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Abstract

The performance of IGZO TFTs has improved significantly in recent years, however

device stability still remains a significant issue. Thermal stability of IGZO TFTs be-

comes very crucial to ensure desired performance of end-product. Both bottom-gate

(BG) and double-gate (DG) TFTs were observed to degrade with hotplate treatments

under 200◦C. Such events are rarely reported in the literature, and thus became the

primary focus of this work. The mechanism causing the instability is not completely

understood, however experimental results indicate the instability occurs either di-

rectly or indirectly due to the influence of H2O within the passivation oxide above

the IGZO channel region. DG TFTs saw more pronounced degradation, which led

to the hypothesis that there may be a reaction of the top gate metal with H2O

molecules in the passivation oxide, liberating monatomic hydrogen. Both H2O and

hydrogen behave as donor states in IGZO, thus rendering the channel more conduc-

tive. The thermal stability also demonstrated a dependence on channel length, with

shorter channel devices showing greater stability. This may be due to the metalized

source/drain regions acting as effective getter to water during a 400◦C passivation

anneal which is performed prior to top-gate metal deposition. This hypothesis led to

an investigation on atomic layer deposition (ALD) of capping layers over the passiva-

tion oxide of IGZO TFTs to act as an effective barrier to water/hydrogen migrating

to the underlying IGZO channel.
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Chapter 1

Introduction to Display and TFT Technology

Flat-panel Displays (FPDs) have evolved over the years to become the most widely

used technology for displays in commercial electronic devices. Recently, active-matrix

FPDs have dominated the display industry. The active-matrix FPDs use a backplane

consisting of Thin-Film Transistors (TFTs) that enable pixel switching to create an

image on the front surface of display. This section provides an overview of the display

and TFT technologies currently used in the FPD industry.

1.1 Liquid Crystal Displays

Liquid crystal display (LCDs) have widespread applications in several hardware prod-

ucts such as computers, phones and TVs. Most LCDs use a backlight to illuminate the

LCD panel. The backlight for the display used to be generated using Cold-Cathode

Fluorescent Lamps (CCFLs), but is predominantly generated more recently using

Light-Emitting Diodes (LEDs). The glass panel installed over the diffuser consists of

various layers. Two polarization filters are present which are oriented at 90◦ to each

other. The first polarization filter polarizes the unpolarized incident light from the

source. It creates polarized light with only one polarization plane. The second filter

blocks out the light as it is rotated by 90◦ with respect to the upper filter.

A liquid crystal is used in between the two polarizers to rotate the initially po-

larized light from the first polarizer by 90◦ in order to pass through the second po-

larization filter. LCDs, such as the one depicted in Fig. 1.1, predominantly use a

1



CHAPTER 1. INTRODUCTION TO DISPLAY AND TFT TECHNOLOGY

twisted-nematic liquid crystal structure which twists the molecules 90◦ upon apply-

ing a voltage across the crystal. This enables rotation of the polarization plane,

thereby causing the polarized light to pass through the second polarizer to the front

surface of the display.

Figure 1.1: Structure of LCD panel with TFT [1].

1.2 Pixel Addressing

There are predominantly two types of display structures for pixel addressing: Passive-

matrix and Active-matrix. In the former, a grid is created by using one glass substrate

to address the rows and the other substrate to address the columns. The rows and

columns are connected to integrated circuits that control the charge to each pixel. To

turn on a pixel, the integrated circuit sends voltage to the corresponding column and

the corresponding row is grounded to complete the circuit. This type of mechanism

involving direct addressing of the pixel is plagued by two main issues: slow response

time and poor voltage control. As a result of poor voltage control, adjacent pixels

2
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would also be partially turned on when addressing a particular pixel.

The active-matrix display provides an improved mechanism by using a transistor

to address each pixel. Active-matrix displays consist of a switching TFT and a storage

capacitor. In order to address a pixel, the voltage is sent to the appropriate transistor

controlling the pixel. The capacitor is then able to retain the charge until the next

refresh cycle. An example of a simple active-matrix circuit can be seen in Fig. 1.2

which consists of a switching TFT, storage capacitor, and liquid crystal.

Figure 1.2: Illustration of pixel addressing showing equivalent circuit of active-matrix
display. A liquid crystal and storage capacitor are connected in parallel being driven by a
TFT that is connected to the scan and data circuits.

1.3 Current TFT Technology and Limitations

With a constant drive towards newer display technology, there is an increasing need to

meet the performance and manufacturing requirements of TFTs. One of the common

problems faced by the FPD industry is large area uniformity. The FPD industry

has been advancing to larger panels due to the increasing demand for larger displays.

Fig. 1.3 depicts the trend towards larger display panels in the FPD industry. Since

display panels are advancing towards generation 10 (Gen 10), the substrate used is

required to be roughly 3 m x 3 m in dimensions. Electrical uniformity is essential

3
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when fabricating TFTs under such circumstances.

Figure 1.3: Substrate generations of flat-panel display (adapted from [2]).

Another challenge is to ensure the fabrication process used for TFTs manufactur-

ing is low temperature compatible. This is primarily because the TFTs are typically

fabricated on glass substrates which have a thermal tolerance of around 600 ◦C. Addi-

tionally, as pixel density increases to offer better resolutions, the aspect ratio between

the pixel and the driving TFT becomes lower. In such cases, it helps if the TFT used

is also transparent to visible light.

Hydrogenated amorphous silicon (a-Si:H) has been widely used for TFTs and has

been the backbone of the display industry for the last decade. Unhydrogenated a-Si

has poor conductivity as it contains dangling bonds. Hydrogenation of the a-Si helps

saturate the dangling bonds and thereby have a lower defect density and increased

conductivity as doping is made possible. Amorphous silicon has become an attractive

solution to the TFT material as it ensures excellent large area uniformity due to

its amorphous structure. Additionally, it is low-temperature compatible and can

be deposited at temperatures under 350 ◦C using plasma-enhanced chemical-vapor

deposition (PECVD). It is also a low cost and a very well understood material to

4
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manufacture and characterize.

Figure 1.4: Mobility requirements for next-generation displays [3].

With next generation displays, the display industry faced several issues with an

increased demand for higher pixel density and faster refresh rates in display devices.

This could be resolved by using a TFT channel material with faster electrical mobility,

as shown in Fig. 1.4. Due to the limited mobility of a-Si:H, the FPD industry has

been looking for alternates to manufacture high-performance TFTs. [15, 17].

1.4 Organic Light Emitting Diodes

While LCD technology is widely used as the display of choice, the industry has been

advancing towards Organic Light-Emitting Diode (OLED) based display technology.

In OLED displays, there is no requirement of backlighting as there is precise control

of current injected into each OLED. Fig. 1.5 describes the structure of an OLED

display. The electron-hole recombination in the organic material results in emission

of photons. A backplane consisting of TFTs circuits provide current to the OLEDs,

thereby controlling their brightness. The simpler structure makes this alternative

5
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thinner and lighter than LCDs.

Figure 1.5: Structure of OLED display [4].

There are several advantages to the OLED technology as compared to the LCD

technology. OLEDs are generally brighter than LCDs as the latter requires glass for

support, causing additional absorption of light by glass. They consume less power

than LCDs as the latter uses selective blocking of backlight which is not as power

efficient. They provide a higher contrast and a better image quality in comparison

to LCDs because there is no light emitted when the pixel is off. OLEDs also have a

larger field-of-view as they generate their own light as compared to blocking light in

case of LCDs.

