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ABSTRACT 

Kate Gleason College of Engineering 

Rochester Institute of Technology 

 

Degree: Doctor of Philosophy  Program: Microsystems Engineering 

Author: Tarun Mudgal 

Adviser: Karl D. Hirschman 

Dissertation Title: Interpretation and Regulation of Electronic Defects in IGZO TFTs 

Through Materials & Processes 

The recent rise in the market for consumer electronics has fueled extensive research in the 
field of display.  Thin-Film Transistors (TFTs) are used as active matrix switching devices 
for flat panel displays such as LCD and OLED.  The following investigation involves an 
amorphous metal-oxide semiconductor that has the potential for improved performance 
over current technology, while maintaining high manufacturability.  Indium-Gallium-Zinc-
Oxide (IGZO) is a semiconductor material which is at the onset of commercialization.  The 
low-temperature large-area deposition compatibility of IGZO makes it an attractive 
technology from a manufacturing standpoint, with an electron mobility that is 10 times 
higher than current amorphous silicon technology.  The stability of IGZO TFTs continues 
to be a challenge due to the presence of defect states and problems associated with interface 
passivation.   

The goal of this dissertation is to further the understanding of the role of defect 
states in IGZO, and investigate materials and processes needed to regulate defects to the 
level at which the associated influence on device operation is controlled.  The relationships 
between processes associated with IGZO TFT operation including IGZO sputter 
deposition, annealing conditions and back-channel passivation are established through 
process experimentation, materials analysis, electrical characterization, and modeling of 
electronic properties and transistor behavior.  Each of these components has been essential 
in formulating and testing several hypotheses on the mechanisms involved, and directing 
efforts towards achieving the goal.  Key accomplishments and quantified results are 
summarized as follows: 

• XPS analysis identified differences in oxygen vacancies in samples before and after 
oxidizing ambient annealing at 400 °C, showing a drop in relative integrated area of 
the O-1s peak from 32% to 19%, which experimentally translates to over a thousand 
fold decrease in the channel free electron concentration.   

• Transport behavior at cryogenic temperatures identified variable range hopping as the 
electron transport mechanism at temperature below 130 K, whereas at temperature 



 

iv 
 

greater than 130 K, the current vs temperature response followed an Arrhenius 
relationship consistent with extended state transport.   

• Refinement of an IGZO material model for TCAD simulation, which consists of 
oxygen vacancy donors providing an integrated space charge concentration 
ΝVo = +5×1015 cm-3, and acceptor-like band-tail states with a total integrated ionized 
concentration of ΝΤΑ = -2×1018 cm-3.  An intrinsic electron mobility was established to 
be µn = 12.7 cm2/V∙s.   

• A SPICE-compatible 2D on-state operation model for IGZO TFTs has been developed 
which includes the integration of drain-impressed deionization of band-tail states and 
results in a 2D modification of free channel charge.  The model provides an exceptional 
match to measured data and TCAD simulation, with model parameters for channel 
mobility (µch = 12 cm2/V∙s) and threshold voltage (VT = 0.14 V) having a close match 
to TCAD analogs.      

• TCAD material and device models for bottom-gate and double-gate TFT 
configurations have been developed which depict the role of defect states on device 
operation, as well as provide insight and support of a presented hypothesis on 
DIBL-like device behavior associated with back-channel interface trap inhomogeneity.  
This phenomenon has been named Trap Associated Barrier Lowering (TABL).   

• A process integration scheme has been developed that includes IGZO back-channel 
passivation with PECVD SiO2, furnace annealing in O2 at 400 °C, and a thin capping 
layer of alumina deposited via atomic layer deposition.  This process supports device 
stability when subjected to negative and positive bias stress conditions, and thermal 
stability up to 140 °C.  It also enables TFT operation at short channel lengths 
(Leff ~ 3 µm) with steep subthreshold characteristics (SS ~ 120 mV/dec).    

 

The details of these contributions in the interpretation and regulation of electronic 
defect states in IGZO TFTs is presented, along with the support of device characteristics 
that are among the best reported in the literature.  Additional material on a complementary 
technology which utilizes flash-lamp annealing of amorphous silicon will also be 
described.  Flash-Lamp Annealed Polycrystalline Silicon (FLAPS) has realized n-channel 
and p-channel TFTs with promising results, and may provide an option for future 
applications with the highest performance demands.  IGZO is rapidly emerging as the 
candidate to replace a-Si:H and address the performance needs of display products 
produced by large panel manufacturing.   
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Chapter 1. INTRODUCTION 

1.1 THIN-FILM TRANSISTORS (TFTS) 

The display industry has witnessed a dramatic displacement of Cathode Ray Tube (CRT) 

by Flat Panel Display (FPD) during the last two decades.  The growth of Active Matrix 

Liquid Crystal Display (AMLCD) for FPD has undergone a tremendous upsurge.  In LCD 

technology, pixels are connected to addressing line via Thin-Film Transistors (TFTs).  

When the TFTs are in the on-state, the pixel capacitor is charged and the established voltage 

(E-field) sets the liquid crystal position.  In the off-state the stored charge holds the 

alignment state until a new signal arrives on the pixel bit-line.  The on/off current ratio is 

important for TFTs because the on current determines the rate at which the pixels are 

charged while the off current is associated with the need to refresh a pixel.  TFTs are also 

used in Active Matrix Organic Light Emitting Device (AMOLED) display technology, 

which is current-driven rather than voltage-driven.  

The concept of thin-film transistor was first proposed and awarded a patent in 1933 

[1], yet it was not realized until 1962, when P.K. Weimer at RCA laboratory fabricated the 

first TFT using cadmium sulfide [2].The first AMLCD matrix was demonstrated in 1973 

using CdSe as active material for TFTs [3]. However, the demonstration of amorphous 

silicon TFT spurred the worldwide interest in TFT for AMLCD applications [4], [5].  
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1.2 OVERVIEW 

Hydrogenated amorphous silicon (a-Si:H) has been the preferred choice of material for 

TFTs used as the switching devices for AMLCD.  It has been the backbone of the FPD 

industry worth more than $100 B/year.  The scientific community has been directed 

towards alternative materials and processing techniques for TFTs due to several factors.  

These include an evolving market for flexible and transparent display applications; 

increased demand of large-area displays with higher resolution and refresh rate; and 

thinner, lighter, low-power display technologies for hand-held portable devices.  Due to 

low carrier (electron) mobility, a-Si:H cannot keep up with these demands.  The two most 

viable candidate materials to fulfill these requirements are polycrystalline silicon (poly-Si) 

and Amorphous Oxide Semiconductors (AOS).  

Low-Temperature Polycrystalline Silicon (LTPS) using Excimer Laser Annealing 

(ELA) has been in use for small format display devices for quite some time, offering higher 

levels of integration and device performance.  Unlike a-Si:H, LTPS is CMOS capable and 

therefore more circuitry can be put on glass which can help realizing System-on-Glass 

(SoG) concept and can also lead to thinner and lighter display screens.  Metal-oxide 

semiconductors have been extensively studied over the past decade due to their potential 

application in the FPD industry as a replacement for a-Si:H, and an alternative for LTPS.  

Indium-Gallium-Zinc-Oxide (IGZO) has become a viable technology as demonstrated by 

the recent commencement of commercial FPD backplane production [6]–[9].  In view of 

the recent advancements, it is expected that both polycrystalline Si-based and metal-oxide 

based technologies will be applied for high-performance displays in coming years.   



Chapter 1: Introduction 

 

3 
 

1.3 MOTIVATION 

Technology and customer expectations are evolving rapidly and fueling the research for 

innovative solutions to the shortcomings of existing technologies.  Current high-

performance display technology is not compatible with large-area manufacturing which 

directly adds to the cost of products.  The FPD industry is looking for semiconductor 

materials/processing techniques with performance advantages over a-Si:H while still 

maintaining high manufacturability.   

IGZO has been proven to be the most viable replacement for a-Si:H due to its easy 

inception in current fab plants for a-Si:H without any major investment in process tooling.  

Amorphous channel material has the inherent advantage of uniformity due to lack of grain 

boundaries, therefore the requirement for compensation circuits is minimum.  The process 

technology is also compatible with extra-large glass panels such as Gen 10.5 

(2.9 m × 3.4 m).  The applicability of IGZO TFT panel has been demonstrated on Gen 8.5 

glass for AMOLED display by BOE Technology [7] and LG [8]. 

IGZO has low processing temperature and is optically transparent; these properties 

can be exploited for transparent and flexible electronics.  Optical transparency also 

provides a high aperture ratio and thus a lower power backlight is sufficient which 

increases battery life for hand-held devices.  The low-off state leakage is important for 

wearable electronics as it improves battery life by enabling driving scheme of lower refresh 

rate without causing any flickering [10], [11].     Higher mobility of IGZO also renders 

high resolution and narrow bezels due to the improved charging characteristics for both 

pixels and integrated gate drivers [11].   
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Figure 1.1 reflects the motivation in a pictorial manner which is to explore the 

semiconducting materials for thin-film electronics that are compatible and manufacturable 

with large-area substrate.  ELA-LTPS offers very high quality LTPS but production cost 

is high.  An optimized solution manages the tradeoff between performance and cost.  IGZO 

offers high manufacturability with a significant device performance improvement over a-

Si:H.  The display industry is diverse enough to utilize both of these technologies for 

suitable applications.  Table 1-I summarizes the advantages and challenges for each; 

depending on the specific application either IGZO or LTPS may be preferred. 

 

 

 
Figure 1.1:  Performance vs manufacturability chart for different TFT technologies. 
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1.4 GOALS OF THIS STUDY 

Despite the demonstrated performance of Indium-Gallium-Zinc Oxide (IGZO) thin-film 

transistors (TFTs), the influence of process variables on the material properties, and the 

correlation of the material properties with the device operation is not explicit.  This is 

especially the case considering ongoing challenges with material passivation and device 

stability.  IGZO exhibits n-type conductivity due to the presence of defect states.  Defect 

states play multiple roles which establish both conductive properties of the material as well 

as anomalies in device behavior.  Thus, the interpretation of defect states is of considerable 

importance.  

Table 1-I:  TFT technology comparison. 

Property a-Si:H ELA-LTPS IGZO 

Microstructure Amorphous Polycrystalline Amorphous 

Mobility (cm2/V·s) ~1 ~100 ~10 

Device Type NMOS CMOS NMOS 

Process Complexity Low High Low 

VT Uniformity Good Poor Good 

VT Stability Poor Good To be improved 

Challenges Performance Yield, Scalability Reliability 
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The goal of this study is to characterize and interpret the electronic defect states in 

IGZO material and regulate the defects through processing and materials.  The following 

listing summarizes the key accomplishments achieved in each component/element of 

investigation. 

• The influence of annealing conditions on sputter deposited IGZO is investigated.  

Complementary measurements such as XPS/SIMS are performed to interpret the 

influence of annealing on IGZO material. 

• An electrical interpretation of dielectric/IGZO interface defects after passivation 

material processing for improved stability. 

• A TCAD material model refined for passivated devices by incorporating interface 

defect states and validated by predicting the behavior of different gate electrode 

configurations which is verified experimentally.  A hypothesis based on TCAD 

simulation is proposed for the electrical modeling of DIBL-like behavior and 

suppressed through process integration.  

• A physically-based empirical TFT model is presented to extract the device 

parameters and understand the device operation.  This model accounts for the effect 

of both gate and drain biases on the occupation state of the tail-states which results 

in a 2D modification for the free channel charge.      

• Process integration schemes such as choice of device structures, passivation 

materials and annealing conditions are investigated for improved performance and 

stability of TFTs.  Application of encapsulation layer resulted in improved device 

stability against thermal and bias stress.   
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1.5 DOCUMENT OUTLINE 

The remainder of the document is organized as follows:  

Chapter 2 reviews the developments in IGZO TFT technology.  Metal-oxide 

semiconductors have been introduced and literature survey for binary, ternary and 

quaternary oxide semiconductors is provided.  The emphasis is given to IGZO material.  

Origin of semiconducting properties of IGZO are discussed along with the influence of 

film deposition and thermal annealing conditions.  A review on back-channel 

investigations and bias-induced instability is presented.  The aim of this chapter is to 

provide necessary information regarding the recent development in IGZO technology for 

a clear understanding and appreciation of current work.     

Chapter 3 is devoted to the characterization of IGZO films for application in TFT 

technology.  The as-deposited films are analyzed for composition, uniformity, crystallinity 

and resistivity.  The influence of thermal annealing in oxidizing ambient is discussed.  The 

influence of defects states is revealed during I-V measurements.  Material characterization 

techniques are employed to investigate the change in film composition after annealing and 

is correlated with electronic properties of IGZO films.   

Chapter 4 is dedicated to the development of the bottom-gate IGZO TFTs.  This 

comprises process optimization including contact metallurgy, annealing 

temperature/ambient, gate dielectrics and passivation materials.  Contact metallurgy and 

placement of annealing step in the fabrication process are discussed for unpassivated IGZO 

TFTs to develop a baseline process.  Electrical results are provided for several passivation 

material candidates.  Bulk defect states and interface defect states are numerically 
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calculated for different gate dielectrics through varying IGZO channel thickness.  

Experiments on annealing and the use of passivation materials are conducted to determine 

the resulting influence on IGZO film properties and device operation.  This chapter 

concludes with the establishment of a controlled process for reproducible IGZO TFT 

performance which served as a platform for additional investigations.    

Chapter 5 is dedicated to the TCAD simulation of the TFT operation using 

Silvaco® Atlas™.  An IGZO material model is used for predicting the current-voltage 

characteristics.  The influence of different defect states on the TFT behavior is discussed 

which helps in understanding the underlying physics behind the device operation.  The 

material model is adjusted to match with the experimental data from Chapter 4.  Interface 

defect states are added to the IGZO material model to develop an understanding of the 

passivation process for IGZO TFTs.  The influence of defects states is revealed during I-V 

measurements.  Charge transport behavior in IGZO is studied using low-temperature 

measurements down to 10 K.     

Chapter 6 is dedicated to the TFT device modeling.  Due to the presence of defect 

states in IGZO material, the conventional extraction methods are not adequate.  The 

shortcomings of these methodologies are presented.  Silvaco ATLAS is employed to 

understand the non-idealities observed in the conventional models due to the presence of 

ban tail-states.  From this understanding, a TFT on-state model is developed to extract the 

device parameters.  This model is compatible with SPICE level 2 model used for Si-

technology.   

Chapter 7 discusses some complex behaviors observed in IGZO TFTs.  Hypothesis 

based on the extensive experimental data is presented and backed up by Atlas TCAD 
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simulation established in Chapter 5.  These behaviors are suppressed by employing 

appropriate gate electrode configuration.  Encapsulation of finished TFT is investigated for 

stability against thermal and bias stress.  Topics for further examinations are discussed 

along with the hypotheses that need verifications through further experimentations.     

Chapter 8 is devoted to Si-based TFT technology, which competes with oxide 

semiconductor technology.  PMOS and NOMS TFTs using Flash lamp annealed 

polycrystalline silicon (FLAPS) have been demonstrated which make a strong case for 

future adoption.   

Chapter 9 concludes the thesis by providing a summary of key contributions.  

Suggestions on further work based on the results obtained over the course of this study are 

provided to pursue in future.   
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Chapter 2. DEVELOPMENTS IN IGZO 
TECHNOLOGY 

Amorphous silicon has been the primary choice in TFTs for decades because it can be 

deposited on large substrates at low cost, on-state current is acceptable, and off-state 

current is good.  To improve upon its electrical properties, hydrogenated amorphous silicon 

(a-Si:H) was used in which hydrogen atoms passivate dangling bond defects [4], [5].  The 

demand of high pixel density and high refresh rate for better performance requires high 

switching speeds, which in turn depends on mobility which for a-Si:H has an upper limit 

of ~1 cm2/V∙s [12].  The flat-panel industry is currently at the point where high-

performance TFTs are required to meet product demands.  

Excimer laser annealed (ELA) low temperature polycrystalline silicon (LTPS) is 

already in production for switching matrix in flat panel displays.  It enables both n-channel 

and p-channel FETs with high carrier mobility.  Therefore, better resolution and high 

definition displays can be realized.  However, the ELA process is expensive.  Its 

applicability to the larger size glass panels (such as Gen 10) is still questionable.  

Alternative technologies for crystallizing silicon deposited on glass substrate have been 

extensively researched, however no other technique has been proven viable for 

manufacturing.      

Amorphous oxide semiconductors (AOS) offer an order of magnitude increment in 

mobility over a-Si:H while maintaining low cost.  AOS have undergone tremendous 

advancement in recent years and offer an alternative technology to directly replace a-Si:H 
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TFTs.  These wide band gap materials offer higher aspect ratio due to transparency in the 

visible wavelength region.  This combined with low temperature processing paves the way 

for realizing flexible and transparent display products.   

The focus of this work is exploring indium-gallium-zinc-oxide (IGZO) 

semiconductor as TFT channel material for high-performance display applications.  The 

remainder of this chapter provides a background on the oxide semiconductor, specifically 

IGZO technology.   

2.1 METAL-OXIDE SEMICONDUCTORS 

There has been an increasing interest in metal-oxide thin-film transistors (TFTs) for display 

and imaging array applications which require higher performance over a-Si:H TFTs.  AOS 

materials offer higher electron channel mobility.  In addition, the deposition techniques for 

metal-oxide materials are compatible with large glass panel (Gen 8 – Gen 10) 

manufacturing, unlike low temperature poly-silicon (LTPS).  The improvement in metal-

oxide semiconductor materials has resulted in transistor performance that is significantly 

higher than a Si:H, without the added process complexity required by LTPS manufacturing.   

The early reports on metal oxide semiconductors involved TFTs fabricated using 

binary systems such as ZnO, SnO2, In2O3 and Ga2O3.  Recently, multicomponent oxide 

semiconductors have been explored.  Metal oxide semiconductors exhibit n-type behavior 

with electron concentration 1016-1021 cm-3.  The origin of conductivity is attributed to the 

native defects such as oxygen vacancies (VO) and/or metal interstitials [13], [14].  These 

materials show high mobility (10 cm2/V∙s) even in the amorphous state.  This is due to their 

different electronic structure than Si-based material systems.  Unlike covalent Si, oxide 
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semiconductors are ionic in nature and charge transfer occurs from metal s-orbitals to 

oxygen p-orbitals [15], [16], as discussed in detail in Section 2.2.3.         

2.1.1 Binary Oxides 

The search for oxide semiconductor started with investigations on binary metal-oxide such 

as In2O3 Ga2O3, SnO2 and ZnO [17]–[23].  In2O3 TFTs have been reported with very high 

mobility (~100 cm2/V∙s) but with large off-state leakage due to high electron concentration 

~1018 cm-3 [17], [24].  Ga2O3 TFTs show low off-state leakage but the on-state current 

drive is poor with a reported mobility value of 0.05 cm2/V∙s [19].  SnO2 TFTs show device 

operation in depletion mode where reducing the SnO2 thickness (~10-20 nm) shifted the 

characteristics to enhancement mode, suggesting the presence of depleted top-surface [20].  

The best performing binary oxide semiconductor is ZnO and has interested 

researchers due to its excellent semiconducting properties.  Device using ZnO as the active 

channel has been reported to have high mobility and on/off ratio [11].  It is easy to deposit 

films of ZnO at low temperature using spray pyrolysis [27], sputtering [28], solution-based 

deposition [29], MOCVD [30] and ALD [26].  A comprehensive list of publications on 

ZnO transistors is provided in ref [31].  The transfer characteristics of a plasma enhanced 

atomic layer deposited (PEALD) ZnO TFT are shown in Figure 2.1 [32]. The saturation 

mobility, threshold voltage and subthreshold swing of the TFT reported were 20 cm2/V∙s, 

4.5 V and 200 mV/dec. respectively.  Though the transistor performance is acceptable for 

the application as liquid crystal switch array, the grain boundaries in polycrystalline ZnO 

films present a challenge in terms of device performance uniformity [24], [33], [34].  

Adding other metal cations ensures the amorphous structure of deposited film by 
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frustrating crystallization and it also helps in regulating/controlling the amount of defect 

states for desired electronic properties.  Material simplicity of binary systems is the main 

advantage whereas difficulty in achieving an amorphous structure with acceptable 

electronic properties has been a challenge. 

2.1.2 Ternary & Quaternary Oxides 

The investigations on transparent conductors at Tokyo Institute of Technology in 1996, led 

to the work on amorphous double oxides composed of heavy metal cations [16].  The 

working hypothesis of these materials predicted that the double oxide of cations with 

(n-1)d10s0 configuration would be potential candidate for transparent conductors.  These 

materials exhibited n-type behavior, where  oxygen vacancies (VO) and/or extra cations 

behaved as electron donors and the conduction band was formed by the s-orbital of the 

cations [35].  Due to the spherical symmetry of the s-orbitals, the mobility value in these 

materials does not reduce significantly when structure changes from crystalline to 

amorphous.  

 
Figure 2.1:  Transfer characteristics of PEALD ZnO TFT [32]. 
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Since then, many ternary and quaternary oxides have been explored for thin-film 

transistor applications [36]–[43].  Indium zinc oxide thin-film transistors have been 

investigated [44]–[46].  The fabricated TFTs showed high mobility but suppressing the 

electron concentrations was difficult.  The reported devices operated in depletion mode 

[46].  Other multicomponent oxide semiconductors have also been investigated such as 

HfInZnO [47], ZnSnO [26], [27], however InGaZnO (IGZO) showed the most promising 

Table 2-I:  Summary of different metal-oxide semiconductor investigated for thin-film 
transistor application with the deposition method. 

AOS Method Select Reference 

ZnO 

Sputtering [21] 

PLD [22] 

Solution based [23] 

SnO2 Sputtering [20] 

In2O3 
Sputtering [18] 

Evaporation [17] 

Zn-Sn-O 

Sputtering [49] 

PLD [36] 

Solution based [37] 

In-Zn-O 
Sputtering [38] 

Solution based [39] 

In-Ga-O Sputtering [40] 

In-Zn-Sn-O Sputtering [41] 

Hf-In-Zn-O Sputtering [57] 

Ga-Sn-Zn-O Sputtering [42] 

In-Ga-Zn-O 

PLD [51] 

Sputtering [53], [58], [59] 

Solution based [43], [92] 
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results with good mobility and on/off ratio [50]–[53].  Most of the research in amorphous 

oxide semiconductors have been dedicated to IGZO.     

Table 2-I shows some oxide semiconductor materials used as the TFT active 

channel material and the deposition technique used for fabrication.    

2.2 CHARACTERISTICS OF IGZO 

For better uniformity across the large glass substrate, it is advantageous to use an 

amorphous material since the electrical properties do not suffer due to the presence of 

different number of grains in each TFT channel.  IGZO can have a uniform amorphous 

state owing to the multiple metal oxides having different lattice structures which frustrates 

the crystallization [54].  IGZO offers several advantages in terms of low processing 

temperature, high mobility, choice of gate dielectric, low off-current state, excellent 

uniformity and ease of fabrication.   

The research in IGZO started by the demonstration of single-crystalline 

InGaO3(ZnO)5 TFT [55].  The film had a layered superlattice structure with alternate InO2- 

and GaO(ZnO)5+ layers stacked along <0001> axis.  A 2 nm ZnO epitaxial layer was grown 

using pulsed laser evaporation on single crystal yttria-stabilized zirconia (YSZ) substrate.  

This was then used as a template to deposit 120 nm InGa2(ZnO)5 layer at room temperature.  

An annealing was performed at 1400 °C for 30 min which resulted in the growth of single 

crystal.  TFTs were fabricated in top-gate configuration with HfO2 as gate dielectric and 

ITO as source, drain and gate electrodes.  The device characteristics are shown in Figure 

2.2.  The field effect mobility of ~ 80 cm2/V∙s and on-off current ratio of 106 was reported.  
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Though the process is not suitable for practical purposes it fueled research in the area of 

IGZO semiconductor.   

Over the last decade, a significant amount of research has been carried out in 

exploring amorphous oxide semiconductors (AOS) as a potential replacement of a-Si:H for 

the active material in TFTs [33], [34], [58], [59].  In 2004, Nomura et al presented results 

on amorphous IGZO (a-IGZO) TFT on a flexible substrate which launched research in the 

field of a-IGZO [51].  The transfer characteristics of a-IGZO TFT are shown in Figure 2.3.  

This demonstration was more practical and did not require high temperature anneal or 

crystalline semiconductor.  IGZO has gained wide popularity and is considered to be the 

most appropriate candidate for next generation display products [60]–[63].  The rest of this 

section discusses the properties of IGZO and influence of process effects on its electronic 

properties.   

 
Figure 2.2:  First demonstration of single crystal IGZO TFT [55].  
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2.2.1 IGZO Composition 

In-Ga-Zn-O is composite of In2O3, Ga2O3 and ZnO.  In2O3 shows the highest mobility out 

of all three compounds but it also has high carrier concentration due to the inherent 

inclination towards forming VO.  Chang et al reported that the VO formation energy 

increased with increasing neighboring Ga atoms and helped in suppressing VO and carrier 

concentration [64].  The mobility of IGZO increases with increasing the concentration of 

indium and decreases with gallium.  However increasing indium content and decreasing 

gallium concentration also cause the problem of stability due to presence of oxygen 

vacancies [65].  Ga2O3 is more stable due to stronger bond between Ga and O, therefore 

the addition of Ga suppresses the formation of VO and reduces electron concentration to 

~1016 cm-3 [64]–[66].  Adding ZnO with Zn2+ compared to In3+ and Ga3+ frustrates 

crystallization and ensures an amorphous film.  Several compositions of In-Ga-Zn-O have 

been investigated over the years.  The 1:1:1:4 ratio (InGaZnO4) is most widely used 

because of the improved stability, excellent electronic properties and reproducibility over 

other compositions [65].    

 
Figure 2.3:  First demostration of amorphous IGZO TFT [51].   
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2.2.2 Native Defects 

Like other AOS, IGZO is intrinsically an n-type semiconductor where the conductivity is 

attributed to oxygen vacancies (VO) [5], [28], [40]–[43].   VO can act as electron donors as 

[69], [70]: 

 𝑉𝑉𝑂𝑂 = 𝑉𝑉𝑂𝑂2+  + 2𝑒𝑒− (2.1) 

Most of the theoretical studies have been conducted on ZnO and have been 

extended to IGZO.  Some theoretical results do not agree with 𝑉𝑉𝑂𝑂2+ mechanism and suggest 

that Zn interstitials might be responsible for the n-type behavior [71].  Van de Walle et al, 

based on the first principle calculations, described that the VO are not shallow donors in 

ZnO and therefore cannot explain the intrinsic n-type behavior [72].  On contrary, Albe et 

al suggested that VO are shallow donors in In2O3 and SnO2 but the behavior is more 

complex in ZnO [68].  Du et al studied the oxygen self-diffusion by using oxygen isotope 

ZnO heterostructures and confirmed that VO in ZnO are 2+ charged instead of neutral and 

are responsible for n-type conductivity [73].  The theoretical studies often contradict each 

other in terms of VO formation energy and location of VO in band gap are therefore not 

found conclusive.  Hydrogen has also been considered as the electron donor in oxide 

semicondutors.  In 1956, Lander et al proposed hydrogen acts as a donor based on 

annealing of single crystal ZnO in hydrogen ambient which resulted in the increase in ZnO 

conductivity [74].  Since then there have been various reports on hydrogen acting as a 

shallow donor in ZnO based on theoretical and experimental studies [51], [52].  First 

principle calculations in IGZO suggest that hydrogen forms –OH bond and liberates one 

electron [77] which was verified by experimental data as well [78].  SiNx with high 
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hydrogen content has been used for self-aligned S/D doping with hydrogen which increases 

the IGZO conductivity in S/D region [79].    

Experimentally, the carrier density of many AOS materials have been measured as 

a function of oxygen partial pressure during the material deposition such as IGZO [80], 

ZnO [81], In2O3 [82], IZO [83].  The electron density was found to decrease with increase 

in oxygen partial pressure confirming that the VO were the primary source of free electrons.   

2.2.3 Electron Transport in IGZO 

The outermost electronic configuration of the metal cation in IGZO is (n-1)d10ns0 [51], 

[65]. The outermost s-orbitals have large radii as well as spherical symmetry which render 

significant overlap with adjacent orbitals possible irrespective of any disorder.  The 

amorphous state exhibits high mobility owing to the efficient transport path [54].  This type 

of overlap is absent in conventional semiconductors viz. silicon, which has highly 

directional sp3 covalent bonding (Figure 2.4) [51].  In addition to spherically symmetric 

orbitals, other structural requirements should be met for efficient charge transport such as 

short metal- metal distance and metal-oxygen-metal bonds [84].  Orita et al conducted a 

semi-empirical study for different metal oxides and concluded that Ge and As may not be 

able to offer efficient conduction paths to electrons in amorphous state [84].   

In general, amorphous semiconductors exhibit opposite Seebeck coefficient sign 

compared to Hall coefficient.  Amorphous silicon is an extreme case where the sign 

changes from negative to positive when the doping changes from p-type to n-type [85].  

