Rochester Institute of Technology

RIT Digital Institutional Repository

Theses

8-2017

The Design of a Custom 32-bit RISC CPU and LLVM Compiler
Backend

Connor Jan Goldberg
¢jg3259@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation
Goldberg, Connor Jan, "The Design of a Custom 32-bit RISC CPU and LLVM Compiler Backend" (2017).
Thesis. Rochester Institute of Technology. Accessed from

This Master's Project is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9550&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9550?utm_source=repository.rit.edu%2Ftheses%2F9550&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

THE DESIGN OF A CusToM 32-BIT RISC CPU AND LLVM COMPILER BACKEND

by
Connor Jan Goldberg

GRADUATE PAPER
Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE
in Electrical Engineering

Approved by:

Mr. Mark A. Indovina, Lecturer
Graduate Research Advisor, Department of Electrical and Microelectronic Engineering

Dr. Sohail A. Dianat, Professor
Department Head, Department of Electrical and Microelectronic Engineering

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING
KATE GLEASON COLLEGE OF ENGINEERING
ROCHESTER INSTITUTE OF TECHNOLOGY
ROCHESTER, NEW YORK
Avucust 2017

To my family and friends, for all of their endless love, support, and encouragement

throughout my career at Rochester Institute of Technology

Abstract

Compiler infrastructures are often an area of high interest for research. As the necessity
for digital information and technology increases, so does the need for an increase in the
performance of digital hardware. The main component in most complex digital systems is
the central processing unit (CPU). Compilers are responsible for translating code written
in a high-level programming language to a sequence of instructions that is then executed
by the CPU. Most research in compiler technologies is focused on the design and opti-
mization of the code written by the programmer; however, at some point in this process
the code must be converted to instructions specific to the CPU. This paper presents the
design of a simplified CPU architecture as well as the less understood side of compilers:
the backend, which is responsible for the CPU instruction generation. The CPU design is
a 32-bit reduced instruction set computer (RISC) and is written in Verilog. Unlike most
embedded-style RISC architectures, which have a compiler port for GCC (The GNU Com-
piler Collection), this compiler backend was written for the LLVM compiler infrastructure
project. Code generated from the LLVM backend is successfully simulated on the custom

CPU with Cadence Incisive, and the CPU is synthesized using Synopsys Design Compiler.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this paper are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other University. This
paper is the result of my own work and includes nothing which is the outcome of work

done in collaboration, except where specifically indicated in the text.

Connor Jan Goldberg
August 2017

Acknowledgements

I would like to thank my advisor, professor, and mentor, Mark A. Indovina, for all of his
guidance and feedback throughout the entirety of this project. He is the reason for my
love of digital hardware design and drove me to pursue it as a career path. He has been a
tremendous help and a true friend during my graduate career at RIT.

Another professor I would like to thank is Dr. Dorin Patru. He led me to thoroughly
enjoy computer architecture and always provided helpful knowledge and feedback for my
random questions.

Additionally, I want to thank the Tight Squad, for giving me true friendship, endless
laughs, and great company throughout the many, many long nights spent in the labs.

I would also like to thank my best friends, Lincoln and Matt. This project would not
have been possible without their love, advice, and companionship throughout my entire
career at RIT.

Finally T need to thank my amazing parents and brother. My family has been the
inspiration for everything I strive to accomplish and my success would be nothing if not

for their motivation, support, and love.

Forward

The paper describes a custom RISC CPU and associated LLVM compiler backend as a
Graduate Research project undertaken by Connor Goldberg. Closing the loop between a
new CPU architecture and companion compiler is no small feat; Mr.Goldberg took on the
challenge with exemplary results. Without question I am extremely proud of the research

work produced by this fine student.

Mark A. Indovina
Rochester, NY USA

August 2017

Contents

Abstract ii
Declaration iii
Acknowledgements iv
Forward \%
Contents vi
List of Figures ix
List of Listings X
List of Tables xi
1 Introduction 1
1.1 Organization 2

2 The Design of CPUs and Compilers 3
2.1 CPU Design o 3
2.2 Compiler Design 5
2.2.1 Application Binary Interface 0. 5

2.2.2 Compiler Models 6

223 GCCO e 7

224 LLVM . . oo 8

2241 FrontEnd o 8

2.2.4.2 Optimization 0 9

2243 Backend 9

3 Custom RISC CPU Design 11
3.1 Instruction Set Architecture L. 11

3.1.1 Register File. 12

Contents vii

3.1.2 Stack Design 13
3.1.3 Memory Architecture 14

3.2 Hardware Implementation L. 15
3.2.1 Pipeline Design oo 16
3.2.1.1 Instruction Fetch 16

3.2.1.2 Operand Fetch 17

3.2.1.3 Execute 17

3214 WriteBack 18

3.2.2 Stalling 18
3.23 Clock Phases 18

3.3 Imstruction Detailso o 18
3.3.1 Load and Store 19
3.3.2 Data Transfer o 20
3.3.3 Flow Control 21
3.3.4 Manipulation Instructions 22
3.3.4.1 Shift and Rotate L. 24

4 Custom LLVM Backend Design 26
4.1 Structure and Toolso 26
4.1.1 Code Generator Design Overview 27
4.1.2 TableGen 28
413 Clangandllec o 31

4.2 Custom Target Implementation 31
4.2.1 Abstract Target Description 33
4.2.1.1 Register Informationo 33

4.2.1.2 Calling Conventions 34

4.2.1.3 Special Operands 34

4.2.1.4 Instruction Formats 35

4.2.1.5 Complete Instruction Definitions 36

4.2.1.6 Additional Descriptions 40

4.2.2 Instruction Selection Lo 40
4.2.2.1 SelectionDAG Construction 41

4.2.2.2 Legalizationo oo 46

4.2.2.3 Selection 51

4.2.2.4 Scheduling L)

4.2.3 Register Allocation 55
424 Code Emission o 57
4.2.4.1 Assembly Printero 57

4.2.4.2 ELF Object Writer 58

Contents viii
5 Tests and Results 62
5.1 LLVM Backend Validation 62
5.2 CPU Implementation 65
5.2.1 Pre-scan RTL Synthesis 66
5.2.2 Post-scan DFT Synthesis 66
5.3 Additional Tools 67
531 Clang 67
5.3.2 ELF toMemory 68
5.3.3 Assembler L 68
5.3.4 Disassembler 68
6 Conclusions 69
6.1 Future Work 69
6.2 Project Conclusions 70
References 71
I Guides I-1
[.L1 Building LLVM-CJG I-1
[.L1.1 Downloading LLVM I-1
[.1.2 Importing the CJG Source Files [-2
[.1.3 Modifying Existing LLVM Files [-2
[.L1.4 TImporting Clang I-5
[.1.5 Building the Project [-8
L1.6 Usage o I-9
[L1.6.1 Usinglle. I-9
[.1.6.2 UsingClang [-10
[.L1.6.3 Using ELF to Memory [-10
[.2 LLVM Backend Directory Tree. I-11
II Source Code II-1
I[I.L1 CJGRISCCPURTL I1-1
I1.1.1 Opcodes Header I1-1
I1.1.2 Definitions Header, I1-2
II.L1.3 Pipeline I1-3
I1.1.4 Clock Generator [1-32
IL15 ALU . . .o I1-33
I1.1.6 Shifter I1-35
I1.1.7 Data Stack I1-38
I1.1.8 Call Stack 11-39
I1.1.9 Testbench [1-40
I[1.2 ELF to Memory e [1-45

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1

Aho Ullman Model 6
Davidson Fraser Model 6
Status Register Bits 12
Program Counter Bits o 13
Stack Pointer Registero 13
CJG RISC CPU Functional Block Diagram 15
Four-Stage Pipeline 16
Four-Stage Pipeline Block Diagram 16
Clock Phases 19
Load and Store Instruction Word 19
Data Transfer Instruction Word 20
Flow Control Instruction Word 21
Register-Register Manipulation Instruction Word 23
Register-Immediate Manipulation Instruction Word 23
Register-Register Shift and Rotate Instruction Word 24
Register-Immediate Manipulation Instruction Word 24
CJGMCTargetDesc.h Inclusion Graph 32
Initial myDouble:entry SelectionDAG 43
Initial myDouble:if.then SelectionDAG 44
Initial myDouble:if.end SelectionDAG 45
Optimized myDouble:entry SelectionDAG 47
Legalized myDouble:entry SelectionDAG 48
Selected myDouble:entry SelectionDAG 52
Selected myDouble:if.then SelectionDAG 53
Selected myDouble:if.end SelectionDAG 54
myDouble Simulation Waveform o0 64

List of Listings

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

5.1

TableGen Register Set Definitions 30
TableGen AsmWriter Output 30
TableGen RegisterInfo Output 30
General Purpose Registers Class Definition 33
Return Calling Convention Definition 34
Special Operand Definitions 35
Base CJG Instruction Definition 36
Base ALU Instruction Format Definitions 37
Completed ALU Instruction Definitions 38
Completed Jump Conditional Instruction Definition 40
Reserved Registers Description Implementation 41
myDouble C Implementation 41
myDouble LLVM IR Code, 42
Custom SDNode TableGen Definitions 49
Target-Specific SDNode Operation Definitions 49
Jump Condition Code Encoding 49
Target-Specific SDNode Operation Implementation 50
Initial myDouble Machine Instruction List 95
Final myDouble Machine Instruction List o6
Custom printMemSrcOperand Implementation 58
Final myDouble Assembly Code 58
Custom getMemSrcValue Implementation 29
Base Load and Store Instruction Format Definitions 60
CodeEmitter TableGen Backend Output for Load 60
Disassembled myDouble Machine Code 61
myDouble Machine Code 61

Modified myDouble Assembly Code 65

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

5.1
5.2
5.3
5.4

Description of Status Register Bits 12
Addressing Mode Descriptions oo 19
Load and Store Instruction Details 20
Data Transfer Instruction Details 20
Jump Condition Code Description 22
Flow Control Instruction Details 22
Manipulation Instruction Details 23
Shift and Rotate Instruction Details 25
Register Map for myDouble 57
Pre-scan Netlist Area Results 66
Pre-scan Netlist Power Results 66
Post-scan Netlist Area Results 67

Post-scan Netlist Power Results 67

Chapter 1

Introduction

Compiler infrastructures are a popular area of research in computer science. Almost every
modern-day problem that arises yields a solution that makes use of software at some
point in its implementation. This places an extreme importance on compilers as the tools
to translate software from its written state, to a state that can be used by the central
processing unit (CPU). The majority of compiler research is focused on functionality to
efficiently read and optimize the input software. However, half of a compiler’s functionality
is to generate machine instructions for a specific CPU architecture. This area of compilers,
the backend, is largely overlooked and undocumented.

With the goal to explore the backend design of compilers, a custom, embedded-style,
32-bit reduced instruction set computer (RISC) CPU was designed to be targeted by a C
code compiler. Because designing such a compiler from scratch was not a feasible option
for this project, two existing and mature compilers were considered as starting points:
the GNU compiler collection (GCC) and LLVM. Although GCC has the capability of
generating code for a wide variety of CPU architectures, the same is not true for LLVM.

LLVM is a relatively new project; however, it has a very modern design and seemed to

1.1 Organization 2

be well documented. LLVM was chosen for these reasons, and additionally to explore the
reason for its seeming lack of popularity within the embedded CPU community.

This project aims to provide a view into the process of taking a C function from
source code to machine code, which can be executed on CPU hardware through the LLVM
compiler infrastructure. Throughout Chapters 4 and 5, a simple C function is used as an
example to detail the flow from C code to machine code execution. The machine code
is simulated on the custom CPU using Cadence Incisive and synthesized with Synopsys

Design Compiler.

1.1 Organization

Chapter 2 discusses the basic design of CPUs and compilers to provide some background
information. Chapter 3 presents the design and implementation of the custom RISC CPU
and architecture. Chapter 4 presents the design and implementation of the custom LLVM
compiler backend. Chapter 5 shows tests and results from the implementation of LLVM
compiler backend for the custom RISC CPU to show where this project succeeds and fails.

Chapter 6 discusses possible future work and the concludes the paper.

Chapter 2

The Design of CPUs and Compilers

This chapter discusses relevant concepts and ideas pertaining to CPU architecture and

compiler design.

2.1 CPU Design

The two prominent CPU design methodologies are reduced instruction set computer (RISC)
and complex instruction set computer (CISC). While there is not a defined standard to
separate specific CPU architectures into these two categories, it is common for most archi-
tectures to be easily classified into one or the other depending on their defining character-
istics.

One key indicator as to whether an architecture is RISC or CISC is the number of
CPU instructions along with the complexity of the instructions. RISC architectures are
known for having a relatively small number of instructions that typically only perform
one or two operations in a single clock cycle. However, CISC architectures are known for

having a large number of instructions that typically perform multiple, complex operations

2.1 CPU Design 4

over multiple clock cycles [1]. For example, the ARM instruction set contains around 50
instructions [2], while the Intel x86-64 instruction set contains over 600 instructions [3].
This simple contrast highlights the main design objectives of the two categories; RISC
architectures generally aim for lower complexity in the architecture and hardware design
so as to shift the complexity into software, and CISC architectures aim to keep a bulk of
the complexity in hardware with the goal of simplifying software implementations. While it
might seem beneficial to shift complexity to hardware, it also causes hardware verification
to increase in complexity. This can lead to errors in the hardware design, which are much
more difficult to fix compared to bugs found in software [4].

Some of the other indicators for RISC or CISC are the number of addressing modes and
format of the instruction words themselves. In general, using fewer addressing modes along
with a consistent instruction format results in faster and less complex control signal logic
[5]. Additionally, a study in [6] indicates that within the address calculation logic alone,
there can be up to a 4x increase in structural complexity for CISC processors compared
to RISC.

The reasoning behind CPU design choices have been changing throughout the past few
decades. In the past, hardware complexity, chip area, and transistor count were some of
the primary design considerations. In recent years, however, the focus has switched to
minimizing energy and power while increasing speed. A study in [7] found that there is a
similar overall performance between comparable RISC and CISC architectures, although
the CISCs generally require more power.

There are many design choices involved in the development of a CPU aimed solely
towards the hardware performance. However, for software to run on the CPU there are
additional considerations to be made. Some of these considerations include the number

of register classes, which types of addressing modes to implement, and the layout of the

2.2 Compiler Design 5

memory space.

2.2 Compiler Design

In its simplest definition, a compiler accepts a program written in some source language,
then translates it into a program with equivalent functionality in a target language [8].
While there are different variations of the compiling process (e.g. interpreters and just-
in-time (JIT) compilers), this paper focuses on standard compilers, specifically ones that
can accept an input program written in the C language, then output either the assembly
or machine code of a target architecture. When considering C as the source language, two
compiler suites are genuinely considered to be mature and optimized enough to handle
modern software problems: GCC (the GNU Compiler Collection) and LLVM. Although
similar in end-user functionality, GCC and LLVM each operate differently from each other

both in their software architecture and even philosophy as organizations.

2.2.1 Application Binary Interface

Before considering the compiler, the application binary interface (ABI) must be defined
for the target. This covers all of the details about how code and data interact with the
CPU hardware. Some of the important design choices that need to be made include the
alignment of different datatypes in memory, defining register classes (which registers can
store which datatypes), and function calling conventions (whether function operands are
placed on the stack, in registers, or a combination of both) [9]. The ABI must carefully
consider the CPU architecture to be sure that each of the design choices are physically
possible, and that they make efficient use of the CPU hardware when there are multiple

solutions to a problem.

2.2 Compiler Design 6

source front end intermediate | code intermediate back end target
L . . L
program representation optimizer representation (code generator) program
LLVM

Figure 2.1: Aho Ullman Model

source register transfer code register transfer . register transfer . target
front end > » combiner »| assigner
program language expander language language program

A

GCC

Figure 2.2: Davidson Fraser Model

2.2.2 Compiler Models

Modern compilers usually operate in three main phases: the front end, the optimizer, and
the backend. Two approaches on how compilers should accomplish this task are the Aho
Ullman approach [8] and the Davidson Fraser approach [10]. The block diagrams for each
for each of these models are shown in Fig. 2.1 and Fig. 2.2. Although the function of the
front end is similar between these models, there are some major differences in how they
perform the process of optimization and code generation.

The Aho Ullman model places a large focus on having a target-independent intermediate
representation (IR) language for a bulk of the optimization before the backend which allows
the instruction selection process to use a cost-based approach. The Davidson Fraser model
focuses on transforming the IR into a type of target-independent register transfer language

(RTL).! The RTL then undergoes an expansion process followed by a recognizer which

! Register transfer language (RTL) is not to be confused with the register transfer level (RTL) design
abstraction used in digital logic design

2.2 Compiler Design 7

selects the instructions based on the expanded representation [9]. This paper will focus on
the Aho Ullman model as LLVM is architected using this methodology.

Each phase of an Aho Ullman modeled compiler is responsible for translating the input
program into a different representation, which brings the program closer to the target
language. There is an extreme benefit of having a compiler architected using this model;
because of the modularity and the defined boundaries of each stage, new source languages,
target architectures, and optimization passes can be added or modified mostly independent
of each other. A new source language implementation only needs to consider the design
of the front end such that the output conforms to the IR, optimization passes are largely
language-agnostic so long as they only operate on IR and preserve the program function,
and lastly, generating code for a new target architecture only requires designing a backend

that accepts IR and outputs the target code (typically assembly or machine code).

2.2.3 GCC

GCC was first released in 1984 by Richard M. Stallman [11]. GCC is written entirely in
C and currently still maintains much of the same software architecture that existed in the
initial release over 30 years ago. Regardless of this fact, almost every standard CPU has
a port of GCC that is able to target it. Even architectures that do not have a backend in
the GCC source tree typically have either a private release or custom build maintained by
a third party; an example of one such architecture is the Texas Instruments MSP430 [12].
Although GCC is a popular compiler option, this paper focuses on LLVM instead for its

significantly more modern code base.

2.2 Compiler Design 8

2.2.4 LLVM

LLVM was originally released in 2003 by Chris Lattner [13] as a master’s thesis project. The
compiler has since grown tremendously into an fully complete and open-source compiler
infrastructure. Written in C++ and embracing its object-oriented programming nature,
LLVM has now become a rich set of compiler-based tools and libraries. While LLVM used
to be an acronym for “low level virtual machine,” representing its rich, virtual instruction
set IR language, the project has grown to encompass a larger scope of projects and goals and
LLVM no longer stands for anything [14]. There are a much fewer number of architectures
that are supported in LLVM compared to GCC because it is so new. Despite this fact,
there are still organizations choosing to use LLVM as the default compiler toolchain over
GCC [15, 16]. The remainder of this section describes the three main phases of the LLVM

compiler.

2.2.4.1 Front End

The front end is responsible for translating the input program from text written by a person.
This stage is done through lexical, syntactical, and semantic analysis. The output format
of the front end is the LLVM IR code. The IR is a fully complete virtual instruction set
which has operations similar to RISC architectures; however, it is fully typed, uses Static
Single Assignment (SSA) representation, and has an unlimited number of virtual registers.
It is low-level enough such that it can be easily related to hardware operations, but it also
includes enough high-level control-flow and data information to allow for sophisticated
analysis and optimization [17]. All of these features of LLVM IR allow for a very efficient,

machine-independent optimizer.

2.2 Compiler Design 9

2.2.4.2 Optimization

The optimizer is responsible for translating the IR from the output of the front end, to
an equivalent yet optimized program in IR. Although this phase is where the bulk of the
optimizations are completed; optimizations can, and should be completed at each phase
of the compilation. Users can optimize code when writing it before it even reaches the
front end, and the backend can optimize code specifically for the target architecture and
hardware.

In general, there are two main goals of the optimization phase: to increase the execution
speed of the target program, and to reduce the code size of the target program. To achieve
these goals, optimizations are usually performed in multiple passes over the IR where each
pass has specific goal of smaller-scope. One simple way of organizing the IR to aid in
optimization is through SSA form. This form guarantees that each variable is defined
exactly once which simplifies many optimizations such as dead code elimination, edge

elimination, loop construction, and many more [13].

2.2.4.3 Backend

The backend is responsible for translating a program from IR into target-specific code
(usually assembly or machine code). For this reason, this phase is also commonly referred
to as the code generator. The most difficult problems that are solved in this phase are
instruction selection and register allocation.

Instruction selection is responsible for transforming the operations specified by the
IR into instructions that are available on the target architecture. For a simple example,
consider a program in IR containing a logical NOT operation. If the target architecture
does not have a logical NOT instruction but it does contain a logical XOR function, the

instruction selector would be responsible for converting the “NOT” operation into an “XOR

2.2 Compiler Design 10

with -1”7 operation, as they are functionally equivalent.

Register allocation is an entirely different problem as the IR uses an unlimited number
of variables, not a fixed number of registers. The register allocator assigns variables in
the IR to registers in the target architecture. The compiler requires information about
any special purpose registers along with different register classes that may exist in the
target. Other issues such as instruction ordering, memory allocation, and relative address
resolution are also solved in this phase. Once all of these problems are solved the backend

can emit the final target-specific assembly or machine code.

Chapter 3

Custom RISC CPU Design

This chapter discusses the design and architecture of the custom CJG RISC CPU. Section
3.1 explains the design choices made, section 3.2 describes the implementation of the

architecture, and section 3.3 describes all of the instructions in detail.

3.1 Instruction Set Architecture

The first stage in designing the CJG RISC was to specify its instruction set architecture
(ISA). The ISA was designed to be simple enough to implement in hardware and describe
for LLVM, while still including enough instructions and features such that it could execute
sophisticated programs. The architecture is a 32-bit data path, register-register design.
Each operand is 32-bits wide and all data manipulation instructions can only operate on

operands that are located in the register file.

3.1 Instruction Set Architecture 12

3.1.1 Register File

The register file is composed of 32 individual 32-bit registers denoted as rO through r31.
All of the registers are general purpose with the exception of rO-r2, which are designated
as special purpose registers.

The first special purpose register is the status register (SR), which is stored in r0. The
status register contains the condition bits that are automatically set by the CPU following
a manipulation instruction. The conditions bits set represent when an arithmetic operation
results in any of the following: a carry, a negative result, an overflow, or a result that is
zero. The status register bits can be seen in Fig. 3.1. A table describing the status register

bits can be seen in Table 3.1.

31 4 3 2 1 0

Unused Z v N C

Figure 3.1: Status Register Bits

Bit| Description

The carry bit. This is set to 1 if the result of a manipulation instruction
produced a carry and set to 0 otherwise

The negative bit. This is set to 1 when the result of a manipulation instruction
produces a negative number (set to bit 31 of the result) and set to 0 otherwise
The overflow bit. This is set to 1 when a arithmetic operation results in an

V | overflow (e.g. when a positive 4 positive results in a negative) and set to 0
otherwise

The zero bit. This is set to 1 when the result of a manipulation instruction
produces a result that is 0 and set to 0 otherwise

Table 3.1: Description of Status Register Bits

The next special purpose register is the program counter (PC) register, which is stored

in r1. This register stores the current value of the program counter which is the address

3.1 Instruction Set Architecture 13

of the current instruction word in memory. This register is write protected and cannot be
overwritten by any manipulation instructions. The PC can only be changed by an increment
during instruction fetch (see section 3.2.1.1) or a flow control instruction (see section 3.3.3).

The PC bits can be seen in Fig. 3.2.

31 16 15 0

Unused Program Counter Bits

Figure 3.2: Program Counter Bits

The final special purpose register is the stack pointer (SP) register, which is stored in
r2. This register stores the address pointing to the top of the data stack. The stack pointer
is automatically incremented or decremented when values are pushed on or popped off the

stack. The SR bits can be seen in Fig. 3.3.

31 6 5 0

Unused Stack Pointer Bits

Figure 3.3: Stack Pointer Register

3.1.2 Stack Design

There are two hardware stacks in the CJG RISC design. One stack is used for storing the
PC and SR throughout calls and returns (the call stack). The other stack is used for storing
variables (the data stack). Most CPUs utilize a data stack that is located within the data
memory space, however, a hardware stack was used to simplify the implementation. Both
stacks are 64 words deep, however they operate slightly differently. The call stack does

not have an external stack pointer. The data is pushed on and popped off the stack using

3.1 Instruction Set Architecture 14

internal control signals. The data stack, however, makes use of the SP register to access
its contents acting similar to a memory structure.

During the call instruction the PC and then the SR are pushed onto the call stack.
During the return instruction they are popped back into their respective registers.