Although there are several advantages in adopting OLED technology, the manu-

facturing process for OLED display is expensive. The OLED technology is even more

sensitive to electrical uniformity than LCDs as it requires precise drain current con-

trol throughout the entire substrate, which has a high sensitivity towards the screen

brightness.

1.5 TFT Materials for Next-generation displays

The limitations in a-Si:H has led the display industry to look for alternative channel

materials to make high performance TFTs in support of the next-generation display

requirements. Currently, there are two materials being widely researched to replace

6
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a-Si:H and improve TFT performance, as seen in Table 1.1. The first alternate is

a silicon-based Low-temperature polycrystalline silicon (LTPS) which involves de-

positing a-Si:H on glass and then crystallizing it using excimer laser annealing (ELA)

technique to form polycrystalline silicon. This material yields a very high channel mo-

bility and can be used to make CMOS TFTs. However, this is an expensive technique

due to high cost laser annealing and process complexity. Additionally, the random,

polycrystalline structure of LTPS leads to problems with large-scale uniformity issues.

Amorphous-oxide semiconductors (AOSs) are the other choice of TFT channel

material for next-generation displays. They have been preferred over polycrystalline

materials from the viewpoint of uniformity in device characteristics. More recently,

Indium Gallium Zinc Oxide (IGZO) has been a popular choice amongst the group of

AOSs. IGZO is compatible with the current hydrogenated amorphous silicon (a-Si:H)

manufacturing lines, thereby making it attractive for its low cost. It offers very good

large scale uniformity as it is amorphous in structure, making it an appealing option

for manufacturing on larger glass substrates such as the Gen 10 panels.

Table 1.1: Comparison of properties between different TFT channel materials [15, 16].

Semiconductor
Electron Mobility

(cm2/Vs)
Off-state
Leakage

Large Scale
Uniformity

Transistor
Type

a-Si:H < 1 Moderate Good NMOS

LTPS 30 − 100 High Poor CMOS

IGZO 10 − 20 Low Good NMOS

Fig. 1.6 shows the typical I-V characteristics of a L/W = 24/100 µm IGZO TFT.

It can be observed that the IGZO TFT shows very steep subthreshold slope along with

an excellent on-off ratio. It also has a high electron mobility that supports better TFT

performance and a very low off-state noise level. Additionally, it is low-temperature

compatible as it can be deposited at temperatures under 200 ◦C. These attractive

properties make IGZO a front-runner to replace the current a-Si:H technology.

7
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Figure 1.6: (a) Comparison of I-V characteristics between different channel materials [18]
(b) I-V characteristics of a L/W = 24/100 µm IGZO TFT [13].

1.6 Challenges and Motivation

Although IGZO has yielded desirable TFT characteristics (as explained in Section

1.5), there are some challenges that still need to be addressed before it is adopted for

high-volume manufacturing.

IGZO is not a chemically robust material and therefore requires lift-off processing

for the layers that follow. It also degrades in performance when subjected to plasma

processes as the material is ambient sensitive. Therefore, wet chemistry is used to

etch in order to prevent plasma-induced damages.

Presently, the primary challenge is in regard to the instability of IGZO TFTs when

subjected to electrical and thermal stress. It has been observed that the electrical

properties of IGZO change when subjected to a thermal treatment. This is an area

of concern when it comes to manufacturing IGZO TFTs as the transistors might get

subjected to elevated temperatures during back-end processes.

This thesis primarily focusses on understanding the mechanism behind instabilities

displayed by IGZO TFTs when subjected to thermal stress. Chapter 1 provides a

8
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quick background to TFT technology and outlines few important challenges faced by

the display industry and research groups. Chapter 2 would discuss the motivation for

IGZO as a suitable TFT material and explore its material and electrical properties in

detail. This would also cover requirements of passivation materials in order to improve

electrical stability of IGZO. Chapter 3 will provide an overview of the fabrication

and operation of TFT structures used for investigation. This chapter will also briefly

discuss challenges of electrical bias-stress stability commonly observed in IGZO TFTs.

Chapter 4 discusses the thermal instability results and presents a hypothesis to ex-

plain the observations. A mechanism that relates thermal instability shown by IGZO

TFTs to silicon MOSCAP sinter would help understand and bolster the proposed

hypothesis. Chapter 5 provides process modifications to address thermal instability

issues. It would also briefly discuss an investigation of channel length dependence

of IGZO TFTs on thermal stress. Finally, chapter 6 would provide a summary of

learnings and conclusions based on the observed results, and discuss relevant areas

that would require further research to characterize the behavior.

9



Chapter 2

Introduction to Indium-Gallium-Zinc-Oxide

This chapter will provide a brief introduction to amorphous oxide semiconductors,

more specifically IGZO. The conduction mechanism and characteristics of IGZO will

be discussed. The influence of ambient interactions on the electrical properties of

IGZO will be investigated.

2.1 History of amorphous oxide semiconductors

The first AOS-based TFTs gained recognition after the development of CdS TFTs

in 1962 [15]. Zinc oxide (ZnO) was the first AOS material that was explored with

the first ZnO based TFT fabricated in 1968 [19]. However, the ZnO research was put

on hold shortly after. It was in 2003 that the interest in ZnO TFTs was revitalized,

becoming the primary material of interest for several research groups. ZnO was

considered to be a promising candidate to replace a-Si:H due to its electron mobility

being greater than a-Si:H by an order of magnitude. It was considered primarily as it

can be deposited at temperatures below 300 ◦C. It also has an amorphous structure

giving uniform electrical properties across large substrates. Fig. 2.1 shows the I-V

characteristics and electron mobility of a PE-ALD deposited ZnO TFT.

However, ZnO material showed instability and non-uniformity at higher temper-

atures as it easily crystallized into a polycrystalline material leading to formation

of grain boundaries. In such situations, obtaining large area uniformity becomes a

10
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challenge as device characteristics vary across the grain boundaries. Several other

alternate binary AOS materials have been considered since the development of ZnO

TFTs. However, some of these alternatives form oxides that have poor conductivity

and others contain cations that are highly toxic (e.g., Pb, Cd, Hg). Ternary and

quartenary AOSs materials were widely researched to address the uniformity issues

faced by ZnO due to crystallization. Using AOSs with multiple cations would effec-

tively inhibit film crystallization and maintain the amorphous structure of the film

at higher temperatures.

Figure 2.1: I-V measurements and differential mobility extraction of a PE-ALD deposited
ZnO TFT [6].

2.2 Conduction mechanism in AOSs

Hosono et al. provides a thorough discussion of the conduction mechanism in amor-

phous oxide semiconductors [7]. AOS materials were developed to make transparent

and conductive active layers in TFTs. In the case of covalent semiconductors, which

includes silicon, the conduction path is formed by overlapping sp3 orbitals and is very

11
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sensitive to variations in bond angles. Therefore, the amorphous structure of covalent

semiconductors leads to mobility issues. For crystalline materials, these orbitals are

aligned and thereby result in a better channel mobility.

