
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

11-2017

How Should You plan Your App’s Features? Selecting and How Should You plan Your App’s Features? Selecting and

Prioritizing A Mobile App’s Initial Features Based on User Reviews Prioritizing A Mobile App’s Initial Features Based on User Reviews

Rebaz Saber Saleh
rss1803@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Saleh, Rebaz Saber, "How Should You plan Your App’s Features? Selecting and Prioritizing A Mobile App’s
Initial Features Based on User Reviews" (2017). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9627?utm_source=repository.rit.edu%2Ftheses%2F9627&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

How Should You plan Your App’s
Features? Selecting and Prioritizing A
Mobile App’s Initial Features Based on

User Reviews

by

Rebaz Saber Saleh

A Thesis Submitted
in

Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Software Engineering

Supervised by

Dr. Daniel Krutz

Department of Software Engineering

B. Thomas Golisano College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, New York

November 2017

ii

The thesis “How Should You plan Your App’s Features? Selecting and Prioritizing A

Mobile App’s Initial Features Based on User Reviews” by Rebaz Saber Saleh has been

examined and approved by the following Examination Committee:

Dr. Daniel Krutz
Assistant Professor
Thesis Committee Chair

Dr. Christian Newman
Assistant Professor

Dr.Hawker Scott
Associate Professor

iii

Dedication

This thesis and all of my academic achievements are dedicated to my mother, Dulbar

Tofiq, my father, Saber Saleh and my beloved wife, Zhela Rashid

iv

Acknowledgments

I would like to thank my committee members, Dr. Daniel Krutz and Dr. Christian

Newman. In particular, I would like to thank my adviser, Dr. Daniel Krutz, who provided

me with the opportunity and necessary guidance to pursue this research.

I would like to thank the Higher Committee for Education Development in Iraq(HCED),

for sponsoring my study.

Finally, I would like to thank all my family and friends, without whom I would not be

where I am today.

v

Abstract

How Should You plan Your App’s Features? Selecting and Prioritizing
A Mobile App’s Initial Features Based on User Reviews

Rebaz Saber Saleh

Supervising Professor: Dr. Daniel Krutz

The app market is extremely competitive, with users typically having several alternative

app possibilities. To attract and retain users, it is imperative for developers to consider the

ratings and reviews their apps receive. App reviews frequently contain feature requests,

sometimes hidden among complaints. Developers use these complaints and requests to

improve their apps, thus increasing their rating which is incredibly important for attracting

new users. Unfortunately, developers of new apps are at a severe disadvantage: They do

not have the benefit of existing reviews, with only the reviews of similar apps to potentially

rely upon. To address this problem, we conducted a study and developed a novel technique

that extracts feature requests from similar, existing apps to help prioritize the features and

requirements important in an initial app release.

We compared different classification models in order to identify most appropriate clas-

sifier for classifying reviews category-wise. We found that there is not one single classifier

that could have a higher accuracy than others for all categories.Our study also involved ex-

tracting features from user reviews in the Google Play store. The features were presented to

17 Android developers twice; once without applying our technique and once after applying

our technique. Our proposed technique created a 48% reduction in the number of features

vi

considered high priority by participants; helping developers focus on what features to con-

sider for their apps. We surprisingly found that the frequency of requested features did not

impact the developer’s decisions in prioritizing the features in the inclusion of new apps.

vii

Contents

Dedication . iii

Acknowledgments . iv

Abstract . v

1 Introduction . 1
1.1 Background . 2
1.2 Motivation . 3

1.2.1 Motivating Example . 6
1.3 Research Objectives . 6

2 Related Work . 9

3 Approach . 15
3.1 Raw Reviews . 16
3.2 Data Preprocessing . 18

3.2.1 String Matching . 18
3.2.2 Natural Language Processing . 20

3.3 Document Term Matrix . 23
3.4 Classification . 24

3.4.1 Learning Phase . 24
3.4.2 Prediction phase . 28

3.5 Extracting Features . 29
3.6 Term Feature Association . 31
3.7 Summary . 33

4 Implementation . 34
4.1 Challenges . 35
4.2 Tools . 36

viii

4.3 Components . 38
4.4 Workflow . 40
4.5 Summary . 41

5 Analysis . 43
5.1 Survey . 43

5.1.1 Structure of Survey . 43
5.1.2 Participants . 44
5.1.3 Results . 45

5.2 Threats to Validity . 48

6 Conclusions . 50
6.1 Current Status . 51
6.2 Future Work . 51

Bibliography . 54

A Diagrams . 59

B Survey . 63
B.0.1 IRB Approval . 63
B.0.2 Request for participation email . 64
B.0.3 Survey . 65

C Tables . 71

ix

List of Tables

3.1 Sample user reviews. 17
3.2 List apps and reviews for each category. 18
3.3 Number of reviews before and after String Matching. 20
3.4 Accuracy of classification techniques using DT and Naive Bayes for each

category . 27
3.5 Confusion matrix of Tree of social reviews 28
3.6 Confusion Matrix of Naive Bayes of social reviews 28
3.7 Same feature request sample (Timer). 30
3.8 Topics in music apps reviews . 31
3.9 Top requested features . 32

5.1 #Published apps by participants . 45
5.2 Feature usage before and after showing list of users requested features . . . 47
5.3 Feature priority list . 48

C.1 Topics in social apps reviews . 72
C.2 Topics in tools apps reviews . 72

x

List of Figures

3.1 Approach overview . 15
3.2 Processing reviews for vector generation 21
3.3 Document matrix process . 23
3.4 A portion of labeled data . 25
3.5 Predicted features request by the classifier 29

4.1 System user case diagram . 39
4.2 Activity diagram for creating a new project 42

A.1 Creating data matrix for classification model 59
A.2 Creating data matrix of all reviews . 60
A.3 Processing documents(reviews) . 60
A.4 Classification model construction . 61
A.5 Applying models . 62

B.1 IRB approval . 63
B.2 Survey consent . 65
B.3 Survey guidelines . 66
B.4 Step one in the survey . 67
B.5 Step two in the survey - A . 68
B.6 Step two in the survey - B . 69
B.7 Questionnaire . 70

1

Chapter 1

Introduction

Due to the advance in phone technology, smart phones are used in the majority of our

daily tasks, such as email, chat, banking, reminders, etc. These tasks are performed using

mobile application which is also called an “app”. These apps are ranging from performing

a simple task such as operating the flashlight of apps to apps that are specific to games such

as “Candy Crush” and social apps such as Facebook and Twitter.

These apps are developed either by an individual developer or a team of developers in a

company or an open source community. They are making money from either paid apps, in-

app purchases or ads that are integrated into the apps. As of now, there are 3,287,763 apps in

Play Store[4]. The number of apps continues growing and new apps released frequently. In

Sep-2016 play store contained 2,419,362 while play store currently contains are 3,287,763

apps which increased by almost 1/3 comparing to last year.

While this large number of apps seems to be an advantage for the users, because they

have more options and alternatives, but it is not the case with developers, because now the

market is very competitive, the team has to spend more time and even money in marketing

and developing high quality apps in order to attract more users and keep them use the app

and its services, in order to grow their business and also maintain the apps while making a

profit for the developer as well.

In this study, our goal is to help developers to publish feature rich application, so that

their apps can emerge to the market as soon as possible and also compete with the rival

apps. To do so, we are getting benefit from the reviews that users post on other similar

apps in the same category. We mine the feature requests from the user reviews, and them

2

associate them with real functionality inside the apps, then we propose a framework that

the developer can use in order to integrate these features rapidly in their apps.

1.1 Background

Mobile apps have been increasing popularity due to the advances in mobile technology.

Nowadays, mobile apps provide most of the daily needs of users, from calendars, reminder,

calculator, note taking to word and excel processing. In addition, Users are now able to play

video games and use videos and photo editing tools in mobile phones. In third quarter rev-

enue report 2016, Facebook announced that 90% of the daily active users are from mobile

phones which was 80% in 2014 [16]. Most of Twitter’s active users are also from smart-

phones, according to the company 83% of monthly active users are from smartphones [17].

Although the type of application significantly impact the users to mobile phones, however

as compared to last years of company data, the user base of mobile phones for Facebook

has increased significantly.

There are several mobile platforms including Android, iOS and Windows which each

being developed and maintained by a different company. Users can install new apps

through the marketplace that is provided by the company or some external app stores if

the platform allows installing apps from third-party markets. Furthermore, these compa-

nies provide tools in order to make the development and publishing new apps easier for the

developers. For instance, Apple provides Xcode which is an IDE for iOS app development

and Google has released Android Studio to facilitate developing Android apps. These plat-

forms are also providing tools and APIs in order to integrate ads and in-app purchases to

the apps by the developers. These tools allow developers and owners of the apps making

money either by selling the app, ads or in-app purchases through their apps. However,

It is reported that only 7.0% of apps in play store are paid-for app [3]. Most of mobile

apps depend on ads in order to generate revenue. Facebook mobile advertising revenue

represented approximately 84% of all advertising revenue [16] of the company and Twitter

reported that 90% of the advertising revenue was from its mobile app. Thus, the more users

3

the mobile apps attract, the more money they make. For this reason, many advertising tech-

nology companies provide APIs for developers in order to integrate ads to the mobile apps

easily.

Ads in mobile apps are added as banners, videos, and images to the apps or within

the app structure as it can be seen in Facebook’s news feed. In some apps for example

in games users are rewarded with game specific coins or other types of boosters when

they watch or click on an ad that is provided by the app. Therefore, most developers

prefer integrating ads and provide in-app purchases rather than paid apps. In addition,

depending on the type of app, some users prefer ads rather than purchases, and not all

users want to pay for the services provided by the app, but they can watch and click on the

ads. According to Appbrain [3] there are 2,953,661 free apps and 218,481 paid apps. That

means approximately 93% of the apps are free apps.

