
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Figure V.1: Total Error count for test 7/ (mode A) in processor axt
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Figure V.2: Errors found in processor axt while executing test 7/ (mode A)
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Figure V.3: Total Error count for test 72 (mode A) in processor axt
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Figure V.4: Errors found in processor axt while executing test 72 (mode A)
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Figure V.5: Total Error count for test 7/ (mode M) in processor axt
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Figure V.6: Errors found in processor axt while executing test 7/ (mode M)
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Figure V.8: Errors found in processor axt while executing test 72 (mode M)
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Figure V.9: Total Error count for test 7/ (mode MB) in processor axt
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Figure V.10: Errors found in processor axt while executing test 7/ (mode MB)
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Figure V.11: Total Error count for test 72 (mode MB) in processor axt
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Figure V.12: Errors found in processor axt while executing test 72 (mode MB)



V.1 Processor axt V-13

XOR E'Efz;a’ls&curance I I ]
SWAP ] _
SUBC ] —
sus EE ] _
STORE = 1 _
SHRL ] —
SHRA ) _
SHLL ) -
SHLA ] _
RTRC ] _
RTLC ] _
ROTR ] _
ROTL ] _
RET |— —
OR = ] -

Instructions

0 50 100 150 200 250 300 350
Instruction Count

Figure V.13: Total Error count for test 7/ (mode MD) in processor axt
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Figure V.14: Errors found in processor axt while executing test 7/ (mode MD)
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Figure V.15: Total Error count for test 72 (mode MD) in processor axt



V.1 Processor axt V-16

140

120

100

80

No. of Errors

Figure V.16: Errors found in processor axt while executing test 72 (mode MD)
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Figure V.17: Total Error count for test 7/ (mode A) in processor dnm
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Figure V.18: Errors found in processor dnm while executing test 7/ (mode A)
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Figure V.19: Total Error count for test 72 (mode A) in processor dnm



V.2 Processor dnm V-20

140

120

100

80

60

No. of Errors

40

20

Figure V.20: Errors found in processor dnm while executing test 72 (mode A)
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Figure V.21: Total Error count for test 7/ (mode M) in processor dnm
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Figure V.22: Errors found in processor dnm while executing test 7/ (mode M)
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Figure V.23: Total Error count for test 72 (mode M) in processor dnm
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Figure V.24: Errors found in processor dnm while executing test 72 (mode M)
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Figure V.25: Total Error count for test 7/ (mode MB) in processor dnm
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Figure V.26: Errors found in processor dnm while executing test 7/ (mode MB)



V.2 Processor dnm V-27

=—JTotal Occurance ] _
T rrors

=
e}
=
El

Instructions
B
i

=}
£

NOT
MULC
MUL
LOAD |— —
Jump

DIve ] —
DIV —
CcopY ] —

CALL = ] —

AND ] —
ADDC ] —
ADD ] —
| | | | | | | | |
0

200 400 600 800 1000 1200 1400 1600 1800 2000
Instruction Count

Figure V.27: Total Error count for test 72 (mode MB) in processor dnm
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Figure V.28: Errors found in processor dnm while executing test 72 (mode MB)



V.2 Processor dnm V-29

XOR 8 C___JTotal Occurance [ | 3
| I Errors

SWAP I .
SUBC | .
suB I .
STORE | .
SHRL I .
SHRA | .
SHLL | .
SHLA I .
RTRC | .
RTLC | .
ROTR | .
ROTL I .
RET .
OR I .

Instructions.

=
ADDC ] —
ADD ] —
| | | | |
0

100 200 300 400 500 600
Instruction Count

Figure V.29: Total Error count for test 7/ (mode MD) in processor dnm
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Figure V.30: Errors found in processor dnm while executing test 7/ (mode MD)
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Figure V.31: Total Error count for test 72 (mode MD) in processor dnm
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Figure V.32: Errors found in processor dnm while executing test 72 (mode MD)



V.3 Processor nxp V-33

V.3 Processor nxp

[ Total Occurance
[ Errors

Instructions
o
El
jul

\ . | . . . . \
0 50 100 150 200 250 300 350 400
Instruction Count

Figure V.33: Total Error count for test 7/ (mode A) in processor nxp
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Figure V.34: Errors found in processor nxp while executing test 7/ (mode A)
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Figure V.35: Total Error count for test 72 (mode A) in processor nxp
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Figure V.36: Errors found in processor nxp while executing test 72 (mode A)
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Figure V.37: Total Error count for test 7/ (mode M) in processor nxp
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Figure V.38: Errors found in processor nxp while executing test 7/ (mode M)
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Figure V.39: Total Error count for test 72 (mode M) in processor nxp
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Figure V.40: Errors found in processor nxp while executing test 72 (mode M)
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Figure V.41: Total Error count for test 7/ (mode MB) in processor nxp
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Figure V.42: Errors found in processor nxp while executing test 7/ (mode MB)
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Figure V.43: Total Error count for test 72 (mode MB) in processor nxp
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Figure V.44: Errors found in processor nxp while executing test 72 (mode MB)
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Figure V.45: Total Error count for test 7/ (mode MD) in processor nxp
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Figure V.46: Errors found in processor nxp while executing test 7/ (mode MD)



V.3 Processor nxp

I
XOR [ ] Total Occurance [

[ Errors [

SWAP

SUBC

STORE

SHRL

SHRA

SHLL

SHLA

RTRC

RTLC

ROTR

ROTL

RET

Instructions

OR

MuLC

MUL

LOAD

Jump

DIvVC

DIv

copY

CALL

ADDC

WTIWWWW!IIII_’IHWHW\!

0 500 1000 1500 2000 2500 3000 3500
Instruction Count

Figure V.47: Total Error count for test 72 (mode MD) in processor nxp
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Figure V.48: Errors found in processor nxp while executing test 72 (mode MD)
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Figure V.49: Total Error count for test 7/ (mode A) in processor #fl
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Figure V.50: Errors found in processor #fl while executing test 7/ (mode A)
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Figure V.51: Total Error count for test 72 (mode A) in processor #fl



V.4 Processor tfl

V-52

No. of Errors

400

350

300

250

200

150

100

Figure V.52: Errors found in processor #fl while executing test 72 (mode A)
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Figure V.53: Total Error count for test 7/ (mode M) in processor tfl
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Figure V.54: Errors found in processor #fl while executing test 7/ (mode M)
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Figure V.55: Total Error count for test 72 (mode M) in processor #fl
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Figure V.56: Errors found in processor #fl while executing test 72 (mode M)
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Figure V.57: Total Error count for test 7/ (mode MB) in processor tf
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Figure V.58: Errors found in processor #fl while executing test 7/ (mode MB)



V.4 Processor tfl V-59

Instructions
z 3
o
§g9d=a
‘l IIIIIIFF\
I I |

| | | 1 | |
o 200 400 600 800 1000 1200 1400
Instruction Count

Figure V.59: Total Error count for test 72 (mode MB) in processor #fl
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Figure V.60: Errors found in processor #fl while executing test 72 (mode MB)
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Figure V.61: Total Error count for test 7/ (mode MD) in processor ]
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