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ABSTRACT 

 Wetlands are one of the most valuable ecosystems, providing services such as carbon 

sequestration and nitrogen removal. Studies suggest that created wetlands may not function the 

same as natural wetlands and management techniques, such as organic matter addition (OM), 

have been proposed to promote natural functions. The objective of this study was to understand 

the effects of OM additions on greenhouse gas (GHG) emissions in created wetlands with 

different vegetation, hydrology and soil characteristics. This study was conducted from 2016 to 

2017 at two created wetlands (A2S and A3A) at High Acres Nature Area in Fairport, New York. 

There was high seasonal and inter-annual variability in weather conditions during the study 

period and rainfall and temperature were the dominant factors controlling GHG fluxes within 

both wetlands. Drought condition during 2016 limited soil respiration and C uptake by plants. In 

2017, when moisture conditions were more typical, OM addition increased soil respiration rates 

at A2S in the fall. There was a trend towards higher ecosystem respiration at this time; however, 

OM addition also increased gross primary production, resulting in no net change in CO2 

exchange. Due to dry conditions, methane (CH4) emissions were low during much of the study. 

When emissions were high, fluxes were significantly higher in the light than the dark at A2S, but 

not A3A, suggesting that vegetation differences between the site impact CH4 transport pathways. 

While OM addition did not change anaerobic CH4 or CO2 production potential, there were 

significant differences between the sites, with higher production rates in A2S, where hydrologic 

conditions in the field may have selected for microbial communities adapted to anaerobic 

environments. These findings highlight the importance of precipitation and hydrology in 

controlling C cycling in created wetlands and suggest that wetland characteristics will influence 

their responses to management techniques.
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1. Introduction 

 Wetlands are a transitional habitat between terrestrial and aquatic ecosystems that 

provide important ecological services. Wetlands help preserve biodiversity by providing habitat 

for many species (Ghermandi et al., 2010) and enhance water quality by removing nutrients 

(Ghermandi et al., 2010; Vymazal, 2007; Brix et al., 2000; Reddy et al., 1999; White et al., 

1999). They also play a significant role in the global carbon (C) cycle and although wetlands 

compromise only 5-8% of the terrestrial land surface they store over one third of the earth's 

carbon. In addition to sequestering C, wetlands are also the largest natural source of the 

greenhouse gas (GHG) methane (CH4), producing 20-40% of global emissions (Solomon, 2007). 

The global warming potential of CH4 is 25 times greater than carbon dioxide (CO2) over a 100-

year time horizon (Lowe & Zealand, 2007), therefore CH4 production in wetlands often makes 

them a GHG source, despite considerable C fixation and storage in soils and plants. 

 Wetlands can have a net positive or negative global warming potential, depending on 

interactions between biotic and abiotic components, especially soil, vegetation, and hydrology. 

Photosynthesis and respiration are key processes determining the C balance of wetlands 

(Kayranli et al., 2010; Whalen, 

2005; Boon & Lee, 1997). Net 

ecosystem exchange (NEE) reflects 

the net amount of C that is fixed and 

stored and is the difference between 

gross primary production (GPP), the 

total uptake of CO2 by 

photosynthesis, and ecosystem 

respiration (ER), the CO2 that is 

respired back to the atmosphere by 

both heterotrophic and autotrophic 

organisms. Under anaerobic 

conditions, C fixed by plants can be 

converted to CH4 by methanogens, 

microorganism in the Archaea 

domain (García et al., 2000). 
Figure 1. Wetland C cycle and GHG production, 

consumption and emission.  



 

2 
 

Anaerobic conditions slow decomposition and enhance the ability of wetlands to store C in their 

soils, however, they also enable CH4 production and more than 15% of the C fixed in wetlands 

through photosynthesis may be released to the atmosphere as CH4 (Brix et al., 2001). The 

balance between CH4 and CO2 emission will determine whether a given wetland has a positive or 

negative global warming potential (Figure 1). 

 GHG fluxes in wetland ecosystems are sensitive to environmental conditions including 

hydrology, temperature, and soil chemistry. Hydrology exerts overarching control over wetland 

C cycling, with inundated conditions generally enhancing CH4 production (Olefeldt et al., 2017; 

Bansal et al., 2016; Whalen, 2005; Bubier & Crill, 2003; Griffis et al., 2001), while a drop in the 

standing water can result in an increase in CH4 oxidation and shift in decomposition towards 

aerobic processes that yield CO2 ( Olefeldt et al., 2017; Hou et al., 2013; Sulman et al., 2010; Ise 

et al., 2008; Whalen, 2005). Temperature positively affects both microbial activities (e.g. 

methanogenesis) and the rate of C fixation by plants (Klein & Werf, 2014; Liikanen et al., 2006; 

Søvik et al., 2006; Whalen, 2005; Whiting & Chanton, 1993). This means that considering 

seasonal temperature patterns is important when studying GHG emissions in wetlands.  

Nutrient availability affects wetland GHG fluxes by influencing plant and microbial 

communities. Primary production in wetlands is often limited by N availability (LeBauer & 

Treseder, 2008; Reddy & DeLaune, 2008; Güsewell & Koerselman, 2002; Vitousek & Howarth, 

1991), however, phosphorus (P) limitation (Zhang et al., 2012) or N and P co-limitation (Elser et 

al., 2007) have also been observed. Nutrient availability can affect wetland CH4 emissions 

indirectly by altering vegetation (Liu & Greaver, 2009), which provide C substrate and CH4 

transport, and directly by affecting the activity of methanogenic and methanotrophic microbial 

communities (Kim et al., 2015; Bodelier, 2011; Nesbit & Breitenbeck 1992). Because N and P 

availability have been found to both negatively (Kim et al., 2015; Bodelier, 2011) and positively 

(Liu & Greaver, 2009) impact CH4 production and consumption it can be difficult to predict how 

nutrient availability will impact net CH4 emissions in a particular wetland. 

Globally, wetlands are being filled and destroyed by anthropogenic activities and to 

counteract these losses there are ongoing efforts to restore and construct wetlands to preserve 

their valuable ecosystem services (Vymazal, 2007). For example, in the United States the 

Wetland No Net Loss Act of 1989 requires wetland creation to mitigate human impacts on 

natural systems. However, ecosystem properties between these created wetlands and natural 
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systems may not be equivalent and this may result in differences in GHG emission. Multiple 

studies have shown that created wetlands do not duplicate many of the biotic and abiotic 

characteristics of natural wetland systems, especially vegetation and soil features. Created 

wetlands are often characterized by low species richness and dominance by invasive plant 

species such as Typha spp. and Phragmites spp. (Svitok et al. 2011; Hartzell et al., 2007; 

Vymazal & Kropfelová 2005; Balcombe et al. 2005). Soils in created wetlands also tend to have 

lower soil organic matter (SOM) content than natural wetlands (Hossler & Bouchard, 2010; 

Bantilan-smith et al., 2009; Bruland & Richardson, 2005; Campbell et al. 2002; Stolt et al., 

2000) and research suggests that it could take up to 300 years for created wetlands to replicate 

the ability of natural systems to sequester soil organic carbon (SOC) (Hossler & Bouchard, 

2010).  