The availability of different tools and APIs makes it easy for both companies and in-

dividual developers to create and distribute their apps through the app marketplace. This

leads to releasing several apps each and every day. App marketplaces might have some

rules and regulations, but several apps are approved to be published through the market-

place without considering the quality of the app. But due to the expansion in the number of

mobile apps, it is now more competitive and more difficult to increase the user base of the

mobile app than before. Additionally, the rating and number of downloads of an app have

significant effect on the popularity of the apps since they show how users are reacted and

interested in using the app and the services or the tools provided by the app [21].

1.2 Motivation

After installing the app, users can post their feedback and experience in the app store.

Users may also rate the app. When other users try to install the app, they usually read the

average rating and some reviews of other users on the app and read number of downloads

if available, which determines popularity of the app in order to have an insight about the

quality of the app. Later if the user satisfied with the ratings and user reviews, he/she installs

4

the app otherwise they avoid installing the app and look for an alternative due to the high

number of available apps. Therefore, user rating and reviews and number of downloads

are very important measurements of the app popularity and quality and success of the app.

Developers have to take into account users reaction to the apps, how is their experience,

what are the users major interests in order to maximize it, and what are their main concerns

and issues in order to eliminate them to increase user satisfaction which will eventually

lead to the increase in the average rating of the app [22] and then popularity of the app as

the number of downloads increase[5].

According to a study by AppBoy [2] which was conducted in order to examine the rea-

son behind removing the apps by the users. The participants where 22 of their employees.

They found that 25.9% of the participants remove apps due to problems that exist in the

apps core functionality such as crashing and lack of update [2]. In addition, they found

that 14.8% of participants were uninstalling apps due to existing of competitor apps or

switching to an alternate app[2].For this reason, developers must now take into account the

quality of the app. They must keep testing and maintaining the app and periodically update

the app, in order to provide the users with the latest features and requirements that makes

them keep using the app otherwise the user might switch to a rival app [2].

The reviews that users post in different app stores contains their experience, opinions,

reaction, issues, feature request and etc. Developers are able to get useful information from

the users feedback and make some improvements and fixes in the app. But not all user

reviews are useful. For instance, if it is a gaming app, the user does not like the game, that

does not mean the app quality is bad, but instead the user is not interested in this kind of

game. Contrary, there are other reviews that request features in the app, if the developer

add the feature of the app, it might lead to increase number of users, and might also lead to

get high rating as a reward from the users. Because when developers respond to the need

and feature requests of users, other users will also benefit the feature and might recommend

the app to friends and family.

5

When the number of ratings and reviews of an app increases, it is difficult for the de-

velopers to separate the informative from non-informative reviews manually or go through

them one by one. Developers now can analyze the user reviews and ratings through Google

Play Console. It allows developers identify common themes and topics used in the reviews

and how the average rating and reviews might affect rating [26]. Besides that, several

research studies [8][10] have been conducted in order to help developers extract the in-

formative reviews as well as grouping them, and help prioritizing app features and issues.

This way developers can make improvements to their apps, in order to get positive feedback

from users for next-release of the app which might lead to the success of the app [22].

Apps in the app stores distributed under several categories such as education, music,

games and sub-categories such as action and adventure in games. Most apps under same

categories share some common features in the app. For instance, social media login is a

feature that is available in most of the gaming apps. User can sign up and login with their

social accounts and share their scores and activities with friends and family. This feature

allows direct sign up through social APIs instead of providing a separate sign up and login

form for the app.

When users use an app, they might post their feedback or comments on the app which

might be in the form of a feature request in the app [20][22][13]. The app developers that

address user requests by either including the feature requested by the user or fixing a bug

report, are rewarded with high rating and positive feedback and reviews from users which

leads to increasing its popularity [5]. Other developers that have similar app under same

category might be able to get benefit from other apps user reviews and integrate the same

feature to attract more user. The user has requested a feature in an app that has been used

for a while, and gained some popularity. In contrary, developers that have released new

app, require sometime in order to engage more users to the app and get the user feedback.

Moreover, since it is a new app, it might lack some features that are considered essential

features in the app domain. Therefore, it requires sometime until the app merges into

market and gets popularity.

6

In this study, our goal is to examine how having insights of features of other apps can

help developers get to know and familiarize themselves to the most trending features and

then prioritize the features for the release of the app so that they deliver the app in a shorter

period of time enriched with features that are most preferred by users of similar apps under

same category.

1.2.1 Motivating Example

To give a context for our work, we will now provide a specific instance where a developer

of a new app could be helped by feature information from an existing, related app. In this

example, a developer wants to create a music app similar to Spotify. The key differences

between the new app and Spotify is that in the new app, users can invite their friends to

chat and listen to the same song at the same time as well as customizing the background of

the chatting interface. These two features might seem attractive to users, but they might not

use the app if the app lacks some important features that are in existing music apps such as

‘Playlist’ and ‘Using offline’.

The developers of the new app can copy some features from Spotify and other similar

apps. But how do they decide which features are the most important features to users?

How do they know if they are still missing some important feature? Additionally, how

does the developer prioritize features? Through our study, we propose an approach to

familiarize app developers with the top requested features in the music category as well as

the frequency of the request for these features. Once this information is presented to the

developer, they can make informed decisions on which features to include and implement

first.

1.3 Research Objectives

The primary objective of this work is to study how extracting features from reviews of users

would introduce and prioritize the features and requirements for initial release of an app.

The target developers are those developers who are new to Android app development and

7

those developers who are working on a new app in a different category. However, even

the developers that have experience with app development and have already published apps

can also get benefit if they are looking to add more features to their apps and want to be

familiar with trending features in other apps. The proposed method is intended to be used

by any android developers, but due to the fact that it is hard to collect the reviews, it would

be better to be used by vendors that analyze and provide user reviews for app owners such

as Appbot and Appannie.

In this study we address three questions

• RQ1: Which classifier is the most appropriate for classifying the reviews of apps

category-wise?

In this study, we use different classifiers on the reviews of different categories and

compare the performance of each classifier. The classifiers include Naive Bayes

and Decision Tree. We found that, Naive Bayes performs better and has a higher

accuracy in two categories(tools and music) while DT has higher accuracy in a single

category(social) than Naive Bayes.

• RQ2: What is the impact of extracting features on informing developers about

features they are unaware of?

When developers create apps based on the ideas that they have, they usually collect

information from similar apps or surf Internet in order to find some features that are

common in those kind of apps and then implement it inside their apps. For example,

sharing score with friends or on social apps or using leader board to compare and

compete with their friends. Thus, we try to find out how does extracting features

and present them to developers allow them to have an insight on the most trending

features that are mentioned or requested in the user reviews.

After extracting the features from the user reviews and presenting them to the devel-

opers, we found that, it has a significant impact on developers decision to include

8

these features in the next release of their apps. There was an increase by 12 times of

using the features after the developers see the users requests for these features.

• RQ3: How does extracting features of apps in same category help developers in

prioritizing the features for the initial release of the apps?

Sometimes developers might have listed all features that they want to include in

their app either in the current release or future releases of the app. However, they

might change the order of these features in order to deliver in time, or have their own

preferences in the feature implementations or any other reasons. Now that we have

listed all features and sorted them by most requested ones, we want study how the

user requests effect the developers plan in order to make some change to implement

user requested features in the app prior to other feature that she/he has planned before.

Based on the data collected from our survey, while developers want to include these

features in their apps, the frequency of user requests did not impact their decision of

prioritizing the features. Therefore, it help them replacing some old features with the

new ones, while still making their own decision to which features to include instead

of the frequency of users request.

9

Chapter 2

Related Work

There are several reviews posted frequently by the users after they install the app which

expresses their impressions and issues about the app. But, not all these reviews are infor-

mative to the developers. Due to the large number of reviews, it is also difficult for the

developers to analyze the reviews and get most informative data from them manually. To

overcome this issue several mining and feature analysis research studies have been done on

the user reviews to assist the developers filter the most informative reviews from all the user

reviews. The majority of these studies have been conducted in order to see how it will help

the developers with the reviews of their own apps. However, we are trying to extract and

mine these feature from a broader area, which is category. That means instead of analyzing

single app under a category, we analyze the features of a number of apps which are most

popular apps. This way, any developer can get benefit from these features that are planning

to publish an app under a specific category. Also companies and open source community

can get benefit our finding to create recommender that suggest top features included in the

app.

Chen et al. [8] propose a framework in order to automate the process of extracting useful

information from the app reviews in app marketplace. They use mining and topic model-

ing technique in order to analyze the reviews and group similar reviews and rank them,

in order to help developers identify most requested features by the users. The researchers

aim to answer three main question, first the performance of the framework, secondly are

the ranked topics are really informative and useful to developers, and finally what would

be the advantage of using the framework over manual inspection. They have worked on

10

four different apps from different categories in play store and have distributed the review

data into three different datasets which are Training, Unlabeled and Test dataset. The re-

searchers assert that by using their framework there will be less necessity for man power,

and that their framework would analyze the reviews much faster than manual inspection of

the reviews. While, this study is very close to our study, but as we mentioned before, we

are working on a broader area which is category instead of individual apps.

Villarroel et al. [29] are proposing an approach to help developers prioritize the bug

fixes and feature requests in planning for the next release of the app. For this reason they

develop a tool code CLAP (Crowd Listener for Release Planning). They are using some

mining tools and techniques in order to mine the app store reviews and ratings, These tools

include Weka and clustering algorithms such as DBSCAN and then use the data to train

CLAP in order to make better recommendation for prioritizing process. The difference with

this tool and our study is that, they are working on the reviews of the same app, however

we are collecting reviews from other apps than original apps main reviews in addition we

are specifically working on extracting only features, while they have also worked on bug

fixes too. The researchers in this study[29] first process the data so that it can be classified

into bug reports, features, and other. There focus is mainly on the bug reports and feature

requests. They then cluster these data so that they can group similar bug reports and feature

requests, then they help the developer to prioritize them, in order to decide which part to

do first in the next release either bug reports, or feature requests, and among them which

are low and high priority.

