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Abstract

In regards to data transmission in communication systems, there is need for robust

emulation of communication channels via Gaussian noise generation. Over time, larger

sample sizes are desired to reach farther into the tail ends of the distribution and faster

sample generation speeds are desired versus the software implementations. This paper

proposes a Gaussian noise generator utilizing the Box-Muller method written in Verilog

HDL targeting a 65nm ASIC process utilizing Synopsys Design Compiler. The design

creates two 24-bit noise samples per clock cycle and each sample is accurate to one

unit in the last place. A sample can represent up to 9.42σ, which allows for a sample

size of 2 · 1020. The design generates 800 million samples/s at a clock frequency of

400MHz. After a thorough error analysis, a bit-exact model was created in MATLAB

and a thorough probability and statistic analysis was executed on the generated sample

sets.
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Chapter 1

Introduction

Gaussian noise, which represents a standard normal distribution, is a natural phe-

nomenon that directly effects electronics ranging from the capturing of digital images

utilizing sensors to the communication channels of all communicating protocols. The

most interest in gaussian noise is in the verification of different low-density parity-check

(LDPC) codes [2]. LDPC codes are linear error correcting codes that are designed for

transmitting messages over transmission channels that have lots of interference due to

noise. Their main function is to overcome noise and therefore, a method for generating

noise is desired to provide verification. For this, it is desired to have noise samples at

high rates for verification as well as high periodicity to reach the tail ends of the dis-

tribution. In addition to LDPC codes are turbo codes, which are also in need of the

generation of gaussian noise [3]. Turbo codes are a type of forward error correction

(FEC) codes that are used in telecommunications like 3G/4G and satellite communica-

tions as well. For gaussian noise generation, there are multiple ways developed where

most stem off of uniform random numbers as inputs. There is the Ziggurat method [4],

the Inversion method [5, 6], the Wallace method [7], the Box-Muller method [1, 8–10]

and those methods implemented with algorithms like CORDIC [11–13]. The Box-Muller

method is chosen for this paper due to the error analysis that was executed by Lee et
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al. for their 16-bit gaussian noise generator [1]. The Box-Muller transformation can be

seen via equations 1.1-1.6, developed by Box and Muller [14], where the uniform num-

bers, u0 and u1 are generated using Tausworthe uniform random generators developed

by [15] and implemented in this paper following [16]. The implementation in hardware

utilizes look up tables where the coefficients were found using Chebyshev series approx-

imations [17]. This paper discusses the error analysis, design and implementation of a

24-bit gaussian noise generator (LGBMGNG). The main contribution of this design is

the increase in size of the output noise and the larger periodicity compared to the 16-bit

design mentioned above.

e = −2 · ln(u0) (1.1)

f =
√

e (1.2)

g0 = sin(2π · u1) (1.3)

g1 = cos(2π · u1) (1.4)

x0 = n1 = f · g0 (1.5)

x1 = n2 = f · g1 (1.6)

This paper is organized as follows. Chapter 2 discusses the application of probability

and statistics to Gaussian noise generation, a general approach for realizing a Box-Muller

generator in hardware, Chebyshev series approximations, a general process for the error

analysis of a Box-Muller method and a walk through of that analysis for a 16-bit Gaussian

noise generator designed by Lee et al. [1]. Chapter 3 applies the error analysis steps to

a 24-bit Gaussian noise generator. Chapter 4 walks through the 24-bit Gaussian noise

generator’s implementation in hardware. Chapter 5 discusses the relevant results of the

hardware design, while walking through some debugging and analyzing the sample sets
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of noise generated by the 24-bit design. Finally, Chapter 6 describes possible future

work and the conclusions of this work.



Chapter 2

Background

2.1 Basic Probability & Statistics

Together, Probability and Statistics provide great benefit to the understanding of dif-

ferent phenomena observed in everyday life. Probability focuses on the likeliness of

outcomes happening, randomness and uncertainty. Meanwhile, statistics focuses on

gleaning information, making judgments, and making decisions from the presence of

data that includes variation and uncertainty. Applications for probability range from

games of chance to gambling to machine learning to physics to game theory to computer

science to random number generation and most importantly to modeling Gaussian noise.

Applications for statistics range from component lifetime to resistor value tolerance to

pH levels in soil specimens to motor vehicle emissions to metal corrosion to the stock

market to just about any measured quantity and to better understanding Gaussian noise

and analyzing its models[18]. For the majority of this paper, probability distributions is

the main topic involving probability and statistics. A probability distribution is a term

associated with the way the set of numbers in a given sample are aligned in terms of the

probability of their occurrence. There are multiple different distributions utilized, but

this paper will focus on the two most popular continuous distributions, uniform and nor-
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mal, due to their direct use case in modeling Gaussian Noise. See Section 2.1.1 for a brief

introduction to uniform distribution theory and see Section 2.1.2 for a brief introduction

to normal distribution theory. Gaussian noise can be modeled as a normal distribution

of random numbers. Lee et. al utilize the Box-Muller method for generating the normal

distribution [1]. For this method of generating a normal distribution, two independent

uniformly distributed random numbers are utilized as inputs to the method. The inputs

are then transformed into two normally distributed samples.

2.1.1 Uniform Distribution Theory

A uniform distribution of continuous random variable X on interval [a,b] produces the

probability distribution function (PDF) found in Equation 2.1 and the cumulative dis-

tribution function (CDF) found in Equation 2.2 [18]. For this paper, the uniform distri-

bution will be utilized with a lower bound (a) of the value 0 and a upper bound (b) of

the value 1, which is usually regarded as a standard uniform distribution and uses the

notation U(0,1). To visualize these two functions for a standard uniform distribution,

see Figures 2.1 and 2.2.

f(x; a, b) =


1

b−a
a ≤ x ≤ b

0 otherwise

(2.1)

F (x; a, b) =



0 x < A

x−a
b−a

a ≤ x < b

1 x ≥ b

(2.2)
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Figure 2.1: Standard Uniform Distribution U(0,1) PDF
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2.1.2 Normal Distribution Theory

A normal distribution of continuous random variable X with mean µ and variance σ

produces the PDF found in Equation 2.3 and the CDF found in Equation 2.5 [18].

Equation 2.5 is derived from Equation 2.3 and the error function found in Equation 2.4

[19]. For this paper, the normal distribution is utilized with a mean µ of the value 0

and standard deviation σ of the value 1, which is usually regarded as a standard normal

distribution and uses the notation N(0,1). To visualize these two functions for a standard

normal distribution, see Figures 2.3 and 2.4.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

f(
x
)

Normal Distribution N(0,1) PDF

Figure 2.3: Standard Normal Distribution N(0,1) PDF

f(x; µ, σ) = 1√
2πσ

e
−(x−µ)2

2σ2 −∞ ≤ x ≤ ∞ (2.3)

erf(x) = 2√
π

∫ x
0 e−t2

dt −∞ < x < ∞ (2.4)
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F (x) = 1
2

[
1 + erf(x − µ

σ
√

2
)
]

(2.5)

2.1.3 Goodness-of-fit (GoF) Techniques

D’Agostino and Stephens describe goodness-of-fit techniques as a series of methodologies

for associating a set of data to a specific distribution for its population [20]. These

techniques can be utilized on just about any set of data, but they are all specifically

created for unique test cases. Some techniques are made for univariate data while others

are for multivariate data; univariate focuses on one random variable and multivariate

focuses on multiple random variables. For most tests there is a corresponding hypothesis

given that the sample data will follow a specific distribution and the tests will either

prove or reject the hypothesis. The goodness-of-fit techniques for this paper are applied

for testing the quality of sample sets for fitting either the standard uniform distribution

or the standard normal distribution. General tests for the standard uniform distribution
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that are utilized in this paper can be found in Section 2.1.3.1 with a focus on the well

known TestU01 software library [21]. General goodness-of-fit techniques and tests for

the standard normal distribution that are utilized in this paper can be found in Section

2.1.3.2 with a focus on the popular Chi-Squared and Anderson-Darling tests.

2.1.3.1 Uniform GoF

There are multiple goodness-of-fit techniques developed for standard uniform distribu-

tion hypothesis testing. To test the Tausworthe uniform random number generator

(TAUS) and disapprove of a traditional linear feedback shift register generators, Lee et

al. utilize the well known Diehard tests [1]. The algorithm Lee et al. found for TAUS

was developed by Pierre L’Ecuyer who then later co-authored a software suite named

TestU01 that is written in ANSI C. TestU01 incorporates the well known Diehard tests

and also builds upon it with multiple tests that are proved to be more effective in guar-

anteeing the sample set is of a standard uniform distribution [21]. For this paper, the

TestU01’s battery of tests called SmallCrush are utilized to approve of generated sample

sets that pertain to a standard uniform distribution.

2.1.3.2 Normal GoF

There are multiple goodness-of-fit techniques developed for normal or Gaussian distri-

bution hypothesis testing. The Chi-Squared test is a very general test; D’Agostino

and Stephens highly recommend the Anderson-Darling test as a very effective omnibus

test and they also highly recommend detailed graphical analysis involving the corre-

sponding normal probability plot[18][20]. There are multiple other tests similar to the

Kolmogorov-Smirnov test, but D’Agostino and Stephens prove they are only of histori-

cal curiosity and are less powerful when compared to their recommended ones with an

emphasis on the Anderson-Darling test [20].
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Chi-Squared The Chi-Squared test is a very popular and general test developed

by Karl Pearson in 1900 [20]. The test applies to data that is of both univariate or mul-

tivariate and both discrete or continuous. In general, the test emphasizes the difference

between observed cell counts and the expected values under the specific hypothesized

distribution to analyze the goodness of fit for the sample data. The Chi-Squared test is

utilized in this paper for the standard normal distribution hypothesis testing by using

the chi2gof function in MATLAB [22].

Anderson-Darling The Anderson-Darling test is a test that is computed utilizing

a formula based off of the empirical distribution function (EDF) statistic. The EDF

statistic is a measurement of the difference between Fn(x) and F (x) where Fn(x) is a

measurement of the proportion of observations for values less than or equal to x for a

step function and F (x) is the specific probability for that corresponding observation of

values less than or equal to x [20]. The Anderson-Darling test is utilized in this paper

for the standard normal distribution hypothesis testing by using the adtest function in

MATLAB [23].

Normal Probability Plot Analysis Graphical and numerical analysis of a nor-

mal probability plot both visually and numerically display features of the data, where

the numerical analysis quantifies the association of the data to the particular distribu-

tion [20]. A probability plot will be a straight line if the corresponding data fits the

distribution, which is very easy to visualize and standard linear regression analyses can

be executed to obtain numerical metrics for the sample data [20]. The Coefficient of

Determination (R2) and Standard Error of the Estimate (Mean squared error or SEE

or S) are utilized in this paper for numerically analyzing the normal probability plot.

Both analyses use yfit, an approximated line fit to the y and x data presented, where the

y values are the sorted array of the random variable samples and the x values are the
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constant values associated with the normal distribution. Definitions of both analyses

are found in Equations 2.6 and 2.7.

R2 =
∑(yfit − ȳ)2∑(y − ȳ)2 (2.6)

SEE =
√∑(ŷ − y)2

n − 2 (2.7)

2.2 Box-Muller Hardware Implementation

2.2.1 Elementary Function Implementation

2.2.1.1 Introduction

Elementary transcendental functions are those functions that are not algebraic. There

are four elementary functions utilized in the Box-Muller method, natural log (LN),

square root (SQRT), sine and cosine (SIN/COS). As [17] explains, hardware implemen-

tations of elementary functions may obtain the speed improvements desired, but the

results are less accurate. Schulte et al. then propose executing function approximation

by Chebyshev series approximation and performing transformations on the coefficients

to provide exactly rounded results for reciprocal, square root, ex, and log2(x) [17]. The

coefficient transformation method for exactly rounded results is only guaranteed for

lower precisions, (eg. 24-bit fractional portion) and does not work for either sine or

cosine. Therefore, this paper utilizes the Chebyshev series approximation that they

used and rounds the transcendental functions to nearest (round-to-nearest), which will

introduce an error of up to one unit in the last place (ulp). The lack of exact rounding

hardware is mostly due to the Table Maker’s Dilemma [24] that Schulte et al. and Lee

et al. reference, where the problem occurs from not being able to determine the required



2.2 Box-Muller Hardware Implementation 12

accuracy for each part to ensure exactly rounded results (0.5 ulp)[17][1]. On the other

hand, round-to-nearest (1 ulp) requires only the addition of one bit to the result and

will simplify the hardware design.

Function evaluation of hardware is generally split into three steps: range reduction,

function approximation and range reconstruction. These steps are utilized because it

facilitates the implementation by lowering the complexity to only approximating the

function on a smaller input interval. As the titles of the steps suggest, the first is to

reduce the range of the input to the specific range the function was approximated to,

approximate the reduced input and then reconstruct the output back into the original

range. The range reduction and range reconstruction steps are unique to each elementary

function and the unique range that those functions are implemented on.

The individual function approximations are implemented by using Chebyshev series

approximation. The specific input range and mathematical identities stem from the work

done by Walther who provides prescaling mathematical identities for many elementary

functions [25]. Section 2.2.1.2 walks through the Chebyshev series approximation, the

derivation of the coefficient values for degree one, two and three function approximations,

and the transformation of those coefficients to use the corresponding xl instead of x.

Section 2.2.1.3 walks through the specific range reduction, function approximation and

range reconstruction steps of the elementary functions implemented in the Box-Muller

method of generating Gaussian noise.

2.2.1.2 Chebyshev Series Approximation

This section describes the steps found for function approximation in [17] and [26], the

coefficient extraction from the approximation and the transformation of the coefficients

to the specific input range as seen in [1]. For function approximation via a polynomial,
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there is the following form:

qn−1(x) ≈ C0 + C1 · x + · · · + Cn−1 · xn−1 =
n−1∑
i=0

Ci · x (2.8)

where qn−1(x) is a polynomial of degree n−1 and Ci are the coefficients corresponding

to each term. The function is approximated then on the input range [xmin, xmax).

To then increase the accuracy of the polynomial approximation while also minimiz-

ing the degree of approximation, the input range is split into 2k segments, where xm

represents the segment number, and xl represents the value within that segment. The

function is then approximated on each new segment or input interval, where the coeffi-

cients for that section are indexed by the xm value and the x value is the xl value. For

example, if x is on the [0,1) input interval, then there is the following relationship:

x = xm + xl · 2−k (2.9)

where xmis [0,1) and xl is [0,1). Figure 2.5 shows the splitting of the p-bit x value

into the k-bit xm and (p-k)-bit xl values for 2k segments. Figure 2.6 shows a visual

representation of a function, f(x), approximated on each sub-interval with corresponding

approximated polynomials, pm(x). The full interval approximation can then be seen in

2.10, where the coefficients, Ci, are indexed off of the corresponding xm value.

pm(x) = C0(xm) + C1(xm) · xl + · · · + Cn−1(xm) · xn−1
l =

n−1∑
i=0

Ci(xm) · xi
l (2.10)

The method for obtaining the coefficient values is through a Chebyshev series ap-

proximation with input interval [a,b) and degree of approximation n−1 by the following

algorithm.

1. Chebyshev nodes are created on the interval [-1,1) via 2.11, where ti is classified
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p bits        

MSB

xm xl

k bits (p-k) bits

LSBx

Figure 2.5: Splitting of x for Function Approximation

Figure 2.6: Function Approximation on Individual Segments

as the ith Chebyshev node for [-1,1).

ti = cos((2 · i + 1)π
2 · n

) (0 ≤ i < n) (2.11)
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2. Then the Chebyshev nodes, ti, are transformed from the [-1,1) input interval to

[a,b) through 2.12, where a and b are the values that are unique depending on the

number of segments and the input range of the original function.

xi = ti(b − a) + (b + a)
2 (0 ≤ i < n) (2.12)

3. The individual interval Lagrange polynomial pm(x) is formed by interpolating the

Chebyshev nodes in 2.13, where the Li values are created via 2.14 and the yi values

are created via 2.15.

pm(x) = y0 · L0(x) + y1 · L1(x) + · · · + yn−1 · Ln−1(x) =
n−1∑
i=0

yi · Li(x) (2.13)

Li(x) = (x − x0) · · · · · (x − xi−1) · (x − xi+1) · · · · · (x − xn−1)
(xi − x0) · · · · · (xi − xi−1) · (xi − xi+1) · · · · · (xi − xn−1)

=
∏n−1

k=0;k ̸=i(x − xk)∏n−1
k=0;k ̸=i(xi − xk)

(2.14)

yi = f(xi) (2.15)

4. The overall pm(x) is created by extracting the coefficients Ci from the individual

segment approximations. This paper works with polynomial approximations for

degree one, two and three. The coefficient extraction for each degree of approxi-

mation can be found via the following equations.

(a) Degree One Approximation:

C1 = f(x0)
(x0 − x1)

+ f(x1)
(x1 − x0)

(2.16)
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C0 = −f(x0) · x1

(x0 − x1)
+ −f(x1) · x0

(x1 − x0)
(2.17)

pm(x) = C0 + C1 · x (2.18)

(b) Degree Two Approximation:

C2 = f(x0)
(x0 − x1) (x0 − x2)

+ f(x1)
(x1 − x0) (x1 − x2)

+ f(x2)
(x2 − x0) (x2 − x1)

(2.19)

C1 = f(x0) · (−x1 − x2)
(x0 − x1) (x0 − x2)

+ f(x1) · (−x0 − x2)
(x1 − x0) (x1 − x2)

+ f(x2) · (−x0 − x1)
(x2 − x0) (x2 − x1)

(2.20)

C0 = f(x0) · x1 · x2

(x0 − x1) (x0 − x2)
+ f(x1) · x0 · x2

(x1 − x0) (x1 − x2)
+ f(x2) · x0 · x1

(x2 − x0) (x2 − x1)
(2.21)

pm(x) = C0 + C1 · x + C2 · x2 (2.22)

(c) Degree Three Approximation:

C3 = f(x0)
(x0 − x1) (x0 − x2) (x0 − x3)

+ f(x1)
(x1 − x0) (x1 − x2) (x1 − x3)

+ (2.23)

f(x2)
(x2 − x0) (x2 − x1) (x2 − x3)

+ f(x3)
(x3 − x0) (x3 − x1) (x3 − x2)
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C2 = f(x0) · (−x1 − x2 − x3)
(x0 − x1) (x0 − x2) (x0 − x3)

+ f(x1) · (−x0 − x2 − x3)
(x1 − x0) (x1 − x2) (x1 − x3)

+ (2.24)

f(x2) · (−x0 − x1 − x3)
(x2 − x0) (x2 − x1) (x2 − x3)

+ f(x3) · (−x0 − x1 − x2)
(x3 − x0) (x3 − x1) (x3 − x2)

C1 = f(x0) · (x1 · (x2 + x3) + x2 · x3)
(x0 − x1) (x0 − x2) (x0 − x3)

+ f(x1) · (x0 · (x2 + x3) + x2 · x3)
(x1 − x0) (x1 − x2) (x1 − x3)

+

(2.25)
f(x2) · (x0 · (x1 + x3) + x1 · x3)

(x2 − x0) (x2 − x1) (x2 − x3)
+ f(x3) · (x0 · (x1 + x2) + x1 · x2)

(x3 − x0) (x3 − x1) (x3 − x2)

C0 = f(x0) · (−x1 · x2 · x3)
(x0 − x1) (x0 − x2) (x0 − x3)

+ f(x1) · (−x0 · x2 · x3)
(x1 − x0) (x1 − x2) (x1 − x3)

+ (2.26)

f(x2) · (−x0 · x1 · x3)
(x2 − x0) (x2 − x1) (x2 − x3)

+ f(x3) · (−x0 · x1 · x2)
(x3 − x0) (x3 − x1) (x3 − x2)

pm(x) = C0 + C1 · x + C2 · x2 + C3 · x3 (2.27)

5. The coefficients Ci(xm) have values for the input x and then are transformed

for having values for the input xl. This transformation process is dependent on

the input interval to the function approximation and will be discussed in Section

2.2.1.3.

6. The coefficients Ci(xm) then are rounded to the specific precision desired due to

the error analysis and as per 2.10, pm(x) is assembled.

The maximum error between the original function and its Chebyshev series approxi-

mation for the interval [a,b) according to [17] is in the form of 2.28, where ξ is the

point on the interval [a,b) where the nth derivative of the original function, f(x), has
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its maximum value.