The data stack is managed by push and pop instructions. The push instruction pushes
a value onto the stack at the location of the SP, then automatically increments the stack
pointer. The pop instruction first decrements the stack pointer, then pops the value at
location of the decremented stack pointer into its destination register. These instructions

are described further in Section 3.3.2.

3.1.3 Memory Architecture

There are two main memory design architectures used when designing CPUs: Harvard
and von Neumann. Harvard makes use of two separate physical datapaths for accessing
data and instruction memory. Von Neumann only utilizes a single datapath for accessing
both data and instruction memory. Without the use of memory caching, traditional von
Neumann architectures cannot access both instruction and data memory in parallel. The
Harvard architecture was chosen to simplify implementation and avoid the need to stall the
CPU during data memory accesses. Additionally, the Harvard architecture offers complete
protection against conventional memory attacks (e.g. buffer/stack overflowing) as opposed
to a more complex von Neumann architecture [18]. No data or instruction caches were
implemented to keep memory complexity low.

Both memories are byte addressable with a 32-bit data bus and a 16-bit wide ad-
dress bus. The upper 128 addresses of data memory are reserved for memory mapped

input/output (I/O) peripherals.

3.2 Hardware Implementation

15

3.2 Hardware Implementation

The CJG RISC is fully designed in the Verilog hardware description language (HDL) at

the register transfer level (RTL). The CPU is implemented as a four-stage pipeline and the

main components are the clock generator, register file, arithmetic logic unit (ALU), the

shifter, and the two stacks. A simplified functional block diagram of the CPU can be seen

(—

in Fig. 3.4.
Register File

SR
PC
Sp
R3

¢ ———>
R31

| ADDR

Instruction Memory
2 ——>

+)| Instruction Word
32

(—

P ———>

Data Memory

32

IBUS

2 ¢ v

ALU CNVZ

ouT

32

TOS

P2 —>

Call Stack

Data Stack

32

32 ¢ v

Shifter

ouT

A

32

Figure 3.4: CJG RISC CPU Functional Block Diagram

3.2 Hardware Implementation 16

Pipeline Stage Pipeline
IF Ly| L | I |I3] 1] I
OF Io | I | I | I3 | Iy
EX ILy| I | I | I3
WB Iy | I | I

“Clock Cycle | 123456]

Figure 3.5: Four-Stage Pipeline

Instruction Fetch |—| Operand Fetch " Execute [— Write Back

Figure 3.6: Four-Stage Pipeline Block Diagram

3.2.1 Pipeline Design

The pipeline is a standard four-stage pipeline with instruction fetch (IF), operand fetch
(OF), execute (EX), and write back (WB) stages. This pipeline structure can be seen
in Fig. 3.5 where I, represents a single instruction propagating through the pipeline.
Additionally, a block diagram of the pipeline can be seen in Fig. 3.6. During clock cycles
1-3 the pipeline fills up with instructions and is not at maximum efficiency. For clock cycles
4 and onwards, the pipeline is fully filled and is effectively executing instructions at a rate
of 1 IPC (instruction per clock cycle). The CPU will continue executing instructions at
a rate of 1 IPC until a jump or a call instruction is encountered at which point the CPU

will stall.

3.2.1.1 Instruction Fetch

Instruction fetch is the first machine cycle of the pipeline. Instruction fetch has the least
logic of any stage and is the same for every instruction. This stage is responsible for loading
the next instruction word from instruction memory, incrementing the program counter so it

points at the next instruction word, and stalling the processor if a call or jump instruction

3.2 Hardware Implementation 17

is encountered.

3.2.1.2 Operand Fetch

Operand fetch is the second machine cycle of the pipeline. This stage contains the most
logic out of any of the pipeline stages due to the data forwarding logic implemented to
resolve data dependency hazards. For example, consider an instruction, I,,, that modifies
the R, register, followed by an instruction I,,, that uses R, as an operand.® Without any
data forwarding logic, I, 11 would not fetch the correct value because I,, would still be in
the execute stage of the pipeline, and R, would not be updated with the correct value until
I,, completes write back. The data forwarding logic resolves this hazard by fetching the
value at the output of the execute stage instead of from Rx. Data dependency hazards can
also arise from less-common situations such as an instruction modifying the SP followed by
a stack instruction. Because the stack instruction needs to modify the stack pointer, this
would have to be forwarded as well.

An alternative approach to solving these data dependency hazards would be to stall
CPU execution until the write back of the required operand has finished. This is a trade-off
between an increase in stall cycles versus an increase in data forwarding logic complexity.
Data forwarding logic was implemented to minimize the stall cycles, however, no in-depth

efficiency analysis was calculated for this design choice.

3.2.1.3 Execute

Execution is the third machine cycle of the pipeline and is mainly responsible for three
functions. The first is preparing any data in either the ALU or shifter module for the write

back stage. The second is to handle reading the output of the memory for data. The third

IR, represents any modifiable general purpose register

3.3 Instruction Details 18

function is to handle any data that was popped off of the stack, along with adjusting the

stack pointer.

3.2.1.4 Write Back

The write back stage is the fourth and final machine cycle of the pipeline. This stage is
responsible for writing any data from the execute stage back to the destination register.
This stage additionally is responsible for handling the flow control logic for conditional

jump instructions as well as calls and returns (as explained in Section 3.3.3).

3.2.2 Stalling

The CPU only stalls when a jump or call instruction is encountered. When the CPU stalls
the pipeline is emptied of its current instructions and then the PC is set to the destination
location of either the jump of the call. Once the CPU successfully jumps or calls to the

new location the pipeline will begin filling again.

3.2.3 Clock Phases

The CPU contains a clock generator module which generates two clock phases, ¢; and ¢,
(shown in Fig. 3.7), from the main system clock. The ¢; clock is responsible for all of the
pipeline logic while ¢ acts as the memory clock for both the instruction and data memory.

Additionally, the ¢, clock is used for both the call and data stacks.

3.3 Instruction Details

This section lists all of the instructions, shows the significance of the instruction word bits,

and describes other specific details pertaining to each instruction.

3.3 Instruction Details 19

oo I i

P,

Figure 3.7: Clock Phases

3.3.1 Load and Store

Load and store instructions are responsible for transferring data between the data memory

and the register file. The instruction word encoding is shown in Fig. 3.8.

31 28 27 22 21 17 16 15 0

Opcode R, R; Control Address

Figure 3.8: Load and Store Instruction Word

There are four different addressing modes that the CPU can utilize to access a particular
memory location. These addressing modes along with how they are selected are described
in Table 3.2 where R, corresponds to the R; register in the load and store instruction word.

The load and store instruction details are described in Table 3.3.

Mode R, > | Control | Effective Address Value
Register Direct | Not 0 1 The value of the R, register operand
Absolute 0 1 The value in the address field
The value of the R, register operand + the value in
Indexed Not 0 0 the address field
PC Relative 0 0 The value of the PC register + the value in the

address field

Table 3.2: Addressing Mode Descriptions

2R, corresponds to R; for load and store instructions, and to R; for flow control instructions

3.3 Instruction Details

20

Instruction | Mnemonic | Opcode Function
Load the value in memory at the effective
Load LD 0x0 . . .
oa x address or 1/O peripheral into the R; register
Store the value of the R; register into memory
t T 1 . .
Store S 0x at the effective address or I/O peripheral

Table 3.3: Load and Store Instruction Details

3.3.2 Data Transfer

Data instructions are responsible for moving data between the register file, instruction

word field, and the stack. The instruction word encoding is shown in Fig. 3.9.

31 28 27

22 21

17

16

15

Opcode

R;

R

J

Control

Constant

Figure 3.9: Data Transfer Instruction Word

The data transfer instruction details are described in Table 3.4. If the control bit is set

high then the source operand for the copy and push instructions is taken from the 16-bit

constant field and sign extended, otherwise the source operand is the register denoted by

R;.
Instruction | Mnemonic | Opcode Function
Copy the value from the source operand into
Copy CPY 0x2 the R; register
Push the value from the source operand onto
Push PUSH 0x3 the top of the stack and then increment the
stack pointer
Decrement the stack pointer and then pop the
Pop POP 0x4 value from the top of the stack into the R;
register.

Table 3.4: Data Transfer Instruction Details

3.3 Instruction Details 21

3.3.3 Flow Control

Flow control instructions are responsible for adjusting the sequence of instructions that
are executed by the CPU. This allows a non-linear sequence of instructions that can be
decided by the result of previous instructions. The purpose of the jump instruction is
to conditionally move to different locations in the instruction memory. This allows for
decision making in the program flow, which is one of the requirements for a computing

machine to be Turing-complete [19]. The instruction word encoding is shown in Fig. 3.10.

31 27 26 22 21 20 19 18 17 16 15 0

Opcode R, C|N|V|Z]| 0| Control Address

Figure 3.10: Flow Control Instruction Word

The CPU utilizes four distinct addressing modes to calculate the effective destination
address similar to load and store instructions. These addressing modes along with how
they are selected are described in Table 3.2, where R, corresponds to the R; register in
the flow control instruction word. An additional layer of control is added in the C, N, V,
and Z bit fields located at bits 21-18 in the instruction word. These bits only affect the
jump instruction and are described in Table 3.5. The C, N, V, and Z columns in this table
correspond to the value of the bits in the flow control instruction word and not the value
of bits in the status register. However, in the logic to decide whether to jump (in the write
back machine cycle), the actual value of the bit in the status register (corresponding to
the one selected by the condition code) is used. The flow control instruction details are

described in Table 3.6.

3.3 Instruction Details

22

C|N |V |Z | Mnemonic Description
0/0[0|0| JMP/JU Jump unconditionally
1101010 JC Jump if carry
0/1]0]0 JN Jump if negative
0]0]1]0 JV Jump if overflow
00|01 Jz/JEQ Jump if zero / equal
0111 JNC Jump if not carry
170111 JNN Jump if not negative
171101 JNV Jump if not overflow
1[1]1]0]| JNZ/JINE | Jump if not zero / not equal

Table 3.5: Jump Condition Code Description

Instruction | Mnemonic | Opcode Function
itionall he P he effecti
Jump J{CCy? 0x5 Conditionally set the PC to the effective
address
Push the PC followed by the SR onto the call
Call CALL 0x6 stack, set the PC to the effective address
Pop the top of call stack into the SR, then pop

Return RET 0x7 the next value into the PC

Table 3.6: Flow Control Instruction Details

3.3.4 Manipulation Instructions

Manipulation instructions are responsible for the manipulation of data within the register

file. Most of the manipulation instructions require three operands: one destination and

two source operands. Any manipulation instruction that requires two source operands can

either use the value in a register or an immediate value located in the instruction word as

the second source operand. The instruction word encoding for these variants are shown in

Fig. 3.11 and 3.12, respectively. All of the manipulation instructions have the possibility of

changing the condition bits in the SR following their operation, and they all are calculated

3 The value of {CC} depends on the condition code; see the Mnemonic column in Table 3.5

3.3 Instruction Details 23
through the ALU.
31 27 26 22 21 17 16 12 11 0
Opcode R; R; Ry 0
Figure 3.11: Register-Register Manipulation Instruction Word
31 27 26 22 21 17 16 0
Opcode R; R; Immediate 1
Figure 3.12: Register-Immediate Manipulation Instruction Word
Instruction Mnemonic | Opcode Function
Add ADD 0x8 Store R; 4+ SRC, in R;
Subtract SUB 0x9 Store R; — SRC, in R;
Compare CMP 0xA Compute R; — SRC, and discard result
Negate NOT 0xB Store ~R; in R;*
AND AND 0xC Store R; & SRC, in R;”
Bit Clear BIC 0xD Store R; & ~SRC, in R;
OR OR OxE Store R; | SRC, in R;°
Exclusive OR XO0R 0xF Store R; ~ SRC, in R;’
Signed Multiplication MUL Ox1A Store R; x SRC, in R;
Unsigned Division DIV 0x1B Store R; < SRC, in R;

Table 3.7: Manipulation Instruction Details

The manipulation instruction details are described in Table 3.7. The value of SRCy either

represents the Ry register for a register-register manipulation instruction or the immediate

value (sign-extended to 32-bits) for a register-immediate manipulation instruction.

4The ~ symbol represents the unary logical negation operator
®The & symbol represents the logical AND operator

6 The | symbol represents the logical inclusive OR operator

"The ~ symbol represents the logical exclusive OR (XOR) operator

3.3 Instruction Details 24

3.3.4.1 Shift and Rotate

Shift and Rotate instructions are a specialized case of manipulation instructions. They are
calculated through the shifter module, and the rotate-through-carry instructions have the
possibility of changing the C bit within the SR. The logical shift shifts will always shift in
bits with the value of 0 and discard the bits shifted out. Arithmetic shift will shift in bits
with the same value as the most significant bit in the source operand as to preserve the
correct sign of the data. As with the other manipulation instructions, these instructions
can either use the contents of a register or an immediate value from the instruction word
for the second source operand. The instruction word encoding for these variants are shown

in Fig. 3.13 and 3.14, respectively.

31 27 26 22 21 17 16 12 11 4 3 1 0

Opcode R; R; Ry 0 Mode | 0

Figure 3.13: Register-Register Shift and Rotate Instruction Word

31 27 26 22 21 17 16 11 10 4 3 1 0

Opcode R; R, Immediate 0 Mode | 1

Figure 3.14: Register-Immediate Manipulation Instruction Word

The mode field in the shift and rotate instructions select which type of shift or rotate
to perform. All instructions will perform the operation as defined by the mode field on the
R, register as the source data. The number of bits that the data will be shifter or rotated
(SRCy) is determined by either the value in the Ry register or the immediate value in the
instruction word depending on if it is a register-register or register-immediate instruction

word. The shift and rotate instruction details are described in Table 3.8.

3.3 Instruction Details

25

Instruction Mnemonic | Opcode | Mode Function
Shlft'nght SRL . 0%0 Shift Rj. right loglcauy by SRCy
logical bits and store in R;
hift R; left logicall i
Shift left logical SLL 0x10 0x1 Shift B; left logica Y by SRC, bits
and store in R;
Shift right Shift R; right arithmetically by
arithmetic SRA 0x10 0x2 SRC, bits and store in R;
Rotate right RTR 0x10 0x4 Rotate R; right b.y SRCy bits and
store in R;
Rotate loft RTL 0x10 0x5 Rotate R; left by SRCy bits and
store in R;
Rotate right Rotate R; right through carry by
through carry RRC 0x10 0x6 SRC, bits and store in R;
Rotate left RLC 0x10 0x7 Rotate R; left through carry by

through carry

SRCy bits and store in R;

Table 3.8: Shift and Rotate Instruction Details

Chapter 4

Custom LLVM Backend Design

This chapter discusses the structure and design of the custom target-specific LLVM back-
end. Section 4.1 discusses the high-level structure of LLVM and Section 4.2 describes the

specific implementation of the custom backend.

4.1 Structure and Tools

LLVM is different from most traditional compiler projects because it is not just a collection
of individual programs, but rather a collection of libraries. These libraries are all designed
using object-oriented programming and are extendable and modular. This along with its
three-phase approach (discussed in Section 2.2.4) and its modern code design makes it a
very appealing compiler infrastructure to work with. This chapter presents a custom LLVM

backend to target the custom CJG RISC CPU, which is explained in detail in Chapter 3.

4.1 Structure and Tools 27

4.1.1 Code Generator Design Overview

The code generator is one of the many large frameworks that is available within LLVM.
This particular framework provides many classes, methods, and tools to help translate
the LLVM IR code into target-specific assembly or machine code [20]. Most of the code
base, classes, and algorithms are target-independent and can be used by all of the specific
backends that are implemented. The two main target-specific components that comprise
a custom backend are the abstract target description, and the abstract target description
implementation. These target-specific components of the framework are necessary for every
target-architecture in LLVM and the code generator uses them as needed throughout the
code generation process.

The code generator is separated into several stages. Prior to the instruction scheduling
stage, the code is organized into basic blocks, where each basic block is represented as
a directed acyclic graph (DAG). A basic block is defined as a consecutive sequence of
statements that are operated on, in order, from the beginning of the basic block to the end
without having any possibility of branching, except for at the end [8]. DAGs can be very
useful data structures for operating on basic blocks because they provide an easy means to
determine which values used in a basic block are used in any subsequent operations. Any
value that has the possibility of being used in a subsequent operation, even in a different
basic block, is said to be a live value. Once a value no longer has a possibility of being
used it is said to be a killed value.

The high-level descriptions of the stages which comprise the code generator are as

follows:

1. Instruction Selection — Translates the LLVM IR into operations that can be

performed in the target’s instruction set. Virtual registers in SSA form are used to

4.1 Structure and Tools 28

represent the data assignments. The output of this stage are DAGs containing the

target-specific instructions.

2. Instruction Scheduling — Determines the necessary order of the target machine
instructions from the DAG. Once this order is determined the DAG is converted to

a list of machine instructions and the DAG is destroyed.

3. Machine Instruction Optimization — Performs target-specific optimizations on

the machine instructions list that can further improve code quality.

4. Register Allocation — Maps the current program, which can use any number of
virtual registers, to one that only uses the registers available in the target-architecture.
This stage also takes into account different register classes and the calling convention

as defined in the ABI.

5. Prolog and Epilog Code Insertion — Typically inserts the code pertaining to

setting up (prolog) and then destroying (epilog) the stack frame for each basic block.

6. Final Machine Code Optimization — Performs any final target-specific opti-

mizations that are defined by the backend.

7. Code Emission — Lowers the code from the machine instruction abstractions pro-
vided by the code generator framework into target-specific assembly or machine code.
The output of this stage is typically either an assembly text file or extendable and
linkable format (ELF) object file.

4.1.2 TableGen

One of the LLVM tools that is necessary for writing the abstract target description is

TableGen (1lvm-tblgen). This tool translates a target description file (.td) into C++

4.1 Structure and Tools 29

code that is used in code generation. It’s main goal is to reduce large, tedious descriptions
into smaller and flexible definitions that are easier to manage and structure [21]. The
core functionality of TableGen is located in the TableGen backends.! These backends are
responsible for translating the target description files into a format that can be used by the
code generator [22]. The code generator provides all of the TableGen backends that are
necessary for most CPUs to complete their abstract target description, however, custom
TableGen backends can be written for other purposes.

The same TableGen input code can typically produces a different output depending on
the TableGen backend used. The TableGen code shown in Listing 4.1 is used to define each
of the CPU registers that are in the CJG architecture. The AsmWriter TableGen backend,
which is responsible for creating code to help with printing the target-specific assembly
code, generates the C++ code seen in Listing 4.2. However, the RegisterInfo TableGen
backend, which is responsible for creating code to help with describing the register file to
the code generator, generates the C++ code seen in Listing 4.3.

There are many large tables (such as the one seen on line 7 of Listing 4.2) and functions
that are generated from TableGen to help in the design of the custom LLVM backend.
Although TableGen is currently responsible for a bulk of the target description, a large
amount of C++ code still needs to be written to complete the abstract target description
implementation. As the development of LLVM moves forward, the goal is to move as much

of the target description as possible into TableGen form [20].

! Not to be confused with LLVM backends (target-specific code generators)

4.1 Structure and Tools

30

// Special purpose registers
def SR : CJGReg<O, "r0">;
def PC : CJGReg<l, "ri">;
def SP : CJGReg<2, "r2">;

// General purpose registers
foreach i = 3-31 in {

def R#i : CJGReg< #i, "r"##i>;
}

Listing 4.1: TableGen Register Set Definitions

1 /// getRegisterName - This method ts automatically generated by tblgen
2 /// from the register set description. This returns the assembler name
3 /// for the specified register.

4 const char *CJGInstPrinter: :getRegisterName(unsigned RegNo) {

5 assert (RegNo && RegNo < 33 && "Invalid register number!");

7 static const char AsmStrs[] = {

s /*0*/ 'I", |1|’
9 /*4 */ 'I", v2|, lov’ O,

10 .
11 };
12

13 }

lol’ O,

Listing 4.2: TableGen AsmWriter Output

1 namespace CJG {

2 enum {

3 NoRegister,
4 PC =1,

5 SP = 2,

6 SR = 3,

7 R3 = 4,

8 R4 = 5,

9 “ e

10 };

u } // end namespace CJG

Listing 4.3: TableGen RegisterInfo Output

4.2 Custom Target Implementation 31

4.1.3 Clang and llc

Clang is the front end for LLVM which supports C, C++, and Objective C/C++ [23].
Clang is responsible for the functionality discussed in Section 2.2.4.1. The llc tool is the
LLVM static compiler which is responsible for the functionality discussed in Section 2.2.4.3.
The custom backends written for LLVM are each linked into llc which then compiles LLVM

IR code into the target-specific assembly or machine code.

4.2 Custom Target Implementation

The custom LLVM backend inherits from and extends many of the LLVM classes. To
implement an LLVM backend, most of the files are placed within LLVM’s 1ib/Target/
TargetName/ directory, where TargetName is the name of the target architecture as refer-
enced by LLVM. This name is important and must stay consistent throughout the entirety
of the backend development as it is used by LLVM internals to find the custom backend.
The name for this target architecture was chosen as CJG, therefore, the custom back-
end is located in 1ib/Target/CJG/. The “entry point” for CJG LLVM backend is within
the CJGMCTargetDescription. This is where the backend is registered with the LLVM
TargetRegistry so that LLVM can find and use the backend. The graph shown in Fig.
4.1 gives a clear picture of the classes and files that are a part of the CJG backend.

In addition to the RISC backends that are currently in the LLVM source tree (namely
ARM and MSP430), several out-of-tree, work-in-progress backends were used as resources
during the implementation of the CJG backend: Cpu0 [24], LEG [25], and RISC-V [26].
The remainder of this section will discuss the details of the implementation of the custom

CJG LLVM backend.

32

4.2 Custom Target Implementation

ddoaunoepiebreLoro | [ddoovaorovaresioro | [ddobusemotiesioro |

_ ddorojusuipry — _ ddo isyudusyor)

Q"

ddorojupyebie] oro _ _ ddorosa@iebie [ONOrD _ _ ddo*1enIwzepodONDrD

=
y-auyoepebie1 oro ‘ ddo-Bunemotewei4ory

_ ddojebieigngoro _

_ ddoojupieisibayory _

y1ebre1ansOro

[ddoengisuioro |

_ ddo JemoTISUIDNDrD _ .?.m:_a;o.__mm_o_,o

ddo iemioelqo4139r0

ddopuayoegwsyoro

y0s8}ebIe 1 DNDID

CJGMCTargetDesc.h Inclusion Graph

Figure 4.1

4.2 Custom Target Implementation 33

4.2.1 Abstract Target Description

As discussed in in Section 4.1.2, a majority of the abstract target description is written in
TableGen format. The major components of the CJG backend written in TableGen form
are the register information, calling convention, special operands, instruction formats, and
the complete instruction definitions. In addition to the TableGen components, there are
some details that must be written in C+4. These components of the abstract target

description are described in the following sections.

4.2.1.1 Register Information

The register information is found in CJGRegisterInfo.td. This file defines the register
set of the CJG RISC as well as different register classes. This makes it easy to separate
registers that may only be able to hold a specific datatype (e.g. integer vs. floating point
register classes). Because the CJG architecture does not support floating point operations,
the main register class is the general purpose register class. The definition of this class is
shown in Listing 4.4. The definition of each individual register is also located in this file

and is shown in Listing 4.1.

1 // General purpose registers class

2 def GPRegs : RegisterClass<"CJG", [i32], 32, (add
3 (sequence "R%u", 4, 31), SP, R3

1)>;

Listing 4.4: General Purpose Registers Class Definition

e ow

© oo ~ (=2} ot

10

11

12

13

14

4.2 Custom Target Implementation 34

4.2.1.2 Calling Conventions

The calling convention definitions describe the part of the ABI which controls how data
moves between function calls. The calling convention definitions are defined in CJG-
CallingConv.td and the return calling convention definition is shown in Listing 4.5. This
definition describes how values are returned from functions. Firstly, any 8-bit or 16-bit
values must be converted to a 32-bit value. Then the first 8 return values are placed in

registers R24-R31. Any remaining return values would be pushed onto the data stack.

