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ABSTRACT 

The loss of natural wetlands to anthropogenic development has warranted the 

creation of wetlands to mitigate the reduction of valuable ecosystem functions and 

services. However, the complex interactions between the main drivers of wetland 

community structure – hydrology, nutrient availability and herbivory – makes creation of 

fully functional wetland replacements challenging. In this study, we examined the 

interactions among these drivers, and their impacts on plant diversity and nitrogen 

removal in two created wetlands with different land use histories: A1N (previous gravel 

depository) and A3 (previous cattle pasture). We established paired plots protected from – 

and open to – large wetland grazers and compared vegetation abundance and diversity, soil 

characteristics, and soil respiration and potential denitrification in each wetland. At A1N, a 

permanently flooded emergent marsh with high observed grazer densities (predominantly 

waterfowl) and low nutrient availability, grazing significantly reduced plant growth and 

diversity. In contrast, at A3, a seasonally flooded wetland with lower grazer densities and 

high nutrient availability, grazing enhanced overall plant diversity and decreased invasive 

species cover. The effects of grazers varied seasonally and increased over time, eventually 

leading to a reduction in soil organic matter at both sites. In light of significant site 

differences, potential denitrification was limited by differential hydrology (very wet, 

anaerobic versus very dry, aerobic), nitrogen or carbon availability, and grazing (low or 

high levels) at both sites. These results suggest the possibility of long-term grazer-induced 

shifts in community composition and delivery of key ecosystem services in young, 

vulnerable created wetlands. To improve created wetland design and function, we suggest 

that the impact of prior land use on present nutrient availability must be considered, and 

sites must be heterogeneous in both physical and bathymetric structure, to provide 

conditions for diverse plant communities, both aerobic and anaerobic biogeochemical 

processes, and balanced habitat use by wetland grazers.              
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Chapter 1: Background  

1.1 Wetland ecosystems 

The unique hydrologic patterns of wetlands distinguish them from other terrestrial 

and aquatic ecosystems, and provide an important transitional zone between the two. 

Wetlands provide numerous ecosystem services including water filtration (Coveney et al. 

2002), climate regulation (Kayranli et al. 2010), flood control (Mitsch & Gosselink 1993), 

nutrient cycling (Aerts et al. 1999; DeAngelis et al. 1989), and habitat diversity (Zedler & 

Kercher 2005) etc., making them some of the most economically and ecologically valuable 

on earth; estimated to be worth $140,174 ha-1 yr-1 (Costanza et al. 2014) The main drivers 

of diversity and ecosystem function in wetlands are hydrology, nutrient availability, and 

herbivory, which exert strong individual influences on community dynamics. However, the 

complexity of the interactions among these factors, and their impact on community 

structure and function are not fully understood in natural wetlands. This gap in knowledge 

creates additional problems as we try to address these interactions in the planning, design 

and management of created wetlands.  

         Wetland creation has recently become more common in light of natural wetland 

destruction due to human development; by 1984, more than half of the wetlands in the 

United States were drained or filled for activities including agriculture and landfill 

expansion (USEPA 2008). Since the introduction of the Wetland No Net Loss Act of 1989, 

wetland creation is mandatory as compensatory mitigation for the loss of natural wetlands, 

per requirements of Section 404 of the Clean Water Act. The “no net loss” policy assumes 

that created wetlands will provide the same level of functionality as natural wetlands 
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(Robertson 2000; Bendor 2009). However, given the complexity of abiotic and biotic 

interactions, and the vast degree of small- (water levels, soil nutrients) and large-scale 

(landscape influences) heterogeneity within and between these ecosystems, predicting and 

meeting trajectories of development is difficult to achieve (Galatowitsch & van der Valk 

1996; Campbell et al. 2002; Fennessy et al. 2008). The act of constructing a wetland, often 

in areas previously used for other purposes, can lead to altered structural and functional 

states resulting in reductions to overall biological and biogeochemical function when 

compared to reference sites (Moreno-Mateos et al. 2012). It is therefore important to 

understand how multiple factors influence wetland structure and function, in order to 

design and manage created wetlands with positive outcomes.   

1.2 Driving factors of community structure and function 

  Wetland structure and function is primarily driven by hydrology, which varies both 

spatially and temporally, and depends on the surrounding geomorphology and climate. 

Wetlands are typically created by altering hydrology of land previously used for other 

purposes; design decisions made during planning and construction can impact flood 

storage, groundwater recharge and discharge, evaporation, and other factors, which in turn 

impact plant community composition (emergent vs submerged vs meadow) and 

distribution, nutrient availability, and overall water chemistry (Carter 1996; Newman et al. 

1996). Wetlands that are permanently, intermittently, or seasonally flooded will allow for 

different degrees of oxygen penetration to the soil, influencing anaerobic and aerobic 

microbial processes which play a key role in regulating wetland ecosystem services 

(Hernandez & Mitsch 2007). There are also strong correlations between hydrologic 
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conditions and the presence of specific aquatic herbivores, such as geese and ducks, which 

choose specific nesting and feeding sites based on water depths (Murkin et al. 1997; 

Clausen 2000; Lor & Malecki 2006).  

 Classically, it was viewed that nutrient availability was the other main factor driving 

community structure within wetland ecosystems from the bottom-up, specifically in salt 

marsh ecosystems (Teal 1962). In terrestrial and aquatic ecosystems, nutrient availability 

is strongly linked to the growth, productivity and survivorship of microbial and plant 

communities; most North American temperate wetlands are either phosphorus limited or 

co-limited by phosphorus and nitrogen (Bedford et al. 1999; Elser et al. 2000; Gusewell et 

al. 2003). Wetlands themselves may retain high quantities of nutrients from upstream 

sources and surrounding land uses, though the efficiency of nutrient uptake and 

transformation differs depending on the microbial or plant species present, and can lead to 

the proliferation of some species over others based on the level and form of nutrients 

available (Hobbie 1992). Plants and microorganisms are in constant competition with each 

other for these nutrients (Kaye & Hart 1997; Bardgett et al. 2003), and nutrient removal 

processes, performed by both, becomes an important wetland service for water filtration 

and clean drinking water for organisms downstream.  

 More modern views acknowledge the role of herbivores in exerting top-down 

influence on ecosystem structure and function. Aquatic herbivores have strong influences 

on community dynamics by limiting above- and/or belowground plant growth and 

survivorship of plants, especially during the early establishment and development of 

communities (Lauridsen et al. 1993) (Figure 1.1); this makes created wetlands especially 
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vulnerable to the effects of grazing and highlights the need to understand how the impact 

of ecosystem drivers may be unique in these kinds of wetlands. Based on species-specific 

dietary requirements, herbivores often select plants based on nutrient content, palatability, 

and overall accessibility (Evers et al. 1998; Jefferies & Rockwell 2002; Goranson et al. 

2004). This preferential selection can shift and alter species composition, by promoting the 

growth of unpalatable and/or invasive plants, because native plant species are often 

preferred by native grazers (Clay et al. 1993), facilitating the spread of species undamaged 

by herbivores (Grosholz et al. 2009).  The scope of impacts is regulated seasonally, often 

based on migration patterns, though the greatest damage to plant growth does not always 

correspond to the time(s) of the year when grazer densities are highest (Perrow et al. 

1997; Chaichana et al. 2011). This has important implications for long-term success of 

plant species and community development.  

 Herbivores may also impact nutrient availability and alter microbial processes 

within the soil. After being consumed plants must reallocate resources and uptake 

nutrients for recovery and new shoot growth; this may decrease nutrient pools within the 

soil (Gao et al. 2008). Herbivores may also deposit nutrient-rich feces while foraging in the 

wetland, or remove nutrients by consuming plant material before moving to another 

nearby system (Kitchell et al. 1999; Vanni 2002). Removing plant biomass can decrease the 

accumulation of labile litter at the end of the growing season (Van Wijnen et al. 1999) 

(Figure 1.1). These outcomes can go on to further impact soil processes like decomposition, 

nitrification, and denitrification, which heavily depend on the availability of labile carbon 

and nitrogen sources within the soil (Le Roux et al. 2003; Vaieretti et al. 2013).  
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Figure 1.1: Conceptual diagram of hypothetical interactions between hydrology, nutrient 

availability, and herbivory, and their impacts on community dynamics in created wetlands.   

1.3 Habitat diversity and nitrogen removal  

 In this study, we focused on two main wetland services: habitat diversity and 

nitrogen removal. Habitat diversity, provided by emergent vegetation, is a crucial service to 

guarantee the greatest number of resources for the greatest number of species (Murkin et 

al. 1997; Lor & Malecki 2006). Emergent plants provide the physical structure of wetland 

habitat and are an important source of food for many species, especially grazing water 

birds. They also provide temporary removal of nitrogen by the uptake of nutrients, which 

are required for both growth and reproduction (Brix 1994; Brix 1997), as well as providing 

a pathway for carbon sequestration or greenhouse gas emissions depending on the species 

(Kayranli et al. 2010). However, plants only account for a small fraction of overall removal 

(Brix 1997) and the nutrients will be released again when the plant dies and decomposes 

(McLatchey & Reddy 1998). Microbial processes account for the greatest and most 
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permanent fraction of nitrogen removal, by converting soluble reactive to gaseous forms 

(Hanson et al. 1994; Coveney et al. 2002). These processes, which depend on oxygen 

availability, also rely on plant species which help to transport oxygen to anaerobic soils or 

those that release carbon through their roots and help fuel heterotrophic bacteria 

(Armstrong 1964; Zhai et al. 2013) (Figure 1.1).   

The interactions between abiotic and biotic factors are complex and variable across 

ecosystems, making them difficult to understand and replicate to enhance biodiversity 

and/or nitrogen removal as part of created wetland management goals (Figure 1.1). For 

example, resource limitations or excess due to hydrology and/or prior land use can impact 

how plants and microorganisms respond to herbivory. It is crucial to test different 

combinations of these interactions in created wetlands in order to improve and aid 

decision-making during wetland design and management. Without understanding the 

context of these factors, created wetlands will likely continue to fail to meet optimum 

performance standards when compared to natural wetlands.  

1.4 Overview of study 

The overall objective of this study was to determine the impact of interacting factors 

– hydrology, nutrient availability, and herbivory – on key ecosystem services (nitrogen 

removal and plant diversity) in two created wetlands, with different past land use histories. 