En(x) = (b − a

4 )n · 2 · |fn(ξ)|
n! a ≤ ξ < b (2.28)

Throughout this paper, the input interval [a,b) is split into 2k equal segments. There-

fore, Equation 2.28 is utilized to determine a value of k. A simple method is to cycle

through the first three degrees of approximation, where k is increased until the degree

of approximation reaches the error requirement of Eapprox being less than 0.5 ulp of y.

2.2.1.3 Box-Muller Elementary Functions

The four elementary functions within the Box-Muller method are sine (SIN), cosine

(COS), square root (SQRT) and natural logarithm (LN). The function approximation

of these elementary functions is executed utilizing uniform segments and Chebyshev

series approximation found in Section 2.2.1.2. For the approximation, Walther provides

prescaling mathematical identities for all four elementary functions, where sine can be

found in 2.29, cosine in 2.30, square root in 2.31 and natural log in 2.32.

sin
(

(Q + D) π

2

)
=



sin(D π
2 ) if Q mod 4 = 0

cos(D π
2 ) if Q mod 4 = 1

−sin(D π
2 ) if Q mod 4 = 2

−cos(D π
2 ) if Q mod 4 = 3


(2.29)

cos
(

(Q + D) π

2

)
=



cos(D π
2 ) if Q mod 4 = 0

−sin(D π
2 ) if Q mod 4 = 1

−cos(D π
2 ) if Q mod 4 = 2

sin(D π
2 ) if Q mod 4 = 3


(2.30)
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√
Mx · 2Ex =


2Ex

2
√

Mx if Ex mod 1 = 0

2Ex+1
2

√
Mx

2 if Ex mod 1 = 1

 (2.31)

ln(Mx · 2Ex) = ln(Mx) + Ex · ln(2) (2.32)

In 2.29 and 2.30, Q corresponds to the particular quadrant the function is in and D

is [0,1), which corresponds to the input value within quadrant Q. For the Box-Muller

method the Q can be designed to be the 2 most significant bits of u1 and the rest of u1

can be scaled to [0,1) to work as the D value. For both identities, only cos(x · π
2 ) needs to

be approximated, where x is either D (approximating cos
(
D π

2

)
) or 1−D (approximating

sin
(
D π

2

)
) to calculate both the sine and cosine values for every quadrant. Therefore, for

the sine and cosine approximation, cos(x · π
2 ) is approximated, where x is [0,1). For the

Chebyshev series approximation in Section 2.2.1.2, x will range from [0,1) as per 2.33,

where xl is of the form found in 2.34. The coefficients for the approximation are then

found depending on the degree of approximation utilizing the method in Section 2.2.1.2

and the coefficients are transformed to be a function of xl by the equations starting at

2.35 and 2.37, respectively, for approximations of degree one and two, for x on [0,1).

x = xm + xl · 2−k (2.33)

xl = (x − xm) · 2k (2.34)

Degree One Coefficient Transformations from x to xl for x [0,1) as per 2.34:

C̄1 = C1 · 2−k (2.35)

C̄0 = C1 · xm + C0 (2.36)
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Degree Two Coefficient Transformations from x to xl for x [0,1) as per 2.34:

C̄2 = C2 · 2−2k (2.37)

C̄1 = (2 · C2 · xm + C1) · 2−k (2.38)

C̄0 = C2 · x2
m + C1 · xm + C0 (2.39)

In Equation 2.32, Mx represents the Mantissa and Ex represents the Exponent for

floating point representation; where the sign bit is not taken into consideration since LN

is always positive. The function to approximate is ln(Mx), since ln(2) is a constant and

Ex is an integer. Since Mx is in floating point representation, it will range on [1,2) where

only the fractional section is included in xm and xl values as seen by 2.40 and xl is in

the form found in 2.41. The coefficients are then found via Section 2.2.1.2 depending on

the degree of approximation and the coefficients are transformed to be a function of xl

by the equations starting at 2.42, 2.44 and 2.47 for approximations of degree one, two

and three respectively for x on [1,2).

x = 1 + xm + xl · 2−k (2.40)

xl = (x − 1 − xm) · 2k (2.41)

Degree One Coefficient Transformations from x to xl for x [1,2) as per 2.41:

C̄1 = C1 · 2−k (2.42)

C̄0 = C1 · (xm + 1) + C0 (2.43)
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Degree Two Coefficient Transformations from x to xl for x [1,2) as per 2.41:

C̄2 = C2 · 2−2k (2.44)

C̄1 = (C2 · (2 + 2 · xm) + C1) · 2−k (2.45)

C̄0 = C2 ·
(
x2

m + 2 · xm + 1
)

+ C1 · (xm + 1) + C0 (2.46)

Degree Three Coefficient Transformations from x to xl for x [1,2) as per 2.41:

C̄3 = C3 · 2−3k (2.47)

C̄2 = (3 · C3 · xm + 3 · C3 + C2) · 2−2k (2.48)

C̄1 =
(
3 · C3 · x2

m + 2 · (3 · C3 + C2) · xm + 3 · C3 + 2 · C2 + C1
)

· 2−k (2.49)

C̄0 = C3 · x3
m + (3 · C3 + 2 · C2) · x2

m + (3 · C3 + 2 · C2 + C1) · xm + C3 + C2 + C1 + C0 (2.50)

Equation 2.31 for SQRT follows the same form as LN, where Mx and Ex are floating

point values and there is no need to store the sign bit. The function to approximate is

however now distributed into two different input intervals due to Mx and Mx/2 being the

two inputs. Therefore, Mx is always scaled to [2,4) and if Ex is odd, the input interval

becomes [1,2) due to Mx/2. Accordingly, the function
√

x needs to be approximated for

two different intervals, [1,2) and [2,4), where each interval will have its own coefficients.

The process for the interval of [1,2) will be exactly the same as LN, but the [2,4) case

will need to utilize unique equations for transforming the coefficients to xl. For [2,4),
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the way input x is split into xm and xl can be seen in 2.51, where the xl is of form 2.52

and the equations for transforming the coefficients to xl can be found starting at 2.53

for a degree one approximation.

x = 2 ·
(
1 + xm + xl · 2−k

)
= 2 + 2 · xm + xl · 2−k+1 (2.51)

xl = (x

2 − 1 − xm) · 2k (2.52)

Degree One Coefficient Transformations from x to xl for x [2,4) as per 2.52:

C̄1 = C1 · 2−k+1 (2.53)

C̄0 = C1 · (2 + 2 · xm) + C0 (2.54)

The range reduction and range reconstruction steps are performed following the

methods determined by Lee et al. along with the hardware approximation method for

the elementary functions as described above. There are two inputs to the Box-Muller,

u0 and u1, where u0 is the input to LN and u1 is the input to COS/SIN and both

inputs are interpreted as [0,1). For COS/SIN, range reduction involves extracting the

Q and D values from u1, where Q is the 2 most significant bits corresponding to the

quadrant, and D is the rest of u1 scaled to [0,1). For LN, range reduction involves fixed

point to floating point conversion, where the resulting Mx is [1,2). For SQRT, range

reduction involves fixed point to floating point conversion, except the resulting Mx is

[2,4) and then depending on whether Ex is even or odd, the Mx value is either kept at

[2,4) (even Ex) or shifted to [1,2) (odd Ex). At this stage, all three equations obtain

their corresponding xm and xl values depending on the input range and specific segment

count for the approximation. After the approximation is evaluated with xl as the input
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value and xm as the index for the corresponding coefficient values for the segment specific

approximation, range reconstruction is to be executed. For COS/SIN, depending on the

quadrant Q, the positive or negative output values of either cos(D π
2 ) or cos((1 − D)π

2 )

are selected as per 2.29 and 2.30. For LN, as per 2.32, Ex · ln(2) is evaluated and joined

with the approximation result to obtain the overall result. For SQRT, as per 2.31,

2Ex/2 (Ex is even) or 2(Ex+1)/2 (Ex is odd) are evaluated and multiplied to the result

of the approximation to obtain the overall result. The combination of range reduction,

polynomial approximation and range reconstruction for each function within the Box-

Muller method can be further understood by viewing the pseudo code found in Listing

2.1.

1 %Box-Muller Method Pseudo Code
2 %%--------------- Generate u0 and u1 ---------------
3 u0 = U(0,1); % TAUS generated
4 u1 = U(0,1); % TAUS generated
5

6 %%------------- Evaluate e = -2ln(u0) --------------
7

8 % Range Reduction
9 exp_e = LeadingZeroDetector(u0) + 1;

10 x_e = u0 << exp_e;
11

12 % Approximate ln(x_e) where x_e = [1,2)
13 % Degree-(n-1) piecewise polynomial - 2^k_e segments
14 % x_e is [1,2) --> x_e = 1 + xm_e + xl_e * 2^-k_e
15 % example is Degree-1
16 y_e = C1_e(xm_e_index)*xl_e + C0_e(xm_e_index);
17

18 % Range Reconstruction
19 ln2 = ln(2);
20 e' = exp_e*ln2;
21 e = (e'-y_e)<<1;
22

23 %%--------------- Evaluate f = sqrt (e) ------------
24

25 % Range Reduction
26 exp_f = Offset-LeadingZeroDetector(e); % Note: Offset=IBe-2;
27 x_f' = e >> exp_f;
28 x_f = if(exp_f[0], x_f'>>1, x_f');
29
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30 % Approximate sqrt (x_f) where x_f = [1,4)
31 % x_f is [1,2) --> x_f = 1 + xm_f + xl_f * 2^-k_f
32 % or
33 % x_f is [2,4) --> x_f = 2 + 2*xm_f + xl_f * 2^(-k_f+1)
34 % Degree-(n-1) piecewise polynomial - 2^k_f segments
35 % example is Degree-1
36 y_f = C1_f(xm_f_index)*xl_f + C0_f(xm_f_index);
37

38 % Range Reconstruction
39 exp_f' = if(exp_f[0], exp_f+1>>1, exp>>1);
40 f = y_f << exp_f';
41

42 % %------------ Evaluate g0=sin(2*pi*u1) ------------
43 % %------------ g1=cos(2*pi*u1) ------------
44

45 % Range Reduction
46 quadrant = u1[MSB:MSB-1];
47 x_g_a = u1[MSB-2:0];
48 x_g_b = (1-2^-(MSB-1))-u1[MSB-2:0];
49

50 % Approximate cos(x_g_a*pi/2) and cos(x_g_b*pi/2)
51 % where x_g_a, x_g_b = [0,1-2^-(MSB-1)]
52 % Degree-(n-1) piecewise polynomial - 2^k_g segments
53 % x_g is [0,1) --> x_g = xm_g + xl_g * 2^-k_g
54 % example is Degree-2
55 y_g_a = C2_g(xm_g_a_index)*xl_g_a^2 + C1_g(xm_g_a_index)*xl_g_a + C0_g(xm_g_a_index);
56 y_g_b = C2_g(xm_g_b_index)*xl_g_b^2 + C1_g(xm_g_b_index)*xl_g_b + C0_g(xm_g_b_index);
57

58 % Range Reconstruction
59 switch(quadrant)
60 case 0: g0 = y_g_b; g1 = y_g_a; % [0, pi/2)
61 case 1: g0 = y_g_a; g1 = -y_g_b; % [pi/2, pi)
62 case 2: g0 = -y_g_b; g1 = -y_g_a; % [pi, 3*pi/2)
63 case 3: g0 = -y_g_a; g1 = y_g_b; % [3*pi/2, 2*pi)
64

65 %%--------------- Compute x0 and x1 ---------------
66 x0 = f*g0; x1 = f*g1;

Listing 2.1: Box-Muller Method Pseudo Code

2.2.2 Box-Muller Error Analysis

One of the main contributions of this paper is the execution of the analysis that is based

off of the work of Lee et al. [1]. This section walks through the error analysis in a

general process that is specific to the Box-Muller method of generating Gaussian noise

and the architecture that is associated with using 32-bit Tausworthe uniform random
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number generators. This section explains the MiniBit bit-width optimization approach

developed by Lee et al. and walks through the general error analysis process [27].

2.2.2.1 MiniBit Bit-Width Optimization

This section describes the MiniBit bit-width optimization approach developed in [27]

and used by [1], which is the main foundation for the error analysis of the Box-Muller

method in hardware because it is a fixed-point design. From a high-level, the approach

abstracts the error created by the quantization of signals over multiple math operations

into a function of error at the output. In this function, the fractional bit sizes of the

signals are used as the function variables. This abstraction turns the error analysis into

an optimization problem, where the number of fractional bits for all the signals can be

minimized while meeting the error requirement. The quantization of the signals to finite

precision can be done in multiple ways (eg. round to zero, round away from zero, round

towards infinity, rounds toward negative infinity...), but the main two ways in hardware

designs are truncation and round-to-nearest. Truncation obtains a maximum error of

1 unit in the last place (1 ulp) and round-to-nearest obtains a maximum error of half

a unit in the last place (0.5 ulp). Truncation splices the result up to the fractional

bit count and omits any of the bit values that were to the right of the final fractional

bit determined, which requires no additional hardware. Round-to-nearest executes the

same as truncation, but adds the one bit value that is to the right of the last fractional

bit to the result, which is done utilizing an adder. The values obtained by quantizing

the result using truncation are essentially obtaining new magnitudes that are towards

negative infinity. On the other hand, values obtained by quantizing the result round-

to-nearest are essentially obtaining new magnitudes that are rounded towards positive

infinity. Round-to-nearest is selected for the duration of this paper to minimize error

while also not adding large complexity to the hardware design.
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For the MiniBit approach, the quantized version of a signal x is shown as x̃ and can

be seen in 2.55, where Ex̃ represents the corresponding error due to quanitization and

FBx̃ represents the number of fractional bits by which the signal x is quantized. Now,

2.56 shows the walk through of the approach involving the addition of two quantized

numbers to create a quantized number. In addition to this, 2.57 then shows the ap-

proach for multiplication. For approximation utilizing polynomials, the process can be

split into individual steps involving either multiplication or addition and these equations

are the building blocks to the overall approximation error analysis. The polynomials for

approximation are evaluated utilizing Horner’s rule, which facilitates the abstraction

into a series of additions and multiplications for the overall approximation. The appli-

cation of the MiniBit approach for degree one, two and three polynomials, respectively,

can be found starting at 2.58, 2.62 and 2.66. The only addition is the Eapprox term

in each corresponding Ey which represents the error created by the Chebyshev series

approximation before any quantization is executed.

x̃ = x + 2−F Bx̃−1

Ex̃ = 2−F Bx̃−1
(2.55)

z̃ = x̃ ± ỹ = x ± y = Ex̃ ± Eỹ + 2−F Bz̃−1

Ez̃ = Ex̃ + Eỹ + 2−F Bz̃−1
(2.56)

z̃ = x̃ · ỹ = x · y + x · Eỹ + y · Ex̃ + Ex̃ · Eỹ + 2−F Bz̃−1

Ez̃ = max(x) · Eỹ + max(y) · Ex̃ + Ex̃ · Eỹ + 2−F Bz̃−1
(2.57)

Degree One Approximation MiniBit Approach:

ỹ = C̃1 · xl + C0 (2.58)
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D̃0 = C̃1 · x̃l

ỹ = D̃0 + C̃0

(2.59)

EC1 = 2−F BC1 EC0 = 2−F BC0 (2.60)

ED0 = max(x̃l) · EC1 + max(C̃1) · Exl
+ 2−F BD0 −1

Ey = ED0 + EC0 + 2−F By−1
(2.61)

Degree Two Approximation MiniBit Approach:

y = (C2 · xl + C1) · xl + C0 (2.62)

D̃2 = C̃2 · x̃l

D̃1 = D̃2 + C̃1

D̃0 = D̃1 · x̃l

ỹ = D̃0 + C̃0

(2.63)

EC2 = 2−F BC2 EC1 = 2−F BC1 EC0 = 2−F BC0 (2.64)

ED2 = max(x̃l) · EC2 + max(C̃2) · Exl
+ 2−F BD2 −1

ED1 = ED2 + EC1 + 2−F BD1 −1

ED0 = max(x̃l) · ED1 + max(D̃1) · Exl
+ 2−F BD0 −1

max(D̃1) = max(C̃2) · max(x̃l) + max(C̃1)

Ey = ED0 + EC0 + 2−F By−1 + Eapprox

(2.65)
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Degree Three Approximation MiniBit Approach:

y = ((C3 · xl + C2) · xl + C1) · xl + C0 (2.66)

D̃4 = C̃3 · x̃l

D̃3 = D̃4 + C̃2

D̃2 = D̃3 · x̂l

D̃1 = D̃2 + C̃1

D̃0 = D̃1 · x̃l

ỹ = D̃0 + C̃0

(2.67)

EC3 = 2−F BC3 EC2 = 2−F BC2 EC1 = 2−F BC1 EC0 = 2−F BC0 (2.68)

ED4 = max(x̃l) · EC3 + max(C̃3) · Exl
+ 2−F BD4 −1

ED3 = ED4 + EC2 + 2−F BD3 −1

ED2 = max(x̃l) · ED3 + max(D̃3) · Exl
+ 2−F BD2 −1

max(D̃3) = max(C̃3) · max(x̃l) + max(C̃2)

ED1 = ED2 + EC1 + 2−F BD1 −1

ED0 = max(x̃l) · ED1 + max(D̃1) · Exl
+ 2−F BD0 −1

max(D̃1) = max(D̃3) · max(x̃l) + max(C̃1)

Ey = ED0 + EC0 + 2−F By−1 + Eapprox

(2.69)

Once the corresponding values that are unique to each analysis (eg. max(Ci), Exl
,

Eapprox, ...) are found, the problem becomes an optimization problem, where the frac-

tional bit sizes (FB) are to be minimized while meeting the error requirement. This

paper executes the error analysis with the goal of faithful rounding (1 ulp). Therefore,

the error requirement for y becomes dependent on its fractional bit size as seen in 2.70,
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where the corresponding Ey is found depending on its degree of approximation utilizing

either 2.61, 2.65 or 2.69 for degree one, two or three respectively. For the results in this

paper, the fmincon MATLAB function is utilized . Fmincon is used with summation of

all the fractional bit counts associated in the specific analysis as the function to minimize

[28]. In addition to this, it is used with the MiniBit approach equations as the non-linear

constraint. It outputs non-integer numbers, therefore the output values are rounded up

to the nearest integer.

Ey ≤ 2−F By (2.70)

2.2.2.2 General Analysis Walk Through

This section describes a specific approach for walking through the error analysis of a

Box-Muller hardware implementation. Note that this walk through and process is bias

due to being derived from the 16-bit analysis that Lee et al. executed and their corre-

sponding architecture and is not sufficient for all Box-Muller hardware implementations

[1]. Section 2.2.1.2 provides all the equations for obtaining coefficient values for Cheby-

shev series approximations. Section 2.2.1.3 provides the elementary function identities,

the range reduction and range reconstruction steps, the general pseudo code for the

Box-Muller method in Listing 2.1 and the equations to transform the coefficients to the

corresponding xl value for the corresponding x input interval unique to the function

being approximated. Finally, Section 2.2.2.1 provides the quantization error constraint

equations that are the main focus of the error analysis. The following walk through

assumes the architecture is designed utilizing Tausworthe 32-bit random number gener-

ators as the inputs to the Box-Muller algorithm. The inputs to this process are a sample

size of noise S for periodicity, the output bit size of the noise and how many 32-bit

Tausworthe generators are used. Throughout this section, line numbers referenced are
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from the Box-Muller method pseudo code given in Listing 2.1.

1. The sample size S, determines the corresponding maximum values that the

Gaussian noise generator should be designed to produce. This is represented in terms

of standard deviations σ away from the mean µ. Gaussian noise is represented by a

standard normal distribution, a distribution discussed in Section 2.1.2, where µ = 0 and

σ = 1 and is referenced throughout this paper as N(0, 1). Therefore, S leads to a value

Xσ where X represents the number of standard deviations away from the mean. The

concept derived from [1] for connecting S to Xσ is to represent up to Xσ for a population

of S, where the probability of the magnitude of a particular sample from the Gaussian

noise generator being larger than Xσ is less than 0.5. This step is solved utilizing the

norminv MATLAB function, where for an example of S = 1010, it was found that the

Gaussian noise generator would need to represent up to 6.47σ [29].