//=== —— ===//
// CJG Return Value Calling Convention
//=== —— ===//

def RetCC_CJG : CallingConv<[
// Promote 18/t116 arguments to %32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,

// 132 are returned in registers R24-R31
CCIfType<[i132], CCAssignToReg<[R24, R25, R26, R27, R28, R29, R30, R31]>>,

// Integer values get stored in stack slots that are 4 bytes in
// size and 4-byte aligned.
CCIfType<[i132], CCAssignToStack<4, 4>>

1>

Listing 4.5: Return Calling Convention Definition

4.2.1.3 Special Operands

There are several special types of operands that need to be defined as part of the target
description. There are many operands that are pre-defined in TableGen such as i16imm and

132imm (defined in include/llvm/Target/Target.td), however, there are cases where

4.2 Custom Target Implementation 35

these are not sufficient. Two examples of special operands that need to be defined are the
memory address operand and the jump condition code operand. Both of these operands
need to be defined separately because they are not a standard datatype size both and need
to have special methods for printing them in assembly. The custom memsrc operand holds
both the register and immediate value for the indexed addressing mode (as shown in Table
3.2). These definitions are found in CJGInstrInfo.td and are shown in Listing 4.6. The
PrintMethod and EncoderMethod define the names of custom C++ functions to be called

when either printing the operand in assembly or encoding the operand in the machine code.

1 // Address operand for indexzed addressing mode
2 def memsrc : Operand<i32> {

3 let PrintMethod = "printMemSrcOperand";

4 let EncoderMethod = "getMemSrcValue";

5 let MIOperandInfo = (ops GPRegs, CJGimmi16);
6

s // Operand for printing out a condition code.
9 def cc : Operand<i32> {

10 let PrintMethod = "printCCOperand";

11}

Listing 4.6: Special Operand Definitions

4.2.1.4 Instruction Formats

The instruction formats describe the instruction word formats as per the formats described
in Section 3.3 along with some other important properties. These formats are defined in
CJGInstrFormats.td. The base class for all CJG instruction formats is shown in Listing

4.7. This is then expanded into several other classes for each type of instruction. For

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

4.2 Custom Target Implementation

36

example, the ALU instruction format definitions for both register-register and register-

immediate modes are shown in Listing 4.8.

// Instruction format superclass

=

class InstCJG<dag outs, dag ins, string asmstr, list<dag> pattern>
Instruction {
field bits<32> Inst;

let Namespace = "CJG";

dag OutOperandList = outs;
dag InOperandList = ins;
let AsmString = asmstr;
let Pattern = pattern;

let Size = 4;

// define Opcode in base class because all instrutions have the same
// bit-size and bit-location for the Opcode

bits<5> Opcode = 0;

let Inst{31-27} = Opcode; // set upper 5 bits to opcode

// CJG pseudo instructions format
class CJGPseudoInst<dag outs, dag ins, string asmstr, list<dag> pattern>
InstCJG<outs, ins, asmstr, pattern> {
let isPseudo = 1;
let isCodeGenOnly = 1;
b

Listing 4.7: Base CJG Instruction Definition

4.2.1.5 Complete Instruction Definitions

The complete instruction definitions inherit from the instruction format classes to complete

the TableGen Instruction base class. These complete instructions are defined in CJG-

InstrInfo.td. Some of the ALU instruction definitions are shown in Listing 4.9. The

multiclass functionality makes it easier to define multiple instructions that are very similar

10

11

12

13

14

15

16

17

18

19

20

21

23

24

25

26

27

28

29

30

31

32

33

34

35

36

4.2 Custom Target Implementation 37
//=== —— ===//
// ALU Instructions

//::: —— ===//
// ALU register-register instruction

class ALU_Inst_RR<bits<5> opcode, dag outs, dag ins, string asmstr,

list<dag> pattern>
InstCJG<outs, ins, asmstr, pattern> {

bits ri; // destination register
bits<b6> rj; // source 1 register
bits<6> rk; // source 2 register

let
let
let
let
let
let

// AL

class

Opcode = opcode;
Inst{26-22} = ri;
Inst{21-17} = rj;
Inst{16-12} = rk;

Inst{11-1} = 0;
Inst{0} = ObO; // control-bit for immediate mode

U register—-tmmediate instruction

ALU_Inst_RI<bits<5> opcode, dag outs, dag ins, string asmstr,
list<dag> pattern>

InstCJG<outs, ins, asmstr, pattern> {

bits<5> ri; // destination register
bits<5> rj; // source 1 register
bits<16> comnst; // constant/immediate value

let
let
let
let
let

Opcode = opcode;

Inst{26-22} = ri;

Inst{21-17} = rj;

Inst{16-1} = const;

Inst{0} = Obl; // control-bit for immediate mode

Listing 4.8: Base ALU Instruction Format Definitions

to each other. In this case the register-register (rr) and register-immediate (ri) ALU

instructions are defined within the multiclass. When the defm keyword is used, all of the

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

4.2 Custom Target Implementation 38

classes within the multiclass are defined (e.g. the definition of the ADD instruction on line

23 of Listing 4.9 is expanded into an ADDrr and ADDri instruction definition).

e ===//
// ALU Instructions
e ===//

let Defs = [SR] in {
multiclass ALU<bits<5> opcode, string opstr, SDNode opnode> {

def rr : ALU_Inst_RR<opcode, (outs GPRegs:$ri),
(ins GPRegs:$rj, GPRegs:$rk),
I'strconcat (opstr, "\t$ri, $rj, $rk"),
[(set GPRegs:$ri, (opnode GPRegs:$rj, GPRegs:$rk)),
(implicit SR)I> {

def ri : ALU_Inst_RI<opcode, (outs GPRegs:$ri),
(ins GPRegs:$rj, CIGimm16:$const),
I'strconcat (opstr, "\t$ri, $rj, $const"),
[(set GPRegs:$ri, (opnode CPRegs:$rj, CIGimm16:$const)),
(implicit SR)I> {

defm ADD : ALU<Ob01000, "add", add>;
defm SUB : ALU<Ob01001, "sub", sub>;
defm AND : ALU<Ob01100, "and", and>;
defm OR : ALU<ODO1110, "or", or>;

defm XOR : ALU<ObO1111, "xor", xor>;
defm MUL : ALU<Ob11010, "mul", mul>;
defm DIV : ALU<Ob11011, "div", udiv>;

} // let Defs = [SR]

Listing 4.9: Completed ALU Instruction Definitions

In addition to the opcode, these definitions also contain some other extremely important
information for LLVM. For example, consider the ADDri definition. The outs and ins fields

on lines 15 and 16 of Listing 4.9 describe the source and destination of each instruction’s

4.2 Custom Target Implementation 39

outputs and inputs. Line 15 describes that the instruction outputs one variable into the
GPRegs register class and it is stored in the class’s ri variable (defined on line 10 of
Listing 4.8). Line 16 of Listing 4.9 describes that the instruction accepts two operands;
the first operand comes from the GPRegs register class while the second is defined by the
custom CJGimm16 operand type. The first operand is stored in the class’s rj variable and
the second operand is stored in the class’s rk variable. Line 17 shows the assembly string
definition; the opstr variable is passed into the class as a parameter and the class variables
are referenced by the '$’ character. Lines 18 and 19 describe the instruction pattern. This
is how the code generator eventually is able to select this instruction from the LLVM IR.
The opnode parameter is passed in from the third parameter of the defm declaration shown
on line 23. The opnode type is an SDNode class which represents a node in the DAG used
for instruction selection (called the SelectionDAG). In this example the SDNode is add,
which is already defined by LLVM. Some instructions, however, need a custom SDNode
implementation. This pattern will be matched if there is an add node in the SelectionDAG
with two operands, where one is a register in the GPRegs class and the other a constant.
The destination of the node must also be a register in the GPRegs class.

One other detail that is expressed in the complete instruction definitions is the implicit
use or definition of other physical registers in the CPU. Consider the simple assembly
instruction

add r4, r5, r6
where r5 is added to r6é and the result is stored in r4. This instruction is said to define
r4 and use r5 and r6. Because all add instructions can modify the status register, this
instruction is also said to implicitly define SR. This is expressed in TableGen using the Defs
and implicit keywords and can be seen on lines 5, 12, and 19 of Listing 4.9. The implicit

use of a register can also be expressed in TableGen using the Uses keyword. This can be

4.2 Custom Target Implementation 40

seen in the definition of the jump conditional instruction. Because the jump conditional
instruction is dependent on the status register, even though the status register is not an
input to the instruction, it is said to implicitly use the SR. This definition is shown in
Listing 4.10. This listing also shows the use of a custom SDNode class, CJGbrcc, along with

the use of the custom cc operand (defined in Listing 4.6).

1 // Conditional jump
2 let isBranch = 1, isTerminator = 1, Uses=[SR] in {
def JCC : FC_Inst<0b00101,
4 (outs), (ins jmptarget:$addr, cc:$condition),
5 "j$condition\t$addr",
6 [(CIGbrcc bb:$addr, imm:$condition)]> {
7 // set ri to 0 and control to 1 for absolute addressing mode
8 let ri = 0b0000O0;
9 let control = 0Obil;
10 }

11 Y // isBranch = 1, isTerminator = 1

Listing 4.10: Completed Jump Conditional Instruction Definition

4.2.1.6 Additional Descriptions

There are additional descriptions that have not yet been moved to TableGen and must
be implemented in C++. One such example of this is the CJGRegisterInfo struct. The
reserved registers of the CPU must be described by a function called getReservedRegs.

This function is shown in Listing 4.11.

4.2.2 Instruction Selection

The instruction selection stage of the backend is responsible for translating the LLVM IR
code into target-specific machine instructions [20]. This section describes the phases of the

of the instruction selector.

© oo ~ (= ot - w [V -

4.2 Custom Target Implementation 41

BitVector CJGRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());

Reserved.set(CJG::SR); // status regsiter
Reserved.set(CJG: :PC); // program counter
Reserved.set(CJG::SP); // stack pointer

return Reserved;

Listing 4.11: Reserved Registers Description Implementation

4.2.2.1 SelectionDAG Construction

The first step of this process is to build an illegal SelectionDAG from the input. A Se-
lectionDAG is considered illegal if it contains instructions or operands that can not be
represented on the target CPU. The conversion from LLVM IR to the initial SelectionDAG
is mostly hard-coded and is completed by code generator framework. Consider an example
function, myDouble, that accepts an integer as a parameter and returns the input, doubled.
The C code implementation for this function, myDouble, is shown in Listing 4.12, and the

equivalent LLVM IR code is shown in Listing 4.13.

int myDouble(int a) {
if (a == 0) {
return O;

3

return a + a;

}

=] ot [w N -

Listing 4.12: myDouble C Implementation

As discussed in Section 4.1.1, a separate SelectionDAG is constructed for each basic
block of code. As denoted by the labels (entry, if.then, and if.end) in Listing 4.13,
there are three basic blocks in this function. The initial SelectionDAGs constructed for

each basic block in the myDouble LLVM IR code are shown in Figs. 4.2, 4.3 and 4.4. Each

4.2 Custom Target Implementation 42

1 define i32 @myDouble(i32 %a) #0 {
2 entry:

3 %hemp = icmp eq i32 %a, O

4 br il Ycmp, label %if.then, label %if.end

5

¢ 1if.then: ; preds = Jentry
7 ret i32 0

8

9 1if.end: ; preds = Jentry

10 %add = add nsw i32 %a, %a
11 ret 132 Y%add
12}

Listing 4.13: myDouble LLVM IR Code

node of the graph represents an instance of an SDNode class. Each node typically contains
an opcode to specify the specific function of the node. Some nodes only store values while
other nodes operate on values from connecting nodes. In the SelectionDAG figures, inputs
into nodes are enumerated at the top of the node and outputs are drawn at the bottom.
The SelectionDAG can represent both data flow and control flow dependencies. Con-
sider the SelectionDAG shown in Fig. 4.2. The solid arrows (e.g. connecting node t1 and
t2) represent a data flow dependency. However, the dashed arrows (e.g. connecting t0 and
t2) represent a control flow dependency. Data flow dependencies preserve data that needs
to be available for direct use in a future operation, and control flow dependencies preserve
the order between nodes that have side effects (such as branching/jumping) [20]. The con-
trol flow dependencies are called chain edges and can be seen in the SelectionDAG figures
as the dashed arrows connecting from a “ch” node output to the input of their dependent
node. A custom dependency sometimes needs to be specified for target-specific operations.
These can be specified through glue dependencies which can help to keep the nodes from
being separated in scheduling. This can be seen in Fig. 4.3 by the arrow connecting the

“glue” output of node t3 to input 2 of node t4. This is necessary because any return values

43

4.2 Custom Target Implementation

A
I
I
I
I
1
I
I
I
1
1
1
1
I
1

1

1

1

I

|

I

I

|

|

|

|
\

/EntryToken\ /Register %VregO\
t0 tl
L ch » L 132)
//
/
/
10 ! ‘ N o)
Constant<0> seteq
CopyFromReg
t3 t4
t2
i32) '4\ ch)
7

o 1)
Constant<-1>
to
t5 -
m il
R
/0 1 e ; ~
BasicBlock<if.end 0x7fd7e100e338>
Xor
t8
t7 ;
C
i) AN /
\ \ /1
\ A \
N N \
s |
Tt--—0 |1 |2V
(‘BasicBlock<if.then 0x7fd7e100e288>)
brcond
t10
t9
Ch A\ ch Y,
. /W® N
N ~
A \ h \
1 1
011

Figure 4.

GraphRoot

[IE

dag-combinel input for myDouble:entry

2: Initial myDouble:entry SelectionDAG

4.2 Custom Target Implementation

/Register %R24) /EntryToken\ (Constant<0>)
2 tl

t0
S 32 /‘\\Z) /4\ 32)
/7
I

01 (2
CopyToReg

t3
ch | gl

ue
]
/0|1|2\

CJGISD::RET_FLAG
t4
ch

A
|
GraphRoot

dag-combinel input for myDouble:if.then

- J

Figure 4.3: Initial myDouble:if.then SelectionDAG

4.2 Custom Target Implementation

/EntryToken\ /Register %VregO\
t0 tl
S ch Iw U 32)
A / f
| /
1 /
| /
| < 0 1
: CopyFromReg
| 2
: i32 ch
I
I
I
Reoictor BRI : 0!
Register %R24 | !
1 " add
t
: t3
i32 :
|
I
|
|

CopyToReg

t5
ch | glue
I/

) | 1 | 2)
CJGISD::RET_FLAG
t6
N ch Y,

A
|
GraphRoot

dag-combinel input for myDouble:if.end

Figure 4.4: Initial myDouble:if.end SelectionDAG

4.2 Custom Target Implementation 46

must not be disturbed before the function returns.

4.2.2.2 Legalization

After the SelectionDAG is initially constructed, any LLVM instructions or datatypes that
are not supported by the target CPU must be converted, or legalized, so that the entire DAG
can be represented natively by the target. However, there are some initial optimization
passes that occur before legalization. The SelectionDAG for the myDouble:entry basic
block prior to legalization but following the initial optimization passes can be seen in Fig.
4.5. Comparing this to the SelectionDAG prior to the optimization (seen in Fig. 4.2) shows
that nodes t4, t5, t6, t7, and t9 were combined into nodes t12 and t14.

The legalization passes run immediately following the optimization passes. The legal-
ized SelectionDAG for the myDouble:entry basic block is shown in Fig. 4.6. As an example
to show how legalization is implemented, consider the legalization of SelectionDAG nodes
t12 and t14 (seen in Fig. 4.5), into nodes t15, t16, and t17 (seen in Fig. 4.6).

Implementing instruction legalization involves both TableGen descriptions and cus-
tom C++ code in the backend. Custom SDNodes are first defined in CJGInstrInfo.td.
Two custom node definitions are shown in Listing 4.14. Although there are many target-
independent SelectionDAG operations that are defined in the LLVM ISDOpcodes.h header
file, the instructions for this example require the target-specific operations: CJGISD: :CMP
(compare) and CJGISD: :BR_CC (conditional branch). These operations are defined in CJG-
ISelLowering.h as seen in Listing 4.15. One other requirement is to describe the jump
condition codes. This encodes the information described in Table 3.5 and is shown in
Listing 4.16.

The implementation for the legalization is written in CJGISelLowering.cpp as part

of the custom CJGTargetLowering class (inherited from LLVM’s TargetLowering class).

4.2 Custom Target Implementation

47

ErteoToken) Reooictor Tooroo))
EntryToken Register %vreg0
t0 tl
ch ‘\ 132
I/ \ A
/ \
| \
o — Y 0 1)
I setne /Constant<0>\ /BasicBlock<if.end Ox7fef86811938>\
! CopyFromReg
I t12 t3 t8
' h © 32 h
VS AT e N A ‘ /
\ /
\ R - . _ P
AN - -
1\ .7
o123 (4YV e - ~
BasicBlock<if.then 0x7fef8e811888>
br_cc
t10
t14 ;
C
" AN g
\ \\
\ \
\ 1
0|1
br
t11

ch
|
GraphRoot

legalize input for myDouble:entry

Figure 4.5: Optimized myDouble:entry SelectionDAG

4.2 Custom Target Implementation

48

\/O—I—T\

FntrvToken) Reoictar Tovrao0)
EntryToken Register %vreg0
t0 tl

PR i32
/ \
7 \
\
" Constant<0s)

/
/ \
S~ 0 1
Constant<0>

/
CopyFromReg 3
t

/Constant< 14>
CJGISD::CMP

/B asicBlock<if.end 0x7fd9e001473 8>
t15
t16

t8

ch 132
\ 4 \ J glue
N - 4
~N N - , e
- § , /‘
3
B >\

-0 1|2
/BasicBlock<1f .then 0x7fd9¢0014688
CJGISD::BR_CC
t10
t17 0
A ¢ J
P AT
NN
\ \
\ 1
0|1
br
t11
ch

GraphRoot

i}

dag-combine?2 input for myDouble:entry

Figure 4.6: Legalized myDouble:entry SelectionDAG

4.2 Custom Target Implementation

49

1 def CJGcmp

2 def CJGbrcc

3

: SDNode<"CJGISD::CMP", SDT_CJGCmp, [SDNPOutGlue]>;
: SDNode<"CJGISD::BR_CC", SDT_CJGBrCC, [SDNPHasChain,

SDNPInGlue] >;

Listing 4.14: Custom SDNode TableGen Definitions

10

11

12

namespace CJGISD {
enum NodeType {

FIRST_NUMBER = ISD::BUILTIN_OP_END,

// The compare instruction

CMP,

// Branch conditional, condition—code

BR_CC,

};
}

Listing 4.15: Target-Specific SDNode Operation Definitions

1

10

11

12

13

14

15

16

17

18

namespace CJGCC {

// CJG specific condition codes

enum CondCodes {

COND_U =0,
COND_C = 8,
COND_N =4,
COND_V =2,
COND_Z =1,
COND_NC =7,
COND_NN = 11,
COND_NV = 13,
COND_NZ = 14,
COND_GE = 6,
COND_L =9,

COND_INVALID = -1
};

// unconditional
// carry

// megative

// overflow

// zero

// not carry

// not negative
// not overflow
// not zero

// greater or equal
// less than

Listing 4.16: Jump Condition Code Encoding

10

11

12

13

14

15

16

17

18

19

20

21

22

23

4.2 Custom Target Implementation 50

The custom operations are first specified in the constructor for CJGTargetLowering which
causes the method LowerOperation to be called when these custom operations are en-
countered. LowerOperation is responsible for choosing which class method to call for each
custom operation. In this example, the method, LowerBR_CC, is called. This portion of

the legalization implementation is shown in Listing 4.17.

SDValue CJGTargetLowering: :LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {

case ISD::BR CC: return LowerBR_CC(Op, DAG);
default:
1lvm_unreachable("unimplemented operand");
}
}

SDValue CJGTargetLowering: :LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD: :CondCode CC = cast<CondCodeSDNode>(0Op.getOperand(1))->get();
SDValue LHS Op.getOperand(2) ;
SDValue RHS Op.getOperand(3) ;
SDValue Dest Op.getOperand(4) ;
SDLoc d1 (Op);

SDValue TargetCC;
SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);

return DAG.getNode(CJGISD: :BR_CC, dl, Op.getValueType(),
Chain, Dest, TargetCC, Flag);

Listing 4.17: Target-Specific SDNode Operation Implementation

The actual legalization occurs within the LowerBR_CC method. Lines 11-15 of Listing
4.17 show how the SDNode values (the inputs of node t14 of the SelectionDAG shown in
Fig. 4.5) are stored into variables. The EmitCMP helper method (called on line 19) returns
an SDNode for the CJG: :CMP operation and also sets the TargetCC variable to the correct

condition code. Once these values are set up, the new target-specific SDNode is created

4.2 Custom Target Implementation 51

using the getNode helper method defined in the SelectionDAG class. This node is then
returned through the LowerOperation method and finally replaces the original nodes, t12

and t14, with nodes t15, t16, and t17 (as seen in Fig. 4.6).

4.2.2.3 Selection

The select phase is the largest phase within the instruction selection process [20]. This
phase is responsible for transforming the legalized SelectionDAG comprised of LLVM and
custom operations, into a DAG comprised of target operations. The selection phase is
largely dependent on the patterns defined in the compete instruction descriptions (discussed
in Section 4.2.1.5). For example, consider the ALU instruction patterns shown on lines 11
and 18 of Listing 4.9, as well as the jump conditional instruction pattern shown on line
6 of Listing 4.10. These patterns are used by the SelectionDAGISel class to select the
target-specific instructions. The myDouble DAGs following the selection phase are shown
in Figs. 4.7, 4.8, and 4.9.

The ALU patterns matched nodes t1 and t3, from the myDouble:if.then SelectionDAG
shown in Fig. 4.3, into nodes t1 and t5, which are seen in the DAG shown in Fig. 4.8.
Node t3 of the myDouble:if.end SelectionDAG shown in Fig. 4.4 was also matched by
the ALU patterns. The target-independent “add” operation was replaced by the target-
specific “ADDrr” operation, which is seen in node t3 of the DAG shown in Fig. 4.9. The
custom “CJGISD::CMP” and “CJGISD::BR_CC” operations in nodes t16 and t17 of the
SelectionDAG shown in Fig. 4.6 were also matched. The resulting, target-specific “CMPri”
and “JCC” operations can be seen in nodes t16 and t17 of the DAG shown in Fig. 4.7.
After the completion of this phase, all SDNode operations represent target instructions and

the DAG is ready for scheduling.

4.2 Custom Target

Implementation

/EntryToken\

/chister %vregO\

t0

tl

L ch

v U i32

J

(‘BasicBlock<if.end 0x7fd40e811138>) (TargetConstant<14>)
t8 118
§ ch JSN i32)

S

(BasicBlock<if.then 0x7fd40e811088>)

t10

ch

7
0T 1)
IMP
i1
;‘i‘:_/

0123
Jcc
t17
ch

GraphRoot

scheduler input for myDouble:entry

THER

CopyFromReg

ToroetConctant<Oo)
TargetConstant<0>

t2

t19

_32
y

.
o [1)
CMPri
116

ch

132 | glue

i32

Figure 4.7: Selected myDouble:entry SelectionDAG

4.2 Custom Target Implementation

/TargetConstant<0>\
t5
S i32)
0
/Register %R24) /EntryToken\ -
CPYri
t2 t0
- t1
S 32 ;L ch) =
—
012

CopyToReg

t3
ch | glue
0O1]2
RET
t4
ch

GraphRoot

scheduler input for myDouble:if then

Figure 4.8: Selected myDouble:if.then SelectionDAG

4.2 Custom Target Implementation

/EntryToken\ /Register %VregO\

t0 tl
N v 72 J
0 1
CopyFromReg
t2
i32 ch
0 1
Reoictor BRI
Register %R24
ADDrr
t4
t3
i32
~— i32 | i32
2
CopyToReg
ch | glue
0
t6
ch

GraphRoot

scheduler input for myDouble:if.end

Figure 4.9: Selected myDouble:if.end SelectionDAG

4.2 Custom Target Implementation 55

4.2.2.4 Scheduling

The scheduling phase is responsible for transforming the DAG of target instructions into

a list of machine instructions (represented by instances of the MachineInstr class). The

scheduler can order the instructions depending on constraints such as minimizing register

usage or reducing overall program latency [20]. Once the list of machine instructions has

been finalized, the DAG is destroyed. The scheduled list of machine instructions for the

myDouble function can be seen in Listing 4.18.