In order to measure the tools accuracy, the researchers are doing some manual evalua-

tion of the data. They assign two different developers in order to analyze and decide about

the reviews and make plan on the analyzed data manually. They found out that the accu-

racy of the tool is 76%. They also tested the tool with three different software companies

in Italy in order to evaluate the results and get user feedback about the tool, and they claim

that they got positive feedback about the tool and the users asserted that the tool will help

them in future planning of their apps release.

11

Vu et al. [30] are using some mining techniques to analyze the reviews and group similar

reviews and visualize the change of the reviews over time, in order to help developers

identify the trends in the apps growth. In addition, they are mapping the user reviews to

keywords so that the developer can retrieve reviews that are most relevant to the keyword.

They evaluated the study on 95 different apps of 2,106,605 reviews from Google Play. They

found out that the accuracy of grouping similar reviews is 83% and 90% of returned results

are relevant to the searched keyword. Finally, the researchers assert that the tool(MARK)

will save a lot of time and effort for the developers that are concerned about specific feature

or issue from user reviews and analyze the change of their concern through time. While

they study changes in the apps over time, we are working to help them to decide which

features to include before actually tracking how it impacted the users perspective about the

app.

Similarly, Vu et al. proposing a framework in order to extract the useful information

from user reviews [31]. They implement a phrase-based technique when filtering infor-

mative from non-informative sentence in the reviews and then cluster the reviews. After

extracting the information, they also monitor how the user reviews change through time

in order to make it easier for the developer to see how their modification in the code is

reflected with the users. The researchers collected three million reviews from 120 different

apps within a period of time between January, to September 2015.They also evaluated their

approach on two different case studies in order to show the ability of the tool to automati-

cally detect major user opinions and support developers in understanding them.

Iacob et al. created a tool MARA (Mobile App Review Analyzer) which automates

the process of downloading the user reviews and separating features requests in the user

reviews from other reviews. They then used the LDA model to identify topics that can be

associated with the feature requests. They conducted the study on 136,988 user reviews and

found out that nearly 23% of user reviews contains feature requests. The feature request

includes adding new levels to games, re-design a feature in the app that already exists, and

also more customization in the app[13].

12

Palomba et al. [22] examined how addressing the feature requests posted by the users

in the reviews of an app, would lead to the success of the app in the future. Furthermore,

they propose a framework in order to automate the process of finding the feature/bug fix

request coverage. They are linking the reviews of the users with the issues and commits

of the app and make a comparison between two different versions of the app in terms of

the apps’ rating. They use AR-Miner [8] in order to filer non-informative reviews. They

perform the study on 100 android apps and they found out that 49% of the feature requests

are addressed by the developers and following up users requested lead to the success and

increase of the user ratings in the future.

Guzman and Maalej [10] have used a Natural Language Processing, and Data Mining

techniques to filter the non-informative reviews. They have also extracted the information

about sentiments and opinion associated with the features. They performed the study on

the reviews of seven different apps on app store and play store. As a result, they found

that their approach would help developers identify the requirement and would help the

would release-planning of the app. In addition, Guzman et al. created a tool (DIVERSE)

in order to simplify the process of extracting informative reviews from user reviews in

different app stores. In addition, DIVERSE groups related reviews, as well as classifying

them into Positive, Negative, and Neutral reviews. They collected the data for seven most

popular apps on play store. They evaluate DIVERSE in order to calculate it is efficiency

and it is usefulness among developers. Eighteen developers participated in the evaluation,

four of them which worked in industry and the other fourteen were graduate students.

Consequently, they found out that their algorithm is much faster than the baseline. In

addition, the developers that use DIVERSE need less time in order to get the informative

reviews and similar user opinions from the user reviews.

Hoon et al. conducted two research studies on the structure of user reviews. They study

how the rating effect on the length of the user review and the vocabularies used in the user

review. They collected and analyzed 8.7 million reviews from 17,330 apps on the App

Store for both studies. They found that users tend to leave short and informative reviews,

13

and users that rate the app poorly tend to leave longer reviews and also app category affects

length of the reviews. Furthermore, the range of words of is much higher in negative

opinions that the positive reviews [12].

The author of previous study, performed another study on user reviews. Hoon et al.

conducted a research in order to find the consistency of user reviews to their rates on the

apps [11]. They classify user reviews under Positive, Negative, Inconsistent Positive, In-

consistent Negative, Neutral, and Spam based on the consistency of the review to the app

rating by the user. The researchers have analyzed 29,182(27.4% of the total) reviews which

is from 25 Free Health & Fitness apps in the App Store and found that “27,685 (94.9%)

of the dataset consistent in content and rating to communicate Positive satisfaction”. As a

result, they claim that the user reviews are very consistent to user rating when the review

is limited to 5 words, In addition they report strong correlation between the aggregated

user rating and the user reviews from which the developers and users can depend on when

installing the app.

Shaw et al. [25] performed a research study on the correlation between the traditional

software quality metrics and its effect on the success of the apps. They conducted a research

on the source code of 1000 high rated apps 1000 low rated apps in order to identify the

software quality metrics in those apps. They found that there is not a high correlation

between the traditional software quality metrics and success of the app. They introduce a

set of new metrics that would lead to the success of the mobile apps. Ruiz et al. [24] also

scanned the source code of several apps in order to find the impact of the number of ads

on the app rating. As a result, they claim that there is no indication of relation between

the number of ads and the rating. But they assert that some type of ads can negatively

impact the app rating. Additionally, Bavota et al. [6] apps that use API’s which is either

change-proneness or fault-proneness are more likely to get lower rating than the apps that

use API’s which is not prone to fault and change.

Panichella et al. [23] created a framework in order to help developers extract the infor-

mation that help them specifically with the app maintenance and development. In addition,

14

They combined multiple mining techniques in order to find out if combining them would

filter user reviews faster than applying each mining technique individually. The mining

techniques include Natural Language Processing, Text analysis and Sentiment analysis.

The researchers use reviews of seven top ranked apps from both play store and apple store

from different categories and evaluate their approach. As a result, the researchers assert

that, applying their technique would help developers classify the user reviews to app main-

tenance and evolution and that the precision is 75.2% and recall is 74.2%. They also con-

clude that the precision and recall can by increased by increasing the training dataset.

Previous research studies show the importance of the user reviews, and it is impact

on the app success. They also propose some techniques and frameworks in order to help

developers extract and analyze useful information from the reviews. These studies are

conducted on the existing reviews for the apps. However, new apps have none or very

few reviews, which means developers cannot collect sufficient information from the user

reviews. Therefore, there is a need for some studies and tools that would help developers

with new apps to get benefit from the reviews of apps in similar category to extract feature

that can be used in the initial release of an app. This way the developers can integrate

features before releasing the app so that it attracts more users, and increase the likelihood

of getting high rating without waiting a long time to increase the number of users and get

their reviews.

15

Chapter 3

Approach

To find the feature requests in the reviews, the review has to go under some mining process

in order to classify the review type and then separate the reviews that contains the feature

from other reviews. After classifying the reviews, we need to associate a feature or group

of features to a specific requirement in the app.

Figure 3.1: Approach overview

We started with collecting user reviews. Then the data undergoes cleaning in order to

16

transform the data into matrix. Then we constructed our classification model in order to

classify the data and separate feature requests from others. After that we applied LDA in

order to find common themes in the reviews, and finally associated these common themes

manually with app features3.1.

For classification process, we have followed same steps described by Maalej et al. [20]

when they worked on classifying the user reviews. However, we have selected a different

model for classification after comparing the performance of different classification models.

While Naive Bayes had higher accuracy in both Tools and Music category, DT had a higher

accuracy than Naive Bayes in social category.

3.1 Raw Reviews

For the raw reviews data and their meta data we used two different datasets one that con-

tained the raw reviews [30] and the second one [18] which contained information about

apps meta data. The first dataset is a Postgresql database which contains several different

tables. There are only two tables that is relevant to our study which are reviews and apps

table. We compose our dataset from these two tables. The attributes which we selected are

(appid, reviewid, raw text) from reviews table and (appid, appname) from the apps table.

We constructed a dataset from these two tables, however we needed one more attribute

which was not exist in this database which is category. Therefore, in this step we have

appid, appname, reviewid, raw text. But we are missing the category attribute.

Next, we needed to match each app with its category. For this reason, we used the sec-

ond dataset which is a database of 400,000 apps. We needed this dataset in order to match

the names of the apps, and then fetch it is category from Google Play. This dataset con-

tained these attributes(name, datePublished, numDownloadsMin, fileSize, packageName,

price, aggregateRating, softwareVersion, ratingCount, dateCrawled, url) [18]. But the only

attributes that we needed in this dataset are (name, url). The name of apps is to associate

with our data with the app name, in other words is to make a relationship with our table,

and the url is to use it in order to scrape the page url to fetch the apps category. We then

17

Table 3.1: Sample user reviews.

Review Type

People who complain need to get better phones and tablets Opinion

Please provide me with chat heads like facebook Feature request

it always crashes! i always get an error that says try again.
fix it please!

Bug report

wrote a scraper to fetch the category.

During the process of getting category of the apps, some of the apps were not available

in play store anymore. Whenever, the script tried to fetch information about these apps,

there was a 404 error. Since the category of such apps were not found, their reviews were

automatically discarded in order to make sure that we only get the reviews that belongs to

one of the categories.

User reviews contain many different form of data that would not be useful for the pur-

pose of our study. For instance, the review might be an opinion or it might be in the form

of bug fixes or in the form of feature request as shown in 3.1. There are also some other

forms of noise, such as length of the token. For instance a user has posted a review and

wrote “Aaaaaawwwwweeessssssoooooommmmmmmeeeeee” and another user have writ-

ten “Looooooooooooooooooooooovvvvvvvvvvveeeeerrrr”. These kind of reviews does not

serve any purpose. One way for handling these types of reviews or terms in the review is

by eliminating them after tokenizing the reviews because they will be in a form of single

token. In other words the token that are very long can be discarded. These lengthy to-

kens originated either from the user review itself, or during data collection when the words

shrink and become one single word.

The total number of apps is 137 from all different categories with 3,390,526 reviews.

18

Table 3.2: List apps and reviews for each category.