2. Now that Xσ is known, the size of u0, which is the input to the LN unit, is to

be found. The SIN/COS unit will only produce magnitudes on [0,1), which requires the

LN and SQRT units’ joined data path to produce a maximum value of Xσ. In 2.71 the

relationship is shown where for the example of 6.47σ, u0 must be less than 8.129 · 10−9.

Since u0 is [0,1), the precision value of u0 is chosen to be less than that value, which

leads to requiring 32 bits for u0.

Xσ ≥
√

−2 · ln(u0) (2.71)

3. Now that the size of u0 is known, the size of u1 is to be found. For this specific

architecture, the remaining bits generated from the Tausworthe generators that aren’t

designated for u0 are chosen to be the size of u1. There is no other basis for this decision

other than the size of u1 being close to the output bit size with a preference for being

larger to minimize the errors propagated through the SIN/COS unit.

4. The bit structure of the noise is determined from the size of Xσ and the overall
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bit size of the output noise. The noise samples are positive and negative and range on

(−Xσ,Xσ). Therefore, one bit is designated to the sign bit. The count of integer bits

(IB) is determined by the Xσ value and the rest are designated as fractional bits (FB).

For example if X = 6.47 and the output bit size was 16, then 1 bit would correspond to

the sign, 3 bits for the integer portion (IBx0 = IBx1 = 3) and 12 bits for the fractional

portion (FBx0 = FBx1 = 12).

5. For this step, the type of rounding for the output is chosen. The two choices

are either exact rounding (0.5 ulp) or faithful rounding (1 ulp). For this paper faithful

rounding is decided upon due to the complexity of exact rounding as discussed in Section

2.2.1.1. Faithful rounding requires 1 ulp and with fractional bit size of output FBx0 , the

output error is restricted to less than 2−F Bx0 .

6. This step executes the error analysis at the output seen in 2.72 to find out the

fractional bit sizes of f , g0 and g1. The error analysis starts at the end and makes its way

back to the beginning because the main goal is for the output’s error to meet the faithful

rounding requirement. For the duration of this analysis, x0 is only considered, since the

x1 data path is identical from an error analysis point of view. f and g0 are faithfully

rounded, which leads to 2.74. Using 2.74 as the non-linear constraint for fmincon as

explained in Section 2.2.2.1, the values for FBf and FBg0 = FBg1 are found where FBf

is desired to be smaller than the others due to the longer computational chain.

x0 = f · g0 and x1 = f · g1 (2.72)

Ex0 ≤ 2−F Bx0 and Ex1 ≤ 2−F Bx1 (2.73)

2−F Bx0 ≥ max(g0) · 2−F Bf + max(f) · 2−F Bg0 (2.74)
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7. This step executes the error analysis at the SIN/COS unit output seen in 2.75

to find out the fractional bit sizes of internal signals involved with the specific degree

of approximation. See lines 42-63 for the pseudo code involving each of the steps. For

simplicity, degree one approximation equations will be utilized. As determined in Section

2.2.1.3, only cos(x) will be approximated, where x is [0, π/2) and there are two dedicated

hardware sections for two instances of cos(x), where the second one implements sin(x).

This is due to the periodicity and the altering of the input to take advantage of the

relationship between sine and cosine.

g0 = sin(2πu1) and g1 = cos(2πu1) (2.75)

7a. The first step within step 7 is to analyze the range reduction and range recon-

struction steps to find the approximation output’s fractional bit size, FByga
= FBygb

.

The input to this step is FBg0 = FBg1 , where the range reduction and reconstruction

steps can be seen, respectively, on lines 45-48 and lines 58-53. For range reconstruction

there is only the addition of a sign bit and the input u1 is an exact number, therefore

no error is propagated through either steps and then FByga
= FBygb

= FBg0 = FBg1 .

7b. This step focuses on finding the internal fractional bit widths within the function

approximation step now that FByga
and FBygb

are known. In regards to the error

analysis, yga and ygb
are equivalent, so only yga will be shown and represented by yg.

To start, the degree of approximation and number of segments needs to be found and

2.28 is utilized with the specific input interval, function to approximate and the degree

of approximation and k values are cycled to output the lowest k value for each degree

of approximation that meets the requirement. Once this k values is known for each

degree, a trade-off is made between the degree of approximation (higher degrees mean

added multipliers and adders) and the segment counts (larger look up table sizes for the

coefficients). For this example, degree one has been chosen for kg = 5 where there are
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25 = 32 segments of approximation. Each segment interval is then approximated where

the coefficients are extracted using the degree specific equations starting at 2.16. As

derived in Section 2.2.1.3, the input is on [0,1) therefore the coefficients are transformed

to using xl as the input by the equations starting at 2.33. There are then two methods for

finding the error due to approximation Eapproxg .The first is finding the maximum error

value of the Chebyshev error equation in 2.28 for the degree and number of segments

for the specific function. This function is run on each segment input range and the

largest error value provides the result for Eapproxg . The other method is to create the

approximated polynomial and cycle through the entire output range at a high precision

increment and record the largest error value between the approximation and the actual

output of the function for the same input. The transformed coefficients are then analyzed

to obtain the maximum values needed for the MiniBit approach in Section 2.2.2.1. The

error analysis constraint equations for the MiniBit approach are dependent on the degree

of approximation and can be found starting at 2.58, 2.62 and 2.66, respectively, for

degrees one, two and three. For the COS/SIN unit u1 is the input and doesn’t propagate

in any errors through range reduction due to it being an exact number and therefore, the

MiniBit approach equations are simplified where max(xlg) = 1 and Exlg
= 0. Using the

now known values along with the correct MiniBit constraint equations, the optimization

results will lead to fractional bit width values for all coefficients FBCig
and internal

arithmetic signals FBDig
.

7c. Now that the coefficient values are found for the approximation and their corre-

sponding fractional bit sizes are known, a quick analysis is executed for storing them in

hardware as a look up table. First, the coefficient arrays are examined to see if there are

any values of magnitude greater than or equal to 1, which would result in the need to

store integer bits in the table as well. Second, for coefficient values that are significantly

smaller than 1, there may be redundant bits that can be omitted when they are stored
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in the look up tables and later concatenated to the correct size in hardware. Third, the

sign of the coefficients are analyzed to see if the entire array is always negative, which

results in the opportunity to omit the storing of the sign bit in the look up table due to

its redundancy.

8. This step executes the error analysis at the SQRT unit output seen in 2.76

to find out the fractional bit sizes of internal signals involved with the specific degree

of approximation, the range reduction step and the range reconstruction step. See

lines 23-40 for the pseudo code involving each of the steps. For simplicity, degree one

approximation equations will be utilized. As determined in Section 2.2.1.3, only
√

x will

be approximated, where x is on two different intervals, [1,2) and [2,4) due to the identity

getting split up into two different evaluations depending on whether Ex is odd or even.

f =
√

e =
√

−2ln(u0) (2.76)

8a. This step is dedicated to the error analysis involved for the SQRT unit except

for the function approximation section. There is the error propagated through the LN

unit into the input of the SQRT unit and manipulated in the range reduction section

in lines 27 and 28 that adds the most complication. There is also, the shifting of

the approximation output error when evaluating f in the range reconstruction steps

found in lines 39 and 40. To kick off this part, the range reconstruction steps in lines

39 and 40 are analyzed first to work backwards since FBf is known and to solve for

the approximation output fractional bit width FByf
. Shifting of the approximation

output yf essentially shifts the error associated with it as well and is to be taken into

consideration. A range analysis is executed on e, the output of the LN unit, to find the

IB size because it will effect the value of expf in the range reduction stage. Once IBe

is found, Offset = IBe − 2 and the minimum and maximum values of expf are in the

form of 2.77, which stems off of the leading zero detector having a maximum value of
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IBe + FBe − 1.

min(expf ) = −FBe − 1 and max(expf ) = Offset = IBe − 2 (2.77)

Now, the range reconstruction step on line 39 and in 2.78 is analyzed for the maximum

values because that will be the worst case scenario in magnifying the error due to the

function approximation step Eyf
. The maximum value from 2.77 is then plugged into

2.78 to find the max(exp
′
f ) found in 2.79. Stemming from line 40, the relationship

between the function approximation error Eyf
and Ef is shown in 2.80. For this analysis

f is faithfully rounded to 1 ulp, which creates the error relationship for the function

approximation found in 2.81.

exp
′

f =


expf/2, expf [0] = 0

(expf + 1) /2, expf [0] = 1
(2.78)

max
(
exp

′

f

)
=


(IBe − 3) /2, expf [0] = 0

(IBe − 1) /2, expf [0] = 1
(2.79)

Ef = Eyf
· 2exp

′
f (2.80)

Eyf
≤ 2−F Bf −exp

′
f (2.81)

Equation 2.81 is then analyzed taking into consideration the values in 2.79, which

leads to the worst case scenario of yf needing to be accurate to the values found in 2.82,
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which would correspond to the FByf
value that meets the worst case error.

max(Eyf
) =


2−F Bf −((IBe−3)/2), expf [0] = 0

2−F Bf −((IBe−1)/2), expf [0] = 1
(2.82)

Now the range reduction steps in lines 27-28 are analyzed to quantify the propagation

error from the LN unit. Now e is designed to be rounded faithfully, which leads to

max(Ee) = 2−F Be and 2.83 and 2.84 show the error propagation up to xf . However, xlf

is the actual value utilized in the function approximation arithmetic and therefore the

value of Exlf
is needed. For the arithmetic, xlf is shifted to have its magnitude range

from [0,1), which will amplify the error in Exf
depending on the size in bits of xmf

,

which is equal to kf and leads to 2.85.

E
′

xf
= Ee = 2−expf (2.83)

Exf
=


2−F Be−expf expf [0] = 0

2−F Be−expf −1 expf [0] = 1
(2.84)

Exlf
=


2−F Be−expf +kf expf [0] = 0

2−F Be−expf −1+kf expf [0] = 1
(2.85)

8b. In an actual implementation of this analysis, FBe and kf are the only two

unknowns of 2.85 at this time. Therefore to find kf , the same process for finding a

degree of approximation and number of segments that 7b utilized is executed. Now, it is

assumed that from that process a degree n-1 polynomial is chosen and 2kf segments are

needed for that approximation. The process is different than 7b due to there being two

different approximations, one for [1,2) and one for [2,4), which for the purpose of this
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general analysis is assumed to result in having the same degree n−1 and 2kf segments for

both input ranges. For hardware purposes only one chain of approximation arithmetic

is implemented and input coefficients get selected from the right range of values using a

multiplexer.

8c. Now that kf has a value, FBe is desired to be found to fully complete the values

needed for the MiniBit approach. To find FBe, the MiniBit approach equations found

in Section 2.2.2.1 are applied and dominating error is utilized. To walk through this

see 2.86, where a degree one approximation is assumed. With this assumption, 2.61 is

applied where Exlf
is found in 2.85. For this constraint, max(xlf ) = 1, the accuracy

of yf is found in 2.82, and the approximation error Eapproxf
and maximum values of

the coefficients Cif
are found utilizing the same methods used in 7b. At this step, with

the knowledge that min (expf ) = −FBe − 1, Lee et al. consider the product C1f
· Exlf

within 2.86 to be the dominating error within the error constraint equation [1]. With this

assumption, a straight forward analysis to find FBe can be executed at the minimum

value of expf , which causes the most error in Exlf
. First, the dominating error constraint

equations stemming from 2.78, 2.81, 2.85 and 2.86 are created in the form of 2.87 and

2.88, respectively, where expf is even and odd.

Eyf
= C1f

· Exlf
+ 2−F BC1f

−1 + 2−F BC1f
−1 · Exlf

+ 2−F BC0f + 2−F Byf + Eapproxf
(2.86)

2−F Be−expf /2 ≥ 2−F Be−expf +kf · max(C1f
), expf [0] = 0 (2.87)

2−F Be−(expf +1)/2 ≥ 2−F Be−expf −1+kf · max(C1f
), expf [0] = 1 (2.88)

The even case is considered first, where FBe is then odd in value. With the value
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of max
(
C1f

)
for the [2,4) range, 2.87 is analyzed at the minimum value of expf as per

2.77 and the corresponding FBe value that is found is rounded up to the nearest odd

integer value. The same value analysis is done for 2.88 and the corresponding FBe value

that is found is rounded up to the nearest even integer value. The value that is less in

magnitude is then chosen for FBe.

8d. Now that FBe is known, 2.86 can be optimized where the constraint is evaluated

at the tail ends of expf with the maximum and minimum values that are found in 2.77.

This optimization problem is executed twice using fmincon at the two different expf

values and the specific output set that requires the fractional bit widths to be the largest

is chosen due to the need to meet the requirement for both scenarios. From this, the

corresponding coefficient fractional bit widths FBCif
and the fractional bit widths of the

internal arithmetic signals FBDif
are found. The optimization process using fmincon in

MATLAB can be found at the end of Section 2.2.2.1.

8e. This section is identical to 7c for the SIN/COS unit, but executed on the two

different sets of coefficients for the SQRT unit.

9. This step executes the error analysis at the LN unit output seen in 2.89 to

find out the fractional bit sizes of internal signals involved with the specific degree

of approximation and the fractional bit sizes of the range reconstruction steps. See

lines 9-21 for the pseudo code involving each of the steps. For simplicity, degree one

approximation equations will be utilized. As determined in Section 2.2.1.3, only ln(x)

will be approximated where x is [0,1).

e = −2 · ln(u0) (2.89)

9a. This step will focus on analyzing the range reconstruction found on lines 20-21

and in both 2.90 and 2.91 to obtain FBln2, FBe′ and FBye after knowing the value

of FBe. The foundation principles of the MiniBit approach in Section 2.2.2.1 are now
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applied to both 2.90 and 2.91 utilizing the constraint error equations found in 2.56 and

2.57 to create error constraint equations for e′ in the form of 2.92 and e in the form of

2.93.

e′ = expe · ln2 (2.90)

e = (e′ − ye) ≪ 1; (2.91)

Ee′ = max(expe) · 2−F Bln2−1 + max(ln2) · Eexpe + 2−F Be′ −1 (2.92)

Ee = 2 (Eye + Ee′) + 2−F Be−1 (2.93)

From an analysis of the range reduction step in line 9, max(expe) is found to equal

TBu0 , the total bit size of u0. With the maximum value of expe and the fact that there

is no error involved with expe, Eexpe = 0, Ee′ is now of the form 2.94. Now, ye the

function approximation output is designed to be faithfully rounded and 2.94 is created

by plugging 2.94 into 2.93. Now e is designed to be faithfully rounded, which leads to

the error constraint in 2.96. From 2.96, the fmincon optimization MATLAB approach

found at the end of Section 2.2.2.1 is then executed to obtain FBye , FBe′ and FBln2.

Ee′ = TBu0 · 2−F Bln2−1 + 2−F Be′ −1 (2.94)

Ee = 2−F Bye +1 + TBu0 · 2−F Bln2 + 2−F Be′ + 2−F Be−1 (2.95)

2−F Be−2 ≥ 2−F Bye + TBu0 · 2−F Bln2−1 + 2−F Be′ −1 (2.96)
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9b. Now that FBye is known, it is time to determine the degree of approximation

n − 1, number of segments of approximation ke and obtain the transformed coefficient

values Cie . This process is the same as the process done in 7b and 8b, but the function

of approximation is ln(x) and x is [1,2). Then the maximum values of Cie are found and

the approximation error Eapproxe is found utilizing the same strategy found in 7b.

9c. Now that FBye , Eapproxe and max(Cie) are known, Exle
is the last unknown

before executing the MiniBit approach. To find Exle
, the range reduction steps in line

9-10 are analyzed and it is seen that any error involved with u0 has the potential to

be amplified by expe. However, Eu0 = 0 since it is an exact number, which leads to

no error propagation through the input and therefore Exle
= 0. With all these values

and max(xle) = 1, the MiniBit approach error constraint equations for a degree n − 1

polynomial in Section 2.2.2.1 are utilized along with the fmincon MATLAB function as

discussed at the end of that section to solve the optimization problem for the fractional

bit widths of the transformed coefficients FBCie
and the fractional bit widths of the

internal arithmetic signals FBDie
.

9d. Now to finish this analysis, the analysis of the coefficients that are stored in the

look up tables is executed to find opportunities to optimize the hardware storage. This

analysis is identical to 7c for the SIN/COS unit, but executed on the set of coefficients

for the LN unit.

Now, the error analysis is complete and the design is ready to move into the hardware

implementation phase.

2.2.3 16-bit Error Analysis Walk Through

This section is dedicated to walking through the entire error analysis that Lee et al.

executed in [1], where the main novelty is walking through the analysis while applying

the general analysis steps in Section 2.2.2.2 that were derived from [1]. All equations
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and techniques used in this section are correctly referenced in Section 2.2.2.2. From a

high-level, the error analysis is executed utilizing the MiniBit approach for bit width

optimization and the function approximations are done utilizing Chebyshev series ap-

proximations. The resulting bit-widths for the 16-bit architecture that are solved for

in this analysis can be seen visually in the block diagram of the design that Lee et al.

created in [1] and their pseudo code for their design can be seen in Listing 2.2. For the

duration of this section, the reference to numbered steps (eg. 7b) is referring to the steps

in the general analysis within Section 2.2.2.2.

Now to kick off this analysis, the design was required to have 16-bit noise and a

sample size S of 1015 samples. Following step 1, the norminv MATLAB function is

utilized with S = 1015 and results in needing to represent 8.03σ, which is then rounded

to designing for 8.1σ. Step 2 is then followed using 2.71 to find u0 ≤ 5.66 · 10−15. From

this, the closest bit-wise precision is 2−48 = 3.55 · 10−15, therefore u0 is designed to have

the total number of bits, TBu0 , be 48. Designing to the lower precision also increases

the maximum value to 8.2σ. The design utilizes two 32-bit Tausworthe generators and

for step 3, it leads to 16 bits being left over for u1, which is also close to the size of the

output noise and doesn’t cause any significant issue. For step 4, 1 bit is designated to the

sign bit, 4 bits for the integer portion to represent up to 8.2σ (IBx0 = IBx1 = 4) and the

remaining 11 bits are designated for the fractional portion (FBx0 = FBx1 = 11) of the

fixed point representation of the two 16-bit output noise samples, x0 and x1. For step

5, faithful rounding (1 ulp) is chosen, which results in the output error constrained to

less than 2−11. For step 6, max(g0) is found to equal 1 due to being the maximum value

of sine and cosine (max(g0) = 1). In addition to this, max(f) is found by passing in

the minimum value of u0, 2−48 into f =
√

−2ln(u0) and leads to max(f) = 8.157. With

these values, the output error constraint becomes of the form in 2.97, where fmincon
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Figure 2.7: Lee et al.’s 16-bit Noise Block Diagram [1]

leads to FBf = 13 and FBg0 = FBg1 = 15.