1

8

10

11

12

13

14

15

16

17

18

19

BB#0: derived from LLVM BB Yentry

Live Ins: %R4

hvregO<def> = COPY R4; GPRegs:%vreg0

CMPri YvregO, O, %SR<imp-def>; GPRegs:’vregO
JCC <BB#2>, 14, %SR<imp-use>

JMP <BB#1>

BB#1: derived from LLVM BB %if.then

Predecessors according to CFG: BB#0
%hvreg2<def> = CPYri 0; GPRegs:%vreg2
%R24<def> = COPY %vreg2; GPRegs:'vreg2
RET %R24<imp-use>

BB#2: derived from LLVM BB %if.end

Predecessors according to CFG: BB#0

%vregl<def> = ADDrr %vregO, %vregO, %SR<imp-def,dead>;
GPRegs :%vregl,%vreg0, %vreg0

%R24<def> = COPY Yvregl; GPRegs:%vregl

RET R24<imp-use>

Listing 4.18: Initial myDouble Machine Instruction List

4.2.3 Register Allocation

This phase of the backend is responsible for eliminating all of the virtual registers from

the list of machine instructions and replacing them with physical registers. For a simple

4.2 Custom Target Implementation 56

RISC machine there is typically very little customization required for functional register
allocation. The main algorithm used in this phase is called the “greedy register allocator.”
The main benefit to this algorithm is that it allocates the largest ranges of live variables
first [27]. When there are live variables that cannot be assigned to a register because there
are none available, they are spilled to memory. Then instead of using a physical register,
load and store instructions are inserted into the list of machine instructions before and
after the value is used. The final list of machine instructions for the myDouble function
can be seen in Listing 4.19. The final register mapping is shown in Table 4.1. Once all of

the virtual registers have been eliminated, the code can be emitted to the target language.

1 BB#0: derived from LLVM BB Yentry

2 Live Ins: %R4 %SR

3 PUSH %SR<kill>, ¥%SP<imp-def>
4 CMPri %R4, 0, %SR<imp-def>

5 JCC <BB#1>, 1, %SR<imp-use>

7 BB#2: derived from LLVM BB Y%if.end

8 Live Ins: %R4

9 Predecessors according to CFG: BB#0

10 %R24<def> = ADDrr %R4<kill>, %R4, %SR<imp-def,dead>
11 %SR<def> = POP Y%SP<imp-def>

12 RET %R24<imp-use>

13

14 BB#1: derived from LLVM BB ¥%if.then

15 Predecessors according to CFG: BB#0
16 %R24<def> = CPYri O

17 %SR<def> = POP %SP<imp-def>

18 RET %R24<imp-use>

Listing 4.19: Final myDouble Machine Instruction List

4.2 Custom Target Implementation 57

Virtual Register | Physical Register
hvregO 7R4
hvregl #R24
hvreg2 #R24

Table 4.1: Register Map for myDouble

4.2.4 Code Emission

The final phase of the backend is to emit the machine instruction list as either target-
specific assembly code (emitted by the assembly printer) or machine code (emitted by the

object writer).

4.2.4.1 Assembly Printer

Printing assembly code requires the implementation of several custom classes. The CJG-
AsmPrinter class represents the pass that is run for printing the assembly code. The
CJGMCAsmInfo class defines some basic static information to be used by the assembly
printer, such as defining the string used for comments:
CommentString = "//";

The CJGInstPrinter class holds most of the important functions used when printing the
assembly. It imports the C++ code that is automatically generated from the AsmWriter
TableGen backend and specifies additional required methods. One such method is the
printMemSrcOperand which is responsible for printing the custom memsrc operand defined
in Listing 4.6. The implementation for this method is shown in Listing 4.20. The method
operates on the MCInst class abstraction and outputs the correct string representation for
the operand. The final assembly code for the myDouble function is shown in Listing 4.21.
The assembly printer adds helpful comments and also comments out the label of any basic

block that is not used as a jump location in the assembly code.

4.2 Custom Target Implementation 58

10

11

12

13

14

15

16

17

18

// Print a memsrc (defined in CJGInstrInfo.td)
// This 4is an operand which defines a location for loading or storing which
// is a register offset by an timmediate value
void CJGInstPrinter: :printMemSrcOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &0) {
const MCOperand &BaseAddr = MI->getOperand(OpNo);
const MCOperand &0ffset = MI->getOperand(OpNo + 1);

assert(0ffset.isImm() && "Expected immediate in displacement field");

0 << "M[";
printRegName (0, BaseAddr.getReg());
unsigned OffsetVal = Offset.getImm();
if (OffsetVal) {

0 << "+" << Offset.getImm();
}

D << II]II;

Listing 4.20: Custom printMemSrcOperand Implementation

1 myDouble: // @myDoubdble
2 // BB#0: // Zentry
3 push r0

4 cmp r4, O

5 jeq BBO_1

6 // BB#2: // %if.end
7 add r24, r4, r4

8 pop r0

9 ret

10 BBO_1: // %if.then
11 cpy r24, 0.

12 pop rO

13 ret

Listing 4.21: Final myDouble Assembly Code

4.2.4.2 ELF Object Writer

The custom machine code is emitted in the form of an ELF object file. As with the assembly

printer, several custom classes need to be implemented for emitting machine code. The

[w

oo ~ (=] ot

10

11

12

13

4.2 Custom Target Implementation 59

CJGELFObjectWriter class mostly serves as a wrapper to its base class, the MCELFObject-
TargetWriter, which is responsible for properly formatting the ELF file. The CJGMCCode-
Emitter class contains most of the important functions for emitting the machine code. It
imports the C++ code that is automatically generated from the CodeEmitter TableGen
backend. This backend handles a majority of the bit-shifting and formatting required to
encode the instructions as seen in Section 4.2.1.4. The CIJGMCCodeEmitter class also is
responsible for encoding custom operands, such as the memsrc operand defined in Listing
4.6. The implementation of the method responsible for encoding this custom operand,

named getMemSrcValue, can be seen in Listing 4.22.

// Encode a memsrc (defined in CJGInstrInfo.td)
// This is an operand which defines a location for loading or storing which
// is a register offset by an timmediate value
unsigned CJGMCCodeEmitter: :getMemSrcValue(const MCInst &MI, unsigned Opldx,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
unsigned Bits = O;
const MCOperand &RegOp = MI.getOperand(0OpIdx);
const MCOperand &ImmOp = MI.getOperand(OpIdx + 1);
Bits |= (getMachineOpValue(MI, RegOp, Fixups, STI) << 16);
Bits [= (unsigned)ImmOp.getImm() & Oxffff;
return Bits;

Listing 4.22: Custom getMemSrcValue Implementation

The custom memsrc operand represents 21 bits of data: 5 bits are required for the
register encoding and another 16 bits for the immediate value. These are stored in a single
value and then later separated by code automatically generated from TableGen. The
usage of this custom operand can be seen in Listing 4.23, which shows instruction format
definition for the load and store instructions (as specified in Section 3.3.1). Line 7 shows

the declaration, line 11 shows the bits used for the register value, and line 13 shows the

4.2 Custom Target Implementation 60

bits used for the immediate value. The CodeEmitter TableGen backend for this definition
produces the C++ code seen in Listing 4.24. This code is used when writing the machine
code for the load instruction. Line 6 shows the usage of the custom getMemSrcValue
method. Line 7 masks off everything except the register bits and shifts it into the proper
place in the instruction word, and line 8 does the same but for the 16-bit immediate value

instead.

1 class LS_Inst<bits opcode, dag outs, dag ins, string asmstr,

2 list<dag> pattern>

3 : InstCJG<outs, ins, asmstr, pattern> {
4

5 bits ri;

6 bits<1> control;

7 bits<21> addr;

9 let Opcode = opcode;

10 let Inst{26-22} = ri;

11 let Inst{21-17} = addr{20-16}; // rj
12 let Inst{16} = control;

13 let Inst{15-0} = addr{15-0};

14}

Listing 4.23: Base Load and Store Instruction Format Definitions

1 case CJG::LD: {

2 // op: Ti

3 op = getMachineOpValue(MI, MI.getOperand(0), Fixups, STI);
4 Value |= (op & UINT64_C(31)) << 22;

5 // op: addr

6 op = getMemSrcValue(MI, 1, Fixups, STI);

. Value |= (op & UINT64_C(2031616)) << 1;

g Value |= op & UINT64_C(65535);

9 break;

10 }

Listing 4.24: CodeEmitter TableGen Backend Output for Load

The target-specific machine instructions are placed into the “text” section of the ELF

4.2 Custom Target Implementation

object file. Using a custom ELF parser and custom disassembler for the CJG architecture
(described in Section 5.3), the resulting disassembly from the ELF object file can viewed.
The disassembly and machine code (shown as a Verilog memory file) for the myDouble
function is shown in Listings 4.25 and 4.26. This shows that the assembly code produced

by the assembly printer (as shown in Listing 4.21) is equivalent to the machine code

produced by the object writer.

push r0 // @00000000 00
cmp rd, 0 // @00000004 01
jeq label_O // ©00000008 18
add 24, r4, rd // ©@0000000C 00
pop r0 // ©00000010 00
ret // @00000014 00
7 label_O: cpy r24, 0 // ©00000018 00
pop r0 // @0000001C 00
ret // ©@00000020 00
Listing 4.25: Disassembled myDouble Machine Code

. @00000000 18000000 // push 10

2 ©@00000004 50080001 // cmp r4, O

s @00000008 28050018 // jeq label 0

4+ ©0000000C 46084000 // add r24, r4, r4

5 @00000010 20000000 // pop r0

6 ©00000014 38000000 // ret

7 @00000018 16010000 // label_0: cpy r24, 0

s ©@0000001C 20000000 // pop r0

9 @00000020 38000000 // ret

Listing 4.26: myDouble Machine Code

Chapter 5

Tests and Results

This chapter discusses the tests and results from the implementation of the custom CJG

RISC CPU and LLVM backend and describes custom tools created to support the project.

5.1 LLVM Backend Validation

To test the functionality of the LLVM backend code generation, several programs written
in either C or LLVM IR were compiled for the CJG RISC. Although there is a custom
assembler that targets the CJG RISC and a majority of generated assembly code is correctly
printed to a format that is compatible with the CJG assembler, there is some functionality
that the CJG assembler does not support. This leads to some input code sequences that
yield assembly code not supported by the CJG assembler. Because of this issue, most of
the programs simulated on the CJG RISC CPU were taken from the compiled ELF object
files which were then disassembled for easier debugging.

To simulate the CPU, a suite of tools from Cadence (Incisive) is used to simulate the

CPU Verilog code for verification and viewing the simulation waveforms. The Synopsys

5.1 LLVM Backend Validation 63

tools are then used to synthesize the CPU Verilog code. The resulting gate level netlist is
then simulated and verified. A simple testbench instantiates the CJG RISC CPU and the
two memory models (described in Section 3.1.3). The $readmemh Verilog function is used
in the testbench to initialize the program memory with the machine code from the ELF
object file. An intermediate tool, elf2mem (discussed in Section 5.3), is used to extract
the machine code from the ELF file and write it to the format required by $readmemh.
Additionally, the CJG disassembler is used to modify the generated code to make it more
friendly to the simulation environment.

For example, consider the myDouble function that was discussed throughout Chapter
4. The code generated from the custom backend that is shown in Listing 4.25 was modified
slightly, and the new code is shown in Listing 5.1. The first code modification made was
inserting the instruction on line 2; this instruction loads r4 from the CPU’s GPIO input
port, which is memory mapped to address 0xFFF0. This allows different input values to be
set from the testbench. The other modification made was to remove the return instructions
and instead jump to the done label seen on line 10. This writes the result from r24 to the
CPU’s GPIO output port so that the return value can be observed from the testbench. For
this example, the testbench set the GPIO input as 0xC (12). The simulation was run using
NCSim and viewed in Cadence SimVision; the resulting waveform can be seen in Fig. 5.1.
The simulation shows that the GPIO output is correctly set to 0x18 (24), which is double
0xC, just before the 160,000 ps time mark.

Although this simple program successfully compiles and simulates successfully on the
CPU, the backend is still not fully complete and has some errors when generating code for
certain code sequences. One such example of this is the usage of datatypes that are not int,
such as short int, and char, or more specifically, 116, i8, and il as defined by LLVM

[28]. These smaller datatypes need to be sign extended when loaded from memory, and

64

5.1 LLVM Backend Validation

81000000) 00000000

50000000) 00000000

00000000

00000000) 10000000) 00000000

[400 (400000 (400000 (400000 | 2000000) 21000000) 400000 (400000 01000000) 400000) 400000 400000) 00000000

01000000) 00000000

RRRRRRRR

81000000) 00000000

oaae | 0000

00000000

00000000

00

00000000 }(400000) 20000000) 10000000) 00000000

ans | aav | ans | aav

10000000) 400000 00000000 10000000) 00000000

10000000) 20000000) 00000000

@so1s | ane | 204 | aav ane |)) G avo1

| e x x| qatoao) v200108z | 400002 | 4v809¢% X 21005087) 408005 (441010 [(400081) 00000000

] 1

aiois | ane Y aoa)(aav | ane | a0) avor | wsna avo1

[x| qatoao | 200108z) 400002) 4¥8097) 01005087 | 408005 (4atot0 (40008t) 00000000
[|

avous | ane | aoa | aav | ane | @0 | avor | msaa) awoT

woxxxxxx| 4atoao | 72001082) 400002 \4¥809¥ | 5100508z (408006) 4at0T0 400081) 00000000

1

1

[| E—

asozs | a0 | ane | a0a | aav | ane | awo \ avor) wso (N
x| 0441080 00001091 (4o t08z 40000z | 0007809 | 405082 | 408005 \datoro | 00000081 [¥xxxxxxx
1]

400 og00) 2200 | 8200 | vz00 | o100 | 8100} vroo) otoo o000 X 8000 | 000 | 0000
81000000) 00000000
50000000 00000000

1

4000091 maooo.oi_ maooo,ou__ mnooo.oo__ maooo,ow_ mnocodm_ maooo,ov_ mnooo,cu_ 0

$d000°0 | = VoWl

=

=

=

=

8100000044
200000004,
0000000044
000000004,
PE000000U,
0T0000004
XRRXXXXXY
870000004
043gu,

0
000000004,
0000000044
00U,
0000000044
ans
100000004,
100000004,
oy,
RRRKKXKKKU,
0

xxy,
KXXXKRERY,
0

*xy,
HXXXKXRRY,
0

*xy,
XXRXXXXXY
0

PEOOU.
870000004
200000004

1

[veleny 6o

[vlony 6o1

[elowy Box

[eloy 6o1

[Hoy Bos

[oJeiy Bax
[o:1hno~wp
[0:1€lerep” wp
[o:¢1]ssauppe”wp
ueim wp

[0:1€lno oIS BYRp.
[0: Lg]erep SY0RIS BIEP
[0:glippe"oeIs erep
[o:Lelunsa nje
[0:zlepoodo e
[o:1gla npe
[o:1elenie
[elopoado
[lp1om~uogonas:
[elers

[zlopoado
[2]piomuononsst
[2liers

[1]epoodo
[Hpsom™uogonst

[1liers

[oJepoado
[0:1ghno™wd
[oless
[0:51]sseuppe wd
[0:+ehno oidB
[o: lui"01d6
2diP

L0

o

10581

0 = auljeseg

$d000°0L} = J0sInD

P Fielic e Fegic R Re FieRe e R v g ke NeheReeReke

BagiRidnRe ago

$d000'0Z} = Buljeseg-10SIND

myDouble Simulation Waveform

Figure 5.1

5.2 CPU Implementation 65

1 push r0 // ©@00000000 00
2 1d r4, M[OxFFFO]

3 cmp rd, O // ©00000004 01
1 jeq label_0 // ©00000008 18
5 add r24, r4, rd // ©0000000C 00
6 pop r0 // ©@00000010 00
7 jmp done

s label_O: cpy r24, 0 // ©@00000018 00
9 pop r0 // ©@0000001C 00
10 done: st M[OxFFFO], r24

Listing 5.1: Modified myDouble Assembly Code

the CJG architecture does not implement any sign extension instructions. It is possible to
describe how to perform sign extension in the instruction lowering process of the backend
(discussed in Section 4.2.2.2), however, this is not fully implemented. Another example of
code that is not supported involves stack operations. Even though the data stack within
the CJG CPU is accessible by using a stack pointer, the stack data is not located within the
memory space. This causes some complications in the backend involving stack operations,

the stack pointer, and the stack frame, that are not completely resolved.

5.2 CPU Implementation

The CJG RISC CPU is designed using the Verilog HDL at the register transfer level
(RTL) and synthesized using Synopsys Design Compiler with a 65 nm technology node
from TSMC. The synthesis step is what transforms the RTL into a gate level netlist, which
is a physical description of the hardware consisting of logic gates, standard cells, and their
connections [29]. Two different synthesis options are used: RTL logic synthesis, and design
for testability (DFT) synthesis using a full-scan methodology for test structure insertion,

which inserts scan chains throughout the design. This section shows the results from each

5.2 CPU Implementation 66

Coll Global Cell Area Local Cell Area (um?)
Absolute Percent | Combinational | Noncombinational
Total (um?) | Total
cjg risc 94941.7219 100.0 11184.4803 15004.0802
cjg_alu 11650.3200 12.3 629.2800 0.0000
cjg_call_stack 24469.9207 25.8 6775.2000 17694.7207
cjg_ clkgen 30.6000 0.0 14.7600 15.8400
cjg_data_stack | 26258.4005 27.7 3886.5601 22371.8404
cjg_shifter 4805.6401 5.1 4805.6401 0.0000

Table 5.1: Pre-scan Netlist Area Results

Internal (mWW) | Switching (mW) | Leakage (uW) | Total (mW)
7.6935 0.1759 3.1975 7.8729

Table 5.2: Pre-scan Netlist Power Results

of these synthesis passes. A system clock frequency of 1 GHz was used, resulting in an

effective phase clock frequency of 250 MHz.

5.2.1 Pre-scan RTL Synthesis

The hierarchical area distribution report results for the pre-scan netlist are shown in Ta-
ble 5.1. The total area of the design is the absolute total area of the cjg risc module:
94941.7219 um?. The total gate count of a cell is calculated by dividing the cell’s total
area by the area of the NAND2 standard cell (1.44 pum?). This synthesis pass yields about

65932 gates in the CPU. The results from the power report are shown in Table 5.2.

5.2.2 Post-scan DFT Synthesis

The post-scan synthesis pass and the pre-scan synthesis pass yield very similar results. The
hierarchical area distribution report results for the post-scan netlist are shown in Table 5.3.

The total gate count of the CPU in the post-scan netlist the same as the pre-scan netlist,

5.3 Additional Tools 67

Coll Global Cell Area Local Cell Area (um?)
Absolute Percent | Combinational | Noncombinational
Total (um?) | Total
cjg risc 94912.9219 100.0 11180.1603 14996.1602
cjg_alu 11633.7600 12.3 629.2800 0.0000
cjg_call_stack 24469.9207 25.8 6775.2000 17694.7207
cjg_ clkgen 30.6000 0.0 14.7600 15.8400
cjg_data_stack | 26258.4005 27.7 3886.5601 22371.8404
cjg_shifter 4805.6401 5.1 4805.6401 0.0000

Table 5.3: Post-scan Netlist Area Results

Internal (mWW) | Switching (mW) | Leakage (uW) | Total (mW)
7.6918 0.1759 3.1954 7.8711

Table 5.4: Post-scan Netlist Power Results

about 65932 gates. The results from the power report are shown in Table 5.2.

5.3 Additional Tools

This section discusses several other tools that were created or used throughout the design

and implementation process of the CJG RISC and custom LLVM backend.

5.3.1 Clang

As discussed in Section 4.1.3, Clang is responsible for the front end actions of LLVM, how-
ever, a user compiling C code only needs to worry about clang because it links against the
target-specific backends. Clang was used to output LLVM IR code from C code throughout
the development of the backend. Even though most of code used for testing the backend
throughout the development process was written in C, it was all manually converted into

LLVM IR code by Clang before passing it into llc.

5.3 Additional Tools 68

5.3.2 ELF to Memory

The ELF to memory (elf2mem) tool is a Python tool written to extract a binary section
from an ELF file and output the binary in a format that is readable by the Verilog $readmem
function. This tool was written so any ELF object files that are emitted from the custom

LLVM backend can be read by the testbench and simulated on the CPU.

5.3.3 Assembler

The assembler was originally written for a different 32-bit RISC CPU; however, the archi-
tectures are similar and most of the assembler was re-used for this design. The assembler
was heavily used during the implementation of the CJG RISC to verify that the CPU was
functioning properly. Depending on the specific test, the assembly programs simulated on
the CPU were either verified by visual inspection using SimVision or verified automatically
using the testbench. Although there are frameworks within LLVM to create a target-
specific assembler, the custom assembler was used instead because it was already mostly

complete.

5.3.4 Disassembler

The disassembler was written when debugging the ELF object writer in the custom back-
end. This tool was fairly easy to write because it makes use of many of the classes found in
the assembler. The disassembler reads in a memory file and outputs valid assembly code.
When using this to debug ELF object files, the files were first converted to memory files

using elf2mem and then disassembled using this tool.

Chapter 6

Conclusions

This chapter discusses future work that could be completed as well as the conclusions from

this project.

6.1 Future Work

Compiler backends can always be improved upon and optimized. Even the LLVM backends
currently located in the source tree (e.g. ARM and x86) that are considered completed
are still receiving changes and improvements. To consider the LLVM backend for the CJG
RISC CPU completed, the code generator would need to be able to support a majority of
LLVM IR capabilities. In addition to making it possible to generate code from any valid
LLVM IR input, target-specific optimization passes to increase machine code efficiency
and quality should be implemented as well. The only optimization passes currently im-
plemented are the target-independent optimizations included in the LLVM code generator
framework. Lastly, the CJG backend should be fully integrated into Clang, eliminating the

need to call llc and allowing C code to be compiled directly into CJG assembly or machine

6.2 Project Conclusions 70

code.

6.2 Project Conclusions

This paper describes the process of designing and implementing a custom 32-bit RISC
CPU along with writing a custom LLVM compiler backend. Although compiler research
is popular in computer science, the research generally is focused on the front end or op-
timization passes. Even when there is research focused on the backend of compilers, it
typically is focused on the GCC project and not LLVM.

The custom RISC CPU was designed in Verilog and operates as a standard 4-stage
pipeline. The goal was to create a simple enough RISC CPU that could be easily described
for a compiler, while still retaining enough complexity to allow for sophisticated program
execution. Although the custom CPU was fairly complete, there were still design choices
that made the implementation of LLVM backend more complicated than needed, such as
choosing a hardware data stack design instead of a memory based stack.

The custom compiler backend was written using the LLVM compiler infrastructure
project. Although most CPU architectures are supported by the code generator in GCC,
there are few that are supported by LLVM. The custom compiler backend was written
using LLVM for its modern code design and to explore if there is a good reason for its
lack of popularity in the embedded CPU community. Although implementing the custom
LLVM backend to its current state was a difficult process, there does not seem to be a
valid reason for its lack of popularity as a compiler. As more communities experiment with
backends in LLVM and discover how modern and organized the project is, its popularity
should rapidly increase, not only for the betterment of the embedded CPU community,

but for everyone that relies on using a compiler.

References

[1] T. Jamil. RISC versus CISC. IEEFE Potentials, 14(3):13-16, Aug 1995. doi:10.1109/

45.464688.
[2] ARM. ARM and Thumb-2 Instruction Set, M edition, Sept 2008.

[3] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual,

volume 2 edition, July 2017.

[4] Xavier Leroy. How I Found a Bug in Intel Skylake Processors, July 2017. URL:

http://gallium.inria.fr/blog/intel-skylake-bug/.

[5] R. P. Colwell, C. Y. I. Hitchcock, E. D. Jensen, H. M. Brinkley Sprunt, and C. P. Kol-
lar. Instruction sets and beyond: Computers, complexity, and controversy. Computer,

18(9):8-19, Sept 1985. doi:10.1109/MC.1985.1663000.

[6] H. El-Aawar. An application of complexity measures in addressing modes for CISC-
and RISC-architectures. In 2008 IEEE International Conference on Industrial Tech-

nology, pages 1-7, April 2008. doi:10.1109/ICIT.2008.4608682.

[7] E. Blem, J. Menon, and K. Sankaralingam. Power struggles: Revisiting the RISC vs.
CISC debate on contemporary ARM and x86 architectures. In 2013 IEEE 19th In-

http://dx.doi.org/10.1109/45.464688
http://dx.doi.org/10.1109/45.464688
http://gallium.inria.fr/blog/intel-skylake-bug/
http://dx.doi.org/10.1109/MC.1985.1663000
http://dx.doi.org/10.1109/ICIT.2008.4608682

References 72

[10]

[11]

[12]

[13]

[14]

[15]

ternational Symposium on High Performance Computer Architecture (HPCA), pages

1-12, Feb 2013. doi:10.1109/HPCA.2013.6522302.

Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: Principles, Techniques,

and Tools, volume 2. Addison-Wesley Publishing Company, 2007.