The goals are to help improve the design and management of created wetlands before and 

after construction, ensure the provision of vital ecosystem services lost when wetlands are 

destroyed, and have implications for invasive species control and nutrient removal for 

water filtration. Our main hypotheses are: 1) past land uses will result in wetlands differing 
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in nutrient availabilities, 2) hydrology will influence grazing pressure and therefore the 

overall impact of grazers, and will regulate microbial processes associated with nitrogen 

removal, and 3) grazers will limit plant growth and diversity, and nitrogen removal 

through consumption of preferential plant species and altering soil properties. We carried 

out our study at both sites by creating plots open to- and protected from-large grazers and 

evaluated environmental conditions (nutrients, water depth), vegetation data, and 

microbial processes (respiration and potential denitrification) in these plots. In Chapter 2, 

we focused on the impact of environmental conditions and grazers on plant growth and 

diversity. In Chapter 3, we focused on the impact of land use on environmental conditions 

and nitrogen removal, and the overall impact of grazers on nitrogen removal. We found 

that the impact of grazers was seasonally regulated depending on plant growth, water 

availability, and nutrient availability. Different interactions between hydrology, nutrient 

availability, and herbivory resulted in different overall impacts on plant diversity and 

nitrogen removal.        

 

 

 

 

 

 



 8 

Chapter 2: Impact of abiotic and biotic factors on plant diversity and community 

structure  

2.1 Introduction 

Heterogeneity and the resulting biodiversity of wetland ecosystems provides 

numerous resources to the organisms that live there, including habitat and refugia, food, 

raw materials, disturbance regulation, and recreational/cultural services (Zedler & Kercher 

2005). A key aspect of wetland diversity comes from the emergent plant community, which 

provide a great number of resources for a large variety of species (Murkin et al. 1997; Lor & 

Malecki 2006). The main drivers of plant diversity and wetland function – hydrology, 

nutrient availability, and herbivory – interact in complex and dynamic ways that are not 

fully understood in natural wetlands. This poses a difficult task as we try to address these 

interactions in the planning and design of created wetlands, which often fail to provide the 

same level of functionality as natural wetlands. Created wetlands often follow a different 

trajectory of plant succession and community development than natural wetlands because 

they are prone to early colonization by invasive species and tend to have lower species 

richness (Campbell et al. 2002; Edwards & Proffitt 2003; Zedler & Kercher 2005). It is 

therefore important to understand how multiple factors influence wetland structure and 

function, in order to more successfully design and manage created wetlands better in the 

future.   

 Wetland hydrology is characterized by seasonal, intermittent, or permanent 

flooding regimes, each of which results in unique wetland structure and function scenarios. 

Flooding regimes regulate soil and water chemistry by determining oxygen availability and 



 9 

soil redox status, which indirectly controls the availability of nutrients for competing plants 

and microorganisms (Reddy et al. 2000). Variations in surface water depth and duration of 

saturation also strongly influences the number, type, and distribution of individual plant 

species, affecting plant community diversity that in turn provides an important food source 

for wetland grazers (Fretwell et al. 1996). Similarly, hydrology plays an important role in 

determining wetland utilization by herbivores, such as waterfowl that choose habitat based 

on water depth (Clausen 2000). Shallow wetlands are typically used by wading species, 

whereas deeper wetlands provide better habitat for diving birds (Colwell & Taft 2000). As 

wetlands are created by altering hydrology of land previously used for other purposes, 

decisions made during planning and construction can result in wetlands that do not 

provide suitable habitat for all desirable waterfowl species, changing the overall impact of 

grazers. The consequences of these alterations in created wetlands are not well 

understood.     

 These aquatic herbivores carry out key top-down controls on community dynamics 

through the selection of plant species based on nutrient content and palatability (Goranson 

et al. 2004). At high densities, herbivores can significantly reduce above- and belowground 

biomass of preferred plants, driving plant competition as unpalatable species gain a 

competitive advantage (Oene et al. 1999) and ultimately leading to long-term reductions in 

plant community competition with a reduction in community diversity (Evers et al. 1998; 

Jefferies & Rockwell 2002). Created wetlands may be especially vulnerable to shifts in 

community composition, because their plant communities are young and less resistant. The 

result of grazing, therefore, may be more profound when compared to natural wetlands, 

and warrants study. Foraging behaviors also have strong implications for invasive species 
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success in created wetlands, as native plant species are often preferred by native grazers, 

facilitating the spread of non-native invasive plants (Clay et al. 1993; Grosholz et al. 2009).     

 Herbivores may also alter soil dynamics through direct disruptions to the soil layers 

during root or rhizome removal, and indirect alterations to nutrient pools in the soil 

(Iacobelli & Jefferies 1990). The deposition of nutrient-rich feces while foraging can 

increase both nitrogen and phosphorus levels; however, removal of nutrient-rich plant 

material before moving on to another area can decrease local nutrient availability (Kitchell 

et al. 1999; Vanni 2002). Also, reallocation of resources by damaged plants, and increased 

nutrient uptake for recovery growth may lead to decreased nutrient pools and root 

exudation of labile carbon (Holland et al. 1995; Gao et al. 2008). Continued reductions in 

plant biomass may further decrease carbon availability due to reductions in litter input 

during end-of-season senescence (van Wijnen et al.1999). This could pose further 

problems in the development of communities in created wetland, which have already been 

found to contain significantly lower organic matter than comparable natural wetlands 

(Campbell et al. 2002; Fennessy et al. 2008).    

 The impact of wetland herbivores on plant communities can be significant, but 

interactions with nutrient availability and hydrology likely contribute to the community-

level response and resilience to the disturbance. Resource limitation in nutrient-poor 

ecosystems may prevent plant re-growth after grazing; however grazing in nutrient-rich 

ecosystems may actually facilitate competition and diversity (Maschinski & Whitham 1989; 

Proulx & Muzumder 1998). Considering the constant competition for resources between 

plants and microorganisms, the level of nutrients within the system becomes important to 
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combat detrimental impacts of grazers. Unique to created wetlands is the legacy of prior 

land use on present nutrient availability; this link is not clearly defined, but may have 

cascading impacts on the ability of plant communities to recover from grazing events. 

These impacts can be especially pronounced during migration periods or at over-wintering 

grounds when grazer populations are at their highest and may result in limiting the re-

establishment of individuals in subsequent growing seasons (Perrow et al. 1997).   

The overarching goal of our study was to evaluate the interactions between 

hydrology, nutrient availability, and herbivory in created wetlands in order to inform the 

design and management of similar systems before and after construction. These 

interactions were evaluated in two created, emergent freshwater wetlands with different 

prior land use histories: wet and low nutrients, dry and high nutrients. While these systems 

don’t allow a full factorial analysis of driving forces, the contrasting nature of these systems 

allows a unique opportunity for comparison of the controls on wetland structure-function 

relationships in created wetlands. We hypothesized that: 1) grazing pressure will be higher 

in created wetlands that are permanently, as opposed to seasonally, flooded, and will shift 

seasonally in time with migration cycles, 2) the presence of grazers will decrease both 

plant growth and diversity, when compared to areas not grazed, and 3) the removal of 

plant matter by grazers will decrease soil nutrient pools and organic matter. 
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2.2 Methods 

2.2.1 Site description 

         This study was conducted between June 2014 and October 2016 in two created 

wetlands at High Acres Nature Area (HANA) in Perinton, New York, USA that are owned 

and managed by Waste Management of New York and New England, LLC (Figure 2.1, top 

panel). Area 1 North (A1N) served as a gravel-mining depository until approximately the 

mid-1960s, before being abandoned and left fallow (Stantec 2009). Prior to mining, the 

area was used for agricultural purposes. Approximately 1.87 hectares of shallow marsh 

were created in 2009 with the goal of providing wildlife habitat, flood storage, and 

pollution/sediment removal.  Immediately following construction, invasive cattail species 

(Typha latifolia and Typha angustifolia) colonized the majority of the site, leading to 

extensive invasive species control executed via manual cutting, pulling, and herbicide 

applications (glyphosate) starting in 2010.  Following initiation of this study, no intentional 

invasive plant control was conducted in the vicinity of the treatment plots. A variety of 

native plants were also planted at the time of construction, and in subsequent years.  

Broadleaf arrowhead (Sagittaria latifolia), water plantain (Alisma plantago-aquatica), and 

smartweed (Polygonum spp.) were the dominant species at the start of the study. The 

hydrology of A1N appears to be mainly driven by groundwater flow from an adjacent 

abandoned quarry pond and from precipitation. During construction, a culvert was 

installed in the southeast corner of the wetland, directing flow from A1N to another 

constructed wetland cell to the south and allowing for water level control in A1N and 

maintenance of standing water year-round (Figure 2.1, bottom left panel).  
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         Area 3 (A3) was used as a cattle pasture prior to construction of approximately 1.63 

hectares of wooded wetland and shallow marsh area in 2012. Typha spp. seed heads were 

cut each summer and plants were sprayed with herbicide (glyphosate) each fall since 2013, 

avoiding experimental plots. Native shrub and emergent wetland species were planted 

throughout this area such that Typha spp., A. plantago-aquatica, and Polygonum spp. 

dominated this area at the initiation of this study.  The hydrology of A3 is driven by 

groundwater flow from an adjacent hillside and precipitation.  

 

 

 

 

 

 

 

 

 

 

 

 



 14 

 

 

 

 

 

 

 

Figure 2.1: Map of HANA and wetlands of study (top panel), Area 1 North (A1N; bottom 

left panel) and Area 3 (A3; bottom right panel), located in Perinton, NY. (white= pair of 

caged and uncaged plots, gray= pair with additional cage control plots). Note the deeper 

Quarry Pond to the east of A1N separated by a narrow berm. The ponds in the southeast 

corner of A3 were pre-existing ponds previously used to water cattle.  
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2.2.2 Characterizing grazing pressure 

Abundance of large wetland herbivores was quantified from September 2015 

through September 2016 by the authors and trained volunteers.  We recorded the number 

and species of grazers present (including tracks and houses/nests), their behavior 

(foraging, swimming, nesting, etc.), date, and time of day, during all visits to the two 

wetlands.  The frequency of observation varied between the two wetlands, but is sufficient 

to demonstrate differences in grazer identity and density between sites.  Results were 

converted to average density per species per unit area (calculated using ArcGIS mapping 

software) across seasons (spring, summer, fall, and winter; Marklund et al. 1992).  

