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Abstract 

The effective visualization and presentation of biological data is of critical importance to 

research scientists. The increasing rate at which experiments generate data has only exacerbated 

the problem. While bioinformatics datasets continue to increase in size and complexity, the shift 

to adopt new user interface (UI) paradigms has historically lagged. Consequently, a major 

bottleneck for analysis of next-generation sequencing data is the continued use of UIs primarily 

inspired from the 1990’s through the early 2000’s. This paper presents the novel use of virtual 

reality (VR) as a medium for visualizing genomic, transcriptomic and proteomic data. Using the 

Gria2 (GluR2 or GluA2) gene and its associated gene products as our main objects of interest, 

we present Gria2-Viewer, a proof of concept software tool for visualizing any gene variant 

within the Gria2 locus. For any given genomic or transcriptomic variant of Gria2, we can 

quickly visualize its position on the protein subunit, rendered as a secondary structure. We also 

present a design for an experimental case study which compares our software versus a 

“traditional” workstation for ascertaining the severity of any Gria2 variant and its location within 

a 3d representation of the protein. 
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Introduction 

During the mid to late 1990’s, the medical research industry was focused on a complete mapping 

of the human genome. It was understood that new disease models depended on the accumulation 

of relevant genomic data, which was relatively sparse at that time. From the 2010’s to the present 

day, the accumulation of vast quantities of biomedical data across various -omics fields present 

an altogether different problem: how can researchers effectively mine vast quantities of data to 

describe only the phenomenon for which they are interested?  

In this paper, we explore the extent to which effective visualizations and user interfaces in VR 

may help researchers quickly identify important genomic variants identified in exome 

sequencing data. As part of this use case, we present a VR approach to visualizing sequence 

variations in Gria2 identified through exome sequencing. In so doing, we hope to establish that 

VR software may be a valid alternative to traditional web-based tools currently available for 

genomics, transcriptomics, and proteomics, research. 

Methods and Materials 

Hardware Requirements 

We have regular access to a VR-capable computer with the following specifications: Intel Core 

i7-6700HQ Quad Core processor, a 6GB GDDR5 NVIDIA GeForce GTX 1060 graphics card, 

and 8GB of RAM. We used Oculus Rift with the following specifications: Oculus App Version 

1.16.0.409144 (409268), device firmware version 708/34a904e8da. To detect a user’s hands, we 

used Leap Motion Software Version: 3.2.0+45899, Leap Motion Controller ID: LP22965185382, 

Firmware 1.7.0. 
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Development Tools 

Our VR-enabled desktop application was built using Unity3D (Unity), a game development 

environment with virtual reality capabilities. It utilizes the C# programming language, which 

comes as part of Microsoft’s .Net software. As one of only two serious game development 

platforms that are commercially available for free and support VR, there was a limited choice in 

terms of our development tools. The alternative platform is Unreal Engine. It is not widely used 

within RIT, and its active user base worldwide pales in comparison to Unity’s [1]. To avoid any 

potential problem for which there might be limited campus and online resources, Unity was 

established as the development platform for our VR application. 

A software package called UnityMol was created in Unity by Marc Baaden of Centre National 

de la Recherche Scientifique (CNRS). A non-VR 2014 version of the software is available for 

free download via SourceForge.net (Sweet UnityMol r676 beta r7) [2]. It is governed by a 

French copyright license called CeCILL-C which grants us the right to its free use and 

modification. Using Unity version 5.4.2f, Sublime Text 3 Build 3126 (sublime), a code editor, 

and Git 2.11.0.windows.3 (git) for version control, we were able to use the 2014 version (base 

code) as the basis of our VR application. While Baaden currently leads a software team which 

also focuses on bringing VR to UnityMol, we were unable to compile the source code from their 

latest iterations. In contrast, the base code compiled and proved amendable to our changes.  
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Gria2 Data 

Source files containing structural information on the Gria2 protein was downloaded from Protein 

Data Bank (PDB) [3]. Prior studies have previously identified glutamate binding and closing 

mechanisms using PDB: 1FTO [4] with the caveat that 1FTO only captures the ligand binding 

core of the protein. A major contributor of Gria2 protein information to PDB is Maria V. 