#Apps #Reviews

Social 9 643332

Music&Audio 8 89189

Tools 18 506423

We select three top categories for the purpose of this study. The top categories in which

top rated apps belong to them according to Appbrain[3]. Therefore, after separating the

reviews that belong to the top categories from others, the total number of remaining reviews

is 1,238,944, which is 36% of the original number of reviews.

3.2 Data Preprocessing

The user reviews are in the form of sentence or a short paragraph. This data is noisy, it

is incomplete and an organized. We want to transform these reviews to an understandable

form through a process which is called data preprocessing in data mining. It is an impor-

tant step in data mining, and it significantly impacts the quality of the output of mining

process. Tasks in preprocessing includes Data cleaning, transformation, reduction, feature

extraction, etc. Once the data passes this stage it will be ready to further apply other mining

techniques such as classification, top modeling, etc.

3.2.1 String Matching

One of the simplest and most efficient ways to categorize a document is by searching for

category specific keywords in the text. It is required that you have a list of keywords that

would possibly identify that the document belong to a specific category. According to

previous research [13] if a document contains one of these keywords (add, please, could,

19

would, hope, improve, miss, need, prefer, request, should, suggest, want, wish) it is

most likely identifies the document (user review) as a feature request.

There are many different techniques that would help simplifying this process. For instance,

using regular expression tools such as grep and providing it with the list of the keywords

that we look for in the document. While previous process works well, but we had the data

in a Postgresql database. Therefore, we used SQL keyword “LIKE” in order to match the

keywords.

In order to further investigate whether the keywords are accurate or not, due to the

time that takes to manually analyze the reviews, we examined 2000 reviews and found that

only on review was a feature request. After applying this technique (String Matching) the

number of reviews significantly reduced from 3,390,526 to 354,613 which is 10.45% of

total number of reviews for all apps in the data including apps from different categories

other than the categories that we have selected for our study. From the basic classification

we can conclude that as compared to other types of reviews such as bug fixes, only few

number of reviews are feature requests (if we assume that all of the reviews are counted

as feature request regardless of noise data). In addition, the sql query on the raw reviews

would match any reviews that contains the keywords or might be a part of a word. For

instance, these words (address, addict) are starting with the word “add” and it is obvious

that these words does not have the same meaning as “add” but the basic classifier would

still retrieve them. However, we cannot remove them from feature request, as it might

contain other keywords that would match feature request keyword list.

As it can be seen in Table 3.3 the least feature requests in apps belongs to Tools category,

and the most features request belong to Music category. This might be due to the fact that

there is more interaction with music apps than tools apps. Users usually stay with using

music apps much more than tool apps[15]. According to a report by comSource Music

apps(cumulative) are ranked second among the apps that are most used daily by smartphone

users, which comes directly after social apps [1].

20

Table 3.3: Number of reviews before and after String Matching.

#Before #After %Remaining Reviews

Social 643332 73361 11.4%

Music & Audio 89189 13622 15.27%

Tools 506423 26293 5.19%

3.2.2 Natural Language Processing

In previous steps, we filtered the reviews in order to reduce the huge number of reviews,

so that it can be more manageable for further processing. However, we have not worked

on the raw reviews yet. That means the reviews are still as same as the time it was posted

by the user. We need to prepare the data for further processing such as classification and

topic modeling such a way that the mining models can process it. For example, in mining

we need to feed the model with a set of documents(corpus). Here in our study user each

user review is a document, that will be the input to the mining models used in the study.

However, the documents need to be processed in order to produce an organized form of

data and feed to the classification model known as corpus. We apply natural language

techniques in order to produce the corpus.

Natural language is a term used to distinguish formal languages such as computer lan-

guages(Java, C++, etc..) and mathematical expressions from human language[14]. NLP is

a term used to describe the function of any hardware or software part computer that can

manipulate human languages and process it such a way that it can be understandable by

computing machines. There are many different NLP techniques and each of them are used

for a different purpose they can also be combined in order to manipulate a text depending

on what the text is needed for. Some NLP techniques are (Sentence delimiters, Tokenizers,

Stemmer, Taggers etc.) [14].

21

Figure 3.2: Processing reviews for vector generation

In this study we have used the techniques that would syntactically help improving the

accuracy of our classification method. The NLP techniques we used in our study are to-

kenization, stopword removal and stemming which is used in preprocessing technique in

similar work [28]. The only difference is that we have incorporate transforming letter cases

to small in order to make sure the words match regardless of their cases.

Tokenization Users express their opinions or post the feedback in a sequence of (char-

acters or symbols or phrases) that eventually form a sentence or paragraph. In text pro-

cessing, these reviews has to be segmented in to linguistic units that would help the min-

ing process better understand the entity. The linguistic units include words, punctuations,

numbers, alpha-numeric, etc. The process of segmenting text into linguistic units is called

Tokenization [27].

In this step we input the data which user reviews, and it will generate the tokens for

each review. We have used non-letter as the tokenization mode for the reviews. It will

mostly split the words by the space as no other non-letter characters are used in reviews as

space.

Stopwords are some English words that are repeated and used frequently in sentences.

They are used to connect words, sentence, etc. between a group of person communicating

with each other. It would be hard for audience to understand and follow the sentence

without the stopwords. However, the existence of those words in user reviews does not

22

serve the process of classification. That means removing these words will not affect the

outcome of classification. However, since we are specifically looking for feature requests,

and we previously have mentioned that we have made the string matching on a set of words,

therefore we made sure that those keywords have not been removed from reviews. We have

customized the stopword list such that it does not remove our given words. In addition,

we added other keywords that is not formal English language words but still used in online

chatting or reviews such as “urs”.

In a text or a user review a word can be used in different forms within different reviews.

In one review a word might be used as the present form of the verb, and in other might

be used as past form or a noun form. For instance, the base of add, added, addition are

all “add”. Therefore, unifying different forms of words (Stemming) into their base would

give a higher frequency of the term or word usage. There the purpose of using stemmers

is “to associate variants of same term with a root form. The root can be thought of as the

form that would be normally be found as an entry in a dictionary” [14].

Stemming is the process of reducing all words that have the same stem or root to a

common form [19]. The difference arises due to Morphological Variants which is the most

common. For instance (computer, computational, computers, computing) [33]. Besides

that, there are some other reason for the difference, such as mis-spelling, abbreviation, and

valid alternative variant (e.g ‘apologise’, ‘apologize’, ‘analyse’, ‘analyze’).

The purpose of using stemmers in this study is mainly to increase the frequency of the

words used in the reviews. In addition, it will significantly decrease the dictionary size

because the large number of reviews as well as different expressions lead to the generation

of large dictionary, this is because users are free to write what every they want, there are

not any restriction on the writing, or preexisting list of choices for feedback.

23

Figure 3.3: Document matrix process

3.3 Document Term Matrix

There are two types of matrix in terms of the organization. The first one is “Document

Term Matrix” in which the attributes represent the terms and the tuples represent the doc-

ument. The second one is “Term Document Matrix” which is opposite to first, in which

the attributes represent the documents and the tuples represent the terms. Due to the large

number of reviews and small number of attributes as well as the mining techniques used in

our study, we generate DTM instead of TDM. As a result, the attributes in the generated

matrix will represent the terms used in the user reviews and the tuples represent the user

reviews.

There are also different types of vector creation methods which are Term Frequency,

TF-IDF, Term Occurrences, Binary Term Occurrences. We have applied the term frequency

to create the vector. In addition, we made some tweaks to the methods by ensuring that the

most frequent or infrequent terms are ignored from the word list. The values are 3 for

infrequent words and 500 for frequent word list. We also kept the ‘reviewid’ with the

matrix for future reference whenever needed.

24

3.4 Classification

It is a two-step process which is used to predict class labels for a given data. It starts with

the learning step where the classifier (classification model) is constructed and then the next

step is classification, which basically is using the constructed model in first step to predict

class labels for a given data.

One of the examples that used to describe classification, is to predict whether an email

is a spam or not. Is the email legitimate or it is a junk email. The classifier immediately

does some calculation in order to determine the type of the email. There are some keywords

and symbols used in the spam emails, whenever the classifier identifies these keywords in

the email it will predict it as a spam email. There are many applications of classification

such as target marketing, fraud detection, manufacturing and medical diagnosis.

In this study, we use classification to predict the review type similar to the study that

have been conducted by Maleej et.al [20]. We are specifically looking for feature requests

in the reviews. Therefore, any other type of reviews will be discarded. This process will

further break down the huge amount of review data. As the data size reduced it will be

easier to control and faster when further processing is done on the data.

3.4.1 Learning Phase

In the first step or classification, the learning step, or the training phase, we build the clas-

sifier which describes a predetermined set of data classes. A tuple, X, is represented by an

n-dimensional attribute vector, X = (x1, x2,..., xn), depicting n measurements made on the

tuple from n database attributes, respectively, A1, A2,..., An.1 Each tuple, X, is assumed

to belong to a predefined class as determined by another database attribute called the class

label attribute.[Book]. This method of training is called Supervised Learning because we

have provided the dataset with the class label attribute which basically determines whether

the given tuple is a feature request or not. The classifier will then form the rules based on

the attributes and the provided weights for each attribute and whether it is a feature or not.

On the other hand, in unsupervised learning the class label is unknown and the number or

25

Figure 3.4: A portion of labeled data

type of classed might not be determined prior to the mining process. This method is also

called clustering, in which the model tries to identify the commonality between the tuples

and group them together.

Sampling

According to Maalej et al. [20] 150-200 reviews is adequate for the training set for each

type of review [20]. Since we are working on more than one app, and since each app

has different specification and features, we chose the top three apps from the top three

categories of apps according to Appbrain. For each app we have labeled reviews until we

got to a point that each app has at least 150 features. That means for each category the

minimum number of reviews that is labeled as feature request is 450. Because we are

working on only feature requests, therefore the ratio of feature requests to others is small.

We then selected the reviews to label after ”String Matching” in classification in order to

make sure that the review contains words that could possibly classify the review as feature

request[20]. In other words, the reviews are still raw reviews without any preprocessing.