L. Ghica and N. Tapus. Optimized retargetable compiler for embedded processors
- GCC vs LLVM. In 2015 IEEE International Conference on Intelligent Computer
Communication and Processing (ICCP), pages 103-108, Sept 2015. doi:10.1109/

ICCP.2015.7312613.

Jack W. Davidson and Christopher W. Fraser. Code selection through object code
optimization. ACM Trans. Program. Lang. Syst., 6(4):505-526, October 1984. URL:

http://doi.acm.org/10.1145/1780.1783, doi:10.1145/1780.1783.
William Von Hagen. The Definitive Guide to GCC. Apress, 2011.

GCC - open source compiler for MSP microcontrollers. URL: http://www.ti.com/

tool/msp430-gcc-opensource.

Chris Lattner. LLVM: An infrastructure for multi-stage optimization. Master’s thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, Dec
2002.

Chris Lattner. The name of LLVM, Dec 2011. URL: http://lists.1llvm.org/

pipermail/llvm-dev/2011-December/046445. . html.

Michael Larabel. Google now uses Clang as their production compiler for Chrome
Linux builds, Nov 2014. URL: http://www.phoronix.com/scan.php?page=news_

item&px=MTgOMTk.

http://dx.doi.org/10.1109/HPCA.2013.6522302
http://dx.doi.org/10.1109/ICCP.2015.7312613
http://dx.doi.org/10.1109/ICCP.2015.7312613
http://doi.acm.org/10.1145/1780.1783
http://dx.doi.org/10.1145/1780.1783
http://www.ti.com/tool/msp430-gcc-opensource
http://www.ti.com/tool/msp430-gcc-opensource
http://lists.llvm.org/pipermail/llvm-dev/2011-December/046445.html
http://lists.llvm.org/pipermail/llvm-dev/2011-December/046445.html
http://www.phoronix.com/scan.php?page=news_item&px=MTg0MTk
http://www.phoronix.com/scan.php?page=news_item&px=MTg0MTk

References 73

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

Brooks Davis. HEADS UP: Clang now the default on x86, Nov 2012. URL: https://

lists.freebsd.org/pipermail/freebsd-current/2012-November/037610.html.

Vikram Adve, Chris Lattner, Michael Brukman, Anand Shukla, and Brian Gaeke.
LLVA: A Low-level Virtual Instruction Set Architecture. In Proceedings of the 36th
annual ACM/IEEE international symposium on Microarchitecture (MICRO-36), San
Diego, California, Dec 2003.

V. Iyer, A. Kanitkar, P. Dasgupta, and R. Srinivasan. Preventing overflow attacks
by memory randomization. In 2010 IEEFE 21st International Symposium on Software

Reliability Engineering, pages 339-347, Nov 2010. doi:10.1109/ISSRE.2010.22.

Alan M Turing. On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London Mathematical Society, 42(2):230-265, 1936.

LLVM Project. The LLVM target-independent code generator, 2017. URL: http:

//11vm.org/docs/CodeGenerator.html.

LLVM Project. TableGen, 2017. URL: http://11lvm.org/docs/TableGen/index.

html.

LLVM Project. TableGen backends, 2017. URL: http://11lvm.org/docs/TableGen/

BackEnds.html.

LLVM Project. Clang: a C language family frontend for LLVM, 2017. URL: http:

//clang.1llvm.org.

Chen Chung-Shu. Creating an LLVM backend for the Cpu0 architecture, 2016. URL:

http://jonathan2251.github.io/1lbd/index.html.

https://lists.freebsd.org/pipermail/freebsd-current/2012-November/037610.html
https://lists.freebsd.org/pipermail/freebsd-current/2012-November/037610.html
http://dx.doi.org/10.1109/ISSRE.2010.22
http://llvm.org/docs/CodeGenerator.html
http://llvm.org/docs/CodeGenerator.html
http://llvm.org/docs/TableGen/index.html
http://llvm.org/docs/TableGen/index.html
http://llvm.org/docs/TableGen/BackEnds.html
http://llvm.org/docs/TableGen/BackEnds.html
http://clang.llvm.org
http://clang.llvm.org
http://jonathan2251.github.io/lbd/index.html

References 74

[25]

[26]

[27]

Fraser Cormack and Pierre-André Saulais. Building an LLVM back-
end, Oct 2014. URL: http://1lvm.org/devmtg/2014-10/S1lides/

Cormack-BuildingAnLLVMBackend.pdf.

Alex Bradbury. RISC-V Backend, Aug 2016. URL: http://lists.llvm.org/

pipermail/llvm-dev/2016-August/103748.html.

Jakob Stoklund. Greedy register allocation in LLVM 3.0, Sept 2011. URL: http:

//blog.1lvm.org/2011/09/greedy-register-allocation-in-11vm-30.html.

LLVM Project. LLVM language reference manual, 2017. URL: https://11lvm.org/

docs/LangRef .html.

Sarah L. Harris and David Money Harris. Digital Design and Computer Architecture:
ARM Edition. Morgan Kaufmann, 2016.

http://llvm.org/devmtg/2014-10/Slides/Cormack-BuildingAnLLVMBackend.pdf
http://llvm.org/devmtg/2014-10/Slides/Cormack-BuildingAnLLVMBackend.pdf
http://lists.llvm.org/pipermail/llvm-dev/2016-August/103748.html
http://lists.llvm.org/pipermail/llvm-dev/2016-August/103748.html
http://blog.llvm.org/2011/09/greedy-register-allocation-in-llvm-30.html
http://blog.llvm.org/2011/09/greedy-register-allocation-in-llvm-30.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html

Appendix 1

Guides

I.1 Building LLVM-CJG

This guide will walk through downloading and building the LLVM tools from source.
The paths are relative to the directory you decide to use when starting the guide, unless
otherwise specified. At the time of this writing, the working repository for this backend
can be found in the 1lvm-cjg repository hosted at https://github.com/connorjan/
1lvm-cjg, and additional information may be posted to http://connorgoldberg. com.

I.1.1 Downloading LLVM

Even though the working source tree is version controlled through SVN, an official mirror
is hosted on GitHub which is what will be used for this guide.

1. Clone the repository into the src directory:
$ git clone https://github.com/llvm-mirror/llvm.git src

2. Checkout the LLVM 4.0 branch:
$ cd src
$ git fetch
$ git checkout release_40
$ cd ..

https://github.com/connorjan/llvm-cjg
https://github.com/connorjan/llvm-cjg
http://connorgoldberg.com

[.1 Building LLVM-CJG I-2

I[.1.2 Importing the CJG Source Files

Along with this paper should be a directory named CJG. This is the directory that contains
all of code specific to the CJG backend. Copy this directory into the LLVM 1ib/Target
directory:

$ cp -r CJG src/lib/Target/

I[.1.3 Modifying Existing LLVM Files

Some files in the root of the LLVM tree need to be modified so that the CJG backend can
be found and built correctly. Run

$ cd src
so the diff paths are relative to the root of the LLVM source repository.

1. Add CJG to the root cmake configuration:

CMakelLists.txt
diff --git a/CMakelLists.txt b/CMakeLists.txt

-- a/CMakelLists.txt
++ b/CMakelists.txt
@@ -326,8 +326,9 @@ set(LLVM_ALL_TARGETS

AMDGPU

ARM

BPF
+ CJG

Hexagon

Lanai

Mips

MSP430

NVPTX

2. Add cjg to the Triple: :ArchType enum:

include/1lvm/ADT/Triple.h
diff --git a/include/11lvm/ADT/Triple.h b/include/11lvm/ADT/Triple.h

-- a/include/11lvm/ADT/Triple.h
++ b/include/11vm/ADT/Triple.h
@@ -94,6 +94,7 @@ public:
wasmé4, // WebAssembly with 64-bit pointers
renderscript32, // 32-bit RenderScript
renderscript64, // 64-bit RenderScript
+ cjg, // CJG
LastArchType = renderscript64
s
enum SubArchType {

[.1 Building LLVM-CJG I-3

3. Add EM_CJG to the ELF Machine enum:

include/1lvm/Support/ELF.h
diff --git a/include/1lvm/Support/ELF.h b/include/1lvm/Support/ELF.h

-- a/include/1lvm/Support/ELF.h
++ b/include/1lvm/Support/ELF.h
@@ -310,7 +310,8 @@ enum {

EM_RISCV = 243, // RISC-V

EM_LANAI = 244, // Lanai 32-bit processor

EM_BPF = 247, // Linux kernel bpf virtual machine
+ EM_CJG = 327, // CJG

// A request has been made to the maintainer of the official registry for
// such numbers for an official value for WebAssembly. As soon as one is

4. Add cjg to the Triple class:

1ib/Sugport/Triple.c¥p
diff --git a/lib/Support/Triple.cpp b/1lib/Support/Triple.cpp

-- a/lib/Support/Triple.cpp

++ b/1ib/Support/Triple.cpp

@@ -69,6 +69,7 @@ StringRef Triple::getArchTypeName (ArchType Kind) {
case wasm64: return "wasm64";
case renderscript32: return "renderscript32";
case renderscript64: return "renderscript64";

+ case cjg: return "cjg";

}

1lvm_unreachable("Invalid ArchType!");
@@ -140,6 +142,7 @@ StringRef Triple::getArchTypePrefix(ArchType Kind) {

case riscv32:

case riscv64: return "riscv";
+ case cjg: return "cjg";

}

@@ -298,6 +302,7 @@ Triple::ArchType Triple::getArchTypeForLLVMName (StringRef
< Name) {

.Case("wasm64", wasm64)

.Case("renderscript32", renderscript32)

.Case("renderscript64", renderscript64)
+ .Case("cjg", cjg)

[.1 Building LLVM-CJG I-4

.Default (UnknownArch) ;
}

@@ -412,6 +418,7 @@ static Triple::ArchType parseArch(StringRef ArchName) {
.Case("wasm64", Triple::wasm64)
.Case("renderscript32", Triple::renderscript32)
.Case("renderscript64", Triple::renderscript64)
+ .Case("cjg", Triple::cjg)
.Default(Triple: :UnknownArch) ;

// Some architectures require special parsing logic just to compute the
@@ -640,6 +648,7 Q@@ static Triple::0bjectFormatType getDefaultFormat(const Triple
— &T) {

case Triple::wasm32:

case Triple::wasm64:

case Triple::xcore:
+ case Triple::cjg:

return Triple::ELF;

case Triple::ppc:
@@ -1172,6 +1182,7 @@ static unsigned
— getArchPointerBitWidth(1llvm: :Triple::ArchType Arch) {
case 1llvm::Triple::shave:
case 1llvm::Triple: :wasm32:
case 1llvm::Triple::renderscript32:
+ case llvm::Triple::cjg:
return 32;

case 1llvm::Triple::aarch64:
@@ -1251,6 +1263,7 @@ Triple Triple::get32BitArchVariant() const {
case Triple::shave:
case Triple::wasm32:
case Triple::renderscript32:
+ case Triple::cjg:
// Already 32-bit.
break;

@@ -1288,6 +1302,7 @@ Triple Triple::get64BitArchVariant() const {
case Triple::xcore:
case Triple::sparcel:
case Triple::shave:
+ case Triple::cjg:
T.setArch(UnknownArch) ;
break;

@@ -1373,6 +1389,7 @@ Triple Triple::getBigEndianArchVariant() const {
// drop any arch suffixes.
case Triple::arm:
case Triple::thumb:

[.1 Building LLVM-CJG I-5

+ case Triple::cjg:
T.setArch(UnknownArch) ;
break;

@@ -1458,6 +1476,7 @@ bool Triple::isLittleEndian() const {
case Triple::tcele:
case Triple::renderscript32:
case Triple::renderscript64:
+ case Triple::cjg:
return true;
default:
return false;

5. Add CJG to the cmake Target build configuration:

lib/Target/LLVMBuild. txt
diff --git a/lib/Target/LLVMBuild.txt b/lib/Target/LLVMBuild.txt

-- a/lib/Target/LLVMBuild.txt
++ b/1lib/Target/LLVMBuild.txt
@@ -24,7 +24,8 @@ subdirectories =

AArch64

AVR

BPF
+ CJG

Lanai

Hexagon

MSP430

NVPTX

Run
$ cd
to return to the root working directory of the guide.

I.1.4 Importing Clang

If you are only using LLVM IR then you can skip this step and go to Section I.1.5. If you
want to be able to use C code:

1. Change your current directory into the LLVM tools directory:
$ cd src/tools

2. Clone the Clang repository from GitHub:
$ git clone https://github.com/llvm-mirror/clang.git

[.1 Building LLVM-CJG I-6

3. Checkout the Clang 4.0 branch:
$ cd clang
$ git fetch
$ git checkout release_40

Now link the CJG backend into Clang (note: the diff paths are relative the root of the
Clang repository):

1. Add the CJGTargetInfo class to Targets.cpp:

lib/Basic/Targets.cpp
diff --git a/lib/Basic/Targets.cpp b/lib/Basic/Targets.cpp

-- a/lib/Basic/Targets.cpp
++ b/1lib/Basic/Targets.cpp
@@ -8587,6 +8587,59 @@ public:

X
3
+ class CJGTargetInfo : public TargetInfo {
+ public:
+ CJGTargetInfo(const 1llvm::Triple &Triple, const TargetOptions &) :

TargetInfo(Triple) {

BigEndian = false;

NoAsmVariants = true;

LonglLongAlign = 32;

SuitableAlign = 32;

DoubleAlign = LongDoubleAlign = 32;

SizeType = UnsignedInt;

PtrDiffType = SignedInt;

IntPtrType = SignedInt;

WCharType = UnsignedChar;

WIntType = UnsignedInt;

UseZeroLengthBitfieldAlignment = true;

resetDatalayout ("e-m:e-p:32:32-11:8:32-18:8:32-116:16:32-164:32"
"-£64:32-a:0:32-n32") ;

}

void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const override {}

ArrayRef<Builtin::Info> getTargetBuiltins() const override {
return None;

}

BuiltinVaListKind getBuiltinVaListKind() const override {
return TargetInfo::VoidPtrBuiltinValist;

}

+ o+ + F F F + F + + + o+ o+ o+ o+ + + o+ +

[.1 Building LLVM-CJG I-7

const char *getClobbers() const override {
return "";

3

ArrayRef<const char *> getGCCRegNames() const override {
return None;

}

ArrayRef<TargetInfo::GCCRegAlias> getGCCRegAliases() const override {
return None;

}

bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &Info) const override {
return false;

}

int getEHDataRegisterNumber (unsigned RegNo) const override {
// RO=ExceptionPointerRegister Rl1=ExceptionSelectorRegister
return -1;

};

+ 4+ + + + + + + + + + + + + o+ + o+ o+ +

} // end anonymous namespace

/o - ===//
@@ -9044,4 +9097,7 @@ static TargetInfo *AllocateTarget(const 1llvm::Triple
— &Triple,
case 1llvm::Triple::renderscript64:
return new LinuxTargetInfo<RenderScript64TargetInfo>(Triple, Opts);

+
+ case llvm::Triple::cjg:
+ return new CJGTargetInfo(Triple, Opts);
}
¥

2. Add the CIGABIInfo class to TargetInfo.cpp:

1ib/CodeGen/TargetInfo.cpp
diff --git a/lib/CodeGen/TargetInfo.cpp b/lib/CodeGen/TargetInfo.cpp

index ecOaal6..1ec7455 100644

-- a/lib/CodeGen/TargetInfo.cpp

++ b/1ib/CodeGen/TargetInfo.cpp

00 -8349,8 +8349,25 Q@ public:
}

return false;

}

1.1 Building LIVM-CJG I-8

+

+

+ //===mmmmm o ===//

+ // CJG ABI Implementation

R ===//

+ namespace {

+ class CJGABIInfo : public DefaultABIInfo {

+ public:

+ CJGABIInfo(CodeGen: :CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}

+ 1

+

+ class CJGTargetCodeGenInfo : public TargetCodeGenInfo {

+ public:

+ CJGTargetCodeGenInfo (CodeGenTypes &CGT)

+ : TargetCodeGenInfo(new CJGABIInfo(CGT)) {}

+ 3}

+ } // end anonymous namespace
e ===//
// Driver code
ittt ittt ===//

@@ -8536,5 +8554,7 @@ const TargetCodeGenInfo
— &CodeGenModule: :getTargetCodeGenInfo() {
case 1llvm::Triple: :spir:
case llvm::Triple::spir64:
return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
+ case llvm::Triple::cjg:
+ return SetCGInfo(new CJGTargetCodeGenInfo(Types));
}
X

Run
$cd../../../

to return to the root working directory of the guide.

1.1.5 Building the Project

1. Make the build directory:
$ mkdir build
$ cd build

2. Set up the build files:
Note: the following flags can be added to build the documentation:
-DLLVM_ENABLE DOXYGEN=True -DLLVM DOXYGEN_SVG=True

[.1 Building LLVM-CJG I-9

(a) macOS only (for Xcode capabilities):
$ cmake -G "Xcode" -DCMAKE BUILD_ TYPE:STRING=DEBUG \
-DLLVM_TARGETS TO BUILD:STRING=CJG ../src

(b) Linux or macOS:
$ cmake -G "Unix Makefiles" -DCMAKE BUILD TYPE:STRING=DEBUG \
-DLLVM_TARGETS _TO BUILD:STRING=CJG ../src

3. Build the project:

(a) If the "Xcode" cmake generator was used then the project can either be built
two ways:

i. Opening the generated Xcode project: LLVM.xcodeproj and then running
the build command

ii. Building the Xcode project from the command line with:
$ xcodebuild -project "LLVM.xcodeproj"

iii. View the compiled binaries in the Debug/bin/ directory.

(b) If the "Unix" cmake generator was used then the project can be built by running
make:
$ make

Note: make can be used with the "-jn" flag, where n is the number of cores on
your build machine to parallelize the build process (e.g. make -j4).

(c) View the compiled binaries in the bin/ directory.

[.1.6 Usage

First change your current directory to the directory where the compiled binaries are located
(explained in step 3 of Section 1.1.5).

1.1.6.1 Using llc

The input for each of the commands in this section is an example LLVM IR code file called
function.1l.

1. LLVM IR to CJG Assembly:
$./1llc -march cjg -o function.s function.ll

2. LLVM IR to CJG Machine Code:
$./1llc -march cjg -filetype=obj -o function.o function.ll
Extracting the machine code from the object file is explained in Section 1.1.6.3.

[.1 Building LLVM-CJG I-10

To enable all of the debug messages, use the
—-debug
flag when running 11c. To enable the printing of the code representation after every pass
in the backend, use the
-print-after-all
flag when running 1lc.

1.1.6.2 Using Clang

Only available if the steps explained in Section I.1.4 were performed. The input for each
of the Clang commands in this section is an example C file called function.c containing
a single C function.

1. C to LLVM IR:

$./clang -ccl -triple cjg-unknown-unknown -o function.ll function.c -emit-1lvm

2. C to CJG Assembly:

$./clang -ccl -triple cjg-unknown-unknown -S -o function.s function.c

3. C to CJG Machine Code:
$./clang -ccl -triple cjg-unknown-unknown -o function.o function.c
Extracting the machine code from the object file is explained in Section 1.1.6.3.
Note: Trying to emit an object file from clang is currently unstable and may not
work 100% of the time. Instead use clang to emit LLVM IR code and then use 11lc
to write the object file.

1.1.6.3 Using ELF to Memory

To extract the machine code from an ELF object file using elf2mem as discussed in Section
5.3.2:
$ elf2mem -s .text -o function.mem function.o

[.2 LLVM Backend Directory Tree I-11

1.2 LLVM Backend Directory Tree

This shows the directory tree for CJG LLVM backend:

lib/Target/CJG/

— CJG.h

— CJG.td

—— CJGAsmPrinter.cpp

— CJGCallingConv.td

—— CJGFramelLowering.cpp

—— CJGFrameLowering.h

— CJGISelDAGToDAG. cpp

—— CJGISelLowering.cpp

—— CJGISellLowering.h

—— CJGInstrFormats.td

—— CJGInstrInfo.cpp

— CJGInstrInfo.h

— CJGInstrInfo.td

—— CJGMCInstLower.cpp

—— CJGMCInstLower.h

—— CJGMachineFunctionInfo.cpp

—— CJGMachineFunctionInfo.h

—— CJGRegisterInfo.cpp

—— CJGRegisterInfo.h

—— CJGRegisterInfo.td

—— CJGSubtarget.cpp

— CJGSubtarget.h

—— CJGTargetMachine.cpp

—— CJGTargetMachine.h

—— CMakeLists.txt

—— InstPrinter/
CJGInstPrinter.cpp
CJGInstPrinter.h
CMakeLists.txt
LLVMBuild.txt

—— LLVMBuild.txt

— MCTargetDesc/

CJGAsmBackend. cpp
CJGELFObjectWriter.cpp

[.2 LLVM Backend Directory Tree

I-12

CJGFixupKinds.h
CJGMCAsmInfo.cpp
CJGMCAsmInfo.h
CJGMCCodeEmitter. cpp
CJGMCTargetDesc.cpp
CJGMCTargetDesc.h
CMakeLists.txt
LLVMBuild.txt

L— TargetInfo/

CJGTargetInfo.cpp
CMakeLists.txt
LLVMBuild.txt

© 0 9 O o s W N

10
11
12
13
14
15
16
17
18
19
20
21
22

Appendix 11

Source Code

II.1 CJG RISC CPU RTL

II.1.1 Opcodes Header

// Opcodes

‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define

‘define
“define

LD_IC
ST _IC
CPY_IC
PUSH_IC
POP_IC
JMP_IC
CALL_IC
RET_IC
ADD_IC
SUB_IC
CMP_IC
NOT_IC
AND_IC
BIC_IC
OR_IC
XOR_IC
RS_IC

MUL_IC
DIV_IC

5'h00
5'h01

5'h02
5'h03
5'h04
5'h05
5'h06
5'h07
5'h08
5'h09
5'h0A

5'hOB
5'h0C
5'hOD
5'hOE
5'hOF
5'h10

5'hi1A
5'h1B

cjg_opcodes.vh

// Load

// Store

// Copy

// Push onto stack
// Pop off of stack
// Jumps

// Call

// Return and RETI
// Addition

// Subtract

// Compare

// Bitwise NOT

// Bitwise AND

// Bit clear ~&=
// Bitwise OR

// Bitwise XOR

// Rotate/Shift

// Signed multiplication
// Unsigned division

© 0 N o oA W N =

e e T e
N o ok W N = O

18

II.1 CJG RISC CPU RTL

I1-2

‘define

INT IC 5'hiF // Interrupt

// ALU States

‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define

ADD_ALU 4 'hO // Signed Add

SUB_ALU 4 'h1 // Signed Subtract
AND_ALU 4'h2 // Logical AND

BIC_ALU 4'h3 // Logical BIC

OR_ALU 4 'h4 // Logical OR

NOT_ALU 4'h5 // Logical Invert
XOR_ALU 4'h6 // Logical XOR

NOP_ALU 4'hn7 // No operation

MUL_ALU 4'h8 // Signed multiplication
DIV_ALU 4'h9 // Signed division

// Shifter states

‘define
‘define
‘define
‘define
‘define
‘define
‘define

SRL_SHIFT 3'h0 // shift right logical
SLL_SHIFT 3'h1 // shift left logical
SRA_SHIFT 3'h2 // shift right arithmetic
RTR_SHIFT 3'h4 // rotate right

RTL_SHIFT 3'h5 // rotate left

RRC_SHIFT 3'h6 // rotate right through carry
RLC_SHIFT 3'n7 // rotate left through carry

11.1.2

Definitions Header

cjg_definitions.vh

// Instruction word slices

‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define

/7 Jump

‘define

OPCODE 31:27
REG I 26:22

REG_J 21:17

REG K 16:12
ALU_CONSTANT 16:1
ALU_CONSTANT_MSB 16
ALU_CONTROL 0
DT_CONTROL 16
DT_CONSTANT 15:0
DT_CONSTANT _MSB 15
JMP_CODE 21:18
JMP_ADDR 15:0
JMP_CONTROL 16
RS_CONTROL 0
RS_OPCODE 3:1
RS_CONSTANT 16:11

codes
JU 4'b0000

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

© 0 N O oA W N =

[
(=)

II.1 CJG RISC CPU RTL

I1-3

‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define

// special register file registers
“define REG_SR 5'h0 // status register
“define REG_PC 5'h1 // program counter
‘define REG_SP 5'h2 // stack pointer

// Status bit index in the status register / RF[0]

‘define
‘define
‘define
‘define
‘define
‘define

// MMIO
‘define
‘define
‘define

JC 4'b1000
IV 4'b0100
JV 450010
JZ 4'b0001
JNC 4'b0111
JNN 4'b1011
JNV 4'b1101
JNZ 4'b1110
JGE 4'b0110
JL 4'b1001

