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Abstract 
 

Carbon nanotube arrays have been found to be highly effective at carrying out intracellular delivery of 

cargo at high efficiencies while ensuring cell viability. Template based chemical vapor deposition is a 

commonly used process to fabricate these arrays. However, current etching methods used to expose 

carbon nanotubes from templates are expensive and time consuming. The high cost and time-consuming 

processes currently required to fabricate such arrays are factors which limit the commercialization of this 

technology and inhibit scope for larger research programs.  In this thesis, alternative nanofabrication 

methods were explored with the aim of making the fabrication of CNT arrays cost effective and efficient. 

Mechanical polishing coupled with wet chemical etching is shown as a feasible alternative option to dry 

etching. The effects of process variables on physical properties of CNT arrays have been studied and 

quantified in order to demonstrate control over the process. Scanning Electron Microscopy has been used 

to qualitatively understand the differences between CNT arrays fabricated using dry etching and the 

alternative process. Cell culture has been demonstrated on the CNT arrays and the potential to use 3D 

printing to fabricate a nanofluidic device is also demonstrated. The alternative process can save etching 

time by 97% while maintaining a similar level of control over the process. This study therefore, opens the 

path to quicker production of CNT arrays at low cost for biomedical use.  
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1. Introduction 

According to the American Medical Association, the cause of more than 4000 serious diseases can be 

attributed to gene disorders [1]. These diseases include cancer, acquired immune deficiency syndrome 

(AIDS), cystic fibrosis, Parkinson’s and Alzheimer’s diseases. The cause may be gene mutations or 

missing genes caused due to external factors such as radiation, viruses or in many cases, mutations during 

deoxyribonucleic acid (DNA) replication. Most of these diseases are known to be incurable in the true 

sense of the word. Although there exist methodologies to slow down the spread of diseases like cancer 

and Parkinson’s, they are far from perfect, often resulting in harmful side effects and severely limiting the 

patient’s abilities and reducing quality of life.  

In the 1980’s, multiple studies were carried out 

on animal models to study the feasibility of 

transferring healthy genes into cells which upon 

expression in vivo would result in the 

development of healthy cells. This method of 

healing is known as gene therapy. It has in recent 

times been explored as a cure for cancer [2, 3], 

cystic fibrosis [4], HIV [5, 6] and color blindness 

[7] with highly encouraging results. The crux of gene therapy is to transfect stem cells with DNA or other 

proteins in vitro, depicted in Fig. 1.1. These cells, once genetically modified can repair, replace or inhibit 

the action of a specific DNA strand. The altered cells are then capable of developing immunity against 

attacking viruses causing the disease, express DNA which was earlier deficient to overcome a genetic 

disability or grow into enhanced macrophages which can further fight the disease in question. It can be 

concurred that the most important element of gene therapy is to develop a method for transfecting of cells 

with the DNA or protein in question without inducing harmful side effects and ensuring cell viability.  

 

Figure 1.1: Mechanism of gene therapy 
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Transfection into cells for gene therapy conventionally has been carried out using viral vectors or lipids 

[6, 8-12]. Viruses have the unique ability of expressing their genetics in the cells they infect. This ability 

of viruses has been taken advantage of by modifying viruses to express a desirable genetic code rather 

than a harmful one. However, side effects such as immunological attacks on viruses, homologous 

recombination and cytopathic effects must be considered when using viruses for transfection [10]. Other 

commonly methods of transfection being used include electroporation – the application of an electric field 

to cells allowing charged particles to move into cell [13, 14]; particle bombardment – bombardment of 

particles onto the cell membrane at high velocity with the intent of them breaking through the cell 

membrane [15]; and the use of micro needles and wires to inject into individual cells [16]. 

Each of these methods has been successful in transfecting cells with appreciable efficiency yet they pose 

multiple issues which are yet to be resolved:  

• Ensuring cell viability post transfection process 

• Controlling the amount of cargo delivered to cells 

• Cost effectiveness 

• Transfection into different cell types 

• Ensuring long expression times 

The above issues, most notably, ensuring cell viability post transfection process has been one of the 

biggest limiting factors for further expanding research in gene therapy and large-scale implementation of 

this technology. A number of researchers have explicitly expressed the importance of safer, more viable 

transfection technologies to accelerate research in gene therapy and for large scale applications [11, 12, 

17].  