The anomaly in Hall coefficient sign is attributed to the short carrier mean free length 

which invalidates the Maxwell Boltzmann transport assumption [86]. In contrast, the 
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Seebeck coefficient of AOS materials matches with the sign of Hall coefficient [87].    The 

normal sign of Hall coefficient in AOS suggests that the electron mean free path is longer 

compared to a-Si:H.  This indicates that the conduction is not through the quantum 

mechanical hopping via band tail states or variable range hopping (VRH), as in the case of 

a-Si:H.   

The electron transport in amorphous semiconductors is limited by the presence of 

tail-states.  The number of defect states in IGZO is much lower than a-Si:H.  Due to the 

spherical symmetry of s-orbital conduction band in IGZO, there is always some overlap 

between adjacent atoms which provides the path for conduction.  The current conduction 

at room temperature follows the thermal conduction where electrons have enough energy 

to go the conduction band and follow the normal Arrhenius behavior [88].   

 
Figure 2.4:  Schematic orbital drawing of electron conduction path (a) covalently 
bonded semiconductor like Si, (b) ionic oxide semiconductor like IGZO [51]. 
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2.3 IGZO THIN-FILM PROCESSES 

In this section, a brief literature review on the details of IGZO deposition methods, 

annealing and passivation, along with associated interaction effects is presented. 

2.3.1 IGZO Deposition 

IGZO can be easily deposited on large-area glass substrates which makes it economical 

and easily transferrable to the current flat-panel display production facilities.  IGZO has 

been deposited using PLD [51], sputtering [80], sol-gel [67], [68] and solution-based 

technique [91].  Though solution based techniques are advantageous for cost effectiveness, 

the performance of devices is not as good compared to sputtering [92], [93].  Therefore, 

most of the efforts are dedicated to developing sputtered IGZO TFTs.   

As discussed in previous section, VO act as dopants in IGZO.  The amount of doping 

can be therefore controlled by changing the amount of oxygen during the deposition 

process.  A higher oxygen partial pressure during deposition decreases the number of VO 

and therefore the electron concentration and causes a positive threshold voltage shift in 

TFT transfer characteristics [80], [94], [95].   Similarly increasing the sputtering power 

decreases the threshold voltage as the metal ions in the films are higher [95], [96].  The 

variations in the performance of IGZO devices deposited using different sputter parameters 

can be compensated by post fabrication anneal [95]. 

2.3.2 IGZO Annealing 

For high performance IGZO TFTs, annealing has been accepted as an indispensable tool 

to reduce the subgap states that are abundantly present in the as-deposited films [97]–[100].  
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Depending on the condition of as-deposited IGZO films, different anneal conditions are 

reported in literature.  For instance, Jang et al annealed fabricated devices in the vacuum 

[101] while Fuh et al reported that annealing in vacuum leads to high conductivity of the 

IGZO films [97].  The anneal conditions depend on the electronic state of as-deposited 

films and therefore a wide spectrum of anneal conditions is published in the literature.    

Annealing has been established to reduce the band tail states [77] and regulate the 

VO concentration [102].  Annealing results in more ordered network which has lower level 

of native defects.  During bias stress testing, it is observed that the devices which were 

annealed longer (200 h compared to 2 h), exhibit improved stability owing to the ordered 

network which is less prone to the defect generation [98].  Annealing at 10 atm pressure of 

O2 ambient is reported to improve the bias induced instability under illumination by 

suppressing the formation of VO defects [99].  Steam ambient annealing has also been 

explored and showed improvement in the TFT characteristics due to the stronger oxidation 

power of water related species and stabilization of chemical bonds [103].  The anneal 

temperature was decreased by annealing in ozone ambient instead of oxygen ambient 

[100].  Microwave annealing for 300 s was reported to be equivalent to 1 h anneal at 300 °C 

in reducing trap states [104].  

Despite the wide spectrum of anneal conditions reported in literature, the influence 

of annealing in regulating the defect states and hence the electronic properties of IGZO has 

been accepted.  The favorable conditions for annealing depend on the as-deposited film 

properties as well as TFT fabrication process, therefore proper consideration should be 

given in investigating the effect of anneal steps such as ambient, temperature and time 

when establishing the anneal conditions.     
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2.3.3 Back-Channel Passivation 

Oxide semiconductor surface is very sensitive to the ambient and therefore has been used 

for gas sensing applications.  A review of oxide semiconductor application in gas sensing 

is provided in references [105] and [106].  IGZO has also been investigated for gas sensing 

applications [70].  The exposed IGZO has been reported to interact with ambient oxygen 

which behaves as acceptor ions and creates a depletion region and supports enhancement-

mode operation (Figure 2.5a) [56], [70], [107]: 

 𝑂𝑂2(𝑔𝑔) + 𝑒𝑒− → 𝑂𝑂2(𝑠𝑠)
−  (2.2) 

The equilibrium constant, K, of above reaction is given by [107]: 

 
𝐾𝐾 =

[𝑂𝑂2−]𝑠𝑠
𝑃𝑃𝑂𝑂2[𝑛𝑛]

 (2.3) 

where [𝑂𝑂2−]𝑠𝑠, 𝑃𝑃𝑂𝑂2 and [𝑛𝑛] are the concentration of adsorbed oxygen, partial pressure of 

oxygen and electron density, respectively.  Equation (2.3) suggests that the increase in 

electron concentration and/or increase in oxygen partial pressure would result in an 

increase in adsorbed oxygen.  These effects have been observed experimentally [56], [107].    

In case of TFT application, the ambient interaction of IGZO channel leads to 

instability in device performance, which is undesirable [88], [89].  IGZO surface also 

interacts with H2O forming an accumulation region right below the surface through the 

following reaction resulting in depletion-mode behavior (Figure 2.5b) [97], [108] : 

 𝐻𝐻2𝑂𝑂(𝑔𝑔) → 𝐻𝐻2𝑂𝑂(𝑠𝑠)
+ + 𝑒𝑒− (2.4) 
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Application of a passivation material reduces the interaction of back-channel with 

the ambient and results in improved stability of TFT over time and/or under bias-stress 

[62], [109]–[113].  However, the deposition of passivation material on IGZO results in 

modifications in surface/bulk properties and a proper understanding of the influence of 

passivation material application is critical. 

2.4 BIAS INDUCED INSTABILITY 

After realizing the high mobility TFTs another important concern is to investigate the 

instability of transistors under the bias stress because the display devices are turned on/off 

for long duration.  A lot of work has been done in understanding the instability mechanism 

in IGZO TFTs and investigating ways to suppress it.  Positive bias stress (PBS) and 

negative bias stress (NBS) at the gate terminal with source and drain grounded are 

commonly used for this study.  During NBS, if the transistor is exposed to visible light 

(imitating the light source in LCD display), the stress test is referred as negative bias under 

illumination stress (NBIS).   

 
Figure 2.5:  Schematic showing the role of (a) adsorbed oxygen as electron acceptor, 
(b) adsorbed water as electron donor. 
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2.4.1 Positive Bias Stress (PBS)  

An increase in device threshold voltage is reported under positive gate bias stress (PBS) 

for unpassivated IGZO TFTs [107].  The IGZO back-channel is sensitive to the presence 

of oxygen and water vapors (Figure 2.6).  The adsorbed oxygen at the IGZO back-channel 

behaves as an acceptor type defects and captures an electron creating depletion region near 

the interface.  During PBS, the channel is in accumulation and has a high electron 

concentration.  From Equation (2.3), an increase in [n] results in increase in the amount of 

adsorbed oxygen (𝑂𝑂2−).  This causes the formation of a depletion layer at IGZO back-

channel which resulted in a positive shift in transfer characteristics.  An improvement in 

bias induced instability was found for passivated devices [109], [111], [113].  The presence 

of passivation material at the back-side suppresses the interaction of IGZO channel with 

the ambient and therefore offers more stability against bias stress.  Hosono et al attributed 

the stability after passivation to the reduction in tail-states for passivated devices [52].   

The positive shift in device characteristics under PBS has also been attributed to 

the electron trapping near the IGZO/gate dielectric interface or in the gate dielectric [69], 

[114].  The trapped electrons repel the electrons in the channel region making it harder for 

the gate to create an accumulation region.  This manifests itself as an increase in the 

threshold voltage.  This mechanism explains the parallel shift under bias stress.  
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2.4.2 Negative Bias Stress (NBS) 

NBS results in a negative characteristics shift due to induction of positive charge centers 

at the associated dielectric/IGZO interfaces.  Most of the recent results claim TFTs to be 

stable under NBS [115]–[117].  The reason for this improvement is most likely due to 

improved back-channel passivation.  There are still reports published in 2017 on negative 

shift under NBS [118].  However most of the recent publications are focused on NBIS; 

device characteristics are reported to shift left (lower VT) under the illumination where the 

shift is dependent of wavelength of the light source.  Higher shift is observed under lower 

wavelength (higher energy) [115], [116].  The mechanism proposed for NBIS is the 

ionization of oxygen vacancies [99], [119], [120].  Another explanation involves the 

capturing of photogenerated holes at IGZO/gate dielectric interface [121], [122].  There 

are essentially no free holes in IGZO but it is generally claimed that high energy photons 

provide sufficient energy to create electron-hole pairs.  These “hot” holes then move 

 
Figure 2.6:  Cartoon representation of field induced (a) adsorption of oxygen 
molecules under PBS, (b) desorption of water molecules under PBS [107]. 
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towards the gate dielectric interface under NBS and get trapped which then causes a 

decrease in threshold voltage.   

Bias stress instability under illumination remains a challenge, however for display 

products light shield are used which avoids illumination of the channel to the back light 

[6], [8].  Internal or external compensation schemes can be used to suppress the effect of 

bias induced instability [7], [123], [124].    

2.5 CONCLUSION 

This chapter reviews the progress made in metal oxide semiconductor technology over the 

past decade.  Due to the polycrystalline nature of binary films, multi-component oxide 

semiconductor films have been investigated for application in TFT technology.  Mixing 

different metal oxide frustrates the crystallization and the resulting films are amorphous in 

nature.  IGZO, owing to its superior on-state and off-state performance over other 

multicomponent semiconductor candidates, has been extensively studied and is the focus 

of the current study.   

IGZO behaves as an n-type semiconductor owing to the presence of defects states.  

Oxygen vacancies, metal interstitials, and hydrogen have been reported to be responsible 

for the conductivity.  Results from first principle calculations have not been conclusive 

about the role of oxygen vacancies and its energy states.  However, experimental studies 

support that oxygen vacancies behave as donor; IGZO conductivity changes with the 

oxygen partial pressure during deposition and/or anneal.  Different compositions of IGZO 

have been studied however, InGaZnO4 is the most widely used due to the high carrier 

mobility while maintaining low off-state leakage.  IGZO deposited using sputtering results 
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in superior TFT performance over other methods as well as a process which is economical 

and scalable to large glass panels. 

Annealing conditions are critical in determining the IGZO electronic properties.  In 

literature, various anneal ambient/duration has been reported.  The optimum anneal 

conditions depend on the electronic state of as-deposited films and the subsequent 

processing.   

IGZO material is very sensitive to the ambient and interacts with water/oxygen 

which modifies the electronic properties.  This interaction causes instability in IGZO 

device behavior during room temperature storage as well as during bias-stress tests.  The 

interaction with ambient of the IGZO surface can be minimized by the application of 

passivation material.  However, the deposition process introduces interface defect states 

which are important to identify.   
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Chapter 3. ELECTRONIC PROPERTIES AND 
MATERIALS SCIENCE OF IGZO  

The spectrum of IGZO sputter parameters and annealing conditions used by the IGZO 

community is broad, which suggests that a unique “optimized” combination does not exist.  

Excellent I-V transfer characteristics achieved by several research groups are all quite 

similar, suggesting that the same “ideal” semiconducting properties can be achieved by 

various combinations of sputter deposition parameters and annealing conditions.  However, 

considering the challenges with process development, it is also expected that not every 

sputter deposition recipe would be able to ultimately result in an IGZO film with 

appropriate semiconducting properties and yield good TFT characteristics. 

The electronic properties of IGZO films invariably change by deposition process 

conditions in conjunction with the subsequent processes.  The properties of sputtered films 

depend on several process-related factors such as chamber pressure [34], [96], [125], [126], 

sputter power [34], [131] and ambient conditions [58], [128]–[130], as well as tool-related 

factors such as distance between substrate and target [96], base pressure [125], and other 

machine variables.  It is extremely challenging to reproduce the work of others due to 

differences in configuration of process tools.  The anneal conditions have a critical impact 

on the properties of the IGZO film, therefore it is important to perform material analysis 

which quantifies differences between process treatments.     

This study involves an electrical interpretation of IGZO defects, along with 

materials characterization using X-ray reflection and spectroscopic analysis.  The as-
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deposited films were analyzed for crystallinity, resistivity, thickness and composition.  

Annealing has been widely accepted as an indispensable tool for producing higher quality 

TFTs [103], [131], [132], thus the effect of thermal processing on IGZO material properties 

has been thoroughly studied.  Bottom-gate thin-film transistors were fabricated for 

studying the influence of these process variables on transistor behavior.  Van der Pauw 

structures were fabricated adjacent to the TFTs for sheet resistance measurements.  These 

structures were designed to undergo the same processing as the TFT and therefore represent 

the “true” channel behavior.  Secondary Ion Mass Spectroscopy (SIMS) and X-Ray 

Photoelectron Spectroscopy (XPS) were employed to measure any post-anneal 

compositional change in the IGZO films.   

The details of TFT fabrication and experiments for optimization of the anneal 

recipe are discussed in Chapter 4 along with the investigations on IGZO TFTs passivation.   

3.1 IGZO SPUTTER DEPOSITION 

The IGZO material investigated in this study was deposited in an Applied Materials 

Centura production RF sputter system in a single wafer, load-locked chamber using a 

12.8 inch InGaZnO4 target and Ar-O2 ambient with a substrate chuck temperature of 

200 °C.  The flow of Ar was set to 30 sccm and the flow of O2 was set to 4 sccm which 

established a pressure of ~2.3 mT.  The sputtering power was ramped to 600 W with a 

50 W/s rate to avoid any initial shock to the target; subsequently the power was increased 

to 750 W for film deposition.  The wafers were prebaked at 200 °C in a separate chamber 

before deposition for desorption of any water molecules on the surface.  The short sputter 

time supported high film quality; a typical 50 nm film took ~72 s for deposition.  Several 
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material analysis techniques were performed to characterize the properties of as-deposited 

film.    

3.2 CHARACTERIZATION OF AS-DEPOSITED FILMS 

The as-deposited films were analyzed for composition, uniformity, crystallinity and 

resistivity using characterization techniques as discussed in this section.   

3.2.1 X-ray Diffraction (XRD) 

X-ray Diffraction (XRD) is a non-destructive technique to analyze the atomic structure of 

the specimen.  An X-ray beam is shined on the material under investigation and the 

scattered X-rays are measured as a function of exit direction.  If the X-ray wavelength is 

on the order of the atomic distance, it results in a constructive and destructive diffraction 

pattern, giving peaks of higher and lower intensities respectively.  The constructive 

diffraction occurs when the Bragg’s condition is satisfied, which can be mathematically 

expressed as: 

 2𝑑𝑑 ∙ sin (𝜃𝜃) = 𝑛𝑛𝑛𝑛 (3.1) 

where d is the interplanar spacing, θ is the angle of incidence, n is the order of reflection 

and λ is the wavelength of incident X-rays.  The absence of any peak in an XRD suggests 

that the specimen has no long-range order or is amorphous in nature.  

IGZO films can be deposited in crystalline [19], [20] and amorphous [5], [21], [22] 

form.  Due to different crystalline structures of ZnO, In2O3 and Ga3O3 lattices, the films 

deposited under normal conditions are amorphous in nature [15].  Nevertheless, it is crucial 
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to analyze the deposited IGZO film for crystallinity.  X-ray analysis was performed using 

a home-made sealed tube X-ray source with a Huber four full circle diffractometer with 

copper source/target.  A Si (111) monochromator was used for higher resolution.  The 

Cu Kα1 radiation was maximized to make it as monochromatic as possible.  

The XRD measurements of the as-deposited film is shown in Figure 3.2.  The 

diffraction pattern does not show any peaks related to component metal-oxide or single 

crystal IGZO confirming the amorphous nature of the as-deposited films    

 

Figure 3.1:  XRD spectrum of as-deposited IGZO films on a silicon wafer.  The absence 
of any peak confirms the amorphous nature of the deposited films.  The peak at ~70° is 
from the Si wafer used as substrate. 
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3.2.2 X-ray Reflectivity (XRR) 

X-ray Reflectivity (XRR) measurements utilize the fact that the reflectivity of a material 

increases when the incident angle is very small.  This technique can be used to study 

multilayer films and analyze the surface smoothness, thickness and density.  The X-rays 

reflected from each surface/interface result in constructive and destructive diffraction and 

show fringes in the output diffraction pattern which can be used to calculate these 

parameters.  The film thickness can be calculated using: 

 2𝑑𝑑�sin2 𝜃𝜃𝑖𝑖𝑖𝑖 − sin2 𝜃𝜃𝑐𝑐 = 𝑚𝑚𝑚𝑚 (3.2) 

where d is the thickness of the film, θin is the angle at which intensity is maximum, θc is 

the critical angle for total external reflection, m is the fringe order (an integer) and λ is the 

incident wavelength.  Equation (3.2) can be simplified by neglecting the refraction to:  

 
𝑑𝑑 =

𝜆𝜆
2 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠∆𝜃𝜃

 (3.3) 

where ∆θ is the difference in the angle at which two maxima occurs.   
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In this work, XRR analysis was used to measure the thickness of the deposited films 

and compare the surface roughness after thermal treatment.  The quantitative analysis of 

film density and surface roughness was not conducted.  The XRR spectra of as-deposited 

film is shown in Figure 3.3.  The ∆θ measured between two adjacent peaks is 0.09°.  The 

thickness calculated using Equation (3.3) is 49.3 nm which is very close to the targeted 

thickness of 50 nm.   

3.2.3 X-ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy (XPS) can be used for analyzing the chemical 

composition of the sample.  The core photoelectron intensities can be used for quantitative 

 
Figure 3.2:  XRR spectrum of as-deposited IGZO on a silicon wafer.  The thickness 
calculated from fringes was 49.3 nm which is very close to the target thickness of 50 nm.     
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analysis and the shift in the peaks binding energy can be correlated with change in chemical 

environment [135].     

During photoelectron spectroscopy, the sample is subjected to a monochromatic 

radiation and the resulting photoelectrons are observed.  The kinetic energy of the 

photoelectron is given by: 

 ℎ𝑣𝑣 = 𝐸𝐸𝑏𝑏(𝑘𝑘) + 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 (3.4) 

where Eb(k) is the binding energy of the k-th level and Ekin is the kinetic energy of the 

electron.  Using an electron energy analyzer, a spectrum of number of detected electrons 

per energy window versus the kinetic energy can be obtained.  This energy window is 

called the pass energy.  The binding energy can be deduced from the kinetic energy of the 

detected electrons.  Each element has a unique spectrum; by comparing the peak intensities, 

a quantitative analysis on the composition of the specimen can be performed.  The accuracy 

of this analysis depends on the atomic sensitivity.  The shift in peak positions can be used 

to identify the chemical state.  Since the mean free path of electrons is very small, the 

ejected electrons corresponds to only the top few atomic layers and therefore the top 2-5 nm 

thickness of sample is analyzed.  For depth analysis, the sample surface can be etched using 

an Ar-ion gun.    

A model representation of XPS emission process is shown in Figure 3.4.  An 

incoming photon knocks off the electron from the core level which is detected using 

electron analyzer.  The kinetic energy and intensity of these photoelectrons give the XPS 

spectra.  During relaxation, an electron from an outer orbital may fall to the inner orbital 

vacancy along with the ejection of an Auger electron carrying the excessive energy.      
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Surface analysis was performed on a Physical Electronics multiprobe system with 

XPS and Auger Electron Spectroscopy (AES) capabilities.  The system has a double pass 

cylindrical analyzer.  Mg Kα (1253.6 eV) was used as X-ray source.  The argon ion beam 

at ~ 4.5 kW was used to raster scan an area of ~ 5 mm × 5 mm to etch the sample for depth 

profiling.  The base pressure of 1×10-10 T was achieved and etching was done at 5×10-8 T.  

The X-ray source does not use a monochromator.  This provides lower resolution but offers 

higher beam intensity.  The system has electronics upgraded from RBD Instruments along 

with software upgrade for data acquisition and analysis.   

The XPS of a 50 nm as-deposited IGZO film is shown in Figure 3.5.  The pass 

energy of 100 eV was used for this measurement.  The data show clean spectra with clear 

peaks for indium, gallium, zinc and oxygen with a small quantity of carbon on the surface 

along with other Auger peaks.   

 

Figure 3.3:  Model representation of XPS emission.  The incident photon ejects an 
electron from the core level (photoelectron).  During relaxation, an electron from the 
higher orbital fills the electron vacancy and the excess energy is carried by Auger 
electron.   
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3.2.4 Auger Electron Spectroscopy (AES)  

For Auger Electron Spectroscopy (AES), electrons are used for the excitation.  Unlike XPS, 

the Auger spectrum does not depend on the input energy.  The peaks in AES spectra are 

not as intuitive as the XPS peaks; however a plot of differential intensity is easier to 

interpret.  For this study, the output power of electron beam was set at 3 kW with a beam 

energy of 4 eV peak to peak modulation.   

The atomic percentage of film is calculated using the default sensitivity factors 

given by the RBD Instruments data acquisition software.  The atomic ratio calculated using 

the default sensitivity factor is not accurate but is valid for comparative study.  The AES 

spectrum of as-deposited IGZO sample is shown in Figure 3.6.  The atomic percentage 

calculated from the area under the peak is given in Table 3-I. 

 

Figure 3.4:  XPS measurements of as-deposited IGZO films. The spectrum is clean with 
each peak clearly identified with no trace of any impurity except the surface carbon.    
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Auger spectroscopy was used to analyze the compositional uniformity along the 

thickness of the sample.  The AES offered an advantage over XPS depth profiling.  The 

IGZO samples fluoresce under Ar+ ion and electron beam bombardment making it easy to 

align both at the same spot.  This was not the case during XPS analysis as X-rays hitting 

the IGZO sample did not give any visibly detectable signals and it was hard to determine 

if the sample etching and XPS analysis were done at the same spot.  The depth profile of 

as-deposited films is shown in Figure 3.7 .  The elemental distribution is uniform along the 

entire thickness of the film.   

 

 

 

Figure 3.5:  Auger spectrum of as-deposited IGZO films showing peaks for In, Ga, Zn 
and O with little surface C peak.   
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Table 3-I:  Atomic percentage of In, Ga, Zn and O estimated from the area under the 
Auger peaks using default sensitivity factors. Note that the atomic percentage is not 
accurate and is only good for comparative studies.   

Element  Atomic ratio 

In 19 

Ga 19 

Zn 14 

O 48 

 

 

Figure 3.6:  Depth profile of as-deposited IGZO films using AES.  The area under the 
peak is used to calculate the atomic percentage.  The default sensitivity factors are 
used for atomic percentage calculation which may not reflect actual stoichiometry of 
the specimen but is good for comparative study.  Note that atomic percentage after 
50 nm is misleading because of the signal from Si substrate.   
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3.2.5 Resistivity Measurement  

The 4-point probe measurement and Hall effect measurement techniques did not yield a 

measurable response, suggesting a very high resistivity as-deposited film.  An electrometer 

with the ability to measure extremely small current levels was used to measure the 

resistivity of a 50 nm IGZO film deposited on a glass substrate.  The current versus time 

graph is shown in Figure 3.8.  The current decreased in a non-linear fashion and then 

saturated at 0.6 pA after 100 min of measurement.  The change in resistivity over time is 

attributed to the adsorption of oxygen at the exposed IGZO surface which created a 

depletion region, as discussed in Section 2.3.3 [8], [24], [25].  The resistivity of as-

deposited film was ~100 kΩ∙cm which is consistent with a semiconductor material for TFT 

applications.  However, as will be shown, the electrical properties of IGZO TFTs are highly 

dependent on process conditions.   

3.3 OXIDIZING AMBIENT ANNEALING 

Early in this study it was established that a thermal anneal was needed to result in 

acceptable thin-film transistor operation.  As shown in Figure 3.9, with 50 nm thick as-

deposited IGZO material, the transfer characteristics are very poor in the absence of a 

thermal anneal.  The devices exhibit no gate controlled charge modulation and could not 

be turned off even at a gate voltage (VGS) of -10 V.  The density of subgap states in 

unannealed IGZO films is high due to defects created during sputtering or fabrication 

process.  The thermal anneal process has been almost universally accepted as beneficial for 

suppressing the density of subgap states in IGZO and dialing in channel conductivity by 

controlling the amount of oxygen vacancies (VO) and thus improving the semiconducting 
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properties of IGZO films [15], [131].  The anneal ambient regulates the amount of VO in 

the film which essentially act as donors and provide charge carriers.  However, the details 

of anneal process differ across the scientific community and vary as much as a 200 h anneal 

in vacuum [98] to 1 h anneal in ozone ambient [100].  The response of annealing depends 

primarily on the initial electronic state of the IGZO film.   

 

 

 

Figure 3.7:  Resistivity of as-deposited IGZO film over time. The applied voltage was 
0.25 V.  The resistivity of films increased for the first ~100 min and then saturated at 
~ 100 kΩ∙cm. 
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In this section, investigations on the change in IGZO material properties after 

thermal anneal process are discussed.  The anneal process under investigation is performed 

after the fabrication of TFT at 400 °C for 30 min in N2 ambient with a ramp-down in air 

ambient.  The details on establishing the favorable anneal recipe are discussed in 

Section 4.3. 

3.3.1 XRD & XRR Measurements 

The first step in this analysis was to verify the crystallinity of IGZO films after the thermal 

processing.  Figure 3.10 shows XRD results of annealed samples.  The absence of the peak 

corresponding to crystalline IGZO at 2θ ~ 32° confirms the amorphous nature of films after 

the 400 °C thermal treatment [136].   

 
Figure 3.8:  Transfer characteristics of IGZO TFT without any thermal anneal.  The 
device showed no gate control and could not be turned off even at high negative VGS.  
The TFT channel dimensions were L=21 µm & W=100 µm. 
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3.3.2 SIMS Measurements 

Secondary ion mass spectroscopy (SIMS) is a destructive technique to analyze the 

composition of a material.  This technique relies on the removal of material by sputtering 

and then analyzing the ejected material using a mass analyzer [137].   

 

Figure 3.9:  XRD spectrum of 400 °C annealed IGZO sample. The film remained 
amorphous after the thermal process. 
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The SIMS measurements for unannealed and annealed samples are shown in Figure 

3.12.  The measurements were taken in Cs attachment mode i.e. the secondary species were 

acquired as CsM+, where M stands for In, Ga, Zn or O.  The composition of the annealed 

IGZO layer is very close to the composition of the unannealed sample with no apparent 

elemental redistribution resulting from annealing.  The anneal did not change diffusion 

depth of metal ions and did not affect profile shape across the interface.  

   

 

Figure 3.10:  XRR spectrum of annealed IGZO sample (solid line) overlaid with the 
spectra of unannealed sample (dashed line).  The fringe gap and the slope of spectra 
remained unchanged, verifying no appreciable change in film thickness or surface 
roughness after annealing.  The inset shows the magnified spectra near the critical 
angle, confirming no change in IGZO density after anneal. 
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3.3.3 XPS Analysis 

In addition to the knowledge of chemical composition, XPS can provide information 

regarding the chemical environment of the species in the sample.  Though there is no direct 

measurement technique for measuring the VO in a film, the O-1s peak analysis can provide 

a relative measure of oxygen near vacancy defects.  The sample was etched for 5 min using 

Ar-ions before measuring the spectra to remove any surface contamination or weakly 

bonded O-species such as –CO3, -OH, adsorbed H2O or chemisorbed O2.  A pass energy 

of 25 eV was used for the oxygen peak analysis to improve accuracy.  The asymmetric 

 

Figure 3.11:  SIMS depth profile for In, Ga, Zn and O before and after annealing. The 
measurements do not show any noticeable difference in intensities across IGZO 
thickness and profile shape across the interface after annealing.     
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O-1s peak can be resolved in two Gaussian peaks centered at 528.9 eV and 531.1 eV.  The 

quality of the fit is shown in Figure 3.13 after correcting for the background.  The peak at 

lower binding energy (528.9 eV) corresponds to the metal-oxygen bonds in IGZO and is 

referred to OL2-, for lattice oxygen.  This is a measure of oxygen in fully oxidized  and 

stoichiometric surrounding [138].  VO correlate to the shoulder corresponding to the higher 

binding energy of O2- in the vicinity of an oxygen vacancy [139], [140].  The peak at higher 

binding energy (531.1 eV, OV2-) is attributed to the O-atoms in the vicinity of O-vacancy 

i.e. O-deficient areas in the matrix.  This component can be related to the density of VO in 

the film.   