Ionic semiconductors such as AOSs, on the other hand, have their conduction path

formed by overlapping metal s-orbitals which do not possess spatial directivity due to

their isotropic structure. The amount of overlap between the orbitals is also high as

they have larger ionic radii. Therefore, band conduction is made possible, preventing

degradation of electron mobility. Fig. 2.2 illustrates the conduction mechanism oper-

ative in covalent and ionic semiconductors. It can be noted that the amorphous form

of covalent semiconductors is inferior as a TFT active layer due to the directional

nature of sp3 orbitals. On the contrary, the amorphous form of ionic semiconductors

remains unchanged and therefore becomes an excellent candidate as an active layer

material. Fig. 2.3 illustrates the difference in bonding arrangements between covalent

and ionic semiconductors.

Figure 2.2: Orbital structures of (a) ionic and (b) covalent semiconductors showing con-
duction mechanism in crystalline and amorphous structures [20].
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Figure 2.3: Illustration of (a) sp3 and (b) s-orbitals bonding in an amorphous structure
showing the directional nature of sp3 orbital as opposed to the s orbital [7].

2.3 Characteristics of IGZO

IGZO is a promising material that has gained interest in the FPD industry. It is a

ternary metal oxide material that is comprised of three known metal oxides: In2O3,

Ga2O3 and ZnO. As mentioned earlier, this composition impedes the crystallization of

the compound material at higher temperatures. Therefore, the amorphous structure

that is required for large area uniformity is achieved in IGZO. IGZO is also a wide

band-gap semiconductor with its energy band-gap estimated to be around 3.2 eV.

Due to the wide band-gap, the IGZO material remains transparent in the visible

range and is therefore a suitable candidate as a TFT active layer material.

IGZO, like other AOS materials, is an inherently n-type semiconductor material.

It does not utilize dopants to alter the electronic properties to create transistors as

silicon technology. In IGZO, oxygen vacancies are commonly present throughout the

material. These oxygen vacancies act as intrinsic donors and their effective concen-

tration controls the conductivity of the material. Oxygen vacancies are created due

to imperfections in amorphous structure of the material. Since the material conduc-

tivity primarily depends on the concentration of oxygen vacancies, the material is

understood to be devoid of p-type carriers.

Kamiya et al. proposed the following correlation between the cations and the

electronic properties of IGZO. Each metal cation in the IGZO compound material –In,

13
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Figure 2.4: (a) Structure of IGZO material for varying compositions of IGZO (b) Electron
mobilities and concentrations for varying compositions of IGZO material. The number in
parenthesis denotes the carrier concentration (x 1018 cm-3) [8].

Ga and Zn– has its unique significance in establishing the material properties of IGZO.

Fig. 2.4 shows a study conducted by Kamiya et al. to understand the contributions

of the cations. In+3 provides the electron conduction path due to its large spherical

5s-orbitals leading to greater overlap between adjacent orbitals. This is because In+3

is the only cation that meets the criterion for electronic configuration of heavy post-

transition metal cation that helps conduction in AOS materials to be similar to their

crystalline form. This was also verified by varying the fraction of indium in the

composition of IGZO, where the samples containing maximum fraction of indium

had the highest carrier concentration [8]. However, In2O3 is very conductive by itself

and would not yield good transistor characteristics. Zn+2 ions provide stability to the

structure and also promote a greater mobility. This is attributed to the small inter-

atomic distance which provides a smaller electron effective mass [21]. The effect of

Ga+3 was investigated by comparing the carrier concentration between Indium-Zinc-

Oxide and IGZO. It was observed that the enhanced concentration of oxygen vacancies

due to In+3 gets suppressed by the addition of Ga+3 ions. This was understood to be

due to the ability of Ga to form stronger bonds with oxygen as compared to Zn and In

ions as it has a higher ionic potential [7, 22]. The ratio of the three metal cations must
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be maintained in such a way that the resulting structure always remains amorphous in

order to ensure large-area uniformity. Fig. 2.4a shows the study conducted by Kamiya

et al. to investigate a suitable ratio of elements to ensure an amorphous IGZO film

is formed. It was noted that an elemental ratio of 1:1:1 would result in an effective

amorphous structure of IGZO that would ensure uniformity in characteristics over

larger substrates, while maintaining a good mobility and electron concentration.

2.4 Ambient Interactions

IGZO is very sensitive to ambient interactions. The electrical properties of the mate-

rial can be easily engineered by subjecting IGZO to different ambients. This section

briefly compares the changes in electrical characteristics of IGZO when subjected to

different ambients.

2.4.1 Annealing Conditions

Deposition and annealing conditions define the electronic properties of IGZO. As-

deposited IGZO TFTs, without anneal, showed extremely poor electrical character-

istics. Therefore, annealing is crucial to control defect states in the IGZO material.

Performance of IGZO TFTs with respect to different annealing conditions and ambi-

ent interactions was investigated in this study.

Samples annealed at 400◦C under vacuum resulted in highly conductive I-V char-

acteristics. It is theorized that this occurs due to the increase in free electron con-

centration from the increased oxygen vacancies in IGZO under vacuum. Another

sample was annealed at 400◦C in N2 ambient. The resulting TFTs showed no gate

modulation and exhibited resistor-like characteristics (see Fig. 2.5a). This confirmed

the need for an oxidizing ambient in order to reduce oxygen vacancies and establish

an appropriate free-electron concentration in IGZO. Upon subjecting the IGZO de-

vice to a 400◦C aggressive oxidation treatment in air ambient, the I-V characteristics
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Figure 2.5: (a) I-V transfer characteristics of a L/W = 24/100 µm TFT after vacuum
and N2 anneal at 400◦C (b) I-V transfer characteristics of a L/W = 24/100 µm TFT after
air anneal at 400◦C [9]

significantly shifted left, showing depletion-mode operation with loss of gate control

(see Fig. 2.5b). However, annealing the sample in air ambient at 350 ◦C resulted

in enhancement-mode devices with good gate modulation. Annealing in forming gas

(H2/N2) showed improved characteristics in comparison to the air anneal, with a

steep subthreshold slope and high on-state current. In contrast, annealing in O2

demonstrated a slight degradation in performance when compared to the forming gas

ambient (see Fig. 2.6).

Annealing in forming gas with an air ramp-down was then investigated. This

anneal yielded good device characteristics. However, the devices stored in air ambient

shifted slightly to the left over time. Fig. 2.7a shows the transfer characteristics after

an anneal in H2/N2 with an air ramp-down. The presence of the H2 did not appear

to offer any significant benefit and therefore anneal in N2 ambient with an air ramp-

down was investigated significance of H2. This anneal condition resulted in superior

device performance and improved the device stability over time, indicating that the

reason for instability with H2/N2 anneals might be attributed to the presence of H2.

It was observed that annealing in N2 ambient at 400◦C followed by an air ramp-down
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Figure 2.6: Comparison of I-V transfer characteristics between air, O2 and H2/N2 anneals
[9].

gave desirable device characteristics and better stability (as shown in Fig. 2.7b).
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Figure 2.7: I-V transfer characteristics after anneals in (a) H2/N2 with an air ramp-down
and (b) N2 with an air ramp-down [9].

2.4.2 Interactions with hydrogen and water

IGZO is also sensitive to an O/H–containing ambient. Therefore, it is crucial to

understand the influence of oxygen and hydrogen on the electrical properties of IGZO.