 While many studies have found that plant and soil properties in created wetlands differ 

from natural systems, it is less clear how these differences translate into changes in GHG 

emissions. For example, Maltais-Landry et al. (2009) found that created wetlands produce 2 to 

10 times more CH4 than natural systems. However, Nahlik & Mitsch (2010) found that CH4 

emissions from created wetlands were lower than emissions from natural systems. This raises a 

question about the balance between GHG production and C sequestration in created wetlands. In 

their review of C storage and fluxes in freshwater wetlands, Kayranli et al. (2010) argued that 

constructed wetlands could become a source of GHG’s and concluded that further research is 

required. Additional measurements of GHG fluxes in created wetlands are an important next 

step, especially because patterns of GHG emission from created wetlands are likely to be highly 

variable and responsive to multiple ecological and landscape factors.  

 Management techniques such as organic matter (OM) addition have been proposed as a 

strategy to help restore ecosystem function in created wetlands; however, we have limited 

understanding of how this impacts C cycling in these systems. Organic matter addition has been 

shown to enhance soil C content, resulting in soils that more closely match natural wetlands 

(Ballantine et al., 2012). However, OM addition also provides C substrate that feeds microbial 

activity (Balch et al., 1979), therefore, it can positively impact both CH4 and CO2 emissions. OM 

addition in restored freshwater wetlands in western New York resulted in a 20% increase in 

potential net of CH4 production (Ballantine et al., 2015). In contrast, a study in a mitigation 

wetland in Virginia found that heavy OM loading increased soil CO2 fluxes, but did not affect 
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CH4 emissions (Winton & Richardson, 2015). It is likely that the impact of OM addition on 

wetland GHG emissions will be influenced by environmental factors such as hydrology, nutrient 

availability and plant community composition, thus it is important to study these impacts in 

created wetlands that differ in biotic and abiotic conditions. 

 The objective of this study was to quantify the effect of organic matter (OM) addition on 

CH4 and CO2 fluxes from created wetlands that differ in vegetation, land-use history, and 

hydrologic regime. I hypothesized that CO2 and CH4 fluxes will differ across the study area due 

to hydrology, vegetation structure, and nutrient availability differences: (1) Water availability 

would be the dominant driver of GHG emissions, with the highest CH4 fluxes occurring when 

water was above the soil surface, while GPP, NPP, and ER would be highest when soil moisture 

was high, but standing water was not present. (2) When soil moisture was high, adding OM 

would enhance both CH4 emissions and soil respiration due to an increase in C availability for 

microbial activities. (3) Under low moisture conditions, OM addition would enhance ER due to 

an increase in soil C content boosting heterotrophic respiration, while CH4 fluxes would exhibit 

small changes or no changes, depending upon the size of anaerobic zone.  

2. Methods 

2.1. Site description 

 This study took place at two wetland sites, Area 3A (A3A) and Area 2 South (A2S), at 

High Acres Nature Area (HANA) in Fairport, NY (Figure 2). The distance between the sites is 

approximately one kilometer. These wetlands are managed by Waste Management of New 

England and New York, LLC and were created to comply with the Clean Water Act "No Net 

Loss" policy to mitigate the loss of natural wetlands. A2S was created in 2009, and A3A was 

created in 2012. The land-use history of these sites differ, A2S was used for row crop agriculture 

where as A3A was previously used as a livestock pasture. They also have different vegetation 

and hydrology. A2S is dominated by Typha spp. (Typha latifolia and Typha angustifolia, broad 

and narrow leaf cattail) and Phalaris arundinacea (reed canary grass. A3A is more diverse, with 

upland species including Polygonum persicaria (smart weed), Solidago canadensis (common 

goldenrod), Epilobium (willow herb), Schoenoplectus tabernaemontani (softsteam bulrush), 

Cladium mariscoides (sawgrass), Daucus carota (Queen Anne's lace), Phragmites australis 
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(common reed), and with some presence of Typha spp. The elevation of A2S is lower than A3A. 

Standing water in A2S is more common than in A3A, which is only flooded during spring thaw.   

                                                             
Figure 2. Map of study sites at High Areas Nature Area. A2S has a purple boundary while A3A 

has a yellow boundary.  

2.2. Experimental Design 

 Ten transects (30m x 2m) were established in A2S in 2014 and in A3A in 2015. Eight of 

these transects (1, 2, 3, 4, 5, 6, 9, and 10) were used for the measurements in this project and two, 

1m
2
, plots were randomly established in each of these transects. Organic matter, 7 cm of leaf 

litter compost with an approximate concentration of 250 g C/m
2
 (Williams, unpublished data), 

was applied to half of the transects while the rest of transects were used as control plots (Figure 

3). Transects were paired to account for a known hydrologic gradient at the site. Organic matter 

was applied annually at both sites. At A2S it was applied July 2014, May 2015, June 2016 and 

June 2017. At A3A it was applied in May of 2015, 2016, and 2017.  
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Figure 3. Experimental design at A2S and A3A wetlands. 

2.3. Gas Flux Measurements 

 Soil fluxes of CH4 and CO2 were measured from all plots in late June/early July, August, 

and November of 2016 and in May, July and September of 2017 using small flux chambers. 

Whole ecosystem CO2 and CH4 fluxes were measured using big flux chambers in August and 

October of 2016 and May, July, and September of 2017.   

 Soil fluxes were measured using cylindrical polycarbonate soil chambers. Two soil 

chamber bases were installed in all plots in June 2016 (Figure 4). The soil chambers were 

constructed based on a design from Ryden et al. (1987) and are 9.5 cm
2
 in diameter and 30 cm 

tall (Figure 5). All new plants were removed from the small soil chambers. For ecosystem flux 

measurements, a single big chamber base (60 cm by 60 cm) was installed adjacent to one of the 

plots in each transect in June 2016.  The big chamber was constructed based on the design of 

Carroll & Crill (1997) and is 186cm tall, large enough to encompass wetland vegetation at the 
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site. The chamber has a cooling system and temperature inside the chamber was monitored and 

maintained within 2 C of the outside temperature. 

  For each flux measurement four (20mL) gas samples were collected from each chamber.  