The O-1s peak for annealed sample is shown in Figure 3.14.  The peak is 

deconvoluted into two Gaussian peaks.  During the peak fitting, the separation between the 

two peaks (2.2 eV) and the full width half maxima (FWHM) of the resolved peak (2.5 eV) 

 

Figure 3.12:  XPS analysis of the O-1s peak for unannealed sample.  The amount of VO 
can be relatively assessed by deconvoluting this peak.  The peak shifted towards higher 
binding energy is due to the presence of VO.   
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are kept constant across the samples.  The ratio of the area of OV2- peak to the area of full 

O-1s peak is used for a relative measure of VO change.  This ratio is given in Table 3-II  

for unannealed and annealed samples.  The higher ratio for unannealed samples signifies 

the higher amount of VO which was reduced during annealing [32], [33].  The 5 min etch 

of the surface before taking the measurements ensured the surface did not retain any loosely 

bound O-species.  Therefore, a peak at higher binding energy (~533 eV) corresponding to 

those species was not observed [102].  

 

 

 

Figure 3.13:  XPS analysis of the O-1s peak for the annealed sample showing a decrease 
in the relative intensity of OV2-  peak which corresponds to a decrease in amount of VO 
after annealing.   
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The XPS analysis showed that the amount of lattice oxygen increased after anneal.  

The core levels of In-3d5/3 and Ga-2p3/2 did not show any shift after annealing while 

Zn-2p3/2 peak showed a systematic shift towards higher binding energy, as shown in 

Figure 3.15.  This suggests that reduction in VO was associated with increased oxygen 

bonding with Zn atoms.   

 

Table 3-II:  Ratio of area under the deconvoluted VO peak to the area of O-1s peak.  
The ratio is lower after annealing in oxidizing ambient indicating the density of VO 
decreased after anneal. 

Sample OV2- / (total O-1s) 

Unannealed 0.32 

Annealed 0.19 

 

 

Figure 3.14:  XPS analysis of Zn-2p3/2 core levels showing a shift after annealing. This 
is attributed to the reaction of zinc metal with oxygen after oxidizing ambient anneal. 
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The transfer characteristics of the fabricated TFT after annealing are shown in 

Figure 3.16.  The device exhibits excellent gate control over the channel charge with a 

steep subthreshold swing.  The improvement in TFT operation is attributed to the anneal 

process with an associated reduction in defect states which includes VO.  The role of defects 

on the electrical properties of IGZO TFTs is discussed in Section 5.2.   

The device performance is excellent after an oxidizing ambient anneal.  This device 

did not have any back-channel passivation, which resulted in voltage shifts in the transfer 

characteristic observed during weeks of aging and is attributed to the adsorption/diffusion 

of water at the IGZO back-surface [111], [142].  To improve the stability of devices, 

various dielectrics were applied for surface passivation of exposed IGZO.  This topic 

remains a challenge in process integration, as most thin-film deposition processes render 

 

Figure 3.15:  Transfer characteristics of IGZO TFT annealed at 400 °C in oxidizing 
ambient. The device shows excellent transistor properties with a clear on/off state and 
steep SS.  The TFT channel dimensions were L=21 µm & W=100 µm. 
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IGZO more conductive, as shown in Table 3-III.  However with an appropriate annealing 

and integration scheme, excellent results can be achieved with certain passivation 

materials.  Figure 3.17 shows transfer characteristics of an alumina passivated device 

exhibiting performance equivalent to an unpassivated device.   

 

 

Table 3-III:   Resistivity value of IGZO films after the application of various passivation 
materials using 4-point probe measurement on the Van der Pauw structures.  The TFT 
on these wafers showed working transistor characteristics before the passivation 
material deposition.  The IGZO thickness is 50 nm.   

Passivation material Rs (Ω/□) ρ (Ω∙cm) 

PECVD SiO2 (TEOS) 600 0.003 

Sputtered quartz 430 0.0021 

E-beam alumina 3000 0.015 

 

 
Figure 3.16:  Transfer characteristics of evaporated alumina passivated IGZO TFT.  
The TFT channel dimensions were L=21 µm & W=100 µm. 
   

 



Chapter 3: Electronic Properties and Materials Science of IGZO 

 

51 
 

3.4 CONCLUSION 

The RF-sputtered IGZO films are characterized for application in thin-film electronics.  

XRD measurements have verified the amorphous nature of as-deposited films.  The AES 

measurements have shown a uniform composition throughout the film thickness.  Bottom-

gate IGZO TFTs without any anneal, showed no gate modulation due to high carrier 

concentration. 

An annealing in oxidizing ambient at 400 °C yielded good TFT characteristics.  The 

crystallinity, thickness and surface roughness of films did not change after the thermal 

processing, as verified by XRD and XRR measurements.  Analysis techniques including 

SIMS and XPS were used to study the composition of the material after anneal, and 

quantify differences in composition (e.g. oxygen content).  SIMS analysis did not show 

any change in film composition or elemental profile post anneal.  The XPS analysis 

confirmed the decrease in VO in IGZO films after anneal.  This reduced the free carrier 

concentration in the film, providing appropriate resistivity for TFTs.  

The passivation of exposed back-channel of IGZO TFT is imperative for device 

stability and process integration standpoint.  The application of passivation material at the 

IGZO back-channel results in a higher-conductivity channel, due to creation of additional 

defect states (VO) in the bulk or at the interface.  An appropriate anneal and process 

integration scheme mitigates this effect. 
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Chapter 4. DEVELOPMENT OF THE 
BOTTOM-GATE IGZO TFT 

Despite the demonstrated performance of indium-gallium-zinc oxide (IGZO) thin-film 

transistors (TFTs), the influence of process variables on the material properties and the 

correlation of the material properties with the device operation are not explicitly known.  

Defect states play multiple roles which establish both conductive properties of the material 

as well as anomalies in device behavior.  Therefore the interpretation of these states is of 

considerable importance.  

The focus of this work is to characterize the electronic defect states in IGZO film 

for its application in thin film electronics and to regulate these defects through an 

understanding of process influences.  The importance of thermal annealing of sputtered 

IGZO films for improved device operation, has been widely established [52], [143], [144]; 

however the temperature, gas ambient, and process integration details vary [97], [98], 

[100], [103], [104], [145], [146].  This chapter details the fabrication processes of bottom-

gate IGZO TFT and electrical characterization.  The initial discussion establishes a baseline 

process without passivation material added to the back-channel interface.  During this 

phase of the investigation, the selection of contact metallurgy, gate dielectric and annealing 

conditions were determined. 

The results of the experiments are used to extract the density of defect states in bulk 

IGZO and at IGZO/dielectric interface.  These values are used for adjusting the TCAD 

material modeling discussed in Chapter 5.    
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In bottom-gate configuration, the back-channel of fabricated TFTs is exposed to 

the ambient, so the application of a passivation material on the back-channel is imperative 

for stability and process integration.  However, as discussed in Section 3.3, passivation 

material deposition renders the deposited film conductive.  Therefore, a clear 

understanding of the effect of passivation material deposition is important.  A study on the 

influence of the back-channel passivation material on the operation of IGZO TFTs is 

presented.  Process modifications resulting in improvement of device performance are 

discussed.      

4.1 UNPASSIVATED IGZO TFT 

In this section, details on TFT fabrication are provided.  The TFTs are fabricated in bottom-

gate and top-contact configuration, which is commonly referred to as staggered bottom 

gate structure as the gate and source/drain (S/D) contacts are on the opposite side of the 

channel.  The S/D and gate metals are designed to overlap to facilitate the S/D contact to 

IGZO.  Therefore, the channel length is defined by the S/D metal.   

4.1.1 Baseline TFT Fabrication 

A 50 nm molybdenum layer was deposited on oxidized silicon or glass substrate using 

CVC-601 sputter tool.  The sputtering was performed in Ar ambient at 2.7 mT pressure.  A 

DC power of 1000 W was applied to the 8” target.  These settings yield a sputter rate of 

~15 nm/s.  A base pressure of 1.6×-6 Torr was achieved after an overnight pumpdown to 

ensure high quality films.  The Mo film was patterned using photolithography to define the 

bottom gate electrode and wet etched using phosphoric acid etchant at room temperature.  
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The gate dielectric is a 100 nm SiO2 layer deposited by AME P5000 PECVD tool at 390 °C 

using TEOS precursor.  A 50 nm IGZO film was then sputter deposited with parameters 

identical to those in Section 3.1.2.  The IGZO mesa was patterned using photolithography 

and etched in a dilute HCl solution (6:1 DI water).  The etch-rate of IGZO measured on 

monitor wafers was ~2.5 nm/s.  An etch time of 25 s (25% over etch) was used to ensure 

the IGZO was completely etched.   

Annealing was either performed at this point (pre-metal anneal) or after the 

source/drain metal definition (post-metal anneal).  Contacts were opened to the gate 

electrode using 10:1 BOE solution.  The source/drain (S/D) contact metal, either 

evaporated Al or sputtered Mo, was then defined using a lift-off resist process.  Aluminum 

was evaporated in CHA flash evaporator.  Mo was sputtered in CVC 601 in Ar ambient at 

2.2 mT using DC power of 200 W.  The sputter power was reduced to protect the LOR 5A 

lift-off resist.  Note that Al was evaporated on top of the Mo contact metal prior to lift-off 

in order to avoid oxidation of Mo during the subsequent annealing process.  The cross-

section schematic and top-view optical image of fabricated device is shown in Figure 4.1.  

The large TFT test structures are designed for ease in electrical testing while 

avoiding additional processing for interconnects.  Electrical testing was done using an HP-

4145B parameter analyzer on 4-probe Van der Pauw structures, and TFTs of constant 

channel width (W = 100 µm) and various channel lengths ranging from L = 3 to 45 µm.  

All ID-VGS transfer characteristics presented were taken with a gate voltage up-sweep and 

medium measurement integration time unless otherwise noted, with low-drain and high-

drain bias conditions at 0.1 V and 10 V, respectively.  
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Figure 4.1:  (a) Micrograph of a bottom-gate IGZO TFT with labeled source (S), gate 
(G) and drain (D) electrodes, with a cross section view taken through the channel at the 
red dotted line shown in (b).  Either Al or Mo is used as the source/drain contacts to the 
IGZO.  The L = 24 µm channel length is defined by the gap between the source and 
drain metal. The W = 100 µm channel width is defined by the IGZO mesa etch.  

Source Drain

Substrate

IGZO
SiO2

Gate

(a) (b)

 

Figure 4.2:  (a) Schematic view of the cross-section of TFT (b) Low magnification SEM 
image of the boxed region in (a). The Pt overcoat is used to protect the top surface/edge 
of the region of interest. (c) View of layer structure and profile from boxed region in 
(b). Mo/Al bilayer is used for S/D contact metal.  
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4.1.2 Mask-Defined Channel Length (Lmask) 

After fabrication, focused ion beam - secondary electron microscopy (FIB-SEM) was used 

to examine the device structure (Mo S/D, post-metal anneal).  The edges of final device 

were FIB cross-sectioned and imaged for edge profile and thickness.  A platinum overcoat 

was put down on the sample before milling in order to protect the surface.  Figure 4.2 

shows the FIB-SEM images of the final TFT after annealing along the gate edge.  All layers 

of films can be distinctly seen indicating that there is no cross-diffusion of deposited films 

after the annealing.   

 

 

Figure 4.3:  (a) Cartoon representation of the cross-section of TFT. The red box 
represents the area which was imaged. (b) Low magnified image of the boxed region 
of (a). (c) High magnification image of the boxed region shown in (b) showing the 
encroachment of S/D metal (Mo/Al) in the undercut region after developing lift-off 
resist.  This leads to a decrease in metal defined channel length.   
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As stated in fabrication details S/D metals are defined through lift-off resist process.  

The lift-off resist dissolves faster in CD-26 developer used during lithography.  This leaves 

an overhung profile of lift-off resist.  Subsequent metal (Mo/Al) deposition encroaches 

below this profile from both sides of the channel.  This can be seen in the FIB cross-section 

along the edge of source metal (Figure 4.3).  This encroachment of S/D metal makes the 

metal defined channel length (Leff) shorter than the mask defined length (Lmask).  Figure 4.4 

shows an optical image of the device channel region after the lift-off resist coating.  The 

lift-off resist protects the channel region, but it is undercut at the edges, as shown in 

magnified image and metal deposition fills this undercut.  Due to this, the mask defined 

channel length is decreased by ~3 µm.   

 

 

Figure 4.4:  Micrograph of 24 µm device after lift-off resist coating. The IGZO mesa 
and G/S/D overlapped region are marked in (a).  (b) The magnified image of the circled 
area in (a).  The lift-off resist is undercut reducing the effective channel length by 
~1.5 µm on each side.  The Lmask= 24 µm device is effectively Lmetal = 21 µm device.  
This was also confirmed by Terada-Muta analysis, see Section 4.2.3.  



Chapter 4: Development of the Bottom-Gate IGZO TFT 

 

58 
 

4.2 CONTACT METALLURGY 

Contact metallurgy can have a dominant influence on device performance.  There are 

several examples of metals used as source-drain contact electrodes for IGZO TFTs 

including Au/Ti [147], [148], indium-tin-oxide (ITO) [128], Mo [149], Pt/Ti [108], 

aluminum-zinc-oxide (AZO) [150], and Cu [151]. Although cited references discuss the 

influence of contact metallurgy on device characteristics, surprisingly most of them do not 

discuss the dependence of the contact behavior on the annealing process which is especially 

important for Al-contact devices [152]–[156].  Researchers have reported but not 

adequately addressed observations made on the behavior of Al-contact devices following 

a post-metal anneal [154].  Aluminum is either not included in studies pertaining to the 

comparison of various metal electrodes for IGZO [155] or annealing is not done after Al 

deposition [152], [153], [157] or the issue is avoided by inserting an additional metal layer 

between IGZO and Al contact [158], [159].  Reports on Mo-contact and Al-contact devices 

often do not discuss the effect of annealing on the contact behavior [152], [160].  

4.2.1 M-S Contact Potential 

To understand the behavior of contacts, device simulation using Silvaco® Atlas™ was 

performed.  Figure 4.5 shows an ATLAS simulation of the energy barrier established 

between various contact metals and IGZO using the material model presented in Chapter 

5.  The simulation solved for a zero-bias initial condition, with a vertical cut taken through 

the source contact (at X = 0 µm).  Titanium has a relatively small M-S barrier, and results 

in ohmic-like behavior as source/drain electrodes with minimal impact on transistor 

behavior [148].  Aluminum has a lower workfunction, and should ideally result 
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in ohmic contact behavior, whereas molybdenum has a higher workfunction and should 

present a higher Schottky barrier contact.  However, Mo has been widely used as 

source/drain metal in IGZO TFTs [98], [122], [149], [161], [162].  In this study, Al and 

Mo metals are investigated for contact metallurgy.   

4.2.2 TFT Contact Behavior 

In this section, investigations on Mo and Al as the source/drain contact metal for IGZO 

TFTs are discussed.  First, the results of pre-metal (after IGZO deposition but before 

source/drain metal deposition) and post-metal (after source/drain metal deposition) 

 

Figure 4.5.  Energy band diagram generated by Silvaco® Atlas™ showing the energy 
barriers associated with contact metals and IGZO.   The workfunction of Al should 
ideally provide an ohmic contact, whereas the Mo contact appears to present a 
significant source barrier (φb).  Non-idealities such as M-S interface states are not 
considered.  Note that the conduction band energy (EC) does not line up for each case 
due to additional influence (band-bending) from the Mo gate metal workfunction. 
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annealing in air ambient are established.  The influence of different gas ambient conditions 

on the resulting contact and channel behavior is then presented in Section 4.3.    

Devices fabricated without any thermal treatment exhibited very poor electrical 

behavior as shown in Section 3.3, and such results are not discussed here.  The first set of 

results obtained were from the pre-metal anneal treatment in air ambient (45% humidity, 

class 1000 clean room) at 350 °C for 1 h, done immediately after the IGZO mesa definition.  

Figure 4.6 shows the I-V transfer characteristics of Al-contact and Mo-contact devices, 

showing almost perfect overlay.  While the TFT performance for this treatment does not 

demonstrate impressive channel mobility, the characteristic overlay of the two different 

source/drain contact metals indicates that the channel regions of the devices are essentially 

the same, and that the difference between the influence of the evaporated Al or sputtered 

Mo processes on the channel behavior is insignificant.  In addition, the TFT characteristics 

are clearly dominated by the channel conductance, with no suggestion of non-ohmic 

behavior by either the Al-contact or and Mo-contact devices.   

Because of the influence of device operation, the literature is full of inconsistencies 

in parameter extraction methods for IGZO TFTs.  This topic is thoroughly addressed in 

Chapter 6.  At this stage of the investigation, a minimal set of parameters with simplified 

extractions routines is used for relative comparisons between experimental treatments.  

Channel mobility and threhold voltage are extracted using gradual channel approximation 

transistor equation in saturation mode [163].  Threshold voltage is taken as the VGS value 

at drain current, IDS = 1 nA.  Effective mobility in saturation mode, µsat, is extracted at 

VDS =VGS =10 V.  Subthreshold swing (SS) is extracted from the high drain bias ID-VGS 

curves at the maximum slope.  
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The influence of a post-metal 350 °C air anneal treatment on device performance 

is shown next.  Figure 4.7 shows the results of a Mo-contact device, with demonstrated 

improvement over the pre-metal treatment, both in the on-state (µsat ~ 3.2 cm2/V∙s) and the 

off-state (SS ~ 250 mV/dec) performance.  In addition, the characteristic is right-shifted, or 

more enhancement-mode. 

The Al-contact devices show very different results, which demonstrate significant 

degradation over the pre-metal treatment (Figure 4.8).  Essentially no on-state current was 

observed in the low VDS characteristic, whereas the saturation characteristic is right-shifted 

with a much higher SS.  The transfer characteristics from the post-metal anneal treatment 

 

Figure 4.6:  Overlay of transfer characteristics for Al-contact (dotted line) and 
Mo-contact (solid line) devices that had a pre-metal air anneal 350 °C for 1 h.  The 
TFT channel dimensions were L = 9 µm & W = 100 µm.  The extracted subthreshold 
swing and saturation-mode channel mobility are SS ~ 550 mV/dec & µsat  < 1 cm2/V·s. 
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are dominated by the contact behavior, which has established a significant barrier to current 

flow.  This result is expected to be due to the formation of an interfacial AlOx layer during 

the annealing process.  Additional experiments on Al-contact devices with post-metal 

annealing in oxidizing ambient conditions demonstrated similar results, with no value in a 

detailed analysis and discussion.  However, experiments investigating the Mo-contact 

devices proved to be insightful in understanding the influence of the annealing process and 

beneficial in realizing further improvement in device performance.   

The measurements showed that Mo provides an ohmic contact to IGZO.  This was 

further verified by simulating TFT characteristics using Mo and Al S/D metal and 

Figure 4.7:  Transfer characteristics for a Mo-contact IGZO TFT after a post-metal 
anneal in air at 350 °C for 1 h.  The TFT channel dimensions were L = 9 µm & W = 100 
µm.  The extracted subthreshold swing and saturation-mode channel mobility are 
SS  ~ 250 mV/dec & µsat ~ 2.7 cm2/V·s.   
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comparing it with the measured data (see Chapter 5 for IGZO material model).  An overlay 

of simulated and measured on-state transfer characteristics are presented in Figure 4.9.  The 

measured transfer characteristic for the Mo-contact device in Figure 4.9 exhibits behavior 

that is consistent with the Al-contact simulation more than the Mo-contact simulation, 

which supports the interpretation of ohmic source/drain contacts.  The contact behavior is 

dominated by interface states which facilitate carrier injection.  The match between the 

measured and simulated characteristics under ohmic contact conditions in on-state 

operation is quite reasonable, with a slight discrepancy in subthreshold state.   

 

Figure 4.8.  Overlay of transfer characteristics for Al-contact devices with a pre-metal 
(solid line) and a post-metal (dotted line) air ambient anneal at 350 °C for 1 hr.  The 
TFT channel dimensions were L = 9 µm & W = 100 µm.  The post-metal anneal 
treatment under low drain bias (VDS = 0.1V) is without an on-state characteristic. 
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4.2.3 Effective Source/Drain Series Resistance 

I-V curves suggest the behavior of the Mo-contact TFT to be ohmic source/drain contacts 

to the IGZO, rather than Schottky barrier M-S contacts which may be expected when 

considering the metal workfunction, Figure 4.5.  Establishing the quality of the contacts is 

important.  Terada-Muta analysis of transistor characteristics was performed to calculate 

the S/D contact resistance (RS/D) and effective channel length (Leff) [164].  The total 

resistance (Rtot) of the TFT can be expressed as:  

 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑟𝑟𝑐𝑐ℎ𝐿𝐿 + 𝑅𝑅𝑆𝑆𝑆𝑆 (4.1) 

where rch is the channel resistance per unit length and RS/D is the resistance offered by the 

S/D contacts.  Using Equation (4.1), Rtot can be written as:  

 

Figure 4.9.  Overlay of a measured linear-mode (VDS = 0.1 V) transfer characteristic of 
Mo-post-metal annealed TFT (solid line), along with simulated characteristics 
consistent with M-S contact conditions for Al (dashed line) and Mo (dotted line).  The 
TFT channel dimensions were L = 21 µm & W = 100 µm.  
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 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑉𝑉𝐷𝐷𝐷𝐷
𝐼𝐼𝐷𝐷𝐷𝐷

�
𝑉𝑉𝐷𝐷𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙

=
𝐿𝐿

𝑊𝑊𝐶𝐶𝑜𝑜𝑜𝑜µ(𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇) = 𝑟𝑟𝑐𝑐ℎ𝐿𝐿 + 𝑅𝑅𝑆𝑆𝑆𝑆 (4.2) 

Figure 4.10 shows the Rtot vs L plot at different VGS for standard devices.  The 

average value of RSD and Leff can be extracted from the unique intersection point of all the 

curves and rch can be found by the slope.  The ∆L ~ 3 µm is due to the lift-off resist process 

used to define S/D metal, so the Leff is 3 µm less than the mask defined channel length.  

This has been verified through optical image of the device (see Figure 4.4).  The current 

flow is dominated by transistor operation (i.e. channel resistance); series resistance is 

essentially negligible as shown by the intersection point (y=0) in Figure 4.10.  

 

 

Figure 4.10:  Terada-Muta analysis of IGZO TFTs.  The extracted ∆L ~ 3 µm is 
consistent with microscopic images of LoR coated wafers shown in Figure 4.4.   
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The quality of contact can be assessed from the output curves of TFT.  Figure 

4.11(a) shows the output characteristics of post-metal N2/O2 annealed TFTs with Mo 

contacts.  A non-ohmic S/D contact manifests itself as a non-linear response of ID at low 

 

 
Figure 4.11:  (a) Output characteristics of IGZO TFT.  The TFT channel dimensions 
were L = 21 µm & W = 100 µm.  The device shows a clear saturation. (b) ID-VDS of the 
same device near origin.  The δID/δVDS (dotted line) is plotted on y2- axis showing no 
current crowding, thus verifying the ohmic nature of the Mo-IGZO contact.   
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VDS values.  Figure 4.11(b) shows the ID-VDS data near the origin.  In case of non-ohmic 

contacts or high bulk defect density in semiconductor, these curves show non-linear 

response in this region generally referred to as “current crowding” [165].  The absence of 

current crowding suggests a good ohmic contact established between Mo and IGZO.  This 

can be easily seen in the derivative of output characteristics (dID/dVDS), on the y2-axis on 

Figure 4.11(b).  The dID/dVDS is linearly decreasing with VDS with no inflection point, 

which follows the gradual channel approximation theory of transistors [166] and confirms 

the ohmic behavior of the contact [59].  

4.3 IMPACT OF ANNEALING ON UNPASSIVATED TFTS 

Though there are reports of IGZO devices which demonstrate good characteristics without 

thermal treatment [150], [152], the effectiveness of annealing of IGZO TFTs to reduce sub-

gap states (e.g. oxygen vacancies, VO) and thus improve performance has been almost 

universally accepted [97], [103], [144].  Several groups have published results on annealing 

in various ambient conditions [97], [167].  While the IGZO properties will depend on the 

deposition process parameters such as sputter power [168] or oxygen partial pressure [152], 

the importance of subtle recipe details and the impact of annealing on contact performance 

have been understated in the literature.   

4.3.1 Oxidizing Ambient Annealing  

After determining that the post-metal anneal with Mo contacts produce better performing 

devices, the next step was to explore different anneal ambient and temperature.  Since air 

post-metal anneal at 350 °C produced reasonably better characteristics, for the next set of 
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devices, annealing was performed in air at 400 °C.  The transfer characteristics of TFT 

measured after anneal are shown in Figure 4.12.  The devices exhibited a significant loss 

in gate control, especially at high VDS.  The current drive of the device was higher, which 

is due to enhanced IGZO conductivity rather than a higher transconductance.  Although 

annealing in air should ideally reduce oxygen vacancy defects [103],  this aggressive 

oxidation treatment appears to actually generate additional defects which increases the free 

carrier concentration [169].   

This result was followed by additional Mo-contact post-metal anneal experiments 

using oxygen and nitrogen ambient at 400 °C, however ramp-down conditions were still in 

an air environment.  The ramp-down rate in air was approximately constant, decreasing 

 

Figure 4.12.  Transfer characteristics of a Mo-contact device following a post-metal air 
ambient anneal for 30 min at 400 °C.  The device shows distortion in characteristics 
due to over-oxidation.  The TFT channel dimensions were L = 21 µm & W = 100 µm. 
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from 400 °C to 150 °C over 3 h.  Figure 4.13 shows the overlay of saturation current after 

annealing at 400 °C for 30 min in either O2 or N2, along with the post-metal air anneal at 

350 °C shown previously in Figure 4.7.  The device parameters extracted from transfer 

characteristics are shown in Table 4-I.  

The post-metal N2 anneal with air ramp-down shows improvement over the air-

anneal result.  In contrast, the post-metal O2 anneal demonstrated degradation in both SS 

and on-state performance, with distortion indicating the presence of trap states.  This 

suggests that the degree of oxidation that takes place during the air-ambient ramp-down 

 

Figure 4.13.  Overlay of saturation-mode (VDS=10 V) transfer characteristics for Mo-
contact post-metal anneal treatments in air (350 °C), O2 (400 °C) and N2 (400 °C). 
Ramp-down conditions for each treatment were in air ambient.  The TFT channel 
dimensions were L = 9 µm & W = 100 µm.  Extracted parameters are listed in Table 
4-I.   
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following the N2 anneal is closer to the optimum conditions, thus both time and temperature 

in air ambient are important in establishing electrical behavior.  The N2 anneal treatment 

demonstrates a left-shift in VT compared to the other anneal treatment.  The channel 

mobility (µsat) and subthreshold (SS) show improvements over results listed in Table 4-I.    

The “standard” unpassivated IGZO TFT was established to have Mo contact 

metallurgy with post-metal N2/air anneal at 400 °C for 30 mins.  To clarify the role of N2 

during annealing, devices were annealed in N2 and ramped-down in O2 (for better 

environment control).  Results were compared with devices who were simply ramped down 

in O2 without any N2 soak time.  The mobility and SS for devices only ramped down in O2 

was inferior to the devices annealed in N2 and ramped down in O2.  The role of N2 soak-

time is to bring the IGZO channel to the appropriate state and anneal out the defect states 

created during sputter deposition.  The subsequent O2 ramp-down afterwards regulates the 

amount of VO in the film and reduces the number of charge carriers.  This establishes a 

semiconducting state of IGZO channel as confirmed by XPS analysis discussed in Section 

3.3.3.   

 

Table 4-I:  Parameters for Mo-contact IGZO TFTs with post-metal anneal treatments 
in air, O2 and N2 with ramp-down in air ambient.  

 VT (V) µsat (cm2/V∙s) SS (mV/dec) 

Air (350 °C) 1.0 2.7 250 

O2/air (400 °C) 1.1 1.9 420 

N2/air (400 °C) -0.4 9.5 120 
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4.3.2 Inert Ambient Annealing 

Mo-contact TFTs that were processed with a 400 °C post-metal anneal without being 

subjected to air or O2 above 150 °C reinforced the importance of the oxidizing ambient.  

IGZO film samples that were annealed at 400 °C in vacuum become very conductive, with 

a measureable sheet resistance of ~ 8 kΩ/□.  Transfer characteristics of TFTs that had 

annealing done in N2 or vacuum, including the ramp-down stage, demonstrated very little 

gate modulation as shown in Figure 4.14.   

 

 

Figure 4.14:  Transfer characteristics of IGZO TFT devices with a post-metal N2 
anneal (solid line) and vacuum anneal (dotted line) without any exposure to air during 
ramp-down.  The devices show no gate modulation due to high carrier concentration.   
The TFT channel dimensions were L = 21 µm & W = 100 µm.  
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4.4 GATE DIELECTRIC INVESTIGATION 

In the previous section, results of TFT with silicon dioxide as gate dielectric were 

discussed.  The devices showed good TFT characteristics.  Nevertheless, it was important 

to study the quality of this interface because the presence of interface defects at gate 

dielectric/IGZO interface can manifest itself during the transistor electrical response 

through degraded SS, shift in VT or hysteresis in transfer characteristics.  In literature, there 

have been reports on the application of various gate dielectrics such as alumina [170]–[173] 

and silicon nitride [122], [149], [161], [162], [174] and high permittivity dielectrics [51], 

[175]–[177] claiming improvements in device performance.   

This study involves an investigation on the choice of gate dielectric material on the 

transistor characteristics.  Devices were fabricated using the process described in Section 

4.1.1.  Silicon dioxide, silicon nitride and aluminum oxide were investigated as gate 

dielectric materials.  The electrical results are used to extract the interface defect states for 

different gate dielectrics/IGZO interface.   