Oxygen helps reduce the oxygen vacancies in the IGZO material, thereby reducing the
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free electron concentration. The role of an oxidizing ambient has been established

in Section 2.4.1. Hydrogen, on the other hand, forms -OH bonds which ionize to

generate H+ and a free electron. Kamiya et al. studied that the formation energy

of H+ ions from -OH bonds was small (∼ 0.45 eV) [23]. This leads to an increased

generation of free electrons during a hydrogen anneal or in the presence of hydrogen

ambient, thereby increasing the conductivity of IGZO.

Exposure to water and high humidity also affects the electrical properties of IGZO.

Park et al. reported that water absorption significantly influenced the electrical pa-

rameters of the IGZO TFT. The adsorbed water molecules are believed to form an

accumulation layer in the IGZO surface, thereby increasing conductivity of the IGZO

material [10].

Figure 2.8: Illustration of water forming an accumulation layer on the IGZO surface [10].

2.5 Materials for Passivation of IGZO

In order to suppress ambient interactions and improve stability of IGZO TFTs, the

IGZO is protected by a passivation material. Various dielectrics were investigated

as candidates for passivation material. Some of the candidates were PECVD TEOS

oxide, e-beam deposited quartz and e-beam deposited alumina (AlOx). It was noted

that deposition of passivation material on the IGZO back-channel rendered it con-

ductive due to increase in interface states. Therefore, a more aggressive oxidation
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anneal was required post-passivation to yield desired semiconductive behavior.

E-beam quartz did not yield working TFTs even after an aggresive anneal. How-

ever, both TEOS passivated and e-beam AlOx showed improved stability and sup-

pressed hysterisis after an aggresive anneal in oxygen. Fig. 2.9 shows a comparison

between the I-V characteristics of quartz, e-beam alumina and PECVD SiO2 (with

TEOS precursor). From the figure, it is evident that quartz is not a good passivation

material that could yield stable TFT characteristics [11].
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Figure 2.9: I-V characteristics of quartz, alumina and TEOS SiO2 passivated TFTs [11].

Although e-beam alumina showed promise as a good passivation material, it had

to use a lift-off process for deposition due to problems with etch selectivity. Therefore,

TEOS SiO2 was preferred as the baseline passivation material due to ease of process

integration and benefits as a dielectric for double gate TFTs.

2.6 Density of States Distribution of IGZO

In order to gain a better understanding of the operation of the IGZO TFTs, it is essen-

tial to understand the density of states distribution in IGZO. In IGZO, the acceptor
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level subgap density of states distribution [gA(E )] primarily consists of acceptor-like

tail states [gTA(E )]. The donor level density of states [gD(E )] includes the donor-like

tail states [gTD(E )] and density of oxygen vacancies in the material. The amorphous

nature of the material contains structural disorders that induce electron scattering,

leading to localized wave functions. This leads to the formation of localized tail

state distributions of gTA(E ) and gTD(E ). The acceptor-like tail states (gTA(E )) near

the conduction band minimum are thought to originate due to disorders of metal

ns-bands whereas the donor-like band tail states (gTD(E )), located near the valence

band minimum, originate mainly due to the oxygen p-band disorders [12]. The tail

states seem to fit an exponential distribution whereas the distribution of oxygen va-

cancies has a tighter fit to a gaussian distribution. Mathematically, the density of

state distribution can effectively be modelled as,

gA(E) = NTA × exp

(
E − EC

WTA

)
(2.1a)

gD(E) = NTD × exp

(
EV − E

WTD

)
+NOV × exp

(
−
(
E − EOV

WOV

)2
)

(2.1b)

where N TA represents the density of acceptor-like trap states near at the conduction

band edge, N TD represents the density of donor-like trap states at the valence band

edge and N OV represents the concentration of oxygen vacancies present in the mate-

rial. Fig. 2.10 shows a pictorial representation of the DOS distribution in IGZO as

proposed by Fung et al.

The donor-like oxygen vacancy distribution is considered to be located closer to

the conduction band minimum as the structure becomes highly relaxed after a thermal

anneal. The thermal anneal step is considered to improve the interface quality. On the

other hand, without a thermal anneal, the energy distribution is located near the mid-

band or closer to the valence band minimum [12]. Therefore, the electrical properties

of the IGZO material are enhanced after a thermal anneal. This study provided a
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Figure 2.10: Proposed DOS distribution in IGZO [12].

qualitative distribution of the density of states in the IGZO structure. Quantitative

analysis providing energy levels and concentration gradients of the illustrated model

would require further investigation.

2.7 Summary

Earlier sections of this chapter discussed material and electrical characteristics that

make IGZO a suitable channel material for TFTs. It also briefly demonstrated the

ambient sensitivity of IGZO and established the need for a good passivation material

to improve electrical stability. The following chapter would discuss in detail the

fabrication and operation of IGZO TFTs with a back-channel passivation material.
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Chapter 3

Fabrication and Operation of IGZO TFTs

This chapter will provide an overview of the TFT structures used for investigation.

The fabrication process for the different structures will be detailed along with dis-

cussions of the electrical characteristics. Preliminary results concerning bias-stress

response of IGZO TFTs will be introduced.

3.1 Bottom-Gate TFT

Bottom-gate TFTs are fabricated as a staggered TFT structure. This structure is

used as the baseline process to investigate electrical characteristics and performance

of Bottom-Gate (BG) TFTs.

3.1.1 Fabrication Process Overview

A 150 mm Si wafer with a 650 nm thermal oxide is used to emulate a glass subtrate.

A 50 nm molybdenum gate electrode is DC-sputter deposited and patterned using a

quartz reticle by a subtractive etch process. A 100 nm silicon dioxide (SiO2) layer

is deposited as the gate dielectric using low temperature Plasma-Enhanced Chemi-

cal Vapor Depositon (PECVD) mechanism with tetraethyl orthosilicate (TEOS) as a

precursor. The SiO2 is then densified at 600 ◦C for 2 hours in N2 ambient. After den-

sification of gate dielectric, a 50 nm layer of IGZO material is RF-sputter deposited at

200◦C using an IGZO target with In:Ga:Zn:O in the atomic ratio of 1:1:1:4 in a sput-

ter ambient containing 7 % oxygen. The IGZO layer is then patterned by subtractive
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etch in 6:1 dilute HCl solution. Gate pads are patterned to etch gate dielectric using

10:1 Buffered-Oxide-Etch (BOE) solution to provide contact openings to the under-

lying gate electrode. Mo/Al bilayer, used for source and drain electrodes, is then

deposited by a lift-off process as the IGZO is not chemically robust. A passivation

material can be deposited to protect the underlying IGZO from room ambient. The

passivation material used for this process is a 100 nm PECVD SiO2 layer with TEOS

as a precursor. A final anneal is then performed to reduce conductivity of IGZO

and enable it to have good TFT characteristics. If the structure is unpassivated, the

anneal is performed at 400 ◦C in N2 ambient followed by an air ramp down. The

anneal in N2 ambient helps reduce the number of oxygen vacancies present in the

IGZO material, leading to a lower electron concentration. On the other hand, if the

structure is passivated, the anneal is performed at 400 ◦C for 4 hours in O2 ambient

followed by a 5 hour ramp-down in air. This is a more aggressive oxidation anneal as

the IGZO is protected by SiO2. An additional level of lithography would be required

in this case to pattern and etch contacts to source and drain electrodes.