SR_C 5'd0
SR_N 5'd1

SRV 5'd2
SR Z 5'd3
SR_GE 5'd4
SR L 5'd5

MMIO_START ADDR 16'hFFO00
MMIO_GPIO_OUT 16'hFFFO
MMIO_GPIO_IN 16'hFFFO

I1.1.3

Pipeline

/%

* Title: cjg_risc
* Author: Connor Goldberg

*

*/

“include "src/cjg_definitions.vh"

“include "src/cjg_opcodes.vh"

cjg_risc.v

// Any instruction with a writeback operation

12
13
14

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

II.1 CJG RISC CPU RTL

I1-4

“define WB_INSTRUCTION(mc) (opcode[mc] == "LD_IC || opcode[mc] == "CPY_IC || opcode[mc]
— == "POP_IC || opcode[mc] == "ADD_IC || opcode[mc] == *SUB_IC || opcode[mc] ==

— CMP_IC || opcode[mc] == NOT_IC || opcodelmc] == "AND_IC || opcode[mc] == 'BIC_IC
— || opcode[mc] == "OR_IC || opcode[mc] == “XOR_IC || opcode[mc] == "RS_IC |/

— opcode[mec] == "MUL_IC || opcodel[mc] == "DIV_IC)

// ALU instructions

“define ALU_INSTRUCTION(mc) (opcodelmc] == "CPY_IC || opcode[mc] == “ADD_IC [/
< opcode[mc] == ‘SUB_IC || opcode[mc] == “CMP_IC || opcode[mc] == "NOT_IC |/
— opcode[mec] == AND_IC || opcode[mc] == "BIC_IC || opcodel[mc] == "OR_IC [/
— opcode[mec] == XOR_IC || opcode[mc] == "MUL_IC || opcode[mc] == "DIV_IC)

// Stack instructions

“define STACK_INSTRUCTION(mc) (opcode[mc] == "PUSH_IC) [|[| (opco

‘define LOAD_MMIO(dest,bits,expr) \
if (dm_address < "MMIO_START_ADDR) begin \

dest <= dm_out[bits] expr; \
end \
else begin \
case (dm_address) \
“MMIO_GPIO_IN: begin \

dest <= gpio_in[bits] expr;

end \
default: begin \

dest <= temp_wb[bits] expr;

end \
endcase \
end

module cjg_risc (
// system inputs
input reset,
input clk,
input [31:0] gpio_in,
input [3:0] ext_interrupt_bus,

// system outputs
output reg [31:0] gpio_out,

// program memory
input [31:0] pm_out,
output [15:0] pm_address,

// data memory

input [31:0] dm_out,

output reg [31:0] dm_data,
output reg dm_wren,

output reg [15:0] dm_address,

\

\

// system reset

// system clock

// gpto inputs
//external interrupts

// gpto outputs

// program memory output data
// program memory address

// data memory output

// data memory input data
// data memory write enable
// data memory address

de[mc] == “POP_IC)

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
97
98
99
100

II.1 CJG RISC CPU RTL I1-5

// generated clock phases

output clk_pl, // clock phase 0
output clk_p2, // clock phase 1
// dft

input scan_inO,
input scan_en,
input test_mode,
output scan_outO

)

// integer for resetting arrays
integer ij;

// register file
reg[31:0] reg _file[31:0];

// program counter regsiter (program memory address)
assign pm_address = reg_file[REG_PC][15:0];

// temp address for jumps/calls
reg[15:0] temp_address;

// pipelined instruction registers
reg[31:0] instruction_word[3:1];

// address storage for each instruction
reg[13:0] instruction_addr[3:1];

// opcode slices
reg[4:0] opcode[3:0];

// TODO: 4is this even ok? 2d wires dont seem to work in Simvision
always @(instruction_word[3] or instruction_word[2] or instruction_word[1] or pm_out)
— begin
opcode[0] = pm_out [OPCODE];
opcode[1] instruction_word[1] [T OPCODE] ;
opcode[2] = instruction_word[2] [T OPCODE];
opcode[3] = instruction_word[3] [T OPCODE];
end

// stall signals
reg[3:0] stall_cycles;
reg stall[3:0];

// temp writeback register
reg[31:0] temp_wb; // general purpose
reg[31:0] temp_sp; // stack pointer

101
102

104
105
106
107

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149

II.1 CJG RISC CPU RTL

I1-6

// data stack stuff
reg[31:0] data_stack_data;
reg[5:0] data_stack_addr;
reg data_stack_push;
reg data_stack_pop;
wire[31:0] data_stack_out;

// call stack stuff
reg[31:0] call_stack_data;
reg call_stack_push;
reg call_stack_pop;
wire[31:0] call_stack_out;

// ALU stuff

reg[31:0] alu_a, alu_b, temp_sr;

reg[3:0] alu_opcode;
wire[31:0] alu_result;

wire alu_c, alu_n, alu_v, alu_z;

// Shifter stuff
reg[31:0] shifter_operand;
reg[5:0] shifter_modifier;
reg shifter_carry_in;
reg[2:0] shifter_opcode;
wire[31:0] shifter_result;
wire shifter_carry_out;

// Clock phase generator

cjg_clkgen clkgen(
.reset(reset),
.clk(clk),
.clk_pi(clk_pl),
.clk_p2(clk_p2),

// dft
.scan_inO(scan_in0),
.scan_en(scan_en),
.test_mode (test_mode),
.scan_outO(scan_out0)

)

// Data Stack

cjg_mem_stack #(.DEPTH(64), .ADDRW(6)) data_stack

// inputs

.clk(clk_p2),
.reset(reset),
.d(data_stack_data),
.addr (data_stack_addr),

150
151
152
153
154
155
156

158
159
160
161

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

181
182
183
184

186
187
188
189

191
192
193
194

196
197
198

II.1 CJG RISC CPU RTL

I1-7

.push(data_stack_push),
.pop(data_stack_pop),

// output
.q(data_stack_out),

// dft
.scan_inO(scan_in0),
.scan_en(scan_en),
.test_mode (test_mode),
.scan_outO(scan_outO0)

)

// Call Stack

cjg_stack #(.DEPTH(64)) call_stack (

// inputs

.clk(clk_p2),
.reset(reset),
.d(call_stack_data),
.push(call_stack_push),
.pop(call_stack_pop),

// output
.q(call_stack_out),

// dft
.scan_inO(scan_in0),
.scan_en(scan_en),
.test_mode(test_mode),
.scan_outO(scan_out0)

)

// ALU

cjg_alu alu (
// dft
.reset(reset),
.clk(clk),
.scan_inO(scan_in0),
.scan_en(scan_en),
.test_mode(test_mode),
.scan_outO(scan_out0),

// inputs
.a(alu_a),
.b(alu_b),
.opcode(alu_opcode),

// outputs
.result(alu_result),

199
200
201
202
203
204
205

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

240
241
242
243
244
245
246
247

II.1 CJG RISC CPU RTL

I1-8

.c(alu_c),
.n(alu_n),
.v(alu_v),
.z(alu_z)

)

// Shifter and rotater

cjg_shifter shifter (
// dft
.reset(reset),
.clk(clk),
.scan_inO(scan_in0),
.scan_en(scan_en),
.test_mode(test_mode),
.scan_outO(scan_out0),

// inputs
.operand(shifter_operand),
.carry_in(shifter_carry_in),
.modifier(shifter_modifier),
.opcode (shifter_opcode),

// outputs
.result(shifter_result),
.carry_out (shifter_carry_out)

)

// Here we go

always @(posedge clk_pl or negedge reset)
if (~reset) begin
// reset
reset_all;
end // if (~reset)
else begin
// Main code

// process stall stignals
stall[3] <= stalll[2];
stall[2] <= stall[l];
stall[1] <= stalll0];

if (stall_cycles != 0) begin

stall[0] <= 1'bi;

stall_cycles <= stall_cycles - 1'bl;
end
else begin

stall[0] <= 1'b0;

begin

248
249

251
252
253
254

256
257
258
259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286

288
289
290
291
292
293
294
295

II.1 CJG RISC CPU RTL

I1-9

end

// Machine cycle 3
// writeback
if (stall[3] == 1'b0) begin

case (opcode[3])
“ADD_IC, °“SUB_IC, “NOT_IC, “AND_IC, "BIC_IC, “OR_IC, “XOR_IC,
— "RS_IC, "MUL_IC, "DIV_IC: begin
if (instruction_word[3] [TREG_I] == “REG_PC) begin
// Do not allow writing to the program counter
reg_file["REG_PC] <= reg_file[REG_PC];
end
else begin
reg_file[instruction_word[3] [TREG_I]] <= temp_wb;
end
end

"PUSH_IC: begin
reg_file[REG_SP] <= temp_sp; // incremented stack pointer
end

“POP_IC: begin
reg_file["REG_SP] <= temp_sp; // decremented stack pointer
reg_file[instruction_word[3] [TREG_I]] <= temp_wb;
data_stack_pop <= 1'b0;

end

"ST_IC: begin
dm_wren <= 1'b0;
end

“JMP_IC: begin
// check the status register
case (instruction_word[3][* JMP_CODE])

“JU: begin
reg_file[REG_PC] <= {16'h0, temp_address};
end

“JC: begin
if (reg_file["REG_SR]I["SR_C] == 1'bl) begin
reg_file["REG_PC] <= {16'h0, temp_address};
end
else begin
reg_file["REG_PC] <= reg_file[REG_PC];
end
end

*CPY_IC,

*LD_IC,

II.1 CJG RISC CPU RTL I1-10

296 “JN: begin

297 if (reg_file["REG_SRI["SR_N] == 1'bl) begin
298 reg_file["REG_PC] <= {16'h0, temp_address};
299 end

300 else begin

301 reg_file[REG_PC] <= reg_file[REG_PC];

302 end

303 end

304

305 “JV: begin

306 if (reg_file["REG_SR]["SR_V] == 1'bl) begin
307 reg_file["REG_PC] <= {16'h0, temp_addressl};
308 end

309 else begin

310 reg_file["REG_PC] <= reg_file[REG_PC];

311 end

312 end

313

314 “JZ: begin

315 if (reg_file["REG_SR]["SR_Z] == 1'bl) begin
316 reg_file["REG_PC] <= {16'h0, temp_address};
317 end

318 else begin

319 reg_file[REG_PC] <= reg_file[REG_PC];

320 end

321 end

322

323 “JNC: begin

324 if (reg_file["REG_SR]["SR_C] == 1'b0) begin
325 reg_file["REG_PC] <= {16'h0, temp_address};
326 end

327 else begin

328 reg_file[REG_PC] <= reg_file[REG_PC];

329 end

330 end

331

332 “JNN: begin

333 if (reg_file["REG_SR]["SR_N] == 1'b0) begin
334 reg_file[REG_PC] <= {16'h0, temp_address};
335 end

336 else begin

337 reg_file["REG_PC] <= reg_file[REG_PC];

338 end

339 end

340

341 “JNV: begin

342 if (reg_file["REG_SR]I["SR_V] == 1'b0) begin
343 reg_file["REG_PC] <= {16'h0, temp_address};

344 end

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

II.1 CJG RISC CPU RTL

I1-11

else begin
reg_file["REG_PC] <= reg_file[REG_PC];
end
end

“JNZ: begin
if (reg_file["REG_SRI["SR_Z] == 1'b0) begin
reg_file[REG_PC] <= {16'h0, temp_addressl};
end
else begin
reg_file["REG_PC] <= reg_file[REG_PC];
end
end

“JGE: begin
if (reg_file["REG_SR]["SR_GE] == 1'bl) begin
reg_file[REG_PC] <= {16'h0, temp_address};
end
else begin
reg_file["REG_PC] <= reg_file[REG_PC];
end
end

“JL: begin
if (reg_file["REG_SR]['SR_L] == 1'bl) begin
reg_file["REG_PC] <= {16'h0, temp_address};
end
else begin
reg_file["REG_PC] <= reg_file[REG_PC];
end
end

default: begin
reg_file["REG_PC] <= reg_file[REG_PC];
end
endcase // instruction_word[3] [JMP_CODE]

end // JMP_IC

"CALL_IC: begin
// jump to the routine address
call_stack_push <= 1'b0;
reg_file[REG_PC] <= {16'h0, temp_address};
end

"RET_IC: begin
// pop the program counter
call_stack_pop <= 1'b0;
reg_file[REG_PC] <= {16'h0, temp_address};

394
395
396
397
398
399
400
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

419
420
421
422
423
424
425
426
427
428
429

430
431
432
433
434
435
436
437
438

II.1 CJG RISC CPU RTL I1-12

end

default: begin
end
endcase // opcode[3]

case (opcode[3])
“ADD_IC, °"SUB_IC, "CMP_IC, °“NOT_IC, “AND_IC, "BIC_IC, "OR_IC, “XOR_IC, “RS_IC,
— "MUL_IC, "DIV_IC: begin
// set the status register from the alu output
reg_file[REG_SR] <= temp_sr;
end

default: begin
reg_file["REG_SR] <= reg_file[REG_SR];
end
endcase // opcodel[3]

end // if (stall[3] == 1'b0)

// Machine cycle 2
// ezecution
if (stall[2] == 1'b0) begin

case (opcode[2])
*ADD_IC, “SUB_IC, “CMP_IC, “NOT_IC, “AND_IC, “BIC_IC, “OR_IC, “XOR_IC, “CPY_IC,
— "MUL_IC, "DIV_IC: begin
// set temp ALU out
temp_wb <= alu_result;

// Set status register

if (instruction_word[3] [TREG_I] == “REG_SR && ~WB_INSTRUCTION(3)) begin
// data forward from the status register
temp_sr <= {temp_wb[31:6], alu_n, ~alu_n, alu_z, alu_v, alu_n, alu_c};

end

else begin
// take the current status register
temp_sr <= {reg_file[REG_SR][31:6], alu_n, ~alu_n, alu_z, alu_v, alu_n,
— alu_c};

end

// TODO: data forward from other sources in mc3

end

"RS_IC: begin
// grab the output from the shifter

temp_wb <= shifter_result;

// if rotating through carry, set the new carry value

439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

II.1 CJG RISC CPU RTL I1-13

if ((instruction_word[2] ['RS_OPCODE] == “RRC_SHIFT) ||
— (instruction_word[2] [TRS_OPCODE] == “RLC_SHIFT)) begin
// Set status register
if (instruction_word[3] [TREG_I] == "REG_SR && “WB_INSTRUCTION(3)) begin
// data forward from the status register
temp_sr <= {temp_wb[31:1], shifter_carry_out};
end
else begin
// take the current status register
temp_sr <= {reg_file["REG_SR][31:1], shifter_carry_out};
end
end
else begin
// dont change the status register
temp_sr <= reg_file[REG_SR];
end
end

"PUSH_IC: begin
temp_sp <= alu_result; // incremented Stack Pointer
data_stack_push <= 1'b0;

end

“POP_IC: begin
// data_stack_pop <= 1'b1;
// data_stack_pop <= 1'b0;
temp_sp <= alu_result; // decremented Stack Pointer
temp_wb <= data_stack_out;
end

"LD_IC: begin
“LOAD_MMIO(temp_wb,31:0,)
end

“ST_IC: begin

if (dm_address < “MMIO_START_ADDR) begin
// enable write if not mmio
dm_wren <= 1'bl;

end

else begin
// write to mmio
dm_wren <= 1'b0;

case (dm_address)
*MMIO_GPIO_OUT: begin

gpio_out <= dm_data;
end

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

524
525
526

527
528
529
530
531
532
533

II.1 CJG RISC CPU RTL

I1-14

default: begin
end

endcase // dm_address
end
end

“JMP_IC: begin
// Do nothing?
end

“CALL_IC: begin
// push the status register onto the stack
call_stack_push <= 1'bl;
call_stack_data <= reg_file[REG_SR];

end

"RET_IC: begin
// pop the program counter
call_stack_pop <= 1'bi;
temp_address <= call_stack_out[15:0];
end

default: begin
end
endcase // opcode[2]

instruction_word[3] <= instruction_word[2];
instruction_addr[3] <= instruction_addr[2];
end // if (stall[2] == 1'b0)

// Machine cycle 1
// operand fetch
if (stall[1] == 1'b0) begin

case (opcode[1])
*ADD_IC, “SUB_IC, “CMP_IC, "NOT_IC, “AND_IC, “BIC_IC, “OR_IC, “XOR_IC,
— "DIV_IC: begin

// set alu_a
if ((instruction_word[1] [TREG_J] == instruction_word[2] [TREG_I]) &&
— “WB_INSTRUCTION(2) && !stall[2]) begin
// data forward from mc2
if (TALU_INSTRUCTION(2)) begin
// data forward from alu output
alu_a <= alu_result;
end
else if (opcode[2] == “POP_IC) begin
alu_a <= data_stack_out;

*MUL_IC,

534
535
536
537
538
539
540
541
542
543
544
545
546
547

548
549
550
551

552
553
554
555
556

557
558
559
560
561
562
563
564
565
566
567
568

569
570

571
572
573
574
575
576
577

II.1 CJG RISC CPU RTL I1-15
end
else if (opcode[2] == “LD_IC) begin
"LOAD_MMIO(alu_a,31:0,)
end
else if (opcode[2] == “RS_IC) begin
alu_a <= shifter_result;
end
// TODO: data forward from other wb sources in mc2
else begin
// mo data forwarding
alu_a <= reg_file[instruction_word[1] [TREG_J]];
end
end
else if (instruction_word[1] [TREG_J] == "REG_SP && ~STACK_INSTRUCTION(2) &&
— !stall[2]) begin
// data forward from the increment/decrement of the stack pointer
alu_a <= alu_result;
end
else if ((instruction_word[1] [TREG_J] == instruction_word[3] [TREG_I]) &&
< "WB_INSTRUCTION(3) && !stall[3]) begin
// data forward from mc3
alu_a <= temp_wb;
// TODO: data forward from other wb sources in mc3
end
else if (instruction_word[1][TREG_J] == "REG_SP && ~STACK_INSTRUCTION(3) &&
— !stall[3]) begin

// data forward from the increment/decrement of the stack pointer
alu_a <= temp_sp;

end

el

se begin
// mo data forwarding
alu_a <= reg_file[instruction_word[1] [TREG_J1];

end

// set alu_b

if

(instruction_word[1] [TALU_CONTROL] == 1'bl) begin
// constant operand
alu b <= {{16{instruction_word[1] [*ALU CONSTANT MSB]}},
— instruction_word[1] [TALU_CONSTANT]}; // sign extend constant

end

else if ((instruction_word[1] [TREG_K] == instruction_word[2] [TREG_I]) &&

—

"WB_INSTRUCTION(2) && !stall[2]) begin
//data forward from mc2
if (TALU_INSTRUCTION(2)) begin
alu_b <= alu_result;
end
else if (opcode[2] == “POP_IC) begin
alu_b <= data_stack_out;
end

578
579
580
581
582
583
584
585
586
587
588
589
590

591

593
594

595
596
597
598
599

600
601
602
603
604
605
606
607
608
609
610
611
612
613

614
615

616
617
618
619
620
621

II.1 CJG RISC CPU RTL I1-16

else if (opcode[2] == “LD_IC) begin
“LOAD_MMIO(alu_b,31:0,)

end

else if (opcode[2] == "RS_IC) begin
alu_b <= shifter_result;

end

// TODO: data forward from other wb sources in mc2
else begin
// mo data forwarding
alu_b <= reg_file[instruction_word[1] [TREG_K]];

end
end
else if (instruction_word[1][TREG_K] == “REG_SP && ~STACK_INSTRUCTION(2) &&
— !stall[2]) begin

// data forward from the increment/decrement of the stack pointer

alu_b <= alu_result;
end
else if ((instruction_word[1] [TREG_K] == instruction_word[3] [TREG_I]) &&
< “WB_INSTRUCTION(3) && !'stall[3]) begin

// data forward from mc3

alu_b <= temp_wb;

// TODO: data forward from other wb sources in mc3
end
else if (instruction_word[1] [TREG_K] == “REG_SP && ~STACK_INSTRUCTION(3) &&
— !stall[3]) begin

// data forward from the increment/decrement of the stack pointer

alu_b <= temp_sp;
end
else begin

// no data forwarding

alu_b <= reg_file[instruction_word[1] [TREG_KI];
end

end // “ADD_IC, ‘SUB_IC, “CMP_IC, ‘NOT_IC, ‘AND_IC, *BIC_IC, ‘OR_IC, “XOR_IC

"CPY_IC: begin
// set source alu_a
if (instruction_word[1] [*'DT_CONTROL] == 1'bl) begin
// copy from constant
alu_a <= {{16{instruction_word[1] ['DT_CONSTANT_MSB]}},
— instruction_word[1] ['DT_CONSTANT]}; // sign eztend constant
end
else if ((instruction_word[1] [TREG_J] == instruction_word[2] [TREG_I]) &&
<> “WB_INSTRUCTION(2) && 'stall[2]) begin
// data forward from mc2
if (TALU_INSTRUCTION(2)) begin
alu_a <= alu_result;
end
else if (opcode[2] == “POP_IC) begin
alu_a <= data_stack_out;

622
623
624
625
626
627
628
629
630
631
632
633
634
635

636
637
638
639

640
641
642
643
644

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

663
664
665
666

II.1 CJG RISC CPU RTL I1-17

end
else if (opcode[2] == “LD_IC) begin
“LOAD_MMIO(alu_a,31:0,)

end

else if (opcode[2] == “RS_IC) begin
alu_a <= shifter_result;

end

// TODO: data forward from other wb sources in mc2
else begin
// mo data forwarding
alu_a <= reg_file[instruction_word[1] [TREG_J]];
end
end
else if (instruction_word[1] [TREG_J] == "REG_SP && ~STACK_INSTRUCTION(2) &&
— !stall[2]) begin
// data forward from the increment/decrement of the stack pointer
alu_a <= alu_result;
end
else if ((instruction_word[1] [TREG_J] == instruction_word[3] [TREG_I]) &&
< "WB_INSTRUCTION(3) && !stall[3]) begin
// data forward from mc3
alu_a <= temp_wb;
// TODO: data forward from other wb sources in mc3
end
else if (instruction_word[1][TREG_J] == "REG_SP && ~STACK_INSTRUCTION(3) &&
— !stall[3]) begin
// data forward from the increment/decrement of the stack pointer
alu_a <= temp_sp;
end
else begin
// mo data forwarding
alu_a <= reg_file[instruction_word[1] [TREG_J1];
end

// alu_b unused for cpy so just keep it the same
alu_b <= alu_b;
end // "CPY_IC

"RS_IC: begin
// set the opcode
shifter_opcode <= instruction_word[1] [*RS_OPCODE];

// set the operand
if ((instruction_word[1] [TREG_J] == instruction_word[2] [TREG_I]) &&
< "WB_INSTRUCTION(2) && 'stall[2]) begin
// data forward from mc2
if (TALU_INSTRUCTION(2)) begin
shifter_operand <= alu_result;
end

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

683
684
685
686

687
688
689
690
691

692
693
694
695
696
697
698
699
700
701
702
703
704
705

706
707
708
709
710
711

II.1 CJG RISC CPU RTL I1-18

en
el

—

en
el

—

en
el

—

en
el

else if (opcode[2] == “POP_IC) begin
shifter_operand <= data_stack_out;

end

else if (opcode[2] == "LD_IC) begin
“LOAD_MMIO(shifter_operand,31:0,)

end

else if (opcode[2] == “RS_IC) begin
shifter_operand <= shifter_result;

end

// TODO: data forward from other wb sources in mc2

else begin
// no data forwarding
shifter_operand <= reg_file[instruction_word[1] [TREG_JI];

end

d

se if (instruction_word[1][TREG_J] == "REG_SP && ~STACK_INSTRUCTION(2) &&
I'stall[2]) begin

// data forward from the increment/decrement of the stack pointer

shifter_operand <= alu_result;

d

se if ((instruction_word[1] [TREG_J] == instruction_word[3] [TREG_I]) &&
“WB_INSTRUCTION(3) && 'stall[3]) begin

// data forward from mc3

shifter_operand <= temp_wb;

// TODO: data forward from other wb sources in mc3

d

se if (instruction_word[1][*REG_J] == "REG_SP && ~STACK_INSTRUCTION(3) &%
I'stall[3]) begin