Gas samples were taken every 10 min and 15 min for small and big chambers respectively. For 

small chamber measurements a 10-minute pause between placing the lid and collecting the first 

gas sample was used to help avoid disturbances caused by chamber installation. For the big 

chamber, CO2 measurements were also made in the field using an infra-red gas analyzer (LI-820) 

and the first 5 min following chamber closure were used to calculate fluxes. Big chamber 

measurements were taken under both light and dark conditions (Figure 6). For the dark 

condition, an opaque cover was used to block light penetration into the chamber (Figure 6). Gas 

samples were analyzed within 24hrs or put in evacuated vials and stored for later analysis. 

Methane and CO2 concentration was analyzed using a Shimadzu GC-2014 gas chromatograph 

with a flame ionization detector (FID) and methanizer.  

 Fluxes were calculated using the slope of the linear relationship between gas 

concentration and time, using the following equation:  flux = slope * (1/(air temp + 273.15)) 

*101326 Pa * (1/8.314 m
3
 Pa mol

-1
 K

-1
) * (1/chamber height). Soil CO2 fluxes were only used if 

there was a linear change in CO2 concentration over time (R
2
  0.8) or the change in CO2 

concentration was very low (R
2
  0.2 and concentration range <100 ppm or any R

2
 value for a 

concentration range < 25 ppm). Methane data from small chambers was not used because time 

zero concentrations were 2-3 orders of magnitude higher than atmospheric concentrations or 

fluxes were so low that it was impossible to interpret the data. Big chamber CH4 fluxes were 

excluded if time zero CH4 concentrations were higher than atmospheric concentration. Big 

chamber CO2 measurements made in the dark were excluded if they had a negative slope, which 

occasionally occurred in 2016, either due to chamber leakage or incomplete shrouding.    
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Figure 4. Big chamber and small chamber bases in the field. 

 

 

Figure 5. Field measurement of soil respiration using small chambers.  
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Figure 6. Field measurements of NPP, GPP and ER using a big chamber.  

2.4. Soil incubations 

 Soils samples were collected on the 15
th

 and 22
nd

 of September (2017) for A2S and A3A 

respectively, using a tulip bulb corer (0.10 m depth and 0.06 m diameter) from each plot in both 

sites (32 samples total). Soil samples were stored on ice while being transported to the lab and 

incubations begin within 48 hrs of collection. Soil samples were homogenized, large roots and 

stones removed, and then 10g of soil and an equal amount of nanopure water was placed in a 250 

ml clear glass jar and sealed with a screw cap and septa. The jars were immediately purged with 

N2 gas three times (1 minute each) and shaken for 30 seconds between each flush. A 20 ml gas 

sample was taken on day 1, 2, 4, 6, 9, and 12. Concentrations of CH4 and CO2 were measured 

using a Shimadzu GC-2014 gas chromatograph with a flame ionization detector (FID) and 

methanizer. Methane and CO2 production rates were calculated during the time period with the 

highest, linear production rate. 

2.5. Soil chemistry  

 Soil samples were collected in early and late fall of 2016 using an Auger (0.02 m ID). 

Soil samples were collected to a depth of approximately 15 cm, stored in Whirl-pak bags and 



 

10 
 

stored in the lab at -20 C. Soil samples were divided into 4 subsamples of 5 g each, 2 

subsamples were used for soil moisture analysis and 2 were used for extractable nutrients.  

 Extractable including nitrate (NO3) and ammonium (NH4) were measured in all soil 

samples. Two subsamples of soil were shaken with 2M KCL on a rotoshaker for 45 min and then 

decanted, filtered (0.45 µm) and frozen at -20 C in whirl-pak bags. Nitrate was measured on a 

Lachat QuikChem 8500 Autoanalyzer using the cadmium reduction method (Lachat, 2003). 

Ammonium was measured using the phenol-hypochlorite method with sodium nitroprusside as a 

catalyst (Solorzano, 1969). A spectrophotometer (Shimadzu UV 1800 Spectrophotometer) was 

used to measure the absorption at 630 nm and a standard curve was used to determine the NH4 

concentration in each sample.  

 Total soil phosphorus (P) was measured by adding 50% w/v magnesium nitrate 

(Mg(NO3)2) to 0.1 g of oven-dried soil. The mixed solution was ashed in a muffle furnace (2 h at 

550 °C) and then once cooled, 10 mL of 1 M HCl was added, and samples were shaken for 16 h 

and then left to settle overnight. Finally, samples were diluted (10x) and measured at 880 nm 

using a Shimadzu UV 1800 Spectrophotometer (Murphy & Riley, 1962). 

 Soil properties including soil moisture content (MC%), bulk density, and organic matter 

content (OM%) and pH were measured on all soil samples. Moisture content was measured 

using the gravimetric method by drying soils for 48hrs at 60C. Bulk density was calculated 

using the dry soil weight (24 hrs under 60C) divided by the volume of the soil core used to 

collect samples. Organic matter content was measured using the loss on combustion method 

(Brimhall et al, 2002). Soil pH was measured with a Hach probe by creating a 2:1 (v/v) 

slurry of dionized water to soil, stirring vigorously to create a uniform suspension 

(Gelderman and Mallarino 2012).  

2.6. Vegetation composition  

 Vegetation survey’s in the field were used to quantify the percent cover of individual 

species from the big chamber bases. Vegetation percent cover was quantified at both study sites 

in July and September 2017.   
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2.7. Statistical Analysis 

 All statistical analyses were completed using JMP 13 Pro statistical software, except for 

stepwise regression, which was conducted in R. For all field measurements (soil respiration, 

NPP, GPP, ER, and ecosystem CH4 fluxes), a 2-way ANOVA was used to test for differences 

between sites and measurement dates as well as the interaction between these factors in control 

plots.  A paired t-test was used to test for the effect of organic matter addition on gas fluxes on 

each measurement date within each site. A paired t-test was also used to test for significant 

differences between CH4 fluxes in the light and the dark at each site. For this analysis, only pairs 

with a positive CH4 emission in the light were used. Within each site the effect of treatment and 

temporal variability on gas fluxes was examined using two methods, a 2-way ANOVA 

(treatment, date, treatment*date) and a linear mixed model with treatment, soil or air 

temperature, and rainfall as predictor variables and block as a random factor. Three rainfall 

variables were tested, days since rain, rainfall amount in the past 7 days and rainfall amount in 

the past 30 days. Only a single rainfall variable was used in each test and the best rainfall 

predictor was selected for each response variable.  

A step-wise regression approach using Akaike’s Information Criterion (AIC) as the 

model selection criterion was used to identify a sub-set of environmental predictor variables that 

best explained soil respiration rates during the subset of dates where detailed soil chemistry data 

was available (early and late fall 2016). Model selection was done using the stepAIC package in 

R and the relative importance of the predictor variables in the selected model was then calculated 

using the relaimpo R package. Variables used in the model selection process included continuous 

variables (Total P, Inorganic N, OM%, soil temperature, days since rain, rain during past 7 days, 

rain during past 30 days, moisture content, and pH) and categorical variables (site and 

treatment). 

