
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

12-2017

Automatic Protein Shake Freestyle Vending Machine Automatic Protein Shake Freestyle Vending Machine

Balaji Salunkhe
bs2051@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Salunkhe, Balaji, "Automatic Protein Shake Freestyle Vending Machine" (2017). Thesis. Rochester Institute
of Technology. Accessed from

This Master's Project is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9708&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9708?utm_source=repository.rit.edu%2Ftheses%2F9708&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Automatic Protein Shake Freestyle Vending Machine

by
Balaji Salunkhe

Graduate Paper

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science
in Electrical Engineering

Approved by:

Mr. Mark A. Indovina, Lecturer
Graduate Research Advisor, Department of Electrical and Microelectronic Engineering

Dr. Sohail A. Dianat, Professor
Department Head, Department of Electrical and Microelectronic Engineering

Department of Electrical and Microelectronic Engineering
Kate Gleason College of Engineering

Rochester Institute of Technology
Rochester, New York

December 2017

I would like to dedicate this thesis to my loving parents and all those people who always

believed in me.

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this graduate paper are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other University. This

graduate paper is the result of my own work and includes nothing which is the outcome of

work done in collaboration, except where specifically indicated in the text.

Balaji Salunkhe

Acknowledgements

I would like to acknowledge my advisor, Mark Indovina, for his valuable advice and direc-

tion and my start-up teammates for their continuous support.

Abstract

This paper discusses the design and implementation of an automatic protein shake

freestyle vending machine. This machine is capable of providing protein shakes as per the

customer’s requirement. Customers are able to decide what kind of protein supplement

they want according to their fitness needs, and they can give the appropriate instructions

to the machine to prepare their protein drink by use of a touch system. Other customers,

who are unable to decide or new to fitness supplements can choose a pre-designed drinks

according to their personal fitness. As such, the machine gives the freedom of selection to

the customer if they doesn’t have any idea about their nutrition requirement.

Contents

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

2 Bibliographical Research 5

3 Idea Building 9
3.1 Machine Flow chart . 9

3.1.1 Option 1 - Customize your own shake 11
3.1.2 Option 2 - Pre-designed shake . 12
3.1.3 Payment . 12

3.2 Finite State Machine (FSM) . 13
3.2.1 Mealy Machine . 13
3.2.2 Moore Machine . 14

3.3 FSM representation . 14

4 Design Description 17
4.1 Customize your own shake . 17
4.2 Pre designed shake . 19
4.3 Payment and Reorder . 21
4.4 Watchdog . 23

5 Results 25
5.1 FPGA Implementation . 25
5.2 ASIC Benchmarking . 27

6 Conclusion 28
6.1 Future Goals . 29

Contents vi

References 30

I Source Code I-1
I.1 Customize your shake module . I-1
I.2 Pre-designed shake module . I-26
I.3 Payment and Reorder module . I-51
I.4 Watchdog module . I-60
I.5 Muscle Dispenser module . I-68

II Waveform II-1

List of Figures

3.1 Flow Chart . 10
3.2 Mealy Machine . 14
3.3 Moore Machine . 14
3.4 FSM for protein shake vending machine . 15

4.1 State Machine for Customize your shake 18
4.2 State Machine for Pre designed shakes . 20
4.3 State machine for Payment and Reorder 22
4.4 Watchdog . 24

5.1 Schematic view of Design . 26

II.1 Simulation Waveforms using the Xilinx Vivado Design Suite II-1

List of Tables

5.1 Xilinx Virtex 7 Implementation . 27
5.2 Comparison in ASIC technologies . 27

Chapter 1

Introduction

1.1 Vending Machines

In last few decades, the vending machine becomes an important thing in people’s day

to day routine. The vending machine is recognized as a tool to aid modern and healthy

living style.The vending machine is an auto self-serviced medium, which is able to cater or

provide a customer’s requirement by pressing buttons. Request generated by the consumer

is an actual instructions for a machine to operate. The mechanical and electrical circuitry

performs all automatic work to eliminate manual work. Initially, the customer needs to

decide what they want from a vending machine, as per that, by using a digital keypad or

a touch system, they have to submit an order. The machine will generate the bill for the

customer, as soon as the customer pays the bill by using currency, Debit or Credit cards,

the machine will start dispensing process. The order placed by a customer is an input

data for the machine. As a result, at the end of the process the customer obtains requested

product from the machine. This is the general operation of the vending machine from start

to end. The vending machines can be designed for specific functions like for beverages or

food or other items. They offer portability, low cost, comfort, and also use less space for

2

setting up and can be installed in 24/7 service places. Vending machines discussed in

reference papers are based on CMOS, SED and Micro-controllers technology[1–5].

The vending machine culture is, too, old as per the history. The first kind of vend-

ing machine was introduced in century 2-3 B.C. in Egypt. It was a mechanical machine

which was created to sel water in Egypt. After that in the19th century, vending ma-

chines for various functions were introduced during the industrial revolution in the United

Kingdom[6]. The first ever commercialized vending machine for post-cards, which can be

accessed through coins, was introduced in London.

1.2 Nutrition Supplementation[7]

1.2.1 Why is it needed?

In today’s world, people are becoming more careful about their health and physique. To

achieve good physique and health, only workouts are not enough to achieve that level of

fitness, people have to consume good quality nutritious food on proper intervals of time

throughout the day, but in the real world, it’s really hard to get proper nutritious meals on

time. In modern lifestyle, it is really difficult for a person to prepare food within no time

without neglecting the nutrition factor. So another way to fulfill your daily requirement is

through protein supplements. By a combination of solid foods and food supplements, one

can achieve the proper nutrition fulfillment required for that perfect physique.

1.2.2 Varieties of Supplements

Supplements are categorized into meal replacement protein, muscle gaining protein, fat

cutting protein, vegan protein, etc. Each protein category is designed with different ratios

of proteins, carbohydrates, and fats which are the macros of our nutrition with some of

3

the micros of nutrition [8].

A) Meal replacement: This category stands for its name, it basically used in place of

a meal. If in any case, a fitness enthusiast is going to miss a meal, this comes into action.

One serving of meal replacement can give you enough calories to sustain for 2 to 4 hours.

It usually contains a moderate amount of carbohydrates, a moderate amount of proteins

and some amount of fats.

B) Mass gainer/ Muscle gainer: This category is a high calories nutrition category.

Basically, it contains a high amount of carbohydrates and a moderate amount of proteins

and fats. The ratio of carbohydrates-protein-fat varies along with the product.

C) Fat loss/ Maintenance: This category poses the purest form of protein nutrition.

This is categorized into Whey, Isolate whey, and Hydrolyzed whey protein supplements.

This is the very basic type which contains almost 80% to 100% of protein by weight per

scoop. This is the most popular and widely used supplement type in the fitness world.

This provides required protein blocks for muscle recovery.

D) Vegan: This category is for the vegan fitness enthusiast.

1.3 Objective:

The proposed protein supplement freestyle vending machine can offer a combination of

affordability, convenience, and a variety of protein supplements for a niche market. The

vending machine will act as a user-friendly catalyst for nutrition supplement distribution.

The proposed paper is based on the FPGA (Field Programmable Gate Array) technology.

FPGA based machines basically use minimum execution time, less power in comparison

to micro-controller based designs[9]. FPGAs are reprogrammable, they allow for rapid

prototyping, flexible, and reduce hardware in comparison with other designs[9].

4

1.4 Organization:

• Chapter 2: This chapter gives details about the articles, journals, papers and books

which are used as a reference in building this project.

• Chapter 3: This chapter gives a brief explanation of idea or concept building with a

flowchart. Global FSM of freestyle vending is described in detail.

• Chapter 4: Design implementation in parts described in this chapter. FSM for every

major state is explained here.

• Chapter 5: This chapter outlines details about the benchmarking process on different

technologies and implementation on FPGA.

• Chapter 6: This chapter concludes the project in detail with future work discussion.

Chapter 2

Bibliographical Research

[6] provides an introduction of unique services provided by the vending machine and also

future possibilities in the advancement of vending machine culture. Vending machines can

be installed in various fields and for various purposes. The vending machine installation

is more convenient than a physical store, almost 120 times more convenient. The vending

machines are called a “convenient unmanned shop”[6]. The joint venture of vending ma-

chine manufacturers and various commodities can enhance the user’s experience. Vending

machines can be developed by using various technologies. They can be developed by using

micro-controller, Aplication Specific Integrated Circuit (ASIC), Field Programmable Gate

Array (FPGA), or Single Electron Devices (SED). All implementations are studied for this

proposed paper.

[4] is giving an implementation of an automatic tea vending machine using SED. Single

Electron Devices have some pros, like they consume low power, high density of integration,

and switching power, that means they can do the operation faster. Because of these

properties, SEDs are considered as the future of ULSI technology[4]. SEDs made up of

SET (Single Electron Tunneling) technology where a single electron charge transfer on

6

principle of Coulomb Blockade and provide a new way to understand digital logic [3, 10].

Implementation of a coffee vending machine by using SED is proposed in detail in [3]. The

Automated Beverage Dispenser (ABD) is discused in [11] including management of the

project. Under this report, the goal of ABD is to given as an efficient and cost-effective

way of dispensing varieties of mixed drinks to their customer without any extra effort. The

ABD provides freedom of customization to the customer, waiter, or other user so they can

create the desired drink recipe. Also, the user can maintain a database for recipes and

stock by using the menu bar.