  “The message we have extracted from a history of anticipation and disappointment is that the 

future success of gene therapy will be founded on a thorough understanding of vector biology and 

pharmacology (Kay et al, 2003).”  [10] 
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“The success of gene therapy is largely dependent on the development of a vector or vehicle that can 

selectively and efficiently deliver a gene to target cells with minimal toxicity (Li. et al, 2000)” [18] 

“we are still far from the perfect gene carrier suitable for clinical use (Niidome et al, 2002).”[15] 

In 2013, Golshadi et al [19]. were able to manufacture an ordered array of carbon nanotubes (CNTs) by 

carrying out template based chemical vapor deposition (TB-CVD) of anodized aluminum oxide (AAO) 

and applied it to nanofluidic transport applications. The CNT array thus developed consisted of highly 

ordered, vertical carbon nanotubes, open from both ends and supported by an AAO template. This CNT 

array showed encouraging results when utilized to transfect cells by culturing cells on the device [20], 

shown in fig. 1.2. Compared to current state of the art methods such as particle bombardment, 

electrochemical methods and micro-injections, CNT arrays are minimally intrusive, caused no damage to 

the cells and achieved higher transfection efficiency. This is a breakthrough invention for biologists and 

genetic engineers working on drug delivery, gene therapy, cell therapy and studying the effects of novel 

synthetic genetic material on cells. CNT arrays also present the advantage of being able to interface with 

multiple cells in parallel, allowing for injections at a larger scale compared to individual injections. 

CNT arrays offer the following advantages over current technologies: 

 

Figure 1.2: Schematic of CNT array device for intracellular delivery 
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• High transfection efficiency 

• Controlled volume of delivery 

• Cell viability 

• Ability to transfect multiple cells in vitro 

• Potential to transfect cells such as neural cells and stem cells 

A limiting factor for CNT array technology is the current fabrication procedure for CNT arrays. Being 

time consuming and requiring specialized processes is hindering large scale fabrication and exploration in 

further areas of research which can exploit CNT arrays to their full potential. In order to explore large 

scale manufacturing feasibility and bring down costs, it is important to study the fabrication methods 

available to make these devices and suggest potential improvements.  

Fabrication of the CNT array device currently involves the following steps, schematically depicted in fig. 

1.3: 

 

 

Figure 1.3: Stepwise fabrication of carbon nanotube array 
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Annealing of template: The template used to manufacture the CNT device is an anodized aluminum oxide 

membrane (AAO membrane) which is 13mm in diameter and 60µm in thickness. The membranes are 

annealed prior to CVD to prevent distortion during the high temperature CVD process. 

Template based chemical vapor deposition: The membranes after annealing are ready for CVD. During 

CVD, the membranes are exposed to a continuous flow of ethylene in a sealed, high temperature furnace. 

The CVD set up used is depicted in fig. 1.4. Breakdown of ethylene leads to the deposition of carbon on 

the membrane surface and pores. The carbon deposited inside the pores of the membrane forms tubes. 

Carbon is deposited in its amorphous form and is not graphitic. 

 

Oxygen plasma etching: Before aluminum oxide can be etched away to expose tips of nanotubes, the 

layer of amorphous carbon deposited on the surface must be cleaned to expose aluminum oxide for 

etching. Oxygen plasma is used to selectively remove only the carbon layer and prepare the device for 

reactive ion etching.  

 

Figure 1.4: Schematic showing chemical vapor deposition (CVD) set up 
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Reactive ion etching using boron trichloride (BCl3): Reactive ion etching (RIE) is a combined physical 

and chemical etching method carried out in a weakly ionized plasma. BCl3 plasma is used to selectively 

etch aluminum oxide in a controlled manner. Etching is carried out to achieve an exposed length of 

~250nm of nanotubes.  

The device has demonstrated impeccable transfection into cells with minimal damage [20], however, 

there is scope for greater research such as studying the effects of variations in physical array dimensions 

on transfection, the method by which interfacing of device and cell occurs, transfection into a variety of 

cells and its application on tissue. These experiments require a large number of expendable CNT arrays. 