Yelshanskaya et al. In her 2016 publication, a novel allosteric binding site of Gria2 is inferred 

from diffraction-quality crystallization of a modified Rattus norvegicus GluA2 AMPA receptor 

subunit [5]. Preliminary data provided by the Paciorkowski Lab suggests that Gria2 missense 

mutations at the novel allosteric region characterized by Yelshanskaya et al may negatively 

affect brain development in children, leading to infantile onset epilepsy among other 

neurological disorders (unpublished) [6]. Of the five structures submitted to PDB through 

Yelshanskaya et al, 5L1B shows the Gria2 structure in apo state. 5L1B was selected for use in 

this project due to its symmetry and unbound nature.  

Gria2 homologs were obtained for Mus musculus, Homo sapiens, Macaca mulatta, Pan 

troglodytes, and Gallus gallus from NCBI (Figure 1) with the purpose of deducing the 

conservation and hence relative importance of each nucleotide position [7]. 

Species Common 
Name 

DNA key mRNA key Protein Sequence 
key 

Rattus 
norvegicus 

Rat >NC_005101.4:c179704629-
179584302 

>NM_017261.2:431-
3082 

>NP_058957.1 

Mus 
musculus 

Mouse >NC_000069.6:c80803204-
80682904 

>NM_001083806.1 >NP_001077275.1 

Gallus 
gallus 

Red junglefowl 
(chicken) 

>NC_006091.4:21570503-
21667322 

>NM_001001775.3 >NP_001001775.2 

Macaca 
mulatta 

 
Rhesus 
Monkey 

>NC_027897.1:157221519-
157371648 

>NM_001185013.2 >NP_001171942.2 

Pan 
troglodytes 

Chimpanzee >NC_006471.4:161117506-
161261776 

>NM_001184994.3 >NP_001171923.2 
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Homo 
sapiens 

Human >NC_000004.12:157205099-
157370583 

>NM_000826.3:460-
3111 

>NP_000817.2 

Table 1: FASTA files were obtained from NCBI and downloaded into the StreamingAssets folder of the project. A parsing 
routine in ModelFASTA.cs is called as needed. It extracts from the header line of the relevant FASTA file the key using regular 
expressions.  

The documents listed are preloaded into the StreamingAssets folder of the G2V project. G2V 

software builds have access to a compressed version of the StreamingAssets folder at runtime. 

During the User Interface Case Study, we plan to provide the equivalent of “built-in” access to 

these documents for subjects randomized to the Traditional Computer group. A chrome browser 

will be open with tabs corresponding to the NCBI page for these documents.  

Software Design and Development 

Basic Unity Objects. Software development within Unity constitutes its own specialty. A 

detailed discussion of Unity-specific challenges and best practices are outside the scope of this 

paper. However, basic Unity concepts are described in this section.  

By virtue of being a game development platform, all objects in Unity are of type GameObject. A 

GameObject instance may contain zero or more components, such as a MeshFilter. A MeshFilter 

object contains a reference to a Mesh instance. A Mesh instance can represent a single 

polyhedron by virtue of its internal data structures: vertices, triangles, normals, and uvs arranged 

in arrays of the appropriate type. However, a single Mesh instance does have an upper vertex 

limit around 6000. In Gria2-Viewer, the primary objects of interest are GameObject instances 

which contain a Mesh instance [8]. A mesh can be accessed via the following: Mesh m = 

gameObject.getComponent<MeshFilter>().mesh assuming there exists a non-null reference to 

GameObject named gameObject. 
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Class Description (source: 
Unity Docs) 

Contains Parent in Scene 
Hierarchy 

Parent in 
Object 
Oriented 
Inheritance 

GameObject “Base class for all entities in 
Unity scenes.” 
 

Empty, Transform 
Component, other 
Components, or 
other 
GameObjects. 

Other GameObjects, 
Unity scene 

Object 

Component “Base class for everything 
attached to GameObjects. 
Note that your code will 
never directly create a 
Component. Instead, you 
write script code, and attach 
the script to a GameObject.” 

A reference to the 
GameObject to 
which the 
component is 
attached. 
A reference to the 
Transform 
attached to the 
GameObject to 
which the 
component is 
attached. 

Is attached to a 
GameObject but has 
no parent since it 
isn’t represented in 
scene hierarchy. 