4.4.1 Silicon Nitride / IGZO Interface 

A 100 nm silicon nitride is deposited by low pressure chemical vapor deposition (LPCVD) 

using SiH4 and NH3 precursors at 810 °C.  One sample with Si3N4 went through wet 

oxidation to grow a thin oxide over nitride (NO) to have an oxide interface with IGZO.  

Though the process is not glass compatible, the aim of this study was to explore the 

interface quality of nitride and NO with IGZO.  The transfer characteristics of such devices 

are shown in Figure 4.15.  For Si3N4 as gate dielectric, the ID-VGS curves show a crossover 

of low drain and high-drain characteristics where the high drain bias appears to have higher 
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threshold voltage (see Figure 4.15(a)).  This is in response to the slow traps present at the 

Si3N4/IGZO interface.  When the gate voltage is swept with drain voltage held at 0.1 V, 

these interface states capture the electrons and are filled during low drain sweep.  These 

defect states do not release the trapped electrons instantly.  During the high drain sweep, 

the trapped electrons repel the gate-induced electrons and make it less favorable for the 

gate to create an accumulation layer.  This manifests itself as an effective increase in the 

threshold voltage during the second sweep.   

The same device was tested again immediately and the results are plotted in Figure 

4.15(b).  During the second sweep (solid-blue curve), the characteristics are right shifted 

and show a perfect overlay (both high & low drain bias sweeps) with the very first sweep 

(dotted-red curve).  This verifies the electrons trapping at the interface during initial sweep 

of VGS and a positive shift in the characteristics for subsequent measurements.  The device 

again demonstrates this crossover when tested after a few minutes (not shown) because 

during the wait-time the traps release the captured electrons.  The characteristics are left 

shifted for Si3N4 gate dielectric compared to SiO2 dielectric due to the presence of positive 

fixed charges at the interface [122].  

The ID-VGS curves for TFTs with NO/IGZO interface, Figure 4.15(c), exhibit a 

perfect overlay of low and high drain bias curves.  The non-ideal behavior (crossing-over) 

was not observed even when the “short” integration time was used for measurement.  This 

suggests that either the surface states are absent or “fast” surface states are present which 

do not affect the normal operation of transistor.  The characteristics are shifted to right 

suggesting the absence of the positive charges present in case of Si3N4.  The NO interface 
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shows improved device operation compared to nitride interface, but the characteristics are 

inferior to SiO2 as gate dielectric.    

  

 

 
Figure 4.15:  (a) Transfer characteristics of IGZO TFT with Si3N4 as the gate dielectric.  
The characteristics for Si3N4 are left shifted due to the presence of positive fixed charge 
at the nitride/IGZO interface.  The low and high drain biases crossover suggests the 
presence of slow traps at the interface. (b) The same device retested immediately (blue 
solid line).  No crossover between low and high drain biases is observed because the 
electrons captured at the interface states during the first test-sweep are not released 
and therefore subsequent testing shows perfect overlay with initial high-drain bias data. 
(c) ID-VGS data for oxynitride interface showing right shifted characteristics compared 
to (a) and no crossover suggesting the absence of slow traps at NO/IGZO interface.     
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4.4.2 Aluminum Oxide / IGZO Interface 

Alumina is deposited by e-beam assisted evaporation process and atomic layer deposition 

(ALD).  The application of 100 nm evaporated alumina as the gate dielectric yielded 

devices with very high leakage and could not be turned off even at VGS = -10 V (data not 

shown).  The evaporated alumina film has pinholes that provide the paths for leakage.  

Therefore, a SiO2/AlOX bilayer was used as the gate dielectric.  The representative transfer 

characteristics are shown in Figure 4.16(a).  Much like Si3N4/IGZO devices, the TFT 

exhibits the presence of slow traps at the interface, evident from the cross-over between 

low and high drain bias sweeps.  From the right-shifted transfer characteristics of these 

devices, it is apparent that AlOX may retain more negative fixed charge at the IGZO 

interface.  The presence of negative charge will push away the electrons and a higher gate 

bias will be needed to create the same accumulation charge in the channel.     

ALD alumina was deposited in a TFS 500 Beneq, single wafer system using 

trimethylaluminum (TMA) and water as precursors.  A 20 nm ALD Al2O3 film was 

deposited on TEOS SiO2.  The TFT shows excellent transfer characteristics, Figure 4.16(b), 

with perfect overlay of low and high drain bias.  The subthreshold swing for ALD Al2O3 

devices is steep and the interface appears to be as good as SiO2/IGZO interface.   
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4.4.3 Density of States (DOS) Calculation 

The SS of transistor is related to the density of sub-gap states (DS) through following 

relations [103], [163], [178]: 

 𝐷𝐷𝑆𝑆 = 𝐶𝐶𝑜𝑜𝑜𝑜 �
𝑆𝑆𝑆𝑆

ln(10) . (𝑘𝑘𝐵𝐵𝑇𝑇)
−

1
𝑞𝑞�

 (4.3) 

 
𝐷𝐷𝑆𝑆 = � 𝑁𝑁𝑏𝑏𝑑𝑑𝑑𝑑

𝑑𝑑

0
+ 𝑁𝑁𝑖𝑖𝑖𝑖 (4.4) 

where Cox is gate capacitance per unit area, kB is Boltzmann constant, q is electronic charge, 

Nb is the bulk charge density due to OV donor states and Nit is the interface defect state 

density and d is the IGZO thickness.  Assuming Nb distribution is constant across the 

thickness of IGZO, Equation (4.4) can be simplified to [103], [178]:   

 

Figure 4.16:  Transfer characteristics of TFTs fabricated using (a) SiO2/AlOX 
(evaporated) and (b) SiO2/Al2O3 (ALD) as the gate dielectric.  AlOX exhibited slightly 
right-shifted characteristics which may be due the creation of negative fixed charge at 
AlOX/IGZO interface.  The crossover of low and high drain bias sweeps is attributed to 
the presence of slow trap states at the gate dielectric/IGZO interface.  ALD alumina 
interface seems to be free from the slow traps operative in evaporated alumina 
interface. 
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 𝐷𝐷𝑆𝑆 = 𝑁𝑁𝑏𝑏. 𝑑𝑑𝑠𝑠 + 𝑁𝑁𝑖𝑖𝑖𝑖 (4.5) 

Note that these calculations assume Nb and Nit are independent of energy [179].  However, 

it can still be used for a comparative study and extracting an approximate DOS.  To extract 

Nit from Equation (4.5), value of Nb is required which can be calculated from TFT data 

with different IGZO thickness.  Figure 4.17 shows the transfer characteristics of standard 

TFTs with 30 nm and 50 nm IGZO thickness.   

Using Equation (4.3), DS values for both IGZO thicknesses is calculated with the 

values shows in Table 4-II.  Using these values of DS in Equation (4.5) and assuming Nit 

constant for both cases, NB can be calculated.  This assumption is reasonable because the 

IGZO channel material is deposited on the gate dielectric, which is same in both cases.   

 

 
Figure 4.17:  Transfer characteristics of TFTs with (a) 30 nm and (b) 50 nm thick IGZO 
channel.    
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The extracted value of NB = 3.5×1016 cm-3 is used for extracting the interface defect 

density from Equation (4.5) for different dielectric.  The value of Nb is assumed constant 

for each gate dielectric, which is a reasonable assumption as IGZO was deposited over the 

dielectric and therefore the bulk properties of IGZO should not be affected by different 

gate-dielectric deposition process.  The threshold voltage shift between low and high drain 

(∆VLH) can be used to approximate the density of slow traps at the interface (Ntr.sl) using 

[69]:  

 𝑁𝑁𝑡𝑡𝑡𝑡.𝑠𝑠𝑠𝑠 =
∆𝑉𝑉𝐿𝐿𝐿𝐿
𝑞𝑞

. 𝐶𝐶𝑂𝑂𝑂𝑂 (4.6) 

Table 4-III shows the SS and ∆VLH values for various gate dielectric employed in 

this study.  The density of the slow traps is extracted using Equation (4.6).  The extracted 

density of states and slow traps are shown in Table 4-IV.     

 

Table 4-II:  Density of sub-gap states calculated from SS values using Equation (4.3).   

IGZO thickness 
(nm) 

SS  
(mV/dec) 

Ds  
(cm

-2
) 

30 100 1.5×10
11 

50 120 2.2×10
11 
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*Note this method is not reliable for Nit < 5×1010 cm-2.    

These calculations use some simplifications in terms of the defect density 

distribution in the channel region and therefore do not provide the exact distribution of 

density of states.  In spite of the simplifications, these results are still insightful for a 

comparative study of different dielectric/IGZO interfaces.  Nevertheless, the order of 

Table 4-III:  Extracted parameters for various gate dielectrics used to calculate the 
interface trap density and amount of charge in slow traps. 

Gate dielectric/interface SS (mV/dec) ∆VLH (V) 

PECVD SiO2 (O) 120 0.0 

Si3N4 (N) 250 0.4 

Oxynitride (NO) 175 0.0 

SiO2/AlOX (evaporated) 150 0.5 

SiO2/Al2O3 (ALD) 125 0.0 

 

Table 4-IV: Interface defect density (Nit) and charge in slow traps (Ntr.sl) for different 
gate dielectric choices.    

Gate dielectric/interface Nit (cm-2) Ntr.sl (cm-2) 

PECVD SiO2 (O) 4.5×1010 * NA 

Si3N4 (N) 1.2×1012 1.7×1011 

Oxynitride (NO) 6.7×1011 NA 

SiO2/AlOX (evaporated) 1.7×1011 1.2×1011 

SiO2/Al2O3 (ALD) 7.8×1010 NA 
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magnitude of the states is consistent with TCAD simulation, which uses a more realistic 

distribution of the defect states in the band gap as discussed in Chapter 5.   

4.5 BACK-CHANNEL PASSIVATION OF IGZO TFT 

The exposed back-channel for bottom-gate TFTs promotes instability in device behavior 

due to the interaction with atmospheric conditions (e.g. oxygen, humidity) [108], [180].  

The transfer characteristics of a standard TFT after a month of room ambient storage are 

shown in Figure 4.18.  The characteristics shift left over time suggesting a more conductive 

channel due to absorption of moisture [180].  Therefore a passivation layer is required for 

device stability and process integration.   

However, complexities in process integration and issues with device stability have 

been challenging to overcome [62], [108], [142], [180], [181].  The surface of IGZO is 

very sensitive to deposition conditions of passivation materials; the passivation process 

compromises the TFTs performance due to subjecting the IGZO back channel to exposure 

of some combination of vacuum, plasma, and elevated temperature [62], [142], [182].  In 

general additional oxygen vacancies are created which renders the IGZO conductive, and 

can be reversed by annealing in oxidizing ambient conditions [62], [142], [181].  In this 

section, investigation on silicon dioxide and aluminum oxide as materials for back-channel 

passivation is presented.   
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4.5.1 Process Integration 

TFTs were fabricated using the baseline fabrication process for unpassivated devices as 

presented in Section 4.1.1.  Silicon oxide was deposited using RF sputtering and PECVD.  

Alumina was deposited by e-beam evaporation and ALD.  Contact openings through 

silicon oxide and ALD alumina were etched using an HF solution.  E-beam evaporated 

alumina was patterned by lift-off resist process.  The schematic cross-section of the 

fabricated device is shown in Figure 4.19.   

 

 

Figure 4.18:  Transfer characteristics of standard unpassivated IGZO TFT tested a day 
after annealing (dotted) and after a month of storage in room-ambient (solid). 
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4.5.2 Aluminum Oxide Passivation 

ALD alumina has been reported to provide good passivation for oxide semiconductor TFTs 

[26], [142], [197].  Alumina was deposited using TFS 500 Beneq system with 

trimethylaluminum (TMA) and water as precursors at 200 °C.  After deposition of alumina, 

“standard” working devices did not show any gate modulation due to a low resistivity value 

of ρ~0.003 Ω∙cm of channel, Figure 4.22a.  The conductivity of the IGZO channel is 

increased during ALD which is performed at 200 °C in vacuum.  It has been shown 

previously that IGZO films annealed in vacuum exhibit higher conductivity due to the 

creation of VO [97].  Also water, used as a precursor, could also contribute to the increased 

conductivity as it has been reported to behave as a donor in IGZO [121], [142], [180].  

Regardless of the mechanism of enhanced conductivity, it was irreversible even with the 

aggressive anneal treatment (4 h in O2 at 400 °C) because of the high integrity of the thin 

ALD alumina layer.  Due to their excellent properties as a barrier to oxidants, ALD alumina 

films were later used for encapsulation of final devices, see Section 7.3.1.    

 

Figure 4.19:  Cross-section schematic of a bottom-gate IGZO TFT with back-channel 
passivation material.   
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Evaporated alumina has been used for passivation of IGZO TFTs [159].  E-beam 

evaporation of alumina was investigated for the passivation of IGZO TFTs.  The device 

showed poor characteristics after the passivation material deposition.  The TFTs showed 

improvement after an anneal at 400 °C for 30 min in air ambient.  The transfer 

characteristics of annealed TFT are shown in Figure 4.20b. 

While TFTs with passivation material offer improvements in stability and 

resistance to aging, they often have an increased sensitivity to back-channel defects that is 

not apparent on TFTs without passivation material.  Exposure of an unprotected back-

channel to chemicals involved in lithographic patterning and contact metallization may 

compromise device performance, thus process activity before application of back-channel 

protection should be avoided.   

 

Figure 4.20:  (a) Sheet resistance (solid line) of IGZO after ALD alumina passivation 
(b) Transfer characteristics of evaporated alumina passivated TFTs. Both 
measurements were taken after a 30 min anneal at 400 °C in air ambient.    
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A two-step passivation method has been employed to address the effects of process-

induced surface degradation.  Annealing conditions have been modified to account for 

observed differences in oxidant transport.  In the original process#1 the passivation 

material (option for standard devices) has been deposited at the end of fabrication, while 

in the modified two-step process#2 a thin 20 nm layer of alumina is deposited after IGZO 

sputtering to protect the back-channel surface, with a thicker 80 nm application at the end 

of fabrication.   

Process#2 devices exhibit better µsat and SS values compared to devices fabricated 

using process#1 (compare Figure 4.20b and Figure 4.21).  This improvement is attributed 

to a superior back-channel condition due to protection from chemical or physical exposure 

during processing.  The subthreshold performance is comparable to unpassivated devices.  

While the channel mobility was lower than the unpassivated devices, this result may be 

due, in part, to process variation of physical parameters.  To determine the influence of 

aging, passivated devices stored for more than six months in room ambient were tested, 

with a near-perfect overlay shown in Figure 4.21.  A variant of process#2 that investigated 

the influence of an intermediate anneal following the 20 nm AlOX application produced 

inferior results and was not pursued further.  
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Though the ID-VGS characteristics of process#2 AlOX passivated devices look very 

promising, further processing on these devices at T > 150 °C shifted the transistor 

characteristics.  This is attributed to the inferior quality of e-beam evaporated AlOX films, 

which ironically enabled the anneal to adjust the IGZO electronic properties.  Therefore, 

further attempts were focused on establishing a process for SiO2 passivated IGZO 

transistors.      

4.5.3 Silicon Oxide Passivation 

Silicon oxide deposited using sputter, evaporation and PECVD was investigated for the 

passivation of IGZO TFT back-channel.  A 100 nm quartz film was sputtered on a working 

 

Figure 4.21:  Process#2 device with 100 nm evaporated alumina (combined 20 nm + 
80 nm), solid line.  A comparison of I-V characteristics taken over six months of aging 
(square) demonstrates near-perfect overlay.  Differences in the off-state leakage are 
attributed to voltage sweep conditions.   
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TFT which made IGZO channel extremely conductive.  The sheet resistance measured on 

the Van der Pauw structure is shown in Figure 4.22(a).  Plasma exposure of IGZO film 

created defect states in IGZO channel which increased the conductivity of the films [112], 

[183].  E beam evaporated quartz also decreased the resistivity of channel, Figure 4.22b.     

Silicon dioxide, deposited using AMAT P5000 plasma enhanced chemical vapor 

deposition (PECVD) tool at 390 °C using tetraethyl orthosilicate (TEOS) precursor, was 

investigated for IGZO TFT passivation.  After a 100 nm PECVD SiO2 deposition, a typical 

“standard” unpassivated device showed no gate control due to low resistivity of the 

channel.  Figure 4.23 shows the ID-VGS characteristics along with the sheet resistance 

measured using 4 pt. probe analysis.  The resistivity values of the IGZO film is very low 

which explains the absence of any channel charge modulation by the gate.  PECVD is a 

plasma process and exposing the IGZO back-channel to the plasma creates a high degree 

of defect states in the IGZO channel and interface, thereby increasing the conductivity of 

the IGZO film [109], [183].   Passivation using PECVD deposited SiO2 rendered the IGZO 

 

Figure 4.22:  Sheet resistance of IGZO film after (a) sputter deposition of quartz and 
(b) e-beam evaporation of quartz.  Sheet resistance values (solid line) are plotted on 
y2-axis.  The sputter process made IGZO highly conductive.  
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Figure 4.23:  (a) Transfer characteristics of PECVD SiO2 passivated IGZO TFT.  The 
devices did not show any gate modulation and could not be turned off due to very high 
conductivity of the channel.  (b) Sheet resistance (dashed line) measurement on the Van 
der Pauw structure.  
 

 

Figure 4.24:  Transfer characteristics of PECVD SiO2 passivated TFT. An aggressive 
anneal was required for PECVD SiO2 passivated devices.   
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channel very conductive (ρ = 0.003 Ω·cm).  The devices did not exhibit any gate control 

after the 30 min 400 °C anneal established for AlOX passivation.  This suggests that the 

30 min anneal is not sufficient to reduce the VO.  A longer 4 h anneal in O2 ambient at 

400 °C produced working TFTs with characteristics shown in Figure 4.24.      

4.6 CONCLUSION 

The details of various annealing processes on Al-contact and Mo-contact IGZO TFTs have 

been presented.  The annealing ambient and arrangement of process steps were found to 

have a significant influence on the contact behavior and electrical characteristics of TFTs.  

Pre-metal annealing in air ambient resulted in similar ID-VGS characteristics on Mo-contact 

and Al-contact devices.  A post-metal anneal for Mo-contact devices resulted in higher on-

state current and steeper subthreshold slope, whereas the Al-contact devices experienced 

severe degradation suggesting the formation of an AlOX interface layer.  While simulations 

suggest that Mo-contact to IGZO should result in a potential barrier, actual Mo-contacts 

demonstrated low resistance ohmic behavior, most likely due to M-S interface states that 

help facilitate carrier injection. 

Mo-contact TFTs with post-metal anneal treatments typically demonstrated 

performance improvements over pre-metal anneal treatments.  However, certain treatment 

combinations, such as annealing in air at 400 °C, resulted in degraded characteristics.  

These results suggest that there is an optimum degree of oxidant exposure that may be 

realized by the right combination of time and temperature, thus resulting in a low 

concentration of defect states.  Annealing in an inert ambient at 400 °C followed by a ramp-

down in air demonstrated improvements in both on-state and off-state performance.  The 
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role of the oxidizing ambient ramp down was found to be crucial for yielding such high 

quality IGZO transistors.  The lack of oxidizing ambient during annealing renders the 

IGZO too conductive to be used as a channel layer material for TFT applications; attributed 

to the level of oxygen vacancies.   

Standard unpassivated TFTs became extremely conductive after application of 

passivation material (see Table 3-III), thus an anneal-last process integration strategy was 

necessary.  ALD alumina was incompatible with an oxidizing ambient anneal to establish 

the semiconducting properties of IGZO.  Passivated TFTs with evaporated AlOX resulted 

in transfer characteristics with slight degradation in SS and µsat compared to unpassivated 

devices.  The two-step alumina passivation process resulted in high performance passivated 

TFT characteristics, with a notable reduction in interface trap density to NIT ~ 1011 cm-2.  

Alumina passivated devices showed good transfer characteristics however subsequent 

processing demonstrated instability.  A preferred process using PECVD SiO2 back-channel 

passivation with adjusted annealing conditions demonstrated improved stability with only 

slight compromise in subthreshold performance.  This result became the foundation for 

further study in alternative passivation schemes and device configurations as will be 

discussed in subsequent chapters.   
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Chapter 5. IGZO MATERIAL MODELING FOR 
TCAD SIMULATION 

IGZO exhibits n-type conductivity due to the presence of defects viz. oxygen vacancies 

(VO).  The process variables may contribute to the defect levels and degrade the transistor 

characteristics; therefore, it is important to understand the influence of these defects on the 

device operation.  Device simulation captures the influence of each variable on the 

transistor operation independently.  Furthermore, it allows visualization of various physical 

effects such as the potential distribution in the TFT channel region and defect state 

occupancy, which assists in understanding the underlying physics of defect mechanisms.   

There has been a significant amount of work published on the extraction of defect 

state parameters by applying analytical solutions to measured C-V and I-V characteristics 

on TFT structures [184]–[186].  While this may lead to a reasonable match between 

measured and simulated I-V and C-V characteristics, these techniques are limited in the 

allowable degrees of freedom.  Typically, such models do not differentiate between bulk-

film defects and interface defects (e.g. fixed charge, interface traps) which may dominate 

non-ideal behavior [185], [187], [188].  Analytical solutions are mathematically very 

complex and require several assumptions and simplifications to reach to a closed form 

solution, which is not required for TCAD simulation.    

In this chapter, the correlation between I-V and C-V measurements taken on TFTs 

and interdigitated capacitors (IDCs) respectively is presented.  The IGZO material model 

is presented, with details on the density of states (DOS) distribution within the energy band 
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gap.  The Silvaco® Atlas™ TCAD device simulator has been used for simulation.  The 

bulk defect material model is refined using the I-V and C-V characteristics of unpassivated 

devices, with further modification and the inclusion of interface states needed to represent 

the operation of passivated TFTs due to the existence of back-channel defects as discussed 

in Section 4.5.   

Amorphous materials have a high density of sub-gap states due to incomplete 

bonding, random arrangements of atoms and variations in bonding angle [12].  The Atlas 

TFT module allows the energy distribution of states to be defined, which is essential for 

accurate simulation of disordered material systems such as IGZO.  Amorphous 

semiconductor trap states can be donor-like or acceptor-like, and are described by 

exponentially decaying band-tail states, and deep states following a Gaussian distribution.  

The following four functions serve as the mathematical definition of the trapping 

mechanisms in a disordered channel film for a TFT.  For the numerical analysis in ATLAS, 

these densities of states are defined as [189]:  

 

𝑔𝑔𝑇𝑇𝑇𝑇(𝐸𝐸) = 𝑁𝑁𝑇𝑇𝑇𝑇 exp �
𝐸𝐸 −  𝐸𝐸𝑐𝑐
𝑊𝑊𝑇𝑇𝑇𝑇

� (5.1) 
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• 𝑔𝑔𝑇𝑇𝑇𝑇(𝐸𝐸) and 𝑔𝑔𝑇𝑇𝑇𝑇(𝐸𝐸) represent the density of acceptor-like conduction band-tail 

states and donor-like valence band-tail states, respectively 

• Ec and Ev are energy levels at the conduction band (CB) and valance band edge 

(VB) 

• NTA (NTD) is the density of acceptor-like (donor-like) states in the tail 

distribution at the conduction band (valence band) edge 

• WTA (WTD) is the characteristic decay energy of conduction (valance) band-tail 

states  

•  𝑔𝑔𝐺𝐺𝐺𝐺(𝐸𝐸) and 𝑔𝑔𝐺𝐺𝐺𝐺(𝐸𝐸) represent the density of acceptor-like and donor-like states 

(oxygen-vacancies, VO)  

• NGA (NGD) is the peak value for acceptor-like (donor-like) states, defining a 

Gaussian distribution  

• EGA (EGD) is the mean energy defining a Gaussian distribution for acceptor-like 

(donor-like) states 

• WGD (WGD) is the standard deviation of Gaussian distribution for acceptor-like 

(donor-like) states.   

Once the DOS is defined using Equations (5.1)-(5.4), the density of ionized acceptor and 

donor-like states is given by [189]: 

 
𝑝𝑝𝑇𝑇 = � 𝑔𝑔𝑇𝑇𝑇𝑇(𝐸𝐸) ∙ 𝑓𝑓𝑇𝑇𝑇𝑇(𝐸𝐸, 𝑛𝑛, 𝑝𝑝)𝑑𝑑𝑑𝑑

𝐸𝐸𝑐𝑐

𝐸𝐸𝑣𝑣

+ � 𝑔𝑔𝐺𝐺𝐺𝐺(𝐸𝐸) ∙ 𝑓𝑓𝐺𝐺𝐺𝐺(𝐸𝐸, 𝑛𝑛, 𝑝𝑝)𝑑𝑑𝑑𝑑

𝐸𝐸𝑐𝑐

𝐸𝐸𝑣𝑣

 (5.5) 
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𝑛𝑛𝑇𝑇 = � 𝑔𝑔𝑇𝑇𝑇𝑇(𝐸𝐸) ∙ 𝑓𝑓𝑇𝑇𝑇𝑇(𝐸𝐸, 𝑛𝑛, 𝑝𝑝)𝑑𝑑𝑑𝑑

𝐸𝐸𝑐𝑐

𝐸𝐸𝑣𝑣

+ � 𝑔𝑔𝐺𝐺𝐺𝐺(𝐸𝐸) ∙ 𝑓𝑓𝐺𝐺𝐺𝐺(𝐸𝐸, 𝑛𝑛, 𝑝𝑝)𝑑𝑑𝑑𝑑

𝐸𝐸𝑐𝑐

𝐸𝐸𝑣𝑣

 (5.6) 

where 𝑓𝑓𝑇𝑇𝑇𝑇(𝐸𝐸, 𝑛𝑛, 𝑝𝑝) and 𝑓𝑓𝐺𝐺𝐺𝐺(𝐸𝐸, 𝑛𝑛, 𝑝𝑝) are the ionization probabilities for the tail & Gaussian 

acceptor states and 𝑓𝑓𝑇𝑇𝑇𝑇(𝐸𝐸, 𝑛𝑛, 𝑝𝑝)and 𝑓𝑓𝐺𝐺𝐺𝐺(𝐸𝐸, 𝑛𝑛, 𝑝𝑝) are the ionization probabilities for the 

donor states. 

The above equations for ionized trap states consider a continuous distribution of 

defect states.  When using discrete energy levels, the integral terms are replaced by 

summations over the number of discrete energy levels, defined by NUMA and NUMD for 

acceptor and donor states respectively. 

  
𝑝𝑝𝑇𝑇 = � �𝑓𝑓𝑇𝑇𝑇𝑇(𝐸𝐸𝑖𝑖, 𝑛𝑛, 𝑝𝑝) ∙ � 𝑔𝑔𝑇𝑇𝑇𝑇(𝐸𝐸)𝑑𝑑𝑑𝑑

+∞

−∞

+ 𝑓𝑓𝐺𝐺𝐺𝐺(𝐸𝐸𝑖𝑖, 𝑛𝑛, 𝑝𝑝)
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=0

∙ � 𝑔𝑔𝐺𝐺𝐺𝐺(𝐸𝐸)
+∞

−∞

𝑑𝑑𝑑𝑑)� 

(5.7) 

 

 
𝑛𝑛𝑇𝑇 = � �𝑓𝑓𝑇𝑇𝑇𝑇(𝐸𝐸, 𝑛𝑛, 𝑝𝑝) ∙ � 𝑔𝑔𝑇𝑇𝑇𝑇(𝐸𝐸)𝑑𝑑𝑑𝑑

+∞

−∞

+ 𝑓𝑓𝐺𝐺𝐺𝐺(𝐸𝐸, 𝑛𝑛, 𝑝𝑝)
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=0

∙ � 𝑔𝑔𝐺𝐺𝐺𝐺(𝐸𝐸)𝑑𝑑𝑑𝑑
+∞

−∞

� 

(5.8) 

 

The default model parameters used in Atlas for IGZO material are given in Table 

5-I.  The difference between the continuous and discrete trap state distribution is shown in 

Figure 5.1, using the parameters from Table 5-I.     
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For solutions with a continuous distribution of defect states, Atlas defaults to 

mathematical interpolation, and thus defects defined by a discrete trap states distribution is 

preferred.  Optimized settings of 128 and 64 levels for acceptor and donor states, 

respectively, were implemented which balanced the tradeoff between accuracy and 

simulation run-time [148]. The increased accuracy in using a discrete DOS distribution 

compared to a continuous distribution is shown in Figure 5.1; most evident in the 

comparison of Gaussian distributed states.  Increasing the number of these levels to 512 

drastically increased the simulation run-time by a factor of twenty (e.g. 3 hour vs. 10 min) 

with a negligible difference in simulation results.   

Table 5-I:  Model parameters used for IGZO material.  The notation in brackets is used 
to be consistent with the earlier notations used e.g. VO for oxygen vacancies.   