The Automatic Beverage Dispenser based on Microcontroller technology, which is elim-

inates manual operation for dispensing, is proposed in [1, 5]. To eliminate the manual oper-

ation for measurement, this paper used cup sensors. It also stops the overflowing of liquids

because of user negligence by using the electronic keypad to give user inputs for desired

quantity. Assembly language is used for implementation and then compiled in assembler

(MIDI – 51). This design is practically demonstrated on the AT89C52 microcontroller [1].

The FSM (Finite State Machine) vending machine with features of multi-select and

auto-billing is implemented and demonstrated in [12]. The Mealy machine model with four

states is created in this paper and successfully demonstrated on a Xilinx Spartan 3 FPGA

board. An FPGA based machine is faster than CMOS based machine and SED based

machine[12]. If using a micro-controller based machine, then the user will have to change

the whole architecture even for small product changes[12]. Paper [9] is demonstrating the

same design explained in [12] , but on a Xilinx Virtex 5 FPGA board.

A vending machine for frozen food is designed by using conceptual modeling in the

paper[13, 14]. Conceptual modeling involves variables identification, finding simulation

flows, and creating the simple formation of deliverable’s for easier understanding of the

project. The combination of a process-oriented approach and a process flow logic is used

7

to construct the required model for this vending machine [13]. The motivation behind

[15] is to develop a vending machine which can operate on low power. To achieve low

power operation [15] has used various power reduction techniques, where the machine is

tested on different frequencies to understand power consumption and also uses various IO

standards to check best IO standard and frequency for power efficient vending machine.

The comparison in a particular vending machine designed with 2 different FSM designs

is explained in [16]. For comparison, the author considered the aspects like area, timing

constraints, speed, and power dissipation. By comparing the results from 2 algorithms

using the Altera Stratix FPGA family, the author is trying to find more reliable, more

efficient and synthesizable designs for the vending machine.

Replenish system is one of the main features in this proposed paper. It is a smart feature

which keeps the stock in order. If the products start hitting low-levels, the machine will

start to take action for replenishing the products. The [2] is explaining an intelligent system

to control the inventory of a variety of papers in the paper vending machine. This replenish

system is implemented using fuzzy logic; the output of a fuzzy system represents 0-3 decimal

value and each value posses status and action to take [2]. The real-time replenish system

(RPS) with the help of GPRS and Wi-Fi technology is developed in [17, 18]. As per the

proposed paper, the RPS can gather information, such as sales volume and inventory level,

and send it back to the data center of the vending machine company. This way they can

control and provide the quality service. This can help vending machine companies to cut

operating costs for the vending machine[17, 19].

The ways of payment are the important application in the vending machine. There are

generally 3 means of payment: coin/cash payment, card payment (i.e. Debit/Credit card

payment), and mobile payment. [20, 21] proposes the idea of mobile payment by using IR

(Infra Red technology) available in mobile; nowadays it is replaced by Bluetooth or Near

8

Field Communication (NFC) technology. In this process, the user will select an item and

will connect with the vending machine through IR technology and then by taking help

from the software running on the back-end server, the vending machine will complete the

bill payment process [20, 21]. This paper is proposes the hybrid method for payment i.e.

currency, manual mobile, and infrared mobile. In paper [22] the idea of payment through

the Short Message Service (SMS) is discussed. After deciding the item from the vending

machine, the user can make payment though SMS and can finish the shopping process.

Cleanliness is also a main concern in the vending machine industry. [23] is proposing

a design with the help of actuators and sensors for the self-cleaning feature of a vending

machine. This proposed design connects with the user through Bluetooth. The user adjust

the coffee taste according to their preference and also can check the cleaning status of the

vending machine. Actuators adjust materials for mixtures while sensors monitor the inner

environment of the vending machine [23]. Speech recognition can be a great feature in the

vending machine. To make vending machines more user-friendly paper [24] is proposing

the self-service Ticket Vending Machine system. To execute this idea a Dynamic Time

Warping (DTW) speech recognition algorithm is used.

Chapter 3

Idea Building

The idea is to develop a protein shake vending machine that works in a freestyle manner

to give users the option of custom-made shakes for individuals who know their macro and

micro requirements, and pre-calculated shakes for the individuals who don’t know their

nutrition requirement but does know the physique goal. The paper explains the design of

a vending machine that is versatile and easy for anybody to use.

3.1 Machine Flow chart

The flowchart in Fig. 3.1 explains the entire workings of the proposed protein shake vending

machine. The machine will always remain in sleep mode until someone pushes the start

button to access it. Once someone wants to access the machine, the machine comes out

from sleep mode and prompts for option selection. There are two options for selection:

’Customize your shake’ and ’Pre-designed shake’. Once an individual makes up their mind

and selects one option, the process is forwarded to the next stage as shown which will

eventually fulfill the nutritional requirement of an individual.

3.1 Machine Flow chart 10

Figure 3.1: Flow Chart

3.1 Machine Flow chart 11

3.1.1 Option 1 - Customize your own shake

After selecting this option, the machine will ask for product selection from 6 different

product types which have different nutritional profiles. Out of these 6 products, 2 products

have the maximum level of different carbohydrate macros, 1 product has a high level of

whey protein macro, 1 product has whey isolates protein macro, 1 product is full of casein

protein macro, and 1 product is a vegan option. So, an individual can select 1 out of 6

product types at one time. This process will happen on the user experience level i.e. on

screen, where an individual gives input to the machine after confirming nutritional profile.

After confirming selection, the machine starts to work on the further process. The machine

checks for product availability, if the product is not available then the machine will send

a message to ’Replenish system’ section to take refilling action and at the same time it

will send the customer back to the product selection screen to choose a different product

instead of a currently selected product. If the product is available, i.e. it is passing the

threshold level check for 0 level availability, then the machine will check for minimum 20%

availability of product as 20% is the next threshold level for the products so no product

will go out of availability. If product availability is more than 20%, then the machine will

go to the purchase screen without taking any replenish action, else it will go to purchase

screen after executing replenish action. On the purchase screen, the machine will give the

option of ’add more’ for adding more products in the currently selected product so to make

it custom made for the different requirements of each individual. One individual can add 2

more products on top of the first selected product. For each selected product the machine

repeats the same processes of availability check and replenish action.

3.1 Machine Flow chart 12

3.1.2 Option 2 - Pre-designed shake

If an individual decides to go with this option, an user gets the category selection screen.

The user has to select one category out of 4 pre-designed categories for 4 different goals:

Muscle Gain, Meal Replacement, Weight Loss, and Vegan. Each category has at least 1

pre-designed shake option with different nutritional value. Each pre-designed shake is a

combination of 2 different types of macros. Once an individual makes up their mind about

the wanted category and desired pre-designed shake, the machine starts further steps of

availability check. The machine checks for two different threshold levels for 1 product out

of 2 products for a selected pre-designed shake. If the product availability is 0, then the

machine will inform ’Replenish system’ about this first, and then goes to category selection

screen for an individual to go through other pre-designed shakes options. If the product is

available, the machine will check for a threshold level check for 20%. If the product is below

the threshold level of 20%, then the machine will inform this to ’Replenish system’, so the

refilling process will start early. If it fails, then the machine will not send any message

for refilling. After threshold check, either the product passes or fails, and the machine

processes further to do availability check on a second product. It follows the same process

like the first product.

3.1.3 Payment

After all the product selection processes described via option 1 or option 2, if the individual

is satisfied with the detailed nutritional information and final price for a product, then the

machine will move to the ’Payment’ screen. If not, then the individual can either go

back for other product selection process or can go to the cancel option. Under ’Payment’

process, an individual can pay through cards or through mobile pay. The machine will

3.2 Finite State Machine (FSM) 13

check for full expected payment, if full payment is received, the machine will create the

desired protein shake and it will deliver it to the individual, else the machine will not go

further until full payment is done. During this time, the machine will keep a copy of the

finale product in its memory. So, if an individual wants to reorder same product, they

don’t have to go through the same process again; the machine will access memory to get

details about the finale product and will create the same product and will deliver it after

full payment. If an individual doesn’t want to order the same product but they want to try

something different then the machine will take them to the initial stage to start the entire

process again. Once payment is recieved, the individual can’t cancel the process. Also, an

individual can end the process after delivering product by pushing the exit button.

3.2 Finite State Machine (FSM)

The Finite State Machine representation is given in Figures 3.2 and 3.3. The FSM is a

mathematical model used to design computer programs and sequential logic. The FSM

is made up of numbers of state, the states come into work when there is expected inputs

from the previous state. The outputs from current state drives next state. There are two

types of FSM [25].

3.2.1 Mealy Machine

In a Mealy machine, the output signals are derived by the current state and the current

inputs as shown in Fig. 3.2.

3.3 FSM representation 14

Figure 3.2: Mealy Machine

Figure 3.3: Moore Machine

3.2.2 Moore Machine

In a Moore machine, the output signals are derived by the current state only as shown in

Fig. 3.3.

3.3 FSM representation

As shown in Fig. 3.4, state machine always starts with Initiate state. Cust_shake (Cus-

tomize your own shake), Pre_shake (Pre-designed shake), Payment, Deliver and Reorder

are internal states. All these internal states also have sub-states within them. Those are

discussed in a Chapter 4. After Initiate state, state machine moves into either Cust_shake

or Pre_shake state depending upon the selection made by the individual. After the suc-

cessful completion of current state of product selection, the machine flow goes into Payment

state where the machine waits until full payment is done. Once the full payment is received

the machine flow goes into Deliver state for delivering the expected product to the individ-

ual. The individual can also quit the payment process by sending the Cancel signal. After

Deliver state, the machine goes to Reorder state, where the machine asks for reordering of

product. If the individual doesn’t want to reorder, the machine will take flow to End state.