2.2.3 Experimental design: herbivore exclusion 

         In June 2014, 16 pairs of 1 x 1 m caged (herbivore exclusion) and uncaged control 

(open to herbivores) plots arranged in blocks of 4 pairs, were established randomly in A1N 

and across distinct zones of A3 (64 total plots). Paired caged and uncaged plots were 1 m 

apart and at least 3 m from another pair (Figure 1, bottom panels). Caged plots were set up 

by wrapping galvanized hardware cloth (1.27 cm mesh, 1.22 m tall) around four polyvinyl 

chloride pipes (PVC); uncaged plots were marked with PVC pipes only.  In May 2015, four 

additional three-sided cages were established in each wetland, one with each block, as cage 

controls to evaluate any cage effects.   

2.2.4 Characterizing hydrologic conditions and soil nutrient availability 

         Hydrologic conditions were evaluated by averaging surface water depths from 3 

points in every plot in spring (May), early summer (June), mid-summer (July), and fall 

(September), starting in June 2014 and ending in September 2016.  Three soil cores (2.5 cm 
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diameter x 10 cm deep) were extracted from each plot with an auger in fall 2014, fall 2015, 

and spring and fall 2016 (spring= May, fall= September) and subdivided for organic matter 

and nutrient analysis. Soil organic matter content was determined using the loss on 

combustion method (Heiri et al. 2001).  Inorganic nitrogen was extracted by shaking with 

2M potassium chloride (Keeney and Nelson 1982). Ammonium was analyzed using the 

phenol-hypochlorite method and a Shimadzu 1800 spectrophotometer (Solorzano 1969). 

Nitrate+nitrite was measured with the cadmium reduction method and a Lachat Quikchem 

8500 autoanalyzer (Lachat 2003). Total inorganic nitrogen (TIN) was calculated by 

summing extractable ammonium and nitrate+nitrite. Total phosphorus (TP; spring and fall 

2016 only) was extracted from soil samples by adding magnesium nitrate to soil dried at 

60oC, ashing in a 550oC oven for two hours, and dissolving in sulfuric acid before analysis 

using the ammonium molybdate method (Murphy & Riley 1962). 

2.2.5 Plant growth and diversity     

         Vegetation measurements were collected at three to four time points during the 

growing season in all plots starting in June 2014 and ending in September 2016. Percent 

cover of each species was estimated by at least 2 observers per plot and averaged to 

eliminate observer bias.  Plant diversity was evaluated using species richness (S) and the 

Shannon-Weiner Diversity Index (H’).  Plant stem density and height were measured in 

May, June, July and September of 2016 for all species. Stem heights were taken for the three 

tallest stems of each species and averaged per plot.  
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         Belowground biomass was measured in September 2016.  One soil core (10 cm 

diameter x 25 cm depth) was collected from each plot using an auger, washed through a 1 

mm mesh sieve to remove soil particles, dried (60OC) and weighed (Evers et al. 1998). 

2.2.6 Statistical analyses  

         All statistical analyses were completed using JMP 13 Pro statistical software. Prior 

to selection of statistical analysis method, each dataset was checked for normality and 

homogeneity of variance. Intra-site heterogeneity was evaluated by adding a block effect, to 

encompass different zones of each wetland, as a random factor into every analysis of 

variance (ANOVA). Results of the block effects are listed in Appendix D.  

Grazer density was analyzed using a one-way Kruskal-Wallis test to compare total 

average individuals per hectare in A1N and A3, to determine differences between sites 

overall and within seasons (i.e. spring A1N vs spring A3, etc.).  

We made between site comparisons of organic matter, total inorganic nitrogen, and 

total phosphorus using a one-way ANOVA, only including uncaged control plots. We also 

used a full-factorial three-way ANOVA  to compare intra-site differences between these 

variables with treatment (caged/uncaged), season (spring and fall), and year (2014-2016), 

when applicable, as fixed factors. 

 For statistical analyses of stem height, density, and cover of individual species we 

only included species with a percent cover ≥5% in at least five plots across the growing 

season in order to focus on the most relevant species in each wetland and those that likely 

contribute the most to overall community structure; for analyses of total plant cover, S, and 

H’ we included minor species as well. Polygonum spp. were grouped together, as were 
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Typha spp. for plant height analyses. We made between site comparisons of total plant 

cover, S, and H’ using a one-way analysis of variance (ANOVA), only including uncaged 

control plots in this analysis. Using a full factorial three-way ANOVA we compared 

differences within sites for all other plant variables with treatment (caged/uncaged), 

season (spring, early summer, mid-summer, fall), and year (2014-2016), when applicable, 

as fixed factors. Invasive species data was not compared between A1N and A3, only within 

A3, because there was typically <1% cover in A1N in any one season. For all variables, 

when significant differences were found, a Tukey’s HSD post hoc analysis was used to 

elucidate differences among treatments. 
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2.3 Results 

2.3.1 Hydrology 

 A1N was permanently flooded throughout the year, whereas A3 was seasonally 

flooded and was typically fully dry by early July. The average water depth between May and 

September was consistently deeper in A1N (2014: 16.0 ± 5.4 cm, 2015: 16.1 ± 6.9 cm, and 

2016: 13.5 ± 4.7 cm; mean ± SD) than A3 (2014: 7.5 ± 5.6, 2015: 7.1 ± 7.4, 2016: 2.9 ± 5.8 

cm) (Figure 2.2). A drought in 2016 decreased average water depths in both wetlands, and 

resulted in A3 completely drying by mid-June.   

 

Figure 2.2: Boxplots showing water depths across the growing season (May-September) in 

A1N (gray) and A3 (white) from 2014-2016. New York State experienced an extreme 

drought beginning in June 2016.    
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2.3.2 Grazing Pressure  

 At both sites we observed large grazers, including Canada goose (Branta 

20anadensis), ducks (Anas spp.), whitetail deer (Odocoileus virginianus), North American 

beaver (Castor 20anadensis), and the common muskrat (Ondatra zibethicus). Waterfowl 

comprised the majority of grazer abundance at both sites: 99-100% and 66-100% of 

grazers were waterfowl at A1N and A3, respectively. Overall grazer density in A1N was 

significantly greater than in A3 (41.2 ± 7.4 and 4.9 ± 1.5 individuals ha-1, respectively; χ2 

=41.9, p <0.0001; Figure 2.3), but the relative difference varied across seasons. Grazer 

density was roughly 90 (summer) and 8 (fall, peak) times higher in A1N than A3 (χ2  =18.2 

and 26.4, respectively, p <0.0001), but were similar in spring and winter (χ2 <1, p =0.95 and 

χ2 =1.3, p =0.25, respectively). 

 

Figure 2.3: Large grazer density observed at A1N (gray) and A3 (white) wetlands between 

September 2015 and September 2016 (spring= March-May, summer= June-Aug, fall= Sept-Nov, 

winter= Dec-Feb; mean ± SE).  Text values on bars are the number of individual observations per 

season. * indicates significant difference between sites within a season   (p <0.0001) 
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2.3.3 Nutrient availability 

 Soil nutrients and organic matter were consistently higher in A3 relative to A1N 

(Table 2.1): organic matter content (OM) was 1.5 times greater (13.4 ± 0.5 versus 7.5 ± 0.4 

%; p <0.0001); total inorganic nitrogen (TIN) was 3 times greater (17.1 ± 3.4 versus 6.2 ± 

1.8 mg/kg; p <0.0001); total phosphorus (TP) was 1.5 times greater (1002.7 ± 53.2 versus 

704.3 ± 28.0 mg/kg; p <0.0001), respectively. In A1N, grazing significantly reduced soil OM 

(caged= 8.9 ± 0.4 %, uncaged= 7.5 ± 0.4 %; p =0.046; Table 2.2, Appendix A). This trend 

was similar in A3, though not significant (caged =14.1 ± 1.1, uncaged =13.4 ± 1.1 %; p 

=0.54; Table 2.2, Appendix A). Spring flush of TIN resulted in significantly higher 

concentrations (up to 3 times higher) in spring 2016 than all fall concentrations in A1N 

(season x year p <0.0001; Table 2.2, Appendix A). This trend was similar in A3 in 2014 and 

2015 only (season x year p =0.002; Table 2.2, Appendix A). There were no significant 

effects of grazing on TIN at either site, though in A1N uncaged plots were slightly higher 

than caged plots (6.2 ± 1.8 versus 4.8 ± 0.6 mg/kg, respectively; p =0.09). In A1N, there 

were no significant effects of either season or grazing on TP (Table 2.2, Appendix A); in A3, 

fall concentrations of TP were 1.2 times higher than spring (p <0.0001), and were 

negatively affected by grazing (p =0.02; Table 2.2, Appendix A). There were significant 

block effects found for OM at both sites, and TP at A3 only (Appendix D). 
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2.3.4 Plant growth and diversity 

 Total plant cover was similar between A1N and A3 in the control plots (p=0.11; 

Table 1). In A1N, grazing significantly reduced plant cover, but a significant three-way 

interaction suggests that the impact of grazers varied by season and across years (p 

<0.0001; Table 2.2, Figure 2.4A). The greatest grazing effect occurred in mid-summer 

(July), the height of the growing season (caged =112.7 ± 6.0, uncaged =81.8 ± 7.8 %). These 

effects appeared to increase interannually, with the difference in cover between caged and 

uncaged plots (C-U) increasing from approximately 5% in 2014 to 55% in 2016. In A3, a 

significant two-way interaction also showed similar trends of total plant cover varying by 

season and across different years (p <0.0001; Table 2.2, Figure 2.4B). Grazers slightly 

reduced plant cover in A3 (caged =61.4 ± 6.4, uncaged =55.1 ± 6.4 %; p =0.05). There were 

no differences between three-sided cage-control plots and uncaged control plots at either 

site (A1N: p= 0.56; A3: p =0.24).   

 Plant diversity was significantly lower in A1N than A3 (S = 2.2 ± 0.3 and 3.9 ± 0.5, 

respectively, p <0.0001; H’ = 0.4 ± 0.1 and 0.9 ± 0.1, respectively, p <0.0001; Table 2.1). In 

A1N, the substantial reduction in diversity with grazing echoed total plant cover and 

increased over time for both S and H’ such that caged plots had 1.3 and 1.7 times higher S 

and H’, respectively than uncaged plots in 2016 (p =0.044 and p =0.003, respectively; Table 

2.2, Figure 2.4C & 4E). Seasonal variation (peak in mid-summer) in S and H’ also increased 

over time (S: p <0.0001; H’: p =0.004). In contrast to A1N, grazing increased plant diversity 

in A3 and this effect, again, increased over time (S: p =0.013; H’: p =0.003; Table 2.2, Figure 

2.4D & 4F); in 2016, S and H’ were 1.3 and 1.5 times higher in uncaged as opposed to caged 
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plots (S: =4.9 ± 0.6 and 3.8 ± 0.6, respectively; H’: 1.0 ± 0.1 and 0.7 ± 0.1, respectively). A3 

also showed similar seasonal variations in diversity, which increased over time (S: p 

<0.0001; H’: p =0.07). Grazing reduced invasive cover in A3, but not significantly (caged 

=8.6 ± 3.3, uncaged =5.9 ± 2.3 %; p =0.07; Table 2.2, Figure 2.5). Invasive cover was 

consistently highest in the fall (p <0.0001) and significantly decreased over the course of 

the study such that cover was 2.5 times higher in 2014 than in 2016 (10.3 ± 3.4 and 4.1 ± 

1.9 %, respectively; p =0.006).      