Figure 3.4 shows a portion of the sample data it does not contain all attributes that defines

the feature request due to the large number of attributes. We have set the “feature request”

26

as the label of the dataset, and the “reviewid” as the id of each tuple in the dataset for future

reference if needed.

Classification Model

We have applied different algorithms in order to build the model and then chose the one that

would best fit our need for the feature selection. According to previous study [20] Naive

Bayes is better than other classifiers which are Decision Tree (DT) and MaxEnt [20] when

comparing the accuracy of these models. However, this was not the case with all categories

in our study as the accuracy of models were slightly different in different categories. The

reason might be due to the fact that we have combined the reviews of multiple apps. There-

fore, we applied and tested both Naive Bayes and Decision Tree which are very popular

binary classifiers and also have high accuracy to predict features as described in a previous

study [20]. The output and details of both classifiers are discussed in this section.

Both Naive Bayes and DT are very popular classification models. Naive Bayes is based

on Bayes Theorem which based on the assumption that predicators are independent on each

other. In other words, it assumes that the presence of a particular features is independent

on the presence of other features. Naive Bayes is simple and easy to build and does not

require large training set. On the other hand, DT is incrementally developed by breaking

down large sets of data into subsets and the result is a decision tree with two types of nodes

which are decision nodes and leaf nodes. A decision node, has two or more leaf nodes

which are either represent a decision or classification node.

We applied both techniques on the same dataset and then evaluated the results for each

algorithms and compare the performance of the two different algorithms using standard

metrics which are precision and recall. Precision is the fraction of user reviews that are

correctly classified as feature request by the classifier while recall is the fraction of correctly

classified reviews. The equation for precision and recall is as follows:

Precision =
TP

TP + FP
Recall =

TP

TP + FN
F1 = 2∗ Precision ∗Recall

Precision+Recall

TP is the number of user reviews that are classified as feature request by the classifier.

27

Table 3.4: Accuracy of classification techniques using DT and Naive Bayes for each cate-
gory

Music

Precision% Recall% F1%
DT 84.06 42.34 56.31

Naive Bayes 65.43 77.37 70.90

Social

DT 59.3 95.93 73.29

Naive Bayes 65.33 79.67 71.79

Tools

DT 77.55 37.25 50.33

Naive Bayes 67.37 62.75 64.98

FP is the number of reviews that are classified as feature request but they are not actually a

feature request. FN is the number of reviews that are not classified as feature request, but

they are a feature request. In addition to precision and recall, we calculated F-Measure,

which is a measure of accuracy which considers both precision and recall.

Based on the results as shown in Table 3.4 we have applied different model for different

categories. We can see that Naive Bayes performs better in both music and tools review

however DT performs better in social reviews. Therefore, we applied different techniques

for different categories depending on the algorithms performance.

There are many evaluation metrics used for the predictive accuracy of a classifier.

These techniques include Holdout and random sub-sampling, cross-validation and boot-

strap methods. In this study we have applied the cross-validation technique in which we

split the data into two random tuples of total 0.75 for training and 0.25 for testing. Table

3.5 and Table 3.6 are the results for each algorithm for the reviews of social apps

28

Table 3.5: Confusion matrix of Tree of social reviews

true 1 true 0

pred. 1 118 81

pred. 0 5 52

Table 3.6: Confusion Matrix of Naive Bayes of social reviews

true 1 true 0

pred. 1 98 52

pred. 0 25 81

3.4.2 Prediction phase

Now that we have constructed the classifier in the first step of classification process, it is

time to use the constructed model to predict the user reviews in order to determine if the

user review contains a feature request or not. We have run the model on the three different

categories separately as the model construction was also done for three different categories

separately.

Figure 3.5 shows that the ‘social’ and ‘tools’ category have equal ratio of feature re-

quests to the reviews which is 2% and music category reviews contains the most feature

requests which is 8%. This shows that the result of the string matching of feature requests

is directly proportional to the results of classification process. That means the difference

in category does not necessarily affect the review types of users. However, if comparing

reviews under different category, music contains most feature request than both social apps

and tools apps.

29

Figure 3.5: Predicted features request by the classifier

3.5 Extracting Features

In this step, we are discussing the way we want to extract the feature in the user reviews.

In a previous step we worked on separating the reviews that contains feature requests from

other types of reviews. From now on we are working on the reviews that are only predicted

as “1” by the classifier. The difference in the reviews in this step from the raw reviews is

that we have the matrix instead of the raw text. That means we do not need to repeat the

same steps that we prepare the data for the classification.

Usually multiple users request the same feature in the app. However, they use different

terms or statement to express their request. For example, some Spotify app users have

requested adding a timer to the app so that the timer stops the music player after a specific

period of time. Table 3.7 is a sample of different expressions used to ask for adding a timer

to the app. It can be clearly seen that the length of reviews is different, and other terms

used in the reviews in addition to the feature request. However, there are some similarities

between the sentences that are used to state the feature request.

We use topic modeling methods in order to find topics (features) of the reviews. Ac-

cording to Zoe Borovsky topic modeling is “a method for finding and tracing clusters of

30

Table 3.7: Same feature request sample (Timer).

Cool but, needs a sleep timer so that when I wake up half way thru the night I

don’t have to go on my phone and turn it off.

It’s good but you should make a sleep timer

I love it and I’m starting to prefer this over Pandora and this app needs a sleep

timer that shuts the app down for those who live off of limited data

Can you guys add a sleep timer? And make it so you can listen to music

while you sleep and it’ll automatically turn off. That’d be amazing! I use

the piano music to sleep and that’d make it better.

Please add a timer so I can sleep with music but don’t kill my phone battery

life span too fast!

words in large bodies of texts” [32]. In our study user reviews will represent the bodies

of text and the words used to request the feature represents the terms that are used to form

the topics. We use the LDA baseline model in order to identify topics in the user review

corpus. LDA is a ”generative probabilistic model for collections of discrete data such as

text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a

collection is modeled as a finite mixture over an underlying set of topics. Each topic is,

in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In

the context of text modeling, the topic probabilities provide an explicit representation of a

document” [7]

LDA can also be used as the learning model when classifying documents. The model

needs to be trained and tested same as other classification models. The reason why we

wanted to use in Topic Modeling is to extract the requested features intuitively. We do not

know all users feature request otherwise we would be able to list them all and there will be

no need for mining the user reviews.

31

Table 3.8: Topics in music apps reviews

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7

1 miss chromecast hope repeat. cant sleep internet

2 replay support upload edit see timer version

3 album artist profil sing pls list cool

4 equal line chang mobil bring guy connect

5 possibl devic disappear order anymor set wifi

6 happen someth pictur comput cach mode put

7 art direct function. hit perfect pandora lot

8 definit move annoy singl otherwis includ pretti

9 help android widget gave read amaz cloud

10 info know mayb fav dont enjoy desktop

3.6 Term Feature Association

The last step in the approach is to associate the terms to the features. We need to match the

words that users use in the reviews to a feature in the application. For example, “zoom” is

a request to add zooming functionality to the photos and images.

We have manually associated the terms to the features. The automatic association is out

of the scope of this research. Some features would replace an essential existing feature in

the app, while others are an improvement to the basic feature in the app. For example, some

users request material design, if applied it will replace the basic design or theme used in the

app. However, if a user requests “Shuffle” feature it is an improvement to the current music

or video player in the app, since we do not work with how they affect the app functionality

in the app.

32

Table 3.9: Top requested features

Music & Audio Social Tools

Replay Pause Theme

Shuffle Replay Applock

Upload Copy Post Block

Sleep Translation Notification

Lyric Zoom Schedule

Theme Material Design Kill

Offline Live RAM-Clear

Widget Repost Backup

Premium Rotate Vault

Unfollow Fingerprint

33

3.7 Summary

In this chapter, we discussed the process of mining user reviews and extracting the feature

requests. The user reviews undergo some process in order to prepare it for classification and

topic modeling. We started first with basic classifier, which we used SQL queries in order

to specifically filter the requests the contains the keywords that would possibly classify the

review as a feature request [13]. Then we generated the matrix from those reviews.

We then trained and tested Naive Bayes and Decision Tree in order to choose that one

that performs better for each category of the apps in order to use it in the classification

process. We found that Naive Bayes performs better in music and tools category, and DT

in social Category. We then applied topic modeling technique in order to find the common

themes in the feature requests.

34

Chapter 4

Implementation

There are many frameworks and tools that help developers create apps. Each tool has dif-

ferent approach for its construction and using it for creating new apps. Depending on the

developer’s preference of language, paradigm, ease of use, community or sometimes join-

ing an ongoing project help them decide which framework to choose. For example, some

developers prefer separating HTML from JavaScript implementations rather than writing

HTML code inside JavaScript, for this reason they pick VUE rather than ReactJS. Some-

times performance issues with some frameworks make developers migrate to other frame-

work. But in general, most frameworks for a specific language can handle all tasks that is

handled by frameworks of same language.

So far, we have been able to identify the features that are requested by users. But

sometime finding the requests is not enough for developers, as they might lack experience

to integrate the feature to the app or it might take a long time to implement it. Furthermore,

new developers do not have enough information about the packages that are available for

the frameworks that they use. In addition, there are usually more than one package available

for a specific feature. They will have to spend some time, to see and compare which ones

are better than the others.

There are some metrics that would help developers on which libraries they should use

in their apps. For example, if the package is open source and hosted on Github, they can

check number of stars, watchers, and number of open issues as well as forks to decide which

package to use. If it is hosted on npm, number of download helps a lot. There are also other

package managers, for instance composer in php. However, when developers work on the

35

apps, it would be better for them to focus more on development rather than these secondary

time consuming tasks. Therefore, if the process of associating the requested features to the

libraries automated it will save a lot of time for developers.

When the framework or the tool that they use, automatically suggest the libraries that

they need to include in order to integrate the feature to the app, then the developer can start

immediately diving into the library api and learn how to use it inside their apps. It also

makes much easier for a team of developers to collaborate development. For example if

they use npm as their package manager, when the framework that they work on, automat-

ically includes the package in the app, it would write to the package.json file the included

library, then this file can be shared with other developers to start working on developing

immediately.