Also, the CNT arrays need to be produced quicker and with greater ease to make them feasible for large 

scale use in laboratories. 

fig 1.5. Shows graphically the time consumed in each manufacturing process. 

• The annealing process: Annealing takes up approximately 10 hours to anneal 10 membranes 

• The CVD process: The CVD process requires another 10 hours to coat 7 membranes 

• Oxygen plasma etching of amorphous carbon layer is a 20-minute process 

 

Figure 1.5: Breakdown of time required to fabricate CNT arrays 
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• Reactive ion etching using BCl3 is a 6 -12-hour long process which required specialized 

equipment and trained personnel to operate this equipment. BCl3 is also a highly toxic gas 

which is described as hazardous.  

Currently the process to fabricate these membranes can take up to 4 days for a batch size of 7 membranes. 

While the process can be scaled up using more sophisticated, large-scale equipment and parallel 

processing of batches, it is hindered by multiple issues which cannot easily be addressed.  

A dry etching process is also resource intensive. This hinders large scale economic production of these 

arrays since setting up of such equipment is extremely costly which makes the commercialization of these 

devices difficult.  

CVD and RIE processes, unlike conventional manufacturing processes are dependent on physical 

equipment variables such as size of chamber, voltage, power and position of substrate in the plasma 

chamber. A set of manufacturing parameters resulting in desirable outcomes on a certain set of equipment 

cannot be guaranteed to reproduce similar outcomes on a different set up. Equipment based variability is a 

major obstacle in ensuring repeatable results and preventing manufacturing errors. This is also a major 

obstacle in scaling up the current manufacturing system since a complete parametric study will be 

required with any type of equipment before it can be set up.  

This thesis explores alternative nano-fabrication processes to overcome the above-mentioned drawbacks 

associated with the current process. Ease of scale-up, control over physical dimensions of CNTs and ease 

of access were considered while exploring alternative fabrication processes. A combination of mechanical 

polishing and wet chemical etching is presented as a feasible alternative with the potential to reduce 

etching time from the range of 6-12 hours to 10-40 minutes. The process variables affecting CNT 

properties have also been studied and quantified in detail followed by a qualitative assessment of device 

quality using scanning electron microscopy.  
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2. Background 

 

2.1 Gene Therapy 

The method of gene therapy is gaining popularity in treating diseases which have a genetic background. 

According to the American Medical Association, more than 4000 diseases have their root causes in 

genetic mutations or alterations caused due to microbes [1], external factors such as radiation, 

environment or errors during reproduction. Gene therapy in its most basic forms aims to rectify the 

problem by delivering the missing or dysfunctional gene into a patient’s cells to allow for propagation of 

healthy cells and genetics.  

One of the most comprehensive definitions for gene therapy is given by the European Medical Agency: 

[21] 

“A gene therapy medicinal product is a biological medicinal product which fulfills the following two 

characteristics: (a) it contains an active substance which contains or consists of a recombinant nucleic 

acid used in or administered to human beings with a view to regulating, repairing, replacing, adding or 

deleting a genetic sequence; (b) its therapeutic, prophylactic or diagnostic effect relates directly to the 

recombinant nucleic acid sequence it contains, or to the product of genetic expression of this sequence. 

Gene therapy medicinal products shall not include vaccines against infectious products.”  

Gene therapy, as defined above, aims to deliver into cells the missing or deficient genes to enable 

expression of proteins which can act therapeutically against the disease in question. The most common 

mechanism employed in clinical trials around the world today is depicted in fig. 2.1 below: [22] 

Step 1: Blood cells or stem cells are extracted from the patient and incubated. Stem cells can differentiate 

into a variety of specialized cells and hence, they are preferred for gene therapy. Through injection of the 

missing genetic material, stem cells can be made to differentiate into healthy cells with the ability to fight 
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disease such as enhanced macrophages. In some cases, they are modified to prevent a certain microbe 

from entering the cell, as in the case of gene therapy for the human immunodeficiency virus (HIV). 