2−11 ≥ 2−F Bf + 8.157 · 2−F Bg0 (2.97)

1 #16-bit Box-Muller Method Pseudo Code
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2 --------------- Generate u0 and u1 ---------------
3

4 a = taus(); b = taus();
5 u0 = concat(a,b[31:16]);
6 u1 = b[15:0];
7

8 ------------- Evaluate e = -2ln(u0) --------------
9

10 # Range Reduction
11 exp_e = LeadingZeroDetector(u0) + 1;
12 x_e = u0 << exp_e;
13

14 # Approximate -ln(x_e) where x_e = [1,2)
15 # Degree-2 piecewise polynomial
16 y_e = ((C2_e[xm_e]*xl_e)+C1_e[xm_e])*xl_e
17 +C0_e[xm_e];
18

19 # Range Reconstruction
20 ln2 = ln(2);
21 e' = exp_e*ln2;
22 e = (e'-y_e)<<1;
23

24 --------------- Evaluate f = sqrt (e) ------------
25

26 # Range Reduction
27 exp_f = 5-Leading ZeroDetector(e);
28 x_f' = e >> exp_f;
29 x_f = if(exp_f[0], x_f'>>1, x_f');
30

31 # Approximate sqrt (x_f) where x_f = [1,4)
32 # Degree-1 piecewise polynomial
33 y_f = C1_f[xm_f]*xl_f+C0_f[xm_f];
34

35 # Range Reconstruction
36 exp_f' = if(exp_f[0], exp_f+1>>1, exp>>1);
37 f = y_f << exp_f';
38

39 ------------ Evaluate g0=sin(2*pi*u1) ------------
40 ------------ g1=cos(2*pi*u1) ------------
41

42 # Range Reduction
43 quadrant = u1[15:14];
44 x_g_a = u1[13:0];
45 x_g_b = (1-2^-14)-u1[13:0];
46

47 # Approximate cos(x_g_a*pi/2) and cos(x_g_b*pi/2)
48 # where x_g_a, x_g_b = [0,1-2^-14]
49 # Degree-1 piecewise polynomial
50 y_g_a = C1_g[xm_g_a]*xl_g_a+C0_g[xm_g_a];
51 y_g_b = C1_g[xm_g_b]*xl_g_b+C0_g[xm_g_b];
52

53 # Range Reconstruction
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54 switch(quadrant)
55 case 0: g0 = y_g_b; g1 = y_g_a; # [0, pi/2)
56 case 1: g0 = y_g_a; g1 = -y_g_b; # [pi/2, pi)
57 case 2: g0 = -y_g_b; g1 = -y_g_a; # [pi, 3*pi/2)
58 case 3: g0 = -y_g_a; g1 = y_g_b; # [3*pi/2, 2*pi)
59

60 --------------- Compute x0 and x1 ---------------
61 x0 = f*g0; x1 = f*g1;

Listing 2.2: 16-bit Box-Muller Method Pseudo Code

Now the main error analysis begins for the SIN/COS unit. Step 7a leads to FByga
=

FBygb
= FBg0 = FBg1 = 15. In step 7b, for a degree one, two and three approximation,

respectively, it is found that 128, 16 and 4 segments are required to meet the error

constraint. Lee et al. share their rule of thumb to utilize a degree one approximation if

the approximation error constraint is to a precision of less than 20 bits [1]. Therefore,

a degree one approximation for cos(x · π
2 ) is then chosen with 128 segments (n = 2 and

kg = 7) with coefficient values C1g and C0gand internal arithmetic signal D0g . From

the approximation, Eapproxg = 9.41 · 10−6 and max(C1g) = 0.123. With these values

and knowing Exlg
= 0 due to no error propagation on the input, the next part of 7b

executes the MiniBit approach for degree one and results in FBC1g
= 18, FBC0g

= 18,

and FBD0g
= 18. For 7c, max(C1g) = 0.123, max(C0g) = 1.000009, where all C1g values

are negative and all C0g values are positive. Therefore, for C1g there are 6 redundant

bits and the sign bit doesn’t need to be stored. On the other hand, C0ghas a value over

1 and therefore requires the use of 1 integer bit as well. This results in 12 bits stored

for C1g and 19 bits stored for C0g .

The next analysis is for the SQRT unit and starts with step 8a. A range analysis is

executed for e and results in a maximum value of −2ln(2−48) = 66.5. This value requires

IBe = 7 and therefore Offset = 5. With the value of Offset, max(expf ) = 5 and

max(exp′
f ) becomes 2 and 3, respectively, for expf being even and odd. FByf

is then

found to be 16 bits. Step 8b is now looked at where the degree of approximation and
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number of segments are to be found for the approximation of
√

x for both input ranges of

[1,2) and [2,4). For a degree one, two and three approximation, respectively, it is found

that 64, 8 and 2 segments are required for both input ranges to meet the error constraint.

Therefore, a degree one approximation with 64 segments is chosen (n = 2 and kf = 6)

with coefficients C1fodd
, C0fodd

, C1feven
and C0feven

and internal arithmetic signal D0f
.

From the approximation, Eapproxfodd
= 3.785147 · 10−6, Eapproxfeven

= 5.353006 · 10−6,

max(C1fodd
) = 0.00778 and max(C1feven

) = 0.011. For step 8c, dominating error in

the MiniBit approach is utilized to find a FBe value. The case where expf is even is

considered first, which results in an odd FBe value. The result returns FBe ≥ 25.98887,

which would lead to FBe = 27 since that is the next odd value. The case where expf is

odd and FBe is even leads to FBe ≥ 23.98881, therefore FBe = 24. FBe is then decided

to be 24 bits. For 8d, the two extreme cases of expf are used for the analysis at values

of min(expf ) = −25 and max(expf ) = 5. The analysis is now done using the MiniBit

approach equations for degree one and the error propagated through the input, Exlf
,

while taking into consideration the odd values of the constants used (eg. Eapproxf
). This

results in two scenarios, where the values for FBc1f
, FBC0f

and FBD0f
, respectively, are

16, 10 and 10 for the min(expf ) case and 18, 19 and 19 for the max(expf ) case. The

latter places more stringent requirements and therefore FBC1f
= 18, FBC0f

= 19 and

FBD0f
= 19 values are chosen. For 8e, C1f

has 6 redundant bits, C0f
requires an integer

bit and they both are composed of only positive values, which requires no sign bit to be

stored. This leads to the total bits stored for C1f
and C0f

, respectively, to be 12 and 20

for each index.

The next part of the analysis is for the LN unit and will begin with step 9a. From

knowing FBe = 20 and TBu0 = 48, the following bit sizes are found, FBln2 = 32,

FBe′ = 28 and FBye = 27. Now that FBye is known, 9b is executed where ln(x) is

the function to be approximated on [1,2). For a degree one, two and three approxima-
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tion, respectively, it is found that 4096, 256 and 32 segments are required to meet the

error constraint. Since the precision is over 20 bits and the segment values are getting

larger, a degree two approximation with 256 segments is chosen (n = 3 and ke = 8) with

coefficients C2e , C1e , C0e and internal arithmetic signals D2e , D1e and D0e . From the ap-

proximation, Eapproxe = 6.1832 · 10−10, max(C2e) = 7.59969 · 10−6, max(C1e) = 0.003906

and max(C0e) = 0.69119. For 9c, the MiniBit approach equations for degree two are

utilized and the values that result from optimization are FBC2e
= FBC1e

= FBC0e
=

FBD2e
= FBD1e

= FBD0e
= 30. For 9d, C2e and C1e , respectively, have 17 and 8 re-

dundant bits and neither of them require integer bits. In addition to this, all C2e values

are negative, therefore there is no need to store the sign bit.



Chapter 3

LGBMGNG 24-bit Noise Error

Analysis

This chapter is dedicated to walking through the error analysis for a Gaussian noise

generator that creates 24-bit noise samples. The error analysis stems off of the error

analysis that Lee et al. went through for 16-bit noise samples as shown in Section 2.2.3.

The error analysis applies the general analysis steps in Section 2.2.2.2 that were derived

from [1]. All equations and techniques used in this section are correctly referenced in

Section 2.2.2.2. From a high-level, the error analysis is executed utilizing the MiniBit

approach for bit width optimization and the function approximations are done utilizing

Chebyshev series approximations. The resulting bit-widths for the 24-bit architecture

that are solved for in this analysis can be seen visually in the block diagram of the

design found in Figure 4.1 and the resulting pseudo code for the design can be seen

in Listing 3.1. For the duration of this chapter, the reference to numbered steps (eg.

7b) is referring to the steps in the general analysis within Section 2.2.2.2 and the 16-bit

design is referring to the design in Section 2.2.3. Throughout this section, line numbers

referenced are from the 24-bit Box-Muller method pseudo code given in Listing 3.1.

The LGBMGNG analysis is started by knowing that there is a requirement to have
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24-bit noise and there is no specific sample size S for the noise required. The 16-bit

design only provided 16 bits to the SIN/COS unit, which worked fine for 16-bit noise.

However, now that 24-bit noise is desired, another Tausworthe generator is brought

into the design providing another 32-bits to the inputs. The goal of adding another

Tausworthe generator is to include more precision in the f data path to increase Xσ. In

addition to this, the higher precision for the inputs directly effects the range of precision

for the outputs, which increases the quality of the distribution of the output noise values.

A third is added instead of redesigning one of the first two to limit the complexity of

the design. 16-bits are then added to u0 to bring it to 64 bits, a popular precision, and

the remaining 16-bits to u1 making TBu0 = 64 and TBu1 = 32. Now that the size of u1

is known, step 3 is completed and steps 2 and 1 are worked through backwards to see

the sample size S that the 24-bit design with 3 Tausworthe generators supports. For

step 2, 2.71 is utilized backwards where 2−T Bu0 = 2−64 is passed in as u0, which leads to

Xσ = 9.42σ. Now that X = 9.42, step 1 is performed using norminv and S is found to

be 2 · 1020 for this design, which is 2 · 105 times larger than the sample size in the 16-bit

version. Now step 4 is looked at where 1 bit is designated as the sign bit, 4 bits are

designated for the integer portion to represent up to 9.42σ (IBn1 = IBn2 = 4) and the

remaining 19 bits are designated for the fractional portion (FBn1 = FBn2 = 19). For

step 5, faithful rounding (1 ulp) is chosen, which results in the output error constrained

to be less than 2−19. For step 6, max(g0) = max(g1) = 1 due to 1 being the maximum

value for sine and cosine. In addition to this, max(f) is found by passing in the minimum

value of u0, 2−64 into f =
√

−2 · ln(u0), which leads to max(f) = 9.41928. With these

values, the output error constraint becomes of the form in 3.1 where fmincon leads to

FBf = 20 and FBg0 = FBg1 = 24.

2−19 ≥ 2−F Bf + 9.41928 · 2−F Bg0 (3.1)
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1 %LGBMGNG 24-bit Box-Muller Pseudo Code
2 %%--------------- Generate u0 and u1 ---------------
3 a = taus(); b = taus(); c = taus();% all 32-bit-------
4 u0 = concat(a,b);
5 u1 = c;
6

7 %%------------- Evaluate e = -2ln(u0) --------------
8

9 % Range Reduction
10 exp_e = LeadingZeroDetector(u0) + 1;
11 x_e = u0 << exp_e;
12

13 % Approximate -ln(x_e) where x_e = [1,2)
14 % Degree-3 piecewise polynomial - 512 segments
15 % C3,C2,C1,C0 = 19,28,38,47 bits.
16 % x_e is [1,2) --> x_e = 1 + xm_e + xl_e * 2^-k_e
17 y_e = (((C3_e(xm_e_index)*xl_e+C2_e(xm_e_index))*xl_e)+C1_e(xm_e_index))*xl_e +

C0_e(xm_e_index);↪→

18

19 % Range Reconstruction
20 ln2 = ln(2);
21 e' = exp_e*ln2;
22 e = (e'-y_e)<<1;
23

24 %%--------------- Evaluate f = sqrt (e) ------------
25

26 % Range Reduction
27 exp_f = 5-LeadingZeroDetector(e);
28 x_f' = e >> exp_f;
29 x_f = if(exp_f[0], x_f'>>1, x_f');
30

31 % Approximate sqrt (x_f) where x_f = [1,4)
32 % x_f is [1,2) --> x_f = 1 + xm_f + xl_f * 2^-k_f
33 % or
34 % x_f is [2,4) --> x_f = 2 + 2*xm_f + xl_f * 2^(-k_f+1)
35 % Degree-1 piecewise polynomial - 1024 segments
36 % C1,C0 = 16,26 bits.
37 y_f = C1_f(xm_f_index)*xl_f + C0_f(xm_f_index);
38

39 % Range Reconstruction
40 exp_f' = if(exp_f[0], exp_f+1>>1, exp>>1);
41 f = y_f << exp_f';
42

43 % %------------ Evaluate g0=sin(2*pi*u1) ------------
44 % %------------ g1=cos(2*pi*u1) ------------
45

46 % Range Reduction
47 quadrant = u1[31:30];
48 x_g_a = u1[29:0];
49 x_g_b = (1-2^-30)-u1[29:0];
50

51 % Approximate cos(x_g_a*pi/2) and cos(x_g_b*pi/2)
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52 % where x_g_a, x_g_b = [0,1-2^-30]
53 % Degree-2 piecewise polynomial - 128 segments
54 % C2,C1,C0 = 14,21,28 bits.
55 % x_g is [0,1) --> x_g = xm_g + xl_g * 2^-k_g
56 y_g_a = C2_g(xm_g_a_index)*xl_g_a^2 + C1_g(xm_g_a_index)*xl_g_a + C0_g(xm_g_a_index);
57 y_g_b = C2_g(xm_g_b_index)*xl_g_b^2 + C1_g(xm_g_b_index)*xl_g_b + C0_g(xm_g_b_index);
58

59 % Range Reconstruction
60 switch(quadrant)
61 case 0: g0 = y_g_b; g1 = y_g_a; % [0, pi/2)
62 case 1: g0 = y_g_a; g1 = -y_g_b; % [pi/2, pi)
63 case 2: g0 = -y_g_b; g1 = -y_g_a; % [pi, 3*pi/2)
64 case 3: g0 = -y_g_a; g1 = y_g_b; % [3*pi/2, 2*pi)
65

66

67 %%--------------- Compute n1 and n2 ---------------
68 n1 = f*g0; n2 = f*g1;

Listing 3.1: LGBMGNG, 24-bit Box-Muller Method Pseudo Code

The main error analysis for the SIN/COS unit is then executed starting with 7a.

Due to no error propagation in the range reconstruction steps in lines 60-64, FByga
=

FBygb
= FBg0 = FBg1 = 24. Step 7b is then executed where for a degree one, two

and three approximation, respectively, 4096, 128 and 16 segments are required to meet

the error constraint. A degree two approximation for cos(x · π
2 ) is then chosen with

128 segments (n = 3 and kg = 7) with coefficient values C2g , C1g and C0g and internal

arithmetic signals D2g , D1g and D0g . From the approximation, Eapproxg = 9.6254 · 10−9,

max(C2g) = 7.52975 · 2−5, max(C1g) = 0.01227 and max(C0g) = 1.00000000004. Then,

the MiniBit approach referenced in 7b is executed with the degree two equations and

results in FBC2g
= 27, FBC1g

= 27, FBC0g
= 27, FBD2g

= 27, FBD1g
= 28 and

FBD0g
= 28. For 7c, C2gand C1g , respectively, have 13 and 6 redundant bits and both

have all negative values except for the first index value of C1g . Both are designed to

not store the sign bit. Now, C0ghas a maximum value above 1 and therefore requires an

integer bit. This results in C2g , C1g and C0g , respectively, requiring to store 14, 21 and

28 bits. Therefore, 128 · (14 + 21 + 28) = 8064 bits are stored for each implementation

of cos(x · π
2 ).
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Next, SQRT is analyzed starting with step 8a. The range of e is analyzed for a

maximum value, where max(e) = −2 · ln(2−64) = 88.72. This value requires IBe = 7

and brings about Offset = 5. Therefore, max(expf ) = 5 and max(exp′
f ) becomes 2

and 3, respectively, for expf being even and odd. FByf
is then found to be 23 bits. For

step 8b, the degree of approximation and the number of segments are to be found for the

approximation of
√

x for both input ranges of [1,2) and [2,4). For [1,2), a degree one,

two and three approximation, respectively, requires 512, 32 and 8 segments to meet the

error constraint. On the other hand for [2,4), a degree one, two and three approximation,

respectively, requires 1024, 128, 16 segments to meet the error constraint. Typically for

23 bits of precision, a second degree approximation would be selected. However, due

to the desire to keep [1,2) and [2,4) at the same level of approximation and degree two

of [2,4) requiring 128 segments, the trade-off is decided to not be worth it. Therefore,

a degree one approximation of
√

x is then chosen with 1024 segments (n = 2 and

kf = 10) with coefficients C1fodd
, C0fodd

, C1feven
and C0feven

and internal arithmetic signal

D0f
. From the approximation, Eapproxfodd

= 2.1063 · 10−8, Eapproxfeven
= 1.4894 · 10−8,

max(C1fodd
) = 6.90365 · 10−4 , max(C1feven

) = 4.8816 · 10−4, max(C0fodd
) = 1.413868

and max(C0feven
) = 1.99951.

For step 8c, the dominating error within the MiniBit approach error constraint equa-

tions is used to find FBe. The case where expf is even is considered first, which results

in an odd FBe value. The result returns FBe ≥ 38.9993, which would lead to FBe = 39

since that is the next odd value. The case where expf is odd and FBe is even leads to

FBe ≥ 38.9993, therefore FBe = 40. FBe is then decided to be 40 bits due to being

pessimistic about how close 38.993 is to 39. For 8d, the two extreme cases of expf are

used for the analysis at values of min(expf ) = −41 and max(expf ) = 5. The analysis is

now executed using the MiniBit approach equations for degree one in the same manner

as 8d in the 16-bit section. This results in two scenarios, where the values for FBc1f
,
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FBC0f
and FBD0f

, respectively, are 14, 3 and 3 for the min(expf ) case and 26, 25 and

25 for the max(expf ) case. The latter places more stringent requirements and therefore

FBC1f
= 26, FBC0f

= 25 and FBD0f
= 25 are chosen. For 8e, C1f

has 10 redundant

bits, C0f
requires an integer bit and they both are composed of only positive values,

which requires no sign bit to be stored. This results in C1f
and C0f

, respectively, requir-

ing to store 16 and 26 bits and there are two look up tables for each for the two input

ranges, [1,2) and [2,4). Therefore, 1024 · 2 · (16 + 26) = 86016 bits are stored for the

implementation of
√

x.

The final section of the analysis is for the LN unit, which begins with step 9a. From

knowing FBe = 40 and TBu0 = 64, the following bit sizes are found, FBln2 = 49, FBe′ =

43 and FBye = 43. Now that FBye is known, 9b is executed where ln(x) is the function

to be approximated on [1,2). For a degree three and four approximation, respectively,

it is found that 512 and 128 segments are required to meet the error constraint. Due

to degree two being out of scope and degree three already adding plenty of hardware,

a degree three approximation with 512 segments is chosen (n = 4 and ke = 9) with

coefficients C3e , C2e , C1e , C0e and internal arithmetic signals D4e , D3e , D2e , D1e and

D0e . From the approximation, Eapproxe = 2.8422 · 10−14, max(C3e) = 2.47627 · 10−9,

max(C2e) = 1.9073441 · 10−6, max(C1e) = 0.001953125 and max(C0e) = 0.69217. For

9c, the MiniBit approach equations for degree three are utilized and the values that result

from optimization are FBC3e
= FBC2e

= FBC1e
= FBC0e

= FBD4e
= FBD3e

= 47 and

FBD2e
= FBD1e

= FBD0e
= 48. For 9d, C3e , C2e and C1e , respectively, have 28, 19

and 9 redundant bits. For all four, no integer bits are required and C2e has values

that are all negative, therefore there is no need to store the sign bit. This results in

C3e , C2e , C1e , C0e , respectively, requiring to store 19, 28, 38 and 47 bits. Therefore,

512 · (19 + 28 + 38 + 47) = 67584 bits are stored for the implementation of ln(x).



Chapter 4

Hardware Implementation

This chapter describes the hardware implementation of LGBMGNG, a 24-bit Gaussian

noise generator utilizing the Box-Muller method. Chapter 3 walks through the entire

error analysis for LGBMGNG and all of the fractional bit widths of the main internal

signals are derived there.

4.1 Architecture

The high level architecture of the LGBMGNG is seen in Figure 4.1. Three 32-bit Taus-

worthe uniform random number generators are implemented, where each has a unique

seed passed into LGBMGNG. Tausworthe generators are chosen due to the algorithm

only utilizing bit-wise and, xor and shift operations, which require small area to imple-

ment. There are two leading zero detectors, a 64-bit one in the LN unit and a 47-bit

one in the SQRT unit. The detectors were designed utilizing Verilog’s casez statement,

which is implemented very well by synthesis tools and requires minimal area. The ap-

proximations of the elementary functions requires coefficient values to be used in an

efficient manner. Therefore, look up tables were implemented using Verilog’s case state-

ment, which is also implemented very well by synthesis tools. In addition to this, the
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error analysis in Section 3 took into account redundancy for the look up tables. This

reduced the size of the operands stored in the look up tables, which saved area.

Figure 4.1: LGBMGNG 24-bit Block Diagram
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4.2 Design Choices

To minimize the size of the internal signals of LGBMGNG, a range analysis was executed

in MATLAB for the maximum values passed through the data paths involved in the

design. The maximum values lead to determining the number of integer bits required

for the signals. The results from this analysis along with the values for the size of the

fractional portions derived in the error analysis can be found in Table 4.2.