4.1 Challenges

There are some challenges with completely automating the process of including the features

inside the apps. Some of the challenges includes:

• Getting all functions of a package can be cumbersome. There is not specific guide-

lines about describing the tasks that each package can perform. Some developers use

bulletin to list all functions. Others use one paragraph to describe them, some other

reference to an external link to browse the functionalities. Meanwhile, the function-

alities cannot be extracted through scanning the code as developers follow different

naming convention and have different level of programming skills. For example, a

package is used in order to integrate authentication to an app. Some package provide

authorization with it, while others provide only authentication and requires another

package to provide authorization.

• Some open source packages are discontinued after a while. Although, they usually

provide links to alternative packages, however it is not always the case.

36

• Some libraries need to be extended in order to provide all functionalities. Same as

the previous example, some packages are very popular and are very stable, however

they do not provide all functionalities. For example, if it provides only authentica-

tion, there must be a way to extend or create a separate module for authorization.

Therefore, the framework should contain all these details so that the developer does

not spend time checking for all package functionalities and dependencies.

• Providing updates to the packages is also one of other challenges. For current project

this might not be a big deal, however when they switch to another app they might face

some issues because the package api might have been changed. Some functions are

renamed, others are added and some others are removed. Therefore, the framework

should be able to track these changes and inform the developer about changes or

display the change log.

There are also other challenges that arise from using package managers to use pack-

ages inside an app. For example, how to check for security issues and vulnerabilities

inside a library and some issues with performance as well as detecting malicious

libraries.

4.2 Tools

The framework is composed of several tools but the main tools are described below.

• VUE: is one of the popular JavaScript framework for building user interface. It

is lightweight and very fast mainly because it interacts with DOM. It separates the

views or template from the js implementation which makes is easier to read and

maintain the code. It gained popularity after it was introduced as the primary UI

framework used by Laravel (PHP framework). We used VUE in order to have some

interaction with the pages or part of the application that we will be creating and

because of the packages that have created by its community. It is all related to

37

experience and preference of the developers, otherwise other tools or packages or

frameworks or even native js script can be used.

• Babel: As web applications are getting popular, more application are either migrat-

ing the entire application or a part of the application to web. The native JavaScript

code is hard to maintain due its readability, especially for large projects when it is

required to write thousands of lines of code. For this reason, there are some tools or

packages that help writing js scripts in a more readable and understandable fashion.

Although this is helpful for developers, but they are not browser-friendly tools. To

solve this problem, transpilers come to place. Transpilers basically transforms the

code to native js script so that they can be interpreted by browsers.

Babel is one of the most popular transpilers that converts JavaScript to JavaScript that

are supported by most browsers. The output generated by Babel is human readable

thats one of the reason for its popularity. The main reason we have used Babel is

because of the VUE. Otherwise, if it is a simple application these transpilers are not

needed.

• Webpack: When developing web apps, many packages and libraries are used. Each

library also might have some dependencies. Therefore, it makes a daunting task and

hard to include all required files and images in the application and sometimes the

application needs to make multiple requests to include all files. Webpack bundles all

js modules and their dependencies with all static files and puts them in a dependency

graph which allows accessing the files dynamically through the code.

• Gulpjs: There are some repeated tasks in web application development which is

time consuming and tiring, because it has to be repeated several times. For example,

refreshing browser on making changes, compiling sass and less, module bundling,

and copying the files to and output directory. These tasks and some others can be

automated by using gulp. Beside the common operation with gulp we also use to

copy the main js file to the mobile project, so that the mobile project has latest version

38

of the js file.

• Cordova: Apache cordova is a platform that helps building native mobile apps by

using web technology such as html and js. Web pages cannot access device function-

alities unless through an interface when building native apps. Thus, with Cordova

developer get access to the device functionalities and the native app is generated by

Codova.

In addition to these tools, we have also used vue-cli and vue-awsome. We used vue cli

in order to generate apps for both mobile and web using our template. vue cli generates vue

projects based on the templates with predefined features with customized functionalities.

We have created our own template in order to load the features that we collected from user

reviews.

Vue-awesome is a Github repository that contains list of the most popular vue packages

and their description. This is specifically important for including the packages based on

the user requests. For instance, many users have requested material design in the apps. The

most popular package for material design is listed in this repository and it can easily be

integrated into the project.

Each of these tools has different purpose and performs a different task. However, once

they are configured to work together, they can help development much faster and help

reduce the repeated development tasks.

4.3 Components

We divide the system into two major components as shown in Figure 4.1. The first compo-

nent which is “Review Mining” handles all mining process while the second one is respon-

sible for generating the app and including the packages in the apps.

The user reviews are fed in to the “Mining Reviews” component. Then it will undergo

the mining process in order to extract the user reviews that contains feature request. It will

then separate the feature request from the rest and discards other reviews. Then it will find

39

Figure 4.1: System user case diagram

40

the topic of most requested features. The details of the operation are described in Chapter 3.

In this chapter we will focus mainly on the “Framework” component of the entire system.

The framework handles all app related tasks. For example, generating projects for both

Android and iOS using Cordova. Then gulpjs will handle automating all the other tasks

such as packing using webpack, copying new generated files into the cordova project. The

framework is based on vue-cli which is a command line tool for vue framework.

By using the framework, the developer has just to focus on the app content rather than

searching for packages in spending time with configuration and doing repeated tasks.

4.4 Workflow

The command line interface will walk the developer through steps needed to generate the

app and directly include the features inside the app as shown in Figure 4.2. The steps for

creating a new project is as follows:

1. Developer runs the command line interface with our webpack template to create the

project. The developer needs to provide name of the project and author name.

thesis <template-name> <project-name>

2. Then the user selects the platform that they want to create the app for. Since it

generates a hybrid app the supported platforms for now are Android and iOS.

3. Developer will be prompted to select app category of the app. currently there are

only three app categories which are music, tools and social.

4. After selecting the app category, the cli will show the features that are most requested

by users and sort them by most requested feature. Then the developer selects the

features that they want to include directly in their project.

5. Once these features selected, the framework will automatically fetch the packages

that are associated with features through Awesome-Vue repo. Then the packages and

41

their dependencies will be installed and compiled through npm and webpack using

gulp. Then it creates project for the selected platforms.

6. Whenever the developer writes code, he/she just need to compile the project by run-

ning gulp. It is configured so that it performs all required operation to compile and

copy necessary js file to the correct path. If the developer does not want to repeat this

operation, he/she can just run gulp watch so that is watches for the changes in the

directory and performs operations in the background.

4.5 Summary

In this chapter we propose a framework in order to integrate the extracted features from

the user reviews to a real functionality in the app. The framework is based on a com-

mand line tool which is combines the functionality of a number of tools that helps the app

development process.

When the developer wants to start a new app, the command line tool prompts the devel-

oper for the features that he/she wants to include in the app. After choosing the features, the

framework will directly create a hybrid app with the features selected previously selected

by the developer. This way the developer do not have to spend time looking for trending

features as well as looking for particular packages that helps in development process.

42

Figure 4.2: Activity diagram for creating a new project

43

Chapter 5

Analysis

The results of the approach will be presented in this section. Firstly, we explain the de-

tails of the survey and then present the results which is essentially the data collected from

the participants during the survey. Then we discuss the results and analyze the collected

information from the participants.

5.1 Survey

After extracting the features from each category (Music, Social, Tools), we presented these

features to a group of developers that had different level of Android app development ex-

pertise. Here we discuss the structure of the survey and how we performed it.

5.1.1 Structure of Survey

The survey consists of three parts:

1. We asked the participants in order to create a social app because social apps have

highest unique visitors [1]. Therefore, there is a higher chance of using social apps

by participants than music and tool apps. We described the app we were looking to

create and then listed some basic functionalities in the app such as login and posting.

Then we asked them in order to list the five features that they wanted to add to the

app starting from most important to list important.

2. The participants were redirected to second part after finishing the first part. On the

left side of the survey, it contains the features that are most requested by user of social

44

apps from which we extracted. On the right side, it contains the features that they

filled out before. The purpose is to show them their previous input, if they forget it,

or if they still wanted to use exact same features.

3. After finishing the second step, the participants were asked to fill out a simple ques-

tionnaire in order to collect information about their experience with app development.

5.1.2 Participants

The total number of developer participated in the survey were 17. We are confident in

our number of participants because this is a similar number as have been included in an

analogous work [9]. The participants had different background with app development from

beginner to intermediate and even expert that have published several apps and has high

number of installs in play store. 7 of the participants were graduate students who had

little background in Android development by either taking a course of involving in an app

development. The remaining 10 participants had intermediate to an expert level in app

development.

In terms of the experience and number of published apps based on the participants

response, 7 of them have not published any apps. While 3 of the participants have published

1-3 apps and the other 7 participants have published 4+ apps. In other words, 59% of

the participants have published at least one app in play store. We also asked participants

specifically about the time they have been developing or working on Android apps. 4 of

them has 5+ years experience, while 6 of them has less than one year experience. As

demonstrated in Table 5.1, the rest of participants have 1 to 5 year of experience.

The participants were also asked to provide some information about how they collect

information about features and how they decide on including the features. 82% of the par-

ticipants said that, they are referring to other apps whenever they want to include features.

Meanwhile, 88% of the participants claim that they include features in their developing

apps based on their usage experience. For example, if the developer wants to create a

social app, they try to copy some features from other social apps, such as Facebook and

45

Table 5.1: #Published apps by participants

#Developers #Published apps
7 0
3 1-3
2 3-5
5 5+

#Years of experience
6 ¡1
7 1-5
4 5+

Instagram. 7 of the participants also surf internet and 8 of the participants decides on which

features to include in the app based on the easiest one to implement.

Finally, 76% of the participants claim that they add features to the app, if the features

are requested by users while the rest of the participants claim that they do not respond to

the user requests and the user requests do not impact how they implement the features in

their apps.