Object 

MeshFilter  Accessor class for Mesh 
objects. Passes Mesh info to 
MeshRenderer for rendering. 

Mesh object. Is attached to a 
GameObject, but has 
no parent for the 
same reason as 
Component. 

Component 

MeshRenderer  “The Mesh Renderer takes 
the geometry from the Mesh 
Filter and renders it at the 
position defined by the 
object’s Transform 
component.”  

References to 
Lighting, Material 
objects used to 
render geometry. 

Is attached to a 
GameObject, but has 
no parent for the 
same reason as 
above. 

Renderer > 
Component 

Mesh Represents a geometry, e.g. a 
plane, cube, or any other 
polyhedron. 

int[] triangle, 
Vector3[] vertices, 
Vector3[] normals, 
Vector2 uv, 
Color[] colors 

Retreived via 
MeshFilter. 

Object 

MonoBehaviour Base class from which all 
Unity scripts derive. 

Awake(), Start(), 
Update() functions 

Scripts which inherit 
MonoBehaviour are 
attached to 
GameObject 
instances. 

Behaviour > 
Component 

Table 2: Common objects in Unity and their uses. Instances of MeshFilter, MeshRenderer, and other classes are often refered to 
as a type of Component when attached to a GameObject. The Scene Hierarchy refers to a directed acyclic graph (DAG) whose 
nodes represent GameObjects within the entire scene. Parent-child relations in the Scene Hierarchy refers to the relative grouping 
of objects in the DAG, whereas Parent in the Object-Oriented (OO) sense refers to inheritance.  

Game Loop. The game loop is a ubiquitous concept in the gaming industry and influences 

Gria2-Viewer in subtle but important ways. A game loop is a finite state machine that describes 

the high level game state at any given time point. It is modeled roughly as follows: when the 

player enters the game for the first time, the game loop starts. The current game state is rendered 
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and displayed to the player. The player assesses the current game state and decides the next 

move, pressing the corresponding input(s). The next game state is computed based on the 

player’s inputs and scene information. As soon as the next game state is rendered on screen, it 

becomes the current game state. The player assesses the newly created game state and responds 

with inputs, repeating the loop [9]. Unless game-ending conditions are triggered, the game loop 

continues.  

Unity provides the MonoBehaviour class to help developers implement the game loop concept. 

The purpose of MonoBehaviour is to contain base code which organizes component actions into 

one of several game loop states. MonoBehaviour therefore contains the Awake(), Start(), and 

Update() functions, as well as other functions specific to Unity’s implementation of game loop 

design. 

To maintain game loop design principles, Unity encourages scripts to inherit from 

MonoBehaviour, but will otherwise compile and run normal C# classes with the caveat that those 

classes do not have the opportunity to directly affect game loop behavior [8].  

VR applications rely on game loop architecture due to similarities in their state changes 

following user input. On start, the application takes on the state SSTART and information is rendered 

into the headset. Information about the player’s head orientation from the headset and finger 

positions from Leap Motion are gathered. The next state S1 is then computed based on said 

information and rendered into the headset. Upon render completion, S1 becomes the current 

game state, and input from the headset and Leap Motion determines the next state S2. This 

continues to SN so long as the user does not exit the application. The set of all states from S1 to SN 

is part of the larger “playing” game state within the game loop. In Gria2-Viewer, GameObjects 

that are subject to user input have some influence on the exact parameters of the next state and 
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are therefore part of the game loop (Figure 1). These GameObjects have attached components 

that inherit from MonoBehaviour and define the Awake(), Start(), and Update() functions as 

appropriate.  

MVC. Changes and additions to base code relied heavily on the model-view-controller (MVC) 

design paradigm. MVC design calls for a separation of concerns into three different components 

of the software. The Model component is responsible for representing the data the software 

needs to interact with. The View component is primarily responsible for rendering and 

maintaining the correct views given inputs. The Controller mediates exchanges between Model 

and View components while also listening to user input events.   

 

Figure 1: In building Gria2-Viewer, we attempt to faithfully execute on the MVC architecture, creating separate namespaces: 
VRModel, View, and Controller. Nevertheless some components within Gria2-Viewer blur the line between the different 
components of the ideal MVC model.  