The SQRT unit required degree one approximation, which is implemented using a

simple multiply add circuit as seen in Figure 4.2 where the coefficient values from the look

up tables are determined by the segment of approximation the input is in. Similarly,

the SIN/COS unit is approximated by the circuit in Figure 4.3 where there are now

two multipliers, two adders and another look up table due to requiring a degree two

approximation. Also, the LN unit follows this form as seen in Figure 4.4, but is a degree

three approximation and therefore requires three multipliers, three adders and four look

up tables.

Figure 4.2: Degree One Approximation of SQRT Hardware Implementation
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Figure 4.3: Degree Two Approximation of COS Hardware Implementation

Figure 4.4: Degree Three Approximation of LN Hardware Implementation

The implementation of LGBMGNG leads to a pipeline that is of the form found in

Figure 4.5. LGBMGNG has a latency of 14 clock cycles before the first output noise
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samples are valid. This pipeline implementation was decided upon to keep the design

simple and leave optimization to future work. The design designates a clock cycle to

each major operation within the pseudo code. The range reduction steps are consolidated

into one clock cycle for each unit and the range reconstruction steps are consolidated

into one clock cycle for each unit as well for the simplicity of this design. For each

approximation, the error analysis split the polynomial into a series of multiply and add

operations. Again for simplicity, each multiply or add is designed to be single cycle.

After the 14 clock cycles, the design will produce two samples of noise per clock signal

due to the implementation of a pipeline.
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Figure 4.5: LGBMGNG Pipeline



4.2 Design Choices 59

Signals Total Integer Fractional Sign Redundant
bits (TB) bits (IB) bits (FB) bit (SB) bits (RB)

a,b,c 32 32 0 0
u0 64 0 64 0
u1 32 0 32 0

expe 7 7 0 0
xe 64 1 63 0
C3e 47 0 47 0 28
C2e 48 0 47 1 19
C1e 48 0 47 1 9
C0e 47 0 47 0 0
D4e 47 0 47 0
D3e 48 0 47 1
D2e 49 0 48 1
D1e 48 0 48 0
D0e 48 0 48 0
ye 43 0 43 0
ln2 49 0 49 0
e′ 49 6 43 0
e 47 7 40 0

expf 7 6 0 1
x′

f 47 2 46 0
xf 48 2 46 0
C1f

26 0 26 0 10
C0f

26 1 25 0 0
D0f

25 0 25 0
yf 24 1 23 0

exp′
f 6 5 0 1

f 24 4 20 0
Q 2 2 0 0

xga ,xgb
30 0 30 0

C2g 28 0 27 1 13
C1g 28 0 27 1 6
C0g 29 1 27 1 0
D2g 28 0 27 1
D1g 29 0 28 1
D0g 29 0 28 1

yga ,ygb
24 0 24 0

g0,g1 25 0 24 1
n1,n2 24 4 19 1

Table 4.2: 24-bit Operand Sizes



Chapter 5

Tests and Results

This chapter goes into detail about the tests and results for the hardware implementa-

tion of LGBMGNG, the use of the bit-exact model in MATLAB to provide test vector

verification, the quality of the test vector sample sets and it walks through some bugs

encountered in the design phase.

5.1 Simulation Results

A bit-exact model model of the LGBMGNG was created in MATLAB utilizing the

bit-widths in Table 4.2. The model was tested against the Box-Muller method using

elementary functions in MATLAB to ensure the model met the error requirement of

faithful round, E ≤ 2−19. This model was used to create test vectors for the verification

of LGBMGNG. Four sets of test vectors were created. For each vector set, unique seeds

were passed to the Tausworthe generators and they can be found in Table 5.1. Two of

the sets were for 1 million samples for n1 and n2 and the other two were for 20 million

samples. Seed 1 was run in the model and results in n1 = 3.5299 and n2 = 0.4469. Those

values in hex for 24-bit signed outputs, leads to n1 = 0x1C3D37 and n2 = 0x039349.

Seed 1 was then simulated using the gate-level netlist, where the data path through the
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Seed_a Seed_b Seed_c Sample Count
Seed 1 7654321 87654321 987654321 1 Million
Seed 2 741732741 900903737 655563292 20 Million
Seed 3 1107711288 490903959 338177554 20 Million
Seed 4 886334683 2126303890 161170592 1 Million

Table 5.1: The Seed Values for the Four Test Vector Sets

LN and SQRT units is shown in Figure 5.1 and the data path through the SIN/COS

unit is shown in Figure 5.2. These waveforms follow the pipeline infrastructure seen in

4.5, where the first sample set of n1 and n2 , respectively, is seen to have the values

0x1C3D37 and 0x039349 as the model provided for verification. Seed 1 for 1 million

samples was verified by the test vectors for the gate-level simulation and the console

output can be seen in Figure 5.3. In addition to this, Seed 2 was run for 20 million

samples and was verified by the test vectors in RTL simulation and the console output

can be seen in Figure 5.4.

5.2 RTL Synthesis Results

The LGBMGNG hardware design targeted the TMSC 65nm ASIC process where it was

synthesized using Synopsys Design Compiler at a clock frequency of 400MHz. Two

netlists are created: the first is the pre-scan netlist, which has the entire design, but

there is no hardware designated for design for test (DFT). Full-scan test insertion was

utilized for DFT and resulted in the post-scan netlist. Both netlists were compared in

Table 5.2, where the scan insertion increased the number of gates used by 3,000. The

overall design is roughly 116,000 gates and requires 166,866.48 µm2 of area. Both netlists

were then compared in Table 5.3 in regards to power usage where the dynamic power

drastically increases.

The cell area for the post-scan netlist was then broken down to gain a better un-

derstanding of the Box-Muller hardware implementation and can be seen in Table 5.4.
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Figure 5.1: LN and SQRT Data Path Simulation Waveform
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Figure 5.2: SIN/COS Data Path Simulation Waveform
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Figure 5.3: 1 Million Test Vectors Synthesis Simulation Waveform

Figure 5.4: 20 Million Test Vectors RTL Simulation Waveform

Pre-Scan Netlist Post-Scan Netlist
Combinational Area (µm2) 146373.12 145705.68

Buffer and Inverter Area (µm2) 6338.16 5604.12
Non-Combinational Area (µm2) 16164.72 21160.80

Total Cell Area (µm2) 162537.84 166866.48
Total Number of Gates 112874 115880

Table 5.2: Logic Synthesis Reports for Pre and Post Scan Chain Netlists
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Pre-Scan Netlist Post-Scan Netlist
Cell Internal Power (mW ) 20.6966 37.1

Net Switching Power (mW ) 5.0397 11.5
Total Dynamic Power (mW ) 25.7363 38.6

Cell Leakage Power (µW ) 9.7345 10.05

Table 5.3: Power Usage for Pre and Post Scan Chain Netlists

In Table 5.4, MULT refers to the multipliers, ADD refers to the adders, LUTs refers to

the look up tables in general, TAUS refers to the Tausworthe URNGs, LZD64 refers to

the 64-bit leading zero detector implemented in the LN unit, LZD47 refers to the 47-bit

leading zero detector implemented in the SQRT unit, LUT_COS refers to all the LUTs

involving the cosine approximation, LUT_LN refers to all the LUTs involving the natu-

ral log approximation and LUT_SQRT refers to the LUTs involving the approximation

of square root. From the table, multipliers account for half of the entire design’s area,

while the look up tables only account for a quarter of the design’s area. A lower degree

of approximation removes a multiplier and an adder from the circuit and removes two

stages of the pipeline, while increasing the look up table size. Therefore, it can be seen

that for this design, a lower degree of approximation for one of the functions would have

been feasible. The largest multiplier is 15.6% of the design and is located within the LN

unit where the approximation arithmetic is extremely large due to the bit-size of u0 and

the internal signal bit-widths to meet the more stringent error constraints. Compared to

the 16-bit design, another TAUS unit was utilized and it is seen that only 1% of area was

added to the design, but the u0 size has added large area due to the multiplier sizes. The

leading zero detectors were implemented well and use minimal area. The SIN/COS unit

used significantly less area for the LUTs due to smaller error precision needed through

the data path and no error propagation.
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5.3 Debugging LGBMGNG

This section walks briefly through the bugs found in the design of LGBMGNG.

5.3.1 2s Complement Multiplication

For the first set of 1 million test vectors, roughly 15,000 failed. Using the model to

view the correct results for the internal signals, it was seen that the 2s complement

multiplication result wasn’t matching up. Upon further analysis, it was learned that it

was a sign extension problem. For multiplication, an X bit number multiplied by a Y

bit number results in a X + Y bit number. To fix this error, the sign extension for the

X bit operand and the Y bit operand needed to be to X + Y bits before multiplying

them.

5.3.2 Overflow

In the SIN/COS unit, yga and ygb
are calculated. During an analysis of multiple test

vectors failing against the model, it was seen that either g0 or g1 was becoming either

0 when it should have been a normal number or all ones when it should have been

0. First, the analysis led to the realization that in the cases where the result was at

its maximum value to store dependent on its bit size, there was the chance that the

addition of round-to-nearest would overflow the result and it would look like 0. Then,

the analysis also led to the cases where the approximation and rounded coefficients had

the opportunity to reach a negative result. This case is extremely rare and only possible

due to the approximation values since cos(x · π
2 ) on [0, π/2) can never achieve a negative

number. An intermediate wire for the addition before removing the integer bit and sign

bit was implemented along with an intermediate adder to execute the round-to-nearest

addition. For the final result, if the the integer bit was set in the intermediate addition
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wire, a decision was was made depending on the sign bit. If the sign bit was set, that

means the addition brought about a negative result and therefore, the output was set

to 0, the lowest value it is able to represent by design. However, if the sign bit was not

set, then the addition overflowed and the output was set to all ones, the highest value

it is able to represent by design. On the other hand, if the integer bit was not set, the

result from the round to nearest wire was analyzed. If the integer bit of that addition

was set, another overflow occurred. Therefore, the output result is grabbed from the

original addition without round-to-nearest to avoid rounding out of the range that can

be represented. And last but not least, if the integer bit of the round-to-nearest wire is

not set, then there was no overflow and the output of the round-to-nearest wire is used

as the actual output value.

5.3.3 Redundancy Assumptions

For this bug, the sign extended C1gwas outputting a single value that was negative, when

the model was showing it to be 0. In the design at this point, C1g was assumed to be

all negative values and therefore, a negative sign bit was automatically concatenated to

the value outputted from the LUT. Therefore, a wrong assumption was made and that

case had to be updated.

5.3.4 Rounding Schemes

For this bug, it was more of a model bug than hardware. 7 out of 20 million test

vectors were failing and every single internal variable for all 7 seven test vectors were

the exact value as the model except one of the output noise samples would be off by 1

ulp. The count of failures was extremely low and there wasn’t anything else to go off

of since everything was equal. After some time exploring values in both the Model and

the Verilog, the value of the output noise before rounding to nearest was exactly the
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halfway point between the precision to round to. For example if rounding to an integer,

the value was −11.5. Then after further analysis and research, it was learned that round-

to-nearest (implemented in hardware), is round to positive infinity in the halfway case.

In addition to this, it was noticed that in the model, the halfway case was round away

from zero. Therefore, for the example of −11.5, the model would have resulted in −12

and the hardware would have resulted in −11 resulting in 1 ulp error. The halfway case

decision is not important for an error analysis because both types of rounding at the

halfway case would lead to 0.5 ulp. Therefore, since round towards positive infinity is

the default for round-to-nearest in hardware, the design was kept simple and the model

was updated to round towards positive infinity as well.

5.4 Test Vector Probability and Statistic Analysis

The test vector sets given by the seed values and sample count in Table 5.1, were analyzed

utilizing basic probability and statistics and goodness-of-fit metrics discussed in Section

2.1.3.2. The results of the analyses done in MATLAB are found in Tables 5.3 and 5.4,

respectively, for 1 million sample sets and 20 million sample sets. For these tables,

Med. refers to median, Std. refers to standard deviation, Min. refers to minimum,

Max. refers to maximum, Pe_mean refers to percent error of the mean versus N(0, 1),

Pe_med. refers to percent error of the median versus N(0, 1), Pe_std. refers to percent

error of the standard deviation versus N(0, 1), Chi p refers to Chi-squared goodness of

fit p-value, A-D p refers to the Anderson-Darling goodness of fit p-value, R2 refers to

the coefficient of determination and SEE refers to the standard error of the estimate.

From analysis of Tables 5.5 and 5.6, all four test vector sets represent N(0, 1) well.

The smaller sample sets of 1 million show less magnitude in the minimum and maximum

categories, which is as expected since those are the tail ends of the distribution. Seed

3 shows a median value of exactly 0, which is impressive. For both Chi p and A-D p,
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Seed 1 Seed 4
N1 N2 N1 N2

Mean -0.000962 0.000125 0.000480 0.001550
Med. -0.001003 -0.000721 -0.000176 0.001717
Std. 1.000454 0.999101 0.998968 0.999692
Min. -4.885721 -4.635759 -4.644117 -4.685152
Max. 4.731121 4.808264 4.953455 4.929619

Pe_mean 0.096233 0.012474 0.048030 0.154974
Pe_med. 0.100327 0.072098 0.017643 0.171661
Pe_std. 0.045448 0.089864 0.103159 0.030834
Chi p 0.658276 0.533465 0.539513 0.320134
A-D p 0.866158 0.543795 0.543483 0.905227

R2 0.9999977466 0.9999965110 0.9999967027 0.9999965679
SEE 0.001502 0.001866 0.001814 0.001852

Table 5.5: Goodness-of-Fit Metrics for 1 Million Count Test Vector Sets

a value greater than 0.05 proves the distribution is of N(0, 1), where Seed 2 shows a

tremendous value of 0.956603 for A-D p.
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Seed 2 Seed 3
N1 N2 N1 N2

Mean 0.000644 0.000405 0.000053 0.000154
Med. 0.000633 0.000418 0.000000 0.000467
Std. 0.999892 0.999789 1.000023 0.999913
Min. -5.379921 -5.642990 -5.905350 -5.153084
Max. 5.397518 5.335030 5.261393 5.042143

Pe_mean. 0.064446 0.040544 0.005254 0.015429
Pe_med. 0.063324 0.041771 0.000000 0.046730
Pe_std. 0.010758 0.021119 0.002292 0.008712
Chi p 0.409535 0.650388 0.342973 0.437817
A-D p 0.956603 0.663481 0.387935 0.116103

R2 0.9999998758 0.9999998549 0.9999998175 0.9999997822
SEE 0.000352 0.000381 0.000427 0.000467

Table 5.6: Goodness-of-Fit Metrics for 20 Million Test Vector Sets
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Conclusion

This chapter discusses conclusions from this work, while also indicating possible future

work.

6.1 Future Work

6.1.1 Pipeline Extension

LGBMGNG was designed with simplicity in mind for the pipeline. This means that

there are multiple ways to improve the hardware design. One of these ways would be to

multi-cycle path the large multipliers by designating a separate always block, registering

the inputs the output and declaring it a multi-cycle path. Another would be to register

the outputs of the look up tables. It is believed with the extension of the pipeline, the

area will drop drastically due to the increase in required time for the large multiplier

instances resulting in the synthesis selecting much less aggressive implementations.
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6.1.2 Architectural Changes

The error analysis process could be applied for 32-bit noise or higher. The sample size

could be increased even more by generating more bits via Tausworthe random number

generators. A single, larger Tausworthe generator could be used to minimize the number

of seeds needed. Another method for exact rounding could be sought after for sine and

cosine to turn the entire design into being exactly rounded. The central limit theorem

could be applied to the samples due to the nature of the theorem bringing about any set

of samples closer to a normal distribution. Also, other papers utilize it on the output

samples of the Box-Muller method. [9, 30].

6.1.3 Approximation Changes

The trade-off between coefficient look up tables and length of the data path arithmetic

could be better understood by implementing this design with different combinations

(eg. degree two approximation for SQRT). The MATLAB fixed-point designer and

fixed-point optimization tools could be explored for applying to this work [31, 32]. A

software program could be developed that automates the entire error analysis when

passed a sample size and output bit size.

6.2 Conclusions

This paper walked through the process of designing a 24-bit Gaussian noise generator

based on the Box-Muller method where the core of the design stemmed from a thorough

error analysis. The analysis and design drew insights from a 16-bit design, where the

increase in 8 bits of noise led to a significant increase in internal signal sizes and degrees

of approximation for the elementary functions. The error analysis was abstracted to

a general case that can be applied for a range of sample sizes and output bit widths.
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Multipliers accounted for half of the design’s area, while the coefficient look up tables

only accounted for around a quarter of the design’s area. The design was written in

Verilog HDL, targeted for a 65nm ASIC process and synthesized at 400MHz where it

generates 800 million samples of Gaussian noise per second and maintains periodicity

up to a sample size of 2 · 1020 due to achieving a maximum value of 9.42σ.
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Appendix I

Source Code

I.1 LGBMGNG Design in Verilog HDL

1 // Author: Lincoln Glauser
2 // August 2017
3 module LGBMGNG (
4 reset,
5 clk,
6 seed_a,
7 seed_b,
8 seed_c,
9 n1,

10 n2,
11 valid,
12 scan_in0,
13 scan_en,
14 test_mode,
15 scan_out0
16 );
17

18 /*
19 * LG's Box Muller Gaussian Noise Generator (LGMBGNG)
20 * generates three independent uniform 32-bit random numbers [U(0,1)]
21 * and then produces two samples of 24-bit gaussian noise [N(0,1)].
22 */
23

24 input
25 reset, // system reset
26 clk; // system clock
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27

28 input [31:0] // Seeds for TAUS
29 seed_a,
30 seed_b,
31 seed_c;
32

33 output reg signed [23:0]
34 n1, // 24 bit N(0,1)
35 n2; // 24 bit N(0,1)
36

37 output reg valid;
38

39 input
40 scan_in0, // test scan mode data input
41 scan_en, // test scan mode enable
42 test_mode; // test mode select
43

44 output
45 scan_out0; // test scan mode data output
46

47 //---------------------------------------------------------------------------//
48

49 // Note:
50 // TB: Total Bits
51 // FB: Fractional Bits
52 // RB: Redundant Bits
53 // SB: Sign Bit
54

55 // TAUSWORTHE
56 wire [31:0]
57 a,
58 b,
59 c;
60

61 // Actual Inputs
62

63 // UQ64
64 wire [63:0] u0;
65 parameter TBu0 = 64;
66

67 // UQ32
68 wire [31:0] u1;
69

70 //////////////////////////////////////////////////////////////////
71 // LN UNIT //// LN UNIT //// LN UNIT //// LN UNIT //// LN UNIT ///
72 //////////////////////////////////////////////////////////////////
73

74 // LN UNIT -- e = -2*ln(u0)
75 // Range Reduction
76 parameter TBexp_e = 7;
77 wire [6:0] u0_LZD_cnt;
78 wire [TBexp_e-1:0] exp_e;
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79

80 // UQ1.63
81 parameter FBx_e = 63;
82 wire [63:0] x_e;
83

84 // Degree 3 Function Approximation. ln(x), x is [1,2)
85 parameter k_ln = 9; // 512 Segments
86 parameter FBxl_e = FBx_e-k_ln;
87

88 wire [k_ln-1:0] xm_e;
89 wire [FBxl_e-1:0] xl_e;
90

91 // C3_LN UQ47
92 parameter FBC3e = 47;
93 parameter RBC3e = 28;
94 wire [FBC3e-RBC3e-1:0] raw_val_C3e; // Values stored in LUT
95

96 // UQ47 D4e
97 // D4e = xl_e * C3e;
98 parameter FBD4e = 47;
99 reg [k_ln-1:0] sel_D4e;

100 reg [FBxl_e-1:0] xl_e_D4e;
101 wire [2*FBxl_e-1:0] D4e_next_raw;
102 wire [FBD4e-1:0] D4e_next;
103 reg [FBD4e-1:0] D4e;
104

105 // C2_LN Q47 $$ Always Negative $$
106 parameter FBC2e = 47;
107 parameter RBC2e = 19;
108 wire [FBC2e-RBC2e-1:0] raw_val_C2e; // Values stored in LUT
109 wire signed [FBC2e:0] val_C2e;
110

111 // Q47 D3e
112 // D3e = D4e + C2e;
113 parameter FBD3e = 47;
114 reg [k_ln-1:0] sel_D3e;
115 reg [FBxl_e-1:0] xl_e_D3e;
116 wire signed [FBD3e:0] D3e_next;
117 reg signed [FBD3e:0] D3e;
118