 Belowground biomass in control plots was similar between A1N and A3 (p =0.51; 

Table 2.1). In A1N only, grazing significantly reduced belowground biomass by 30% (caged 

=260.2 ± 28.4, uncaged =180.1 ± 17.7 g/m2; p =0.021; Table 2.2, Figure 2.6). Significant 

block effects were found impacting plant cover and diversity in both wetlands (Appendix 

D). 
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Figure 2.4: Mean ± SE plant characteristics measured in caged (black circle), uncaged 

(white square), and cage control (striped diamond) plots in study wetlands during the 
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growing seasons of 2014-2016. Panels: A= A1N, total cover; B= A3, total cover; C= A1N, 

species richness; D= A3, species richness; E= A1N, Shannon-Weiner diversity scores; F= A3, 

Shannon Weiner scores. Note that total cover may exceed 100% when plant canopies of 

individual species overlap.  

 

Figure 2.5: Mean ± SE invasive plant cover in caged (black circle) and uncaged (white 

square) plots in A3 wetland during the growing seasons of 2014-2016. 
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Figure 2.6: Mean ± SE belowground biomass (g m-2) measured in caged (gray) and 

uncaged (white) plots in A1N and A3 wetlands in fall 2016. * indicates a significant 

difference between caged and uncaged plots (p <0.05)  

At both sites, stem height of the most common plant species was impacted more 

significantly by season and grazing treatment than stem density or individual species 

cover, but the trends were similar for all three variables (Figure 2.7; Appendices B & C). 

Differences in species composition led to differences in species-specific responses between 

sites. At A1N, where emergent wetland species dominated the community, the maximum 

effect of grazing coincided with the peak height and reduced stem height by 60-70% at 

peak growth (A. plantago-aquatica: caged =42.1 ± 6.8, uncaged =16.6 ± 4.1 cm; Polygonum 

spp.: caged =108.7 ± 6.7, uncaged =29.6 ± 8.1 cm; treatment x season p <0.001 and p 

<0.0001, respectively; Figure 2.7A, Appendix B). Grazing also significantly reduced the 

height of S. latifolia, another dominant emergent species, by approximately 18%, though 

this was not seasonally dependent (caged= 73.1 ± 6.1, uncaged= 60.1 ± 5.1 cm; p =0.041). 

g 
m
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In contrast, grazing significantly increased stem height for Potamogeton amplifolius, a 

submerged aquatic species, by approximately 35% (caged= 11.0 ± 0.3, uncaged= 17.1 ± 0.7 

cm; p <0.0001). For other emergent species, Leersia oryzoides and Schoenoplectus 

tabernaemontani, the reduction in stem height was not significant (Figure 2.7A, Appendix 

B).  

 The plant community of A3 was characterized by a mixture of wet meadow, grasses, 

and emergent species. Eleocharis obtusa, L. oryzoides, and S. tabernaemontani, three native 

species, were significantly taller in ungrazed plots (p =0.048, p =0.02, p =0.004, 

respectively; Figure 2.7B, Appendix C). Stem height of Erechtites hieracifolius, another 

native species, was significantly greater in grazed plots, with a peak difference of 65% in 

fall (caged= 11.7 ± 5.8, uncaged= 33.5 ± 6.2 cm; treatment x season p <0.001). Conversely, 

grazing reduced stem height of Phalaris arundinacea and Typha spp., invasive species, 

though not necessarily to the same degree (F =5.6, p =0.02 and F =0.9, p =0.35 for height; 

Figure 2.7B, Appendix C). There were significant block effects for stem height, density, and 

species cover for a number of species at both sites, underscoring the small-scale 

heterogeneity present at both sites (Appendices B & C).  
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Figure 2.7: Mean ± SE difference in stem height (cm) between caged and uncaged (C-U) 

plots in A1N (A) and A3 (B) throughout the 2016 growing season. Positive values indicate 

caged > uncaged; negative values indicate uncaged > caged; values of 0 indicate caged = 

uncaged; n.d. (no data) indicates species not present.    
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2.4 Discussion 

We found strong interactions between hydrology, nutrient availability, and 

herbivory at both created wetlands which drove the differences in response to grazer 

exclusion at each site. In A1N, high grazing pressure by waterfowl, permanent flooding, and 

low soil nutrients led to reductions in overall growth and diversity of emergent plant 

species, with implications for shifts in community structure as grazing opens up space and 

promotes submerged vegetation. In A3, low grazing pressure by waterfowl, seasonal 

flooding, and high soil nutrients led to enhanced plant growth and diversity, though trends 

did not suggest development of a desirable emergent plant community structure, despite 

reductions in undesirable invasive species. The impact of grazers was seasonal and 

increased over time, and highlighted increasing alteration of soil characteristics. This 

suggests long-term consequences for habitat provision and delivery of other ecosystem 

services that will ultimately influence the success of created wetlands in meeting economic 

and ecological goals.   

Created wetlands typically require 15-20 years before plant communities are fully 

established and stable, because they frequently begin with bare, disturbed soil (Mitsch & 

Wilson 1996). The development of diverse communities may be hindered by the early 

colonization of aggressive invasive species (Zedler & Kercher 2005), necessitating 

management after initial construction. Created wetlands that are seeded and/or planted 

with native species demonstrate greater diversity over time, compared to those left to 

naturally colonize, which trend toward monocultures (Reinartz & Warne 1993; Balcombe 

et al. 2005). Other created and restored wetlands located in the United States, have similar 
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species richness (2-6 species) as control plots in A1N and A3 across growing seasons (2.2 ± 

0.3 and 3.9 ± 0.5 species, respectively), though these values were low when compared to 

natural reference wetlands (10-12 species) (Brown & Bedford 1997; Campbell et al. 2002; 

Matthews et al. 2009). Created wetlands may, in part, be failing to meet diversity 

expectations because young, less resistant plant communities are vulnerable to shifts in 

composition initiated by herbivores (Funk et al. 2008; Moreno-Mateos et al. 2012).  

Temporal shifts in hydrologic conditions influenced spatial variability in grazer 

access and resulted in differences in waterfowl presence at both wetlands. Spring flooding 

in A3, led to similar grazer abundances when compared to A1N. However, the drying of A3 

was uneven, so that some areas were more accessible to waterfowl for longer throughout 

the growing season. However, this does not take into account possible grazing by insects, 

or nocturnal or crepuscular mammals, which we did not observe during this study. In A1N, 

the greatest grazing impacts were observed in plots closest to a concealed goose 

thoroughfare between Quarry Pond and the created wetland. There were also abiotic 

variations in soil nutrients within each site: prior to creation of A3, cattle entered, grazed, 

and defecated more heavily on the east side of the site as is now reflected in higher legacy 

nutrient concentrations in the soil; sediment accumulation and goose nesting near the 

culvert in A1N explains higher nutrients in plots closest to this area. Despite this small-

scale heterogeneity within both wetlands, further investigation by removing blocks and/or 

analyzing them separately did not affect the overall results of the analyses and impacts that 

grazers had on the plant communities.   
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The abundance and identity of grazers influenced the impact they would have on 

plant communities. High waterfowl grazing pressure, as seen in A1N, significantly limited 

both aboveground plant cover and belowground biomass; this trend was fairly consistent 

across the dominant species (Table 2.2, Figure 2.3A & 2.5). However, despite low waterfowl 

grazing pressure in A3, grazing did appear to influence plant diversity without reducing 

total plant cover, suggesting the importance of other grazer species that we may not have 

observed. The increasing grazer impacts over the duration of the study suggests a 

cumulative effect on plant communities, highlighting the importance of long term studies. 

Further, since hitting historic lows in the 1930s, waterfowl populations have continued to 

increase due to extensive conservation efforts, and factors like climate change widening 

their habitat ranges and increased agricultural land providing easily available food (Fox et 

al. 2005; Gauthier et al. 2005; Baldassarre et al. 2006). Increasing waterfowl abundance 

observed in other aquatic systems have been shown to have detrimental impacts on 

community structure as populations exceed the limitations normally set by cold winter 

temperatures, and can result in vegetation losses up to 98% (Jefferies & Rockwell 2002; 

Gauthier et al. 2005). This general trend may be counter-productive to restoration efforts 

in emergent wetlands, depending on other environmental conditions at a site. The selection 

of specific plant species for consumption also influences community structure and is 

important to consider when seeding and planting created wetlands after construction.   

In A1N, some species’ growth (A. plantago-aquatica, Polygonum spp., and S. latifolia) 

was more limited by grazing than others (Figure 2.7A, Appendix B); grazers generally eat 

plants that are palatable and labile, and avoid plants with higher concentrations of anti-

herbivore phenolic compounds (Goranson et al. 2004; Harrison et al. 2017). The choice 
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may also be a matter of convenience; these were the three most common emergent species 

at the site and could provide for the most optimal foraging (Charnov 1976). Species-

specific selections can shift community composition and diversity by promoting 

unpalatable and recalcitrant species, leading to decreased species richness (Levin et al. 

2006). This may explain the negative response in community species richness and 

Shannon-Weiner index scores to the presence of grazing (Figure 2.4C & 4E). Community 

shifts are also reflected in the increased height, density, and cover of P. amplifolius, a 

submerged species, possibly as a result of grazers opening space and having greater access 

to the available light (Mitchell 1989). Regardless, removing significant portions of 

photosynthetic surface area, likely made it more difficult for these plants to produce 

necessary energy for growth, necessitating the reallocation of stored belowground 

resources towards recovery, and limiting the expansion of belowground root networks and 

aboveground distribution (Hik & Jefferies 1990; Maron & Crone 2006; Gao et al. 2008). This 

is also consistent with the decrease in organic matter found in uncaged plots. We can infer 

that the decrease in carbon resulted from the removal of plant material, which limited the 

accumulation of labile detritus, enhancing the relative proportion of recalcitrant material at 

the end of the growing season (Van Wijnen et al. 1999; Vaieretti et al. 2013). Additional 

study, however, is needed to determine the quality of carbon in caged versus uncaged plots.  