The separation of concerns in MVC architecture is meant to keep application logic apart from 

their presentation. In base code, modules primarily concerned molecular structure display reside 

primarily within Molecule.View, but can also be found in Molecule.SecondaryStructures or 
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within the surface folder without assignment to any particular namespace. Consequently, base 

code MVC architecture resembles a Venn diagram rather than cleanly separated MVC 

components (Supplemental Figure 3). During subsequent software development from base code 

onwards, we did not attempt any code refactoring aimed at separating MVC components into 

their respective namespaces. Rather, separate namespaces were created as folders within 

“/Script/” apart from base code. Modules such as Residue.cs, Nucleotide.cs, 

DNAPlaneController.cs, were added to their respective namespaces. Nevertheless, the separation 

of concerns problem remained (Figure 2). 

Data Models & Inheritance. The sparse use of inheritance throughout software development 

is a recommended best practice among developers. It minimizes assumptions about common 

features of classes and their roles. In Gria2-Viewer, we utilize object-oriented inheritance only to 

describe data models for parsing and holding Gria2 data files (Figure 3).  

 

All FASTA files are processed the same way; therefore the common parsing code resides within 

FASTAModel.cs. Each species for which FASTA files are available map to a unique niceName 

Figure 2: Inheritance is the best option to describe three different data models that rely on parsing 
the same file type. The niceName field maps common species names e.g. “Homo sapiens” to 
different key indices within the data Dictionary depending on the specific child class. 
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string instance, e.g. string niceName = “Homo sapiens”. The niceName string instance is 

common to the DNA, RNA, and Protein models for each species, but they map to different-

valued keys within the data dictionary, depending upon which type of model (DNA, RNA, or 

Protein) the user is interested (Supp. Table 2). 

UI. Hover UI Kit is a free software package available for download from github. It is governed 

by a GPLv3 license which authorizes free use for open source projects. 

Once Hover UI libraries are imported into the project directory, an empty GameObject is created, 

and a Hover UI creation script component is attached. Running the script directly in Unity editor 

mode results in a static menu set, if given appropriate parameters. The static menu instance is 

directed to find and attach itself to an instance of Leap Motion hands at runtime (Figure 3). The 

left hand transform acts as the parent to the UI menu while the right hand acts as a pointer. The 

complete menu hierarchy as implemented in the current version is listed in Table 3.  

Figure 3: Hover UI v 2.0.0-alpha used in conjunction with Leap Motion Orion v3.0.0. The menu is anchored to the user’s left 
hand. The index finger on the right hand acts as a cursor: it generates a button pressed event for a particular button when it hovers 
over that button within a set amount of time. The specific timing varies and can be set per button.  

• Gria2-Viewer Main Menu 
o DNA 

§ Show 
§ Coding Region (CDS) 
§ Back 
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o RNA 
§ Show 
§ Consensus (MSA) 
§ Back 

o AA 
§ Show on Model 
§ Consensus 
§ Back 

o Homology 
§ Rattus norvegicus 
§ Homo sapiens 
§ Pan troglodytes 
§ Back 

o User Input Variants 
§ Variant 1 
§ Variant 2 
§ Variant 3 

Table 3: The complete hierarchical menu set is an instance of Hover UI, and open source project for VR interfaces. Italics 
represent buttons which will be implemented in a future release. 

Plane Geometry and UV Coordinates. We use plane geometry and uv coordinates to map 

nucleotide sequences onto UI elements. The following is an overview of Unity’s plane geometry 

and texture mapping properties which allows for this unique sequencing representation. 

A Unity plane geometry is a flat surface as defined by variables contained in its mesh instance. 

Every mesh instance has an array of Vector2 uv coordinates (Figure 1) which define UV the 

mapping of a two-dimensional texture image onto the projected surface of any valid geometry. In 

the case of plane geometry, uv coordinates map perfectly to the length and width of the plane 

such that in the default case, the u coordinate ranges from (0, 1) and spans the plane’s length, 

while the v coordinate ranges from (0, 1) and spans the plane’s width.  