119 // Q48 D2e
120 // D2e = D3e * xl_e;
121 parameter FBD2e = 48;
122 reg [k_ln-1:0] sel_D2e;
123 reg signed [FBxl_e:0] xl_e_D2e;
124 wire signed [2*(FBxl_e+1)-1:0] D2e_next_raw;
125 wire signed [FBD2e:0] D2e_next;
126 reg signed [FBD2e:0] D2e;
127

128 // UQ48 D1e
129 // D1e = D2e + C1e;
130 parameter FBD1e = 48;
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131 reg [k_ln-1:0] sel_D1e;
132 reg [FBxl_e-1:0] xl_e_D1e;
133 wire signed [FBD1e:0] D1e_next;
134 reg [FBD1e-1:0] D1e;
135

136 // C1_LN Q47
137 parameter FBC1e = 47;
138 parameter RBC1e = 9;
139 wire [FBC1e-RBC1e-1:0] raw_val_C1e; // Values stored in LUT
140 wire signed [FBD1e:0] val_C1e; // Prep for signed arithmetic since D2 is negative.
141

142 // UQ48 D0e
143 // D0e = xl_e * D1e;
144 parameter FBD0e = 48;
145 reg [k_ln-1:0] sel_D0e;
146 reg [FBxl_e-1:0] xl_e_D0e;
147 wire [125:0] D0e_next_raw;
148 wire [FBD0e-1:0] D0e_next;
149 reg [FBD0e-1:0] D0e;
150

151 // C0_LN UQ47
152 parameter FBC0e = 47;
153 parameter RBC0e = 0;
154 wire [FBC0e-RBC0e-1:0] raw_val_C0e; // Values stored in LUT
155

156 // UQ43 ye
157 // ye = D0e + C0e;
158 parameter FBye = 43;
159 reg [k_ln-1:0] sel_ye;
160 wire [FBD0e-1:0] ye_next_raw;
161 wire [FBye-1:0] ye_next;
162 reg [FBye-1:0] ye;
163

164 // Range Reconstruction
165 // UQ6.43 = UQ7.0 * UQ29
166 // e_p = exp_e * LN2;
167 // exp_e pipeline bc val needed for e_p_raw
168 reg [TBexp_e-1:0] exp_e_D4e;
169 reg [TBexp_e-1:0] exp_e_D3e;
170 reg [TBexp_e-1:0] exp_e_D2e;
171 reg [TBexp_e-1:0] exp_e_D1e;
172 reg [TBexp_e-1:0] exp_e_D0e;
173 reg [TBexp_e-1:0] exp_e_ye;
174 reg [TBexp_e-1:0] exp_e_e;
175 wire [54:0] e_p_raw; // TB = 49 + 6;
176 wire [48:0] e_p;
177

178 // UQ7.40 = (UQ6.43-UQ43)*(2*2^43)
179 // e = (e_p-y_e)*2;
180 wire [48:0] e_offset;
181 wire [49:0] e_next_raw;
182 wire [46:0] e_next;
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183 reg [46:0] e;
184

185 //////////////////////////////////////////////////////////
186 // SQRT UNIT //// SQRT UNIT //// SQRT UNIT //// SQRT UNIT/
187 //////////////////////////////////////////////////////////
188

189 // SQRT Unit -- f = sqrt(e) = sqrt(-2ln(u0))
190

191 // Range Reduction
192

193 // Q6.0 expf = 5-LZD(e);
194 parameter TBexp_f = 7; // 1SB 6IB
195 wire [TBexp_f-2:0] e_LZD_cnt;
196 wire signed [TBexp_f-1:0] exp_f;
197

198 // x_f_p = e >> exp_f;
199 // UQ2.45 = UQ7.40 >> exp_f;
200 parameter FBx_f_p = 45;
201 parameter TBx_f_p = 47;
202 wire [TBx_f_p-1:0] x_f_p;
203

204 // x_f = exp_f[0] ? x_f_p/2 : x_f_p;
205 // UQ2.46
206 parameter FBx_f = 46;
207 parameter TBx_f = 48;
208 wire [TBx_f-1:0] x_f;
209

210 // Degree 1 Function Approximation. sqrt(x), x is [2,4)
211 parameter k_f = 10; // 1024 Segments
212 parameter FBxl_f = FBx_f-k_f;
213 wire [k_f-1:0] xm_f;
214 wire [FBxl_f-1:0] xl_f;
215

216 // C1_SQRT UQ26
217 parameter FBC1f = 26;
218 parameter RBC1f = 10;
219 wire [FBC1f-RBC1f-1:0] val_C1f;
220 wire [FBC1f-RBC1f-2:0] raw_val_C1f_1_2; // Values stored in LUT Note: 1_2 has one

more RB↪→

221 wire [FBC1f-RBC1f-1:0] raw_val_C1f_2_4; // Values stored in LUT
222

223 // UQ25 D0f
224 // D0f = xl_f * C1f;
225 parameter FBD0f = 25;
226 reg [k_f-1:0] sel_D0f;
227 reg [FBxl_f-1:0] xl_f_D0f;
228 reg signed [TBexp_f-1:0] exp_f_D0f;
229 wire [2*FBxl_f-1:0] D0f_next_raw;
230 wire [FBD0f-1:0] D0f_next;
231 reg [FBD0f-1:0] D0f;
232

233 // C0_SQRT UQ1.25
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234 parameter FBC0f = 25;
235 parameter RBC0f = 0;
236 wire [FBC0f:0] val_C0f; // Values stored in LUT
237 wire [FBC0f:0] raw_val_C0f_1_2; // Values stored in LUT
238 wire [FBC0f:0] raw_val_C0f_2_4; // Values stored in LUT
239

240 // UQ1.23 yf
241 // yf = D0f + C0f;
242 parameter FByf = 43;
243 reg [k_f-1:0] sel_yf;
244 reg signed [TBexp_f-1:0] exp_f_yf;
245 wire [FBD0f:0] yf_next_raw;
246 wire [FByf-1:0] yf_next;
247 reg [FByf-1:0] yf;
248

249 // Range Reconstruction
250 // exp_f_p = exp_f[0] ? exp_f+1>>1 : exp_f>>1;
251 parameter TBexp_f_p = 6; // 1SB 5IB
252 reg signed [TBexp_f-1:0] exp_f_f;
253 wire signed [TBexp_f-1:0] exp_f_p_raw;
254 wire signed [TBexp_f_p-1:0] exp_f_p;
255

256 // f UQ4.20
257 // f = y_f << exp_f_p;
258 parameter FBf = 20;
259 parameter TBf = 24;
260 wire [46:0] f_next_raw;
261 wire [TBf-1:0] f_next;
262 reg [TBf-1:0] f;
263 wire signed [TBf:0] f_g;
264

265 ////////////////////////////////////////////////////////
266 // SIN/COS UNIT //// SIN/COS UNIT //// SIN/COS UNIT ////
267 ////////////////////////////////////////////////////////
268

269 // SIN/COS Unit -- g0 = sin(2*pi*u1) & g1 = cos(2*pi*u1)
270

271 // Range Reduction
272

273 // UQ2.0
274 // Q = u1[31:30]
275 wire [1:0] Q;
276

277 // xg_a/xg_b UQ30
278 parameter FBx_g = 30;
279 wire [FBx_g-1:0] xg_a;
280 wire [FBx_g-1:0] xg_b;
281

282 // Degree 2 Function Approximation. cos(x*pi/2), x is [0,1)
283 parameter k_g = 7; // 128 Segments
284 parameter FBxl_g = FBx_g-k_g;
285
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286 wire [k_g-1:0] xm_g_a;
287 wire [FBxl_g-1:0] xl_g_a;
288

289 wire [k_g-1:0] xm_g_b;
290 wire [FBxl_g-1:0] xl_g_b;
291

292 // C2_COS Q27
293 parameter FBC2g = 27;
294 parameter RBC2g = 13;
295

296 wire [FBC2g-RBC2g-1:0] raw_val_C2g_a; // Values stored in LUT
297 wire signed [FBC2g:0] val_C2g_a;
298

299 wire [FBC2g-RBC2g-1:0] raw_val_C2g_b; // Values stored in LUT
300 wire signed [FBC2g:0] val_C2g_b;
301

302 // Q27 D2g
303 // Q27 = Q23 * Q27
304 // D2g = xl_g * C2g;
305 parameter FBD2g = 27;
306

307 reg [k_g-1:0] sel_D2g_a;
308 reg signed [FBxl_g:0] xl_g_D2g_a;
309 wire signed [2*(FBC2g+1)-1:0] D2g_next_raw_a;
310 wire signed [FBD2g:0] D2g_next_a;
311 reg signed [FBD2g:0] D2g_a;
312

313 reg [k_g-1:0] sel_D2g_b;
314 reg signed [FBxl_g:0] xl_g_D2g_b;
315 wire signed [2*(FBC2g+1)-1:0] D2g_next_raw_b;
316 wire signed [FBD2g:0] D2g_next_b;
317 reg signed [FBD2g:0] D2g_b;
318

319 // C1_COS Q27
320 parameter FBC1g = 27;
321 parameter RBC1g = 6;
322

323 wire [FBC1g-RBC1g-1:0] raw_val_C1g_a; // Values stored in LUT
324 wire signed [FBC1g:0] val_C1g_a;
325

326 wire [FBC1g-RBC1g-1:0] raw_val_C1g_b; // Values stored in LUT
327 wire signed [FBC1g:0] val_C1g_b;
328

329 // D1g Q28
330 // Q28 = Q27 + Q27;
331 // D1g = D2g + C1g;
332 parameter FBD1g = 28;
333

334 reg [k_g-1:0] sel_D1g_a;
335 reg signed [FBxl_g:0] xl_g_D1g_a;
336 wire signed [FBD1g:0] D1g_next_a;
337 reg signed [FBD1g:0] D1g_a;
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338

339 reg [k_g-1:0] sel_D1g_b;
340 reg signed [FBxl_g:0] xl_g_D1g_b;
341 wire signed [FBD1g:0] D1g_next_b;
342 reg signed [FBD1g:0] D1g_b;
343

344 // Q28 D0g
345 // Q28 = Q23 * Q28
346 // D0g = xl_g * D1g;
347 parameter FBD0g = 28;
348

349 reg [k_g-1:0] sel_D0g_a;
350 reg signed [FBxl_g:0] xl_g_D0g_a;
351 wire signed [2*(FBD1g+1)-1:0] D0g_next_raw_a;
352 wire signed [FBD0g:0] D0g_next_a;
353 reg signed [FBD0g:0] D0g_a;
354

355 reg [k_g-1:0] sel_D0g_b;
356 reg signed [FBxl_g:0] xl_g_D0g_b;
357 wire signed [2*(FBD1g+1)-1:0] D0g_next_raw_b;
358 wire signed [FBD0g:0] D0g_next_b;
359 reg signed [FBD0g:0] D0g_b;
360

361 // C0_COS Q1.27
362 parameter FBC0g = 27;
363 parameter RBC0g = 0;
364

365 wire [FBC0g-RBC0g:0] raw_val_C0g_a; // Values stored in LUT
366 wire signed [FBC0g+1:0] val_C0g_a;
367

368 wire [FBC0g-RBC0g:0] raw_val_C0g_b; // Values stored in LUT
369 wire signed [FBC0g+1:0] val_C0g_b;
370

371 // yg UQ24
372 // UQ24 = Q28 + Q1.27;
373 // yg = D0g + C0g;
374 parameter FByg = 24;
375

376 reg [k_g-1:0] sel_yg_a;
377 wire signed [FBD0g+1:0] yg_next_raw_a;
378 wire [FByg+1:0] yg_next_raw_rtn_a;
379 wire [FByg-1:0] yg_next_a;
380 reg [FByg-1:0] yg_a;
381

382 reg [k_g-1:0] sel_yg_b;
383 wire signed [FBD0g+1:0] yg_next_raw_b;
384 wire [FByg+1:0] yg_next_raw_rtn_b;
385 wire [FByg-1:0] yg_next_b;
386 reg [FByg-1:0] yg_b;
387

388 // Range Reconstruction
389 // switch(Q)
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390 // case 0: g0 = y_g_b; g1 = y_g_a;
391 // case 1: g0 = y_g_a; g1 = -y_g_b;
392 // case 2: g0 = -y_g_b; g1 -y_g_a;
393 // case 3: g0 = -y_g_a; g1 = y_g_b;
394

395 // need to pipeline Q val
396 reg [1:0] Q_D2g;
397 reg [1:0] Q_D1g;
398 reg [1:0] Q_D0g;
399 reg [1:0] Q_yg;
400 reg [1:0] Q_g;
401

402 // g Q24
403 parameter FBg = 24;
404 wire signed [FBg:0] g0_next;
405 wire signed [FBg:0] g1_next;
406 reg signed [FBg:0] g0;
407 reg signed [FBg:0] g1;
408

409 // Noise Creation
410

411 // Pipeline g0,g1
412 reg signed [FBg:0] g0_pipe0;
413 reg signed [FBg:0] g1_pipe0;
414 reg signed [FBg:0] g0_pipe1;
415 reg signed [FBg:0] g1_pipe1;
416 reg signed [FBg:0] g0_pipe2;
417 reg signed [FBg:0] g1_pipe2;
418 reg signed [FBg:0] g0_pipe3;
419 reg signed [FBg:0] g1_pipe3;
420 reg signed [FBg:0] g0_pipe4;
421 reg signed [FBg:0] g1_pipe4;
422 reg signed [FBg:0] g0_f;
423 reg signed [FBg:0] g1_f;
424

425 wire signed [57:0] f_g_extended;
426 wire signed [57:0] g0_f_extended;
427 wire signed [57:0] g1_f_extended;
428

429 wire signed [57:0] n1_next_raw;
430 wire signed [57:0] n2_next_raw;
431 wire signed [23:0] n1_next;
432 wire signed [23:0] n2_next;
433

434 // valid bit pipeline
435 reg valid_pipe;
436 reg valid_pipe0;
437 reg valid_pipe1;
438 reg valid_pipe2;
439 reg valid_pipe3;
440 reg valid_pipe4;
441 reg valid_pipe5;
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442 reg valid_pipe6;
443 reg valid_pipe7;
444 reg valid_pipe8;
445 reg valid_pipe9;
446 reg valid_pipe_last;
447

448 //---------------------------------------------------------------------------//
449

450 TAUS TAUS_a (
451 .reset(reset),
452 .clk(clk),
453 .seed(seed_a),
454 .u0(a),
455 .scan_in0(scan_in0),
456 .scan_en(scan_en),
457 .test_mode(test_mode),
458 .scan_out0(scan_out0)
459 );
460

461 TAUS TAUS_b (
462 .reset(reset),
463 .clk(clk),
464 .seed(seed_b),
465 .u0(b),
466 .scan_in0(scan_in0),
467 .scan_en(scan_en),
468 .test_mode(test_mode),
469 .scan_out0(scan_out0)
470 );
471 TAUS TAUS_c (
472 .reset(reset),
473 .clk(clk),
474 .seed(seed_c),
475 .u0(c),
476 .scan_in0(scan_in0),
477 .scan_en(scan_en),
478 .test_mode(test_mode),
479 .scan_out0(scan_out0)
480 );
481 LZD_u0 LZD_LN (
482 .reset(reset),
483 .clk(clk),
484 .val(u0),
485 .LZ_count(u0_LZD_cnt),
486 .scan_in0(scan_in0),
487 .scan_en(scan_en),
488 .test_mode(test_mode),
489 .scan_out0(scan_out0)
490 );
491 C3_LN C3_LN (
492 .reset(reset),
493 .clk(clk),
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494 .sel(sel_D4e),
495 .val(raw_val_C3e),
496 .scan_in0(scan_in0),
497 .scan_en(scan_en),
498 .test_mode(test_mode),
499 .scan_out0(scan_out0)
500 );
501 C2_LN C2_LN (
502 .reset(reset),
503 .clk(clk),
504 .sel(sel_D3e),
505 .val(raw_val_C2e),
506 .scan_in0(scan_in0),
507 .scan_en(scan_en),
508 .test_mode(test_mode),
509 .scan_out0(scan_out0)
510 );
511 C1_LN C1_LN (
512 .reset(reset),
513 .clk(clk),
514 .sel(sel_D1e),
515 .val(raw_val_C1e),
516 .scan_in0(scan_in0),
517 .scan_en(scan_en),
518 .test_mode(test_mode),
519 .scan_out0(scan_out0)
520 );
521 C0_LN C0_LN (
522 .reset(reset),
523 .clk(clk),
524 .sel(sel_ye),
525 .val(raw_val_C0e),
526 .scan_in0(scan_in0),
527 .scan_en(scan_en),
528 .test_mode(test_mode),
529 .scan_out0(scan_out0)
530 );
531 LZD_e LZD_SQRT (
532 .reset(reset),
533 .clk(clk),
534 .val(e),
535 .LZ_count(e_LZD_cnt),
536 .scan_in0(scan_in0),
537 .scan_en(scan_en),
538 .test_mode(test_mode),
539 .scan_out0(scan_out0)
540 );
541 C1_SQRT_1_2 C1_SQRT_1_2 (
542 .reset(reset),
543 .clk(clk),
544 .sel(sel_D0f),
545 .val(raw_val_C1f_1_2),
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546 .scan_in0(scan_in0),
547 .scan_en(scan_en),
548 .test_mode(test_mode),
549 .scan_out0(scan_out0)
550 );
551 C1_SQRT_2_4 C1_SQRT_2_4 (
552 .reset(reset),
553 .clk(clk),
554 .sel(sel_D0f),
555 .val(raw_val_C1f_2_4),
556 .scan_in0(scan_in0),
557 .scan_en(scan_en),
558 .test_mode(test_mode),
559 .scan_out0(scan_out0)
560 );
561 C0_SQRT_1_2 C0_SQRT_1_2 (
562 .reset(reset),
563 .clk(clk),
564 .sel(sel_yf),
565 .val(raw_val_C0f_1_2),
566 .scan_in0(scan_in0),
567 .scan_en(scan_en),
568 .test_mode(test_mode),
569 .scan_out0(scan_out0)
570 );
571 C0_SQRT_2_4 C0_SQRT_2_4 (
572 .reset(reset),
573 .clk(clk),
574 .sel(sel_yf),
575 .val(raw_val_C0f_2_4),
576 .scan_in0(scan_in0),
577 .scan_en(scan_en),
578 .test_mode(test_mode),
579 .scan_out0(scan_out0)
580 );
581 C2_COS C2_COS_a (
582 .reset(reset),
583 .clk(clk),
584 .sel(sel_D2g_a),
585 .val(raw_val_C2g_a),
586 .scan_in0(scan_in0),
587 .scan_en(scan_en),
588 .test_mode(test_mode),
589 .scan_out0(scan_out0)
590 );
591 C2_COS C2_COS_b (
592 .reset(reset),
593 .clk(clk),
594 .sel(sel_D2g_b),
595 .val(raw_val_C2g_b),
596 .scan_in0(scan_in0),
597 .scan_en(scan_en),
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598 .test_mode(test_mode),
599 .scan_out0(scan_out0)
600 );
601 C1_COS C1_COS_a (
602 .reset(reset),
603 .clk(clk),
604 .sel(sel_D1g_a),
605 .val(raw_val_C1g_a),
606 .scan_in0(scan_in0),
607 .scan_en(scan_en),
608 .test_mode(test_mode),
609 .scan_out0(scan_out0)
610 );
611 C1_COS C1_COS_b (
612 .reset(reset),
613 .clk(clk),
614 .sel(sel_D1g_b),
615 .val(raw_val_C1g_b),
616 .scan_in0(scan_in0),
617 .scan_en(scan_en),
618 .test_mode(test_mode),
619 .scan_out0(scan_out0)
620 );
621 C0_COS C0_COS_a (
622 .reset(reset),
623 .clk(clk),
624 .sel(sel_yg_a),
625 .val(raw_val_C0g_a),
626 .scan_in0(scan_in0),
627 .scan_en(scan_en),
628 .test_mode(test_mode),
629 .scan_out0(scan_out0)
630 );
631 C0_COS C0_COS_b (
632 .reset(reset),
633 .clk(clk),
634 .sel(sel_yg_b),
635 .val(raw_val_C0g_b),
636 .scan_in0(scan_in0),
637 .scan_en(scan_en),
638 .test_mode(test_mode),
639 .scan_out0(scan_out0)
640 );
641 // Actual Inputs
642 assign u0 = {a,b};
643 assign u1 = c;
644

645 //////////////////////////////////////////////////////////////////
646 // LN UNIT //// LN UNIT //// LN UNIT //// LN UNIT //// LN UNIT ///
647 //////////////////////////////////////////////////////////////////
648

649 // LN Range Reduction
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650 assign exp_e = u0_LZD_cnt + 1;
651 assign x_e = u0 << (exp_e-1);
652

653 // LN Degree Three Approximation
654 assign xm_e = x_e[FBx_e-1:FBx_e-k_ln];
655 assign xl_e = x_e[FBx_e-k_ln-1:0];//
656

657 // D4e = xl_e * C3e;
658 // UQ47 = UQFBx_l_e * UQ47;
659 assign D4e_next_raw = xl_e_D4e * {raw_val_C3e,{(FBxl_e - FBC3e){1'b0}}};
660 assign D4e_next = D4e_next_raw[2*FBxl_e-1:2*FBxl_e-FBD4e] +

D4e_next_raw[2*FBxl_e-FBD4e-1]; // w/ Round to nearest↪→

661

662 // D3e = D4e + C2e;
663 // Q47 = UQ47 + Q47;
664 assign val_C2e = {{(RBC2e+1){1'b1}},raw_val_C2e}; // Executes sign extension.