3.3 FSM representation 15

Figure 3.4: FSM for protein shake vending machine

3.3 FSM representation 16

Temp_mem is for the storing of the desired product so the machine can retrieve data for

reordering purposes.

Chapter 4

Design Description

Fig. 4.1presents the FSM state diagram for the proposed vending machine. This chapter

explains in detail the design implementation of the FSM.

4.1 Customize your own shake

System reset or Watchdog reset resets the machine at the start as shown in Fig. 4.1.

After the start, the state machine handler moves to the “Product_sel” state upon getting

an option_sel1 signal, at this point the user can choose 1 of 6 products. Each product

has different nutritional values and properties. Once the selection was made, the machine

will check for availability of the product by moving to state “Threshold_check” where the

machine checks for 2 types of threshold levels i.e. Product availability = 0 and Product

availability <= 20%, where 0 and 20% are threshold levels. If the product clears the

availability check, the machine moves to the purchase expectation state. If a product fails

the availability check, the machine move to the replenish state. The “Replenish” state is

divided into two sections. If the product is not available i.e. zero availability, the machine

4.1 Customize your own shake 18

Figure 4.1: State Machine for Customize your shake

4.2 Pre designed shake 19

will go to the “Replenish at 0” state where the machine will raise a signal for product

unavailability and send a message for immediate action. If the product is available, but

availability is below the threshold level of 20%, then the machine will raise a signal for low

availability in the “Replenish at 20” state, the machine will send a message to that affect,

and move to the Purchase expectation state. If an individual is satisfied with the choice,

then the machine will give output as ’ready1’ for further steps. If an individual wants to

add more products, then the machine will save current product data in memory and go

back to the product selection stage through the “Add_more_product” state to follow the

selection process again. An individual can add two more products to the selection process

for a maximum 3 products per transaction. An individual can cancel the purchase process

if they don’t want to purchase by selecting Cancel.

4.2 Pre designed shake

Similar to the Cust_shake module, this module also initially gets System reset or Watchdog

reset to reset state machine as shown in Fig. 4.2. After, the state machine moves to

“Category_sel” state when it gets an option_sel2 signal after the start. There are four

categories in Category_sel state. These categories are: Meal replacement, Muscle gainer,

Weight loss, and Vegan. An individual can select one category of choice as per requirement

to move forward in the process. Each category contains a number of pre-designed shakes

with different nutrition profiles and properties. As an individual selects one of the pre-

designed shakes from the selected category, the machine starts to check the availability of

the products required by each pre-designed shake. Each pre-designed shake is made up

of two different products which have different nutritional profiles and functions. If either

of the products are not available then the machine will take the individual back to the

4.2 Pre designed shake 20

Figure 4.2: State Machine for Pre designed shakes

4.3 Payment and Reorder 21

previous state, i.e. category select, and raise the signal for test fail and send it to replenish

state i.e “Replenish at 0” state. If products are available, then the machine will check for

threshold level test, if product availability is above the threshold level, i.e. 20%, then the

machine move to the “Purchase” state directly, else it will raise a signal for replenishing

system first in the “Replenish at 20” state, and then it will move forward to purchase

expectation state. If the amount is reasonable for an individual, then the machine will

send a ‘ready2’ signal out for further process, else the individual can cancel the process.

4.3 Payment and Reorder

The payment and reorder module is the final state for the completion of the protein shake

making process. As shown in Fig. 4.3, this module starts when it gets the signal ’ready1’

from Customize your shake module or signal ’ready2’ from Pre-designed shake module.

The next state is “Pay_option” where the customer can decide payment method. There

are two types of payment methods, one is Card payment and the other is Mobile payment.

Card payment is a generic payment method and Mobile payment is for mobile application

customers or members. After the payment method selection, the customer has to make full

payment or the machine will not move ahead for the protein shake mixing process. Once

the full payment is received, the machine will start the mixing process and once finished

the customer will receive the desired protein shake. At this stage the machine will ask for

a reorder. If a customer wants to reorder the same protein shake, then they just have to

push the Same product button, and the machine will retrieve the memory for stored data

so the customer doesn’t have to redo the process. If the customer wants to try something

new, then they can push Different product button, at which point the machine will take the

customer to the Option selecting process, where the customer can choose from a custom

4.3 Payment and Reorder 22

Figure 4.3: State machine for Payment and Reorder

4.4 Watchdog 23

or pre-designed shake. If the customer doesn’t want to reorder, they only have to select

the cancel button to exit the machine.

4.4 Watchdog

The function of the watchdog module is to check for customer response. If the customer

is using the machine then the watchdog starts for the counter as shown in Fig. 4.4. For

each stage in the vending process, the counter reset. If at any point the customer leaves

the machine in the middle of a vending process, then watchdog will wait for pre-defined

period of time and eventually resets the machine. So, on arrival of wait signal from any

state such as “customize your shake” or “pre-designed shake”, or cancel signals, or the add

more signal, the watchdog starts its functioning. Watchdog starts counting for 20 counts,

so whenever the above-mentioned signals come to watchdog, it resets the counter to zero

and starts counting for 20 counts. If all conditions for counter_20 fails, then the state

machine goes on counter_30 counter, where the watchdog starts to count for 30 counts.

At this point the watchdog checks for reordering stage, if the customer raises some signal

in reordering and left then the watchdog counter resets the machine after 30 counts. In

a worst case scenario, the watchdog moves forward to counter_40 where watchdog counts

for 40 counts and it forcefully resets the entire system by sending out “wrst” siganl.

4.4 Watchdog 24

Figure 4.4: Watchdog

Chapter 5

Results

5.1 FPGA Implementation

The required RTL for the automatic protein shake vending machine is designed using the

Verilog Hardware Description Language (HDL). The tools used were the Xilinx Vivado

Design Suite targeting a Xilinx Virtex 7 FPGA board. The standard flat test-bench code

for behavioral verification was also developed in Verilog HDL. The design was tested under

various circumstances to check its flexibility and reliability, and the design has success-

fully gave expected outputs. The design successfully cleared the synthesis and gate level

simulation. A top level schematic for vending machine RTL is shown in the Fig. 5.1.

Tab.5.1 tabulates the power, timing and device utilization for Xilinx Virtex 7FPGA.

The total power mentioned is the addition of total dynamic power and total leakage power.

The design is has a worst case slack of 6ns for a maximum operating frequency of 167MHz.

The design utilizes 18% of device, where the FF are taking 1%, LUTs using 1%, 13% is

allocating for I/O, and the 3% is utilizing by BUFG.

5.1 FPGA Implementation 26

Figure 5.1: Schematic view of Design

5.2 ASIC Benchmarking 27

Table 5.1: Xilinx Virtex 7 Implementation
Properties/Technologies Power (Dynamic + Leakage) Timing (slack) Utilization

XIlinx Virtex 7 0.246 W 6 ns 18%

5.2 ASIC Benchmarking

For ASIC benchmarking, the design is simulated and synthesized by using the Cadence

and Synopsys tools respectively. Tab. 5.2 tabulates the area, power and timing for the

various of target technologies. Results for the TSMC 180nm, TSMC 65nm, SEDK 90nm,

and SEDK 32nm technologies are mentioned in the table.

Out of all technologies, the 180nm technology has largest cell area as compared to rest of

the technologies, i.e. 8133um2. In 90nm technology, the design requires 4552um2area, and

a total power consumption of 21uW , the lowest power requirement among all technologies.

65nm technology requires the least cell area, i.e. 1118um2. Total power is the addition

of the total dynamic power and the total leakage power and is measured in micro-watts.

180nm technology consumes the highest power, but it is using the smallest leakage power.

Due to not having to over constraint the design, all technologies have almost the same

timing. Out of all, the 65nm technology is the fastest design.

On the basis of area, power consumption, and timing the physical design implementa-

tion in 90nm is most efficient.

Table 5.2: Comparison in ASIC technologies
Properties/Technologies Area Power (Dynamic + Leakage) Timing (slack)

32 nm 1140um2 120uW 18.5138ns
65 nm 1118um2 26uW 18.5924ns
90 nm 4552um2 21uW 18.1832ns

180 nm 8133um2 164uW 18.4461ns

Chapter 6

Conclusion

An Automatic Protein Shake Freestyle Vending Machine is successfully designed and im-

plemented in this paper. The idea is to provide the highly nutritional meals to the fitness

enthusiast at any time at any place. This vending machine is able to provide four types

of the pre-designed sports nutrition shakes to the consumers, categories are meal replace-

ment shakes, weight loss shakes, mass gaining shakes, and vegan shakes. Also, the vending

machine gives the consumer authority to create their own protein shake as per their re-

quirements.

A Finite State Machine (FSM) is used to design automatic protein shake freestyle

vending machine. The FSM is made modular for future design improvements. This paper

gives detail descriptions about all mid-level and low-level modules with the main top level

module. Verilog HDL is used for the final RTL design. The final design is implemented on

Xilinx Virtex 7 FPGA board by using Xilinx Vivado tool. The design consumes 0.246W

power to run, with the 18% of hardware utilization.

A vending machine is also benchmarked in ASIC for 32nm, 65nm, 90nm, and 180nm

technologies. The benchmarking criteria for comparison are total cell area, total power

6.1 Future Goals 29

consumption, and timing results for all these mentioned technologies. The 65nm technology

is using least area, i.e. 1118um2. The power consumed by design in 90nm technology is

the most efficient, i.e. 21uW out of the all physical design implementations. On timing

analysis results the physical design on 90nm technology is the fastest, i.e. 18.1832ns. On

overall comparison the physical design implementation on 90nm technology is the best and

most efficient among all physical design implementations on trade off area allocation.