Symbol Value 

Band gap 3.05 eV 

Electron affinity 4.16 eV 

Relative permittivity 10 

Intrinsic Electron mobility 15.0 cm
2
/V·s 

VO (Gaussian) 

NGD (NVo) 6.5×10
16

 cm
-3

eV-1    

EGD (EVo) 2.9 eV 

WGD (WVo) 0.1 eV 

Band-Tail States 

NTA (CBTN) 1.55×10
20

 cm
-3

eV-1 

WTA (CBWN) 0.013 eV 

NTD (VBTP) 1.55×10
20

 cm
-3

eV-1 

WTD (VBWP) 0.12 eV 
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Additional material model parameters were defined to represent electrical 

properties.  A constant-mobility model was used which is taken to be independent of 

doping concentration, carrier densities and electric field.  The Schottky contact model was 

used to define the effective contact potential between the contact metal and IGZO.  

Regarding carrier statistics, the Fermi-Dirac model was implemented to account for 

degenerate semiconductor behavior [148].   

5.1 DEVICE SIMULATION 

The default defect distribution in IGZO material is shown in Figure 5.1b.  Acceptor-like 

and donor-like tail states are defined using exponential distribution, plotted on y1-axis.  VO 

are represented by Gaussian like distribution of donor states near the CB (y2-axis).  Figure 

5.2 shows a representation of defect states in the IGZO energy band gap.  The band-tail 

states extend from VB and CB while VO is represented by the Gaussian distribution very 

 

Figure 5.1:  Density of states (DOS) distribution in the energy gap of IGZO in Atlas 
simulation.  (a) By default a continuous distribution of states is used which solves 
Equations (5.5) and (5.6) for optimizing the run-time but loses accuracy.  (b) Defining 
discrete levels gives user control over the trade-off in run-time and accuracy.   
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close to the CB.  Figure 5.2b shows the Fermi level (EF) location, with respect to EC and 

Ev, as a function of gate voltage (VGS); details of device structure to follow. 

5.1.1 Simulation Structure 

The TCAD structure film thicknesses are consistent with actual fabricated device describes 

in Section 4.1.1.  The device structure and mesh configuration used for simulation are 

shown in Figure 5.3, with modifications in source/drain regions (e.g. contact dimensions, 

gate overlap) that enabled reasonable simulation time without compromise in simulation 

accuracy.  The gate and S/D overlap of 1 µm is used.  In fabricated TFTs this overlap is 

4 µm, however, decreasing it to 1 µm did not change the simulation results.  Therefore an 

overlap of 1 µm is used to reduce the simulation time.  A channel length of L=3 µm is used 

 

Figure 5.2:  (a) Schematic representation of defect distribution in IGZO material.  (b) 
Simulated location of EF, with respect to EC and EV, as a function of gate voltage.   
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for explaining the structure and model parameters effect as it reduces the computing time.  

Molybdenum was used as the gate metal defined by the work function (ϕMo = 4.53 eV).  

For S/D contact regions the metal work function was set to ϕM = 4.13 eV (ϕM of aluminum) 

to accurately represent the true M-S contact which is dominated by interface states and 

demonstrates ohmic behavior, explained in detail in Section 4.2. 

The electron concentration across the IGZO channel, for the default defect 

distribution, is shown in Figure 5.4 for zero bias condition.  Due to difference in metal 

work-function, the IGZO regions below S/D show accumulation of electrons near the 

contacts.  The Mo gate electrode creates slight depletion region towards the IGZO/SiO2 

interface for the same reason.  The electron concentration in the bulk IGZO is around 

 

Figure 5.3:  Cross-section of BG TFT structure showing the mesh used for simulation.  
Finer mesh is used in IGZO channel and at IGZO/SiO2 interface for improved 
accuracy.  The channel length is 3 µm.  The gate and S/D overlap is 1 µm. 

 



    Chapter 5: IGZO Material Modeling for TCAD Simulation 

 

98 
 

6.5×1016 cm-3 as defined by the VO.  The extracted interface trap density from subthreshold 

swing was less than 5×1010 cm-2, see Section 4.4.3, which is practically negligible.  

Therefore the IGZO/SiO2 gate dielectric interface is treated to be free from any fixed charge 

or interface traps.   

5.1.2 Electrical Results 

The simulated ID-VGS characteristics of the device structure shown in Figure 5.3 are shown 

in Figure 5.5.  The electrical results show transistor operation with steep SS and a negative 

turn-on voltage.  Figure 5.6 shows the current density at VGS =10 V and VDS =0.1 V near 

the drain electrode.  It can be seen that majority of the current flow near the IGZO/SiO2 

interface.  In addition, the current flow extends only to 0.3 µm below the drain current, 

which validates the reduction in gate to S/D overlay from 4 µm to 1 µm.   

 

Figure 5.4:  Electron concentration contours in IGZO channel for zero bias condition.  
The default defect distribution is used.  Higher electron density near the S/D metal 
(aluminum) is due to the M-S workfunction difference.       
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Figure 5.5:  Simulated transfer characteristics of IGZO TFT using the default material 
model. ( L=3 µm and W=100 µm) 

 

 

Figure 5.6:  Current density in IGZO channel region near drain, at VGS=10 V and 
VDS=0.1 V.  Majority of the current flows near the IGZO/SiO2 interface.  The current 
flow extends to ~0.3 µm below the drain electrode.  (L=3 µm and W=100 µm) 
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5.2 ROLE OF MATERIAL MODEL PARAMETERS 

This section discusses the influence of defect state parameters on transistor operation.  

Transfer characteristics of simulated TFTs using the default IGZO material model are 

presented. 

5.2.1 Oxygen Vacancies (VO) 

The VO are treated as donor-like states placed very close to the conduction band.  They are 

defined by three parameters, NVo represents the peak of VO, EVo defines the average energy 

of these vacancies measured from EV and WVo represents the width of the Gaussian 

distribution of VO.  Changing the density of VO (NVo), while keeping all other parameters 

constant, causes a left shift in I-V characteristics, as shown in Figure 5.7.  VO in essence 

act as donor ions in IGZO.  Increasing NVo makes IGZO lose its semiconductor properties 

and behave more like a metal.  The TFT performance is extremely sensitive to the NVo 

values; for NVo > 1×1018 cm-3eV-1, a complete loss of gate control over the channel is 

observed.  Such behavior was observed experimentally for unpassivated devices annealed 

in absence of oxidizing ambient (i.e. N2 or vacuum); see Section 4.3.2.   

The effect of the energy distribution of VO is shown in Figure 5.8.  As the mean 

energy of VO (EVo) moves away from the CB (i.e. EVo < 2.9 eV), the device characteristics 

show distortion in the subthreshold regime.  This distortion disappears for EVo < 2.2 eV.  

The characteristics are shifted towards higher threshold voltage, and lose dependence on 

the EVo value.  This can be explained based on the ionization of VO with VGS as shown in 

Figure 5.9.  For the default material model (EVo = 2.9 eV), the EF lies at 0.16 eV below EC.  

At this point the VO (0.15 eV below Ec) are ionized.  With the increase in VGS, EF moves 
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closer to the EC and these states start trapping electrons.  For EVo =2.9 eV, this occurs in 

the device on-state (VGS = -0.5 V) and the influence of this trapping is minimal in the device 

characteristics.  The channel region is in accumulation mode and the trapping causes only 

an order of magnitude reduction in donor state.  When the position of these VO is changed, 

such as to EVo = 2.5 eV, the EF crosses over the VO during the subthreshold region 

(VGS = 0 V).  The trapping of electrons by the donor type VO causes a noticeable decrease 

in effective electron concentration and therefore results in a distortion in the subthreshold 

region.  The resultant doping decreases by eight orders of magnitude.  For EVo = 2.0 eV, 

the donor states are already filled with electrons in the off-state which reduces the net 

electron concentration in the channel.  This decrease in effective doping leads to a shift of 

EF away from EC and therefore a positive shift in the transfer characteristics is observed.  

So depending on the location of VO in the band gap, they can act either as 

 

Figure 5.7:  Influence of NVo on the transfer characteristics of IGZO TFTs (VDS = 0.1 V).  
A parallel shift in characteristics is seen with no appreciable change in current drive 
when NVo was varied from 1×1014 cm-3eV-1 to 1×1016 cm-3eV-1.  For NVo > 
1×1018 cm-3eV-1 a complete loss in gate control is observed.  (L=3 µm and W=100 µm) 
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electron donor or as trapping sites.  The VO can be regulated by the thermal anneal process 

[190]. 

5.2.2 Band-Tail States 

Band-tail states are defined using a peak density (CBTN) of 1.55×1020 cm-3eV-1 at the CB 

edge and a slope (CBTW) of 0.1 eV.  The effect of changing the CBTN is shown in Figure 

5.10.  When the VGS increases, the EF moves closer to the EC and the acceptor like tail states 

start filling by trapping the accumulated electrons.  This results in a lower level of 

accumulation charge and a lower transconductance (gm) until the electron traps are full, 

and is responsible for the concave-up transfer characteristic as shown in the inset.  This 

kind of behavior is characteristics of amorphous semiconductor materials which makes the 

 

Figure 5.8:  Influence of EVo on the transfer characteristics of IGZO TFT (VDS = 0.1 V).  
As the location of VO moves away from Ec, the characteristics show distortions.  
(L=3 µm and W=100 µm)  
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conventional device modeling and parameter extraction procedures inapplicable  [163], 

[191].  A complete discussion on this is provided in Chapter 6.     

The influence of CBTW on device performance is shown in Figure 5.11.  The on-

state current drive decreases with increasing the slope of tail states.  The total density of 

acceptor like traps increases by increasing the slope of the tail states.  Therefore more 

electrons are trapped which causes a decrease in current.  The transition from subthreshold 

to on-state also suffers.  This is because the gate accumulated electrons start trapping in the 

tail states at lower VGS.  This leads to an effective drop of accumulation charge earlier.   

 

 

Figure 5.9:  Ionized VO (y1-axis) plotted against VGS at VDS=0.1 V.  As VGS increases, 
the EF moves closer to EC, filling more VO and thereby reducing the density of ionized 
VO.  When EF crosses EVo, VO start behaving like electron traps.  If the trapping occurs 
in the subthreshold region, it manifests itself as a distortion in the transfer 
characteristics (e.g. for EVo =2.5 eV, y2-axis). (L=3 µm and W=100 µm)  
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Figure 5.10:  Influence of CBTN on the transfer characteristics of IGZO TFT 
(VDS = 0.1 V).  As the tail states density increases, more electrons are trapped and the 
on-state current lowers.  This causes a concave-upwards curvature in drain current as 
shown in the inset for CBTN =1×1021 cm-3eV-1.  (L=3 µm and W=100 µm)  
 

 

 

Figure 5.11:  Influence of CBTW on the transfer characteristics of IGZO TFTs.  As 
CBTW increases, the on-state current level drops.  (L=3 µm and W=100 µm)  
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The donor-like band-tail states are located near the valence band.  The donor-states 

are neutral when filled.  Since the EF is far from these states and does not cross these states 

in the on state, therefore the charge state of these defects does not change.  For this reason, 

any change in these states is not reflected in the transistor operation.  However, in 

amorphous materials tail states are present, near the conduction and valence band, due to 

the variation in bond angle.  These states may play some role during bias stress 

measurements [101].   

5.3 INTERDIGITATED CAPACITORS 

The interpretation of non-ideal current-voltage (I-V) characteristics is not always 

unambiguous due to issues that may be related to carrier injection.  Capacitance-voltage 

(C-V) analysis provides complementary information that is valuable in separating the 

influence of material and interface defects from other factors that influence transistor 

operation.   

5.3.1 Challenges with 2D C-V Analysis 

Performing C-V analysis on thin-film devices is a 2D problem, and the interpretation is not 

as straightforward as the 1-D case (i.e. bulk semiconductor).  While C-V analysis can be 

done directly on TFTs [143], [184], [192], interdigitated capacitors (IDCs) can be designed 

to be representative of the actual TFT structure.  Furthermore, the capacitance value for a 

typical TFT is very low (<1 pF) and therefore is prone to measurement errors and requires 

additional instrumentation [143].  Large area IDCs may be fabricated to circumvent this 

issue while still representing the actual TFT channel area. 
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5.3.2 IDC: Design & Fabrication 

A testchip was designed which included both TFT and IDC devices.  The IDC was designed 

to be consistent with the TFT structure considering process exposure to the back-channel 

region, and overlap regions between the bottom-gate and top-contact (source/drain) 

electrodes.  The IDC layout is shown in Figure 5.12.  The design layers insure that, 

regardless of process options, the gated areas in IDCs receive the same process treatment 

as the TFT channel region.  The structure has 12 interdigitated gate fingers extending across 

the IGZO mesa.  Each gated region has a width of 44 µm, and 5 µm side overlaps between 

the top-contact metal and the bottom-gate metal.  The total gated area is ~ 0.002 cm2.   

 High-frequency C-V characteristics were measured on IDCs using a Materials 

Development Corporation (MDC) system with an HP 4284A precision LCR meter, taken  

in slow-sweep mode (-10 V to 10 V sweep in ~ 7 min) with Vac = 50 mV peak-peak at 

f = 1 MHz.

 

 
Figure 5.12:  ICD layout (left), with twelve interdigitated fingers extending across 
the IGZO mesa.   Each gated region has a width of 44 µm, and 5 µm side overlaps 
between the top-contact metal and the bottom-gate metal.  The total gated area is 
~ 0.002 cm2.    The micrograph of fabricated IDC is shown on right.  
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5.4 TCAD MATERIAL MODEL REFINEMENT 

TCAD provides the ability to simulate both TFT and IDC structures, and develop material 

and device models that are consistent with both I-V and C-V measurements.  In this section, 

the TCAD material model discussed in Section 5.2 is refined to simulate the measurements 

taken on TFT and IDC structures.     

5.4.1 Unpassivated Back-Channel IGZO Devices 

The overlay of electrical simulation using the default material model and the measured data 

is shown in Figure 5.13.  The measured transfer characteristics are right-shifted compared 

 
Figure 5.13:  An overlay of measured (markers) and simulated (line) transfer 
characteristics of IGZO TFT using the default material model.  The simulated 
characteristics are left shifted compared to measured data, suggesting a lower NVo in 
fabricated devices.  (L=21 µm and W=100 µm)  
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to the simulation.  The parallel shift suggests the difference in NVo (charge carriers) in the 

IGZO channel, as discussed in Section 5.2.1.  Decreasing the NVo value from 

6.5×1016 cm-3eV-1 to 2.0×1016 cm-3eV-1 shifted the ID-VGS characteristics towards right; 

however, the current drive is slightly higher.  Reducing the mobility value from 

15.0 cm2/V·s to 12.7 cm2/V·s gave a perfect overlay of simulation with the experimental 

data, both in linear and saturation mode.  This modified value of mobility is also consistent 

with the TFT model discussed in Chapter 6.  The overlay plots of simulated and measured 

transfer characteristics are shown in Figure 5.14.   

The overlay of simulated and measured output characteristics is shown in Figure 

5.15.  The perfect overlay over all drain/gate biases validates the accuracy material model 

used.  The model parameters that were adjusted from the default model [189] were NVo and 

µeff, representing the peak density of oxygen-vacancy donor states and effective electron 

mobility.  The parameters are given in Table 5-II.   

The representative IDC structure shown in Figure 5.16 was employed as a 

minimized 2D version of the device shown in Figure 5.12 for simulation purposes.  The 

structure has two gate-fingers while the actual fabricated IDC has 12 interdigitated fingers.  

The area between the top-source electrodes is defined as vacuum, as Atlas requires a planar 

mesh structure.  Note that the C-V model did require some adjustments to correct for 

distributed resistance (slight offset in IDC gated region width) and account for parasitic 

capacitance (level shift).    
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Figure 5.14: An overlay of measured (markers) and simulated (line) transfer 
characteristics of IGZO TFT using the refined material model plotted on log scale (y1-
axis, VDS = 0.1 V & 10 V) and linear scale (y2-axis, VDS = 0.1 V).  (L=21 µm and 
W=100 µm)  
 
 

 

Figure 5.15:  An overlay of measured (markers) and simulated (line) output 
characteristics of IGZO TFTs with VGS  = 2-10 V in steps of 2 V.  (L=21 µm and 
W=100 µm)  
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Figure 5.16 shows the electron concentration in the IDC in accumulation mode 

(VGS = 10 V).  Figure 5.17 shows a high-frequency C-V characteristic of an IDC from the 

same testchip taken at f =1 MHz.   

Both the I-V and C-V characteristics have the same material model parameters for 

the simulation overlay which are listed in Table 5-II.  The consistency between simulation 

and measurements for both I-V and C-V characteristics provides further confidence in the 

material definition parameters listed in Table 5-II, with VO and CBTN bulk defect states 

responsible for device behavior.  

Table 5-II:  IGZO material parameters used for the simulation.  NVo and µeff, 
representing the peak density of oxygen-vacancy donor states and effective intrinsic 
electron mobility are the only parameters changed from the Atlas default model.   

Symbol Value 

Band gap 3.05 eV 

Electron affinity 4.16 eV 

Relative permittivity 10 

Intrinsic Electron mobility* 12.7 cm
2
/V·s * 

VO (Gaussian) 

NGD (NVo)* 2×10
16

 cm
-3

eV-1 *   

EGD (EVo) 2.9 eV 

WGD (WVo) 0.1 eV 

Tail States 

NTA (CBTN) 1.55×10
20

 cm
-3

eV-1 

WTA 0.013 eV 

NTD 1.55×10
20

 cm
-3

eV-1 

WTD 0.12 eV 

* parameters modified from the default model 
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Figure 5.16:  TCAD simulated IDC structure showing the electron concentration 
contours in accumulation (VGS=10 V) .   
 
 

 

 
Figure 5.17:  An overlay of measured (markers) and simulated (line) C-V 
characteristics of an IDC with the same material model used for TFTs.  Material model 
parameters are listed in Table 5-II 
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5.4.2 Passivated Back-Channel IGZO Devices 

Electrical characteristics from devices fabricated with electron-beam deposited alumina as 

a back-channel passivation material are shown in Figure 5.18.  While the TFT performance 

was compromised compared to unpassivated TFT results (Figure 5.14), the changes in 

characteristics over a month of testing were essentially negligible, demonstrating an 

improved long-term stability after passivation of the exposed back-channel of IGZO.   

It has been discussed in Section 4.5 that interface defect states at IGZO/passivation 

material interface remain following the application of a passivation material and oxidizing 

ambient anneal.  For the simulation of alumina passivated devices the same bulk IGZO 

material shown in Table 5-II was used, however additional parameters were added which 

establish charge centers and interface traps at the back-channel material interface between 

the IGZO and alumina to account for these defect states.  A fixed charge density 

Nf = -1.9×1012 cm-2 and a Gaussian distribution of donor-like interface traps (NVoi) were 

used to provide a reasonable match to the I-V and C-V characteristics shown in Figure 5.18.  

The EVo and WVo parameters are the same as those listed in Table 5-II for the Gaussian 

distribution of donor-like states in the IGZO material.  The modified material model 

included both interface traps and fixed charge to account for the shift in threshold voltage 

after AlOX passivation.  These interface parameters are listed in Table 5-III.   
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Figure 5.18:  An overlay of measured (markers) and simulated (line) (a) ID-VGS transfer 
characteristics of IGZO TFT with alumina passivation.  (b)  C-V characteristics of an 
IDC with the same set of model parameters.    The TFT channel dimensions were 
L = 21 µm & W = 100 µm.  Bulk material model parameters are consistent with Table 
5-II, with additional interface parameters and extracted properties listed in Table 5-III.   

 

Table 5-III:  Back-channel interface parameters and TFT parameters of the alumina 
passivated devices shown in Figure 5.18 

Symbol Value 

NVoi (donor-like interface traps) 2×1012 cm-2eV-1 

EVoi 2.9 eV 

WVoi 0.1 eV 

Nf (fixed charge) -1.9×1012 cm-2 

  

Extracted IGZO TFT parameters 

Field-effect mobility 5 cm
2
/V·s 

Threshold voltage -0.1 V 

Subthreshold swing 300 mV/dec 
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In this case the area density peak is set to NVoi = 2×1012 cm-2/eV, which brings the 

total integrated donor (positive) interface trapped charge state density to NIT ~ 5×1011 cm-2, 

and a net back-channel surface state density of NSS ~ -1.4×1012 cm-2 when all donor states 

are ionized.  The behavior of interface traps are consistent with the energy distribution of 

oxygen vacancy donor states defined for the IGZO material.  The total space charge in the 

IGZO material due to oxygen vacancies integrated over both energy and film thickness is 

Nbulk ~ 2.5×1010 cm-2, so it is reasonable that interface states can dominate the device 

behavior.  While the interface defect parameter settings provide a reasonable simulation 

match to the non-ideal TFT and IDC characteristics, the canceling behavior of positive and 

negative interface charge levels, and the origin of negative fixed charge remain in question 

and suggest the possibility of misinterpretation. 

High-frequency (1 MHz) measurements taken on IDCs demonstrate the ability to 

move channel charge in and out from gated regions, which is influenced by lateral travel 

distances and accumulated channel charge.  The time to move carriers from the center of 

the channel to the source electrode is limited by the channel conductance, and results in a 

spreading of C-V characteristics.  In addition, carrier traps within the IGZO material or 

associated interfaces cause distortion in high frequency characteristics relating to their 

energy level and physical distribution.  An overlay of multi-frequency measurements and 

simulations of IDC C-V characteristics are shown in Figure 5.19.  The dispersion of the 

C-V characteristics is attributed to trap states as well as distributed channel resistance which 

is a function of gate voltage.  As the measurement frequency increases, the influence of 

resistance becomes more significant, which decreases the sensitivity to defect states.  As 

the measurement frequency is lowered the series resistance influence is less, however the 
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discrepancy between the measurement and simulation is apparent at lower gate voltage 

where there is a high sensitivity to defect states in the transition from depletion to 

accumulation.  Variable series resistance (i.e. gate voltage dependent) at the source/drain 

M-S contacts is assumed to be responsible for the inability to determine a constant series 

resistance using traditional parameter extraction methods on TFTs of varying channel 

length (see Section 6.1.4).  This effect may be the primary reason for the simulation 

discrepancy, and is unfortunately confounded with the influence of trap states.  Variation 

in trap state response time (i.e. slow traps vs fast surface states) further complicates the 

interpretation.  For these reasons further efforts to refine the analysis of defect states, and 

distinguish between bulk and interface defects, were directed towards charge transport 

analysis in TFTs.    

 

 
Figure 5.19:  Overlay of simulated and measured C-V characteristics at 1 kHz, 10 kHz, 
100 kHz and 1 Mhz.  The simulation showed inconsistencies at lower frequencies and 
lower gate voltage conditions which support a high sensitivity to defect states. 
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5.5 CHARGE TRANSPORT IN IGZO 

The conduction mechanism in IGZO material is studied through low temperature 

measurements taken on TFTs.  IGZO TFTs without any back-channel passivation material 

were used to avoid the influence of interface defect states at the IGZO/passivation material 

interface.  TFTs were tested in Lakeshore cryogenic probe station.  The test-chip was 

loaded and the system was allowed to cool down to 10 K using liquid helium.  The transfer 

characteristics were measured while increasing the temperature from 10 K to room 

temperature.  

    

 

Figure 5.20:  Drain current versus temperature plot at VGS=VDS=10 V.  The linear 
dependence of log(ID) on 1/T0.25 over temperature (10 K- 130 K) indicates variable 
range hopping as the carrier transport mechanism at low temperature (T<130 K).   
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5.5.1 Low-Temperature Range (10 K to 130 K) 

The drain current (ID) values are plotted against the temperature (1/T0.25) at VGS =VDS 

=10 V) in Figure 5.20.  Below 130 K, current showed a weak thermal dependence and 

followed Mott’s law [193], [88]: 

 
𝐼𝐼𝐷𝐷 = 𝐼𝐼𝐷𝐷𝑂𝑂exp �−

𝐵𝐵

𝑇𝑇
1
4
� (5.9) 

where IDO is a drain current prefactor, B depends on the material properties.  This behavior 

is a characteristic of variable range carrier hopping in amorphous materials [194].  

Measurements indicated this as the dominant mechanism at low temperature range.   

5.5.2 High-Temperature Range (>130 K) 

At T >130 K, the current vs temperature response followed the Arrhenius behavior [195]:  

 𝐼𝐼𝐷𝐷 = 𝐼𝐼𝐷𝐷𝑂𝑂𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐸𝐸𝑎𝑎
𝑘𝑘𝑏𝑏𝑇𝑇

� (5.10) 

where Ea is the activation energy (EC -EF) [88], IDO is a drain current prefactor and 

kb is the Boltzmann constant.  The activation energy is gate voltage dependent and 

decreases with increase in VGS [196].   

The Arrhenius fit indicates the thermally activated band activation as the carrier 

transport mechanism.  The extracted range of activation energy is 40-70 meV for 

VGS = 10 V and -5 V respectively.  Activation energy is a measure of the energy difference 

between conduction band (EC) and Fermi level (EF).  As VGS increases the EF moves closer 

to the EC and therefore the value of activation energy decreases.  The Arrhenius fit 

suggested that the charge transport in IGZO at room temperature, unlike a-Si, is through 
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the thermal activation rather.  Therefore the mobility should not be associated to the 

free/trapped charge ratio as in a-Si [197].  The presence of tail-states however, change the 

charge concentration in the channel which can be incorporated in charge ratio rather than 

a decrease in mobility.  A thorough discussion on parameter extraction and device 

modeling presented in Chapter 6.   

5.5.3 Defect Density Calculations 

The value of B in Equation (5.9) can be extracted from the slope of ln(ID) vs 1/T0.4 plot.  

The theoretical value of B is related to the density of states at EF by [88], [198]:  

 

Figure 5.21:  Drain current versus temperature plot at VGS=VDS=10 V.  Charge 
transport follows Arrhenius behavior for T >130 K, indicating thermally activated 
band conduction as the charge transport mechanism.   
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𝐵𝐵 = 2�

𝛼𝛼3

𝑘𝑘𝑏𝑏𝑁𝑁(𝐸𝐸)�

1
4
 (5.11) 

where α is the inverse of Bohr radius (a) and is related to the overlap of wave functions of 

two localized states and can be calculated from:  

 𝑎𝑎 =
𝑎𝑎0𝜀𝜀𝑟𝑟
𝑚𝑚∗/𝑚𝑚0

 (5.12) 

where a0 is the Bohr radius of hydrogen atom (0.53 Å), εr is the relative permittivity of 

IGZO (11.5) [199], m* is the effective mass of electron in IGZO (0.34mo) where mo is the 

free electron mass [54].  From Equation (5.12), a is approximately 17.9 Å.  Once the value 

of B is known, N(E) can be calculated from Equation (5.11).  Similarly, Ea can be extracted 

from ID vs 1/T plot (Figure 5.21).  A plot of N(E) vs Ea is shown in Figure 5.22 and the data 

is fitted to:  

 𝑁𝑁(𝐸𝐸) = 𝑁𝑁(𝐸𝐸𝐶𝐶) exp �−
𝐸𝐸𝑎𝑎
𝐸𝐸0
� (5.13) 

where N(EC) is the DOS and E0 is the band tail slope.  The value extracted from Figure 

5.22 are N(EC)=2×1021 cm-3eV-1 and E0=9.5 meV.  The value of N(EC) is an order of 

magnitude higher compared to the N(EC) used in IGZO material model for TCAD 

simulation.  The value of EC is used in TCAD simulation is 13 meV.  The discrepancy in 

the measurement is most likely due to the use of unpassivated devices.  The back-channel 

was exposed during the measurement.  It is suspected that during cryogenic cooling some 

of the water vapors present in the system might have condensed on the unprotected IGZO 

channel.  This suspicion was also supported by the fact that working TFTs after cryogenic 
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measurements showed a negative shift of -8 V in VT.  A passivated IGZO TFT should 

produce more consistent results.      

5.6 SILICON DIOXIDE PASSIVATION  

TFTs passivated with PECVD SiO2 were also simulated using the IGZO material model 

discussed earlier.  The interface defect density was adjusted for a match with experimental 

data.  Figure 5.23 shows that transfer characteristics of a SiO2 passivated TFT after 4 h 

annealing in O2 ambient at 400 °C.  Further details regarding simulation of SiO2 passivation 

are provided in Section 7.1.5.   

 

Figure 5.22:  DOS at EF (N(E)) versus activation energy (Ea). 
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5.7 CONCLUSION 

In this chapter, the experimental results are compared with TCAD simulations using 

commercially available software package Silvaco® Atlas™.  The IGZO defect states were 

defined and there influence on electrical characteristics of transistors is presented.   

A methodology which uses both I-V and C-V analysis in the interpretation of defect 

states in IGZO devices has been described.  C-V measurements taken on IDCs are 

complementary to I-V measurements on TFTs, and TCAD simulation offers the ability to 

establish material and device model parameters that consider both datasets.  The 

application to devices which had optimum annealing conditions and did not have any back-

 

Figure 5.23:  An overlay of measured (markers) and simulated (line) transfer 
characteristics of IGZO TFT with SiO2 passivation.  (L=21 µm and W=100 µm)  
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channel passivation material demonstrated an excellent match between simulation and 

measurements using an established material defect model with only minor adjustments.  

The use of electron-beam deposited alumina as back-channel passivation material resulted 

in improved device stability; however both I-V and C-V measurements revealed the 

influence of interface traps.  The shortcomings of C-V measurements using IDC structures 

are discussed and an approach to identify the interface defect states using transistors 

fabricated in different gate electrode configurations is proposed.  These results are 

discussed in Section 7.1.5.   