C2 stored in 2s comp w.o SB↪→

665 assign D3e_next = D4e + val_C2e;
666

667 // D2e = xl_e * D3e;
668 // Q48 = QFBxl_e * Q47
669 assign D2e_next_raw = {{55{1'b0}},xl_e_D2e} * {{55{D3e[47]}},D3e,{(FBxl_e -

FBD3e){1'b0}}};↪→

670 assign D2e_next =
{D2e_next_raw[2*(FBxl_e+1)-1],D2e_next_raw[2*FBxl_e-1:2*FBxl_e-FBD2e]} +
D2e_next_raw[2*FBxl_e-FBD2e-1]; // w/ Round to nearest plus SB stuff

↪→

↪→

671

672 // D1e = D2e + C1e;
673 // Q48 = Q48 + Q47;
674 assign val_C1e = {{1'b0},raw_val_C1e,1'b0};
675 assign D1e_next = D2e + val_C1e;
676

677 // D0e = xl_e * D1e;
678 // UQ48 = UQFBx_e * UQ48;
679 assign D0e_next_raw = {xl_e_D0e,{k_ln{1'b0}}} * {D1e,{(FBx_e - FBD1e){1'b0}}};
680 assign D0e_next = D0e_next_raw[2*FBx_e-1:2*FBx_e-FBD0e] +

D0e_next_raw[2*FBx_e-FBD0e-1]; // w/ Round to nearest↪→

681

682 // ye = D0e + C0e;
683 // UQ43 = UQ48 + UQ47;
684 assign ye_next_raw = D0e + {raw_val_C0e,1'b0};
685 assign ye_next = ye_next_raw[47:5] + ye_next_raw[4]; //[47:47-43+1] w/ Round to

nearest↪→

686

687 // Range Reconstruction
688 // ln2 UQ49
689 `define LN2 49'h162E42FEFA39F // 390207173010335 -- 49 FB
690 // e_p = exp_e * LN2;
691 // e_p UQ6.43 UQ7.0 * UQ49
692 assign e_p_raw = exp_e_e * `LN2; // Q6.49 TODO: 7.49?
693 assign e_p = e_p_raw[54:6] + e_p_raw[5]; // 49FB -> 43FB Q6.43 w/

Round to nearest↪→
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694 // e = (e_p-ye)*2;
695 // e UQ7.40 UQ6.43 - UQ43
696 assign e_offset = (e_p-ye); // Q6.43
697 assign e_next_raw = {e_offset,1'b0}; // Q7.43
698 assign e_next = e_next_raw[49:3] + e_next_raw[2]; // Q7.40 w/ Round to

nearest LP TODO: can optimize slightly (skip mid steps)↪→

699

700 //////////////////////////////////////////////////////////
701 // SQRT UNIT //// SQRT UNIT //// SQRT UNIT //// SQRT UNIT/
702 //////////////////////////////////////////////////////////
703

704 // Range Reduction
705 // expf = 5-LZD(e);
706 assign exp_f = 5 - e_LZD_cnt;
707

708 // x_f_p = e >> exp_f;
709 // UQ2.45 = UQ7.40 >> exp_f;
710 assign x_f_p = e << e_LZD_cnt;
711

712 // x_f = exp_f[0] ? x_f_p/2 : x_f_p;
713 // UQ2.46
714 assign x_f = exp_f[0] ? x_f_p : {x_f_p,1'b0}; // opposite nature due to

addition of one FB vs x_f_p↪→

715

716 // SQRT Degree One Approximation
717 assign xm_f = exp_f[0] ? x_f[FBx_f-1:FBx_f-k_f] : x_f[FBx_f:FBx_f-k_f+1];
718 assign xl_f = exp_f[0] ? x_f[FBx_f-k_f-1:0] : x_f[FBx_f-k_f:1];
719

720 // D0f = xl_f * C1f;
721 // UQ25 = UQFBxl_f * UQ26;
722 assign val_C1f = exp_f_D0f[0] ? {1'b0,raw_val_C1f_1_2}: raw_val_C1f_2_4;
723 assign D0f_next_raw = xl_f_D0f * {val_C1f,{(FBxl_f - FBC1f){1'b0}}};
724 assign D0f_next = D0f_next_raw[2*FBxl_f-1:2*FBxl_f-FBD0f] +

D0f_next_raw[2*FBxl_f-FBD0f-1]; // w/ Round to nearest↪→

725

726 // yf = D0f + C0f;
727 // UQ1.23 = UQ25 + UQ1.25;
728 assign val_C0f = exp_f_yf[0] ? raw_val_C0f_1_2 : raw_val_C0f_2_4;
729 assign yf_next_raw = D0f + val_C0f;
730 assign yf_next = yf_next_raw[25:2] + yf_next_raw[1]; // w/ Round to nearest
731

732 // Range Reconstruction
733 // exp_f_p = exp_f[0] ? exp_f+1>>1 : exp_f>>1;
734 // Q5.0 from Q6.0
735 assign exp_f_p_raw = exp_f_f[0] ? exp_f_f + 1 : exp_f_f;
736 assign exp_f_p = exp_f_p_raw[6:1];
737

738 // f UQ4.20
739 // f = y_f << exp_f_p;
740 assign f_next_raw = yf << (20 + exp_f_p);
741 assign f_next = f_next_raw[46:23] + f_next_raw[22];
742
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743 ////////////////////////////////////////////////////////
744 // SIN/COS UNIT //// SIN/COS UNIT //// SIN/COS UNIT ////
745 ////////////////////////////////////////////////////////
746

747 // Range Reduction
748 // UQ2.0
749 // Q = u1[31:30]
750 assign Q = u1[31:30];
751

752 // xg UQ30
753 assign xg_a = u1[FBx_g-1:0];
754 assign xg_b = ~xg_a;
755

756 // Degree Two Function Approximation
757 assign xm_g_a = xg_a[FBx_g-1:FBx_g-k_g];
758 assign xl_g_a = xg_a[FBx_g-k_g-1:0];
759

760 assign xm_g_b = xg_b[FBx_g-1:FBx_g-k_g];
761 assign xl_g_b = xg_b[FBx_g-k_g-1:0];
762

763 // D2g Q27
764 // Q27 = Q23 * Q27
765 // D2g = xl_g * C2g;
766 assign val_C2g_a = {{(RBC2g+1){1'b1}},raw_val_C2g_a};
767 assign val_C2g_b = {{(RBC2g+1){1'b1}},raw_val_C2g_b};
768

769 assign D2g_next_raw_a = {{28{1'b0}},xl_g_D2g_a,4'b0000} * {{28{1'b1}},val_C2g_a};
// 2s complement multiplication requires full end range sign extension↪→

770 assign D2g_next_raw_b = {{28{1'b0}},xl_g_D2g_b,4'b0000} * {{28{1'b1}},val_C2g_b};
// 2s complement multiplication requires full end range sign extension↪→

771

772 assign D2g_next_a = D2g_next_raw_a[2*FBC2g:2*FBC2g-27] +
D2g_next_raw_a[2*FBC2g-28]; // w/ round to nearest↪→

773 assign D2g_next_b = D2g_next_raw_b[2*FBC2g:2*FBC2g-27] +
D2g_next_raw_b[2*FBC2g-28]; // w/ round to nearest↪→

774

775 // D1g Q28
776 // Q28 = Q27 + Q27;
777 // D1g = D2g + C1g;
778 // All negative except 0 index
779 assign val_C1g_a = sel_D1g_a == 7'b0000000 ? 28'h0000000 :

{{(RBC1g+1){1'b1}},raw_val_C1g_a};↪→

780 assign val_C1g_b = sel_D1g_b == 7'b0000000 ? 28'h0000000 :
{{(RBC1g+1){1'b1}},raw_val_C1g_b};↪→

781

782 assign D1g_next_a = {(D2g_a + val_C1g_a),1'b0};
783 assign D1g_next_b = {(D2g_b + val_C1g_b),1'b0};
784

785 // D0g Q28
786 // Q28 = Q23 * Q28
787 // D0g = xl_g * D1g;
788
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789 assign D0g_next_raw_a = {{29{1'b0}},xl_g_D0g_a,5'b00000} *
{{29{D1g_a[FBD1g]}},D1g_a}; // 2s complement multiplication requires
full end range sign extension

↪→

↪→

790 assign D0g_next_raw_b = {{29{1'b0}},xl_g_D0g_b,5'b00000} *
{{29{D1g_b[FBD1g]}},D1g_b}; // 2s complement multiplication requires
full end range sign extension

↪→

↪→

791

792 assign D0g_next_a = D0g_next_raw_a[2*FBD1g:2*FBD1g-28] +
D0g_next_raw_a[2*FBD1g-29]; // w/ round to nearest↪→

793 assign D0g_next_b = D0g_next_raw_b[2*FBD1g:2*FBD1g-28] +
D0g_next_raw_b[2*FBD1g-29]; // w/ round to nearest↪→

794

795 // yg UQ24
796 // UQ24 = Q28 + Q1.27;
797 // yg = D0g + C0g;
798

799 assign val_C0g_a = {{(RBC0g+1){1'b0}},raw_val_C0g_a};
800 assign val_C0g_b = {{(RBC0g+1){1'b0}},raw_val_C0g_b};
801

802 // add sign extend to D0g
803 assign yg_next_raw_a = {D0g_a[FBD0g],D0g_a} + {val_C0g_a,1'b0};
804 assign yg_next_raw_b = {D0g_b[FBD0g],D0g_b} + {val_C0g_b,1'b0};
805

806 assign yg_next_raw_rtn_a = yg_next_raw_a[27:4] + yg_next_raw_a[3];
807 assign yg_next_raw_rtn_b = yg_next_raw_b[27:4] + yg_next_raw_b[3];
808

809 // [28]=1 shouldn't happen, but very rarely it does due to the approx nature. It
is 1 in 2 cases, the addition result is greater than 1 (can't store) or the
addition is negative (can't store)

↪→

↪→

810 // in case one (greater than 1), we force the highest representable value,
1-2^-FB, and in case two we force the lowest↪→

811 // representable value, 0. Also, there is the case when round to nearest extends
above representable range (1-2^-FB) and therefore↪→

812 // forced to grabbing original result before rtn.
813 assign yg_next_a = yg_next_raw_a[28] ? (yg_next_raw_a[29] ? 24'h000000 :

24'hFFFFFF) : yg_next_raw_rtn_a[24] ? yg_next_raw_a[27:4] :
yg_next_raw_rtn_a[23:0]; // w/ round to nearest

↪→

↪→

814 assign yg_next_b = yg_next_raw_b[28] ? (yg_next_raw_b[29] ? 24'h000000 :
24'hFFFFFF) : yg_next_raw_rtn_b[24] ? yg_next_raw_b[27:4] :
yg_next_raw_rtn_b[23:0]; // w/ round to nearest

↪→

↪→

815

816 // Range Reconstruction
817 // switch(Q)
818 // case 0: g0 = yg_b; g1 = yg_a;
819 // case 1: g0 = yg_a; g1 = -yg_b;
820 // case 2: g0 = -yg_b; g1 -yg_a;
821 // case 3: g0 = -yg_a; g1 = yg_b;
822 // 0 1

2 3↪→

823 assign g0_next = ~Q_g[1] ? (~Q_g[0] ? {1'b0,yg_b} : {1'b0,yg_a}) : (~Q_g[0]
? ~{1'b0,yg_b} + 1 : ~{1'b0,yg_a} + 1);↪→

824 assign g1_next = ~Q_g[1] ? (~Q_g[0] ? {1'b0,yg_a} : ~{1'b0,yg_b} + 1) : (~Q_g[0]
? ~{1'b0,yg_a} + 1 : {1'b0,yg_b});↪→
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825

826 // Noise Creation
827 // n1 = f_g * g0;
828 // n2 = f_g * g1;
829 // Q4.19 = Q4.20 * Q24;
830 assign f_g = {1'b0,f};
831

832 assign f_g_extended = {{29{1'b0}},f_g,4'b0000};
833 assign g0_f_extended = {{33{g0_f[24]}},g0_f};
834 assign g1_f_extended = {{33{g1_f[24]}},g1_f};
835

836 assign n1_next_raw = f_g_extended * g0_f_extended;
837 assign n2_next_raw = f_g_extended * g1_f_extended;
838

839 assign n1_next = {n1_next_raw[57],n1_next_raw[51:29]} + n1_next_raw[28];
840 assign n2_next = {n2_next_raw[57],n2_next_raw[51:29]} + n2_next_raw[28];
841

842 always @(posedge reset or posedge clk)
843 begin
844 if (reset)
845 begin
846 // D4e
847 sel_D4e <= 0;
848 xl_e_D4e <= 0;
849 D4e <= 0;
850 exp_e_D4e <= 0;
851

852 // D3e
853 sel_D3e <= 0;
854 xl_e_D3e <= 0;
855 D3e <= 0;
856 exp_e_D3e <= 0;
857

858 // D2e
859 sel_D2e <= 0;
860 xl_e_D2e <= 0;
861 D2e <= 0;
862 exp_e_D2e <= 0;
863

864 // D1e
865 sel_D1e <= 0;
866 xl_e_D1e <= 0;
867 D1e <= 0;
868 exp_e_D1e <= 0;
869

870 // D0e
871 sel_D0e <= 0;
872 xl_e_D0e <= 0;
873 D0e <= 0;
874 exp_e_D0e <= 0;
875

876 // ye
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877 sel_ye <= 0;
878 ye <= 0;
879 exp_e_ye <= 0;
880

881 // e
882 e <= 0;
883 exp_e_e <= 0;
884

885 //D0f
886 sel_D0f <= 0;
887 xl_f_D0f <= 0;
888 exp_f_D0f <= 0;
889 D0f <= 0;
890

891 // yf
892 sel_yf <= 0;
893 exp_f_yf <= 0;
894 yf <= 0;
895

896 // f
897 exp_f_f <= 0;
898 f <= 0;
899

900 // D2g_a
901 sel_D2g_a <= 0;
902 xl_g_D2g_a <= 0;
903 D2g_a <= 0;
904

905 // D2g_b
906 sel_D2g_b <= 0;
907 xl_g_D2g_b <= 0;
908 D2g_b <= 0;
909

910 // D1g_a
911 sel_D1g_a <= 0;
912 xl_g_D1g_a <= 0;
913 D1g_a <= 0;
914

915 // D1g_b
916 sel_D1g_b <= 0;
917 xl_g_D1g_b <= 0;
918 D1g_b <= 0;
919

920 // D0g_a
921 sel_D0g_a <= 0;
922 xl_g_D0g_a <= 0;
923 D0g_a <= 0;
924

925 // D0g_b
926 sel_D0g_b <= 0;
927 xl_g_D0g_b <= 0;
928 D0g_b <= 0;
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929

930 // yg_a
931 sel_yg_a <= 0;
932 yg_a <= 0;
933

934 // yg_b
935 sel_yg_b <= 0;
936 yg_b <= 0;
937

938 // Q
939 Q_D2g <= 0;
940 Q_D1g <= 0;
941 Q_D0g <= 0;
942 Q_yg <= 0;
943 Q_g <= 0;
944

945 // g
946 g0 <= 0;
947 g1 <= 0;
948 g0_pipe0 <= 0;
949 g1_pipe0 <= 0;
950 g0_pipe1 <= 0;
951 g1_pipe1 <= 0;
952 g0_pipe2 <= 0;
953 g1_pipe2 <= 0;
954 g0_pipe3 <= 0;
955 g1_pipe3 <= 0;
956 g0_pipe4 <= 0;
957 g1_pipe4 <= 0;
958 g0_f <= 0;
959 g1_f <= 0;
960

961 // Valid Bit
962 valid_pipe <= 0;
963 valid_pipe0 <= 0;
964 valid_pipe1 <= 0;
965 valid_pipe2 <= 0;
966 valid_pipe3 <= 0;
967 valid_pipe4 <= 0;
968 valid_pipe5 <= 0;
969 valid_pipe6 <= 0;
970 valid_pipe7 <= 0;
971 valid_pipe8 <= 0;
972 valid_pipe9 <= 0;
973 valid_pipe_last <= 0;
974 valid <= 0;
975

976 // LGBMGNG
977 n1 <= 0;
978 n2 <= 0;
979 end
980 else
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981 begin
982 // D4e
983 sel_D4e <= xm_e;
984 xl_e_D4e <= xl_e;
985 D4e <= D4e_next;
986 exp_e_D4e <= exp_e;
987

988 // D3e
989 sel_D3e <= sel_D4e;
990 xl_e_D3e <= xl_e_D4e;
991 D3e <= D3e_next;
992 exp_e_D3e <= exp_e_D4e;
993

994 // D2e
995 sel_D2e <= sel_D3e;
996 xl_e_D2e <= {1'b0,xl_e_D3e}; // unsigned to signed conversion for

the signed arithmetic↪→

997 D2e <= D2e_next;
998 exp_e_D2e <= exp_e_D3e;
999

1000 // D1e
1001 sel_D1e <= sel_D2e;
1002 xl_e_D1e[FBxl_e-1:0] <= xl_e_D2e; // signed to unsigned conversion

(xl_e_D2e Always pos)↪→

1003 D1e <= D1e_next[FBD1e-1:0]; // D1e_next was signed for
arithmetic. but D1e always pos. ?todo;↪→

1004 exp_e_D1e <= exp_e_D2e;
1005

1006 // D0e
1007 sel_D0e <= sel_D1e;
1008 xl_e_D0e <= xl_e_D1e;
1009 D0e <= D0e_next;
1010 exp_e_D0e <= exp_e_D1e;
1011

1012 // ye
1013 sel_ye <= sel_D0e;
1014 ye <= ye_next;
1015 exp_e_ye <= exp_e_D0e;
1016

1017 // e
1018 e <= e_next;
1019 exp_e_e <= exp_e_ye;
1020

1021 // D0f
1022 sel_D0f <= xm_f;
1023 xl_f_D0f <= xl_f;
1024 exp_f_D0f <= exp_f;
1025 D0f <= D0f_next;
1026

1027 // yf
1028 sel_yf <= sel_D0f;
1029 exp_f_yf <= exp_f_D0f;
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1030 yf <= yf_next;
1031

1032 // f
1033 exp_f_f <= exp_f_yf;
1034 f <= f_next;
1035

1036 // D2g_a
1037 sel_D2g_a <= xm_g_a;
1038 xl_g_D2g_a <= {1'b0,xl_g_a}; // unsigned to signed (add 0 SB)
1039 D2g_a <= D2g_next_a;
1040

1041 // D2g_b
1042 sel_D2g_b <= xm_g_b;
1043 xl_g_D2g_b <= {1'b0,xl_g_b}; // unsigned to signed (add 0 SB)
1044 D2g_b <= D2g_next_b;
1045

1046 // D1g_a
1047 sel_D1g_a <= sel_D2g_a;
1048 xl_g_D1g_a <= xl_g_D2g_a;
1049 D1g_a <= D1g_next_a;
1050

1051 // D1g_b
1052 sel_D1g_b <= sel_D2g_b;
1053 xl_g_D1g_b <= xl_g_D2g_b;
1054 D1g_b <= D1g_next_b;
1055