6.1 Future Goals

Automatic Protein Shake Freestyle Vending Machine has good future scope. Some of the

possible future goals are mentioned.

• The real-life prototyping of the design is the most important future goal.

• The design in the paper is verified by using the flat testbench. A more detailed

SystemVerilog testbench environment can be a future improvement.

• Speech recognition can be added to the system to operate the vending machine. This

would be a great feature for disabled people.

• A more sophisticated self-cleaning feature can be added as a future improvement.

• For a more reliable and efficient replenishing system, the vending machine is going

to need communicate to remote servers in a data center.

References

[1] E. C. Genevra, E. Mbonu, and K. Okafor, “An effective approach to designing and con-

struction of microcontroller based self-dispense detecting liquid dispenser,” in Adaptive

Science & Technology (ICAST), 2014 IEEE 6th International Conference on. IEEE,

2014, pp. 1–7.

[2] A. H. V. Dela, N. A. J. Navarro, C. J. E. Roque, A. P. R. Villano, A. R. dela Cruz, E. C.

Guevarra, E. A. Roxas, and R. R. P. Vicerra, “Fuzzy logic based replenishment sys-

tem for smart paper dispensing machine,” in Humanoid, Nanotechnology, Information

Technology, Communication and Control, Environment and Management (HNICEM),

2015 International Conference on. IEEE, 2015, pp. 1–7.

[3] B. Roy and B. Mukherjee, “Design of a coffee vending machine using single elec-

tron devices:(an example of sequential circuit design),” in Electronic System Design

(ISED), 2010 International Symposium on. IEEE, 2010, pp. 38–43.

[4] C. C. Singh, K. S. Kumar, J. Gope, S. Basu, and S. K. Sarkar, “Single electron device

based automatic tea vending machine,” ICTES 2007, 2007.

[5] A.-R. Oh and T.-H. Park, “Assembly sequence optimization of dispensers in smt in-line

system,” in SICE 2004 annual conference, vol. 1. IEEE, 2004, pp. 456–460.

References 31

[6] T. Yokouchi, “Today and tomorrow of vending machine and its services in japan,” in

Service Systems and Service Management (ICSSSM), 2010 7th International Confer-

ence on. IEEE, 2010, pp. 1–5.

[7] T. D. Armsey Jr and G. A. Green, “Nutrition supplements: Science vs hype,” The

physician and sportsmedicine, vol. 25, no. 6, pp. 76–116, 1997.

[8] J. R. Hoffman and M. J. Falvo, “Protein–which is best?” Journal of sports science &

medicine, vol. 3, no. 3, p. 118, 2004.

[9] V. V. Krishna, A. Monisha, S. Sadulla, and J. Prathiba, “Design and implementation

of an automatic beverages vending machine and its performance evaluation using

xilinx ise and cadence,” in Computing, Communications and Networking Technologies

(ICCCNT), 2013 Fourth International Conference on. IEEE, 2013, pp. 1–6.

[10] K. K. Likharev, “Single-electron devices and their applications,” Proceedings of the

IEEE, vol. 87, no. 4, pp. 606–632, 1999.

[11] S. Istocka, “Automated beverage dispenser,” ideaexchange.uakron.edu, 2015.

[12] A. Monga and B. Singh, “Finite state machine based vending machine controller with

auto-billing features,” arXiv preprint arXiv:1205.3642, 2012.

[13] F. Zainuddin, N. M. Ali, R. M. Sidek, A. Romli, N. Talib, and M. I. Ibrahim, “Concep-

tual modeling for simulation: Steaming frozen food processing in vending machine,”

in Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE

International Conference on. IEEE, 2009, pp. 145–149.

[14] Y. Wang, O. K. Ho, G. Q. Huang, and D. Li, “Study on vehicle management in

References 32

logistics based on rfid, gps and gis,” International Journal of Internet Manufacturing

and Services, vol. 1, no. 3, pp. 294–304, 2008.

[15] G. Verma, A. Papreja, S. Shekhar, S. Maheshwari, and S. K. Virdi, “Low power

implementation of fsm based vending machine on fpga,” in Computing for Sustainable

Global Development (INDIACom), 2016 3rd International Conference on. IEEE,

2016, pp. 2054–2058.

[16] V. Vaid, “Comparison of different attributes in modeling a fsm based vending machine

in 2 different styles,” in Embedded Systems (ICES), 2014 International Conference on.

IEEE, 2014, pp. 18–21.

[17] T. Poon, K. Choy, C. Cheng, and S. Lao, “A real-time replenishment system for

vending machine industry,” in Industrial Informatics (INDIN), 2010 8th IEEE Inter-

national Conference on. IEEE, 2010, pp. 209–213.

[18] W. Wang and R. J. Brooks, “Empirical investigations of conceptual modeling and the

modeling process,” in Simulation Conference, 2007 Winter. IEEE, 2007, pp. 762–770.

[19] A. Rusdiansyah and D.-b. Tsao, “An integrated model of the periodic delivery prob-

lems for vending-machine supply chains,” Journal of Food Engineering, vol. 70, no. 3,

pp. 421–434, 2005.

[20] S. Azami and M. Tanabian, “Automatic mobile payment on a non-connected vending

machine,” in Electrical and Computer Engineering, 2004. Canadian Conference on,

vol. 2. IEEE, 2004, pp. 731–734.

[21] S. Z. Azami, N. Torabi, and M. Tanabian, “Modeling the customer behavior in the

mobile payment on a non-connected vending machine platform,” in Electrical and

References 33

Computer Engineering, 2004. Canadian Conference on, vol. 2. IEEE, 2004, pp.

815–818.

[22] W. Zhang and X. L. Zhang, “Design and implementation of automatic vending ma-

chine based on the short massage payment,” in Wireless Communications Networking

and Mobile Computing (WiCOM), 2010 6th International Conference on. IEEE,

2010, pp. 1–4.

[23] K. Kim, D.-H. Park, H. Bang, G. Hong, and S.-i. Jin, “Smart coffee vending machine

using sensor and actuator networks,” in Consumer Electronics (ICCE), 2014 IEEE

International Conference on. IEEE, 2014, pp. 71–72.

[24] L. Jiahui and X. Rongkun, “Study on ticket vending machine system based on dtw

speech recognition algorithm,” in Control Conference (CCC), 2017 36th Chinese.

IEEE, 2017, pp. 10 468–10 473.

[25] N. H. Weste and D. Harris, CMOS VLSI design: a circuits and systems perspective.

Pearson Education India, 2015.

Appendix I

Source Code

I.1 Customize your shake module

‘ t i m e s c a l e 1ns / 1ps

//

///

// Author : B a l a j i Salunkhe .

// Module Name : cust_shake

// Pro j e c t Name : Muscle Dispenser

// Advisor : Mark Indovina

//

//

‘ d e f i n e Product_sel 3 ’ b001

‘ d e f i n e Threshold_check 3 ’ b010

I.1 Customize your shake module I-2

‘ d e f i n e Replenish_at0 3 ’ b011

‘ d e f i n e Replenish_at20 3 ’ b100

‘ d e f i n e Purchase_exp 3 ’ b101

‘ d e f i n e Add_more_prod 3 ’ b110

module cust_shake (

s r s t ,

wrst ,

c lk ,

opt ion_sel1 ,

wait_prod1 ,

s e l ,

avl1 ,

avl2 ,

avl3 ,

avl4 ,

avl5 ,

avl6 ,

ack ,

cost_check ,

ready1 ,

cance l1 ,

add_more

) ;

I.1 Customize your shake module I-3

input

c lk , //System c lock

s r s t , //System r e s e t

wrst ; //watchdog r e s e t

input

opt ion_sel1 , // Option s e l e c t i o n s i g n a l

cance l1 ; // Exit from cur rent p roce s s

input [7 : 0] avl1 , avl2 , avl3 , avl4 , avl5 , av l6 ; // Product

a v a i l a b i l i t y check

input [2 : 0] s e l ; // Product # s e l e c t i o n

input

cost_check , // t o t a l Cost o f product

add_more ; // For adding one more scoop

reg [1 : 0] counter ;

reg more ;

reg [5 : 0] c h e c k f a i l ; // product a v a i l a n i l i t y

c h e c k f a i l s t a tu s

I.1 Customize your shake module I-4

output reg [5 : 0] ack ; //Acknowledge s i g n a l f o r c h e c k f a i l

s t a tu s

output reg ready1 ; //Ready s i g n a l f o r payment s tage

output reg wait_prod1 ;

reg [2 : 0] s t a t e 1 ; // Sta t e s

reg [2 : 0] temp_bit ; // to save product number

reg [8 : 0] Temp_mem; //To save e n t i r e order up to 3 products f o r

re−order

reg [5 : 0] prod ;

parameter Threshold_l imit = 8 ’ d20 ;

always @(posedge c l k)

begin

i f (s r s t == 1 | | wrst == 1)

begin

ready1 = 1 ’ b0 ;

I.1 Customize your shake module I-5

c h e c k f a i l = 6 ’ b000000 ;

ack = 6 ’ b000000 ;

Temp_mem = 9 ’ b000000000 ;

counter = 1 ;

temp_bit = 3 ’ b000 ;

s t a t e 1 = 3 ’ b000 ;

prod = 6 ’ b000000 ;

end

e l s e i f (opt ion_se l1 == 1)

begin

// $d i sp l ay (" \n Custmize your own shake \

n ") ;

case (s t a t e 1)

‘Product_se l :

begin

case (s e l)