Cryogenic measurements were utilized for extraction of density of states (DOS) in 

IGZO.  The extracted values of DOS and band tail states slope were not in agreement with 

reported values [148], [200].  A similar discrepancy in DOS extraction from low-

temperature measurements have been reported by others [88].  Nevertheless, the study 

confirmed that at room temperature thermally activated band conduction was the charge 

transport mechanism.  On contrary, variable range hopping is the conduction mechanism 

for amorphous silicon [12], [197], [201].  This difference in charge transport is manifested 

during the device operation modeling where a-Si:H TFT model is not applicable to IGZO 

TFTs.  A novel device operation model is presented in the Chapter 6. 

A device model implementing fixed charge and donor-like interface traps that are 

consistent with oxygen vacancies resulted in a reasonable match to measured 

characteristics for SiO2 passivated devices.   
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Chapter 6. 2D DEVICE MODEL FOR 
ON-STATE OPERATION  

The development of a consistent and reliable parameter extraction model is of paramount 

importance if a quantitative analysis and comparison of different treatments is required.  It 

is crucial for the method to add minimum error so that any differences observed can be 

accounted for by processing differences.  One of the fundamental parameter of MOSFET 

is threshold voltage (VT) which broadly signifies the onset of the channel inversion (or 

accumulation for TFTs).  For crystalline silicon (c-Si), numerous methodologies for VT 

extraction have been employed over the years for device characterization and modeling 

[202]–[204].  These techniques have been extended to model silicon based transistors i.e. 

a-Si:H and poly-Si TFTs. 

In recent years, much work has been done in the field of amorphous oxide 

semiconductors, most notably indium gallium zinc oxide (IGZO).  The amorphous nature 

of IGZO offers benefit in terms of performance uniformity.  IGZO also offers process 

simplicity because source/drain implantations are not required.  However, these advantages 

also present challenges in the extraction of simple transistor parameters i.e. threshold 

voltage (VT) and channel mobility (µch) due to the presence of defect states and gate voltage 

dependent (VGS) source/drain contacts resistance (RSD) which manifests itself in non-ideal 

response of current to voltage as described further in coming sections.  Thus, the traditional 

methods used for silicon devices are not effective.  
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In this chapter, various conventional methods for VT and µch extractions using drain 

current measurements have been compared and the associated shortcomings are discussed.  

To ensure consistent parameter extraction an accurate model must be implemented and for 

that a novel approach for VT and µch is proposed.  A new device model for the on-state 

operation of IGZO TFTs is presented, which accounts for the interaction effects that band-

tail states have with the gate and drain voltages on I-V relationships.  TCAD simulation is 

used as a tool for model development, which ensures a physical connection and enables 

the interpretation of effects that have complex interactions.  The model elements which 

account for adjustment of free electron charge and spreading of the output conductance are 

expressed empirically, rather than through rigorous mathematical derivation which is 

arguably not possible.  The result resembles a Level 2 SPICE model with unique physical 

interpretation, and demonstrates an excellent match to transfer and output characteristics 

over all on-state bias conditions. 

6.1 CONVENTIONAL PARAMETER EXTRACTION 

The existence of defect states in amorphous semiconductor materials such as indium-

gallium-zinc oxide (IGZO) results in non-ideal electrical characteristics that render 

conventional device models inadequate.  Thus common operating parameters that are used 

to characterize device operation must be appropriately redefined for a device model to be 

physically meaningful and useful in circuit simulation.  There is general agreement in the 

assignment of non-ideal behavior in I-V characteristics to band-tail states [143], [163], 

[205].  The conventional gradual-channel approximation (GCA) equation expressed in 
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Equations (6.1) and (6.2) is sufficient to represent the on-state device operation in the 

absence of band-tail states.    

 
𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =

W
L

COXµ𝑐𝑐ℎ ��𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙�. 𝑉𝑉𝐷𝐷𝐷𝐷 −
𝑉𝑉𝐷𝐷𝐷𝐷2

2 � (6.1) 

 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
W
2L

COXµ𝑐𝑐ℎ�𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠�
2
 (6.2) 

where W, L & COX are channel width, length and oxide capacitance per unit area 

respectively.   

The above equations work well for the first order calculations.  However, the c-Si 

MOSFETs show normal field degradation which can be incorporated in the mobility model 

as: 

 µ𝑐𝑐ℎ =
µ0

1 + 𝜃𝜃(𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇)
    (6.3) 

where µ0 is the “true” mobility of the material and θ is a fitting parameter which accounts 

for the normal field degradation.  Figure 6.1 shows an overlay of transfer characteristics of 

c-Si NMOS and IGZO TFT.  Unlike c-Si, IGZO TFT does not show any normal field 

degradation; in contrary, the slope of the ID-VGS curve keeps increasing with VGS which 

makes the extraction of parameter subjective for such devices.  

In this section, various conventional methods for parameter extraction are discussed 

along with the shortcomings and inconsistencies associated with them when applied to 

IGZO TFTs.    
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6.1.1 Constant Current Method 

One of the simplest and common method for parameter extraction is to use fixed current 

value (typically ~ 10-7-10-9 A) as an indicator of VT (or VON) [160], [167], [206], [207].  This 

method is popular among TFT community because of its simplicity.  However, a thorough 

review of published articles reveals that the value of current is chosen arbitrarily.  In some 

cases, it is left as vague as “the gate voltage at which an appreciable amount of current 

starts flowing” [157], [208].  Also, µch calculated Equation (6.1) is VGS dependent.  

Although the VT and µch calculations using constant current method have merit in terms of 

 
Figure 6.1:  ID-VGS measurements on c-Si NMOS and IGZO TFT showing the concave 
down and up characteristics due to normal field degradation (c-Si) and tail-states 
(IGZO) respectively.  The c-Si NMOS data is scaled down. (VDS=0.1V)   
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simplicity, it does not provide a uniquely consistent approach and the parameter extraction 

remains subjective and ambiguous.  

6.1.2 Extrapolation Method 

Another common method to extract VT is to use x-axis intercept of the linear fit to 𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷-VGS 

(or �𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷-VGS) at the maximum slope of ID-VGS [209], [147], [150].  For c-Si devices, this 

method provides consistent values of VT and µch as shown in Figure 6.2.   

In case of IGZO devices,  𝐼𝐼𝐷𝐷 tends to be concave upward as shown in Figure 6.3.  

This upward curvature makes the linear fit somewhat subjective.  For instance, when the 

linear fit is taken at VGS1 =3 V and VGS2 =9 V, the extracted threshold voltages are VT1=0.5 V 

and VT2 =2.2 V.  Mobility values calculated at VGS =10 V using Equation (6.1) are 

 

Figure 6.2:  VT extraction for c-Si MOSFET using the x-axis intercept to the linear 
mode transfer characteristics.   
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15.3 cm2/V∙s (VT1) and 18.6 cm2/V∙s (VT2), a difference of 16%.  The µch values are not 

only dependent on the choice of VT but also on the VGS values, with higher VGS giving 

higher values of µch.  These inconsistencies in extraction of VT and subsequently µch can 

lead to false interpretation of the results and therefore careful consideration should be given 

to parameter extraction.  

6.1.3 Differential Transconductance Method 

The VT for MOS transistor can also be defined as the voltage at which the rate of change 

of transconductance (𝑔𝑔𝑚𝑚) is maximum.  This can be determined by the peak of the 

derivative of 𝑔𝑔𝑚𝑚 (i.e. 𝑔𝑔𝑚𝑚′ ) with VGS.  Figure 6.4 shows the 𝑔𝑔𝑚𝑚′  vs VGS graph, the derivative 

 

Figure 6.3:  VT extraction for IGZO TFT using the x-axis intercept to the linear mode 
transfer characteristics.  The slope of IDlin keeps increasing and therefore does not 
provide a unique point for extraction of VT.   
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is smoothed over five point (excluding minimum and maximum values) to avoid any erratic 

data points during measurement.  A VT = -0.3 V is extracted from the value of VGS 

corresponding to the peak of 𝑔𝑔𝑚𝑚′ .  This provides a consistent interpretation of threshold 

voltage and avoids issues with continuously increasing slope of IDlin (or 𝑔𝑔𝑚𝑚).  However, 

for VT =-0.3 V, VGS-VT is negative and therefore normal transistor Equation (6.1) is not 

valid for those data points 

For mobility extraction, transconductance (𝑔𝑔𝑚𝑚) method can be used which is 

independent of VT.  This can be arrived at by differentiating Equation (6.1) with respect to 

VGS, as: 

 

Figure 6.4:  Differential transconductance method for VT extraction, the position of the 
peak of 𝑔𝑔𝑚𝑚′  is taken as the VT. (L = 21 µm, W = 100µm). 
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 µ =
𝑔𝑔𝑚𝑚𝐿𝐿

𝑊𝑊. 𝐶𝐶𝑂𝑂𝑂𝑂. 𝑉𝑉𝐷𝐷𝐷𝐷
 (6.4) 

The resulting µch is plotted in Figure 6.5.  The µch values using Equation (6.4) (solid line) 

are higher than extracted from Equation (6.1) (broken line) and are a function of VGS.  To 

circumvent this issue, a voltage dependent mobility model µch(VGS) is also proposed to 

account for apparent increase in mobility, however a physical connection is not established 

[208].      

 

 

Figure 6.5:  Mobility calculation using 𝑔𝑔𝑚𝑚 (Equation (6.4)) and I-V (Equation (6.1), VT 
extracted through differential transconductance method.  In both cases, the µch value 
increases with VGS. 
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6.1.4 Extraction Through Terada-Muta Analysis 

Terada-Muta analysis has been widely used for the extractions effective channel length 

(Leff) and contact resistance (RSD) as shown in Section 4.2.3.  T-M method can be extended 

to calculate the mobility and threshold voltage of transistors [163].  The total resistance of 

the TFT, Rtot, can be written as [163]:  

 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑟𝑟𝑐𝑐ℎ𝐿𝐿 + 𝑅𝑅𝑆𝑆𝑆𝑆 (6.5) 

where rch is the channel resistance per unit length and RSD is the resistance offered by the 

S/D contacts.  Using Equation (6.1), Rtot can be written as:  

 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑉𝑉𝐷𝐷𝐷𝐷
𝐼𝐼𝐷𝐷𝐷𝐷

�
𝑉𝑉𝐷𝐷𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙

=
𝐿𝐿

𝑊𝑊𝐶𝐶𝑜𝑜𝑜𝑜µ𝑐𝑐ℎ(𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇) = 𝑟𝑟𝑐𝑐ℎ𝐿𝐿 + 𝑅𝑅𝑆𝑆𝑆𝑆 (6.6) 

Using Equation (6.6), the Rtot vs L data can be plotted for different VGS values and 

rch value can be extracted from the slope.  The effect of the RSD in Equation (6.6) can be 

decoupled by defining intrinsic mobility (µi) and intrinsic threshold voltage (VTi) defined 

as the mobility and threshold voltage values without the influence of the series resistance.  

Equation (6.6) therefore can be rewritten as: 

 𝑟𝑟𝑐𝑐ℎ =
1

𝑊𝑊𝐶𝐶𝑜𝑜𝑜𝑜µ𝑖𝑖(𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇)
 (6.7) 

 1
𝑟𝑟𝑐𝑐ℎ

= 𝑊𝑊𝐶𝐶𝑜𝑜𝑜𝑜µ𝑖𝑖𝑉𝑉𝐺𝐺𝐺𝐺 −𝑊𝑊𝐶𝐶𝑜𝑜𝑜𝑜µ𝑖𝑖𝑉𝑉𝑇𝑇 (6.8) 

Once rch is known for each VGS (from the slope of Rtot vs L), the µi and VTi values 

can be extracted by plotting 1/rch vs VGS.  The plot of 1/rch against VGS, with a linear fit, is 

shown in Figure 6.6, the extracted values are VTi=1.0 V and µi=13.6 cm2/V∙s.  
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This approach has been effectively used for extracting parameters for c-Si and a-

Si:H transistors where the S/D regions are heavily doped.  For IGZO TFTs, the S/D contact 

relies on the gate to S/D overlap.  In on-state, VGS creates an accumulation layer in the 

entire channel, this region (G-S/D overlap) then effectively behaves as doped S/D area.  

This contact is inherently VGS dependent (i.e. RSD(VGS)).  Owing to this dependence, 

Equation (6.6) may not always be uniquely solvable and the extrapolated RSD changes with 

VGS.  This also leads to a non-linear response of 1/rch-VGS and therefore VGS dependent VTi 

and µi values as shown in Figure 6.7.  Both VTi and µi increase with VGS, such 

inconsistencies undermine the validity of this method.   

 
Figure 6.6:  Linear fit to 1/rch – VGS for the extraction of VTi and µi using Terada-Muta 
analysis. 
 
 

 



Chapter 6: 2D Device Model for On-State Operation 

 

133 
 

 

To further reveal RSD dependence on VGS, TCAD simulation is used to extract the 

electron concentration in IGZO below the source electrode.  The electron concentration in 

IGZO at different points along the channel thickness with VGS is shown in Figure 6.8.  

Majority of the current flows near the IGZO/gate dielectric interface where the electron 

concentration is a strong function of VGS (blue solid line) and changes by 13 orders of 

magnitude for a sweep of VGS from -5 V to 10 V.  This indicates that the RSD should not be 

treated as constant and the simplification from Equation (6.6) to Equation (6.7) is not valid.  

This simplification corrupts the interpretation of Terada-Muta analysis for IGZO TFTs.    

 

Figure 6.7:  VGS dependence of VTi and µi values extracted from 1/rch-VGS data using 
Terada-Muta analysis.   
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6.2 AMORPHOUS SEMICONDUCTOR MATERIALS 

The gate voltage dependent gm is also observed in a-Si:H TFTs [205], [210].  As discussed 

earlier, the amorphous materials have band-tail states close to the conduction and valence 

band.  The ever increasing slope in transfer characteristics of such semiconductor material 

device is attributed to the presence of these band tail-states.   

6.2.1 Departure from GCA 

Silvaco® Atlas™ TCAD has been used to simulate IGZO TFT operation using the 

electrical model discussed in Section 5.4, without inclusion of high-field effects or 

advanced carrier transport phenomenon (e.g. hopping between localized states).  With the 

 

Figure 6.8:  Electron concentration below the source electrode at various depths in 
IGZO channel with respect to gate voltage. (VGS=10 V, VDS=0 V)  
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specific exclusion of band-tail states, TCAD simulated transfer and output characteristics 

match exceedingly well with the GCA relationships (Equations (6.1) and Equation (6.2)) 

as shown in Figure 6.9 without consideration of series resistance or non-ohmic contacts.   

The same TCAD model with the inclusion of band-tail states demonstrates an 

excellent match with measured I-V characteristics as shown in Figure 6.10 (see 

Section 5.4).  This infers that the departure from the GCA is solely due to the influence of 

band-tail states.  While both sets of output characteristics appear qualitatively similar, the 

inclusion of band-tail states results in a notable decrease in current drive which is not 

associated with series resistance, and cannot be modeled by current scaling via mobility 

adjustments.  

 

Figure 6.9:  TCAD simulated I-V characteristics of IGZO TFT without band-tail states 
(dotted line) with a nearly perfect match to the GCA model (solid line).  (a) Output 
characteristics with VGS  = 2-10 V in steps of 2 V. (b) Transfer characteristics in linear 
mode (y1-axis, VDS = 0.1 V) and saturation mode (y2-axis, VDS = 10 V).  (L = 21 µm, 
W = 100 µm) 
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6.2.2 Mobility versus Channel Charge 

In describing carrier transport in amorphous semiconductor materials, the electrons trapped 

in the tail states are associated with the mobility and models typically employ an effective 

field-effect channel mobility expressed in Equation (6.9) [211]. 

 
𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜇𝜇𝑐𝑐ℎ �

𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� = 𝜇𝜇𝑐𝑐ℎ �
𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� (6.9) 

where 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represent the free electron charge, trapped charge, and total 

charge, respectively.  In the case of amorphous silicon (a-Si), associating the free/total 

charge ratio with an effective channel mobility is appropriate because the carrier mean free 

path is on the order of the chemical bond length [197].  The process of electron capture in 

localized states and re-emission into extended states degrades the effective carrier mobility. 

 
Figure 6.10:  TCAD simulated I-V characteristics with band-tail states (dotted line) with 
a good match with measured data (a) Output characteristics with VGS  = 2-10 V in steps 
of 2 V.  (b) Transfer characteristics with VDS = 0.1 V & 10 V.   
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The electron mean free path in IGZO is significantly more than the interatomic 

distance [35], [212] and electron transport is dominated by band conduction behavior as 

discussed in Section 5.5 [35], [54].  Charge trapped in band-tail states indeed coincides 

with a deficit in free electrons, however the effect on device operation can be considered 

independent of the electron channel mobility.  As the gate voltage is applied, some of the 

induced charge is trapped in tail-states and lowers the level of accumulation charge 

available for channel conduction.  When the gate voltage is further increased, the EF moves 

closer to conduction band (stronger accumulation) and provides more and more electrons 

in the conduction band and hence higher current drive.  Due to the continuous decrease in 

available states, the gm for IGZO devices shows a gradual increase with VGS.  This is 

depicted by simulation shown in Figure 6.11 where the gm keeps increasing with the VGS 

 

Figure 6.11:  Simulated transconductance (𝑔𝑔𝑚𝑚) for IGZO TFTs at VDS = 0.1 V, with 
and without the use of band-tail states in the material model.   
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when tail states are incorporated in the material model.  Without band-tail states gm reaches 

a maximum value and remains constant, reflecting a linear ID-VGS relationship.  This VGS 

dependent transconductance (𝑔𝑔𝑚𝑚) is purely related to channel charge and should not be 

interpreted as an increase in channel mobility.   

6.3 IGZO TFT MODELING 

There have been several reports of analytical solutions for the electrostatic operation of 

IGZO transistors that incorporate the influence of band-tail states.  In analytical models 

that consider the level of free electron charge and trapped charge only as a function of gate 

bias, the ratio 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 typically ignores the influence of the drain voltage on the 

occupancy of band-tail states and the corresponding alteration in free electron charge 

[213]–[215].  Furthermore, analytical derivations often lead to transcendental equations 

which have no closed-form solutions, and require an intermediate electrical response (e.g. 

surface potential [216]–[219] charge density [220]–[223]) to serve as an independent 

variable and enable a solution for the output-input (i.e. I-V) relationship.  Such physically 

based models may resort to empirical relationships to represent the device operation in a 

useable form with departure from the physical origin [214], [224].   

6.3.1 Gate-Impressed 1D Model  

A 1D gate-impressed modification in free channel charge due to the filling of band-tail trap 

states is presented in Equation (6.10). 
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 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(1𝐷𝐷)

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
≈ 𝜂𝜂𝐺𝐺 =

1
1 + 𝜃𝜃′[𝑉𝑉𝐷𝐷𝐷𝐷 − (𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇)] (6.10) 

where 𝜂𝜂𝐺𝐺 represents the gate-impressed free charge ratio, and θ' is a fitting parameter which 

accounts for the effective loss of accumulation charge due to trapping.  The symbol θ' was 

chosen to represent this effect because of the similarity in modeling the effect of normal-

field degradation on channel mobility for traditional MOS transistors.  In this case θ' 

accounts for an increase in the rate of change of accumulation charge with respect to VGS, 

which eventually becomes constant as the rate of change of trap filling is diminished.  This 

is illustrated in Figure 6.12.   

Using 𝜇𝜇0𝜂𝜂𝐺𝐺 in place of 𝜇𝜇𝑐𝑐ℎ in Equation (6.1), the following relation is obtained: 

 
𝐼𝐼𝐷𝐷 =

𝑊𝑊
𝐿𝐿
𝐶𝐶𝑂𝑂𝑂𝑂′ 𝜇𝜇0𝜂𝜂𝐺𝐺 [(𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇)𝑉𝑉𝐷𝐷𝐷𝐷 −

𝑉𝑉𝐷𝐷𝐷𝐷2

2
] (6.11) 

Replacing 𝜂𝜂𝐺𝐺 from Equation (6.10), ID can be written as a function of VT, µ0 and θ'.   

 
𝐼𝐼𝐷𝐷 =

𝑊𝑊
𝐿𝐿
𝐶𝐶𝑂𝑂𝑂𝑂′ 𝜇𝜇0 [(𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇)𝑉𝑉𝐷𝐷𝐷𝐷 −

𝑉𝑉𝐷𝐷𝐷𝐷2

2
] ∙

1
1 + 𝜃𝜃′[𝑉𝑉𝐷𝐷𝐷𝐷 − (𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇)] (6.12) 

The values of VT, μ0 and θ' can be found using regression analysis with minimum mean 

square error to measured transfer characteristics taken at low drain bias.  As previously 

discussed, traditional methods of parameter extraction for threshold voltage and electron 

channel mobility are not possible with a gm characteristic shown in Figure 6.11.  Other 

methods of extracting these parameters that have been proposed for IGZO TFTs are highly 

dependent upon specific device behavior and often result in ambiguous interpretation 

[192], [208], [225]–[227].  The μ0 term represents a voltage-independent electron channel 
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mobility, not just an empirical fitting parameter [214], [218], and matches well with the 

TCAD intrinsic electron mobility, having agreement within 6% which is comparable to 

uncertainty in the true physical channel length (see Table 6-I).  

6.3.2 Drain-Impressed 2D Model 

The combination of applied gate and drain voltages determines the occupancy condition of 

band-tail states, and thus establishes the amount of free electron charge available.  As the 

drain bias is increased, there is a release of trapped electrons from the acceptor-like tail-

states as EF lowers, as depicted in Figure 6.13, with an associated loss in free electron 

channel charge.  The influence of drain-impressed deionization is strong until saturation as 

shown in Figure 6.14a, resulting in a spreading of the output conductance.   

 

Figure 6.12:  Simulated rate of change of electron concentration (ne) & ionized 
acceptor band-tail states (nTA) adjacent to the gate dielectric at the center of the 
channel.    

 

0.0

0.5

1.0

1.5

2.0

2.5

-5 0 5 10

dn
/d

V G
S

(c
m

-3
/V

)

x 1017

Gate Voltage (V)

dnTA/dVGS
dne/dVGS



Chapter 6: 2D Device Model for On-State Operation 

 

141 
 

 

The effect of drain-impressed deionization translates to an effective potential loss 

at applied VDS values lower than V(Dsat), and a measurable loss in saturation current (IDsat).  

The effective drain-source voltage can be expressed by applying a proportionality constant 

(α) to VDS as follows. 

 𝑉𝑉𝐷𝐷𝐷𝐷′ =  𝛼𝛼𝑉𝑉𝐷𝐷𝐷𝐷 (6.13) 

 

 

Figure 6.13:  2D contours of the probability of occupation of band-tail states within 
the IGZO body under different bias conditions as indicated.  (a) Zero-bias condition 
where most of the states are empty.  (b) 1D case where state occupation follows VGS.  
(c) Drain-impressed deionization under low bias conditions, showing a significant 2D 
effect.  This occurs in a continuous fashion over all drain bias conditions.  (d) 
Intensified deionization in saturation, where VDS >> VGS.  (e) Gate reclaims dominant 
control over state occupation as VGS is increased, however 2D effect remains. 
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The lower IDsat can be explained by a corresponding decrease in Qfree.  A drain-

impressed modification in free channel charge is given by Equation (6.14).  

 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(2𝐷𝐷)

𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(1𝐷𝐷)
≈ 𝜂𝜂𝐷𝐷 =

1
(1 + 𝑉𝑉𝐷𝐷𝐷𝐷′ 𝑉𝑉𝐶𝐶⁄ ) (6.14) 

where 𝜂𝜂𝐷𝐷 represents the drain-impressed free charge ratio, and VC is a characteristic voltage 

related to the occupancy of trap states.  Note that this mathematical adjustment strongly 

resembles a Level 2 SPICE model for velocity saturation, though 𝜂𝜂𝐷𝐷 is significant under 

relatively low electric fields.  The superposition of the gate-impressed and drain-impressed 

adjustments in free electron channel charge is the product of Equation (6.10) and Equation 

(6.14), expressed in Equation (6.15). 

 

Figure 6.14:  (a) Ionized acceptor band-tail state density in the IGZO channel adjacent 
to the drain over the full range of gate and drain bias conditions.  The effect of drain-
impressed deionization is decreased once VDS ≥ V(Dsat), identified with ˟ points and 
defined in Equation (6.17).  (b) The free/total charge ratio over the full range of gate 
and drain bias conditions.  Note that the 𝜂𝜂2𝐷𝐷 ratio is only meaningful in non-saturation. 
 

 



Chapter 6: 2D Device Model for On-State Operation 

 

143 
 

 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(2𝐷𝐷)

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
≈ 𝜂𝜂2𝐷𝐷 = 𝜂𝜂𝐺𝐺 × 𝜂𝜂𝐷𝐷 (6.15) 

where 𝜂𝜂2𝐷𝐷 represents the free charge ratio under specific gate and drain voltage conditions.  

This ratio is shown in Figure 6.14b, which corresponds to the concentration of ionized 

band-tail states shown in Figure 6.14a.  

Using 𝜇𝜇𝑜𝑜𝜂𝜂2𝐷𝐷 in place of 𝜇𝜇𝑐𝑐ℎ and replacing 𝑉𝑉𝐷𝐷𝐷𝐷 with 𝑉𝑉𝐷𝐷𝐷𝐷′  in Equation (6.1), the on-

state device operation can be accurately represented by Equation (6.16) as shown in Figure 

6.15, with model parameters found using least squares regression analysis, listed in Table 

6-I.  Note that Equation (6.16) is applicable for all applied 0 V ≤ VDS ≤ VDsat and VGS ≥ VT. 

 
𝐼𝐼𝐷𝐷 =

𝑊𝑊
𝐿𝐿
𝐶𝐶𝑂𝑂𝑂𝑂′ 𝜇𝜇𝑜𝑜𝜂𝜂2𝐷𝐷[(𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇)𝑉𝑉𝐷𝐷𝐷𝐷′ −

(𝑉𝑉𝐷𝐷𝐷𝐷′ )2

2
] (6.16) 

Table 6-I also lists the TCAD value for electron mobility as a material input, and 

the simulated flatband voltage (VFB).  The difference between the device model and TCAD 

mobility values is less than 6% and the model VT is a perfect match to VFB, both of which 

exemplify the physical connection. 
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Figure 6.15:  Overlay of transfer and output characteristics of measured data and the 
presented model.  Transfer characteristics are shown in linear mode (a) with 
VDS = 0.1 V, and saturation mode (b) with VDS = 10 V.  (c) Output characteristics with 
VGS = 2-10 V in steps of 2 V.  (d) Differential output conductance over the same VGS 
range as in (c), showing an excellent match with the model. 
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Figure 6.15 shows an excellent match between the model and the measured data.  

Alternative model adjustments such as drain current scaling, gate voltage scaling, or 

inclusion of a series resistance can indeed result in lower current levels, however the overall 

match to output characteristics is poor without additional bias-dependent fitting 

parameters.  As shown in Figure 6.15c, the model provides an accurate transition into the 

saturation regime as VDS approaches VDsat.  The accuracy of Equation (6.16) is reinforced 

in Figure 6.15d, which shows the differential output conductance over the entire range of 

bias conditions.   

By differentiating Equation (6.16) with respect to VDS and setting the result equal 

to zero, the solution for VDsat is given by:   

 

𝑉𝑉𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 =  
�𝑉𝑉𝐶𝐶2 + 2𝑉𝑉𝐶𝐶(𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇) − 𝑉𝑉𝐶𝐶

𝛼𝛼
 (6.17) 

which approaches (𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇) 𝛼𝛼⁄  at small 𝑉𝑉𝐺𝐺𝐺𝐺.  The clear definition of VDsat in Equation 

(6.17) enables a straightforward accommodation of channel length modulation as required 

by shorter channel devices.     

Table 6-I:  Electrical parameters extracted using the 2D device model and TCAD 
simulation. 

Device Model TCAD  
𝑉𝑉𝑇𝑇 µ0 𝜃𝜃′ α VC µTCAD VFB 

0.14 V 12 cm2/V∙s 0.06 V-1 0.8 20 V 12.7 cm2/V∙s 0.14 V 
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6.4 CONCLUSION 

In this chapter, various conventional methods for VT and µch extractions using drain 

current measurements have been compared and the associated shortcomings are discussed.  

The presence of band-tail states and VGS dependent RS/D manifests itself in non-ideal 

response of current to voltage.  Therefore the traditional methods used for silicon devices 

are not adequate for IGZO TFT modeling.    

This work presents a new device model for the on-state operation of IGZO TFTs, 

which considers the influence of the drain bias on the occupancy of band-tail states and 

free channel charge.  Deviation from non-ideal I-V behavior is entirely attributed to the 

ionization and deionization of acceptor-like band-tail states, as controlled by both the gate 

and drain bias conditions.  The model includes two parameters which regulate the level of 

free channel charge, and one parameter which accounts for spreading of the output 

conductance.  The parameters are used in model elements which preserve the distinction 

between the gate-impressed and drain-impressed response, with dissociation from an 

effective channel mobility.  The model provides an excellent match to both measured and 

TCAD simulated transfer and output characteristics over all on-state bias conditions.  