For the incubation experiment, a 2-way ANOVA with a Tukey post-hoc test was used to 

test for significant differences between sites and treatments.  
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3. Results 

3.1 Soil properties and vegetation 

There were differences in soil physiochemical properties between the wetland sites and 

between control and compost plots (Table 1, Appendix A, Huang unpublished data). Averaged 

across the growing season, soils at A2S had higher OM%, MC%, and inorganic N concentrations 

(NH4
+
 and NO3

-
) than A3A, whereas soils at A3A had higher total phosphorus content. Soil pH 

was close to the neutral at both sites, however, it was higher in A3A compared to A2S. There 

were no differences in bulk density or porosity between the sites. The OM content of soils at 

both sites were 2-3% higher in compost amended plots. Compost addition also increased 

inorganic N concentrations at both sites.  

TABLE 1. Summary of soil physiochemical features in compost and control plots at each site. 

Data are seasonal averages from 2016 (average  SE, n=4). 

 

Total percent plant cover at the two wetlands was similar, however, the species 

composition was very different (Table 2, Appendix B). During 2017, the dominant plant species 

at A2S was Phalaris arundinacea, which averaged 41.9±11.2 and 19.7±9.1% in control and 

compost plots respectively. Compost amended plots in A2S also had substantial cover of Typha 

Factor 

              

                Control                        Compost  

 

A3A A2S A3A A2S 

gNH4-N/g dried soil 18.7±2.7 36.8±4.7 21.4±4.2 39.7±4.6 

gNO3-N/g soil 41.1±5.3 50.5±10.1 49.2±3.5 70.9±2.6 

mg P/kg dried soil 105.6±4.3 91.2±3.7 109.2±1.9 107.2±4.8 

Organic matter (OM)% 12.6±0.9 15.9±0.9 15.3±1.1 17.9±0.7 

Moisture Content (MC)% 10.8±1.3 18.4±1.3 13.2±0.5 17.5±0.9 

pH 7.6±0.05 7.1±0.06 7.7±0.05 7.2±0.05 

Bulk Density 0.9±0.06 0.8±0.02 0.8±0.06 0.7±0.03 

Soil Porosity 66.9±2.3 70.1±1.3 70.1±2.1 73.6±1.2 
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spp., with 7.7 ± 3.6% Typha latifolia and 2.5±0.4% Typha angustifolia. No one plant species was 

dominant at A3A, with several species, including Eupatorium perfoliation, Persicaria punctata, 

Polygonum spp., Juncus effusus, and Solidago spp. representing 3-7 % cover.  

TABLE 2. Summary of the percent cover of major plant species (>1% cover) and total percent 

vegetation cover in control and compost plots at both sites. Data are seasonal averages from big 

chamber bases in 2017 (average  SE, n=4). 

 

3.2 Environmental conditions (Rainfall, hydrology, and temperature) 

 Neither site had standing water during the measurement period in 2016 (Table 3). In 

2017, A3A also had no standing water, however, in A2S the water level was above the soil 

surface in the spring and summer, averaging 9.3 and 2.8 cm during May and July respectively 

and then dropped below the soil surface in September (Table 3). Precipitation data from a 

weather station (Station: USC00304952) in the nearby town of Macedon, NY showed that in 

2016 precipitation was low in the beginning of the growing season and then increased in the fall, 

whereas in 2017, precipitation levels were consistent across study period (Figure 7).  

Species              Control                         Compost 

 

A3A A2S A3A A2S 

Phalaris arundinacea 0 41.9±11.2 2.4±1 19.4±9.1 

Lythrum salicaria 0.3±0.3 0 0.1±0.1 1.4±1.2 

Typha angustifolia 0.1±0.1 0.1±0.1 1.1±0.7 2.5±0.4 

Typha latifolia 0 0.9±0.4 0 7.7±3.6 

Eupatorium perfoliatum 4.9±2.3 0 4.6±2.1 0 

Polygonum spp. 2.8±2.4 0.4±0.1 0 0 

Persicaria punctata 3.8±2.1 0 6.9±3.4 0 

Alisma spp. 0 0.6±0.2 0 2±1.3 

Juncus effusus 6.3±6.3 0 0.4±0.3 0 

Solidago spp. 1.3±1.3 0 0.5±0.5 0 

Total Percent Cover 40.6±3.6 54±4.5 21.5±3.6 32.5±8.5 
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 Soil temperature was measured during each chamber measurement. In 2016 the highest 

temperatures were in early and late summer (June/July, August) and averaged 18 and 21 °C, 

respectively. Temperature then decreased during early and late fall (September/October, 

November), with averages of 14 and 8 °C, respectively. In 2017, soil temperature was similar in 

May and September, averaging 10-13 °C at both sites and the highest temperature, 16 °C, was in 

July (Figure 7).  

 

Figure 7. (A) Soil temperature measured in the field and (B) daily precipitation totals recorded 

close the study site during the study period in 2016 and 2017. 
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TABLE 3. Standing water depth measured at both sites during flux measurements in 2016 and 

2017 (average ± SE, n=8). 

 

3.3 Soil Respiration  

 Soil respiration rates were not significantly different in control plots in the two wetland 

sites, with fluxes ranging from 0.052 to 5.66 g CO2 -C m
-2 

d
-1

 in A3A and 0.027 to 4.35  g CO2 -

C m
-2 

d
-1 

in A2S (Figure 8). In August 2016, rainfall occurred between measurements in the two 

sites, resulting in 5-fold higher fluxes in A3A, which was measured after the rain event. There 

was significant variability in soil respiration rates across the two-year measurement period (F11, 

35=19.5, p<0.001) as well as significant date by site interactions (F11,35=9.4, p<0.0001, Table 4, 

Figure 8). In 2016, soil respiration was lowest early in the summer (late June/early July) and then 

fluxes increased following late summer rainfall. In 2017, soil respiration was lowest in May, 

increased during the summer and peaked in July at both sites. In A3A, soil respiration then 

declined in the fall, whereas in A2S, rates remained high into early September.  