3 ’ b001 :

begin

$d i sp l ay (" Product 1

s e l e c t e d ") ;

temp_bit = 3 ’ b001 ;

prod = 6 ’ b100000 ;

wait_prod1 = 1 ’ b1 ;

s t a t e 1 <=

‘Threshold_check ;

I.1 Customize your shake module I-6

end

3 ’ b010 :

begin

$d i sp l ay (" Product 2

s e l e c t e d ") ;

temp_bit = 3 ’ b010 ;

prod = 6 ’ b010000 ;

wait_prod1 = 1 ’ b1 ;

s t a t e 1 <=

‘Threshold_check ;

end

3 ’ b011 :

begin

$d i sp l ay (" Product 3

s e l e c t e d ") ;

temp_bit = 3 ’ b011 ;

prod = 6 ’ b001000 ;

wait_prod1 = 1 ’ b1 ;

s t a t e 1 <=

‘Threshold_check ;

end

3 ’ b100 :

I.1 Customize your shake module I-7

begin

$d i sp l ay (" Product 4

s e l e c t e d ") ;

temp_bit = 3 ’ b100 ;

prod = 6 ’ b000100 ;

wait_prod1 = 1 ’ b1 ;

s t a t e 1 <=

‘Threshold_check ;

end

3 ’ b101 :

begin

$d i sp l ay (" Product 5

s e l e c t e d ") ;

temp_bit = 3 ’ b101 ;

prod = 6 ’ b000010 ;

wait_prod1 = 1 ’ b1 ;

s t a t e 1 <=

‘Threshold_check ;

// s t a t e <=

‘Purchase_exp ;

end

3 ’ b110 :

I.1 Customize your shake module I-8

begin

$d i sp l ay (" Product 6

s e l e c t e d ") ;

temp_bit = 3 ’ b110 ;

prod = 6 ’ b000001 ;

wait_prod1 = 1 ’ b1 ;

s t a t e 1 <=

‘Threshold_check ;

end

d e f a u l t :

begin

$d i sp l ay (" Error in

S e l e c t i o n ") ;

s t a t e 1 <= ‘Product_se l ;

end

endcase

end

‘Threshold_check :

begin

case (prod)

6 ’ b100000 :

i f (av l1 == 0)

begin

I.1 Customize your shake module I-9

c h e c k f a i l = 6 ’ b100000 ;

$d i sp l ay (" Product i s

not a v a i l a b l e .

P lease t ry

d i f f e r e n t product . "

) ;

temp_bit = 3 ’ b000 ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l1 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b100000 ;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e

begin

s t a t e 1 <=

‘Purchase_exp ;

end

6 ’ b010000 :

I.1 Customize your shake module I-10

i f (av l2 == 0)

begin

c h e c k f a i l = 6 ’ b010000 ;

$d i sp l ay (" Product i s

not a v a i l a b l e .

P lease t ry

d i f f e r e n t product . "

) ;

temp_bit = 3 ’ b000 ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l2 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b010000 ;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e

begin

s t a t e 1 <=

‘Purchase_exp ;

end

I.1 Customize your shake module I-11

6 ’ b001000 :

i f (av l3 == 0)

begin

c h e c k f a i l = 6 ’ b001000 ;

$d i sp l ay (" Product i s

not a v a i l a b l e .

P lease t ry

d i f f e r e n t product . "

) ;

temp_bit = 3 ’ b000 ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l3 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b001000 ;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e

begin

I.1 Customize your shake module I-12

s t a t e 1 <=

‘Purchase_exp ;

end

6 ’ b000100 :

i f (av l4 == 0)

begin

c h e c k f a i l = 6 ’ b000100 ;

$d i sp l ay (" Product i s

not a v a i l a b l e .

P lease t ry

d i f f e r e n t product . "

) ;

temp_bit = 3 ’ b000 ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l4 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b000100 ;

s t a t e 1 <=

‘Replen ish_at20 ;

end

I.1 Customize your shake module I-13

e l s e

begin

s t a t e 1 <=

‘Purchase_exp ;

end

6 ’ b000010 :

i f (av l5 == 0)

begin

c h e c k f a i l = 6 ’ b000010 ;

$d i sp l ay (" Product i s

not a v a i l a b l e .

P lease t ry

d i f f e r e n t product . "

) ;

temp_bit = 3 ’ b000 ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l5 < Threshold_l imit

)

begin

c h e c k f a i l = 6 ’ b000010 ;

I.1 Customize your shake module I-14

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e

begin

s t a t e 1 <=

‘Purchase_exp ;

end

6 ’ b000001 :

i f (av l6 == 0)

begin

c h e c k f a i l = 6 ’ b000001 ;

$d i sp l ay (" Product i s

not a v a i l a b l e .

P lease t ry

d i f f e r e n t product . "

) ;

temp_bit = 3 ’ b000 ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l6 <

Threshold_l imit)

I.1 Customize your shake module I-15

begin

c h e c k f a i l = 6 ’ b000001 ;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e

begin

s t a t e 1 <=

‘Purchase_exp ;

end

d e f a u l t :

begin

s t a t e 1 <= ‘Product_se l ;

end

endcase

end

‘Replen ish_at0 :

begin

case (c h e c k f a i l)

6 ’ b100000 :

begin

ack = 6 ’ b100000 ;

ready1 = 1 ’ b0 ;

I.1 Customize your shake module I-16

$d i sp l ay ("

Acknowledgement sent ;

R e f i l the Product 1

ASAP") ;

s t a t e 1 <= ‘Product_se l ;

end

6 ’ b010000 :

begin

ack = 6 ’ b010000 ;

ready1 = 1 ’ b0 ;

$d i sp l ay ("

Acknowledgement sent ;

R e f i l the Product 2

ASAP") ;

s t a t e 1 <= ‘Product_se l ;

end

6 ’ b001000 :

begin

ack = 6 ’ b001000 ;

ready1 = 1 ’ b0 ;

$d i sp l ay ("

Acknowledgement sent ;

R e f i l the Product 3

I.1 Customize your shake module I-17

ASAP") ;

s t a t e 1 <= ‘Product_se l ;

end

6 ’ b000100 :

begin

ack = 6 ’ b000100 ;

ready1 = 1 ’ b0 ;

$d i sp l ay ("

Acknowledgement sent ;

R e f i l the Product 4

ASAP") ;

s t a t e 1 <= ‘Product_se l ;

end

6 ’ b000010 :

begin

ack = 6 ’ b000010 ;

ready1 = 1 ’ b0 ;

$d i sp l ay ("

Acknowledgement sent ;

R e f i l the Product 4

ASAP") ;

s t a t e 1 <= ‘Product_se l ;

end

I.1 Customize your shake module I-18

6 ’ b000001 :

begin

ack = 6 ’ b000001 ;

ready1 = 1 ’ b0 ;

$d i sp l ay ("

Acknowledgement sent ;

R e f i l the Product 6

ASAP") ;

s t a t e 1 <= ‘Product_se l ;

end

d e f a u l t :

begin

s t a t e 1 <= ‘Product_se l ;

end

endcase

end

‘Replen ish_at20 :

begin

case (c h e c k f a i l)

6 ’ b100000 :

begin

ack = 6 ’ b100000 ;

I.1 Customize your shake module I-19

$d i sp l ay ("

Acknowledgement

sent ; R e f i l the

Product 1 ASAP") ;

s t a t e 1 <=

‘Purchase_exp ;

end

6 ’ b010000 :

begin

ack = 6 ’ b010000 ;

$d i sp l ay ("

Acknowledgement

sent ; R e f i l the

Product 2 ASAP") ;

s t a t e 1 <=

‘Purchase_exp ;

end

6 ’ b001000 :

begin

ack = 6 ’ b001000 ;

$d i sp l ay ("

Acknowledgement

sent ; R e f i l the

I.1 Customize your shake module I-20

Product 3 ASAP") ;

s t a t e 1 <=

‘Purchase_exp ;

end

6 ’ b000100 :

begin

ack = 6 ’ b000100 ;

$d i sp l ay ("

Acknowledgement

sent ; R e f i l the

Product 4 ASAP") ;

s t a t e 1 <=

‘Purchase_exp ;

end

6 ’ b000010 :

begin

ack = 6 ’ b000010 ;

$d i sp l ay ("

Acknowledgement

sent ; R e f i l the

Product 4 ASAP") ;

s t a t e 1 <=

‘Purchase_exp ;

I.1 Customize your shake module I-21

end

6 ’ b000001 :

begin

ack = 6 ’ b000001 ;

$d i sp l ay ("

Acknowledgement

sent ; R e f i l the

Product 6 ASAP") ;

s t a t e 1 <=

‘Purchase_exp ;

end

d e f a u l t :

begin

s t a t e 1 <=

‘Product_se l ;

end

endcase

end

‘Purchase_exp :

begin

$d i sp l ay (" \n Deta i l ed n u t r i t i o n a l

i n f o xxxxxxxxx ") ;

I.1 Customize your shake module I-22

$d i sp l ay (" Total co s t o f product =

xxxxxx ") ;

$d i sp l ay (" \n Products s e l e c t e d : %d" ,

counter) ;

wait_prod1 = 1 ’ b0 ;

i f (add_more)

begin

$d i sp l ay (" Yes , want

to add more

product ") ;

Temp_mem [2 : 0] =

temp_bit ;

temp_bit = 3 ’ b000 ;

counter = counter +

1 ;

s t a t e 1 <=

‘Add_more_prod ;

end

e l s e i f (cost_check)

begin

Temp_mem [2 : 0] =

temp_bit ;

ready1 = 1 ’ b1 ;

s t a t e 1 <=

‘Purchase_exp ;

I.1 Customize your shake module I-23

end

e l s e i f (cance l1)

begin

$d i sp l ay (" Request

cance l ed ") ;

temp_bit = 3 ’ b000 ;

s t a t e 1 <=

‘Purchase_exp ;

end

e l s e

begin

s t a t e 1 <=

‘Purchase_exp ;

// ‘Product_se l ;

end

end

‘Add_more_prod :

begin

i f (counter > 3)

begin

$d i sp l ay (" Highest

l i m i t has reached ")

I.1 Customize your shake module I-24

;

ready1 = 1 ;

end

e l s e

begin

Temp_mem = {Temp_mem

[5 : 0] , 3 ’ b000 } ;

s t a t e 1 <= ‘Product_se l

;

end

end

d e f a u l t :

begin

s t a t e 1 <= ‘Product_se l ;

end

endcase

end

e l s e

begin

// $d i sp l ay (" Error from Customize your

own shake ") ;

end

end

I.1 Customize your shake module I-25

endmodule

I.2 Pre-designed shake module I-26

I.2 Pre-designed shake module

‘ t i m e s c a l e 1ns / 1ps

//

//

// Author : B a l a j i Salunkhe .