Step 2: The required cargo to be delivered is packaged inside a ‘vector’. The vector is a carrier with the 

ability to permeate the cell membrane and deliver cargo without damaging either cell or cargo. The vector 

should satisfy the following conditions: 

• Be able to permeate the cell membrane 

• Not induce any cytopathic effects in cells 

• Not induce homologous recombination 1 

• Be non-toxic 

• Should not initiate immunogenic response against itself 

• Be a safe carrier for cargo 

• Carry required amount of cargo 

                                                      
1 Exchange of nucleotides between similar DNA 

 

Figure 2.1: Process of gene therapy (A) using a viral vector (B) using non-viral vector 
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The most common vectors used for gene therapy have been viruses which were genetically modified from 

their original form to be non-toxic and satisfy to an extent the conditions listed above.   

Step 3: Cells collected from step 1 are infected with viruses modified in step 2 using techniques which 

will be briefly discussed in the next section. The viruses express the modified DNA they carried as cargo 

in the infected cell, leading to the creation of genetically modified cells. These cells upon division will 

now express the effects of the infected gene.  

Step 4: Injection of genetically modified cells back into the patient. The cells once injected into the 

patient will now follow instructions coded in the cargo delivered to them. This will allow cells to 

differentiate into specialized cells to fight diseases or produce proteins which can mitigate the effect of 

disease.  

2.1.1 Conventional Gene Transfection Technologies 

 

It can be seen from the above section that designing an efficient vector is one of the most critical elements 

of a gene therapy based healing process. In fact, the first trials of gene therapy were made possible only 

after Roger and Pfuderer [23] showed proof of concept for genetic transfer into mammalian cells using 

viruses. Ever since, viruses have been used as vectors for transduction in gene therapy clinical trials for a 

number of diseases such as cancer [2, 3, 24], HIV [6] and others [4, 25, 26].  

Viruses are microorganisms which are highly efficient in gaining access to cells and introducing viral 

DNA into their host cells. With this method, viruses are able to hijack the host cell into creating more 

copies of the virus. In the case of gene therapy, the ability of a virus to infect cells with its DNA is an 

advantageous capability. However, the viral DNA leading to toxicity and replication should be deleted 

and replaced by desirable cargo, depicted in fig. 2.2 before the virus can be allowed to infect the cell [27]. 

Sequences governing the functioning of the virus are left untouched but viral genes which lead to disease 

and toxicity are deleted. The protein to be expressed is cloned into the viral backbone in place of deleted 

genomes.  
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The viral vector particles also require purification which is often carried out using density gradient 

centrifugation. This step is often difficult to carry out and results in damage to the viral vectors, 

decreasing the number of viruses which can infect cells. Column chromatographic methods are also 

implemented and have overcome many drawbacks of centrifugation. [10] 

Some of the viruses commonly used in gene therapy are as follows: 

Lentiviral Vectors: Lentiviral vectors are derived from the HIV virus [27]. They have been used in gene 

therapy for the correction of β-thalassemia and X-linked [25, 28] adrenoleukodystrophy [29].  They have 

been used in earlier gene therapy trials owing to an ability to very well transcribe their ribonucleic acid 

(RNA) into cDNA2 of host cells which makes them good gene carriers into target cells [11]. However, 

lentiviruses and retroviruses still pose significant toxicity to the host cells. Lentiviral vectors were used in 

a gene therapy trial which was published in April 2000 to treat severe combined immunodeficiency 

(SCID)-XI disease. A leukemia like disorder in two of the patients was observed and led to much anxiety 

in the field of gene therapy. The retrovirus genome had inserted itself near a cancer-causing protein in the 

LIM domain3, activating its expression. [30] 

 

                                                      
2 Complementary DNA 
3 Structural protein domain playing important role in organ development, oncogenesis and cytoskeletal organisation 

 

Figure 2.2: Modification of virus to create a viral vector 
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Adenovirus Vectors: Adenoviruses are different from lentiviruses in the sense that they do not integrate 

into the genome of the cell [8], thus limiting the expression of their cargo to only limited number of cell 

generations before transduction is required again. Adenoviral vectors have also been popularly used for 

transfection in a number of clinical trials but have had their share of side effects. In 1999, 18 year old 

Jesse Gelsinger was part of a clinical trial at the University of Pennsylvania [31] aimed at treating 

ornithine transcarbylamase4 deficiency. This deficiency can cause an accumulation of ammonia in the 

bloodstream leading to an ammonium buildup in the brain which is a fatal condition. Gelsinger developed 

high fever within 4 hours after delivery of the viral vector and died 4 days later due to multi organ failure. 