Across all sites and treatments, soil respiration was significantly influenced by the 

amount of rainfall in the proceeding 7 days (F1,96 = 5.6, p = 0.01, Table 4). When the analysis 

was run within an individual site, the effect of rainfall was only significant within A3A 

(F1,42=22.2, p<0.0001, Table 4), however, soil temperature was a significant predictor of 

respiration rates in both wetlands (F1,48=4.4, p = 0.04, F1,45=21.1, p<0.0001) respectively (A2S, 

A3A, Table 4). During most of the study period there was no difference between soil respiration 

Site Date Year Standing Water Depth (cm) 

 

June 2016 0 

 

August 2016 0 

 

October 2016 0 

A3A November 2016 0 

 

May 2017 0 

 

July 2017 0 

 

September 2017 0 

 

July 2016 0 

 

August 2016 0 

 

September 2016 0 

A2S November 2016 0 

 

May 2017 9.3±0.8 

 

July 2017 2.8±1.6 

 

September 2017 0 
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rates in control and compost plots, however, at A2S in September 2017 compost plots had more 

than double the soil respiration rate of control plots (t(3)=3.58, p = 0.04, paired t-test, Figure 8). 

During early and late fall of 2016 soil chemistry was analyzed in conjuncture with soil 

respiration measurements (Huang, unpublished data) enabling quantification of the main factors 

contributing to variability across the sites. Step-wise regression using Akaike’s Information 

Criterion (AIC) showed that 79% of the variability in soil respiration during this time period 

could be explained by site, soil temperature, rainfall amount during the proceeding 30 days, total 

inorganic N (NH4 + NO3) and OM%. Rainfall during the proceeding 30 days was the most 

important predictor of soil respiration rates, accounting for 40% of the total variability. This was 

followed by site (22%), soil temperature (15%), total inorganic N (13%) and finally OM% (8%).  
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Figure 8: Soil respiration rates measured in control and compost plots in (A) A3A 

(measurements started 6/28/16, 8/23/16, 10/1/16, 11/1/16, 5/26/17, 7/18/17, and 9/9/17) and (B) 

A2S (measurements started 7/12/16, 8/18/16, 9/22/16, 11/2/16, 5/24/17, 7/13/17, and 9/10/17). 

N.D. refers to no data. Values are mean ± SE and * indicates a significant difference between 

control and compost transects (paired t-test, p<0.05). 

3.4 Ecosystem C Flux (NPP, ER, and GPP) 

 There were no significant differences in NPP, GPP or ER between the two wetland sites, 

however, all fluxes showed a significant temporal pattern (NPP: F4,25=7, p=0.0006; ER: 

F3,19=3.91, p =0.02; GPP: F3,21=7.4,  p=0.001, Table 5, Figure 9) and there was a significant 

interaction between site and date for NPP and GPP (NPP: F4,25=5.8, p=0.001; GPP: F3,21=6.1, p 

= 0.004 , Table 5, Figure 9). Also, there was a marginally significant interaction between site and 

date for ER (p=0.09, Table 5). There was net C uptake in the control plots across all 
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measurement dates, with NPP ranging from close to zero to -16.4 ± 4.9 g C m
-2

 d
-1

 in A3A and 

from -1.8 ± 0.4 to -20.1± 1.9 g C m
-2

 d
-1

 in A2S (Figure 9). At both sites, CO2 exchange was low 

in 2016 and there was no difference between summer and fall measurements. In 2017, the 

seasonal pattern in ecosystem CO2 fluxes in control plots at the two sites differed. In A3A, NPP, 

GPP and ER all peaked in July, whereas in A2S, ER increased across the growing season while 

GPP decreased across the same time period, resulting in maximum CO2 uptake in the spring 

(Figure 9, Appendix C). Multiple regression analysis with a linear mixed model showed a 

significant effect of temperature (NPP: F1,63=5.4, p<0.02; GPP: F1,53=10.4, p<0.002; ER: 

F1,16=4.7, p=0.04) and rainfall (ER: F1,51=13.9, p<0.0005; GPP: F1,49=11.4, p<0.001; NPP: 

F1,59=11.7, p<0.001) on NPP, GPP and ER as well as a significant effect of treatment on ER 

(F1,44=7.9, p<0.007, Table 6). During most of the study period paired t-tests did not show a 

significant difference between NPP, GPP and ER in control and compost plots, however, GPP (p 

< 0.008) and ER (p=0.06) in A2S compost plots was double that of control plots in September 

2017 and NPP was an order of magnitude lower in A3A compost plots compared to control plots 

in August 2016 (p = 0.004).  

 

 

TABLE 5. Results of two-way ANOVAs examining the effect of site (A3A, A2S) and 

measurement date on NPP, ER, and GPP (2016-2017).  Significant p-values are 

bolded. 

 

Site Date Site*Date 

 

F p F p F p 

NPP F1,25=1.4 0.23 F4,25=7.1 0.0006 F4,25=5.8 0.001 

ER F1,19=0.6 0.44 F3,19=3.9 0.02 F3,19=2.4 0.09 

GPP - - F3,21=8.1 0.001 F3,21=6.1 0.004 
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Figure 9. NPP (A, D), ER (B, E), and GPP (C, F) during growing and fall seasons of 2016-2017 

in A3A (A-C) and A2S (D-F). Values are mean ± SE. * indicates a significant difference in a 

paired t-test (p<0.05). N.D. refers to no data. 
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3.5 Methane Flux  

 

 Methane emissions from both wetlands were variable and the majority of measurements 

made during the summer and fall of 2017 had to be omitted due to soil disturbance causing 

ebullition events during chamber deployment. The highest CH4 emissions occurred at A2S in the 

spring of 2017, with fluxes of 74.9 ± 18.9 mg CH4-C m
-2

 d
-1

 (Figure 10). At A3A, CH4 emissions 

were highest, but also extremely variable, in the fall of 2016 (55.5 ± 43.0 mg CH4-C m
-2

 d
-1

) and 

summer of 2017 (58.8 ± 65.0 mg CH4-C m
-2

 d
-1

, Figure 10). At both sites, CH4 emissions were 

near zero or there was a net uptake of CH4 in the summer of 2016 (Figure 10). There were no 

significant differences in CH4 emissions from control plots at the two sites, however, 

measurement date had a significant impact on fluxes (F2,12 = 3.8, p = 0.05, Table 7, Figure 10) 

and there was a marginally significant site by date interaction (p = 0.07). Further investigation 

into environmental drivers of CH4 emission showed that while site and temperature did not have 

a significant effect on CH4 fluxes, days since it last rained was a significant predictor of CH4 

emissions (F1,11=4.8, p = 0.05).  Within each site, neither days since rain or temperature were a 

significant predictor of CH4 emissions, however, there was a trend towards rainfall having an 

effect in A2S (p = 0.07). Organic matter addition did not have a significant effect on CH4 

emissions at either site. In chambers that were emitting CH4, emissions in the light were 

approximately double those in the dark, however, this difference was only significant in A2S (p 

= 0.05, Figure11). 

TABLE 7. Results of two-way ANOVA (site and measurement date) and linear mixed-model 

(site, temperature, and day since rain) examining predictors of CH4 fluxes from control plots at 

both sites. Significant p-values are bolded. 