// data forward from the increment/decrement of the stack pointer

shifter_operand <= temp_sp;

d

se begin

// nmo data forwarding

shifter_operand <= reg_file[instruction_word[1] [TREG_J]];

end

// set the modifier

if

(instruction_word[1] [TRS_CONTROL] == 1'bl) begin
// copy from constant
shifter_modifier <= instruction_word[1] ['RS_CONSTANT];

end

el

—

se if ((instruction_word[1] [TREG_K] == instruction_word[2] [TREG_I]) &&
“WB_INSTRUCTION(2) && !'stall[2]) begin

// data forward from mc2

if (TALU_INSTRUCTION(2)) begin
shifter_modifier <= alu_result[5:0];

end

else if (opcode[2] == “POP_IC) begin
shifter_modifier <= data_stack_out[5:0];

712
713
714
715
716
717
718
719
720
721
722
723
724
725

726
727
728
729

731
732
733
734

735
736
737
738
739
740
741
742
743
744

745

746
747
748
749
750
751
752
753
754
755

I1.1 CJG RISC CPU RTL 11-19
end
else if (opcode[2] == “LD_IC) begin
“LOAD_MMIO(shifter_modifier,5:0,)
end
else if (opcode[2] == “RS_IC) begin
shifter_modifier <= shifter_result[5:0];
end
// TODO: data forward from other wb sources in mc2
else begin
// mo data forwarding
shifter_modifier <= reg_file[instruction_word[1] [TREG_K]][5:0];
end
end
else if (instruction_word[1] [TREG_K] == “REG_SP && ~STACK_INSTRUCTION(2) &&
— !stall[2]) begin
// data forward from the increment/decrement of the stack pointer
shifter_modifier <= alu_result[5:0];
end
else if ((instruction_word[1] [TREG_K] == instruction_word[3] [TREG_I]) &&
< "WB_INSTRUCTION(3) && !stall[3]) begin
// data forward from mc3
shifter_modifier <= temp_wb[5:0];
// TODO: data forward from other wb sources in mc3
end
else if (instruction_word[1] [TREG_K] == “REG_SP && ~STACK_INSTRUCTION(3) &&
— !stall[3]) begin

// data forward from the increment/decrement of the stack pointer

shifter_modifier <= temp_sp[5:0];
end
else begin

// mo data forwarding
shifter_modifier <= reg_file[instruction_word[1] [TREG_K]][5:0];

end

// set the carry in if rotating through
if ((instruction_word[1] [TRS_OPCODE] ==
(instruction_word[1] [TRS_OPCODE] ==

—

if ((instruction_word[2] ['REG_I] == “REG_SR) && “WB_INSTRUCTION(2) &&

—

carry
“RRC_SHIFT) ||
“RLC_SHIFT)) begin

'stall[2]) begin // if mc2 is writing to the REG_SR
// data forward from mc2
if (CALU_INSTRUCTION(2)) begin
<= alu_result[SR_C];

shifter_carry_in
end
else if (opcode[2]
shifter_carry_in
end
else if (opcode[2]

“POP_IC) begin

<= data_stack_out [SR_C];

"LD_IC) begin

“LOAD_MMIO(shifter_carry_in, SR_C,)

end

756
757
758
759
760
761
762
763
764
765

766
767
768
769
770

771
772
773
774

775
776
s

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

797
798

II.1 CJG RISC CPU RTL

11-20

else if (opcode[2] == “RS_IC) begin
shifter_carry_in <= shifter_result[SR_C];
end
// TODO: data forward from other wb sources in mc2
else begin
// no data forwarding
shifter_carry_in <= reg_file[REG_SR][*SR_C];
end

end
else if ((instruction_word[3] [TREG_I] == “REG_SR) && “WB_INSTRUCTION(3) &&

—

'stall[3]) begin // if mc3 is writing to the REG_SR
// data forward from mc3
shifter_carry_in <= temp_wb[SR_C];
// TODO: data forward from other wb sources in mc3

end

else if (TALU_INSTRUCTION(2) && !'stall[2]) begin // if the mc2 ALU

—

instruction will change the REG_SR
// data forward from the alu output
shifter_carry_in <= alu_c;

end

else if (opcode[2] == “RS_IC && !stall[2]) begin // if the mc2 shift

—

instruction will change the REG_SR
shifter_carry_in <= shifter_carry_out;

end
else if (TALU_INSTRUCTION(3) || opcode[3] == "RS_IC && !stall[3]) begin //

—

1f the mc3 instruction will change the REG_SR
// data forward from the temp status register
shifter_carry_in <= temp_sr[SR_C];

end

el

se begin
// mo data forwarding
shifter_carry_in <= reg_file["REG_SR][*SR_C];

end

end

else
sh

end

begin
ifter_carry_in <= reg_file[REG_SR] ['SR_C];

end // 'RS_IC

*PUSH_

IC: begin

// data forwarding for the data input

if (

instruction_word[1] [T'DT_CONTROL] == 1'bl) begin

// push from constant

data_stack_data <= {{16{instruction_word[1] ['DT_CONSTANT_MSB]}},

—

end

else if ((instruction_word[1] [TREG_J] == instruction_word[2] [TREG_I]) &&

—

instruction_word[1] [DT_CONSTANT]};

"WB_INSTRUCTION(2) && !stall[2]) begin

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

819
820
821
822

823
824
825
826
827

828
829
830
831
832
833
834
835
836
837
838

839
840
841
842
843

II.1 CJG RISC CPU RTL I1-21

// data forward from mc2
if (TALU_INSTRUCTION(2)) begin
data_stack_data <= alu_result;

end

else if (opcode[2] == “POP_IC) begin
data_stack_data <= data_stack_out;

end

else if (opcode[2] == "LD_IC) begin
“LOAD_MMIO(data_stack_data,31:0,)

end

else if (opcode[2] == “RS_IC) begin
data_stack_data <= shifter_result;
end
// TODO: data forward from other wb sources in mc2
else begin
// mo data forwarding
data_stack_data <= reg_file[instruction_word[1] [TREG_J]];
end

end
else if (instruction_word[1] [TREG_J] == “REG_SP && ~STACK_INSTRUCTION(2) &&
— !stall[2]) begin

// data forward from the increment/decrement of the stack pointer
data_stack_data <= alu_result;

end

el

—

se if ((instruction_word[1][TREG_J] == instruction_word[3] [TREG_I]) &&
"WB_INSTRUCTION(3) && !stall[3]) begin

// data forward from mc3

data_stack_data <= temp_wb;

// TODO: data forward from other wb sources in mc3

end
else if (instruction_word[1] [TREG_J] == “REG_SP && ~STACK_INSTRUCTION(3) &&
— !stall[3]) begin

// data forward from the increment/decrement of the stack pointer
data_stack_data <= temp_sp;

end

el

se begin
// mo data forwarding
data_stack_data <= reg_file[instruction_word[1] [TREG_J]];

end

// data foward stack pointer
// set alu_a to increment stack pointer

if

—

(CCREG_SP == instruction_word[2] [TREG_I]) && ~WB_INSTRUCTION(2) &&
I'stall[2]) begin
// data forward from mc2
if (TALU_INSTRUCTION(2)) begin
// data forward from alu output
alu_a <= alu_result;
data_stack_addr <= alu_result[5:0];

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

865
866
867
868
869

870
871
872
873
874
875

876
877
878
879
880
881
882
883
884
885
886
887
888
889

II.1 CJG RISC CPU RTL I1-22

end
else if (opcode[2] == “POP_IC) begin
alu_a <= data_stack_out;
data_stack_addr <= data_stack_out[5:0];
end
else if (opcode[2] == “LD_IC) begin
“LOAD_MMIO(alu_a,31:0,)
“LOAD_MMIO(data_stack_addr,5:0,)
end
else if (opcode[2] == "RS_IC) begin
alu_a <= shifter_result;
data_stack_addr <= shifter_result[5:0];
end
// TODO: data forward from other wb sources in mc2
else begin
// mo data forwarding
alu_a <= reg_file[REG_SP];
data_stack_addr <= reg_file[REG_SP][5:0];
end
end
else if ((opcode[2] == “PUSH_IC) || (opcode[2] == “POP_IC) && !stall[2])
— begin
// data forward from the output of the increment
alu_a <= alu_result;
data_stack_addr <= alu_result[5:0];
end
else if (("REG_SP == instruction_word[3] [*REG_I]) && “WB_INSTRUCTION(3) &&
— !stall[3]) begin
// data forward from mc3
alu_a <= temp_wb;
data_stack_addr <= temp_wb[5:0];
// TODO: data forward from other wb sources in mc3
end
else if ((opcode[3] == “PUSH_IC) || (opcode[3] == “POP_IC) && !'stall[3])
— begin
// data forward from the output of the increment
alu_a <= temp_sp;
data_stack_addr <= temp_wb[5:0];
end
else begin
// mo data forwarding
alu_a <= reg_file[REG_SP];
data_stack_addr <= reg_file[REG_SP][5:0];
end

alu_b <= 32'h00000001;

data_stack_push <= 1'bil;
end

890
891
892
893
894

895
896
897
898
899
900
901
902
903

905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921

922
923
924
925
926

927
928
929
930
931
932

933
934

II.1 CJG RISC CPU RTL

11-23

"POP_IC: begin
// data foward stack pointer
// set alu_a to decrement stack pointer
if ((CREG_SP == instruction_word[2] [TREG_I]) && ~WB_INSTRUCTION(2) &&
— !stall[2]) begin
// data forward from mc2
if (CALU_INSTRUCTION(2)) begin
// data forward from alu output
alu_a <= alu_result;
data_stack_addr <= alu_result[5:0] - 1'bi;
end
else if (opcode[2] == “POP_IC) begin
alu_a <= data_stack_out;
data_stack_addr <= data_stack_out[5:0] - 1'bil;
end
else if (opcode[2] == “LD_IC) begin
“LOAD_MMIO(alu_a,31:0,)
// data_stack_addr <= dm_out[5:0] - 1'bl;
“LOAD_MMIO(/*dest=+/data_stack_addr, /*bits=+/5:0,/*expr=+/-1'b1)
end
else if (opcode[2] == “RS_IC) begin
alu_a <= shifter_result;
data_stack_addr <= shifter_result[5:0] - 1'bi;
end
// TODO: data forward from other wb sources in mc2
else begin
// mo data forwarding
alu_a <= reg_file[REG_SP];
data_stack_addr <= reg_file[REG_SP][5:0] - 1'bi;
end
end

else if ((opcode[2] == "PUSH_IC) || (opcode[2] == “POP_IC) && !'stall[2])

— begin
// data forward from the output of the increment
alu_a <= alu_result;
data_stack_addr <= alu_result[5:0] - 1'bil;

end

else if ((TREG_SP == instruction_word[3] [TREG_I]) && ~WB_INSTRUCTION(3) &&

< !stall[3]) begin

// data forward from mc3

alu_a <= temp_wb;

data_stack_addr <= temp_wb[5:0] - 1'bi;

// TODO: data forward from other wb sources in mc3
end

else if ((opcode[3] == "PUSH_IC) || (opcode[3] == “POP_IC) && !stalll[3])

— begin
// data forward from the output of the decrement
alu_a <= temp_sp;

935
936
937
938
939
940
941
942
943
944
945
946
947
948

949
950

951
952
953
954
955
956
957
958
959

960
961
962
963
964
965
966
967

968
969
970

971
972
973
974

975
976
977

II.1 CJG RISC CPU RTL 11-24

data_stack_addr <= temp_sp[5:0] - 1'bi;
end
else begin

// mo data forwarding

alu_a <= reg_file[REG_SP];

data_stack_addr <= reg_file[REG_SP][5:0] - 1'bi;
end

alu_b <= 32'h00000001;

end

LD_IC, “ST_IC: begin
// Set the data memory address
if (instruction_word[1][TREG_J] != 5'b0 && instruction_word[1] [DT_CONTROL]

—

== 1'b0) begin

// Indezed

if

—

((instruction_word[1] [TREG_J] == instruction_word[2] [TREG_I]) &&
“WB_INSTRUCTION(2) && !'stall[2]) begin
// data forward from mc2
if (CALU_INSTRUCTION(2)) begin
dm_address <= alu_result + instruction_word[1] [TDT_CONSTANT];
end
else if (opcode[2] == “POP_IC) begin
dm_address <= data_stack_out + instruction_word[1] [DT_CONSTANT];
end
else if (opcode[2] == “LD_IC) begin

< "LOAD_MMIO(/*dest=+*/dm_address, /*bits=+*/31:0,/*expr=+/+instruction_word[1] [*DT_COI
end
else if (opcode[2] == "RS_IC) begin

dm_address <= shifter_result + instruction_word[1] ['DT_CONSTANT];
end
// TODO: data forward from other wb sources in mc2
else begin

// No data forwarding

dm_address <= reg_file[instruction_word[1] ['REG_J]] +

< instruction_word[1] [*DT_CONSTANT];
end

end

el

—

se if (instruction_word[1] [TREG_J] == “REG_SP && ~STACK_INSTRUCTION(2) &&
I'stall[2]) begin

// data forward from tne increment/decrement of the stack pointer

dm_address <= alu_result + instruction_word[1] ['DT_CONSTANT];

end

el

—

se if ((instruction_word[1] [TREG_J] == instruction_word[3] [TREG_I]) &&
“WB_INSTRUCTION(3) && !stalll[3]) begin

// data forward from mc3

dm_address <= temp_wb + instruction_word[1] [*DT_CONSTANT];

// TODO: data forward from other wb sources in mc3

978
979

980
981
982
983
984
985

986
987
988

989
990

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

1011
1012
1013
1014

1015
1016
1017
1018
1019

II.1 CJG RISC CPU RTL

I1-25

end
else

—

if (instruction_word[1] [TREG_J]
Istall[3]) begin

"REG_SP && ~STACK_INSTRUCTION(3) &&

// data forward from the tincrement/decrement of the stack pointer
dm_address <= temp_sp + instruction_word[1] [*'DT_CONSTANT];

end
else

begin

// No data forwarding
dm_address <= reg_file[instruction_word[1] [TREG_J]] +

« instruction_word[1] [*DT_CONSTANT];
end
end
else if (instruction_word[1][TREG_J] != 5'b0 &&
< instruction_word[1] ['DT_CONTROL] == 1'bl) begin

// Register Direct
if ((instruction_word[1] [TREG_J] == instruction_word[2] [TREG_I]) &&
“WB_INSTRUCTION(2) && !'stall[2]) begin

// data forward from mc2

—

if

(" ALU_INSTRUCTION(2)) begin
dm_address <= alu_result;

end

el

se if (opcode[2] == “POP_IC) begi
dm_address <= data_stack_out;

end

el

se if (opcode[2] == "LD_IC) begin
“LOAD_MMIO(dm_address,31:0,)

end

el

se if (opcode[2] == "RS_IC) begin
dm_address <= shifter_result;

end
// TODO: data forward from other wb sources in mc2

el

end
else

—

se begin
// No data forwarding

n

dm_address <= reg_file[instruction_word[1] [TREG_J]];
end

if (instruction_word[1] [TREG_J]
'stall[2]) begin

“REG_SP &% ~STACK_INSTRUCTION(2) &%

// data forward from tne increment/decrement of the stack pointer

dm
end
else

—

dm

_address <= alu_result;

if ((instruction_word[1] [TREG_J]

instruction_word[3] [TREG_I]) &&

“WB_INSTRUCTION(3) && !stall[3]) begin
// data forward from mc3

_address <= temp_wb;

// TODO: data forward from other wb sources inm mc3

end
else

—

if (instruction_word[1] [TREG_J]
'stall[3]) begin

“REG_SP && ~STACK_INSTRUCTION(3) &&

1020
1021
1022
1023
1024
1025
1026
1027
1028

1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062

1063
1064
1065

II.1 CJG RISC CPU RTL I1-26

// data forward from the increment/decrement of the stack pointer
dm_address <= temp_sp;
end
else begin
// No data forwarding
dm_address <= reg_file[instruction_word[1] [TREG_J1];

end
end
else if (instruction_word[1][TREG_J] == 5'b0 &&
< instruction_word[1] [*'DT_CONTROL] == 1'b0) begin

// PC Relative

dm_address <= instruction_addr[1] + instruction_word[1] [*DT_CONSTANT];
end
else begin

// Absolute

dm_address <= instruction_word[1] ['DT_CONSTANT];
end

// Set the data input
if (opcode[1] == “ST_IC) begin

// set the data value
if ((instruction_word[1] ['REG_I] == instruction_word[2] ['REG_I]) &&
< "WB_INSTRUCTION(2) && 'stall[2]) begin
// data forward from mc2
if (TALU_INSTRUCTION(2)) begin
dm_data <= alu_result;

end

else if (opcode[2] == “POP_IC) begin
dm_data <= data_stack_out;

end

else if (opcode[2] == “LD_IC) begin
*LOAD_MMIO(dm_data,31:0,)

end

else if (opcode[2] == "RS_IC) begin
dm_data <= shifter_result;

end

// TODO: data forward from other wb sources in mc2
else begin
// No data forwarding
dm_data <= reg_file[instruction_word[1] [TREG_I]];
end
end
else if (instruction_word[1] [TREG_I] == “REG_SP && ~STACK_INSTRUCTION(2) &&
< !stall[2]) begin
// data forward from tne increment/decrement of the stack pointer
dm_data <= alu_result;
end

II.1 CJG RISC CPU RTL I1-27

1066 else if ((instruction_word[1] [TREG_I] == instruction_word[3] [TREG_I]) &&
< "WB_INSTRUCTION(3) && !stall[3]) begin

1067 // data forward from mc3

1068 dm_data <= temp_wb;

1069 // TODO: data forward from other wb sources in mc3

1070 end

1071 else if (instruction_word[1] [TREG_I] == “REG_SP && ~STACK_INSTRUCTION(3) &&
< !stall[3]) begin

1072 // data forward from the increment/decrement of the stack pointer

1073 dm_data <= temp_sp;

1074 end

1075 else begin

1076 // No data forwarding

1077 dm_data <= reg_file[instruction_word[1] [TREG_I]];

1078 end

1079 end

1080

1081 end

1082

1083 “JMP_IC: begin

1084 // Set the temp program counter

1085 if (instruction_word[1] [TREG_I] != 5'b0 && instruction_word[1] [T JMP_CONTROL]

— == 1'b0) begin

1086 // Indezed

1087 if ((instruction_word[1] [TREG_I] == instruction_word[2] [TREG_I]) &&
<~ “WB_INSTRUCTION(2) && !stall[2]) begin

1088 // data forward from mc2

1089 if (TALU_INSTRUCTION(2)) begin

1090 temp_address <= alu_result + instruction_word[1] [* JMP_ADDR];

1091 end

1092 else if (opcode[2] == “POP_IC) begin

1093 temp_address <= data_stack_out + instruction_word[1] [~ JMP_ADDR];

1094 end

1095 else if (opcode[2] == “LD_IC) begin

1096
— "LOAD_MMIO(/*dest=+/temp_address,/*bits=+/31:0,/*expr=+/+instruction_word[1] [~ JMP.
1097 end

1098 else if (opcode[2] == “RS_IC) begin
1099 temp_address <= shifter_result + instruction_word[1] [T JMP_ADDR];
1100 end
1101 // TODO: data forward from other wb sources in mc2
1102 else begin
1103 // No data forwarding
1104 temp_address <= reg_file[instruction_word[1] [TREG_I]] +
< instruction_word[1] [T JMP_ADDR];
1105 end
1106 end
1107 else if (instruction_word[1] [TREG_I] == “REG_SP && ~STACK_INSTRUCTION(2) &&

— !stall[2]) begin

1108
1109
1110
1111

1112
1113
1114
1115
1116

1117
1118
1119
1120
1121
1122

1123
1124
1125

1126
1127

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

1148
1149
1150

II.1 CJG RI

SC CPU RTL I1-28

// data forward from tne increment/decrement of the stack pointer
temp_address <= alu_result + instruction_word[1] [~ JMP_ADDR] ;
end
else if ((instruction_word[1] [TREG_I] == instruction_word[3] [TREG_I]) &&
< “WB_INSTRUCTION(3) && 'stall[3]) begin
// data forward from mc3
temp_address <= temp_wb + instruction_word[1] [* JMP_ADDR] ;
// TODO: data forward from other wb sources in mc3
end
else if (instruction_word[1] [TREG_I] == “REG_SP && ~STACK_INSTRUCTION(3) &&
— !stall[3]) begin
// data forward from the increment/decrement of the stack pointer
temp_address <= temp_sp + instruction_word[1] [T JMP_ADDR];
end
else begin
// No data forwarding
temp_address <= reg_file[instruction_word[1] [TREG_I]] +
< instruction_word[1] [T JMP_ADDR] ;
end

end

el

—

se if (instruction_word[1][TREG_I] != 5'b0 &&
instruction_word[1] [T JMP_CONTROL] == 1'b1l) begin
// Register Direct
if ((instruction_word[1] ['REG_I] == instruction_word[2] ['REG_I]) &&
< “WB_INSTRUCTION(2) && 'stall[2]) begin
// data forward from mc2
if (TALU_INSTRUCTION(2)) begin
temp_address <= alu_result;

end

else if (opcode[2] == “POP_IC) begin
temp_address <= data_stack_out;

end

else if (opcode[2] == “LD_IC) begin
"LOAD_MMIO(temp_address,31:0,)

end

else if (opcode[2] == "RS_IC) begin
temp_address <= shifter_result;

end

// TODO: data forward from other wb sources in mc2
else begin
// No data forwarding
temp_address <= reg_file[instruction_word[1] [TREG_I]];
end
end
else if (instruction_word[1] [TREG_I] == “REG_SP && ~STACK_INSTRUCTION(2) &&
< !stall[2]) begin
// data forward from tne increment/decrement of the stack pointer
temp_address <= alu_result;
end

1151

1152
1153
1154
1155
1156

1157
1158
1159
1160
1161
1162
1163
1164
1165

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

II.1 CJG RISC CPU RTL I1-29

else if ((instruction_word[1] [TREG_I] == instruction_word[3] [TREG_I]) &&
— "WB_INSTRUCTION(3) && !stall[3]) begin
// data forward from mc3
temp_address <= temp_wb;
// TODO: data forward from other wb sources in mc3
end
else if (instruction_word[1] [TREG_I] == “REG_SP && ~STACK_INSTRUCTION(3) &&
< !stall[3]) begin
// data forward from the tincrement/decrement of the stack pointer
temp_address <= temp_sp;
end
else begin
// No data forwarding
temp_address <= reg_file[instruction_word[1] [TREG_II];
end
end
else if (instruction_word[1] [TREG_I] == 5'b0 &&
— instruction_word[1] [*JMP_CONTROL] == 1'b0) begin
// PC Relative
temp_address <= instruction_addr[1] + instruction_word[1] [~ JMP_ADDR];
end
else begin
// Absolute
temp_address <= instruction_word[1] [T JMP_ADDR];
end
end // JMP_IC

“CALL_IC: begin
// Set address
// Always absolute mode for call (for now)
temp_address <= instruction_word[1] [JMP_ADDR];

// push the program counter onto the stack for when we return
call_stack_push <= 1'bl;
call_stack_data <= reg_file[REG_PC];

end

"RET_IC: begin
// pop the status register
call_stack_pop <= 1'bl;
reg_file["REG_SR] <= call_stack_out;
end

default: begin
end
endcase // opcode[1]

// set the alu opcode
case (opcode[1])

II.1 CJG RISC CPU RTL I1-30

1197 “ADD_IC, “PUSH_IC: begin
1198 alu_opcode <= “ADD_ALU;
1199 end

1200

1201 “SUB_IC, “CMP_IC, “POP_IC: begin
1202 alu_opcode <= “SUB_ALU;
1203 end

1204

1205 "NOT_IC: begin

1206 alu_opcode <= “NOT_ALU;
1207 end

1208

1209 “AND_IC: begin

1210 alu_opcode <= “AND_ALU;
1211 end

1212

1213 "BIC_IC: begin

1214 alu_opcode <= "BIC_ALU;
1215 end

1216

1217 "OR_IC: begin

1218 alu_opcode <= “0OR_ALU;
1219 end

1220

1221 "XOR_IC: begin

1222 alu_opcode <= “XOR_ALU;
1223 end

1224

1225 "CPY_IC: begin

1226 alu_opcode <= “NOP_ALU;
1227 end

1228

1229 "MUL_IC: begin

1230 alu_opcode <= "MUL_ALU;
1231 end

1232

1233 "DIV_IC: begin

1234 alu_opcode <= "DIV_ALU;
1235 end

1236

1237 default: begin

1238 alu_opcode <= alu_opcode;
1239 end

1240

1241 endcase // opcode[1]

1242

1243 instruction_word[2] <= instruction_word[1];
1244 instruction_addr[2] <= instruction_addr[1];