The vector had accumulated in the spleen, lymph nodes and bone marrow, resulting in intravascular 

coagulation. Subsequent studies have shown that the adenovirus capsid protein can elicit an early 

inflammatory cytokine cascade.  

 It is thus shown that viral vectors pose a number of dangers to patients who take part in gene therapy 

such as eliciting immunological responses against viruses and destroying the vectors, inflammation, 

limited transduction capabilities such as being able to transduce non-dividing cells only, oncological 

effects, limited packaging capacity and others [32]. Viral vectors also present a challenge in terms of 

storage, handling and scaling up of operations for commercial use. It is of importance to develop a 

method of transfection which can achieve the same functionality without the above-mentioned side 

effects.  

To overcome these effects, the prospect of using non-viral vectors has caught up recently with a number 

of non-viral vectors being developed for use such as lipids, polymers, nanoparticles combined with 

physical means including injection, electroporation and gene gun [18] 

 

 

                                                      
4 Enzyme responsible for safe removal of nitrogen from amino acids and proteins  
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Lipofection 

Lipid refers to a class of special organic molecules, often fats, waxes, glycerides and oils that are soluble 

in water. In biological reference, lipids are the main constituent of the cell membrane. They are also used 

in the body as energy storage, signaling devices and to a lesser extent, for transportation.  

Lipofection is a lipid mediated method of transfection wherein a lipid-DNA complex is formed, ready to 

be accepted by the cell membrane. Often anionic molecules are bonded to positively charged lipids in 

order to maintain a net positive charge on the complex. The cell membrane accepts this complex since the 

membrane itself is a phosphobilipid layer with an overall negative charge. The anionic cell membrane and 

cationic lipid-DNA complex are attracted to each other and form lipoplexes due to electrostatic 

interactions. This leads the complex being taken up by the cell through endocytosis and the cargo 

subsequently being released inside the cell. 

This was first demonstrated in 1987 by Felgner et al [33] who used DOTMA for high efficiency gene 

transfer into kidney cells and fibroblasts. They demonstrated that 100% of the DNA was encapsulated by 

DOTMA in a 5:1 lipid to DNA ratio by weight. The transfection efficiency with varying concentrations of 

DNA and lipid was observed to be as high as 100% but a significant downside mentioned is that the 

DOTMA DNA complex would prove to be toxic beyond a certain concentration.  

Lipofectamine, manufactured by Invitrogen is one of the commercially available lipofection agents 

available and in widespread use. It is a cationic molecule which can form complexes with anionic nucleic 

acids. Although high transfection efficiencies have been observed using lipofectamine, it still poses toxic 

dangers to the cell. Madeira et al. [34] attempted transfection of green fluorescent protein (GFP) into 

human mesenchymal stem cells (MSCs) and observed up to 35% efficiency but noticed decreasing cell 

viability with an increased volume of lipid. Another drawback of using lipofection is that neutral cargo 

such as quantum dots must be bonded to a charged protein before it can be used as cargo for lipofection.  

 



24 

 

Microinjection 

Microinjection can be viewed as a precursor to nanoscale devices. It refers to the physical injection of 

material into the cell by physically penetrating the cell membrane using a micro-sized injection device 

such as a needle or syringe. Fig. 2.3 shows microinjection into a single cell. The cargo to be delivered is 

coated on the needle which subsequently penetrates the cell membrane and delivers cargo inside the cell. 

Microinjection has widely been used in the creation of genetically modified animals such as pigs  [35] 

and expression of genes in mouse progeny by injection into mice eggs [36]. These are cases of small scale 

transfection where a limited number of cells were injected with the required gene. 