 

Factor               Site                 date 

 

         Site*date 

CH4 flux 

F p F p F p 

F1,12=1.5 0.25 F2,12=3.8 0.05 F2,12=3.5 0.07 

Site Temperature Days Since Rain 

F1,12=2.7 0.13 F1,11=0.3 0.59 F1,11=4.8 0.05 
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Figure 10. Methane fluxes from control and compost plots during 2016 and 2017 in (A) A3A 

and (B) A2S. N.D. refers to no data. Data with n=2 refers to sites/dates where the sample size 

was only 2, these data points were not used for statistical analysis.  
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Figure 11: Methane fluxes under light and dark conditions in each wetland. Values are mean ± 

SE. * indicates a significant difference in CH4 flux between the light in dark condition (paired t-

test, p<0.05). 

 

3.6 Soil Incubations 

 Potential rates of anaerobic CH4 and CO2 production were significantly different between 

the two sites, as was the CH4:CO2 production ratio (F3,12=4.1, p <0.001, Figure 12, Table 8). 

Production rates of CO2 and CH4 and the CH4:CO2 production ratio were significantly higher in 

soils from A2S (p < 0.01). In A3A CO2 production was the dominant form of anaerobic 

respiration (4.7 ± 0.4 and 7.1±0.8 g d
-1 

g dry soil
-1 

in control and compost respectively) and 

there was minimal CH4 production (0.03 ± 0.01 and 0.17 ± 0.06 g d
-1 

g dry soil
-1

 in control and 

compost respectively), resulting in CH4:CO2 production ratios near zero. In contrast, CH4 and 

CO2 production rates were a similar magnitude in A2S resulting in CH4:CO2 production ratios 

that approached one (0.4± 0.2 and 0.9 ± 0.2 in control and compost respectively). Although soils 

amended with organic matter were not significantly different from control soils, there was a 

trend towards higher CO2 and CH4 production rates in compost soils from both sites (Figure 12, 

Table 8).  



 

25 
 

TABLE 8. Results of two-way ANOVAs examining the effect of site and treatment on CH4 and 

CO2 production rates and their ratio in anaerobic incubations. Significant p-values are bolded. 

 

 

 

Figure 12. (A) CH4 production rates, (B) CO2 production rates and (C) CH4/CO2 production 

ratios from anaerobic incubations of soils collected from each site. Values are mean ± SE and 

letters indicate statistical differences between averages.  

 

Factor Site Treatment Site*Treatment 

 
F p F p F p 

CH4 production rate ratio F3,12=3.2 0.008 F3,12=1.3 0.23 F3,12=1.2 0.25 

CO2 production rate ratio F3,12=3.7 0.003 F3,12=1.5 0.15 F3,12=0.7 0.52 

CH4/CO2 production rate ratio F3,12=4.1 0.001 F3,12=1.6 0.14 F3,12=1.5 0.16 
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4. Discussion  

4.1 Overview 

 This project focused on understanding the impact of OM addition on GHG fluxes 

including soil respiration, CH4 emission and ecosystem CO2 exchange (NPP, ER, and GPP) in 

two wetlands with differing hydrology, vegetation, and soil chemistry. We found that seasonal 

and inter-annual weather conditions, especially rainfall and temperature, were the dominant 

factor controlling GHG emissions within both wetlands. Drought conditions during 2016 limited 

both soil respiration and plant activity, negatively impacting soil and ecosystem CO2 exchange. 

This reveals the sensitivity of wetland ecosystems to fluctuations in weather, particularly the 

timing and amount of precipitation. In 2017, moisture conditions were more typical and OM 

addition significantly increased soil respiration in A2S when soils were wet, but not inundated. 

During this same time window, GPP was also significantly higher in the organic matter amended 

plots, however, increases in respiration meant that there was no net change in CO2 exchange. 

Unlike A2S, A3A was mostly dry across both years and while OM did not have a significant 

effect on soil respiration, NPP was slightly lower in August 2016, possibly due to lower 

respiration rates. Methane emissions were highly variable and were low during much of the 

study due to dry conditions, however, when emissions were high, fluxes were significantly 

higher in the light than the dark at A2S, suggesting that active transport is important in this 

wetland. Further, incubations showed that there was higher CO2 and CH4 production potential 

under anaerobic conditions in A2S that in A3A and that there is minimal potential for CH4 

production in A3A. This could be due to the microbial community not being adapted to 

anaerobic conditions in A3A. This supports the hypothesis that climate and hydrological regime 

are important controllers of CO2 uptake and GHG emissions in created wetlands. 

 

4.2 Soil Respiration 

 

 Temperature and precipitation were key drivers of soil respiration at both wetland sites. 

This is consistent with other studies that have found temperature and moisture to be important 

factors controlling soil biogeochemical processes. A 10 °C increase in temperature has been 

found to double decomposition rates, increasing wetland soil respiration under aerobic conditions 

(Rasmussen et al., 1998; Sylvia et al., 1998; Christensen, 1993). Drought conditions, such as 
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what we observed at HANA in 2016, have also been shown to inhibit soil respiration. Low 

precipitation coupled with high temperatures leads to dry soil conditions, which can suppress soil 

biogeochemical processes (Cook & Orchard, 2008; Ågren & Wetterstedt, 2007). For example, an 

experiment conducted at the Harvard forest found that drought resulted in a decrease in soil 

respiration (Borken et al., 2006). This is due to soil water content being a crucial factor for 

microbial activity (Wilson & Griffin, 1975) and extreme conditions of continuous drought inhibit 

respiration, because water is required for hydrolytic reactions during respiration (Malone, Starr, 

Staudhammer, & Ryan, 2013). This also explains the observed increase in soil respiration 

following precipitation in late summer and fall of 2016.  

Because soil respiration includes root respiration, plant stress during drought can also 

negatively affect soil respiration. This could be another factor explaining the low rates of soil 

respiration observed in early summer 2016. Studies have shown that photosynthesis in wetlands 

is highest when the water table is high (Malone et al., 2013; Adkinson et al., 2011), and that 

lowering of the water table has a negative effect on photosynthesis (Lafleur et al., 1997). 

Because studies have found a positive relationship between soil respiration and net primary 

productivity in many ecosystems (Raich & Schlesinger, 1992, Olson et al., 1983), drought 

conditions in our sites could have indirectly reduced soil respiration by limiting primary 

productivity of wetland vegetation. 