A top-down micrograph and cross-sectional illustration of the resulting structure

may be seen in Fig. 3.1.

Figure 3.1: (a) Top-down and (b) cross-sectional view of a SiO2 passivated staggered
bottom-gate TFT.

3.1.2 Electrical Characteristics

The structure of an unpassivated staggered BG TFT structure is depicted in Fig. 3.2a.

Staggered BG TFTs are investigated as a baseline treatment for further studies,
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fabricated according to Section 3.1.1. I-V transfer characteristics can be seen in

Fig. 3.2b. The VT is −0.25 V with a µeff of 11.19 cm2/Vs and a subthreshold swing

(SS ) of 124 mV/dec [13]. This device was annealed in a nitrogen ambient at 400 ◦C

for 30 min with an air ramp-down.
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Figure 3.2: (a) Cross-sectional view of a staggered bottom-gate IGZO TFTs without a
back-channel passivation material (b) I-V transfer characteristics of a L/W = 24/100 µm
TFT with VDS = 0.1 V and 10 V [13].

3.2 Double-Gate TFT

Double-gate TFTs are derived out of the BG TFT structure by adding an additional

top gate electrode over the passivation layer. This is done to offer an enhanced channel

control, and thereby improving the I-V characteristics of the TFTs.

3.2.1 Fabrication Process Overview

The fabrication steps followed to design Double-Gate (DG) TFTs follows the same

procedure as described in Section 3.1.1 till the final passivation anneal. Following the

final anneal, 250 nm of evaporated aluminum is patterned through a lift-off process

to become the top gate electrode. Fig. 3.3a shows a cross-sectional view of the DG
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TFT structure.
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Figure 3.3: (a) Cross-sectional view of a double-gate IGZO TFTs (b) Comparsion of I-
V transfer characteristics between a L/W = 24/100 µm double-gate and SiO2 passivated
bottom-gate TFT with VDS = 0.1 V and 10 V

3.2.2 Electrical Characteristics

Fig. 3.3b shows the comparison of I-V characteristics between a double-gate and

bottom-gate TFT structures. As illustrated, the presence of an additional top gate

enhances the on-off ratio and the subthreshold swing of the TFT. SS of the DG TFT

improved from 260 mV/dec to 180 mV/dec whereas the mobility µeff doubled with

an additional gate electrode on top.

3.3 Capacitance-Voltage Characteristics

In TFTs, the gate metal-dielectric-IGZO structure acts as a capacitor. The structure

becomes capacitively coupled when voltage is applied. Electrically, it behaves as two

capacitors connected in series: one capacitor formed by gate dielectric and the other

being formed by the IGZO material.
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Traditionally, Si based MOS capacitors have three regions of operation: accumu-

lation, depletion and inversion. Accumulation region is formed when the majority

carriers form the surface channel in the semiconductor. Depletion region occurs when

the surface is depleted of majority charge carriers. This results in discharge of the

gained capacitance during accumulation. This is followed by inversion region where

the applied voltage is sufficient to attract minority charge carriers to the surface,

thereby enabling charging of capacitance due to channel inversion.

Figure 3.4: Working of an IGZO MOS capacitor in (a) accumulation and (b) depletion
modes

However, IGZO consists of only electrons as charge carriers as it is an inherently

n-type material. Therefore, it operates only in accumulation and depletion modes.

Fig. 3.4 offers a schematic representation of the capacitor operation in the two oper-

ating modes. When the applied gate voltage (VG) is positive, electrons present in the

IGZO material are pulled towards the surface, resulting in charging of capacitor in

accumulation mode. On the contrary, as VG becomes increasingly negative, electrons

are repelled by the negative gate voltage, depleting the IGZO surface of electrons and

causing the capacitor to get discharged. Due to absence of hole carriers, inversion
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does not occur. Fig. 3.5a illustrates the C-V characteristics exhibited by a typical

IGZO TFT. This was measured on an inter-digitated capacitor, therefore the remain-

ing capacitance in depletion region is due to the overlapping electrodes (gate over

channel-contact-metal). Fig. 3.5b represents the structure of a typical inter-digitated

capacitor.

Figure 3.5: (a)C-V characteristics of a typical IGZO MOS capacitor (b) Structure of a
typical inter-digitated capacitor

3.4 Investigation of Bias-Stress Instability

This section presents a preliminary analysis on the bias-stress instabilities involved

in BG and DG TFTs. Electrical stress or bias-stress stability is an important perfor-

mance indicator for TFTs, considering it has a direct impact on the lifetime of the

display.

This can be investigated by prolonged application of voltage on one or more ter-

minals of the TFTs. On application of bias-stress for a long time, TFTs may show a

decaying performance with threshold voltage (VT ) shifts and degradation of SS. This

affects the display brightness as it causes imprecise switching of pixels.
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Table 3.1: Summary of Bias-stress conditions

Stress Type VGS (V) VDS (V)

PBS +10 0

NBS -10 0

Predominantly, there are two conditions for bias-stress testing on TFTs. Positive-

Bias Stress (PBS) involves application of a positive voltage on the gate electrode for

a prolonged duration, whereas Negative-Bias Stress (NBS) involves holding the gate

electrode at a negative voltage, keeping the source and drain electrodes grounded. A

short summary of the bias-stress conditions has been outlined in Table 3.1.

-5 0 5 10

Gate Voltage (V)

10-12

10-10

10-8

10-6

10-4

D
ra

in
 C

u
rr

e
n

t 
(A

)

V
DS

 @ 0.1V & 10V

Pre-Stress

1ks

5ks

10ks

-5 0 5 10

Gate Voltage (V)

10-12

10-10

10-8

10-6

10-4
D

ra
in

 C
u

rr
e

n
t 

(A
)

V
DS

 @ 0.1V & 10V

Pre-Stress

1ks

2ks

3ks

5ks

10ks

Figure 3.6: (a) PBS on a L/W = 24/100 µm SiO2 passivated BG TFT (b) NBS on a L/W
= 24/100 µm BG TFT [13].

Fig. 3.6 depicts the influence of PBS and NBS stress on BG TFTs. The stress was

perfomed for 10,000 seconds (roughly 2.5 hours) for both PBS and NBS. As observed,

PBS stress does not seem to have much of an influence on BG TFTs. On the other

hand, there is a left shift inVT observed after NBS stress. This shift seems to occur

due to the ionized donor states behaving as fixed charges rather than interface traps.

Fig. 3.7 illustrates the influence of PBS and NBS stress on DG TFTs. In contrast

to BG TFTs, DG TFTs show a significant right shift in VT with a PBS stress. This
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Figure 3.7: (a) PBS on a L/W = 24/100 µm DG TFT (b) NBS on a L/W = 24/100 µm
DG TFT [13].

instability is attributed to the oxide charge present in the overlapped regions between

the gate electrode and source/drain electrodes, which arises due to electron injection

and trapping [13].

3.5 Summary

In this chapter, a detailed overview of the fabrication process for BG and DG IGZO

TFTs was described. A quick background to the C-V behavior of IGZO MOSCAPs

was provided, followed by discussion of preliminary bias-stress results of IGZO TFTs.

The sensitivity of IGZO to bias-stress created the motivation to verify if it was

possible to recover the characteristics by performing a hot-plate anneal. The anneal

caused the characteristics to drastically left-shift, thereby becoming very conductive.