To render nucleotide sequences onto textures, we take advantage of two properties. First, 

geometries have the unique property of being allowed to partially map to uv coordinates. In other 

words, mesh geometries do not need span the entire uv range. Second, Unity allows the 

procedural editing of textures via Texture2d.SetPixel(int x, int y, Color color) where x, y refers 

to a texture coordinate [8]. Note that a 256 x 256 texture will map to a 1x1 uv square such that 
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(0,0) => (0,0) and (256, 256) => (1,1). Thus, each nucleotide within a sequence can be 

represented by their traditional colors (Table 4) and associated with a specific (u, v) coordinate.  

Nucleotide Color RGB 

A Blue 68,155,255 

T / U Yellow 244,220,110 

C Red 224,81,62 

G Green 83,209,131 

Table 4: Nucleotides in DNA and RNA Panels are represented by the colors listed above. Each pixel can be set to a unique color 
using the Texture2d.SetPixel function. Thus, a sequence of n nucleotides will generate n / textureWidth rows of textureWidth 

color squares. Each color square represents the nucleotide at a unique sequence position. 

Since geometries don’t need to map to the entire uv space, the MeshRenderer component of the 

plane geometry mesh will then only render portions of the nucleotide sequence at a time (Figure 

5). The range of the nucleotide sequence to be rendered can be adjusted via scrolling. In a future 

version, we plan to support the rendering of a nucleotide region defined by typing in the position 

within the genome.  

Figure 4: 120,327 base pairs of Gria2 DNA from Rattus norvegicus are loaded into the DNA Panel shown above. As the user’s 
right index finger hovers over a point on the panel, the base pair for that point is retrieved; it is displayed along with the position 
within the fasta file in which the base pair occurs.   
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Algorithms. MSA algorithm and global pairwise alignment are implemented within 

VRModel.SequenceModel, VRModel.Algorithms.SequenceAligner. Algorithms are not the 

focus of this paper, but it should be noted that the incorporation of algorithms allows the user to 

judge conservation, categorize sequences as wild-type vs variant, and locate intron / exon regions 

in the DNA view.   

Figure 5: SequenceModel.cs keeps references to DNAModel, RNAModel, ProteinSeqModel singletons, and a reference to a 
SequenceAligner instance which currently implements the Needleman Wunsch pairwise alignment algorithm for global 
alignment. 
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Results 

VR Software: Gria2-Viewer 

The Gria2-Viewer allows scientists to view genomic, transcriptomic, and proteomic data for 

Gria2 in unison. It features a simple user interface for viewing genomic information which 

utilizes Leap Motion tracking to turn fingers into data manipulators. To the right hand is attached 

an instance of Hover UI ( 

Figure 6: To navigate within VR, Gria2-Viewer uses a menu set anchored to the user’s left hand. The menu set is an instance of 
Hover UI, an open source project found at https://github.com/aestheticinteractive/Hover-UI-Kit.  
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,  
Figure 7: The menu is hierarchical and selectable with the user’s right index finger or the user’s Look cursor. 

). The user may select one or more of the five species, and may select to view DNA or mature 
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mRNA nucleotides. The protein sequence in one letter code can be overlaid on top of the mRNA 

panel (Figure 8).  

Figure 6: To navigate within VR, Gria2-Viewer uses a menu set anchored to the user’s left hand. The menu set is an instance of 
Hover UI, an open source project found at https://github.com/aestheticinteractive/Hover-UI-Kit.  

 

 

 

 
Figure 7: The menu is hierarchical and selectable with the user’s right index finger or the user’s Look cursor. 
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Figure 8: Viewing the Gria2 RNA sequence for Rattus norvegicus. Above the right index finger is a GUI which displays context-
sensitive data depending on where the user places his or her index finger along the sequence. The residue corresponding to the 
nucleotide is also highlighted in the 3d structure via a yellow outline shader (denoted by red circle). Note that the red circle was 
added for emphasis in this paper and does not appear in the actual program.  

Nucleotide Sequences and UV Coordinates. The ideal representation of large (~100 Kb) 

nucleotide sequences is an open problem in both VR as well as web interfaces. We created a 

plane geometry with customized uv coordinates that allow for the representation of nucleotide 

sequences of up to 100 Kb (Figure 4). Using the BuildTexture() method in {DNA | 

RNA}PanelController, the appropriate fasta file is accessed and its nucleotide sequence is 

processed such that each texture coordinate of the DNA or RNA plane takes on a color that 

represents a specific nucleotide in the fasta sequence (Table 4). If the user selects “AA>Show on 

Model” and goes to “RNA>Show” Gria2-Viewer gives additional context. Specifically, it 

displays the amino acid of the 3d structure which pairwise aligns with the translated version of 

the displayed mRNA sequence, and its position within the secondary structure (
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Figure 8).   