Differences in hydrology, nutrient availability, and grazing pressure in A3 resulted 

in contrasting impacts on the dominant species when compared to A1N, suggesting 

dissimilar trajectories of wetland development under variable grazing scenarios. Lower 

observed grazing intensity resulted in neutral or positive trends in growth for many 

common native species; this contrasts with the most common invasive species at the site 
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(P. arundinacea and Typha spp.), which were negatively impacted by grazer presence, and 

was consistent with observations of significant leaf damage by vertebrates (deer clipping) 

and invertebrates (snail radulations) on these species (Figure 2.7B, Appendix C). P. 

arundinacea and Typha spp., typically the tallest plants by early to mid-summer, may have 

aided in protecting some of the shorter native species from herbivore access (Mulder & 

Ruess 1998). Low to moderate levels of grazing may also lead to more balanced 

competition among species, promoting greater overall survivorship and diversity (Connell 

1978). Without the mediating control of grazers in caged plots, invasive species cover 

increased and diversity decreased as native species were out-competed (Figure 2.4D, 2.4F 

& 2.6). This is in contrast with other studies that suggest that invasive species have a 

competitive advantage because native grazers prefer native plants, or because invasive 

species contain novel chemical defenses that native grazers are not adapted to deal with 

(Blossey & Notzold 1995; Callaway & Ridenour 2004); P. arundinacea and T. angustifolia 

are non-native invasive species, whereas T. latifolia is a native invasive. The waterfowl 

herbivores (B. canadensis and Anas spp.) observed at the two sites are generalist 

herbivores; their selection of plant species may have favored plant accessibility rather than 

palatability or nutritional quality.  

The impact of grazer presence on overall height and dominance of plant species was 

greatest at the summer height of vegetation growth, though this did not correspond with 

peak grazer abundance, which occurred in the fall. Similar trends have been observed in 

natural aquatic systems, where high fall and overwintering waterfowl abundance has led to 

subsequent reductions in plant growth and distribution in the following summer season 

(Perrow et al. 1997; Chaichana et al. 2011). The interaction between grazer intensity and 
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timing, along with individual physiologic responses, determine whether specific plant 

species can compensate for the herbivory.  

In general, plants that are not limited by nutrients can compensate or respond 

positively to herbivory (Maschinski & Whitham 1989). It is challenging to directly link 

antecedent land use to present soil conditions and nutrient availability, however, gravel 

substrates are often difficult to re-vegetate due to low nutrient-holding capacities (Johnson 

1987); the low soil nitrogen, phosphorus and organic matter, and low overall plant 

diversity at A1N, a former gravel depository, reflects these trends. In contrast, cattle 

deposit large quantities of nutrients into the soil through excretion of nutrient-rich feces 

(McGechen 2003), as reflected in the substantially higher nutrients and organic matter 

found at A3. The balance of nutrient availability is crucial; very high nutrient availability 

can lead to monocultures, because some plants are released from limitation (Bedford et al. 

1999). Grazing in the early stages of the growing season (April and May) may have less of 

an impact because of spring nutrient flushes, allowing for neutral growth compensation by 

the plants, when compared to periods of higher grazing intensity and lower nutrient 

availability (June-September) (Maschinski & Whitham 1989). This nutrient-dependent 

response will have different outcomes in wetland plant communities subjected to different 

grazing intensities and timing of habitat usage. 

Large- and small-scale heterogeneity, designed or not, lead to differences in 

hydrology, nutrient availability, and grazer intensity, affecting overall ecosystem diversity 

and function. Each of these factors needs to be addressed in a mindful manner before, 

during, and after wetland construction in order to ensure that they will meet long-term 
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mitigation goals. The creation of physical and spatial heterogeneity within wetlands 

includes variations in bathymetry, deep and shallow areas, stream rivulets, and 

microtopography (Mitsch & Wilson 1996). Building distinct hydrological units and water 

control structures into wetland design will help to balance wetland use by grazer 

populations by providing separate areas for nesting and breeding, foraging, and open water 

that may be used seasonally. (Yallop et al. 2004). This will also encourage the growth and 

development of multiple vegetation communities that may differ based on water depth, 

which will provide different resources to herbivores based on varying diets, or habitat 

requirements and provide resilience in the face of extreme grazing or environmental 

fluctuations. Using small-scale protective enclosures to deter grazers, especially geese, 

initially after plantings will also help plant communities develop by protecting individuals 

during their most vulnerable growth period.  

 We found that the effects of large herbivores was not only species-specific – 

depending on hydrology and nutrient availability – but varied temporally depending on the 

grazing intensity, hydrology, and nutrient availability. Based on our findings, our 

experimental wetlands do not appear to be developing along the same trajectory as natural 

emergent wetlands; species richness is low in both wetlands and our data suggests possible 

shifts in species composition away from emergent communities in A1N (to submerged 

species) and A3 (to meadow species and grasses). However, these wetlands are still young, 

less than 10 years old, and like most created wetlands will require sustained long-term 

monitoring and management to promote equivalency with a natural state. If current 

positive trends in waterfowl populations continue, plant communities in created wetland 

may face short-term difficulties in community establishment and development, and long 
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term patterns of degradation in regards to diversity. This may also result in changes in 

functional states and primary production, as opening space may lead to the proliferation of 

submerged aquatic vegetation instead of emergent vegetation, as we may have observed at 

A1N (Mitchell 1989). As grazers continue to manipulate nutrient pools within the soil, 

wetlands also become susceptible to reductions in carbon sequestration and increased 

emissions of greenhouse gases (Kayranli et al. 2010; Winton & Richardson 2016). Also, as 

wetlands face more summer drought conditions due to the consequences of climate change, 

created wetlands that lack water storage capacity or water level control structures may be 

in danger of shifting plant composition from wetland species to grassland species, as seen 

in A3, leading to different impacts of grazers over time. Overall, further study is required to 

understand whether grazers can shift community composition from one functional state to 

another, whether this will then impact future grazing, and the implications this may have 

on other ecosystem services, such as carbon storage and nutrient removal.          
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Chapter 3: Impact of abiotic and biotic factors on nitrogen removal 

3.1 Introduction 

 As areas of depressed land, wetlands accumulate nutrients from other areas 

throughout the watershed. This makes nutrient removal processes that occur in wetlands 

invaluable for water filtration and preserving downstream water quality for use by other 

organisms, including humans. Denitrification, the conversion of nitrate (NO3-) to nitrogen 

gas (N2) or nitrous oxide (N2O) by anaerobic heterotrophic bacteria, is one of the main 

processes for nitrogen removal in aquatic ecosystems (Vymazal 2005; Bulc 2006). Three 

main drivers of wetland ecosystem function – hydrology, nutrient availability, and 

herbivory – interact in complex ways to regulate services such as denitrification (Teal 

1962; Anderson & Low 1976; Carter 1996). Understanding these interactions is especially 

pertinent when designing, constructing, and managing wetlands that are created to 

mitigate for the loss of natural wetlands destroyed for human development (US EPA 2008). 

Due to prior land use legacies, artificially made hydrologic regimes, and altered soil 

properties, created wetlands often face a unique combination of these ecosystem drivers 

and fail to provide the same level of function as their natural wetland counterparts. Created 

wetlands often have lower decomposition rates and soil organic matter (Campbell et al. 

2002; Fennessy et al. 2008), which may limit heterotrophic bacterial activity, and limit 

their ability to efficiently remove nitrogen. It is therefore important to study the 

interactions of hydrology, nutrients, and grazing specifically in the context of created 

wetlands to optimize the ecosystem service outcomes we desire.   
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Hydrology dictates whether a wetland will be permanently, seasonally, or 

intermittently flooded and in turn drives the availability of oxygen in the soil. Since 

denitrification is a process carried out by anaerobic bacteria, oxygen availability is an 

important limiting factor (Paul & Beauchamp et al. 1989). Other processes such as 

nitrification, the conversion of ammonia or ammonium (NH3/NH4+) to nitrite (NO2-) then 

nitrate (NO3-), that are aerobic and rely on oxygen, are necessary for converting unusable 

nitrogen species into forms than can be used by denitrifying bacteria (Hernandez & Mitsch 

2007). Therefore, the availability of nutrients like nitrate and labile organic matter are also 

important limiting factors for heterotrophic denitrifiers (Ballantine et al. 2014). The strong 

correlations between hydrologic conditions and the presence of specific aquatic 

herbivores, such as geese and ducks (Murkin et al. 1997; Clausen 2000; Lor & Malecki 

2006), are also relevant, as grazers can manipulate nutrient and carbon pools based on 

their foraging behavior (Figure 3.1).  

Plants provide a carbon substrate, in the form of detritus at the end of the growing 

season and root exudates during active growth (Whiting and Chanton 1993; Ding et al. 

2005; Laanbroek 2010). Removing biomass of palatable species, which may be more 

nutrient-rich and easily broken down by microbes, can also influence litter quality and the 

accumulation of carbon-rich detritus (Van Wijnen et al. 1999). Grazing may also increase 

the uptake of nutrients by those plants for recovery growth; this may increase temporary 

nutrient immobilization and decrease nutrient pools within the soil (Gao et al. 2008). 

However, aquatic herbivores, like waterfowl, may enhance decomposition rates and soil 

nutrient concentrations through the deposition of nutrient-rich feces (Kitchell et al. 1999) 
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(Figure 3.1). Small- and large-scale variability in nutrient and carbon content may have 

cascading impacts on overall ecosystem function.  

Soil properties and availability of nutrients in created wetlands may also be 

influenced by the legacy of the prior land use, though the link between past use and present 

conditions is not clearly defined. Wetlands constructed on former agricultural lands may 

result in soils depleted of nutrients, however soil amendments like liming and fertilization 

may result in increased nutrient levels (Compton et al. 1998; Knops & Tilman 2000; Richter 

& Roelcke 2000; Foster et al. 2003). Nutrient availability within the soil provides the basis 

for fueling growth and survivorship of microbial and plant species, and the balance of 

competition between them has implications for nitrogen removal (Figure 3.1).  