The results of this experiment became the primary motivation to further investigate

the thermal instability of IGZO TFTs, which is introduced in the next chapter.

29



Chapter 4

Investigation of Thermal Instability

This chapter primarily focusses on detailing the investigations of thermal instability

in IGZO TFTs. A proposed hypothesis explaining the reason for this behavior is pre-

sented. Possible process modifications to control the instability will be investigated.

4.1 Introduction to Thermal Instability

Thermal stability of the TFT is important as the transistors may need to undergo pro-

cesses even after completion which use a higher temperature. Chip-on-glass bonding

would be one such process that may require heat in order to improve bonding. Even

though the characteristics might have been stable upon completion, the performance

might deteriorate upon subjecting the devices to an additional process at a higher

temperature. In order to investigate the thermal stability of IGZO TFTs, the devices

were subjected to elevated temperatures (up to 200 ◦C). The devices demonstrated

erratic behavior with the I-V characteristics varying significantly.

Fig. 4.1 shows the effect of a 20 minute hot-plate bake at 200 ◦C on BG and

DG TFTs. In the case of BG devices (see Fig. 3.7a), a significant left shift in I-V

characteristics was observed. On the other hand, DG devices showed resistor-like

characteristics following the hot-plate bake (see Fig. 3.7b). This observation was

surprising since the devices showed stable characteristics after the final passivation

anneal at 400 ◦C.

In order to investigate recovery of the devices, an additional furnace anneal at 400
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Figure 4.1: Effect of a 20 minute hot-plate bake at 200 ◦C on a L/W = 24/100 µm SiO2

passivated (a) BG TFT and (b) DG TFT

◦C was performed in O2 ambient. The furnace anneal did not have any impact on DG

TFTs but had an influence on BG TFTs. Fig. 4.2 highlights the results of the addi-

tional anneal. As observed previously, BG devices have a significant left-shift in I-V

characteristics when subjected to a hot-plate bake. The additional furnace anneal

helped the characteristics to shift back to its initial VT . However, the characteristics

were distorted and did not improve with time (see Fig. 4.2c). The characteristics

observed after the additional anneal was similar to “over-oxidation” observed in ear-

lier experiments. In previous research, the IGZO TFTs have shown improvements

in electrical characteristics when stored in room ambient after 3 days following the

passivation anneal. This was explained to be due to a phenomenon referred to as

ripening [24]. However, there were no improvements in characteristics noted when

tested after 3 days (see Fig. 4.2d). It is therefore believed that a hot-plate bake results

in permanent distortion of electrical characteristics.

Since the attempt to recover these devices was not successful, further investigation

was carried out to understand the temperature-time response in order to identify the

point at which the devices begin showing instability. DG TFTs were investigated for
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Figure 4.2: Event sequence investigating recovery of a 200◦C hot-plate baked L/W =
24/100 µm BG TFT by additional furnace anneal in O2

this experiment. All the devices received a standard 400 ◦C O2 anneal before the

hot-plate bake experiments.

The DG TFTs were subjected to temperature increments of 10 ◦C on the hot-plate

in room ambient. The hot-plate bake time was also increased at certain temperatures.

As the temperature on the hot-plate was increased, the characteristics started to show

a left-shift. The devices were stable until a temperature of 90 ◦C, with the instability

beginning to occur around a temperature of 100 ◦C. Fig. 4.3 illustrates the time-

temperature response of DG TFTs to a hot-plate bake. This shift in characteristics

was observed to be dependent on the accumulated combinations of temperature and
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Figure 4.3: Effect of hot-plate bake from 60 ◦C to 140 ◦C on a L/W = 48/100 µm DG
TFT

time.

4.2 Hypothesis behind Thermal Instability

It is hypothesized that the IGZO TFTs show thermal instability due to the presence

of water in the SiO2 passivation layer, absorbed by the oxide after deposition. Wager

et al. demonstrated donor behavior in IGZO and as a source of instability in unpassi-

vated devices [25]. Water is also readily absorbed by PECVD SiO2. Upon performing

a hot-plate bake on DG devices, the water present on the surface and bulk regions of

the oxide layer reacts with the Al gate on top to form aluminum oxide and liberate

monatomic hydrogen [26].The released hydrogen diffuses through the oxide layer to

the SiO2-IGZO interface and reacts with the IGZO surface/bulk. This reaction ef-

fectively increases the electron concentration in the IGZO as hydrogen has a donor

effect [27], causing a left shift in I-V characteristics. Fig. 4.4 illustrates the proposed
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mechanism depicting liberation of monatomic hydrogen from the water molecule with

the presence of a top gate Al electrode.

Figure 4.4: Generation of monatomic hydrogen upon application of heat due to the pres-
ence of top gate aluminum in DG TFTs

It is understood that a minute amount of water gets readily absorbed by the

oxide in room ambient. This is due to the porous nature of the undensified oxide.

A stress relaxation study conducted on standard PECVD TEOS oxide corroborates

this investigation [14].

Fig. 4.5 depicts the study that compared relaxation of stress with time after oxide

deposition between two wafers A12 and A13 obtained from the same process lot. The

study demonstrated stress in TEOS oxide changing from tensile to compressive over a

week, which is characteristic of a porous film. Upon an 8 hr 600C furnace anneal, the

stress reverts back to initial state, strongly suggesting a structural change occuring

within the oxide. The study also verifies that the stress is from TEOS by measuring

zero stress after removing the deposited oxide.It can be inferred that the structural

changes within the oxide mainly occur as a result of water molecules getting desorbed

during the anneal.
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Figure 4.5: Stress relaxation study of PECVD TEOS indicating water absorption over
time [14].

There is an increased need to further understand the phenomenon and effec-

tively address the instability in IGZO TFTs. Further analysis supporting the role

of monatomic hydrogen in IGZO TFTs would be necessary to verify the hypothesis

of thermal instability. Additional capping layers could possibly suppress the influence

of hydrogen on the IGZO material.

Different ALD materials were explored for the capping layer, aluminum oxide

and hafnium dioxide being the preferred due to process limitations. ALD alumina

and hafnium dioxide were understood to be good barriers to water due to their high

chemical resistance as a result of the strong bond [28].

4.3 Verification of hypothesis using MOS capacitors

A part of the proposed operative mechanism in the working hypothesis involves the

availability of hydrogen. An investigation on silicon MOSCAPs was done since inter-

face traps are readily passivated by hydrogen during the sintering process.

Sintering is the process of annealing MOS capacitors at elevated temperatures

so that the adsorbed water in the oxide reacts with the metal gate. This reaction

creates a metal oxide interface which effectively releases monatomic hydrogen. The
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monatomic hydrogen species migrate to Si-SiO2 and helps passivate interface traps.

As a result, the total number of surface states rapidly reduce lowering effective contact

resistance. Therefore, the sinter process is essential to make ohmic contacts.

However, the process that proves to be beneficial for MOS capacitors can be

detrimental for IGZO TFTs. The monatomic hydrogen generated in the process

penetrates through the oxide layer to the IGZO surface. The hydrogen is understood

to have a donor effect upon interaction with IGZO [10, 27]. As a result, there is

a rapid increase in electron concentration due to the hydrogen acting as a catalyst.

This causes the rapid shift in I-V characteristics that is observed upon subjecting

IGZO TFTs to elevated temperature treatments.