Differences in seasonal patterns in soil respiration between the two sites in 2017 suggest 

that hydrology and temperature interact to determine seasonality of soil respiration. At A3A 

there was no standing water during the study period in 2017 and the highest soil respiration rate 

occurred in July, when soil temperatures were highest. This pattern is similar to that observed in 

a mitigation wetland dominated by upland species, where the highest soil CO2 flux (>400 mg m
-2  

h
-1

) occurred under low water levels in the summer (Winton & Richardson, 2015). In contrast, 

soil respiration at A2S increased from May to July and then plateaued through the fall, despite a 

decline in temperature. The decline in water table depth, from standing water in May to no 

visible water table in September likely contributed to this pattern. Standing water during May 

and July created anaerobic soil conditions, which could reduce soil respiration due to oxygen 

limitation, whereas in September, aerobic soils would promote soil respiration despite lower 

temperature (Winton & Richardson, 2015).  
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Overall, OM addition had a small effect on soil respiration rates in this study. This is in 

contrast to findings by Winton & Richardson (2015), who observed an increase in soil 

respiration with OM loading. There was a doubling of soil respiration in OM amended plots in 

September 2017, when soils were moist, but there was no standing water. This supports the 

hypothesis that OM addition will increase soil respiration in aerobic soils due to the OM 

providing C substrate that feeds microbial activity (Balch et al., 1979). The observation that OM 

addition had the most impact in A2S when there was no standing water, but the system was not 

drought stressed, is also consistent with the study by Winton & Richardson (2015), who also 

observed the most significant effect of OM loading when the water table was low. 

In A3A, however, soil respiration was never significantly different in compost and 

control plots despite the absence of standing water. One explanation is that the higher species 

richness at this site could reduce the impact of OM addition. Several studies have found that 

vegetation composition impacts GHG fluxes by controlling C input and influencing organic 

matter quality ( Treat et al., 2015; Turetsky et al., 2014; Bhullar et al., 2014; Inglett et al., 2012; 

Reddy & DeLaune, 2008; Ding et al., 2003; Brix et al., 2001). Therefore, organic matter 

differences related to vegetation cover could override any effects of OM addition. A greenhouse 

project looking at the relationship between species composition and soil respiration could be an 

important next step to more fully understand how soil respiration rates respond differently to OM 

addition in wetlands with different plant communities.  

  These findings highlight the fact that the impact of OM addition on soil respiration is 

dependent on local weather and vegetation features. The effectiveness and trade-offs associated 

with OM addition as a management technique in created wetlands are likely to be depended on 

interactions between multiple wetland features. Therefore, a generalization of these findings to 

other systems or even the same system in different years or seasons could be difficult.  

 

4.3 Ecosystem C Flux (NPP, ER, and GPP) 

 

 Vegetation in a wetland ecosystems is a key factor determining GPP, NPP, and ER. At 

HANA, total vegetation cover was similar between the two wetlands, however, vegetation cover 

at A2S was dominated by Phalaris arundinacea and Typha spp., whereas A3A was more diverse 

(Table 2). These differences in species composition did not result in significant differences in 

ecosystem CO2 exchange.  This is different from studies conducted in other wetland systems, for 
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example in fens, variations in photosynthesis and respiration were found between poor fens 

dominated by Sphagnum spp. and rich fens dominated by sedges (Glenn et al., 2006). One 

explanation for our finding is that at our sites, variation in NPP, GPP, and ER were largely 

driven by temporal patterns associated with seasonal and inter-annual variation in temperature 

and rainfall. For example, during 2016, drought conditions resulted in very low NPP at both 

sites. Multiple studies ranging from Everglades marshes to Alaskan peatlands have also found 

that drought conditions decrease in NPP and cause ecosystems to shift from a C sink to a C 

source (Olefeldt et al., 2017; Malone et al., 2013). Drought conditions can lead to vegetation 

stress and lower rates of photosynthesis, reducing C uptake. Previous studies have also found 

that dry conditions have a negative effect on photosynthetic rate (Lafleur et al., 1997) while high 

standing water has a positive effect on photosynthetic rates (Malone et al., 2013; Adkinson et al., 

2011).  

Interactions between hydrological regime and seasonal patterns in temperature and plant 

growth contributed to a significant site by date interaction for NPP. In A2S, the highest NPP was 

observed in May and then NPP declined through the summer and into the fall. This decline in 

NPP was driven by both a decline in GPP and an increase in ER and tracked the decrease in 

water level across the summer. It is also consistent with the rapid early season growth observed 

in the dominant plant species Phalaris arundinacea and Typha spp. (Williams, unpublished 

data). Studies have shown that the highest rate of photosynthesis occurs under high water 

conditions (Malone et al., 2013; Adkinson et al., 2011) and that high rates of respiration occur 

under more aerobic conditions when the water table is low (Yang et al., 2013; Sulman et al., 

2010; Sulman et al., 2009; Olson et al., 1983). Therefore, high water levels coupled with rapid 

early season plant growth had a positive effect on C uptake at this site. In contrast, at A3A, 

where soils were never inundated, NPP was highest in July due to high photosynthetic rates. 

Adkinson et al. (2011) also found a similar trend in July and attributed it to increases in 

vegetation cover and photosynthetic rate during the growing season. In A3A, ER was also 

highest in July, reducing overall C accumulation rates during mid-summer. This pattern matches 

observations of soil respiration at this site, with maximum respiration when temperature was 

highest. Additionally, carbon inputs to wetlands soils can be increased during warm periods 

when rates of photosynthesis are at the maximum (Crafts-Brandner & Salvucci, 2002; Chapin & 
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Shaver, 1996) and this C input combined with aerobic conditions and high temperatures can 

increase soil respiration (Bubier & Crill 2003).  

 Organic matter addition resulted in only a few changes in ecosystem CO2 exchange 

during the study period. In A3A, NPP was lower in compost plots compared to control plots in 

August 2016. Problems with dark chamber measurements limits identification of the cause of 

this change, however, increased C availability could have increased ecosystem respiration, 

resulting in a decrease in NPP. In A2S, compost addition increased GPP and ER in September 

(2017) resulting in no change in NPP. This suggest that under moderate temperature and water 

conditions organic matter addition promotes both plant growth and soil and plant respiration, 

resulting in no net change in CO2 exchange.  

 

4.4 Methane emissions  

 

 Water conditions, both the amount and timing of rainfall as well as site differences in 

hydrology resulted in variability in CH4 emissions. Low emissions in August 2016 and higher 

emissions in October of 2016 as well as all of 2017 can be attributed to rainfall patterns, with 

fewer days since rain predicting higher emissions. Measurements in 2017 suggest that in years 

with typical rainfall, CH4 emissions are higher in the inundated soils found at A2S. However, 

high rates of ebullition in A2S, possibly caused by soil disturbance during chamber sampling, 

prevented accurate measurements CH4 emissions at that site during most of 2017. Methane 

production and consumption is known to be particularly sensitive to the location of the water 

table. Methanogenesis only occurs in anaerobic soils, which are found below the water table, 

whereas methanotrophy requires oxic conditions, present at the soil water interface and the 

rhizosphere. This means that inundated conditions generally enhance CH4 production (Olefeldt et 

al., 2017; Bansal et al., 2016; Whalen, 2005; Bubier & Crill, 2003; Griffis et al., 2001), while no 

standing water table can result in an increase in CH4 oxidation and shift in decomposition 

towards aerobic processes that yield CO2 ( Olefeldt et al., 2017; Hou et al., 2013; Sulman et al., 

2010; Ise et al., 2008; Whalen, 2005).  