Additional advantages of the presented model are the physical foundation, mathematical 

simplicity, and compatibility with a Level 2 SPICE model platform.   
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Chapter 7. INTERPRETATION OF NATIVE AND 
STRESS-INDUCED ANOMALIES 

IGZO is intrinsically an n-type semiconductor due to the presence of oxygen vacancies 

(VO) acting as donors [66] which also makes the IGZO surface very sensitive to the ambient 

oxygen [56], [70].  The readiness of IGZO surface to interact with the ambient air is also 

responsible for some non-ideal electrical response observed in transistors such as threshold 

voltage shift under room ambient storage [228], bias-stress induced instabilities [107], 

[229] and other distortions observed in transfer characteristics [169], [180], [230].  This 

chapter is devoted to the investigation of process integration schemes to address such 

behavior.   

One such non-ideal electrical response is the separation of low and high drain bias 

transfer characteristics in subthreshold region which is reminiscent of drain induced barrier 

lowering (DIBL) observed in conventional MOSFETs.  Electrical measurements and 

TCAD simulations are used to develop the hypothesis on the origin of non-ideal behavior 

observed, which can be suppressed by appropriate process and/or device modifications. 

It is important to perform bias-induced instability tests on TFTs as the application 

of this technology in flat panel display products requires prolonged on/off states.  The 

devices must be stable against any subsequent processing after passivation for TFT 

integration in display array.  This was investigated by application of thermal stress on 

finished devices.  Gate electrode configurations and process integration schemes which 

improve the device stability against thermal and bias stress, are also discussed.      
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7.1 TRAP ASSOCIATED BARRIER LOWERING  

Figure 7.1 shows the DIBL-like behavior in the transfer characteristics of an unpassivated 

long-channel bottom-gate (BG) device tested immediately after anneal (dashed line).  This 

behavior has been presented in literature, but the issue has been generally omitted from 

discussion [9] or assigned to short-channel behavior even when the channel dimensions are 

in micrometer range [231].  TCAD simulation shows that with the IGZO material model, 

including interface traps, and the physical device structure parameters, DIBL should not 

become apparent until the channel length is scaled below 1 µm.  Therefore, a proper 

understanding of the underlying physical mechanism behind this phenomenon in “long” 

channel IGZO devices is required. 

It is proposed that this DIBL-like effect is due to inhomogeneity of donor trap states 

at the topside IGZO interface that presents regions with distinctly different effective charge 

levels.  Due to the involvement of traps, this phenomenon is referred as Trap Associated 

Barrier Lowering (TABL).  This section presents a comprehensive investigation on the 

TABL resulting in a hypothesis on its origin that is further supported by TCAD simulation.   

7.1.1 IGZO Back-Channel Ripening 

The device shown in Figure 7.1 exhibited improvement after two days of storage in air 

ambient (solid line), with perfect overlay of low and high drain bias curves.  Note that 

devices stored in vacuum after anneal did not exhibit any improvement over time which 

inferred that the ripening process relies of the IGZO back-channel to the room-ambient air.  

The manifestation of this phenomenon in an L = 21 µm TFT demonstrates that it is not a 

short-channel effect.   
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 The TABL mechanism has been attributed in literature to the moisture absorption 

in the IGZO channel [180] or back-channel defects [232].  However, an electrical model 

has not been reported.  It is important to point out that the ripening time is channel length 

dependent. For a long-channel device (L = 21 µm), one day of ripening is sufficient while 

a short-channel TFT (L = 3 µm) may require a week.  The behavior is also statistical in 

nature i.e., 90% of L = 21 µm devices show TABL when tested immediately after 

annealing, however the percentage drops down to 10% after a day of room ambient storage.  

For passivated devices, the IGZO back-channel is not exposed to interact with the 

room air ambient.  The back-channel passivation process does not support ambient ripening 

and TABL did not disappear over time.  Figure 7.2 shows the TABL for BG passivated 

 

Figure 7.1:  Transfer characteristics of an unpassivated TFT tested immediately after 
annealing (dashed line) showing TABL.  After a two-day storage in room ambient 
the characteristics do not exhibit TABL (solid line).   
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device.  An L = 3 µm TFT transfer characteristics show the severity of the distortions for 

scaled devices, see the inset of Figure 7.2.   

7.1.2 Ripening of Revealed IGZO Back-Channel 

To investigate if ripening is a surface phenomenon, the device shown in Figure 7.1 was 

partially etched in dilute HCl to remove the back-channel surface layer.  Figure 7.3 shows 

the evolution of transfer characteristics for this device.  The partially etched TFT showed 

TABL just like a fresh device.  A two-day ripening alleviated these distortions.  These 

investigations suggest that TABL is a surface phenomenon and exposed IGZO surface has 

high density of trap states which need to be passivated through interaction with air ambient.  

 
Figure 7.2: Measured data for a L=21 µm BG device with 100 nm SiO2 passivation, 
showing TABL.  Inset shows the transfer characteristics for L=3 µm device showing 
pronounced distortions for a scaled device.    

 



 Chapter 7: Interpretation of Native and Stress-Induced Anomalies 

 

151 
 

   

7.1.3 Hypothesis on the Mechanism of TABL 

It is proposed that the TABL is due to the inhomogeneous passivation of the donor traps at 

the IGZO interface that presents regions with distinctly different effective charge levels.  

This results in a series/parallel network of channel regions to complete the electron 

pathway from source to drain.  Figure 7.4a shows a schematic model of this concept.  If 

donor-rich interface regions are separated from each other by narrow gap regions without 

donor states, then the accumulation of gaps can be represented by a single gap within the 

channel.  TCAD structures for “gap” devices were developed using the same material and 

interface state models as used for passivated devices (Section 5.4.2).  The gap is a 0.4 µm 

region void of donor interface trap states positioned in the center of the channel.  While the 

simulation model uses oxygen donor interface states to represent the donor-rich regions, 

 
Figure 7.3:  Same device as shown in Figure 7.1 after partial etch of the aged back-
surface; device started exhibiting TABL ‘2’.  These distortions are alleviated by a two-
day ripening process ‘3’.  The difference in VT for ripened device before ‘1’ and after 
‘3’ etch is due to the difference in the IGZO channel thickness.  
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another donor mechanism may be operative such as the incorporation of hydrogen [233] 

or water [108].  Figure 7.4b shows the TCAD structure for the gap device. 

Figure 7.5 shows the conduction band energy across the channel at low and high 

drain biases.  At high VDS, the drain dominates causing the lowering of barrier associated 

with back surface traps.  This lowering of barrier results in an earlier turn-on at high drain 

bias.  For low drain bias, the pockets of low charge dominate and the device turns on at 

higher VGS.  This difference in on-voltage for low and high drain bias is revealed as TABL.  

The current flow is dominated by highly resistive (low surface charge) regions; a long 

channel device has a higher probability to create low-charge gap regions during a short 

ripening process time.  Shorter channel devices have a lower probability to create a 

separation distance that dominates turn-on behavior, and thus require longer ripening time. 

 
Figure 7.4:  (a) Schematic model for the TABL origin, showing a cobblestone 
arrangement of donor-rich interface defect regions separated by low-charge gaps.  (b) 
Simplified structure for TCAD simulation, representing the low-charge gaps as a single 
gap in the middle of the channel.  The contours show the electron concentration at zero-
bias, with values in donor-rich interface defect regions and the low-charge gap differing 
by several orders of magnitude.   Note that the scales used for the X & Y axes are 
significantly different.   
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TABL is attributed to the random distribution of donor trap states at IGZO back-

surface.  In BG configuration gate is located on the other side of the defect-rich surface and 

therefore has weaker control over the trap states.  Figure 7.6a shows the simulation of 

TABL for BG and DG configuration with respect to IGZO thickness for an L = 3 µm 

device.  TABL is quantified by measuring the separation between low and high drain bias 

characteristics at ID =100 pA.  As IGZO thickness increases, the influence of bottom gate 

on the back-channel trap states reduces and larger TABL is seen.  The effect of gap spacing 

on TABL is shown in Figure 7.6b.  A 10 nm thick IGZO channel is used for these 

simulations which allowed to use very fine mesh for accurate modeling.  The TABL is 

negligible for extreme cases i.e. fresh device (all surface donor-traps) and ripened device 

(no surface donor-traps).  Once the gap spacing is longer then a minimum distance, drain 

can no longer overcome the gap.  Both low and high drain biases turn on at the same VGS.  

 
Figure 7.5:  Conduction band energy across the channel at low and high drain bias 
showing the barrier created by the low charge pocket (gap) shown in Figure 7.4b.  At 
high drain bias (dashed line) the barrier is lowered. The inset shows TABL in 
distributed fashion.   
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The simulations also suggest that a double-gate configuration suppresses the TABL as 

shown in Figure 7.6.    

Electrical simulations for gap device along with no-gap references are shown in 

Figure 7.7a.  Simulation data of TFT with DG configuration are shown in Figure 7.7b.  The 

dotted and broken line references included for comparison in each of the plots in Figure 

7.7 demonstrate the high-drain bias (saturation operation) behavior with “all” donor 

interface traps (fresh device), and the low-drain bias (linear operation) without interface 

traps (ripened device).  These conditions represent left-shift and right-shift limits for a 

device tested at high-drain bias and low-drain bias, respectively.  The BG gap device 

demonstrates TABL (Figure 7.7a), whereas this effect is completely suppressed in the DG 

gap device (Figure 7.7b).  While the values chosen for interface trap density and gap 

 

Figure 7.6:  (a) TABL plotted against the gap spacing for a L= 3 µm device.  TABL is 
characterized by measuring the separation between low & high drain bias 
characteristics at ID=100 pA.  The effect is suppressed for DG structure.  (b)  TABL 
with respect to IGZO channel thickness.  The effect is pronounced for thicker IGZO 
channel as gate control over interface states is weakened.   
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spacing were for demonstration purposes, the TCAD simulations model the TABL of the 

BG device characteristics quite well (compare Figure 7.7a to Figure 7.2).   

7.1.4 Double Gate IGZO TFT 

Simulation predicts that TABL can be suppressed for DG TFT.  TFTs with BG and DG 

configurations were fabricated.  The DG process is an extension of the BG process 

sequence, and these device types were fabricated simultaneously on the same wafers.  A 

molybdenum gate electrode was sputtered and patterned, followed by a 100 nm SiO2 gate 

dielectric deposited by PECVD (TEOS precursor, 390°C).  A 50 nm IGZO layer was 

sputtered using an InGaZnO4 (1:1:1:4) target in an argon ambient with 7% oxygen, and 

then patterned and etched using dilute HCl.  The source/drain contact metal stack (50 nm 

Mo/250 nm Al) was then defined using a lift-off resist process.   

A second 100 nm PECVD SiO2 layer, which serves as the passivation material for 

BG and top gate dielectric for the DG device, was then deposited.  This was followed by a 

 
Figure 7.7:  Simulation of BG (a), and DG (b) gap devices with all interface traps (fresh 
device) and no interface traps (ripened state) limits for high (dotted) and low (dashed) 
drain bias operation.  Simulations of single-gate structures exhibit TABL behavior, 
while this effect appears insignificant on DG devices.   

 



 Chapter 7: Interpretation of Native and Stress-Induced Anomalies 

 

156 
 

4 h O2 anneal at 400°C with a 5 h controlled ramp-down in O2 ambient.  The gate contact 

regions were opened, and top-gate electrodes were then defined for DG devices using 

evaporated aluminum with a lift-off resist process.  Source/drain contacts were then opened 

for electrical probing.  The schematic cross-section of the devices is shown in Figure 7.8.   

The transfer characteristics of short-channel (L = 3 µm) DG TFT fabricated using 

the described process flow are shown in Figure 7.9.  These devices were made on the same 

wafer as passivated BG TFTs shown in Figure 7.2.  As predicted by the simulation, the DG 

TFTs did not show any TABL even for scaled devices (compare Figure 7.7b to Figure 7.9). 

7.1.5 Refined TCAD Model for Back-Channel SiO2 

Figure 7.10 shows the measured and simulated transfer characteristics of a SiO2 passivated 

device after 4 h anneal in O2 ambient at 400 °C as shown in Section 5.6.  The interface 

defect states used for the simulation are presented in Table 7-I.  The bulk defect states 

distribution are common to unpassivated devices.  Values have been adjusted for interface 

traps density of states and fixed charge. 

 

 
Figure 7.8:  Cross-section schematics of passivated BG and DG TFTs.  The DG device 
has the staggered electrode configuration of the BG device, with the addition of a co-
planar top gate.  Note that the bottom and top gate electrodes in the DG device are 
electrically connected through a contact not shown.    
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The passivated devices exhibited improved stability over time compared to devices 

without any passivation material but the current drive and subthreshold slope suffered 

minor degradation.  TCAD simulation demonstrates that this compromise can be mitigated 

if another controlling gate electrode is placed above this interface in a double-gate (DG) 

configuration.  The placement of gate electrode towards the interface with higher defect 

states provides better control on the defects and suppress their role in device operation.  

Figure 7.11a shows a cross-section of a DG TFT channel region during the saturation mode 

showing the creation of two accumulation regions towards both bottom and top gate sides.  

 
Figure 7.9: Transfer characteristics of a L=3 µm DG device showing complete 
suppression of TABL. This can be directly compared with BG device in Figure 7.2. 

 

Table 7-I:  Back-channel interface parameters used for simulation of PECVD SiO2 
passivated devices.   

Symbol Value 

NVoi (donor-like interface traps) 5×1011 cm-2eV-1 

EVoi 2.9 eV 

WVoi 0.1 eV 

Nf (fixed charge) -5.5×1011 cm-2 
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Figure 7.11b shows the overlay of TCAD simulations which compares bottom gate and 

double gate electrode configurations with common material and interface model 

parameters, as specified in Table 7-I.  The double-gate (DG) arrangement shows significant 

improvement with clear benefits in both on-state and off-state operation. 

 

 

 
Figure 7.10:  An overlay of measured (markers) and simulated (line) characteristics of 
a SiO2 passivated BG IGZO TFT.   

 
Figure 7.11: (a) Electron concentration contour at VGS=VDS=10 V in IGZO channel. 
(b) Simulated transfer characteristics of BG and DG electrode configurations showing 
improvements in current-drive and SS for DG TFT.   
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The transfer characteristics measured on fabricated devices are shown in Figure 

7.12 along with the simulated transfer characteristics.  The excellent match between 

measurements and the simulations supported the interface defect distribution model 

employed.  DG devices showed marked improvement in terms of a steeper subthreshold, a 

VT that is right shifted from the BG device, and added current drive due to the additional 

accumulated electron charge.    

7.2 BIAS INDUCED INSTABILITY 

The response to bias-stress was investigated for both BG and DG device configuration.  

Positive bias-stress (PBS) and negative bias-stress (NBS) tests involved an application of 

+10 V and -10 V to the gate respectively, with source and drain held at reference ground.  

 
Figure 7.12:  An overlay of measured (markers) and simulated (line) characteristics 
of a SiO2 passivated DG IGZO TFT.  The DG TFT demonstrate steeper SS and higher 
current drive compared to BG TFT shown in Figure 7.10. 
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Measurements were taken at various intervals over an accumulated time of 10,000 seconds 

under bias-stress, with results summarized in Table 7-II.  Each device type demonstrated 

distinct response behavior.  A characteristic shift in response to bias-stress can be attributed 

to the creation or trapping of charge in the dielectric region, the IGZO/SiO2 interfaces, or 

the bulk IGZO material.  Charge trapped in a dielectric or interface region that remains 

fixed induces a lateral characteristic shift, whereas changes in interface traps cause 

differences in characteristic distortion and spreading.   

 

Table 7-II:  BG and DG TFTs response to 10,000 seconds of bias-stress 

 Voltage shift (V) 

 PBS NBS 

BG -0.17 -1.3 

DG 1.9 0.53 

 

 

Figure 7.13:  Select responses to PBS and NBS over 10,000 seconds for BG TFT.  (a) 
BG response to PBS, showing no shift in characteristics (b) Response to NBS showing 
a pronounced left-shift and subthreshold steepening. 
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The BG devices had a negligible response to PBS, however NBS resulted in 

significant left-shifting (shift ~ -1.5 V) and subthreshold steepening as shown in Figure 

7.13.  The starting characteristic has a shallow subthreshold slope, indicating poor gate 

control over interface traps.  Time under NBS appears to convert some of these donor-like 

traps into positive charge that remains fixed during transfer characteristic measurements.     

A significant parallel right-shift was observed on DG devices for both PBS and 

NBS conditions, as shown in Figure 7.14.  The evolution of threshold voltage shift with 

time for DG devices under PBS and NBS is shown in Figure 7.15a.  The parallel right shift 

under PBS (shift ~ +2 V) is associated with electron injection and trapping in the SiO2 

regions in between the overlapped co-planar top-gate and source/drain electrodes (Figure 

7.15b).  Similar to PBS, under NBS conditions there will still be electron charge injection 

and trapping in the SiO2 regions which supports a right-shift; however the magnitude of 

the observed shift is less than the PBS shift.  The NBS left-shift response of 

 
Figure 7.14:  DG response to (a) PBS and (b) NBS showing parallel right-shift in both 
cases. 
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the BG device should be simultaneously operative on the DG device, thus the resulting 

response is attributed to the superposition of the two distinctive charge mechanisms 

(shift ~ +0.5 V).  The DG transfer characteristics are steep throughout bias-stress testing 

due to improved electrostatics, as discussed earlier in Section 7.1.5.  

Despite the noticeable improvement in device characteristics in DG TFT, the bias-

induced instability remained a challenge.  The results indicated that the electron injection 

in top gate dielectric is one of the reason for instability.  A longer 8 h anneal at 400 °C was 

investigated to improve the TFT performance and dielectric quality [99], [108].  Figure 

7.16 shows the transfer characteristics of 8 h annealed BG device under bias stress.  The 

TFT performance exhibited marked improvements when compared with a shorter 4 h 

anneal (compare with Figure 7.13).  This improvement in device operation after a longer 

anneal is attributed to the improved interface quality and oxidation state of IGZO channel 

during an 8 h anneal.  Therefore, further investigations were conducted on devices with 

longer anneal.  

 
Figure 7.15:  (a) DG device transfer characteristic voltage shift over time under NBS 
& PBS.  (b) The positive shift which is operative under both PBS and NBS is attributed 
to the charge injection in the top-gate and S/D overlap region as shown in the 
schematic. 
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For bias stress, the devices showed distortions under PBS which were not observed 

for 4 h anneal TFTs (compare Figure 7.13a and Figure 7.16a).  However the transfer 

characteristics post-PBS (Figure 7.16a) resemble the original response of 4 h annealed 

TFTs (Figure 7.13a).  It indicates that the defect states responsible for the distortions in 

Figure 7.16a are already operative during the normal transistor operation for shorter anneal 

(Figure 7.13a).  These defects are reconfigured through a longer anneal process, however 

under PBS they temporarily become operative.  The origin of these states is not yet clear; 

several hours after PBS the characteristics were observed to return back to the initial state.  

The BG TFT annealed for 8 h also showed distortions in characteristics under NBS.  Such 

distortions are attributed to the interaction of IGZO channel with the water, discussed 

previously in Section 2.4 [158], [235].  The TEOS SiO2 passivation layer is susceptible to 

water vapor absorption present in room-air ambient.  While investigating the temperature 

 

Figure 7.16:  BG TFT response to (a) PBS and (b) NBS after an 8 h anneal in oxidizing 
ambient.   
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dependence of bias-stress it was discovered that the devices degraded significantly at 

temperature above 100 °C, which signifies an interaction between water and IGZO.     

7.3 THERMAL STABILITY OF IGZO TFT 

To investigate the device behavior under thermal stress, devices were exposed to elevated 

temperature using a hot-plate bake.  The initial measurements were taken at room 

temperature and then the hot plate temperature was increased in steps and transfer 

characteristics were measured.  The voltage control of IGZO TFTs degrades significantly 

after exposure to thermal stress above 140 °C.  Figure 7.17 shows the shift in transfer 

characteristics of BG and DG IGZO TFT after the thermal treatment for 1 h.  This 

degradation is attributed to the reaction of water absorbed by the PECVD SiO2 used for 

passivation with IGZO channel.  The PECVD deposited SiO2 is prone to water absorption 

present in the form of water vapors in air ambient.  During thermal anneal the water diffuses 

towards the IGZO channel and causes an increase in the carrier concentration as water 

behaves as dopant in IGZO [108].  To alleviate this instability, process integration schemes 

to minimize the interaction of finished devices with the ambient were investigated.  

It was shown in Section 4.5.2 that ALD alumina films are excellent barrier against 

the oxidants transport even at elevated temperatures which made it the primary choice for 

investigations as an encapsulation material.   
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7.3.1 IGZO TFT Encapsulation 

Passivated BG devices were fabricated using the process flow discussed in Section 7.1.4 

and annealed at 400 °C for 8 h.  A 15 nm ALD alumina film was deposited immediately 

after the thermal anneal which was followed by contact opening using 10:1 BOE.  The 

 
Figure 7.17:  Transfer characteristics of (a) PECVD SiO2 passivated BG TFT and (b) 
DG TFT.  After one hour of thermal treatment at 140 °C the characteristics shifted left 
by ~ 3 V and 5 V for BG and DG respectively.   

 

Figure 7.18: Schematic of ALD alumina encapsulated BG TFT.  
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schematic cross-section of final device is shown in Figure 7.18.  For DG with ALD 

alumina, Al gate was evaporated and patterned subsequently.   

7.3.2 Electrical Results for Encapsulated TFTs 

The transfer characteristics of alumina encapsulated BG and DG TFTs are shown in 

Figure 7.19.  The devices did not show any shift after an hour of thermal stress at 140 °C.  

This supports the hypothesis that the interaction of passivation/top gate-dielectric SiO2 with 

room air ambient was responsible for the thermal instability.  Minimizing the interaction 

of this PECVD SiO2 with air ambient suppressed the thermal instability. 

 

 
Figure 7.19:  Transfer characteristics of alumina encapsulated (a) BG and (b) DG 
TFTs before (solid line) and after one hour thermal stress at 140 °C (dotted line), 
showing no shift in the characteristics.   
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7.3.3 Bias-Stress on Encapsulated TFTs 

Water molecules or related complexes are reported to act as carrier trap centers which 

increase the instability under bias stress [121].  To minimize the role of water in bias-

induced instability, further investigations on bias-stress were conducted on ALD Al2O3 

encapsulated TFTs.  Encapsulated BG devices, annealed at 400 °C for 8 h in O2 ambient 

were tested against bias-stress.  The results are shown in Figure 7.20.   

The encapsulated devices showed good resistance against NBS compared to 

devices without encapsulation (see Figure 7.16b).  Under PBS, the devices showed 

distortions similar to devices without encapsulation layer (Figure 7.16a).  This suggests 

that the defect states responsible are not water related.  Electrically, the distortions in 

characteristics appear due to the change in the electronic energy state of VO (see 

Section 5.2.1).  A decrease in VO energy level from 2.9 eV to 2.6 eV would explain such 

 
Figure 7.20:  Response of BG TFTs under (a) PBS and (b) NBS stress for 10 ks.  The 
solid and dotted lines show the transfer characteristics before and after stress 
respectively.  TFT showed distortion under PBS, however no shift was observed under 
NBS. 
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distortions.  The physical origin of these states is typically associated with donor-like traps 

related to VO [236]–[238].  Nevertheless, DG devices with an 8 h anneal and ALD alumina 

capping layer showed excellent resistance to both PBS and NBS due to the elimination of 

water and improved electrostatics.    

7.4 FURTHER EXAMINATIONS 

A remaining challenge in IGZO process development is understanding the interaction with 

air ambient over time.  Through engineering solutions these defects can be regulated for 

improved electrical performance yet from a scientific standpoint some questions remained 

unanswered.  The XPS measurements supported the decrease in VO after oxidizing ambient 

 
Figure 7.21:  Response of DG TFTs with ALD alumina capping layer under (a) PBS 
and (b) NBS stress for 10 ks.  The solid and dotted lines show the transfer 
characteristics before and after stress respectively.  The devices show excellent 
resistance to bias stress.  Note that the off-state under NBS is the artifact of the probe-
station and the actual off-state is in pA range.   
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anneal which was shown to decrease the IGZO conductivity through TFT operation 

demonstrating the role of VO as donors in IGZO (Section 3.3.3).  TFT with 5 nm IGZO 

channel thickness did not require any annealing for exhibiting semiconductor properties as 

shown in Figure 7.22 which supports VO reduction in IGZO thin film at room temperature.  

This process was rather slow and the device performance kept improving over a few weeks 

as shown in Figure 7.22b.  The diffusion of oxidants in IGZO at room temperature has 

certain characteristic depth and as IGZO channel thickness was increased this room-air 

interaction with IGZO did not yield working TFTs.  This behavior is consistent with the 

ripening process with thicker IGZO films as discussed in Section 7.1.1.  Note that furnace 

annealing of the 5 nm IGZO device resulted in catastrophic failure.   

 The over-oxidation of IGZO TFTs on thicker films, discussed in Section 4.3.1, also 

showed some interesting results.  An unpassivated 50 nm IGZO TFT was over-oxidized 

(400 °C 4 h in O2), the characteristics are shown in Figure 7.23a.  The device showed 

 
Figure 7.22:  Transfer characteristics of a 5 nm thick IGZO TFT after (a) fabrication 
and (b) 3 weeks.  The device characteristics improved over time through interaction of 
IGZO channel with ambient.  The device exhibits transistor operation without any 
thermal anneal indicating the self-diffusion of oxygen.   
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distorted characteristics after the anneal, however the same device when tested after six 

months demonstrated excellent TFT response as shown in Figure 7.23b.  It appears that 

over-oxidation creates electronic defect states, most likely related to the interstitial oxygen.  

Over time these electronic defects disappear as the system approaches a thermal 

equilibrium state.  

The role of interstitial oxygen may also be operative during annealing of passivated 

devices.  It was also observed that when the IGZO film is passivated within a couple of 

days of deposition for expedited fabrication, the resulting device showed characteristics 

that resembled over-oxidation.  IGZO films deposited at the same time but processed a few 

weeks later produced characteristics as shown in Figure 7.24.  This suggests that 

as-deposited films have a supersaturated level of interstitial oxygen which out-diffuses over 

time; however if devices are passivated before this process is completed, it results in 

 
Figure 7.23:  Transfer characteristics of an over-oxidized unpassivated IGZO TFT after 
(a) anneal and (b) six months of room-air storage.  The TFT performance improved 
markedly over time.   
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degraded film quality.  Note that this condition is certainly dependent upon sputter process 

conditions, particularly on the partial pressure of oxygen.     

All three topics that require further examinations are related to an exchange of 

oxygen with air ambient, which must be managed to avoid electronic defect states 

responsible for degraded I-V characteristics.  For passivated devices, it is critical to have 

the right combination of IGZO sputter, annealing conditions and process integration 

scheme.   

7.5 CONCLUSION 

A hypothesis on the origin of TABL was presented based on inhomogeneity at the topside 

IGZO interface, resulting in donor-rich defect regions separated by low-charge gaps.  A 

simplified model for TCAD simulation provided insight on the advantage of the DG device 

 
Figure 7.24:  Transfer characteristics of BG passivated TFT with different delay times 
between IGZO sputter and passivation material application.  The reduced delay time 
(dashed line) suggests over-oxidation. 
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in its ability to overcome this effect.  It has been reported that the top IGZO layer has higher 

defect states compared to the bulk [239].  These donor-rich defect regions are attributed to 

these high interface trap region.  The ripening process passivates these defect states through 

interaction with room air and suppresses the TABL over time.   

The classic BG device structure demonstrated weak ability to overcome the 

influence of interface traps and control the transistor operation, with poor subthreshold 

slope and TABL on long-channel devices.  The BG device also demonstrated instability 

during bias-stress testing.  The DG device was prepared by adding an overlapping co-

planar top-gate to the BG device, and the improved electrostatics resulted in excellent on-

state and off-state performance on scaled TFTs with a channel length L = 3 µm.  However 

a limitation of the DG device was recognized during bias-stress testing, which revealed 

that the overlapping co-planar top-gate design was susceptible to electron charge injection 

and trapping in SiO2 near the overlap regions.  This resulted in a significant characteristic 

shift under both NBS and PBS conditions.  A longer anneal improved the device 

characteristics as well as the SiO2 resistance to electron injection.  However, the longer 

annealed BG devices exhibited distortions in transfer characteristics under bias-stress, 

which was attributed to the interaction of water as verified by thermal stress testing.    

IGZO TFTs exhibited a significant left shift after a thermal treatment, which is 

attributed to the water absorbed in the SiO2 passivation layer.  The stability against the 

thermal stress showed remarkable improvement after encapsulating the passivated device 

suing ALD Al2O3 layer and minimizing the interaction of SiO2 with the air ambient.  The 

encapsulated BG devices showed no shift under NBS and a distortion in characteristics 
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under PBS.  DG configuration with ALD alumina capping layer offers further advantages 

in terms of device performance as well as device stability under both NBS and PBS. 

Topics discussed for further examinations are challenging to quantify through a 

direct measurement.  Further experimentation is required to confirm hypotheses with 

measured data and analysis.    