// Module Name : pre_design

// Pro j e c t Name : Muscle Dispenser

// Adviser : Mark Indovina

//

//

‘ d e f i n e Category_sel 3 ’ b001

‘ d e f i n e Threshold_check 3 ’ b010

‘ d e f i n e Replenish_at0 3 ’ b011

‘ d e f i n e Replenish_at20 3 ’ b100

‘ d e f i n e Purchase_exp 3 ’ b101

module pre_design (

s r s t ,

wrst ,

c lk ,

opt ion_sel2 ,

I.2 Pre-designed shake module I-27

wait_prod2 ,

s e l ,

avl1 ,

avl2 ,

avl3 ,

avl4 ,

avl5 ,

avl6 ,

ack ,

cost_check ,

ready2 ,

cance l2

) ;

input

s r s t , //System r e s e t

wrst , //Watchdog r e s e t

c l k ; //System c lock

input

opt ion_sel2 , // Option s e l e c t i o n s i g n a l

cance l2 ; // Exit from cur rent p roce s s

input [7 : 0] avl1 , avl2 , avl3 , avl4 , avl5 , av l6 ; // Product

a v a i l a b i l i t y check

I.2 Pre-designed shake module I-28

input [2 : 0] s e l ; // Product # s e l e c t i o n

input cost_check ; // t o t a l Cost o f product

reg [5 : 0] c h e c k f a i l ;

reg [6 : 0] prod ; //mr1 , mr2 , mg1 , mg2 , wl1 , wl2 , veg ;

output reg [5 : 0] ack ;

output reg ready2 ; //Ready s i g n a l f o r payment s tage

output reg wait_prod2 ;

reg [2 : 0] s t a t e 1 ; // Sta t e s

parameter Threshold_l imit = 7 ’ d20 ;

always @(posedge c l k)

begin

i f (s r s t == 1 | | wrst == 1)

begin

ready2 = 1 ’ b0 ;

I.2 Pre-designed shake module I-29

c h e c k f a i l = 6 ’ b000000 ;

ack = 6 ’ b000000 ;

s t a t e 1 = 3 ’ b000 ;

prod = 6 ’ b000000 ;

end

e l s e i f (opt ion_se l2 == 1)

begin

// $d i sp l ay (" \n S e l e c t from Pre−Designed

shakes ") ;

case (s t a t e 1)

‘Category_se l :

begin

case (s e l)

3 ’ b001 :

begin

$d i sp l ay (" Meal

replacement 1 s e l e c t e d

") ;

prod = 7 ’ b1000000 ; //mr1

= 1 ;

wait_prod2 = 1 ’ b1 ;

s t a t e 1 = ‘Threshold_check

;

end

I.2 Pre-designed shake module I-30

3 ’ b010 :

begin

$d i sp l ay (" Meal

replacement 2 s e l e c t e d

") ;

prod = 7 ’ b0100000 ; //mr2

= 1 ;

wait_prod2 = 1 ’ b1 ;

s t a t e 1 <=

‘Threshold_check ;

end

3 ’ b011 :

begin

$d i sp l ay (" Muscle ga ine r

1 s e l e c t e d ") ;

prod = 7 ’ b0010000 ; //mg1

= 1 ;

wait_prod2 = 1 ’ b1 ;

s t a t e 1 <=

‘Threshold_check ;

end

3 ’ b100 :

begin

I.2 Pre-designed shake module I-31

$d i sp l ay (" Muscle ga ine r

2 s e l e c t e d ") ;

prod = 7 ’ b0001000 ; //mg2

= 1 ;

wait_prod2 = 1 ’ b1 ;

s t a t e 1 <=

‘Threshold_check ;

end

3 ’ b101 :

begin

$d i sp l ay (" Weight l o s s 1

s e l e c t e d ") ;

prod = 7 ’ b0000100 ; //wl1

= 1 ;

wait_prod2 = 1 ’ b1 ;

s t a t e 1 <=

‘Threshold_check ;

// s t a t e <=

‘Purchase_exp ;

end

3 ’ b110 :

begin

I.2 Pre-designed shake module I-32

$d i sp l ay (" Weight l o s s 2

s e l e c t e d ") ;

prod = 7 ’ b0000010 ; //wl2

= 1 ;

wait_prod2 = 1 ’ b1 ;

s t a t e 1 <=

‘Threshold_check ;

end

3 ’ b111 :

begin

$d i sp l ay (" Vegan s e l e c t e d

") ;

prod = 7 ’ b0000001 ; // veg

= 1 ;

wait_prod2 = 1 ’ b1 ;

s t a t e 1 <=

‘Threshold_check ;

end

d e f a u l t :

begin

$d i sp l ay (" Error in

S e l e c t i o n ") ;

s t a t e 1 <= ‘Category_se l ;

I.2 Pre-designed shake module I-33

end

endcase

end

‘Threshold_check :

begin

case (prod)

7 ’ b1000000 :

i f (av l2 == 0)

begin

c h e c k f a i l = 6 ’ b010000

;

$d i sp l ay (" Ing r ed i en t

i s not ava i l ab l e ,

p l e a s e s e l e c t new

product ") ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l4 == 0)

begin

c h e c k f a i l = 6 ’ b000100

;

I.2 Pre-designed shake module I-34

$d i sp l ay (" Ing r ed i en t

i s not ava i l ab l e ,

p l e a s e s e l e c t new

product ") ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l2 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b010000

;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e i f (av l4 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b000100

;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e

begin

I.2 Pre-designed shake module I-35

s t a t e 1 <=

‘Purchase_exp ;

end

7 ’ b0100000 :

i f (av l3 == 0)

begin

c h e c k f a i l = 6 ’ b001000

;

$d i sp l ay (" Ing r ed i en t

i s not ava i l ab l e ,

p l e a s e s e l e c t new

product ") ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l5 == 0)

begin

c h e c k f a i l = 6 ’ b000010

;

$d i sp l ay (" Ing r ed i en t

i s not ava i l ab l e ,

p l e a s e s e l e c t new

product ") ;

I.2 Pre-designed shake module I-36

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l3 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b001000

;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e i f (av l5 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b000010

;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e

begin

s t a t e 1 <=

‘Purchase_exp ;

end

I.2 Pre-designed shake module I-37

7 ’ b0010000 :

i f (av l1 == 0)

begin

c h e c k f a i l = 6 ’ b100000

;

$d i sp l ay (" Ing r ed i en t

i s not ava i l ab l e ,

p l e a s e s e l e c t new

product ") ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l3 == 0)

begin

c h e c k f a i l = 6 ’ b001000

;

$d i sp l ay (" Ing r ed i en t

i s not ava i l ab l e ,

p l e a s e s e l e c t new

product ") ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

I.2 Pre-designed shake module I-38

e l s e i f (av l1 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b100000

;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e i f (av l3 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b001000

;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e

begin

s t a t e 1 <=

‘Purchase_exp ;

end

7 ’ b0001000 :

i f (av l2 == 0)

begin

I.2 Pre-designed shake module I-39

c h e c k f a i l = 6 ’ b010000

;

$d i sp l ay (" Ing r ed i en t

i s not ava i l ab l e ,

p l e a s e s e l e c t new

product ") ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l3 == 0)

begin

c h e c k f a i l = 6 ’ b001000

;

$d i sp l ay (" Ing r ed i en t

i s not ava i l ab l e ,

p l e a s e s e l e c t new

product ") ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l2 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b010000

;

I.2 Pre-designed shake module I-40

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e i f (av l3 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b001000

;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e

begin

s t a t e 1 <=

‘Purchase_exp ;

end

7 ’ b0000100 :

i f (av l3 == 0)

begin

c h e c k f a i l = 6 ’ b001000

;

$d i sp l ay (" Ing r ed i en t

i s not ava i l ab l e ,

p l e a s e s e l e c t new

I.2 Pre-designed shake module I-41

product ") ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l3 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b001000

;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e

begin

s t a t e 1 <=

‘Purchase_exp ;

end

7 ’ b0000010 :

i f (av l4 == 0)

begin

c h e c k f a i l = 6 ’ b000100

;

I.2 Pre-designed shake module I-42

$d i sp l ay (" Ing r ed i en t

i s not ava i l ab l e ,

p l e a s e s e l e c t new

product ") ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l4 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b000100