Organic matter addition did not have a significant effect on CH4 emissions in this study. 

This is consistent with field measurements done in a mitigation wetland in Virginia, which found 

that heavy OM loading increased soil CO2 fluxes, but did not affect CH4 emissions (Winton & 

Richardson, 2015). It does conflict with the findings of Ballentine et al. (2015) who found that 
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OM addition in restored freshwater wetlands in western New York resulted in a 20% increase in 

potential net of CH4 production. The lack of standing water at both sites during much of the 

study may have limited CH4 production, restricting any observations of the effect of OM 

addition on CH4 emissions.  

Higher rates of CH4 emission in the light compared to the dark were observed at A2S, but 

not A3A, suggesting that differences in vegetation between the sites may influence CH4 

transport. A closer look at individual chambers measurements shows that transect 1 and 9 in A2S 

had the largest differences in CH4 flux between light and dark conditions. At the time of flux 

measurements, these locations also had the highest percent cover of Typha latifolia (30 and 10% 

respectively). Overall, A2S had higher percent cover of Typha spp., especially Typha latifolia, 

compared to A3A, which had no Typha latifolia and only a small amount of Typha angustifolium 

(Table 2, appendix B). These differences in the abundance of Typha species is likely to be an 

important factor contributing to the observed differences in CH4 emissions under light and dark 

conditions. Typha spp. are known to transport gases through pressurized ventilation, a process 

that that is sensitive to light and results in CH4 emissions that are highest under high light and 

lowest at night or in the dark (Chanton et al. 1993). In contrast, other wetland species use passive 

transport, which is not influenced by light intensity (Brix et al. 2001; King et al., 1998; Chanton 

et al., 1993). Ding et al. (2003) found that different plant types differ in their ability to transport 

CH4 to the atmosphere. This was supported by Bhullar et al. (2013), who examined the plant 

transport ability of 20 forbs and graminoids species in European wetlands and found that 30-

100% of the total CH4 flux was transported by plants, with graminoid species transporting more 

CH4 than forbs. Therefore, differences in vegetation are likely to have played an important role in 

determining the light sensitivity and magnitude of plant mediated CH4 transport at the wetland 

sites.  

 

4.5 Soil Incubations 

 Anaerobic CH4 and CO2 production rates were higher in A2S than A3A, suggesting that 

there are large differences in C metabolism at the two wetlands. Soils in A2S were moist during 

sampling and regularly experienced inundated conditions that create an anaerobic environment, 

whereas A3A was completely dry during soil sampling and is rarely flooded. This means that the 

microbial community in A3A may not be adapted to metabolize C under anaerobic conditions, 



 

32 
 

resulting in low CO2 production and negligible CH4 production rates under anaerobic conditions 

in the laboratory. Extremely low CH4 production in A3A supports the hypothesis that A3A lacks 

a methanogen community. Previous studies have also shown similar variability in CH4 

production potential when soils collected from diverse wetland types are incubated under 

identical temperature and moisture conditions, with soils collected from aerobic habitats 

producing very little CH4 when exposed to anaerobic conditions (Hodgkins et al., 2014; Boon et 

al., 1997). Organic matter lability can also impact CO2 and CH4 production potential in wetlands 

with different vegetation cover. Hodgkins et al. (2014) found that production of both gases and 

the CH4:CO2 ratio increased with organic matter lability in a thawing permafrost peatland. High 

nitrogen availability can also inhibit CH4 production by stimulating denitrifiers, who outcompete 

methanogens for C substrate ( Kim et al., 2015; Bodelier, 2011) and produce intermediate 

products (NO2
-
, NO and N2O) that have been shown to be toxic to methanogens (Bodelier, 2011; 

Roy & Conrad, 1999). Further analysis of soil chemistry and microbial community composition 

could help explain the observed trends in anaerobic C gas production rates. 

 There were no significant effects of OM addition on CH4 and CO2 production rates and 

their ratio, however, there were trends towards higher production rates in soils from plots with 

added OM. Interaction between in situ soil chemistry and the composition of the added OM, 

particularly its low C:N (Williams unpublished data), may have contributed to the small response 

to OM amendment at both sites. The soil amendment study by Ballantine et al. (2015) showed 

that some, but not all types of soil amendment increase respiration rates in laboratory incubation, 

suggesting that the chemistry of the soil amendment can impact the response of the microbial 

community. While Ballantine et al. (2015) observed higher CH4 production potential in OM 

amended soils, their incubations were conducted under field moisture conditions and they 

concluded that moisture differences between control and treatment plots may have been an 

important factor driving this pattern.  
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5. Conclusions 

 The results of this study show that precipitation patterns and hydrologic regime are key 

drivers of CH4 and CO2 fluxes in created wetlands. Variability in precipitation, particularly inter-

annual differences in the timing and amount of rainfall, was the dominant factor explaining 

variability in all measured gas fluxes.  This study also shows that differences in hydrology that 

occur when creating wetlands can change their potential to produce CO2 and CH4 under both 

field and laboratory conditions. Consideration of hydrology should therefore be a priority when 

planning created wetlands, to ensure ecosystem functions are resilient to climate fluctuations 

across seasons and years. Further, water availability was also a key determinant of whether 

organic matter amendment resulted in significant changes in GHG emissions, with the largest 

changes in CO2 fluxes observed when soil moisture was high, but soils were not inundated. This 

highlights the importance of considering hydrological regime when predicting C sequestration 

and GHG flux responses to management approaches.  
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Appendix C. Results of Tukey's HSD (honest significant difference) test of differences in NPP, 

ER, and GPP between measurement dates in control plots in 2017.  Significant p-values are 

bolded. 

 

 

  

NPP 

 

GPP 

  

ER 

 Site Date p Date p Date p 

 

May Jul. 0.04 May Jul. 0.01 Jul. May. 0.25 

A3A Sep. Jul. 0.05 Sep Jul. 0.03 Jul. Sep. 0.52 

 

May Sep. 0.98 May Sep. 0.88 Sep. May. 0.83 

 

Sep. May 0.02 Sep. May 0.08 Sep. May 0.02 

A2S Jul. May 0.09 Jul. May 0.17 Sep. Jul. 0.09 

 

Sep. Jul. 0.65 Sep. Jul. 0.93 Jul. May 0.51 
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