5.1.3 Results

In this section, the discussion will be mainly focused on the second and third research

questions, because the results of first question have been merged into Chapter 3.

Firstly, we want to study how developers react to the features requests by users of

similar apps to see whether developers are willing to include the latest features, or they

stick with the features that they previously had in mind. The reason we want to do that is

to introduce a new way such that it would help developers directly include these features

in the app. In the second step, we will study how these features help developers prioritize

the features. When the developers were asked to write the features, we also asked them to

write them in order from most important to least important to include in the release of the

application.

46

In the first step of the survey, we asked developers to write down five most important

features that they would include in a social app. In the second step we asked same question,

but this time, we have showed the developers the list of features that was most requested

by users of similar apps. We report the results of the survey in both in terms of features

usage, and feature priority which will address the second and third research questions as

discussed below.

1. What is the impact of extracting features on informing developers about fea-

tures they are unaware of? (Feature Usage Frequency)

The list of features that is provided to the users composed of nine features. In the first

step of the survey the list was not visible. As it can be seen in Table 5.2, in the first

step, these features were mentioned only 4 times, while in the second step it raises to

48 which is 12 times more than the first step.

Regarding the usage by participants, from the total of 17 participants, only three

of the participants include the features in the first step that was with 1,1,2 features

respectively which is 17%. On the other hand, only 11% of the participants stick

with the same features, or did not include the features even after seeing the features

requested by the users.

2. How does extracting features of apps in same category help developers in prior-

itizing the features for the initial release of the apps? (Prioritizing) In previous

section we discussed how frequent these features are integrated to the apps by de-

velopers. As we have mentioned before, the features that are most requested by

users are presented to the developers from most requested features to least requested.

There are three cases to consider when studying how developers deal with these fea-

tures in terms of priority. First comparing new features to old features based on the

frequency of usage before and after seeing the list of requested feature. Second, com-

paring similar feature from the list of old and new features. Third comparing new

features among each other based on the frequency of requests. The comparisons are

47

Table 5.2: Feature usage before and after showing list of users requested features

Features Step One Step Two

Pause Video 0 4

Replay Video 0 5

Copy Post 0 3

Translation 1 9

Zoom 1 5

Material Design 1 9

Live Video 0 5

Repost 0 6

Rotate Image 1 2

4 48

described as follows:

(a) New features with old features based on usage frequency The developers

provided 5 features based on the priority of the features as we asked them to

write them in order from most to least important. In first step, participants in-

cluded the features that were requested by users only 4 times, while this number

increase by 12 times in second step as shown in Table 5.2. Since in both steps,

participants were allowed to provide only 5 features, and as we have seen that

the change is 12 times, that means they have replaced 53% of the features with

new features. Therefore, we can conclude that these new features will be among

the developers’ priorities.

(b) Priority of features with respect to frequency of user requests As we men-

tioned before, the list of feature in Table 5.2 has been sorted from most re-

quested to least request features. For example, “Pause Video”, was most request

feature and “Rotate Image” was least requested feature. The features that are

participants priorities are “Material Design, Translation, Zoom, Replay Video,

48

Table 5.3: Feature priority list

Features 1 2 3 4 5

Pause Video 0 0 1 1 2

Replay Video 1 0 0 3 1

Copy Post 1 1 1 0 0

Translation 1 5 2 0 1

Zoom 1 0 2 1 1

Material Design 6 1 0 1 1

Live Video 0 1 1 2 1

Repost 1 1 1 2 1

Rotate Image 0 1 1 0 0

and Pause Video” respectively. For instance, Material design was mentioned 6

times as the first features by participants, and “Translation” comes as the second

most important feature. Surprisingly, while “Pause Video” was most requested

by users, it was least important to the developers in terms of both priority and

frequency as it is listed in that last feature.

5.2 Threats to Validity

Several threats to validity exist in the way data is collected and analyzed. We were only

able to obtain moderate results using our classifiers. This indicates that the features we

suggested to participants may have come from reviews incorrectly categorized as contain-

ing a feature request. This is mitigated by the fact that LDA attempts to cluster by semantic

similarity. That is, LDA cluster documents by common topic (i.e., a feature), meaning that

the minority of documents that were mis-classified will either simply not cluster or will

form a singular topic (in the case where they are similar). Either way, it is not likely our

results will be thrown off by this. Additionally, our human participants would likely ignore

any suggestion we gave that did not sound like a feature (i.e., a bad feature suggestion

49

generated by LDA).

The participants in our study were not experts in designing social apps. This makes

it difficult for us to generalize the results to those with well-established apps. However,

determining what users want is a large problem for both those entering a market (i.e.,

with a new app) and for seasoned developers (i.e., with a currently available app). Our

proposed technique lowers the barrier of entry to help new app designers discover what

their competitors lack or to assist seasoned developers determine what future features they

can focus on developing.

We only performed the survey portion of our study on social media apps because they

have the highest unique visitor count [1], so we assumed our participants would most likely

have more experience with social media apps than with apps of other types. Additionally,

we were only able to find 17 suitable participants for our study. While more participants

would have optimal, we are confident in our number of participants because this is a similar

number as have been included in an analogous work [9].

50

Chapter 6

Conclusions

In this study we have analyzed the reviews posted by users in Play Store. The goal of this

study is to help developers plan the features they include in the next release of their apps.

In addition, they can use our proposed framework, to directly include the most requested

features in the app. In terms of the venders, they can get benefit from our findings about

which mining technique and methods would work for specific category in play store. They

can follow the approach in order to build their custom recommenders that recommends the

inclusion of specific features for a specific app.

We started with collecting the raw reviews. Then applied preprocessing techniques to

prepare the data for applying other mining techniques. We applied to different mining

techniques which are Naive Bayes and Decision Tree which are two of the most common

classifiers. We found that while Naive Bayes have a higher accuracy than Decision Tree,

but it was not the case with all different categories, as Decision Tree had higher accuracy

in Social review. After applying these classifiers and separating the reviews that contains

feature request from the others, we applied topic modeling techniques to find common

themes inside these reviews.

We then conducted a survey and presented these common themes in the form of features

requested to the participants in order to see how it would help them plan and prioritize these

features in their apps. We found that, while most of the participants included the feature

in their apps, the frequency of the requests did not impact the decision of developers to

include the most requested ones.

In order to further help developers with developing their apps, we introduced a new

51

framework that embeds the most requests features directly inside the framework. Now,

with the framework the developers can directly include these features, and the framework

will take care of including all the required packages and their dependency inside the app.

6.1 Current Status

Until now, we have constructed and trained the classification model as well as the topic

modeling technique. We have used two different classification model which are Naive

Bayes and Decision Tree. As of the topic modeling technique we have used LDA. Using

these mining techniques we were able to extract the features from raw reviews and present

them in a complete set of comprehensive list of features, which encompasses the first com-

ponent of the entire automation process of extracting and using these features in the app.

As the second part of the proposes technique, which is the app framework, we have

integrated the features for the three different categories used in this study. There are about

10 features in each category. The developer can now use and navigate through the features

used in the framework and generate apps for both Android and iOS apps that contains the

features which are selected by the developer.

6.2 Future Work

1. Increasing number of categories

Due to large amount of reviews and limited space and time on the machines we have

used in this research, we have worked on only 3 categories. It would be interesting to

also study the reviews of apps of other categories, and see how possibly they affect

our findings. Because although the categories that we selected are top categories,

however there are thousands of apps under other categories.

2. Collecting reviews of apps in other app markets

All of the reviews that is used in our study is from Play Store. However, there are

other app markets that have a high number of apps and downloads such as app store.

52

In the future, we will expand our study to include reviews from other app stores

as well, and study how the ratio of feature requests might change from a platform to

another platform as compared to bug requests, or even the number of feature requests

for the same app in different platforms.

3. Group the features based on their functionality

In our study we have used the features in general. For example, we have showed

the list of feature based on the number of requests originally requests by the user

regardless of the relationship between the features. In the future, we will group

these feature based on their functionality. For example, rotation and zoom belong

to photos, while live and replay belong to video. This way, when the features are

presented to the developers, they will be able to directly select the features that are

more relevant to their apps, such as image manipulation. In other words, if their apps

work mostly on images, they do not have to check the feature requests for video.

4. Increase the number of feature in the framework

The framework currently supports four features. These features are fully functional

and can be directly included and used in the apps. However, the framework is still in

its early stages and needs more feature in order to work as a fully functional frame-

work. Meanwhile, the features need to be updated frequently, therefore, in the future

connecting and fetching these features from cloud will help the framework stay up to

date with the latest features.

5. Completely separating the components of the framework so that the mining op-

eration can be applied on a different platform and then integrated to the frame-

work.

Although the process of mining and the applying features in the framework is per-

formed in two different steps, however they are completely coupled and the data of

the framework completely depends on the mining process. There is another way of

53

performing these two different operations such that the mining can be done on a sep-

arate platform and the frameworks updates itself periodically fetching the data from

the mining platform. This way each component can work independently, and can be

used for a purpose while sharing information between each other.

6. Automate the whole mining process including association of the topics to fea-

tures.

The process of associating the features to the terms and topics is performed manually

in this study. In the future, this process can be automated in order to make the entire

extraction and association automatic. One way to do that, is to use n-grams model

in order to derive a sequence of words instead of one single word. Or an alternative

approach, is to create a model that can automatically parse the description for each

package in the awesome vue github repository.

54

Bibliography

[1] Ben Martin Adam Lella, Andrew Lipsman. The 2015 U.S.

Mobile App Report. https://www.comscore.com/

Insights/Presentations-and-Whitepapers/2015/

The-2015-US-Mobile-App-Report, 2015. [Online; accessed 08-August-

2017].

[2] Appboy. App Uninstalls: A Totally Unscientific Look at What Makes Customers Pull

the Plug. http://bit.ly/2iVdlcp, 2016. [Online; accessed 09-August-2017].

[3] Appbrain. Number of available Android applications. https://www.appbrain.

com/stats/free-and-paid-android-applications, 2012. [Online;

accessed 19-July-2017].