;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e

begin

s t a t e 1 <=

‘Purchase_exp ;

end

7 ’ b0000001 :

i f (av l6 == 0)

begin

I.2 Pre-designed shake module I-43

c h e c k f a i l = 6 ’ b000001

;

$d i sp l ay (" Ing r ed i en t

i s not ava i l ab l e ,

p l e a s e s e l e c t new

product ") ;

s t a t e 1 <=

‘Replen ish_at0 ;

end

e l s e i f (av l6 <

Threshold_l imit)

begin

c h e c k f a i l = 6 ’ b000001

;

s t a t e 1 <=

‘Replen ish_at20 ;

end

e l s e

begin

s t a t e 1 <=

‘Purchase_exp ;

end

d e f a u l t :

I.2 Pre-designed shake module I-44

s t a t e 1 <= ‘Category_se l ;

endcase

end

‘Replen ish_at0 :

begin

case (c h e c k f a i l)

6 ’ b100000 :

begin

ack = 6 ’ b100000 ;

$d i sp l ay (" Acknowledgement sent ;

R e f i l the Product 1 ASAP") ;

s t a t e 1 <= ‘Category_se l ;

end

6 ’ b010000 :

begin

ack = 6 ’ b010000 ;

$d i sp l ay (" Acknowledgement sent ;

R e f i l the Product 2 ASAP") ;

s t a t e 1 <= ‘Category_se l ;

end

6 ’ b001000 :

begin

I.2 Pre-designed shake module I-45

ack = 6 ’ b001000 ;

$d i sp l ay (" Acknowledgement sent ;

R e f i l the Product 3 ASAP") ;

s t a t e 1 <= ‘Category_se l ;

end

6 ’ b000100 :

begin

ack = 6 ’ b000100 ;

$d i sp l ay (" Acknowledgement sent ;

R e f i l the Product 4 ASAP") ;

s t a t e 1 <= ‘Category_se l ;

end

6 ’ b000010 :

begin

ack = 6 ’ b000010 ;

$d i sp l ay (" Acknowledgement sent ;

R e f i l the Product 5 ASAP") ;

s t a t e 1 <= ‘Category_se l ;

end

6 ’ b000001 :

begin

ack = 6 ’ b000001 ;

I.2 Pre-designed shake module I-46

$d i sp l ay (" Acknowledgement sent ;

R e f i l the Product 6 ASAP") ;

s t a t e 1 <= ‘Category_se l ;

end

d e f a u l t :

s t a t e 1 <= ‘Category_se l ;

endcase

// $d i sp l ay (" Ack pre_d = %b " , ack) ;

end

‘Replen ish_at20 :

begin

case (c h e c k f a i l)

6 ’ b100000 :

begin

ack = 6 ’ b100000 ;

$d i sp l ay (" Acknowledgement sent ;

R e f i l the Product 2 ASAP") ;

s t a t e 1 <= ‘Purchase_exp ;

end

6 ’ b010000 :

begin

ack = 6 ’ b010000 ;

I.2 Pre-designed shake module I-47

$d i sp l ay (" Acknowledgement sent ;

R e f i l the Product 2 ASAP") ;

s t a t e 1 <= ‘Purchase_exp ;

end

6 ’ b001000 :

begin

ack = 6 ’ b001000 ;

$d i sp l ay (" Acknowledgement sent ;

R e f i l the Product 3 ASAP") ;

s t a t e 1 <= ‘Purchase_exp ;

end

6 ’ b000100 :

begin

ack = 6 ’ b000100 ;

$d i sp l ay (" Acknowledgement sent ;

R e f i l the Product 4 ASAP") ;

s t a t e 1 <= ‘Purchase_exp ;

end

6 ’ b000010 :

begin

ack = 6 ’ b000010 ;

I.2 Pre-designed shake module I-48

$d i sp l ay (" Acknowledgement sent ;

R e f i l the Product 5 ASAP") ;

s t a t e 1 <= ‘Purchase_exp ;

end

6 ’ b000001 :

begin

ack = 6 ’ b000001 ;

$d i sp l ay (" Acknowledgement sent ;

R e f i l the Product 6 ASAP") ;

s t a t e 1 <= ‘Purchase_exp ;

end

d e f a u l t :

s t a t e 1 <= ‘Category_se l ;

endcase

end

‘Purchase_exp :

begin

$d i sp l ay (" \n Deta i l ed n u t r i t i o n a l i n f o

xxxxxxxxx ") ;

$d i sp l ay (" Total co s t o f product = xxxxxx

") ;

I.2 Pre-designed shake module I-49

wait_prod2 = 1 ’ b0 ;

i f (cost_check)

begin

ready2 = 1 ’ b1 ;

s t a t e 1 = ‘Purchase_exp ;

end

e l s e i f (cance l2)

begin

$d i sp l ay (" Request cance l ed ")

;

s t a t e 1 = ‘Purchase_exp ;

end

e l s e

begin

s t a t e 1 <= ‘Purchase_exp ;

end

end

d e f a u l t :

begin

s t a t e 1 <= ‘Category_se l ;

end

endcase

end

e l s e

I.2 Pre-designed shake module I-50

begin

// $d i sp l ay (" Error from Pre−des igned shake

") ;

end

end

endmodule

I.3 Payment and Reorder module I-51

I.3 Payment and Reorder module

‘ t i m e s c a l e 1ns / 1ps

//

//

// Author : B a l a j i Salunkhe .

// Module Name : pay_reorder

// Pro j e c t Name : Muscle Dispenser

// Adviser : Mark Indovina

//

//

‘ d e f i n e Card_pay 3 ’ b010

‘ d e f i n e Mob_pay 3 ’ b011

‘ d e f i n e De l i v e r 3 ’ b100

‘ d e f i n e Reorder 3 ’ b101

‘ d e f i n e Pay_option 3 ’ b001

// ‘ d e f i n e

module pay_reorder (

s r s t ,

wrst ,

c lk ,

I.3 Payment and Reorder module I-52

ready1 ,

ready2 ,

cardpay ,

mobpay ,

payment_check ,

same ,

same_prod ,

d i f f e r e n t ,

d i f f e rent_prod ,

not_required ,

ex i t ,

product_del

) ;

input c l k ;

input s r s t ,

wrst ;

input

ready1 ,

ready2 ,

cardpay ,

mobpay ,

product_del ;

I.3 Payment and Reorder module I-53

input payment_check ;

input

same ,

d i f f e r e n t ,

not_required ;

output reg

same_prod ,

d i f f e rent_prod ,

e x i t ;

reg

[2 : 0] s t a t e ;

// reg

// done ;

// product_del ;

always @(posedge c l k)

begin

i f (s r s t == 1 | | wrst == 1)

begin

same_prod = 1 ’ b0 ;

I.3 Payment and Reorder module I-54

d i f f e r en t_prod = 1 ’ b0 ;

e x i t = 1 ’ b0 ;

s t a t e = 3 ’ b000 ;

end

e l s e i f (ready1 == 1 ’ b1 | | ready2 == 1 ’ b1)

begin

case (s t a t e)

‘Pay_option :

begin

i f (cardpay == 1)

begin

s t a t e <= ‘Card_pay ;

end

e l s e i f (mobpay == 1)

begin

s t a t e <= ‘Mob_pay ;

end

e l s e

begin

end

end

‘Card_pay :

I.3 Payment and Reorder module I-55

begin

$d i sp l ay (" \ t \n Card payment s e l e c t e d ") ;

i f (payment_check)

begin

$d i sp l ay ("Thank you f o r payment "

) ;

//done = 1 ;

s t a t e <= ‘ D e l i v e r ;

end

e l s e

begin

s t a t e <= ‘Card_pay ;

end

end

‘Mob_pay :

begin

$d i sp l ay (" \ t \n Mobile payment s e l e c t e d ")

;

i f (payment_check)

begin

$d i sp l ay ("Thank you f o r payment "

) ;

//done = 1 ;

s t a t e <= ‘ D e l i v e r ;

I.3 Payment and Reorder module I-56

end

e l s e

begin

s t a t e <= ‘Mob_pay ;

end

end

‘ D e l i v e r :

begin

$d i sp l ay (" \n Product i s ready to d e l i v e r

\n ") ;

// product_del = 1 ;

s t a t e <= ‘Reorder ;

end

‘Reorder :

begin

$d i sp l ay (" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Fresh

shake i s on the way , p l e a s e wait ")

;

i f (product_del == 1)

begin

i f (same == 1)

begin

I.3 Payment and Reorder module I-57

$d i sp l ay ("Want to order

one more same shake ,

cause I l i k e d i t ") ;

same_prod = 1 ;

d i f f e r en t_prod = 0 ;

e x i t = 0 ;

end

e l s e i f (d i f f e r e n t == 1)

begin

$d i sp l ay ("Want to t ry

something new") ;

d i f f e r en t_prod = 1 ;

same_prod = 0 ;

e x i t = 0 ;

end

e l s e i f (not_required == 1)

begin

$d i sp l ay (" I am f u l l ,

Thank you f o r s e r v i c e "

) ;

e x i t = 1 ;

same_prod = 0 ;

d i f f e r en t_prod = 0 ;

end

e l s e

I.3 Payment and Reorder module I-58

begin

end

end

e l s e

begin

s t a t e <= ‘Reorder ;

end

end

d e f a u l t :

begin

s t a t e <=

‘Pay_option

;

end

endcase

end

e l s e

begin

end

end

I.3 Payment and Reorder module I-59

endmodule

I.4 Watchdog module I-60

I.4 Watchdog module

‘ t i m e s c a l e 1ns / 1ps

//

//

// Author : B a l a j i Salunkhe .