User Interface Case Study 

We designed a UI case study around the VR experience in hopes of comparing its effectiveness 

against the traditional bioinformatics workflow. Usability testing is a key process within 

software development. We hope to bring that process into wider adoption within the 

bioinformatics community by introducing this case study. Key issues involving the details of the 

case study remain, such as which metrics should be monitored, and what statistical results 

constitute a measure of “effectiveness.” Nevertheless we hope these issues will be resolved in 

future versions of the Case Study manual. 
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User Interface Case Study : VR vs Traditional Methods for Analysis of Gria2 

Variants 

Study Authors: Jimmy Fan Zhang, Feng Cui Ph.D., Gary Skuse Ph.D., Paul A. Craig 

Ph.D, Joe Geigel, Alex Paciorkowski MD 

Introduction 

The increasing popularity and usefulness of Virtual Reality (VR) applications requires an 

empirical study of their scientific utility within the bioinformatics context. We propose a 

research study comparing a VR application (VR arm) against existing methods (Traditional arm) 

in determining various attributes of Gria2 genomic variants. The VR application is suited to 

viewing Gria2 genomic, transcriptomic, and proteomic data. The traditional method consists of 

an internet-connected computer with access to the same Gria2 datasets, sans VR capability. We 

plan to recruit bioinformatics students within RIT campus; qualified subjects will answer 

questions about real-life Gria2 variants identified through exome sequencing from Paciorkowski 

Lab. Subjects will be provided technologies from one of the two aforementioned study arms: VR 

vs Traditional. Subjects will be given as much time as required, but will be timed without their 

knowledge in their efforts to answer the questions. The study has two objectives: 1.) to determine 

whether some differential time interval exists between the two study arms for completing the 

Gria2 questions, and 2.) whether the correctness of responses to the questions is significantly 

different among the two arms. 

Gria2 Background 

Gria2 is a gene associated with intellectual disability (ID) [10]. It encodes a glutamate receptor 

subunit called glutamate receptor 2. Glutamate receptors are highly expressed in postsynaptic 

structures and has an important role in signal transduction across synapses in the central nervous 
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system. This specific class of glutamate receptors are considered ligand-gated ionotropic 

transmembrane receptors for glutamate. Any nonsynonymous sequence variations which affect 

the Gria2 protein structure either along its ligand interface, or disrupts its ability to tetramerize 

with Gria1-4 to form the complete glutamate receptor, will negatively impact the process of 

membrane depolarization required for neurotransmitter release. The Gria2 gene sequence is 

available on NCBI. Its protein sequence data are available on PDB. 

Safety & Ethics 

The study will be conducted in compliance with standards established by the Human Subjects 

Research Office (HSRO) and Institutional Review Board (IRB) at Rochester Institute of 

Technology (RIT).  

Subject written consent will be obtained after investigators explain the study and before any 

study-related procedures occur. Health risks associated with prolonged VR use will be explained. 

Additional care will be given to subjects who might require any kind of special medical 

accommodations, interpreting services, etc. with the exception that visually impaired subjects are 

discouraged from study participation for safety / health reasons. Subjects may choose to not 

participate or withdraw from the study at any time for any reason. 

Study Objectives 

The study aims to determine whether subjects randomized to the VR arm perform better than 

subjects randomized to the Traditional arm at completing the given problem set. To statistically 

quantify “perform better” we consider the following metrics: the average time interval among the 

two arms for completing the Gria2 questions, and the correctness of responses to the questions. 
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Investigational Plan 

Recruited subjects who qualify are randomized into one of two arms (VR or Traditional) and 

provided with four pieces of sequencing data: two belonging to wild-type Gria2, the other two 

are disease-causing Gria2 variants found by Paciorkowski et al. Each of the wild-type sequences 

will span a region covering one of the two variants. Subjects are then given questions about the 

data and are asked to solve them according to the tools provided by their study arm. The problem 

is as follows: 

Given an intron-free DNA sequence x that resides within the Gria2 locus, determine if x 

represents:  

• a wild-type sequence. If so, move on to the next sequence.  