Wetland plants also play an important role in permanently flooded wetlands by 

transporting oxygen through diffusion from roots to soil; this – oxidized rhizosphere –  

brings oxygen to normally anoxic soils (Armstrong 1964). However, the presence of aquatic 

herbivores can change the dynamics that nutrient availability and plant species play in 

nitrogen removal. Herbivore clipping may limit or shut down gas transport, preventing 

formation of the oxidized rhizosphere, which is important for nitrogen cycling in low 

oxygen wetland soils (Winton & Richardson 2016) (Figure 3.1). Waterfowl populations 

have increased dramatically since historic lows in the 1930s, due to strong conservation 

efforts (Baldassarre et al. 2006). At the same time, by 1984, more than half of the historic 

wetland area in the United States was lost (US EPA 2008); this has led to higher numbers of 

waterfowl concentrating in a smaller area of remaining wetland habitat. The interactions 

between hydrology, nutrient availability, and herbivory on nitrogen removal in natural 
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wetlands are complex; taking into the account the added variability of prior land use, 

altered hydrology and soil properties makes predicting outcomes and meeting 

management goals in created wetlands even more difficult.  

The objective of this study was to determine the impact of interacting factors 

(hydrology, nutrient availability, and herbivory) on nitrogen removal in two created 

emergent freshwater wetlands with different prior land use histories: wet and low 

nutrients, dry and high nutrients. We hypothesized that: 1) the created wetland with higher 

nutrient availability will result in higher rates of potential nitrogen removal, though not 

necessarily similar to natural wetlands, and 2) the removal of plant matter by grazers will 

decrease nutrient pools and organic matter within the soil, and this will result in changes to 

rates of potential nitrogen removal.  

 

Figure 3.1: Schematic of interactions between hydrology, nutrient availability, and 

herbivory on their impacts on nitrogen removal.    
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3.2 Methods  

3.2.1 Site description 

 This study was conducted between May 2016 and October 2016 in two created 

wetlands at High Acres Nature Area (HANA) in Perinton, New York, USA that are owned 

and managed by Waste Management of New York and New England, LLC (Chapter 2.2 

Figure 2.1). Area 1 North (A1N) served as a gravel-mining depository until approximately 

the mid-1960s, before being abandoned and left fallow (Stantec 2009). Prior to mining, the 

area was used for agricultural purposes. A variety of native plants were planted at the time 

of construction and in subsequent years, and Typha latifolia (invasive) was cut during the 

growing season of 2011-2014 to enhance habitat diversity.  Broadleaf arrowhead 

(Sagittaria latifolia), water plantain (Alisma plantago-aquatica), and smartweed species 

(Polygonum spp.) were the dominant species at the start of the study. Area 3 (A3) was a 

cattle pasture prior to construction in 2012. Native shrub and emergent wetland species 

were planted throughout; Typha spp., A. plantago-aquatica, and Polygonum spp. dominated 

at the initiation of this study.  

The observed abundance of wetland grazers, reported previously,  was significantly 

higher in A1N than A3, though this difference varies depending on the season (Chapter 2.3, 

Figure 2.2). The greatest differences were seen in summer and fall (A1N: summer =8.9 ± 

2.0, fall =44.1 ± 8.6 individuals ha-1; A3: summer =0.1 ± 0.1, fall =5.3 ± 2.2 individuals ha-1); 

grazing densities were not different in spring and winter. Waterfowl comprised 99-100% 

and 66-100% of the large grazers in A1N and A3, respectively.  
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3.2.2 Experimental design: herbivore exclusion 

         We conducted our analyses in 8 pairs of 1 x 1 m caged (herbivore exclusion) and 

uncaged control (open to herbivores) plots in blocks of 4 pairs that were established 

randomly, in A1N and across distinct zones of A3, (32 total plots, 2 blocks per site) 

(Chapter 2.2, Figure 2.1). Cages were maintained throughout the subsequent years and 

during the measurements described below, had been in place for 24 months. As described 

elsewhere, three-sided cage control plots were also established and demonstrated no 

difference in vegetation properties relative to uncaged plots over the three year 

experiment (Chapter 2).  

3.2.3 Characterizing hydrologic conditions and soil and porewater nutrient chemistry 

Hydroperiod was evaluated by averaging standing surface water depth from 3 

points in every plot in spring (May), early summer (June), mid-summer (July), and fall 

(September) 2016. Three soil cores (2.5 cm diameter x 10 cm deep) were extracted from 

each plot with an auger in May and September 2016 and subdivided for organic matter, 

nutrients, and pH analysis. Soil organic matter content was determined by loss on 

combustion (Heiri et al. 2001).  Extractable inorganic nitrogen was measured by extraction 

with 2M potassium chloride (Keeney and Nelson 1982). Ammonium in the supernatant was 

analyzed using the phenol-hypochlorite method on a Shimadzu 1800 spectrophotometer 

(Solorzano 1969), and nitrate+nitrite was measured with the cadmium reduction method 

using a Lachat Quikchem 8500 Autoanalyzer (Lachat 2003). Total phosphorus was 

extracted from soil samples by adding magnesium nitrate to soil dried at 60 oC, combusting 

at 550 oC for two hr, and dissolving in hydrochloric acid before analysis using the 
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ammonium molybdate method (Murphy & Riley 1962). Soil pH was measured by creating a 

2:1 (v/v) slurry of dionized water to soil, stirring vigorously until a uniform suspension 

was achieved (Gelderman and Mallarino 2012) and measuring with a Hach pH probe 

calibrated with pH =4, 7, and 10 buffers. 

         Porewater nutrient chemistry was evaluated in 2016, in suction lysimeters inserted 

to 15 cm depth in A1N plots (Chambers & Odum 1990).  Lysimeters were not installed in 

A3, because of the lack of groundwater due to drought conditions. Water samples were 

collected under an anaerobic headspace in spring and fall 2016 and immediately filtered 

(0.45 μm PES filter) prior to freezing and later analyzed for ammonium and nitrate as 

described above. Porewater redox potential and temperature were measured with a Hach 

IntellicalTM ORP Electrode (HACH 2014) in the spring and fall by drawing water from the 

lysimeters into a sampling chamber that had been flushed with nitrogen gas.   

3.2.4 Soil respiration and potential denitrification  

         Soil respiration was evaluated by measuring the build-up of CO2 gas in 200 mL septa 

jars, containing the soil (30-40 grams wet weight), using a LI-COR LI-820 CO2 Gas Analyzer 

(LI-COR 2002). Soil was collected from each plot in the fall (September) using a soil auger 

(2.5 cm diameter x 10 cm depth). The CO2 concentration was measured in the dark over a 

roughly 30 minute period under aerobic and anaerobic (accomplished by flushing with N2 

gas) conditions. After the analysis, each soil sample was dried in a 60oC oven, and weighed 

to calculate soil moisture and dry weights. All rates are expressed per g dry weight.  

Samples for potential denitrification measurements were taken using a soil auger 

(2.5 cm diameter x 10 cm depth) from each plot in the spring (late May to early June) and 
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fall (September) of 2016. Samples were split in two: one for denitrification and one to be 

dried in a 60oC oven to calculate dry weight. This process was measured using the 

acetylene block method, adapted from Groffman et al. (1999). Acetylene (C2H2) blocks the 

final step in microbial denitrification – the conversion of N2O to N2 gas – and the 

subsequent buildup of N2O can be used to estimate potential denitrification rates. This 

method does not distinguish between nitrate converted to nitrogen gas or converted to 

nitrous oxide, and can lead to underestimations of nitrogen removed in aquatic systems 

because this is not the only mechanism of removal in wetlands (Brix 1994; Groffman et al. 

1999).   

Briefly, soil samples (approx. 30-40 grams wet weight) were placed in 250 mL septa 

jars, flushed with N2 gas to create an anoxic environment (2 cycles, 3 minutes), acetylene 

was added (25 mL), and incubated under four separate conditions by adding a media 

solution: plus carbon (dextrose), plus nitrogen (potassium nitrate), plus carbon and 

nitrogen, and controls with nothing added (media: 100 mg/kg N, 40 mg/kg C, and 10 

mg/kg chloramphenicol). This methodology does not replicate exact field conditions for 

denitrification, only optimum potential rates. Gas samples (5 mL) were collected from 

incubation vials at approximately 30, 60, 120, and 180 minutes, and injected immediately 

into a Shimadzu Greenhouse Gas Analyzer Gas Chromatograph for analysis. N2O data, in 

ppm, was converted to moles/gram dry soil, and rates were derived by regression over 

time.           
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3.2.6 Statistical analyses 

         All statistical analyses were completed using JMP 13 Pro statistical software. Prior 

to selection of statistical analysis method, each dataset was checked for normality and 

homogeneity of variance. Intra-site heterogeneity was evaluated by adding a block effect, to 

encompass different zones of each wetland, as a random factor into every analysis of 

variance (ANOVA). Results of the significance of the block effects are listed in Appendix D. 

         Using a full-factorial three-way ANOVA we compared organic matter content, soil 

nutrients (nitrate, ammonium, total phosphorus), and soil pH with site (A1N, A3), 

treatment (caged, uncaged), and season (spring, fall) as fixed factors. Using a full factorial 

two-way ANOVA we compared porewater nutrients (nitrate, ammonium, phosphate), 

redox potential, and temperature in A1N with season (spring, fall) and grazing treatment 

(caged, uncaged) as fixed factors.  

         Soil respiration and potential denitrification rates were normalized by taking the 

inverse square root of the rates prior to analysis using a full-factorial three-way ANOVA for 

comparison of potential denitrification rates with site (A1N, A3), season (spring, fall), and 

grazing treatment (caged, uncaged) as fixed factors. Using a one-way ANOVA , we 

compared potential denitrification rates with nutrient treatment (carbon+nitrogen, 

+carbon, +nitrogen, control) as a fixed factor for both wetlands, separately. We used a full 

factorial two-way ANOVA for comparison of aerobic and anaerobic respiration rates with 

site (A1N, A3) and grazing treatment (caged/uncaged) as fixed factors. For all ANOVAs, 

when significant difference were found a Tukey’s HSD post hoc analysis was used to 

elucidate differences among treatments.  



 48 

3.3 Results  

3.3.1 Hydrology  

 A1N and A3 had distinct hydrologic characteristics throughout the growing season 

of 2016: A1N was permanently flooded, A3 was flooded during early spring, but was fully 

dry by mid-June (Chapter 2.3, Figure 2.2). During summer 2016, New York State 

experienced an extreme drought, affecting both wetlands differently. In June, the culvert in 

A1N was closed preventing further water from flowing out, and continued to be fed 

through subsurface recharge from the adjacent deeper abandoned quarry pond such that 

water was held in the wetland (May= 8.3 ± 3.0, June= 13.5 ± 3.8, July= 17.1 ± 3.1, 

September= 15.1 ± 3.6 cm). A3 lacks a water control structure (May= 11.2 ± 6.4, June= 0.3 ± 

1.2, July= 0.0 ± 0.0, September= 0.0 ± 0.0 cm; mean ± SD).   