This method is victim to two major disadvantages: 

a. Low cell viability due to invasiveness of the method: A microinjection device has dimensions in 

the micrometer range which makes it invasive into the cell and reduces cell viability 

b. Limited throughput: Transfection done on a cell by cell basis is prohibitively slow. For gene 

therapy purposes, hundreds of thousands of cells need to be transfected. In such cases, 

microinjection is limited by its low throughput.  

 

   

Figure 2.3: Microneedle injection into single cell using a cargo covered 

microneedle 
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An interesting, alternative use of microneedles or microneedle arrays is in the field of transdermal drug 

delivery. Drug delivery through hypodermic needles is often associated with pain and irritation, requiring 

specialized personnel for injection. Oral drug delivery is subject to reduced efficacy due to first pass 

metabolism in the body before the drug can reach its specified target. Microneedle arrays have been 

shown to be a potential candidate for alternative  drug delivery [16, 37-39]. They are associated with a 

lack of pain, reduced dosage due to increased drug efficacy and easy delivery to intended site through 

skin. These results are encouraging when it comes to applying carbon nanotube arrays for injection into 

tissue.  

Electroporation 

Electroporation is a method of transfection in which an electric field is applied across the cell [14], 

allowing it to take up charged DNA or other molecules which would under normal conditions not diffuse 

across the cell membrane.  

Under a short, high voltage electric field, phospholipid bilayers which are responsible for the integrity of 

cell membranes open, depicted in Fig. 2.4, allowing charged molecules to flow into the cell. These pores 

close immediately upon the removal of electric field. Electroporation has been found to work on a variety 

of cells and is also applicable for transfection in vivo, it does present a number of disadvantages which 

need to be overcome: 

• Collateral cell damage during electroporation is significantly higher. 

• Electroporation cannot permeate the cell nucleus. 

• The efficiency of electroporation depends on the electrical properties of cells being transfected. 
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• Limited control over the amount of material delivered into cells. 

 

Gene Gun (Particle Bombardment) 

 The gene gun utilizes high speed nanoparticles of heavy metals such as gold, platinum, titanium dioxide 

or polymers coated with the cargo [40, 41]. These nanoparticles upon impact with the cell are able to 

break through the cell membrane and thus deliver their cargo, shown in Fig. 2.5. The gene gun is effective 

in the transfection of hard to transfect cells such as plant cells but with the advent of more controlled 

methods, the use of particle bombardment has seen a decline. Some of the drawbacks of particle 

bombardment are as follows: 

• Ability of the targets to resist damage due to high speed particles 

• Little control over amount delivered into cells 

• Potential toxicity of nanoparticle carriers 

• Damage to cells 

 

Figure 2.4: Schematic of electroporation. Adapted from [77] 
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• Low efficiency (20-30% expression) 

The potential to overcome the above limitations set forth by viral and non-viral vectors can be explored 

using injection devices which have been designed specifically to inject into cells with high efficiency 

without damaging the cell membrane. Work in the field of nanotubes, nanowires and their arrays has shown 

that these devices are capable of achieving transfection into cells. Researchers have different approaches 

for transfection with these structures. A common approach is to use high aspect ratio nano-needles or pillars 

with a height ranging from 2-6µm and a tip diameter in the tens of nanometers. Cargo is usually coated on 

the surface of these pillars with the help of an amphiphilic coating [42, 43] and then delivered into the cell 

when the needle or pillar penetrates the cell membrane by physically breaking through it. The cells might 

penetrate the device under their own weight or in some cases, physical pressing or centrifugation [44] is 

utilized to accelerate the process. Results from selected previous works are presented below. 

3.1.2 Nano Structures for Transfection 

In 2007, Kim et al [43]. prepared Si nanowire arrays with the intent of physically transferring material 

into the cell by rupturing the cell membrane using nanowires. The nanowires were 90nm in diameter and 

60m in length. Human Embryonic Kidney Cells (HEK293T) were grown on the clusters of nanowires 

which seemed to penetrate the cell easily without any external force. Cargo was coated on the Si nanowire 

 

Figure 2.5: Process of particle bombardment 
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array and delivered into the cell through physical piercing of the cell membrane. This required 

functionalizing the nanowires to bind cargo. The nanowire arrays were fabricated using gold 

nanoparticles seeds planted on Si (111) wafers subject to CVD. The Si needle diameters were controlled 

via etching in HF after oxidation. This was one of the earliest transfection attempts using Si nanowires. 