• a mutation (note that there are no frameshift or nonsense mutations). If so, answer the 

following: 

o What kind of mutation is it, synonymous or non-synonymous? 

o How damaging is the substitution? (Synonymous = no damage, some damage, 

or very damaging) 

o Which specific amino acids are affected, if any? (Give loci and the amino acid 

change) 

o highlight the position of the amino acid in the Gria2 3D structure. 

The following metrics are then collected: 

• Time elapsed, as determined from the moment the subject accesses the above questions, 

to the moment they turn in their work. 

• The correctness of the submitted work. 
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• Whether the subject ended work without completing, and if so, at what point during the 

workflow did they give up. 

Subject Recruitment Population 

Undergraduate Bioinformatics students from RIT are encouraged to participate in this study. 

Upon recruitment, a visual questionnaire and a mental health questionnaire are given to subjects. 

We hope to conduct the Case Study on subjects who score well on the vision and mental health 

questionnaires. The purpose of these restrictions is two-fold: 1.) to prevent health complications 

arising from poor ocular health coupled with the VR experience, and 2.) to reduce undue harm 

and stress arising from attempting to complete the tasks associated with the study. 

Statistical Methods 

The proportion of subjects who did not complete the questions for each study arm will be noted. 

The scoring of partial answers from these subjects is to be determined at a future date. The test 

statistic for this type of data is pending.  

The time elapsed metric will be analyzes using the student’s t-test since it is expected to follow 

the t-distribution under our hypothesis.  

Methods for scoring the correctness of the answers is an area of future work. The problem begins 

with placing the sequence x into one of two categories, suggesting a chi-square test. If x falls into 

the latter category, the next four questions require a mixture of categorical (synonymous vs 

nonsynonymous), ordinal (severity category) and continuous (any point along the Gria2 ribbon) 

answers. Test statistics on these questions might require a mixture of chi-squared, Wilcoxon, and 

student’s t-tests. 



25 
 

These tests will be compared in aggregate to determine the overall effectiveness of one study 

arm compared with the other, pending further development. 

Discussion 

UCSC’s Genome Browser, Ensembl Project, and Integrative Genomics Viewer (IGV) represent 

the main genome browsers available to research scientists. In proteomics, UCSF Chimera, 

PyMol, and JMol are available choices. As of this writing, there is a lack of information on the 

relative popularity of these tools. This makes comparisons among the various software offerings 

and their respective UI paradigms difficult to achieve. This is problematic for the following 

reason.  

In informatics and biology, new algorithms or experimental procedures gain widespread acclaim 

if they lead to orders of magnitude increase in research productivity. Through everyday use of 

computers for both casual and professional purposes, we intuit that user interfaces have a 

tangible influence on efficiency. Milestones within the technology industry are often marked by 

major user interface innovations. From the mouse to Windows 95 to touchscreen interfaces, UI 

has always had profound an impact on user growth and consumer adoption. 

Efficiency gains in genomic analysis may occur during the data visualization stage. Without a 

case study involving potential software users, there is no metric for determining these kinds of 

efficiency gains. Neglecting the improvement, testing, and maintenance of user interfaces in 

bioinformatics tools is analogous to presupposing that such improvements are negligible. To the 

contrary, we believe that user interfaces are critical towards understanding bioinformatics 

datasets. The following are current problems in bioinformatics for which VR-enabled software 

may have significant potential. 
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Chromatin Modeling. In interphase, uncondensed chromatin takes on three-dimensional 

structures within the nucleus that may facilitate long range interactions among distant (>2kb) 

loci. Lieberman-Aiden et al. developed a technique to map conformations of whole genomes. 

They show the approximate spatial proximity of loci at 1 Mb resolution and propose a fractal 

globule structure to explain their chromatin conformation [11]. The fractal globule structure can 

be modeled by a Hamiltonian walk: every point is visited once and no paths intersect. The 

structure plays an important role in determining loci adjacencies.  