MOS capacitors (MOSCAPs) with a similar stack can be studied to further under-

stand and verify the mechanism. By introducing an additional capping layer over the

oxide dielectric (TEOS precursor), the water absorbed by dielectric, causing diffusion

of generated monatomic hydrogen to the IGZO surface, can be effectively suppressed.

For MOSCAPs, this means that the sintering process is impeded, causing them to

exhibit poor C-V characteristics. Fig. 4.6 depicts the MOSCAP structure with a

capping layer to prevent migration of hydrogen to the semiconductor material.

Figure 4.6: Cross-sectional depiction of MOSCAP structure with ALD capping layer

There were two sets of capacitors: one set went through a standard sinter at

450◦C. The other set was not sintered and was retained for hotplate experiments.
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4.3.1 Discussion of TEOS-based sintered MOSCAP results

This experiment used n-type Si MOSCAPs with passivation TEOS oxide. The TEOS

oxide was annealed for 8hr in 400◦C with O2 ambient in order to replicate conditions

seen in IGZO TFTs. After anneal, it either received ALD hafnia, ALD alumina or no

capping layer. This was followed by evaporation of aluminum for the gate electrode.

Fig. 4.7 shows a comparison between the normalized capacitance values with and

without an ALD capping layer following a 30 minute sinter at 450◦C in N2 ambient.
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Figure 4.7: Comparison between normalized capacitances of TEOS only, ALD Hafnia and
ALD Alumina capping layers following a 450◦C N2 sinter

The capacitance is normalized in order to make comparisons between capacitors

with different dielectrics easier. From Fig. 4.7, it can be observed that the MOSCAPs

without ALD seems to improve the most after a sinter anneal is performed as a result

of hydrogen passivation. On the contrary, the ALD capping layers seem to curtail the

sinter process of MOSCAPs. Although ALD hafnia and alumina show some difference
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in pre-sinter, they end up with the almost the same VFB post-sinter. This indicates

that ALD layers may offer some suppression of interface trap passivation at 450◦C.

ALD capping treatments post-sinter are left-shifted from the no capping sample by

an amount, presumably due to suppression of sintering with an ALD capping layer.

The mechanism behind the MOSCAPs with the ALD capping layer showing lesser

impact of the anneal supports the hypothesis explaining the influence of water trapped

in the TEOS oxide.

4.3.2 Impact of hotplate bake on unsintered TEOS-based MOSCAPs

Unsintered MOSCAPs were subjected to a hotplate anneal after metal deposition to

replicate the conditions seen for thermal experiments on IGZO TFTs. The purpose of

this experiment was to see if there is a possibility of Si/SiO2 interface passivation at

140-200◦C. This range of interest was selected for the following reason: 140◦C being

the temperature at which dehydration bake is done on resist track for all wafers,

and 200◦C being the ALD process temperature. Also, this experiment would check

effectiveness of the ALD capping materials and possibly recommend best candidate

to act as a strong water/hydrogen barrier in IGZO TFTs.

Table 4.1: Summary of shift in characteristics of unsintered MOSCAPs with hotplate
bake.

Capping Device ∆VFB Pre-140 (V) ∆VFB 140-200 (V) ∆VFB Pre-200 (V)

No capping
1 0.23 0.13 0.36

2 0.32 -0.01 0.32

ALD Hafnia
1 0.04 0.08 0.12

2 0.02 0.08 0.10

ALD Alumina
1 -0.01 0 -0.01

2 -0.08 0.02 -0.06

It was seen that there was a relatively small shift in characteristics without a

capping layer (see fig. 4.8a). With an ALD hafnia capping, the shift is even more

slight and ALD alumina shows almost zero shift after a 200◦C hotplate bake. The
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(a) Without capping layer (b) With ALD Hafnia capping

(c) With ALD Alumina capping

Figure 4.8: Influence of a 1 hr hotplate bake on unsintered capacitors w/ and w/o ALD
capping layer

replicates are well behaved, indicating a real difference. Fig. 4.8c depicts the influence

on hotplate bake on capacitors with an ALD alumina capping layer.

Table 4.1 provides a summary of the flat-band voltage shifts with 140◦C and 200◦C

anneals for capacitors with and without ALD capping layer. The flat-band voltages

for the capacitors are extracted by the parametric analyzer based as shown in table.

Results suggest that there is some passivation of interface traps with hydrogen

during the hotplate treatments on samples without ALD. Based on the change in flat-

band voltages with respect to hotplate bakes, it can be inferred that ALD alumina can
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be a very effective capping layer to prevent diffusion of water through TEOS to the

active region of the TFT formed by IGZO. The following chapter would present the

thermal stability improvements as seen in TFTs after integration of an ALD capping

layer.

4.4 Summary

Detailed discussion of thermal stress results was presented to gain understanding

of the mechanism causing the increased conductivity of IGZO. It was believed to

be occuring due to migration of water /monatomic hydrogen to the IGZO surface

upon a thermal anneal, causing an increase in effective electron concentration. A

hypothesis was proposed to explain IGZO TFT results using the sintering mechanism

in Si MOSCAPs.

The capacitor results strongly indicated that a similar mechanism which improved

capacitor characteristics plagued the performance of IGZO TFTs. Additionally, based

on the capacitor results, it was noted that ALD alumina could be a potential solution

as a capping layer to suppress migration of water to IGZO. The following chapter

would discuss results after process integration of the capping layer in IGZO TFTs.
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Chapter 5

Process Modifications to Address Thermal Instability

A study of the possible process modifications and additional capping layers was nec-

essary in order to address the thermal instability issues as outlined in the previous

chapter.

5.1 Process Integration of capping layer in TFTs

In order to support the understanding from MOSCAP experiments, ALD Alumina

and hafnia were integrated into the TFT structure as capping layers over the TEOS

passivation layer. This was done in order to reduce amount of water that the TEOS

passivation would otherwise absorb. Section 5.1.1 would describe process details

involved in the integration of capping layer, followed by the discussion of results from

thermal experiments in Section 5.1.2.

5.1.1 Experimental Details

Two BG and two DG device wafers received 1000 Å of passivation oxide on top of 50

nm of IGZO sputtered at Corning Inc. All four wafers were then annealed at 400◦C

for 10 hours in a pure oxygen ambient to drive out any water that adsorbed into the

oxide previously. Immediately after the anneal, one BG and one DG wafer received 15

nm of ALD HfO2. The remaining pair of BG/DG wafers did not receive any capping

layer. Fig. 5.1 depicts the structures of BG and DG TFTs after the integration of a

capping layer.
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Figure 5.1: Cross-sectional view of (a) bottom-gate and (b) double-gate IGZO TFT struc-
tures with a capping layer to improve thermal stability

5.1.2 Results and Discussion

Once the devices were fabricated, two thermal experiments were conducted. For the

first experiment, several devices from each wafer were subjected to a hot-plate anneal

of 140◦C for a total of 120 minutes. For the second experiment, all devices were

subjected to a hot-plate anneal for 200◦C for a total of 60 minutes. All devices in

both experiments were electrically tested before and after the hot-plate treatments.

Figure 5.2: (a) BG TFTs without a capping layer have a voltage shift of about 2 V over
120 minutes at 140◦C. (b) DG TFTs see an even greater voltage shift of 7 V.