1056 // D0g_a
1057 sel_D0g_a <= sel_D1g_a;
1058 xl_g_D0g_a <= xl_g_D1g_a;
1059 D0g_a <= D0g_next_a;
1060

1061 // D0g_b
1062 sel_D0g_b <= sel_D1g_b;
1063 xl_g_D0g_b <= xl_g_D1g_b;
1064 D0g_b <= D0g_next_b;
1065

1066 // yg_a
1067 sel_yg_a <= sel_D0g_a;
1068 yg_a <= yg_next_a;
1069

1070 // yg_b
1071 sel_yg_b <= sel_D0g_b;
1072 yg_b <= yg_next_b;
1073

1074 // Q
1075 Q_D2g <= Q;
1076 Q_D1g <= Q_D2g;
1077 Q_D0g <= Q_D1g;
1078 Q_yg <= Q_D0g;
1079 Q_g <= Q_yg;
1080

1081 // g
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1082 g0 <= g0_next;
1083 g1 <= g1_next;
1084 g0_pipe0 <= g0;
1085 g1_pipe0 <= g1;
1086 g0_pipe1 <= g0_pipe0;
1087 g1_pipe1 <= g1_pipe0;
1088 g0_pipe2 <= g0_pipe1;
1089 g1_pipe2 <= g1_pipe1;
1090 g0_pipe3 <= g0_pipe2;
1091 g1_pipe3 <= g1_pipe2;
1092 g0_pipe4 <= g0_pipe3;
1093 g1_pipe4 <= g1_pipe3;
1094 g0_f <= g0_pipe4;
1095 g1_f <= g1_pipe4;
1096

1097 // Valid Bit
1098 valid_pipe <= 1'b1;
1099 valid_pipe0 <= valid_pipe;
1100 valid_pipe1 <= valid_pipe0;
1101 valid_pipe2 <= valid_pipe1;
1102 valid_pipe3 <= valid_pipe2;
1103 valid_pipe4 <= valid_pipe3;
1104 valid_pipe5 <= valid_pipe4;
1105 valid_pipe6 <= valid_pipe5;
1106 valid_pipe7 <= valid_pipe6;
1107 valid_pipe8 <= valid_pipe7;
1108 valid_pipe9 <= valid_pipe8;
1109 valid_pipe_last <= valid_pipe9;
1110 valid <= valid_pipe_last;
1111

1112 // LGBMGNG
1113 n1 <= n1_next;
1114 n2 <= n2_next;
1115 end
1116 end
1117

1118 endmodule // LGBMGNG

Listing I.1: LGBMGNG, 24-bit Box-Muller Implementation Source Code

I.2 32-bit Tausworthe URNG

1 // Author: Lincoln Glauser
2 // August 2017
3 module TAUS (
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4 reset,
5 clk,
6 seed,
7 u0,
8 scan_in0,
9 scan_en,

10 test_mode,
11 scan_out0
12 );
13

14 input
15 reset, // system reset
16 clk; // system clock
17

18 input [31:0]
19 seed; // seed
20

21 output [31:0]
22 u0; // 32 bit U(0,1)
23

24 input
25 scan_in0, // test scan mode data input
26 scan_en, // test scan mode enable
27 test_mode; // test mode select
28

29 output
30 scan_out0; // test scan mode data output
31

32 reg [31:0]
33 s0,
34 s1,
35 s2;
36

37 wire [31:0]
38 b0,
39 b1,
40 b2,
41 s0_next,
42 s1_next,
43 s2_next;
44

45 //---------------------------------------------------------------------------//
46

47 assign b0 = (((s0 << 13) ^ s0) >> 19);
48 assign s0_next = (((s0 & 32'hFFFFFFFE) << 12) ^ b0);
49

50 assign b1 = (((s1 << 2) ^ s1) >> 25);
51 assign s1_next = (((s1 & 32'hFFFFFFF8) << 4) ^ b1);
52

53 assign b2 = (((s2 << 3) ^ s2) >> 11);
54 assign s2_next = (((s2 & 32'hFFFFFFF0) << 17) ^ b2);
55
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56 assign u0 = s0 ^ s1 ^ s2;
57

58 always @(posedge reset or posedge clk)
59 begin
60 if (reset)
61 begin
62 s0 <= seed;
63 s1 <= seed;
64 s2 <= seed;
65 end
66 else
67 begin
68 s0 <= s0_next;
69 s1 <= s1_next;
70 s2 <= s2_next;
71 end
72 end
73

74 endmodule // TAUS

Listing I.2: TAUS, 32-bit Tausworthe URNG

I.3 Coefficient Look up Table

1 module C2_COS (
2 input[6:0] sel,
3 output reg[13:0] val,
4

5 // DFT ports
6 input reset,
7 input clk,
8 input scan_en,
9 input scan_in0,

10 input test_mode,
11 output scan_out0
12 );
13

14 always @(sel) begin
15 case(sel)
16 0 : val[13:0] = 14'h1886;
17 1 : val[13:0] = 14'h1887;
18 2 : val[13:0] = 14'h188a;
19 3 : val[13:0] = 14'h188f;
20 4 : val[13:0] = 14'h1895;
21 5 : val[13:0] = 14'h189d;
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22 6 : val[13:0] = 14'h18a6;
23 7 : val[13:0] = 14'h18b0;
24 8 : val[13:0] = 14'h18bc;
25 9 : val[13:0] = 14'h18ca;
26 10 : val[13:0] = 14'h18d9;
27 11 : val[13:0] = 14'h18ea;
28 12 : val[13:0] = 14'h18fc;
29 13 : val[13:0] = 14'h1910;
30 14 : val[13:0] = 14'h1925;
31 15 : val[13:0] = 14'h193c;
32 16 : val[13:0] = 14'h1954;
33 17 : val[13:0] = 14'h196e;
34 18 : val[13:0] = 14'h1989;
35 19 : val[13:0] = 14'h19a6;
36 20 : val[13:0] = 14'h19c4;
37 21 : val[13:0] = 14'h19e3;
38 22 : val[13:0] = 14'h1a04;
39 23 : val[13:0] = 14'h1a27;
40 24 : val[13:0] = 14'h1a4b;
41 25 : val[13:0] = 14'h1a70;
42 26 : val[13:0] = 14'h1a97;
43 27 : val[13:0] = 14'h1ac0;
44 28 : val[13:0] = 14'h1ae9;
45 29 : val[13:0] = 14'h1b15;
46 30 : val[13:0] = 14'h1b41;
47 31 : val[13:0] = 14'h1b6f;
48 32 : val[13:0] = 14'h1b9f;
49 33 : val[13:0] = 14'h1bd0;
50 34 : val[13:0] = 14'h1c02;
51 35 : val[13:0] = 14'h1c36;
52 36 : val[13:0] = 14'h1c6b;
53 37 : val[13:0] = 14'h1ca1;
54 38 : val[13:0] = 14'h1cd9;
55 39 : val[13:0] = 14'h1d12;
56 40 : val[13:0] = 14'h1d4c;
57 41 : val[13:0] = 14'h1d88;
58 42 : val[13:0] = 14'h1dc5;
59 43 : val[13:0] = 14'h1e04;
60 44 : val[13:0] = 14'h1e43;
61 45 : val[13:0] = 14'h1e85;
62 46 : val[13:0] = 14'h1ec7;
63 47 : val[13:0] = 14'h1f0a;
64 48 : val[13:0] = 14'h1f4f;
65 49 : val[13:0] = 14'h1f96;
66 50 : val[13:0] = 14'h1fdd;
67 51 : val[13:0] = 14'h2026;
68 52 : val[13:0] = 14'h2070;
69 53 : val[13:0] = 14'h20bb;
70 54 : val[13:0] = 14'h2107;
71 55 : val[13:0] = 14'h2154;
72 56 : val[13:0] = 14'h21a3;
73 57 : val[13:0] = 14'h21f3;
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74 58 : val[13:0] = 14'h2244;
75 59 : val[13:0] = 14'h2296;
76 60 : val[13:0] = 14'h22e9;
77 61 : val[13:0] = 14'h233e;
78 62 : val[13:0] = 14'h2393;
79 63 : val[13:0] = 14'h23ea;
80 64 : val[13:0] = 14'h2442;
81 65 : val[13:0] = 14'h249a;
82 66 : val[13:0] = 14'h24f4;
83 67 : val[13:0] = 14'h254f;
84 68 : val[13:0] = 14'h25ab;
85 69 : val[13:0] = 14'h2608;
86 70 : val[13:0] = 14'h2666;
87 71 : val[13:0] = 14'h26c5;
88 72 : val[13:0] = 14'h2725;
89 73 : val[13:0] = 14'h2785;
90 74 : val[13:0] = 14'h27e7;
91 75 : val[13:0] = 14'h284a;
92 76 : val[13:0] = 14'h28ae;
93 77 : val[13:0] = 14'h2912;
94 78 : val[13:0] = 14'h2977;
95 79 : val[13:0] = 14'h29de;
96 80 : val[13:0] = 14'h2a45;
97 81 : val[13:0] = 14'h2aad;
98 82 : val[13:0] = 14'h2b16;
99 83 : val[13:0] = 14'h2b7f;

100 84 : val[13:0] = 14'h2bea;
101 85 : val[13:0] = 14'h2c55;
102 86 : val[13:0] = 14'h2cc1;
103 87 : val[13:0] = 14'h2d2d;
104 88 : val[13:0] = 14'h2d9b;
105 89 : val[13:0] = 14'h2e09;
106 90 : val[13:0] = 14'h2e78;
107 91 : val[13:0] = 14'h2ee7;
108 92 : val[13:0] = 14'h2f57;
109 93 : val[13:0] = 14'h2fc8;
110 94 : val[13:0] = 14'h3039;
111 95 : val[13:0] = 14'h30ab;
112 96 : val[13:0] = 14'h311e;
113 97 : val[13:0] = 14'h3191;
114 98 : val[13:0] = 14'h3205;
115 99 : val[13:0] = 14'h3279;
116 100 : val[13:0] = 14'h32ee;
117 101 : val[13:0] = 14'h3363;
118 102 : val[13:0] = 14'h33d9;
119 103 : val[13:0] = 14'h344f;
120 104 : val[13:0] = 14'h34c6;
121 105 : val[13:0] = 14'h353d;
122 106 : val[13:0] = 14'h35b4;
123 107 : val[13:0] = 14'h362c;
124 108 : val[13:0] = 14'h36a5;
125 109 : val[13:0] = 14'h371d;
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126 110 : val[13:0] = 14'h3796;
127 111 : val[13:0] = 14'h3810;
128 112 : val[13:0] = 14'h3889;
129 113 : val[13:0] = 14'h3903;
130 114 : val[13:0] = 14'h397d;
131 115 : val[13:0] = 14'h39f8;
132 116 : val[13:0] = 14'h3a72;
133 117 : val[13:0] = 14'h3aed;
134 118 : val[13:0] = 14'h3b68;
135 119 : val[13:0] = 14'h3be4;
136 120 : val[13:0] = 14'h3c5f;
137 121 : val[13:0] = 14'h3cdb;
138 122 : val[13:0] = 14'h3d56;
139 123 : val[13:0] = 14'h3dd2;
140 124 : val[13:0] = 14'h3e4e;
141 125 : val[13:0] = 14'h3eca;
142 126 : val[13:0] = 14'h3f46;
143 127 : val[13:0] = 14'h3fc2;
144 endcase
145 end // always @(sel) begin
146

147 endmodule // C2_COS

Listing I.3: Coefficient LUT Example-C2-COS

I.4 Leading Zero Detector

1 // 47-bit Leading Zero Detector
2 module LZD_e (
3 reset,
4 clk,
5 val,
6 LZ_count,
7 scan_in0,
8 scan_en,
9 test_mode,

10 scan_out0
11 );
12

13 input
14 reset, // system reset
15 clk; // system clock
16

17 input [46:0] val;
18
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19 output reg [5:0] LZ_count;
20

21 input
22 scan_in0, // test scan mode data input
23 scan_en, // test scan mode enable
24 test_mode; // test mode select
25

26 output
27 scan_out0; // test scan mode data output
28

29 always @(val)
30 begin
31 casez (val)
32 47'b1??????????????????????????????????????????????: LZ_count = 0;
33 47'b01?????????????????????????????????????????????: LZ_count = 1;
34 47'b001????????????????????????????????????????????: LZ_count = 2;
35 47'b0001???????????????????????????????????????????: LZ_count = 3;
36 47'b00001??????????????????????????????????????????: LZ_count = 4;
37 47'b000001?????????????????????????????????????????: LZ_count = 5;
38 47'b0000001????????????????????????????????????????: LZ_count = 6;
39 47'b00000001???????????????????????????????????????: LZ_count = 7;
40 47'b000000001??????????????????????????????????????: LZ_count = 8;
41 47'b0000000001?????????????????????????????????????: LZ_count = 9;
42 47'b00000000001????????????????????????????????????: LZ_count = 10;
43 47'b000000000001???????????????????????????????????: LZ_count = 11;
44 47'b0000000000001??????????????????????????????????: LZ_count = 12;
45 47'b00000000000001?????????????????????????????????: LZ_count = 13;
46 47'b000000000000001????????????????????????????????: LZ_count = 14;
47 47'b0000000000000001???????????????????????????????: LZ_count = 15;
48 47'b00000000000000001??????????????????????????????: LZ_count = 16;
49 47'b000000000000000001?????????????????????????????: LZ_count = 17;
50 47'b0000000000000000001????????????????????????????: LZ_count = 18;
51 47'b00000000000000000001???????????????????????????: LZ_count = 19;
52 47'b000000000000000000001??????????????????????????: LZ_count = 20;
53 47'b0000000000000000000001?????????????????????????: LZ_count = 21;
54 47'b00000000000000000000001????????????????????????: LZ_count = 22;
55 47'b000000000000000000000001???????????????????????: LZ_count = 23;
56 47'b0000000000000000000000001??????????????????????: LZ_count = 24;
57 47'b00000000000000000000000001?????????????????????: LZ_count = 25;
58 47'b000000000000000000000000001????????????????????: LZ_count = 26;
59 47'b0000000000000000000000000001???????????????????: LZ_count = 27;
60 47'b00000000000000000000000000001??????????????????: LZ_count = 28;
61 47'b000000000000000000000000000001?????????????????: LZ_count = 29;
62 47'b0000000000000000000000000000001????????????????: LZ_count = 30;
63 47'b00000000000000000000000000000001???????????????: LZ_count = 31;
64 47'b000000000000000000000000000000001??????????????: LZ_count = 32;
65 47'b0000000000000000000000000000000001?????????????: LZ_count = 33;
66 47'b00000000000000000000000000000000001????????????: LZ_count = 34;
67 47'b000000000000000000000000000000000001???????????: LZ_count = 35;
68 47'b0000000000000000000000000000000000001??????????: LZ_count = 36;
69 47'b00000000000000000000000000000000000001?????????: LZ_count = 37;
70 47'b000000000000000000000000000000000000001????????: LZ_count = 38;
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71 47'b0000000000000000000000000000000000000001???????: LZ_count = 39;
72 47'b00000000000000000000000000000000000000001??????: LZ_count = 40;
73 47'b000000000000000000000000000000000000000001?????: LZ_count = 41;
74 47'b0000000000000000000000000000000000000000001????: LZ_count = 42;
75 47'b00000000000000000000000000000000000000000001???: LZ_count = 43;
76 47'b000000000000000000000000000000000000000000001??: LZ_count = 44;
77 47'b0000000000000000000000000000000000000000000001?: LZ_count = 45;
78 47'b00000000000000000000000000000000000000000000001: LZ_count = 46;
79 default: LZ_count = 47;
80 endcase
81 end
82 endmodule // LZD_e

Listing I.4: Leading Zero Example-47-bit

I.5 LGBMGNG Test Vector Testbench

1 // Author: Lincoln Glauser
2 // August 2017
3 module test;
4

5 wire scan_out0;
6

7 reg clk, reset;
8 reg scan_in0, scan_en, test_mode;
9

10 reg [31:0]
11 seed_a,
12 seed_b,
13 seed_c;
14

15 wire [23:0]
16 n1,
17 n2;
18

19 wire valid;
20

21 integer error_cnt;
22 integer index;
23 integer count;
24 parameter pcount = 20000000; // Need to change for different TV sizes manually
25

26 reg [31:0] cfg [0:3];
27 reg [31:0] memory_N1 [0:pcount-1];
28 reg [31:0] memory_N2 [0:pcount-1];
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29 reg [24:0] error_index [1:pcount]; // 2^25 -> Max ~20 million
30 reg [24:0] error_index_index;
31

32 LGBMGNG top(
33 .reset(reset),
34 .clk(clk),
35 .seed_a (seed_a),
36 .seed_b (seed_b),
37 .seed_c (seed_c),
38 .n1 (n1),
39 .n2 (n2),
40 .valid (valid),
41 .scan_in0(scan_in0),
42 .scan_en(scan_en),
43 .test_mode(test_mode),
44 .scan_out0(scan_out0)
45 );
46

47 initial
48 begin
49 $timeformat(-9,2,"ns", 16);
50 `ifdef SDFSCAN
51 $sdf_annotate("sdf/LGBMGNG_tsmc065_scan.sdf", test.top);
52 `endif
53 clk = 1'b0;
54 reset = 1'b0;
55 scan_in0 = 1'b0;
56 scan_en = 1'b0;
57 test_mode = 1'b0;
58

59 // Uncomment option 1 for debug and option 2 for test_vectors
60 // Comment the option task call that is not being used.
61 // Option 1 is for singular a,b,c value debug
62 // For Debug set the a,b,c values as the seeds and view first sample set
63

64 seed_a = 1120679337;
65 seed_b = 3622075866;
66 seed_c = 3221225471;
67

68 // debug; // Comment for TV and uncomment for Debug
69

70 // Option 2 for Test Vector Test
71

72 test_vector; // Comment for debug and uncomment for Test Vector support
73 end
74

75 always begin
76 #1.25 clk = ~clk ; // 400MHz
77 end
78

79 task test_vector ;
80 begin
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81 $readmemh("TV_config.txt",cfg);
82 $readmemh("TV_in_N1.txt",memory_N1);
83 $readmemh("TV_in_N2.txt",memory_N2);
84

85 count = cfg[0];
86 seed_a = cfg[1];
87 seed_b = cfg[2];
88 seed_c = cfg[3];
89

90 error_cnt = 0;
91

92 $display("\nCount = %d\nseed_a = %d\nseed_b = %d\nseed_c =
%d\n",count,seed_a,seed_b,seed_c);↪→

93

94 @(negedge clk) ;
95 reset = 1'b1;
96 @(negedge clk) ;
97 reset = 1'b0;
98 @(negedge clk) ;
99

100 @(posedge valid) ;
101 index = 0;
102 @(posedge clk) ;
103 repeat (count)
104 begin
105 @(posedge clk) ;
106 if(memory_N1[index][23:0] != n1) begin
107 $display("Error: Mismatch @ index = %d\nmdl N1: %d\nN1:

%d\n",index,memory_N1[index][23:0],n1);↪→

108 error_cnt = error_cnt + 1;
109 end
110 if(memory_N2[index][23:0] != n2) begin
111 $display("Error: Mismatch @ index = %d\nmdl N2: %d\nN2:

%d\n",index,memory_N2[index][23:0],n2);↪→

112 error_cnt = error_cnt + 1;
113 end
114 index = index + 1;
115 if (index%(pcount/100) == 0)
116 begin
117 $display("Progress: %d",index);
118 end
119 end
120

121 if(error_cnt == 0) begin
122 $display("\n** \"Success\" **\n\n");
123 end
124 else begin
125 $display("\n** TEST FAILED **\n\n%d errors found\n\n",error_cnt);
126 end
127 $display("\nCount = %d\nseed_a = %d\nseed_b = %d\nseed_c =

%d\n",count,seed_a,seed_b,seed_c);↪→

128 $finish;
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129 end
130 endtask
131 task debug ;
132 begin
133 @(negedge clk) ;
134 reset = 1'b1;
135 @(negedge clk) ;
136 reset = 1'b0;
137 @(negedge clk) ;
138

139 repeat (30)
140 @(posedge clk)
141 begin
142 $display("N1: %d\nN2: %d\n",n1,n2);
143 end
144 $finish;
145 end
146 endtask
147 endmodule

Listing I.5: LGBMGNG, 24-bit Box-Muller Implementation Testbench
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