Figure 9: Researchers use adjacency matrices to model spacial relations between distant loci. Color values encapsulate rgb-values 
but are commonly utilized in within a one-dimensional spectrum. Thus, each cell in an adjacency matrix essentially contains 1-
dimensional data. Figure adapted from Le Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS). 

An adjacency matrix is a popular method of representing fractal globules, with the caveat that 

any data type represented at the coordinate (x,y) in the matrix is necessarily one-dimensional by 

nature. Geometric attributes from adjacency data must be inferred. This is an ongoing topic of 

research [12]; algorithms and statistical models have recently been developed to help estimate 

topology from co-localization data [13, 14]. Future algorithmic or statistical developments could 
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couple cells within adjacency matrices with multiple types of datasets. The potential to render 

multiple dimensions of data at a given spatial location is something for which adjacency matrices 

are ill-suited. 

Epigenetics. Despite recent advances in epigenome research, our understanding of epigenetic 

markers and their roles in regulation is similarly hindered by the inability to visualize their 

impact across the genome. The relationship between epigenetic patterns to genomic loci, gene 

expression, and phenotype remains challenging to visualize. A 2007 publication from Professor 

Tamassia of Brown University outlines the visualization requirements of depicting various 

biological systems. He notes that recent advances in high throughput sequencing technology has 

exacerbated the need to develop visual exploration techniques to enhance researchers’ ability to 

deduct meaningful biological information [15]. 

Temporal Biological Networks. Depictions of metabolomics networks, and biological 

pathways present unique visualization challenges. A current limitation of pathway depictions in 

journal articles is the static display of inherently temporal datasets.  

In a trivial example, the eukaryotic cell cycle is often depicted as a large circle with numerous 

checkpoints. For researchers interested in the cell cycle as influenced by the fluctuation of 

cellular signals over time, the standard depiction loses its importance. One could argue that time-

series data such as p53 expression may be plotted around the outer circumference of the circle, 

but that is not necessarily a good solution. If the researcher then wants to consider p53 regulation 

by its promoters or inhibitors, he or she must plot the time-series data for those markers as well. 

Conversely, if the researcher is done contemplating the role of p53 and wants to consider the 

fluctuation of another biomarker, he or she must generate another plot. 
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An Omic VR application can be well-suited to the problems described above. Whole genome 

representation can be rendered at low resolution until the user decides to investigate a gene locus, 

upon which the VR application may zoom in on the region of interest at higher resolutions. 

Interactions among promoters, enhancers, and silencers at the loci are shown depending on 

context. Geometric topologies within chromatin regions are made obvious to the user. Finally, 

animated simulations can help users visualize temporal datasets.  

Future Work 

Loading Other Proteins Except for residue highlighting on secondary structures, a modified 

version of Gria2-Viewer performs the same functions on the voltage-dependent L-type calcium 

channel subunit beta-2 (Uniprot KB Q8VGC3, CACNB2 gene). The pdb file associated with the 

protein, 5v2p.pdb, should be trimmed of HETATM and ANISOU entries. We suspect that the 

issue is the result of a bug in Splitting.cs. We anticipate further development of the project 

throughout the year, with a more polished version that is capable of fully supporting proteins 

other than Gria2 and a BMS publication submission by the end of 2017. The remaining features 

we plan to support are as follows: 

• Upon user activation of the “Consensus” button within the DNA, RNA, or Protein menus, 

consensus regions populate the panel and are denoted in two ways. First, a transparency 

attribute associated with each color is applied to the panel.  

• The UI text attached to the right hand that shows which homologous sequences from the 

species enabled under “Homology” contributed to the consensus at the position indicated 

by the right index finger.  
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• The “User Input Variants” menu item loads user-defined experimental data. In the Case 

Study we preload the submenu with wildtype and variants found from Paciorkowski Lab. 

Conclusions  

Virtual reality is a ground-breaking medium with major advantages over traditional visualization 

for bioinformatics datasets. Its potential remains largely unexplored. We show that genomic, 

transcriptomic and proteomic data for Gria2 can be viewed in aggregate within VR, leading to a 

novel workflow for researchers. We also show that results of pairwise and MSA alignment 

algorithms can be rendered onto VR geometry as textures in UV space. Finally, we designed a 

user case study to compare the VR workflow against the traditional workflow consisting of a text 

editor and access to bioinformatics websites. 
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