Fig. 5.2 shows the instability when IGZO TFTs without ALD capping layer was

subjected to a hot-plate bake. It can be noted that the amount of shift is much

greater for the double-gate structure as a result of reaction between water and top

gate metal causing increased carriers.

The devices with ALD hafnia showed good stability with a 140◦C hot-plate bake
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for both BG and DG TFTs. Fig. 5.3 shows an improved thermal stability of BG

and DG TFTs at 140◦C with an additional ALD hafnia capping layer. Although

ALD hafnia showed promise at 140◦C, the devices were not stable enough when

temperature was increased to 200◦C. Fig. 5.4 illustrates the failure of ALD hafnia as

a stable capping layer at 200◦C.

Figure 5.3: (a) BG TFTs with ALD hafnia show excellent thermal stability at 140◦C (b)
DG TFTs almost see no shift with 2 hours of hot-plate bake at 140◦C

Figure 5.4: (a) BG TFTs with ALD hafnia appear to be very unstable at 200◦C(b) DG
TFTs break at 200◦C

With an ALD alumina capping layer, thermal stability of the IGZO TFTs im-

proves even at 200◦C. The TFTs received three cycles of treatments at 140◦C for

one hour each and two tcycles at 200◦C also for an hour each. Fig. 5.5 illustrates the

response of 24µm BG and DG devices to the thermal stress treatments. Based on the
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results, it can be noted that ALD alumina capping proves to be a good candidate to

provide thermal stability for IGZO TFTs.

Figure 5.5: (a) BG TFTs with ALD alumina show excellent stability at 200◦C (b) DG
TFTs with ALD alumina also show excellent stability at 200◦C

5.2 Working hypothesis for channel length dependence on

thermal stress

Upon performing thermal experiments on multiple devices, it was observed that fail-

ure of TFTs due to thermal treatments was statistical, with some devices being able

to withstand more thermal cycles than the rest. Additionally, the amount of shift

caused due to the thermal stress decreased as channel length reduced. No channel

width (and thus area) dependence was observed. Fig. 5.6 shows the channel length

dependence observed on DG TFTs with thermal treatments.

The data shows that the suppression is more effective on devices with shorter

lengths. There seemed to be a probability for the likelihood of device to fail, with

more devices failing the longer their channels were. Fig. 5.6 shows representative

results that demonstrate the dependence of thermal stability on channel length. Long
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channel IGZO TFTs (L ≥ 48µm) with ALD alumina capping layer appear to fail

consistently when subjected to thermal hotplate treatments (1-2 hours) at or above

140◦C. Some short channel devices (L ≤ 24µm) can fail, but in general were able

to withstand more thermal cycles at elevated temperature before (if) they fail (see

Fig. 5.6c).

(a) L = 48µm (b) L = 24µm

(c) L = 12µm

Figure 5.6: Representative results of channel length dependence in DG TFTs (with ALD
alumina capping) on thermal stress

Adding an ALD capping layer following the oxygen anneal reduces the effects of

thermal stress put on IGZO TFTs. However, the longer channel length DG devices

consistently fail when subjected to thermal stress. Results suggest that water is

either directly or indirectly responsible for this degradation process. Both water and

hydrogen have been shown to have donor-like behavior in IGZO, thus supporting a
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higher level of electron channel charge [10, 27, 29].

The source-drain metal is proposed to act as a getter to water during the 400◦C 8hr

anneal, thus removing water molecules from within the back-channel passivation oxide

nearby these regions. Fig. 5.7a shows a cartoon illustration of the said phenomenon.

In shorter channel devices (L ≤ 24µm), water segregates to the metal regions and is

effectively removed from the system. In longer channel devices, the water molecules

level that are not in the immediate vicinity of these regions remains significant, and

therefore are not gettered during the 8hr 400◦C anneal.

(a) Water segration from channel due to source/drain electrodes acting
as a getter

(b) Comparison of water remaining in the system after the passivation
anneal - Long vs short-channel TFTs

Figure 5.7: Cartoon illustration of source/drain acting as getter to water in IGZO TFTs

During subsequent thermal stress at 140-200◦C, any remaining water molecules

can migrate and may be above the gas-phase solubility limit. These molecules may

segregate to the back-channel interface. In DG devices, a reaction of water with the

top gate metal may liberate monoatomic hydrogen atoms (similar mechanism as the

getter process) which may influence the entire back-channel region. Liberation of

46



CHAPTER 5. PROCESS MODIFICATIONS TO ADDRESS THERMAL
INSTABILITY

hydrogen that may be occuring during the 400◦C anneal and during the 200◦C ALD

process following the anneal does not appear to have a negative impact on device

operation.

5.3 Summary

Without ALD capping, both BG and DG TFTs shift degrade with thermal treatments

at 140◦C and 200◦C. Integration of an ALD Alumina capping layer over the TEOS

passivation oxide improves thermal stability of IGZO TFTs. The results strongly

indicate water having an impact, directly or indirectly, on the degradation process of

both BG and DG TFTs. Frequency of device failures due to thermal hotplate treat-

ments are statistical. A working hypothesis to explain the channel length dependence

on the thermal response has been detailed.

The 200◦C ALD processes may liberate hydrogen for a short time period at the

beginning of the deposition because of the surface chemistry involving water. How-

ever, this may be short-lived once the thickness is a few nanometers, and thus does

not degrade the IGZO TFT operation. This short time is apparently enough time for

silicon interface trap passivation.
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Final Remarks

6.1 Summary of Work

The main objective of this work was to develop a mechanism to understand and

address the thermal instability seen in IGZO TFTs. It is proposed to be occuring

due to a negative impact caused due by water directly or indirectly.

A multi-point hypothesis was developed through the interpretation of thermal

degradation behavior in SiO2 passivated IGZO TFTs. Water was hypothesized to

be the primarily candidate responsible for thermal instability in BG TFTs. The

monatomic hydrogen generated by reaction of additional top gate with water was

believed to cause a more pronounced instability in case of DG TFTs. Integration of

an additional capping layer was explored in order to suppress the influence of water

on IGZO channel. ALD capping layers were seen to improve thermal stability. These

capping layers, apart from being good diffusion barriers to water, were also able to

suppress liberation of monatomic hydrogen in IGZO TFTs. Based on the results

obtained, ALD alumina was established to be a suitable candidate as a capping layer.

Water was believed to be gettered by the source/drain metal contact regions

during the oxygen annealing process. It was hypothesized to be a two-dimensional

process limited by the diffusivity of water, which results in channel length dependence.

Short-channel devices were observed to be superior in thermal stability.
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6.2 Future Work

Current process integration strategy with ALD Alumina capping improved thermal

stability of IGZO TFTs, but is not sufficient to prevent long-channel device degrada-

tion. Alternative S/D metal options are being investigated to improve long-channel

stability. Further investigation to integrate sacrificial getter features in actively being

studied. This would require S/D layout modification. The study would focus primar-

ily on comparing long and narrow TFTs. Additional investigations would be needed

to understand if the metal needs to be in contact with IGZO feature in order to act

as an effective getter to water.

Investigation of alternative ALD layers and process schemes to eliminate water

more effectively is under research. Integration of alternating layers of different ALD

films to form a nano-laminate capping layer could be more effective than ALD alumina

alone as it could, arguably, be a much better barrier to water/hydrogen.
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