 

174 
 

Chapter 8. A COMPLEMENTARY SILICON 
BASED TECHNOLOGY 

AOS offers an order of enhancement in mobility over a-Si:H while maintaining low cost, 

and even opens the realm of transparent and flexible electronics.  Oxide semiconductors 

have undergone tremendous advancement in recent years and they offer an alternative 

technology to directly replace a-Si:H TFTs.  Oxide semiconductors can be deposited over 

large glass panels, as well as on flexible substrates because of the low deposition 

temperature.  In LCD displays, TFTs are used as pixel switches and unipolar TFTs (n-type 

or p-type) are sufficient for this demand.  The logic circuits are fabricated on c-Si material 

and are connected to the LCD panel.  For future technology and realizing concepts like 

system on glass (SoG), active devices will need to be fabricated on glass panel.  Despite 

the continuous efforts, the p-type doping in oxide semiconductor has been elusive [240]–

[242]  Low temperature polycrystalline silicon (LTPS) can facilitate CMOS technology for 

future display devices.  It enables both n-channel and p-channel FETs with high carrier 

mobility, supporting finer resolution displays.   

Low temperature poly-silicon (LTPS) using Excimer Laser Annealing (ELA) has 

enabled higher levels of integration and device performance, and is already in production 

for switching matrix in small-format display products.  However the ELA process is 

expensive and its extension to larger size glass panels is questionable due to both feasibility 

and cost.  Currently the technology is not compatible with backplane manufacturing for 

large-format displays made on Gen8 glass panels and larger, which continues to motivate 

investigations on LTPS process techniques for improved manufacturability and lower cost.  
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Alternative strategies for crystallizing a-Si deposited on glass have been extensively 

researched.  These include solid-phase crystallization (SPC), metallization-induced 

crystallization (MIC), and flash-lamp annealing (FLA).  This chapter provides a brief 

overview of LTPS technology candidates for TFT backplanes in high-performance display 

applications.  The discussion will then focus on recent developments using FLA for 

polycrystalline silicon TFTs, or FLAPS. 

This work presents TFT results from an investigation on the electrical quality of 

FLAPS, with a demonstration of both NMOS and PMOS TFTs fabricated on the same 

glass substrate.  The grains in the active channel region are aligned in the direction of 

current flow thereby limiting the grain boundaries interaction during the device operation.  

This can be utilized to improve the variations in the device performance in FLAPS.   

8.1 LOW-TEMPERATURE POLYCRYSTALLINE SILICON (LTPS) 

Even with hydrogen passivation, defect states in amorphous silicon hinder the flow of 

electrons.  In a-Si:H the electron mobility is low which was good enough for TFT used as 

switching device in LCD until the need for higher performance display surfaced.  In 

polycrystalline phase the mobility improves appreciably.  The various techniques to 

crystallize a-Si deposited on glass substrates are briefly discussed in the following 

subsections. 

8.1.1 Solid-Phase Crystallization (SPC) 

Solid-Phase Crystallization (SPC) is the conventional and most simple way for 

crystallization.  In Si case, thin films of a-Si deposited on glass are annealed in furnace at 



Chapter 8: A Complementary Silicon Based Technology 

 

176 
 

high temperature.  Higher the temperature easier is the crystallization of silicon and bigger 

are the grains.  The constraint in this process is the temperature limit imposed by the 

underlying glass.  This limits the highest temperature at which films can be annealed, which 

is ~ 600 °C on the highest quality (low alkali ion) display glass.  The grain size and grain 

quality achieved using SPC are inferior to ELA; the grains suffer from a high density of 

twin-boundaries which degrades the mobility [243]. The crystallization time typically takes 

several hours which makes it unattractive from a manufacturing viewpoint.    

8.1.2 Excimer Laser Annealing (ELA) 

Thin-film a-Si absorbs excimer laser light (XeCl-308 nm) very efficiently without heating 

the underlying glass substrate.  The a-Si on glass is melted by the scanning laser beam, and 

polycrystalline material results upon solidification.  Beam scanning on large glass sheets 

is complex and process throughput is limited.  The uniformity of the laser needs to be 

exceptionally good for uniform performance of fabricated devices.  Due to the 

polycrystalline nature of LTPS, the performance uniformity suffers due to the presence of 

grain boundaries.  The non-uniformity among different pixels necessitates the use of 

external compensating circuits and/or more than one TFT for each sub-pixel [244].  Despite 

these challenges, ELA is dominating the high-end display for mobile phones.  A variant of 

the ELA process is Sequential Laser Solidification (SLS) in which annealing is done in two 

steps [245].  
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8.1.3  Metal-Induced Crystallization (MIC) 

The addition of specific metals to a-Si reduces the time and temperature for crystallization 

during SPC [246]–[248].  Nickel has been widely used for inducing crystallization of 

silicon [249], [250]. A thin layer of Ni is deposited over a-Si and then it is furnace annealed.  

The Ni reacts and forms a silicide during annealing, which acts as a seed for crystallization 

[250]. This facilitates crystallization with a significant reduction in time and temperature.  

MIC combined with ELA can be used for crystallization of a-Si; the term Continuous Grain 

Silicon (CGS) is coined for this process and published work suggests that it may be used 

in manufacturing [251].  

While work has been done in utilizing MIC for TFTs, the devices usually 

demonstrate higher levels of leakage current due to residual Ni.  To circumvent this 

problem lateral crystallization, by depositing Ni far from the channel region, has also been 

investigated and termed Metal-Induced Lateral Crystallization (MILC) [252]. Jang et al 

deposited a silicon nitride (SiN) capping layer over a-Si and then deposited Ni [253]. Since 

SiN deposited by PECVD is porous therefore during annealing small amount of Ni seeped 

through SiN and reacted with underlying Si inducing the crystallization.  All these variant 

techniques/approaches are used to reduce nickel content from the device active area. 

8.1.4  Flash-Lamp Annealing (FLA) 

Flash-lamp annealing (FLA) uses a series of short but intense bursts of broad spectrum 

light from xenon flash lamps.  Flash-Lamp Annealing (FLA) has been shown to be capable 

of achieving ultra-shallow junctions for MOSFET [254], [255]. FLA has been used for 

fabrication of Si nanocrystals [256] and GaAs nanocrystals [257] in Si for optoelectronic 
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applications. It has been used for crystallization of a-Si film on glass for solar cell 

applications and flat panel display applications [258], [259]. However solar-cells use 

thicker a-Si layers [260], and thin-film applications do not usually present electrical 

characteristics of fabricated TFTs [259], [261].  FLA has demonstrated the ability to 

crystalize amorphous silicon [259] and activate implanted dopants [262].  Such a process 

would be potentially extendable to accommodate arbitrarily large substrates, such as those 

in flat panel manufacturing.   

FLA is a promising way of producing high quality poly-Si films with less thermal 

impact on a glass substrate.  FLA can be done in millisecond (ms) time scale, filling the 

gap between Rapid Thermal Annealing (RTA) and ELA.  Major advantage of FLA is the 

high throughput by using a large high-intensity xenon light source with suitable pulse 

duration.  Conventional RTA has an annealing time in second time scale that may have a 

significant thermal impact on a glass substrate.  On the other hand, ELA with pulse duration 

on the order of tens of nanoseconds has a very small coverage area due to the laser beam 

width, limiting the backplane size and resulting in low production throughput.  While there 

have been recent reports of FLA Polycrystalline Silicon (FLAPS) that focus on 

photovoltaics [263], reports on TFTs have been very limited [264], [265], with none 

appearing in the literature within the last five years.   

8.2 FLASH LAMP ANNEALED POLYCRYSTALLINE SILICON 

Results that have been reported on TFTs fabricated with FLA LTPS have been 

encouraging.  Saxena et al showed the applicability of FLA for LTPS TFT, with results 

shown in Figure 8.1 [264]. The substrate was kept at elevated temperature (550 °C) during 
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the FLA process, which results in a higher surface temperature while maintaining low 

thermal stress in the glass.  Figure 8.1a shows the optical image of the poly-Si film.  The 

grain boundaries are visible in the micrograph.  The mobility of the TFTs degraded 

appreciably as the number of grain boundaries increased in the active channel region (from 

138 cm2/V∙s to 75 cm2/V∙s).  These variations in the TFT performance within a 

13 cm × 8 cm area are highly undesirable.  A process which enables alignment of the grains 

in the direction of the current flow may reduce the variations among the TFT performance.  

Figure 8.1b shows the transfer characteristics of a TFT fabricated using the FLA process.  

Only low-drain PMOS devices were reported which raises question about the performance 

of these devices under high-drain bias conditions.  Also, NMOS devices fabricated using 

FLA process were not reported suggesting the challenges in donor-type dopant activation 

or diffusion of dopants along the long grain boundaries.  Despite these deficiencies, this 

work shows the potential of FLA technology in TFT applications and provided the 

motivation to invest efforts in finding engineering solutions to improve the FLA process.   

The lack of improvement of PMOS devices and the lack of demonstration of NMOS 

devices is likely to be due to variation in the resulting polycrystalline film morphology and 

difficulties in process control and optimization.  This work presents TFT results from an 

investigation on the electrical quality of FLAPS, with a demonstration of both NMOS and 

PMOS TFTs fabricated on the same glass substrate.  While presented devices show 

variation in electrical characteristics with certain non-ideal behavior, the extracted values 

of channel mobility can be compared to reported values extracted from TFTs fabricated on 

Corning’s crystalline Silicon-on-Glass (SiOG) material [266].  Thus, this technique may 
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be a viable candidate for polycrystalline silicon backplane manufacturing on large glass 

panels.    

8.2.1 Device Fabrication 

A 60 nm hydrogenated amorphous silicon (a-Si:H) layer was deposited via Plasma-

Enhanced Chemical Vapor Deposition (PECVD) on 150 mm diameter Corning EAGLE 

XG® display glass wafers with an SiO2 barrier layer.  The samples were dehydrogenated 

at 450 °C for 2 hours.  The a-Si super-mesa patterns were defined and etched using reactive-

ion etching (RIE).  The super-mesa provides sacrificial real estate that extends beyond the 

mesa, or active device region.  A 100 nm SiO2 capping layer was then deposited which 

serves three important functions, including a thermal buffer to the surface, an anti-

reflective layer for the FLA exposure, and a screen oxide layer to position the boron and 

 
Figure 8.1:  (a) Optical image of the FLA crystallized film. (b) Transfer characteristics 
of the crystallized films of FLA poly-Si TFT [264] 

 

(a) (b)
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phosphorus implant profiles within the a-Si layer.  The source/drain implant regions were 

patterned and received high-dose (ϕ = 4×1015 cm-2) implants of boron and phosphorus done 

at energies of 35 keV and 60 keV, respectively.   

The FLA system used in this work is a NovaCentrix PulseForge 3300 configured 

with two Xe lamps, with a 75 mm × 150 mm exposure window.  The FLA exposure served 

to crystallize a Si and activate the implanted dopant.  A high temperature ambient control 

chamber maintained a temperature of 550 °C with a nitrogen purge at atmospheric pressure.  

Single-shot FLA exposures were done with lamp voltage supplies at 600 V and a time of 

200 µsec, with bolometer measurements showing an integrated energy of ~ 6 J/cm2.  

Following FLAPS formation the screen oxide was removed in buffered hydrofluoric acid, 

and the mesa definition was patterned and etched via RIE to remove the sacrificial super-

mesa regions.  The gate oxide was deposited via PECVD and was followed by a 630 °C, 

12 hour furnace anneal in nitrogen ambient, which was found to be important for stress 

relaxation and may also offer other benefits such as additional dopant activation and defect 

reduction.  Contact regions were then patterned and etched in buffered HF.  An optical 

image of the FLAPS TFT at this point in the process is shown in Figure 8.2.  Aluminum 

was deposited using thermal evaporation, and the source/drain and gate electrodes were 

patterned and etched.  Finally the devices were sintered in a forming gas ambient (5% H2 

in N2) at 450 °C for 30 min.   

8.2.2 Electrical Characterization 

CMOS TFTs were realized following the described process details, with a high percentage 

of devices within an acceptable exposed region demonstrating transistor operation.  An 
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overlay plot of long-channel transfer characteristics is shown in Figure 8.3, where the 

mask-defined channel length (Lmask) is 32 µm.  Variation in device behavior is attributed to 

limitations in process uniformity, as well as the influence of interface traps and bulk 

defects.  The best-case device results are depicted in Figure 8.4.  The Terada-Muta (T-M) 

method was used to establish the effective electrical channel length (Leff), with plots shown 

in Figure 8.5 [164].  Note that only Lmask = 32 µm and 20 µm were available for the analysis.  

Shorter devices demonstrated inferior characteristics and were prone to fail, with very few 

working devices at Lmask < 20 µm.   

 

 

Figure 8.2:  Optical microscope images of FLAPS during TFT fabrication.  The left 
image shows a boron-implanted mesa following FLA exposure and oxide etch for the 
source/drain contacts.  The outer set of red dashed lines represents a demarcation 
between the implanted and channel regions, with Lmask = 32 µm indicating the mask-
defined channel length.  The inner set of red dashed lines delineates an observed 
boundary, with the label x = 26 µm indicating a visual separation that may be the result 
of lateral diffusion.  The right image is a further magnified view of the center channel 
region showing circular voids (white borders) as well as other optical artifacts. 
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The T-M analysis worked reasonably well on both NMOS and PMOS devices; 

however lower |VGS -VT| values were excluded for the PMOS analysis due to minor 

inconsistencies in extrapolated intercepts presumed to be related to trap states.  The channel 

length offset (∆L) values were 6.3 µm and 13.4 µm for NMOS and PMOS devices, 

 

Figure 8.3:  NMOS (left) and PMOS (right) transfer characteristics from devices with 
Lmask = 32 µm and W = 100 µm.  Note differences in x-axis scale.  Each plot has an 
overlay of over 30 devices measured within a single-shot FLA exposed region.   

 

 

Figure 8.4:  Best-case linear & log scale CMOS transfer characteristics from FLAPS 
TFTs with Lmask = 32 µm and W = 100 µm. 
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respectively; much larger than expected, particularly for the PMOS device.  The on-state 

and off-state operational parameters for the best-case transfer characteristics shown in 

Figure 8.4 were extracted once Leff was established, with results listed in Table 8-I.  The 

width (W) of the TFTs was taken as the designed value of 100 µm.  The oxide capacitance 

was calculated from the 100 nm deposition thickness.  The channel mobility values were 

calculated from the maximum transconductance at |VDS| = 0.1 V.  The extracted channel 

mobility values are 380 cm2/V∙s and 143 cm2/V∙s for electrons and holes, respectively.  

Off-state parameters were also noteworthy, with minimum subthreshold swing (SS) values 

below 150 mV/dec, and ~ 1 pA/µm leakage current at |VDS| = 5 V.  

The extracted channel mobility values are notably high and may raise question on 

the analysis.  The electron/hole channel mobility ratio is ~ 2.7, which is indeed consistent 

with crystalline silicon.  Further analysis found that these electrical results correspond to 

full melting of the super-mesa during FLA, which supports large polycrystalline silicon 

grains.  It also provides an explanation for the large ∆L from the T-M analysis as a result 

 
Figure 8.5:  Terada-Muta analysis plots for NMOS (left) and PMOS (right) FLAPS 
TFTs.  The insets show an enlargement of the intersection identifying the channel length 
offset (∆L) needed to arrive at the effective electrical channel length (Leff). 
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of the diffusivity of phosphorus and boron in liquid phase silicon.  Scanning Electron 

Microscopy (SEM) and Electron Backscatter Diffraction (EBSD) images shown in Figure 

8.6 further reveal the FLAPS microstructure.  These images were taken from a functional 

device after chemical etching of the aluminum electrodes and gate oxide layer.  The 

channel region remains intact; however the source/drain regions that were in contact with 

aluminum were partially consumed during the aluminum sinter process.  The images of the 

channel regions indicate a smooth surface with voids scattered throughout.  This suggests 

full melting of the silicon mesa during the FLA process with some dewetting prior to 

freezing, leaving regions completely void of silicon.  Although there are voids, the TFTs 

demonstrate performance consistent with high quality LTPS.  The EBSD mapping suggests 

an edge-directed nucleation/growth process, with some grains that appear to extend 

completely across the channel region.    

   

 
Figure 8.6:  SEM image (left) and EBSD mapping (right) of a FLAPS TFT channel 
region taken from a deprocessed PMOS device verified operational.  The boxed region 
on the SEM image was used for EBSD analysis.  Each color represents a different 
crystal orientation.   
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8.3 CONCLUSION 

Despite the improved performance over a-Si:H TFT and scalability, IGZO technology does 

not support CMOS capability.  For finer resolution in display and SoG capabilities, Si-

based technology has been investigated.  ELA-LTPS has emerged as a dominant 

technology for high-performance TFTs used in LCD and OLED display products; however 

there are challenges in scaling ELA techniques for backplane manufacturing on extra-large 

glass panels.  This provides the motivation to investigate alternative process techniques for 

silicon-based technology which are easily scalable and manufacturable in comparison to 

current ELA based LTPS.  Alternative strategies for LTPS include SPC, MIC, and FLA.  

Table 8-I:  Summary of best-case CMOS TFT operational parameters.  

Parameter NMOS PMOS 

Physical 

Lmask 32 µm 32 µm 

∆L 6.3 µm 13.4 µm 

Leff 25.7 µm 18.6 µm 

W 100 µm 100 µm 

W/Leff 3.89 5.38 

Cox′ 34.5 nF/cm2 34.5 nF/cm2 

  

On-State 
VT 0.23 V -2.82 V 

gm(max) @ |VDS|= 0.1V 5.10 µA/V 2.66 µA/V 

µch(max) 380 cm2/V⋅s 143 cm2/V⋅s 

  

Off-State I(leak) @ |VDS |= 5V ~ 1 pA/µm ~ 1 pA/µm 

SS(min) 120 mV/dec 140 mV/dec 
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While SPC offers the simplicity of processing, it is afflicted by the substrate temperature 

constraint and extremely long duration for crystallization.  MIC offers an advantage over 

SPC but still the anneal time is in hours compared to seconds for ELA and contaminates 

the channel with metal impurities.  For this reason, research has been directed towards the 

alternative methods to crystallize amorphous silicon deposited on glass substrates.    

This work shows a high potential for FLAPS that until now has not been reported, 

with best-case operational parameters comparable to ELA-LTPS.  However the existence 

of trap states is evident by the CMOS transfer characteristics resulting in distortion, 

degraded SS, and inflated VT separation.  Electrical results indicate that the presence of 

voids within the channel region may be tolerable for long-channel devices, however a void-

free channel will become necessary as devices are scaled down to smaller dimensions.  In 

addition the non-self-aligned transistor structure has serious limitations due to the presence 

of dopants during the FLA process.  It is clear that a self-aligned TFT structure is required 

for scaled devices.  These identified challenges must be addressed through optimization of 

conditions involving materials, device structure, FLA parameters and process integration.  

Techniques that were developed for self-aligned CMOS TFTs on SiOG [266] may also 

apply to FLAPS.   
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Chapter 9. CONCLUSIONS 

The primary focus of this work was to interpret and regulate the electronic defect states in 

IGZO TFTs through material analysis and process integration strategies.  This goal was 

attained through the following accomplished objectives: 

• Established the relationships between processes associated with IGZO TFT 

operation including IGZO sputter deposition, annealing conditions and back-

channel passivation, and developed a process integration scheme that supports 

device stability when subjected to thermal and bias stress. 

• Developed TCAD material and device models for BG and DG configurations that 

depict the role of defect states on device operation, as well as provide insight and 

support of a presented hypothesis on DIBL-like device behavior associated with 

back-channel interface trap inhomogeneity. 

• Developed a SPICE-compatible 2D on-state operation model for IGZO TFTs that 

is consistent with TCAD simulation. 

This chapter provides a summary of the important findings and contributions of this 

research work, with recommended areas for further study as IGZO continues to evolve and 

mature as a mainstream manufacturing technology.  

9.1 KEY CONTRIBUTIONS 

The study of the role of electronic defect states on the device operation, and the regulation 

of these states through process integration schemes has presented many challenges.  
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Materials analysis, electrical characterization, TCAD simulation and device modeling have 

all been essential to attain a clear understanding of the underlying mechanisms involved.  

Key contributions of this work towards the IGZO body of research are now summarized.  

9.1.1 Process Integration 

The spectrum of IGZO deposition parameters and corresponding anneal conditions suggest 

that there is no “unique” process for producing high-quality TFTs.  Differences in as-

deposited films can be accommodated using an appropriate thermal anneal process which 

reduces the sub-gap states and regulates the amount of oxygen vacancies.  Prior to thermal 

annealing the IGZO films were established as too conductive for use as a TFT channel 

material.  An annealing process in oxidizing ambient was required to lower the free electron 

concentration by reducing oxygen vacancy donors, confirmed using XPS analysis.   

The exposed IGZO surface readily interacts with oxygen and water vapor present 

in the room air ambient, which causes instability in the device operation over time as well 

as under bias stress.  The application of a passivation material at the IGZO back-channel 

is imperative, however this requires modifications of thermal anneal conditions for 

sufficient oxidant transport.  Initial passivated devices exhibited a compromise in device 

performance in terms of subthreshold swing and on-state current drive, which is attributed 

to the presence of defect states at IGZO/passivation material interface.  The influence of 

these interface states was mitigated by optimizing the annealing conditions and the addition 

of a top-gate electrode.  The interpretation of experimental results was supported by TCAD 

simulation of unpassivated BG, passivated BG, and DG TFT configurations.  
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Water absorbed by PECVD SiO2 at the IGZO back-channel was found to be 

detrimental to device stability over time and following thermal and bias stress.  An ALD 

alumina capping layer, deposited on the PECVD SiO2 following the annealing process, 

was investigated as a water barrier.  This process integration scheme resulted in TFTs that 

exhibited excellent device performance and resistance to bias-stress as shown in Figure 9.1.   

 

 

9.1.2 TCAD Simulation & Trap-Associated Barrier Lowering  

Device simulation is an indispensable tool in the study of electronic devices.  TCAD 

simulation was employed to understand the underlying physics of device operation and 

role of defect states.  For unpassivated IGZO TFTs, the oxygen-vacancy donor 

 

Figure 9.1:  Response of DG TFTs with ALD alumina capping layer under (a) PBS and 
(b) NBS stress for 10 ks.  The solid and dotted lines show the transfer characteritics 
before and after stress, respectively.  The devices show excellent resistance to bias 
stress. 
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concentration was adjusted from the default Silvaco ATLAS material model, providing an 

improved match to experimental results.  A proposed mechanism to describe DIBL-like 

behavior observed on long-channel unpassivated devices relatively soon after annealing is 

attributed to the inhomogeneity of trap states at the IGZO back-channel interface, and is 

referred as trap associated barrier lowering (TABL).  A qualitative representation of this 

behavior is demonstrated using a simplified TCAD simulation model shown in Figure 9.2.   

The application of back-channel passivation material required the addition of defect 

states at the IGZO/dielectric interface.  This material/interface model was used for an 

accurate simulation of BG TFTs passivated with PECVD SiO2, and further extended to 

illustrate the advantages of a DG device structure.  TCAD simulation produced an excellent 

match to measured characteristics, with improved subthreshold performance and 

elimination of TABL as shown in Figure 9.2c.   

 

 
Figure 9.2:  (a) Schematic model for the TABL origin, showing a cobblestone 
arrangement of donor-rich interface defect regions separated by low-charge gaps.  (b) 
Simplified structure for TCAD simulation, representing the low-charge gaps as a single 
gap in the middle of the channel.  The contours show the electron concentration at zero-
bias, with values in donor-rich interface defect regions and the low-charge gap 
differing by several orders of magnitude.  (c) An overlay of measured (markers) and 
simulated (line) characteristics of a SiO2 passivated DG IGZO TFT.  The DG TFT 
demonstrate steeper SS and higher current drive compared to BG TFT.  DG device 
shows complete suppression of TABL.     
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9.1.3 Device Modeling 

Due to the presence of band-tail states, conventional SPICE model parameters are 

inadequate for IGZO TFT modeling.  A novel device model for the on-state operation of 

IGZO TFTs has been presented.  The uniqueness of the model is the integration of drain-

impressed deionization, which results in a 2D modification of free channel charge.  An 

analytical expression that relates the ionization of band-tail states and dependence of free 

electron charge on the applied drain bias was not derived; rather TCAD simulation was 

used as a tool for this purpose.  The model provides an excellent match to TCAD simulation 

and measured data over the entire range of bias conditions, and preserves the physical 

connection to device operation.  The model fit for devices is virtually indistinguishable 

from measured data, with the on-state well represented by five operational parameters.   

Model parameters are extracted using regression analysis, with the resulting 

threshold voltage and channel mobility values consistent with TCAD analogs.  The 

extracted mobility value provides a direct connection to the primitive intrinsic electron 

mobility in the TCAD material model.  The model is compatible with a Level 2 SPICE 

model platform, and can utilize traditional parameters necessary to accommodate short-

channel and high-field effects that are presented by scaled devices. 
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9.2 FURTHER WORK 

This work presents a significant advancement in understanding of the role of defect states 

in IGZO TFTs, and regulation through materials and processes.  Nonetheless, there are 

areas that require further investigation to address certain inconsistencies in interpretation 

or shortcomings in device performance.   

One element that is lacking in the literature is a band-tail DOS model that 

demonstrates consistency between temperature-dependent electron transport behavior (i.e. 

 

Figure 9.3:  Overlay of transfer and output characteristics of measured data and the 
presented model.  Transfer characteristics are shown in linear mode (a) with 
VDS = 0.1 V, and (b) saturation mode with VDS = 10 V.  (c) Output characteristics with 
VGS = 2-10 V in steps of 2 V.  (d) Differential output conductance over the same VGS 
range as in (c), showing an excellent match with the model. 
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cryogenic) and TCAD simulation.  Inconsistencies have been previously noted [88], 

however the models continue to remain disparate.  Efforts towards resolving this 

inconsistency within this work were hindered by instabilities presented by TFTs under 

cryogenic testing which was most likely related to issues with water adsorption/absorption.  

Cryogenic transport measurements must be done on a device with an ALD alumina capping 

layer to suppress any influence of water and ensure stability under stress conditions.   

While the presented TCAD material & device models accurately represent both BG 

and DG device configurations with consistent defect parameters, there have been observed 

inconsistencies with alternative electrode arrangements (e.g. top-gate TFT).  However, in 

such cases invariably other issues compromised the interpretation.  A new IGZO testchip 

has been designed which incorporates several gate-source/drain electrode configurations 

that will be realized simultaneously, thus presenting the same material and interface 

conditions for TCAD simulation of the various device structures.  

  Another area that warrants further investigation is directed towards advancing the 

understanding and elimination of bias-stress instability.  While it can be argued that the 

problem is resolved by the DG TFT structure, an explanation for this based on differences 

between the bias-stress electrostatic conditions remains uncertain.  Furthermore, the 

additional cost associated with a DG process may be prohibitive in a manufacturing 

application.  BG devices still demonstrate a temporary response to PBS which may be 

related to interstitial oxygen defects [267]–[269].  A minor temporary response to NBS, 

observed on some BG TFTs, may have similar origin.  These remaining instabilities may 

be addressed by a refined investigation on the sputter deposition and annealing processes.  

Oxygen interstitials were mentioned in a hypothesis regarding dependency on the time in 
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between IGZO sputter deposition and passivation/annealing processes, which requires 

further experimental verification.  Another consideration is the application of a front-

channel interface layer such as ALD alumina prior to IGZO deposition.  Experiments 

investigating both post-sputter delay time and the application of ALD alumina at the front-

channel interface are currently in progress. 

9.3 CLOSING REMARKS 

IGZO technology has the potential to replace the current a-Si:H based TFT technology to 

address the needs of advanced display products while maintaining process simplicity.  As 

in the case of a-Si:H, defect states in IGZO establish the electronic properties of the 

material as well as anomalies in device behavior.  The interpretation and regulation of 

electronic defect states in IGZO TFTs through materials and processes has resulted in 

significant advancements in TFT performance.  This work has provided significant 

contributions towards a better understanding of IGZO device behavior which is vital to 

address the challenges that remain as active research topics in the scientific community 

[118], [270]–[276].  

IGZO has already been introduced into production of display products [277], with 

advantages in low temperature processing and transparency to light that are particularly 

attractive for flexible and transparent display devices.  However, IGZO is not a suitable 

technology candidate for certain high performance applications due to the lack of 

complementary device operation where LTPS remains unchallenged.  The introduction of 

flash-lamp annealing (FLAPS) as an alternative LTPS technology shows the potential for 

scalability to large panel substrates; however the engineering challenges that remain are 
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significant.  Research and development in FLAPS technology is still in an initial phase, 

and will require a significant investment in time and resources to advance the technology 

towards inception in flat panel manufacturing.  Nonetheless, it appears as a promising 

solution for the integration of high performance TFT circuits on large glass panels at a 

lower production cost than excimer laser annealing.   

While FLAPS may target future device applications, IGZO technology offers a 

direct replacement for current a-Si:H technology with superior performance.  The needs of 

the display industry continue to evolve, which will direct efforts towards advancement of 

these TFT technologies to meet the performance and manufacturing requirements for a 

wide range of product applications.   
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