1245 end // if (stall[1] == 1'b0)

1246
1247
1248
1249
1250
1251
1252
1253
1254
1255

1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293

I1.1 CJG RISC CPU RTL 11-31
// Machine cycle 0
// instruction fetch
if (stall[0] == 1'b0) begin
reg_file["REG_PC] <= reg_file["REG_PC] + 3'h4;
instruction_addr[1] <= reg_file[REG_PC][13:0];
instruction_word[1] <= pm_out;
// set stall cycles
if ((opcode[0] == “JMP_IC) || (opcode[0] == “CALL_IC) || (opcode[0] == “RET_IC))
— begin

stall_cycles <= 3'h3;
stall[0] <= 1'bl;
end
end // if (stall[0] == 1'b0)

end // else begin
end // always @(posedge clk)

task reset_all; begin
gpio_out <= 32'b0;
dm_data <= 32'b0;
dm_wren <= 1'b0;
dm_address <= 14'Db0;

temp_address <= 16'b0;

instruction_word[3] <= 32'b0;
instruction_word[2] <= 32'b0;
instruction_word[1] <= 32'b0;

instruction_addr[3] <= 14'b0;
instruction_addr[2] <= 14'b0;
instruction_addr[1] <= 14'b0;

stall_cycles <= 4'b0;
stall[3] <= 1'bil;
stall[2] <= 1'bil;
stall[1] <= 1'bi;
stall[0] <= 1'bil;

data_stack_data <= 32'Db0;
data_stack_addr <= 6'b0;
data_stack_push <= 1'b0;
data_stack_pop <= 1'b0;

call_stack_data <= 32'b0;
call_stack_push <= 1'b0;
call_stack_pop <= 1'b0;

1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

© 0w 9 O o ks W N =

I T ~ T = S S
o W W 9 O U s W N = O

II.1 CJG RISC CPU RTL

11-32

alu_a <= 32'Db0;
alu_b <= 32'b0;
temp_sr <= 32'b0;
temp_sp <= 32'b0;
alu_opcode <= 4'b0;

shifter_operand <= 32'b0;
shifter_carry_in <= 1'b0;
shifter_modifier <= 6'b0;
shifter_opcode <= 3'b0;

temp_wb <= 32'b0;

for (i=0; i<32; i=i+1) begin

reg_file[i] <= 32'h0;
end

end
endtask // reset_all

endmodule // cjg_risc

I1.1.4 Clock Generator

cjg_clkgen.v

module cjg_clkgen (
// system inputs
input reset,
input clk,

// system outputs
output clk_pil,
output clk_p2,

// dft

input scan_inO,
input scan_en,
input test_mode,
output scan_outO

)

// Clock counter
reg[1:0] clk_cnt;

// Signals for generating the

clocks

// system reset
// system clock

// phase 0
// phase 1

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

© 0 N9 O o s W N =

[T~ S S O S S
o A W N = O

II.1 CJG RISC CPU RTL

11-33

wire pre_pl = (~clk_cnt[1] & ~clk_cnt[0]);

wire pre_p2

// Buffer output of phase 0 clock

CLKBUFX4 clk_pl_buf (
.A(pre_pl),
.Y(clk_p1)

)

// Buffer output of phase 1 clock

CLKBUFX4 clk_p2_buf (
.A(pre_p2),
.Y (clk_p2)

)

// Clock counter
always @ (posedge clk, negedge reset) begin
if (~reset) begin

clk_cnt <= 2'h0;

end

else begin

clk _cnt <= clk_cnt + 1'b1;

(clk_cnt[1] & ~clk_cnt[0]);

end
end
endmodule // cjg_clkgen
II.1.5 ALU

cjg_alu.v

// Dynamic width combinational logic ALU

“include "src/cjg_opcodes.vh"

module cjg_alu #(parameter WIDTH = 32) (
// sys ports

input
input

input
input
input

output [WIDTH-1:0] result,

reset,
clk,

[WIDTH-1:0] a,
[WIDTH-1:0] b,
[3:0] opcode,

output ¢, n, v, z,

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

II.1 CJG RISC CPU RTL

// dft

input scan_inO,
input scan_en,
input test_mode,
output scan_outO

)

reg[WIDTH:0] internal_result;

wire overflow, underflow;

assign result = internal_result[WIDTH-1:0];

assign ¢ = internal_result[WIDTH];
assign n = internal_result[WIDTH-1];
assign z = (internal_result == 0 7 1'bl

assign overflow = (internal_result[WIDTH:WIDTH-1]
assign underflow = (internal_result[WIDTH:WIDTH-1] == 2'b10 7 1'bl

assign v = overflow | underflow;

always @(*) begin
internal _result = 0;

case (opcode)

“ADD_ALU: begin

// signed addition

internal_result
end

“SUB_ALU: begin

// signed subtraction
({a[WIDTH-1], a} + ~{b[WIDTH-1], b}) + 1'bi;

internal_result
end

“AND_ALU: begin
// logical AND
internal result

end

"BIC_ALU: begin

// logical bit clear

internal result
end

“"OR_ALU : begin
// logical OR
internal result

end

2'b01 7 1'b1

{a[WIDTH-1], a} + {b[WIDTH-11, b};

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

Jun

o U e W N

II.1 CJG RISC CPU RTL

I1-35

"NOT_ALU: begin
// logical invert
internal_result = ~a;
end

"XOR_ALU: begin
// logical XOR
internal_result = a = b;
end

"NOP_ALU: begin
// mo operation
// sign extend a to prevent wrongful overflow flag by accident
internal_result = {a[WIDTH-1], a};

end

"MUL_ALU: begin
// signed multiplication
internal_result = a * b;
end

"DIV_ALU: begin
// unsigned division
internal_result = a / b;
end

default: begin
internal_result = internal_result;

end // default

endcase // opcode

end // always @(*)

endmodule // cjg_alu

I1.1.6 Shifter

cjg_shifter.v
// Dynamic width combinational logic Shifter

“include "../cjg_risc/src/cjg_opcodes.vh"

// Whether or not to use the modifier shift logic
‘define USE_MODIFIER

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33

34

35
36
37
38
39
40
41
42
43
44

46
47
48
49
50
51
52

II.1 CJG RISC CPU RTL I1-36

module cjg_shifter #(parameter WIDTH = 32, MOD_WIDTH = 6) (
input reset,
input clk,

input signed [WIDTH-1:0] operand,
input carry_in,
input [2:0] opcode,
“ifdef USE_MODIFIER
input [MOD_WIDTH-1:0] modifier,
“endif

output reg [WIDTH-1:0] result,
output reg carry_out,

// dft

input scan_inO,
input scan_en,
input test_mode,
output scan_outO

)

“ifdef USE_MODIFIER

wire [WIDTH+WIDTH-1:0] temp_rotate_right = {operand, operand} >>

— modifier [MOD_WIDTH-2:0];

wire [WIDTH+WIDTH-1:0] temp_rotate_left = {operand, operand} << modifier [MOD_WIDTH-2:0];

wire [WIDTH+WIDTH+1:0] temp_rotate_right_c = {carry_in, operand, carry_in, operand} >>
— modifier;

wire [WIDTH+WIDTH+1:0] temp_rotate_left_c = {carry_in, operand, carry_in, operand} <<
« modifier;

“endif

always Q(*) begin
case (opcode)

“SRL_SHIFT: begin
“ifndef USE_MODIFIER
// shift right logtcal by 1
result <= {1'b0, operand[WIDTH-1:1]1};
“else
// shift right by modifier
result <= operand >> modifier [MOD_WIDTH-2:0];
“endif
carry_out <= carry_in;
end

“SLL_SHIFT: begin

53
54
55

57
58
59
60
61
62
63
64
65
66

68
69
70
71
72
73
74
75
76
7

79
80
81
82
83
84
85
86
87
88

90
91
92
93
94
95
96
97
98
99
100
101

II.1 CJG RISC CPU RTL I1-37

“ifndef USE_MODIFIER

“else

“endif

“ifndef

“else

“endif

“ifndef

“else

“endif

“ifndef

“else

“endif

“else

end

// shift left logical by 1
result <= {operand[WIDTH-2:0], 1'bO0};

// shift left by modifier
result <= operand << modifier [MOD_WIDTH-2:0];

carry_out <= carry_in;

“SRA_SHIFT: begin

USE_

end

MODIFIER
// shift right arithmetic by 1
result <= {operand[WIDTH-1], operand[WIDTH-1:1]};

// shift right arithmetic by modifier
result <= operand >>> modifier [MOD_WIDTH-2:0];

carry_out <= carry_in;

"RTR_SHIFT: begin

USE_

end

MODIFIER
// rotate right by 1
result <= {operand[0], operand[WIDTH-1:1]};

// rotate right by modifier
result <= temp_rotate_right [WIDTH-1:0];

carry_out <= carry_in;

“RTL_SHIFT: begin

USE_

end

MODIFIER
// rotate left
result <= {operand[WIDTH-2:0], operand[WIDTH-1]};

// rotate left by modifier
result <= temp_rotate_left[WIDTH+WIDTH-1:WIDTH];

carry_out <= carry_in;

“RRC_SHIFT: begin
“ifndef USE_MODIFIER

// rotate right through carry
result <= {carry_in, operand[WIDTH-1:1]};
carry_out <= operand[0];

102
103
104
105
106
107
108

110
111
112
113

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

© 0 N O o A W N

=
N = O

Jun
w

II.1 CJG RISC CPU RTL

I1-38

// rotate
result <=
carry_out
“endif
end

right through carry by modifier
temp_rotate_right_c[WIDTH-1:0];
<= temp_rotate_right_c[WIDTH];

"RLC_SHIFT: begin

“ifndef USE_MODIFIER
// rotate
result <=
carry_out

“else
// rotate
result <=
carry_out

“endif

end

left through carry
{operand [WIDTH-2:0], carry_in};
<= operand [WIDTH-1];

left through carry by modifier
temp_rotate_left_c[WIDTH+WIDTH:WIDTH+1];
<= temp_rotate_left_c[WIDTH];

default: begin

result <=
carry_out

operand;
<= carry_in;

end // default

endcase // opcode
end // always @(*)

endmodule // cjg_alu

I1.1.7 Data Stack

module cjg_mem_stack #(parameter WIDT

input clk,

input reset,
input [WIDTH-1:0]
input [ADDRW-1:0]
input push,

input pop,

output reg [WIDTH-

// aft

input scan_inO,

cjg_mem_stack.v

d,
addr,

1:0] q,

= 32, DEPTH = 32, ADDRW = 5)

14
15
16
17
18
19
20
21
22
23

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

© 0 N O o A W N =

=
N = O

Jun
w

II.1 CJG RISC CPU RTL

11-39

input scan_en,
input test_mode,
output scan_outO

)

reg [WIDTH-1:0] stack [DEPTH-1:0];
integer 1i;

always @(posedge clk or negedge reset) beg
if (~reset) begin
q <= {WIDTH{1'bO0}};
for (i=0; i < DEPTH; i=i+1) begin
stack[i] <= {WIDTH{1'b0}};
end
end
else begin
if (push) begin
stack[addr] <= d;
end
else begin
stack[addr] <= stack[addr];
end

q <= stack[addr];
end

end

endmodule // cjg_mem_stack

in

I1.1.8 Call Stack

stack.v

cj
module cjg_stack #(parameter WIDTH = 32,85

input clk,

input reset,

input [WIDTH-1:0] d,
input push,

input pop,

output [WIDTH-1:0] q,
/7 dft

input scan_inO,
input scan_en,

EPTH = 16)

(

14
15
16
17
18
19
20
21
22

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

[L Ve

II.1 CJG RISC CPU RTL

11-40

input test_mode,
output scan_outO

)

reg [WIDTH-1:0] stack [DEPTH-1:0];
integer i;
assign q = stack[0];

always @(posedge clk or negedge reset) begin

if (~reset) begin

for (i=0; i < DEPTH; i=i+1) begin
stack[i] <= {WIDTH{1'b0}};

end
end
else begin
if (push) begin
stack[0] <= 4;

for (i=1; i < DEPTH; i=i+1) begin
stack[i] <= stack[i-1];

end
end
else if (pop) begin

for (i=0; i < DEPTH-1; i=i+1) begin
stack[i] <= stack[i+1];

end

stack [DEPTH-1] <= 0;
end
else begin

for (i=0; i < DEPTH; i=i+1) begin
stack[i] <= stack[i];

end
end
end
end

endmodule // cjg_stack

I1.1.9 Testbench

“include "src/cjg_opcodes.vh"

// must be in mif directory
“define MIF "myDouble"

// define TEST ALU

cjg_risc_test.v

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

II.1 CJG RISC CPU RTL

I1-41

module test;

// tb stuff

integer i;

// system ports
reg clk, reset;
wire clk_pl, clk_p2;

// dft ports
wire scan_outO;

reg scan_inO, scan_en, test_mode;

always begin

#0.5 clk = ~clk; // 1000 MHz clk

end

// program memory
reg [7:0] pm [0:65535];
reg [31:0] pm_out;
wire [15:0] pm_address;

// data memory

reg [7:0] dm [0:65535];
reg [31:0] dm_out;

wire [31:0] dm_data;
wire dm_wren;

wire [15:0] dm_address;

// program memory
// program memory output data
// program memory address

// data memory

// data memory output

// data memory input data
// data memory write enable
// data memory address

always @(posedge clk_p2) begin
if (dm_wren == 1'bl) begin

dm[dm_address+3] =
dm[dm_address+2] =

dm_data[31:24];
dm_data[23:16];

dm[dm_address+1] = dm_data[15:8];

dm[dm_address] =

end

dm_datal[7:0];

prn_out = {pm[pm_address+3], pm[pm_address+2], pm[pm_address+1], pm[pm_address]};
dm_out = {dm[dm_address+3], dm[dm_address+2], dm[dm_address+1], dm[dm_address]};

end

// inputs
reg [31:0] gpio_in;

// button inputs

reg [3:0] ext_interrupt_bus; //external interrupts

// outputs
wire [31:0] gpio_out;

“ifdef TEST_ALU

75

II.1 CJG RISC CPU RTL

11-42

reg [31:0] alu_a, alu_b;

reg [3:0] alu_opcode;

wire [31:0] alu_result;

wire alu_c, alu_n, alu_v, alu_z;

reg [31:0] tb_alu_result;

cjg_alu alu(
.a(alu_a),
.b(alu_b),
.opcode (alu_opcode),

.result(alu_result),
.c(alu_c),
.n(alu_n),
.v(alu_v),
.z(alu_z)

);

“endif

cjg_risc top(
// system inputs
.reset (reset),
.clk(clk),
.gpio_in(gpio_in),
.ext_interrupt_bus(ext_interrupt_bus),

// generated clock phases
.clk_p1(clk_pl),
.clk_p2(clk_p2),

// system outputs
.gpio_out(gpio_out),

// program memory
.pm_out (pm_out),
.pm_address (pm_address),

// data memory
.dm_data(dm_data),
.dm_out (dm_out),
.dm_wren(dm_wren),
.dm_address (dm_address),

// dft
.scan_inO(scan_in0),
.scan_en(scan_en),
.test_mode (test_mode),

105
106

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149

151

152

II.1 CJG RISC CPU RTL

11-43

.scan_outO(scan_out0)

)

initial begin

$timeformat (-9,2,"ns", 16);

“ifdef SDFSCAN

$sdf_annotate("sdf/cjg_risc_tsmc065_scan.sdf", test.top);

“endif

“ifdef TEST_ALU
// ALU TEST
alu_a = 32'hfffffffc;
alu_b = 32'hfffffffe;

alu_opcode = “ADD_ALU;

#10 tb_alu_result = alu_result;

$display("alu_result = %x", tb_alu_result);
$display("internal_result = %x", alu.internal_result);
$display("alu_c = %x", alu_c);

$display("alu_n = %x", alu_n);

$display("alu_v = %x"
%Xll

$display("alu_z

$finish;
“endif

// RISC TEST

// init memories

, alu_v);
, alu_z);

$readmemh ({"mif/", “MIF, ".mif"}, pm);
$readmemh ({"mif/", ~MIF, "_dm", ".mif"}, dm);

$display("Loaded %s",

{"mif/", "MIF, ".mif"});

// reset for some cycles

assert_reset;
repeat (3) begin

@(posedge clk);
end

// come out of reset
#0.25 deassert_reset;
@(posedge clk_p1);
gpio_in = 12;

// run until program
while (!(“pm_out ===

a little before the edge

reaches end of memory
1'bX) && (pm_out != 32'hFFFFFFFF) && (gpio_out !

< 32'hDEADBEEF)) begin

@(posedge clk_pl);

153
154

156
157
158
159
160
161
162
163
164
165
166
167

169
170
171
172

174
175
176
177

179
180
181
182

184
185
186
187

189
190
191
192

194
195
196
197

199
200
201

II.1 CJG RISC CPU RTL

11-44

end
$display("Trying to read from unknown program memory");

// run for a few more clock cycles to empty the pipeline
repeat (6) begin

@(posedge clk);
end

$display("gpio_out = %x", gpio_out);
“ifndef SDFSCAN

print_reg_file;
“endif

//print_stack;

$display("DONE") ;

$stop;
end // initial

“ifndef SDFSCAN
task print_reg_file; begin
$display("Register Contents:");
for (i=0; i<32; i=i+1) begin
$display("R%0d = 0x%X", i, top.reg_filel[il);
end
$display ({30{"-"}});
end
endtask // print_reg file

task print_stack; begin
$display("Stack Contents:");
for (i=0; i<32; i=i+1) Dbegin
$display("S%0d = 0x%X", i, top.data_stack.stack[i]);

end

$display ({30{"-"}});
end
endtask // print_stack
“endif

task assert_reset; begin
// reset dft ports
scan_in0 = 1'b0O;
scan_en = 1'b0;
test_mode = 1'b0;

// reset system inputs
clk = 1'b0;

reset = 1'b0;

gpio_in = 32'Db0;
ext_interrupt_bus = 4'b0;

202
203
204
205
206
207
208

210

© 0 9 O o se W N

o
(=}

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

I1.2 ELF to Memory

11-45

end
endtask // assert_reset

task deassert_reset; begin
reset = 1'bl;

end

endtask // deassert_reset

endmodule // test

II.2 ELF to Memory

#!/usr/bin/env python

import argparse
import elffile
import os
import sys

def getData(section, wordLength):
data = []
buf = section.content

tmp = 0
for i in range(0, len(buf)):

elf2mem.py

byte = ord(buf[i]) # transform the character to binary
tmp |= byte << (8 * (iY%wordLength)) # shift it into place in the word

if i%wordLength == wordLength-1: # 4f this is the last byte in the word

data.append (tmp)
tmp = 0

return data

def main(args):
if not os.path.isfile(args.elf):

print "error: cannot find file: {}".format(args.elf)

return 1
else:

with open(args.elf, 'rb') as f:

ef = elffile.open(fileobj=f)

section = None

if args.section is None:

33
34

35
36
37
38

39
40
41
42
43
44
45

46
47

48

49
50
51

52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

I1.2 ELF to Memory 11-46

if mo section was provided in the arguments list all available
sections = [section.name for section in ef.sectionHeaders if
< section.name]
print "list of sections: {}".format(" ".join(sections))
return O
else:
sections = [section for section in ef.sectionHeaders if section.name ==
— args.section] [:1]
if len(sections) ==
section = sections[0]
else:
section = None

if not section:
print "error: could not find section with name:
— {}".format(args.section)
return 0
elif elffile.SHT.bycodel[section.type] !=
— elffile.SHT.byname ["SHT_PROGBITS"]:
print "error: section has invalid type:
— {}".format(elffile.SHT.bycode[section.typel)
return 0O
elif len(section.content) 7 args.length != O:
print "error: {} data ({} bytes) does not align with a word length of
— {3} bytes".format(section.name, len(section.content), args.length)
return 0O

get the binary data from the section and align it to words
data = getData(section, args.length)

write the data by word to a readmem formatted file

out = ""

out += "// Converted from the {} section in {}\n".format(section.name,
— args.elf)

out += "// $ {F\n".format(" ".join(sys.argv))

out += "\n"

counter = 0

for word in data:
out += "@{:08X} {:0{pad}X}\n".format(counter, word, pad=args.length#2)
counter += args.addresses

if args.output:
write the output to a file
with open(args.output, "wb") as outputFile:
outputFile.write(out)
else:
write the output to stdout
sys.stdout.write(out)

75
76
7
78

79

80

81

82

83

84

85
86

I1.2 ELF to Memory 11-47

if

__name__ == "_main__":

parser = argparse.ArgumentParser(description="Extract a section from an ELF to
— readmem format")

parser.add_argument("-s", "--section", required=False, metavar="section", type=str,
— help="The name of the ELF section file to output")

parser.add_argument("-o", "--output", required=False, metavar="output", type=str,
— help="The path to the output readmem file (default: stdout)")
parser.add_argument("-1", "--length", required=False, metavar="length", type=int,
— help="The length of a memory word in number of bytes (default: 1)", default=1)
parser.add_argument("-a", "--addresses", required=False, metavar="address",

— type=int, help="The number of addresses to increment per word", default=1)
parser.add_argument("elf", metavar="elf-file", type=str, help="The input ELF file")
args = parser.parse_args()

main(args)

	The Design of a Custom 32-bit RISC CPU and LLVM Compiler Backend
	Recommended Citation

	Abstract
	Declaration
	Acknowledgements
	Forward
	Contents
	List of Figures
	List of Listings
	List of Tables
	1 Introduction
	1.1 Organization

	2 The Design of CPUs and Compilers
	2.1 CPU Design
	2.2 Compiler Design
	2.2.1 Application Binary Interface
	2.2.2 Compiler Models
	2.2.3 GCC
	2.2.4 LLVM
	2.2.4.1 Front End
	2.2.4.2 Optimization
	2.2.4.3 Backend

	3 Custom RISC CPU Design
	3.1 Instruction Set Architecture
	3.1.1 Register File
	3.1.2 Stack Design
	3.1.3 Memory Architecture

	3.2 Hardware Implementation
	3.2.1 Pipeline Design
	3.2.1.1 Instruction Fetch
	3.2.1.2 Operand Fetch
	3.2.1.3 Execute
	3.2.1.4 Write Back

	3.2.2 Stalling
	3.2.3 Clock Phases

	3.3 Instruction Details
	3.3.1 Load and Store
	3.3.2 Data Transfer
	3.3.3 Flow Control
	3.3.4 Manipulation Instructions
	3.3.4.1 Shift and Rotate

	4 Custom LLVM Backend Design
	4.1 Structure and Tools
	4.1.1 Code Generator Design Overview
	4.1.2 TableGen
	4.1.3 Clang and llc

	4.2 Custom Target Implementation
	4.2.1 Abstract Target Description
	4.2.1.1 Register Information
	4.2.1.2 Calling Conventions
	4.2.1.3 Special Operands
	4.2.1.4 Instruction Formats
	4.2.1.5 Complete Instruction Definitions
	4.2.1.6 Additional Descriptions

	4.2.2 Instruction Selection
	4.2.2.1 SelectionDAG Construction
	4.2.2.2 Legalization
	4.2.2.3 Selection
	4.2.2.4 Scheduling

	4.2.3 Register Allocation
	4.2.4 Code Emission
	4.2.4.1 Assembly Printer
	4.2.4.2 ELF Object Writer

	5 Tests and Results
	5.1 LLVM Backend Validation
	5.2 CPU Implementation
	5.2.1 Pre-scan RTL Synthesis
	5.2.2 Post-scan DFT Synthesis

	5.3 Additional Tools
	5.3.1 Clang
	5.3.2 ELF to Memory
	5.3.3 Assembler
	5.3.4 Disassembler

	6 Conclusions
	6.1 Future Work
	6.2 Project Conclusions

	References
	I Guides
	I.1 Building LLVM-CJG
	I.1.1 Downloading LLVM
	I.1.2 Importing the CJG Source Files
	I.1.3 Modifying Existing LLVM Files
	I.1.4 Importing Clang
	I.1.5 Building the Project
	I.1.6 Usage
	I.1.6.1 Using llc
	I.1.6.2 Using Clang
	I.1.6.3 Using ELF to Memory

	I.2 LLVM Backend Directory Tree

	II Source Code
	II.1 CJG RISC CPU RTL
	II.1.1 Opcodes Header
	II.1.2 Definitions Header
	II.1.3 Pipeline
	II.1.4 Clock Generator
	II.1.5 ALU
	II.1.6 Shifter
	II.1.7 Data Stack
	II.1.8 Call Stack
	II.1.9 Testbench

	II.2 ELF to Memory