// Module Name : watch_dog

// Pro j e c t Name : Muscle Dispenser

// Adviser : Mark Indovina

//

//

‘ d e f i n e Counter_20 2 ’ b01

‘ d e f i n e Counter_30 2 ’ b10

‘ d e f i n e Counter_40 2 ’ b11

module watch_dog (

c lk ,

s r s t ,

// s e l ,

// cost_check ,

I.4 Watchdog module I-61

add_more ,

same_prod ,

d i f f e rent_prod ,

ex i t ,

opt ion_sel1 ,

opt ion_sel2 ,

wait_prod1 ,

wait_prod2 ,

cance l1 ,

cance l2 ,

wrst

) ;

input c l k ;

input s r s t ;

// input ready ;

input same_prod , d i f f e r en t_prod ;

input e x i t ;

input opt ion_sel1 , opt ion_se l2 ;

// input [2 : 0] s e l ;

input add_more ;

// input cost_check ;

input wait_prod1 , wait_prod2 ;

input cance l1 , cance l2 ;

I.4 Watchdog module I-62

output reg wrst ;

reg [5 : 0] count ;

reg [1 : 0] s t a t e ;

// wire c_se l ;

// a s s i gn c_se l = s e l [2] | | s e l [1] | | s e l [0] ;

always @(posedge c l k)

begin

i f (s r s t)

begin

count = 5 ’ b00000 ;

s t a t e = 2 ’ b00 ;

end

e l s e i f (opt ion_se l1 == 1 ’ b1 | | opt ion_se l2 == 1 ’ b1)

begin

case (s t a t e)

‘Counter_20 :

begin

i f (wait_prod1 == 1 ’ b1 | |

wait_prod2 == 1 ’ b1 | | cance l1

== 1 ’ b1 | | cance l2 == 1 ’ b1 | |

I.4 Watchdog module I-63

add_more == 1 ’ b1)

begin

i f (count == 20)

begin

$d i sp l ay ("

Are you

s t i l l

the r e ? ") ;

count = 5 ’

b00000 ;

s t a t e <=

‘Counter_20

;

end

e l s e

begin

count = count

+ 1 ’ b1 ;

$d i sp l ay ("

#####

SELECTION

PROCESS

TIMER = %d

" , count) ;

I.4 Watchdog module I-64

s t a t e <=

‘Counter_20

;

end

end

e l s e

begin

count = 5 ’ b00000 ;

s t a t e <= ‘Counter_30 ;

end

end

‘Counter_30 :

begin

i f (count == 30)

begin

i f (same_prod == 1 ’ b0 &&

di f f e r en t_prod == 1 ’ b0

&& e x i t == 1 ’ b0)

begin

wrst = 1 ’ b1 ;

$d i sp l ay (" System

i s r e s e t t i n g "

) ;

count = 5 ’ b00000 ;

I.4 Watchdog module I-65

s t a t e <= 2 ’ b00 ;

end

e l s e

begin

s t a t e <=

‘Counter_40 ;

end

end

e l s e i f (wait_prod1 == 1 ’ b1 | |

wait_prod2 == 1 ’ b1 | | cance l1

== 1 ’ b1 | | cance l2 == 1 ’ b1 | |

add_more == 1 ’ b1)

begin

count = 5 ’ b00000 ;

s t a t e <= ‘Counter_20 ;

end

e l s e

begin

count = count + 1 ’ b1 ;

$d i sp l ay ("#### SYSTEM

WATCH DOG TIMER = %d" ,

count) ;

s t a t e <= ‘Counter_30 ;

end

I.4 Watchdog module I-66

end

‘Counter_40 :

begin

i f (count == 40)

begin

wrst = 1 ’ b1 ;

$d i sp l ay (" System i s

r e s e t t i n g ") ;

count = 5 ’ b00000 ;

s t a t e = 2 ’ b00 ;

end

e l s e

begin

count = count + 1 ’ b1 ;

$d i sp l ay ("#### FORCING

FOR RESET TIMER = %d" ,

count) ;

s t a t e <= ‘Counter_40 ;

end

end

d e f a u l t :

begin

s t a t e <= ‘Counter_20 ;

I.4 Watchdog module I-67

end

endcase

end

e l s e

begin

$d i sp l ay (" \ t \ t MUSCLE DISPENSER") ;

end

end

endmodule

I.5 Muscle Dispenser module I-68

I.5 Muscle Dispenser module

‘ t i m e s c a l e 1ns / 1ps

//

//

// Author : B a l a j i Salunkhe .

// Module Name : Muscle_dispenser

// Pro j e c t Name : Muscle Dispenser

// Adviser : Mark Indovina

//

//

module Muscle_dispenser (

c lk ,

s r s t ,

// wrst ,

opt ion_sel1 ,

opt ion_sel2 ,

avl1 ,

avl2 ,

avl3 ,

avl4 ,

I.5 Muscle Dispenser module I-69

avl5 ,

avl6 ,

s e l ,

cost_check ,

add_more ,

payment_check ,

cardpay ,

mobpay ,

product_del ,

same ,

d i f f e r e n t ,

not_required ,

cance l1 ,

cance l2 ,

ack1 ,

ack2

) ;

// Inputs

input c lk , //System c lock

s r s t ; //System r e s e t

wire wrst ; //watchdog r e s e t

input opt ion_sel1 ,

opt ion_se l2 ;

I.5 Muscle Dispenser module I-70

input [7 : 0] avl1 , avl2 , avl3 , avl4 , avl5 , av l6 ;

input [2 : 0] s e l ;

input cost_check ;

input add_more ;

input cardpay , mobpay ;

input payment_check ;

input product_del ;

input cance l1 , cance l2 ;

input same ,

d i f f e r e n t ,

not_required ;

//Outputs

output [5 : 0] ack1 , ack2 ;

wire same_prod ,

d i f f e rent_prod ,

e x i t ;

// wi r e s

wire ready1 , ready2 ;

I.5 Muscle Dispenser module I-71

wire wait_prod1 , wait_prod2 ;

cust_shake cust_shake_i (

. s r s t (s r s t) ,

. wrst (wrst) ,

. c l k (c l k) ,

. opt ion_se l1 (opt ion_se l1) ,

. wait_prod1 (wait_prod1) ,

. s e l (s e l) ,

. av l1 (av l1) ,

. av l2 (av l2) ,

. av l3 (av l3) ,

. av l4 (av l4) ,

. av l5 (av l5) ,

. av l6 (av l6) ,

. ack (ack1) ,

. cost_check (cost_check) ,

. ready1 (ready1) ,

. cance l1 (cance l1) ,

. add_more (add_more)

) ;

pre_design pre_design_i (

. s r s t (s r s t) ,

. wrst (wrst) ,

I.5 Muscle Dispenser module I-72

. c l k (c l k) ,

. opt ion_se l2 (opt ion_se l2) ,

. wait_prod2 (wait_prod2) ,

. s e l (s e l) ,

. av l1 (av l1) ,

. av l2 (av l2) ,

. av l3 (av l3) ,

. av l4 (av l4) ,

. av l5 (av l5) ,

. av l6 (av l6) ,

. ack (ack2) ,

. cost_check (cost_check) ,

. ready2 (ready2) ,

. cance l2 (cance l2)

) ;

pay_reorder pay_reorder_i (

. s r s t (s r s t) ,

. wrst (wrst) ,

. c l k (c l k) ,

. ready1 (ready1) ,

. ready2 (ready2) ,

. cardpay (cardpay) ,

. mobpay(mobpay) ,

. payment_check (payment_check) ,

I.5 Muscle Dispenser module I-73

. same (same) ,

. same_prod (same_prod) ,

. d i f f e r e n t (d i f f e r e n t) ,

. d i f f e r en t_prod (d i f f e r en t_prod) ,

. not_required (not_required) ,

. e x i t (e x i t) ,

. product_del (product_del)

) ;

watch_dog watch_dog_i (

. c l k (c l k) ,

. s r s t (s r s t) ,

. same_prod (same_prod) ,

. d i f f e r en t_prod (d i f f e r en t_prod) ,

. e x i t (e x i t) ,

. opt ion_se l1 (opt ion_se l1) ,

. opt ion_se l2 (opt ion_se l2) ,

. wait_prod1 (wait_prod1) ,

. wait_prod2 (wait_prod2) ,

. add_more (add_more) ,

. cance l1 (cance l1) ,

. cance l2 (cance l2) ,

// . cost_check (cost_check) ,

. wrst (wrst)

) ;

I.5 Muscle Dispenser module I-74

endmodule

Appendix II

Waveform

Figure II.1: Simulation Waveforms using the Xilinx Vivado Design Suite

	Automatic Protein Shake Freestyle Vending Machine
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Bibliographical Research
	3 Idea Building
	3.1 Machine Flow chart
	3.1.1 Option 1 - Customize your own shake
	3.1.2 Option 2 - Pre-designed shake
	3.1.3 Payment

	3.2 Finite State Machine (FSM)
	3.2.1 Mealy Machine
	3.2.2 Moore Machine

	3.3 FSM representation

	4 Design Description
	4.1 Customize your own shake
	4.2 Pre designed shake
	4.3 Payment and Reorder
	4.4 Watchdog

	5 Results
	5.1 FPGA Implementation
	5.2 ASIC Benchmarking

	6 Conclusion
	6.1 Future Goals

	References
	I Source Code
	I.1 Customize your shake module
	I.2 Pre-designed shake module
	I.3 Payment and Reorder module
	I.4 Watchdog module
	I.5 Muscle Dispenser module

	II Waveform