[4] Appbrain. Android Operating System Statistics. https://www.appbrain.

com/stats, 2017. [Online; accessed 09-August-2017].

[5] Appbrain. Ratings of apps on Google Play. https://www.appbrain.com/

stats/android-app-ratings, 2017. [Online; accessed 09-August-2017].

[6] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Massim-

iliano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. The impact of api change-and

fault-proneness on the user ratings of android apps. IEEE Transactions on Software

Engineering, 41(4):384–407, 2015.

[7] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.

Journal of machine Learning research, 3(Jan):993–1022, 2003.

55

[8] Ning Chen, Jialiu Lin, Steven CH Hoi, Xiaokui Xiao, and Boshen Zhang. Ar-miner:

mining informative reviews for developers from mobile app marketplace. In Proceed-

ings of the 36th International Conference on Software Engineering, pages 767–778.

ACM, 2014.

[9] Emitza Guzman, Omar Aly, and Bernd Bruegge. Retrieving diverse opinions from

app reviews. In Empirical Software Engineering and Measurement (ESEM), 2015

ACM/IEEE International Symposium on, pages 1–10. IEEE, 2015.

[10] Emitza Guzman and Walid Maalej. How do users like this feature? a fine grained

sentiment analysis of app reviews. In Requirements Engineering Conference (RE),

2014 IEEE 22nd International, pages 153–162. IEEE, 2014.

[11] Leonard Hoon, Rajesh Vasa, Gloria Yoanita Martino, Jean-Guy Schneider, and Kon

Mouzakis. Awesome!: conveying satisfaction on the app store. In Proceedings of the

25th Australian Computer-Human Interaction Conference: Augmentation, Applica-

tion, Innovation, Collaboration, pages 229–232. ACM, 2013.

[12] Leonard Hoon, Rajesh Vasa, Jean-Guy Schneider, and Kon Mouzakis. A prelimi-

nary analysis of vocabulary in mobile app user reviews. In Proceedings of the 24th

Australian Computer-Human Interaction Conference, pages 245–248. ACM, 2012.

[13] Claudia Iacob and Rachel Harrison. Retrieving and analyzing mobile apps feature

requests from online reviews. In Mining Software Repositories (MSR), 2013 10th

IEEE Working Conference on, pages 41–44. IEEE, 2013.

[14] Peter Jackson and Isabelle Moulinier. Natural language processing for online ap-

plications: Text retrieval, extraction and categorization, volume 5. John Benjamins

Publishing, 2007.

[15] Simon Khalaf. Seven Years Into The Mobile Revolution: Content is King

Again. http://flurrymobile.tumblr.com/post/127638842745/

56

seven-years-into-the-mobile-revolution-content-is, 2015.

[Online; accessed 08-August-2017].

[16] Orges Leka. Facebook Reports Third Quarter 2016 Results. https:

//investor.fb.com/investor-news/press-release-details/

2016/Facebook-Reports-Third-Quarter-2016-Results/

default.aspx, 2016. [Online; accessed 02-February-2017].

[17] Orges Leka. Q3 2016 Letter to Shareholders. http://files.shareholder.

com/downloads/AMDA-2F526X/5305357775x0x913983/

81893241-7B36-4E80-8CED-454808BEC856/Q3_16_

ShareholderLetter.pdf, 2016. [Online; accessed 02-February-2017].

[18] Orges Leka. Database of Android Apps. https://www.kaggle.com/

orgesleka/android-apps, 2017. [Online; accessed 15-September-2017].

[19] Julie Beth Lovins. Development of a stemming algorithm. Mech. Translat. & Comp.

Linguistics, 11(1-2):22–31, 1968.

[20] Walid Maalej and Hadeer Nabil. Bug report, feature request, or simply praise? on au-

tomatically classifying app reviews. In Requirements Engineering Conference (RE),

2015 IEEE 23rd International, pages 116–125. IEEE, 2015.

[21] ALEX WALZ. MAY. The Mobile Marketers Guide to App Store Rat-

ings & Reviews. https://www.apptentive.com/blog/2015/05/05/

app-store-ratings-reviews-guide/, 2015. [Online; accessed 02-

February-2017].

[22] Fabio Palomba, Mario Linares-Vásquez, Gabriele Bavota, Rocco Oliveto, Massim-

iliano Di Penta, Denys Poshyvanyk, and Andrea De Lucia. User reviews matter!

tracking crowdsourced reviews to support evolution of successful apps. In Software

Maintenance and Evolution (ICSME), 2015 IEEE International Conference on, pages

291–300. IEEE, 2015.

57

[23] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visaggio, Ger-

ardo Canfora, and Harald C Gall. How can i improve my app? classifying user

reviews for software maintenance and evolution. In Software maintenance and evolu-

tion (ICSME), 2015 IEEE international conference on, pages 281–290. IEEE, 2015.

[24] Israel J Mojica Ruiz, Meiyappan Nagappan, Bram Adams, Thorsten Berger, Steffen

Dienst, and Ahmed E Hassan. Impact of ad libraries on ratings of android mobile

apps. IEEE Software, 31(6):86–92, 2014.

[25] Eric Shaw, Alex Shaw, and David Umphress. Mining android apps to predict market

ratings. In Mobile Computing, Applications and Services (MobiCASE), 2014 6th

International Conference on, pages 166–167. IEEE, 2014.

[26] Google Support Team. View & analyze your app’s ratings & reviews.

https://support.google.com/googleplay/android-developer/

answer/138230?hl=en, N.A. [Online; accessed 09-August-2017].

[27] Craig Trim. The Art of Tokenization. https://www.ibm.com/

developerworks/community/blogs/nlp/entry/tokenization?

lang=en, 2013. [Online; accessed 26-July-2017].

[28] S Vijayarani, Ms J Ilamathi, and Ms Nithya. Preprocessing techniques for text mining-

an overview. International Journal of Computer Science & Communication Networks,

5(1):7–16, 2015.

[29] Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Massimil-

iano Di Penta. Release planning of mobile apps based on user reviews. In Proceedings

of the 38th International Conference on Software Engineering, pages 14–24. ACM,

2016.

58

[30] Phong Minh Vu, Tam The Nguyen, Hung Viet Pham, and Tung Thanh Nguyen. Min-

ing user opinions in mobile app reviews: A keyword-based approach (t). In Auto-

mated Software Engineering (ASE), 2015 30th IEEE/ACM International Conference

on, pages 749–759. IEEE, 2015.

[31] Phong Minh Vu, Hung Viet Pham, Tung Thanh Nguyen, et al. Phrase-based extrac-

tion of user opinions in mobile app reviews. In Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, pages 726–731. ACM,

2016.

[32] Andy Wallace. Very basic strategies for interpreting results from the Topic Modeling

Tool. http://bit.ly/2ms2BHC, 2012. [Online; accessed 26-July-2017].

[33] Peter Willett. The porter stemming algorithm: then and now. Program, 40(3):219–

223, 2006.

59

Appendix A

Diagrams

Figure A.1: Creating data matrix for classification model

60

Figure A.2: Creating data matrix of all reviews

Figure A.3: Processing documents(reviews)

61

Figure A.4: Classification model construction

62

Figure A.5: Applying models

63

Appendix B

Survey

B.0.1 IRB Approval

Figure B.1: IRB approval

64

B.0.2 Request for participation email

Hello ***

I am writing to you to request your participation in a brief survey. Your responses to

this survey will help us evaluate the effectiveness of mining user review in app stores and

develop tools and packages that would help developers automate the process of including

those features in their apps.

Please click the link below in order to access the survey.

http://www.se.rit.edu/ rss1803/survey/

email: ******@gmail.com password: *********

Please use Google Chrome

Thanks

65

B.0.3 Survey

Figure B.2: Survey consent

66

Figure B.3: Survey guidelines

67

Figure B.4: Step one in the survey

68

Figure B.5: Step two in the survey - A

69

Figure B.6: Step two in the survey - B

70

Figure B.7: Questionnaire

71

Appendix C

Tables

Social Reviews Music Reviews Tools Reviews

App #Reviews App #Reviews App #Reviews

Instagram 250762 SoundCloud 56816 Clean Master - Antivirus 209998

Facebook 237974 Spotify 14487 CM Security 103477

Snapchat 111467 Musicmatch 4519 DU Speed Booster 37731

Tango 22019 Shazam 4409 360 Security 36816

Pinterest 12450 Tunein 3080 Battery Doctor 24927

Badoo 5557 Amazon Music 2560 DU Battery Saver 24633

textPlus 1783 Melodis 1747 AVG Antivirus 14249

VK 1067 Piano Perfect 1571 Avast Antivirus 11871

KakaoStory 253 AppLock 11641

Google Translate 11608

Flashlight 5774

Lookout 3120

Brightest Flashlight 2932

Adobe Air 2678

Google Home 2158

Torch Flashlight 1019

Dr Web 945

Smart Connect 846

72

Table C.1: Topics in social apps reviews

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7

1 paus copi zoom usernam design effect locat

2 default caption twitter creat lol front repost

3 tab volum roll avail materi flash frame

4 anyway alot includ plzzz taken emoji agre

5 main translat cover complaint select live insta

6 audio solv kind invalid icon correct rotat

7 fact understand multipl switch addit write whatev

8 press system recommend simpl googl clear map

9 replay word funni entir definit sec auto

10 hear url besid size month super yall

Table C.2: Topics in tools apps reviews

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7

1 theme scan password notif minut automat auto

2 show card comput guy includ schedul hide

3 wifi block background reduc disabl type kill

4 plz put turn size ram cach sms

5 applock memori temperatur folder miss cleaner blocker

6 look abil constant panel packag booster landscap

7 cool locker unabl select differ data mode

8 dark choos amaz pictur pro fixer manual

9 advertis number bad etc permiss restart filter

10 everth feel alright avail saver transmiss extra

	How Should You plan Your App’s Features? Selecting and Prioritizing A Mobile App’s Initial Features Based on User Reviews
	Recommended Citation

	tmp.1512745973.pdf.iTiBP