3.3.2 Soil and porewater nutrients  

 Soil properties were distinct between sites and followed a predictable pattern based 

on prior land use. Organic matter content was 1.5 times higher in A3 than A1N (14.6 ± 1.1 

and 8.5 ± 0.7 %, respectively; p <0.0001; Tables 3.1 & 3.2). Despite this difference, grazing 

resulted in a significant overall reduction in organic matter content (p =0.031). Site 

differences in extractable nitrate, ammonium, and total phosphorus were seasonally 

dependent, but in general, significantly higher at A3 than A1N (site x season p <0.0001, p 

=0.005, p <0.001, respectively; Tables 3.1 & 3.2). In both sites during spring and fall, 

extractable soil ammonium was greater than extractable soil nitrate (15 and 35 times 

higher in A1N, respectively; 100 and 5 times higher in A3, respectively; Table 3.1). Soil pH 

significantly varied by season: in fall was more acidic than spring (7.4 ± 0.1 and 7.6 ± 0.1, 



 49 

respectively; p <0.001; Tables 3.1 & 3.2). There were no significant effects of grazing on soil 

nitrate, ammonium, total phosphorus, or soil pH (Table 3.2).    

 In A1N, porewater chemistry was not significantly affected by the grazing treatment, 

however there were some significant seasonal variability (Table 3.2). Porewater 

ammonium followed a similar trend as soil ammonium, with 32 times higher values in 

spring than fall (28.4 ± 6.2 mg/L and 0.9 ± 0.2 mg/L, respectively; p<0.0001; Tables 3.1 & 

3.2). Phosphate was not significantly affected by season. Porewater temperature was also 

significantly higher in the spring than in the fall (25.8 ± 0.2 oC and 20.3 ± 0.3 oC, 

respectively; p <0.0001). Finally, the oxidation-reduction potential was negative and 

reducing, more so in spring than fall (-133.2 ± 3.8 mV and -84.4 ± 5.5 mV, respectively; p 

<0.0001). All soil characteristics, along with porewater phosphate and oxidation-reduction 

potential demonstrated significant block effects (Appendix D).  
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3.3.3 Soil respiration and potential denitrification 

 There were no significant effects of grazing on soil respiration at either site (Table 

3.3, Figure 3.2). However, both aerobic and anaerobic respiration rates were significantly 

different between sites (p <0.001 and p <0.0001, respectively; Table 3.3): aerobic 

respiration in A1N was 7.5 times faster than in A3 (1.53 ± 0.57 and 0.20 ± 0.09 moles C g-1 

day-1, respectively; Figure 3.2); similarly, anaerobic respiration in A1N was 4 times faster 

than in A3 (0.91 ± 0.21 and 0.23 ± 0.05 moles C g-1 day-1, respectively; Figure 3.2). This also 

corresponds with high soil moisture in A1N, which was more than two times higher than 

A3 (53.9 ± 3.5 and 23.0 ± 1.4%, respectively).  

 Potential denitrification rates were 7 times faster in A3 than A1N (0.14 ± 0.03 and 

0.02 ± 0.0 moles N g-1 day-1, respectively; p <0.0001; Table 3.3, Figure 3.3A), and greater in 

spring than fall (0.10 ± 0.02  and 0.06 ± 0.02 moles N g-1 day-1, respectively; p <0.0001). 

Overall, grazing reduced potential denitrification by approximately 40% across all 

measurements (caged: 0.10 ± 0.02 moles N g-1 day-1; uncaged: 0.06 ± 0.01 moles N g-1 day-1; 

p =0.024; Table 3.3, Figure 3.3A). Potential denitrification rates in A1N significantly 

increased with addition of nitrogen but not carbon (p <0.0001; Table 3.3, Figure 3.3B); 

contrastingly, A3 significantly increased with addition of carbon but not nitrogen (p 

=0.014; Table 3.3, Figure 3.3B). For both the grazing and limiting factors experiment, there 

were significant block effects (p <0.0001, respectively; Appendix D).      
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Figure 3.2: Mean ± SE rates of carbon released via soil respiration observed in caged 

(gray) and uncaged (white) plots at both A1N and A3 wetlands under aerobic and 

anaerobic conditions in fall 2016. 
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Figure 3.3: Mean ± SE rates of potential denitrification – (A) caged (gray) vs. uncaged 

(white) plots in spring and fall, (B) one-way analyses under different nutrient conditions 

(CN= carbon+nitrogen, C= +carbon, N= +nitrogen, Con= control), observed at both A1N and 

A3 wetlands in 2016.  
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3.4 Discussion  

The distinct differences in hydrology, nutrient availability, and herbivory we found 

between the two sites demonstrated the importance of considering prior land use and 

water level control as part of wetland construction and management to ensure the 

ecosystem service outcomes we desire. Created wetlands are often constructed on land 

previously used for other purposes (i.e. agriculture, pastureland), and past activities on 

these lands, like crop tilling, can lead to alterations in soil properties, soil compaction, 

and/or homogenization unlike what would be found in a natural wetland (Galatowitsch 

and Van der Valk 1996; Campbell et al. 2002). Though it is difficult to make direct links 

between antecedent land use and present nutrient availability, significant differences in 

nutrient availability between the two sites may be a result of their contrasting prior land 

use histories. Wetlands constructed on gravel substrates such as A1N, the former gravel 

depository, are associated with low nutrient holding capacity, and may explain the 

relatively low soil organic matter, nitrogen, and phosphorus found there (Johnson 1987). In 

comparison, A3, a former pastureland, had significantly higher soil organic matter, 

nitrogen, and phosphorus, consistent with legacy nutrient deposition by cattle (McGechen 

2003).  

Drought conditions during the study affected the wetlands differently as well, 

reflecting two different wetland designs. A1N was constructed at a lower elevation, with a 

deep basin, and the groundwater connection to an adjacent deep pond and the installation 

of a depth-controlling culvert allows it to remain flooded for the entire year. A3 was 

constructed at a higher elevation with a very shallow basin; it is not connected to a large 
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adjacent water source, and no water control structures were installed during construction 

to maintain wetland water storage. During the spring, both sites were flooded, and redox 

potentials in A1N indicated anaerobic conditions, therefore nitrification, an aerobic process 

producing nitrate, may be limited. During the spring and fall, soil ammonium was 

substantially higher than soil nitrate in A1N and A3 (Table 3.1), suggesting the need for 

tighter coupling of nitrification and denitrification. Low soil moisture likely led to low soil 

respiration observed in A3, and suggests that soils may be too aerobic for denitrification in 

spite of nitrogen availability (Linn and Doran 1984). The balance of oxygen availability is 

crucial to providing appropriate conditions for both processes to occur.  

These large-scale variations, along with low and high levels of observed waterfowl 

grazing, led to potential denitrification that was limited by different factors in both created 

wetlands. When compared to other studies using the acetylene block method to measure 

potential denitrification in restored and natural freshwater wetlands (approximately 2.3-

19.2 mg kg-1 d-1), A1N and A3 (approximately 0.42 and 2.1 mg kg-1 d-1, respectively) fall 

below the range of daily rates, despite the addition of both carbon and nitrogen sources 

(Hunter & Faulkner 2001; Clément et al. 2002; Dodla et al. 2008). This has important 

implications for management goals of overall nitrogen removal within these created 

wetlands. 

Soil organic matter in control plots at A1N (7.9 ± 0.7 %) and A3 (14.2 ± 1.1 %) were 

comparable or higher, than other created and restored wetlands located in the eastern 

United States (3.1-11.8 % in created and restored wetlands, less than ten years old in Ohio, 

Pennsylvania and North Carolina), although these values may fall short when compared to 
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natural wetlands at the same sites (11.5-28.9 %) (Edwards & Proffitt 2000; Campbell et al. 

2002; Bruland et al. 2006; Fennessy et al. 2008). However, carbon soil amendments (top 

soil, biochar, straw) can increase organic matter in created wetlands (Ballentine et al. 

2014). Extractable soil nitrate and ammonium concentrations in A1N (0.4 ± 0.1 and 7.0 ± 

1.8 mg/kg, respectively) and A3 (1.2 ± 0.4 and 18.5 ± 4.7 mg/kg, respectively) 

demonstrated possible links between prior land use and present nutrient availability, and 

the disproportion of nitrate and ammonium availability when compared to restored 

wetlands located in New York State (approximately 1.7 and 2.0 mg/kg extractable nitrate 

and ammonium, respectively) (Ballentine et al. 2014). Knowledge of prior land was and 

preliminary soil studies to assess ambient nutrient availability will allow wetland 

managers to make decisions about possible soil amendments during construction, aiding in 

wetland development. Adding a substantial organic top soil, to land that is lacking in soil 

nutrients, will help to provide fuel for microbial activity and promote processes like 

nitrification and denitrification (Ballantine et al. 2014).   

There is constant competition between plants and microbes for soil nutrients within 

the system, regulating nitrogen removal. Although, plants provide temporary removal of 

nutrients, immobilization by microbes provides more permanent pathways of nitrogen 

removal in created wetlands. Potential denitrification measurements may only provide 

information about a fraction of the nitrogen that is possibly removed from the system, but 

it is an important metric in assessment of whether a created wetland is adequately and 

efficiently removing nitrogen. Although, potential denitrification rates in uncaged plots in 

A3 were 8 times higher than in A1N, neither wetland is meeting expectations when 

compared to natural wetlands. When nitrogen – in the form of nitrate – was added to 
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incubations from A1N, rates increased significantly; this did not occur when carbon was 

added, suggesting that denitrification was at least partially nitrogen limited (Table 3.3, 

Figure 3.3B). In A3, potential denitrification significantly increased when carbon was 

added, suggesting a different source of limitation for this process. However, higher nitrogen 

availability in the spring, possibly from spring fertilizer use and run off from surrounding 

agriculture and residential areas (Lambert et al. 1985; Quinn and Stroud 2002), or from 

nutrient build up over the winter released during spring thaw (Smith et al. 2010), resulted 

in higher denitrification in spring than in fall at both sites.     

Abiotic conditions at the two sites do not appear to fully support the processes of 

nitrification and denitrification; limitations were likely further compounded by the 

presence of large grazers. We found that grazers reduced overall soil organic matter, 

despite differences in grazer abundance between the two wetlands. This was likely a result 

of the grazers removing plant biomass and decreasing the accumulation of detritus in the 

soil at the end of the growing season as observed at these sites and elsewhere (Chapter 2.3, 

Figures 2.4A & 4B; van Wijnen et al. 1999). Further, when grazed plants must reallocate 

resources for recovery growth, leading to decreased belowground growth (Chapter 2.3, 

Figure 2.6) and root exudates of labile carbon (Gao et al. 2008). This is significant, because 

carbon is necessary to fuel heterotrophic microbes responsible for nitrification and 

denitrification. Emergent macrophytes have extensive root systems and can transport 

gases, like oxygen, to low oxygen soils (Armstrong 1964). This function is crucial in 

wetlands, like A1N, that are deep and remain flooded throughout the season, and without 

it, nitrification may be severely reduced, if not completely eliminated. Grazing may result in 

the temporary reduction or shutdown of gas transport by emergent plants, due to the 
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reallocation of resources, or due to the removal or destruction of roots and rhizomes as 

they forage (Kelker & Chanton 1997; Winton & Richardson 2017).  

Denitrification varies significantly in created wetlands depending on the vegetation 

communities: emergent macrophytes >> forested edge and open water communities 

(Hernandez & Mitsch 2007). However, there is generally a lack of knowledge about which 

species are most efficient oxygen transporters, suggesting the need for further research. 

This may also be significant in terms of grazer impacts, as consumption of emergent plant 

species can open space and allow for the spread of submerged aquatic vegetation (Chapter 

2; Mitchell 1989). Furthermore, promoting plant community diversity is necessary for 

wetland managers in order to balance damage by generalist grazers, like ducks and geese, 

and prevent limitations on plant-mediated oxygen transport that promotes coupled 

nitrification-denitrification in the rhizosphere and reductions in carbon exudates that fuel 

nitrogen removal processes.             

Installing water control structures as part of wetland creation can allow mangers to 

create periods of intermittent flooding by lowering water levels during spring nutrient 

flushes, when soil ammonium may be high, to promote the conversion of ammonium to 

nitrate by nitrifying bacteria. The strategic decreasing or increasing of water levels to 

promote both nitrification and denitrification, also requires knowledge of surrounding land 

use, which may be responsible for spring nutrient run off. Water control structures are also 

relevant for wetlands that appear to be susceptible to drought; culverts may be necessary 

to improve water storage during desired periods, so that anaerobic conditions may be 

maintained in some areas to promote denitrifying activity. In wetlands that have already 
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been constructed or ones where water control structures are not feasible, oxygen 

penetration facilitated by planting diverse communities of macrophytes, may help in 

providing conditions suitable for both processes. Further study is needed to investigate the 

role of herbivores in limiting species-specific emergent plant gas transport and root 

exudates that are vital for microbial processes associated with denitrification, and whether 

some plant species are more efficient at oxygen transport despite pressure from grazing.   

We found that prior land use history may be used as an indicator of nutrient 

availability in created wetlands, and may be a useful way to assess the need for soil 

amendments in order to promote services such as denitrification. Since plants and 

microbes are continuously competing for resources in order to carry out their own 

processes, constructing wetlands that promote all steps of nitrification-denitrification is 

essential to provide the resources necessary for all groups of species. Our study also clearly 

demonstrated that grazing at both low and high intensities, and hydrologic extremes (deep 

and flooded vs shallow and dry) interact to limit denitrification by providing conditions 

that are only suitable for part of the process, preventing created wetlands from meeting 

goals of development and function. We can surmise that grazing may limit denitrification 

by removing biomass and preventing the accumulation of carbon based litter at the end of 

the growing season and during decomposition or by reducing the ability of plants to 

properly transport oxygen to the soil. As waterfowl populations increase 9from effective 

species’ conservation and widening habitat ranges due to climate change (Fox et al. 2005; 

Baldassarre et al. 2006), wetlands will likely be exposed to higher and more sustained 

pressure from grazers, generating the need to create wetlands that promote heterogeneity 

to balance these effects.    
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Chapter 4: Conclusions 

Our study demonstrated that the impact of land use legacies and hydrology have 

cascading and interwoven impacts on plant diversity and nitrogen removal within created 

wetlands. These impacts are further influenced by the role of herbivores in manipulating 

these services. Our results also show that a reduction in one ecosystem service can lead to a 

reduction in another, and in order to create a fully functional wetland, the parameters of 

success need to be clear so that a wetland can be designed to accomplish as many of the 

ecosystem service goals as possible (Figure 4.1).  

 

Figure 4.1: Interactions of abiotic and biotic factors resulting in reduced ecosystem 

services within our wetlands of study.  

We observed two extreme hydrologic regimes: deep and flooded, shallow and dry. 

Both resulted in created wetlands that do not meet the same expectations of plant diversity 
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and potential denitrification as natural wetlands. In A1N, permanent flooding guaranteed 

maximum access by aquatic herbivores, which led to high grazing events. Plant 

communities in young wetlands are especially vulnerable to intense grazing, because 

communities are not fully resilient and are thus susceptible to persistent disturbances. This 

may help to explain the significant reductions in plant cover and individual species’ stem 

height and density (Chapter 2.3, Figure 2.4 & 2.7). Limited regrowth, possibly due to low 

nutrients resulting from this wetlands prior land use, also led to reductions in belowground 

growth and overall plant diversity (Figure 4.1). These results are also intertwined with low 

rates of potential denitrification rates measured at this site. Sustained low oxygen 

conditions, from continuous flooding, likely severely limited aerobic nitrification, resulting 

in limited nitrate available for denitrifying bacteria. This was further exacerbated by the 

removal of plant biomass due to grazing, limiting the accumulation of carbon-based 

detritus and exudates that heterotrophic bacteria need for food, but also limiting emergent 

plant species from introducing oxygen through their root systems (Armstrong 1964; Gao et 

al. 2008; Winton & Richardson 2017) (Figure 4.1).   

Though the hydrology and land use history was very different in A3 than in A1N, the 

development of an equitable emergent plant community and potential denitrification rates 

were similarly limited. The rapid drainage of water from A3 quickly limited grazer access 

to the wetland, resulting in low grazing pressure. On the surface, high nutrients and low-

level removal of biomass by grazers, resulting in increased plant diversity, may appear 

beneficial for this wetland to meet its goals for overall biodiversity (Chapter 2.3, Figure 2.4 

& 2.5). However, due to lack of flooding for extended periods of time, community 

composition reflects the dominance of meadow and grass species over emergent plants 
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(Figure 4.1). This was further exacerbated by the 2016 drought. Like A1N, these results are 

linked to measurements of potential denitrification in A3. Little to no soil moisture likely 

resulted in decreased soil respiration and microbial activity. Also, the absence of water, 

decreased anaerobic conditions necessary for denitrification. Even at low grazing levels, 

the removal of biomass appeared to decrease carbon pools, similar to A1N and possibly 

limit denitrification as well (Figure 4.1). Our study clearly demonstrates the importance of 

considering multiple abiotic and biotic factors when designing a wetland, but also 

highlights the need to evaluate more than one ecosystem service in order to determine 

whether or not a created wetland is actually meeting expectations of a natural wetland 

replacement.              

These results identify key areas that wetland designers and managers should focus 

on to improve wetland construction and prevent future cost-prohibitive challenges to 

wetland development. Though it is difficult to make direct links between antecedent land 

use and present soil conditions or nutrient availability, gathering information about past 

land use histories of possible wetland sites can help managers make better decisions about 

choosing what sites to use. If choice of site is not feasible, doing preliminary soil analysis 

will determine whether soil amendments should be added at the beginning. If a wetland is 

being constructed on land that is lacking in nutrient capacity, organic and nutrient-rich top-

soil should be added; without it, establishing plant communities will be more vulnerable to 

intense grazing events, and processes like denitrification may be limited. Installing water 

level control structures is useful to be able to increase or decrease depths based on 

seasonal nutrient availability or grazer populations, so that oxygen can penetrate soils 

when needed or specific areas of a wetland can remain inaccessible to grazers for a period 
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of time. In addition, or particularly if water control is not feasible, identifying macrophytes 

that are efficient gas transporters are crucial for promoting denitrification, and protecting 

seedlings from herbivore access via enclosures may be necessary for the populations to 

develop and establish properly.           

Finally, site heterogeneity may be the best option for wetland design in order to 

optimize the site for multiple services. This includes physical/structural heterogeneity 

(multiple hydrologic units connected to each other, variations in depth/bathymetry 

throughout the wetland), and heterogeneity in flooding regimes. Physical variations in a 

created wetland will allow for separate units to be used at different times or for different 

reasons depending on whether grazers are using the wetland for nesting and breeding, or a 

migration stop-over site. Variations in depth will also allow variations in plant species to 

establish and grow into resilient communities. Intermittent flooding, or strategic raising 

and lowering of water levels using control devices like culverts will help provide a balance 

between aerobic and anaerobic conditions, and promote multiple microbial processes 

associated with denitrification.  

Wetland creation can be improved by taking into account multiple variables that 

contribute to the functioning of natural wetland ecosystems. It is necessary to identify the 

factors that regulate a desired service, and consider other services that may also be 

impacted by these interactions.   
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Appendix B: Results of two-way ANOVAs examining the effect of season (spring, early 
summer, mid-summer, fall) and grazing treatment (caged/uncaged) on stem height (cm), 
density, and cover (%) for major plant species in A1N. Minor species not analyzed: 
Asclepias incarnata, Carex spp., Epilobium spp., Juncus effuses, Lythrum salicaria**, 
Nymphaea odorata, Sparganium americanum, Typha spp.** Significant p-values are bolded 
(*p <0.0001; **invasive species). 
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Appendix C: Results of two-way ANOVAs examining the effect of season (spring, early 
summer, mid-summer, fall) and grazing treatment (caged/uncaged) on stem height (cm), 
density, and cover (%) for major plant species in A3. Minor species not analyzed: Acer 
saccharum, Andropogon gerardii, Artemisia vulgaris**, Asclepias incarnate, Aster spp., 
Cornus sericea, Daucus carota, Echinochloa crus-galli, Epilobium spp., Juncus effuses, Juncus 
inflexus, Lactuca serriola, Lythrum salicaria**, Mimulus ringen, Ranunculus scelergtus, Rosa 
multiflora**, Rumex crispus, Solidago arguta, Sparganium americanum, Thinopyrum 
intermedium, Verbena hastate. Significant p-values are bolded (*p <0.0001; **invasive 
species). 
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Appendix D: Results of Chapter 2 (top) and 3 (bottom) ANOVAs examining random block 
effects. Significant p-values are bolded (*p <0.0001)    
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