Cell viability was observed at 78% with cells surviving a maximum of 3 days (Mouse embryonic stem 

cells). Primary attempts at transfection were carried out on HEK293 cells with DNA electrostatically 

attached to SiNWs. An efficiency of less than 1% was observed but this was attributed to the strong 

bonding between SiNW and DNA. 

In 2009, Shalek et al [42] were able to manufacture vertical SiNW arrays for transfection into cells with 

the difference being mainly in the dimensions of nanowires. Although not explicitly reported, the SEM 

micrographs convey wire lengths of 1m and diameter in the 50nm range. They used a similar 

manufacturing method as Kim et. al. Transfection was attempted using multiple cell types such as HeLa, 

human fibroblasts and rat hippocampal neurons. Regardless of the type of cells used, they claim to have 

observed a 95% transfection efficiency in all cells within 1 hour. They also utilized surface 

functionalization to bind their cargo to the nanowires and the mode of delivery was mechanical piercing 

of cells. 
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 VanDersarl et al. in 2012 [45] developed silicon ‘nanostraws’ for direct fluidic access into cells. The 

nanostraws were hollow, 100nm in diameter and 1m in height. Poly-carbonate membranes were used as 

templates for aluminum oxide deposition. Alumina specific reactive ion etch followed by a poly-

carbonate specific etch were used to expose nanostraws. They used membrane impermeable dyes to 

demonstrate transfection and observed 3-10% transfection rate of the cells pierced by the nanostraws. 

Array devices fabricated by various researchers are shown in Fig. 2.6. 

The above are examples of using devices in the microscale for cell transfection. It is observed that even 

though extremely high aspect ratio devices do facilitate transfection, the efficiency of transfection and cell 

viability observed has been generally low (Table 1) and not feasible when compared to traditional 

methods such as lipofection or electroporation. The fact that these methods rely on puncturing the cell 

membrane to physically interface with it begs greater study on whether a tight seal is formed around the 

cell – structure interface or contents of the cell are in danger of leaking out. Smaller structures or a lower 

aspect ratio, such as the carbon nano syringe array developed in 2008 by Park et al [46] have been shown 

to exhibit higher transfection efficiencies. The carbon nano syringe arrays were fabricated with a diameter 

 

Figure 2.6: Devices fabricated by other researchers (A, B) Nanowires by Kim et al [43] (C, D) 

Silicon nanostraws by VanDersarl et. al [45] (E, F) Silicon nanowire arrays by Shalek et al [42], 

scale bar 1µm 
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of 50nm and heights of 80 and 120nm using TB-CVD process followed by ion milling and wet etching, 

which is a method very similar to the one employed by Golshadi et al. However, nano syringe arrays 

differ in the fact that they only have one open end, thus requiring preloaded cargo inside tubes before 

cells can be seeded on them. They were able to achieve 85% cell viability compared to the control and 

37% overall gene expression. Golshadi et al. [20] demonstrated transfection using carbon nanotube array 

on HEK293 cells with propidium iodide (PI). They confirmed 98% cell viability using flow cytometry 

and observed 99% transfection within viable cells. This study shows us that carbon nanotube arrays with 

a lower aspect ratio are a more feasible method to transfect cells. Hence, in this study, we focus on the 

low cost fabrication of a device similar to the one developed by Golshadi et al.  

Device Type Cell Transfected Cargo Viabil

ity 

Efficiency 

Kim et al.  6µm tall wires, 

90nm tip 

diameter 

HEK293 DNA-GFP -  <1% 

Park et al.  120nm tall, 50 

nm diameter. 

Carbon 

Nanosyringe 

NIH3T3 Cells pEGFP 85% 30% 

McKnight et al. 7µm tall carbon 

nanofibers, 

30nm tip 

diameter 

CHO cells Plasmid DNA 

(pGreenLantern-1) 

 

-  <1 % 

Golshadi et al.  CNT array 

205nm diameter 

176nm high 

HEK293 PI 

 

EYFP  

98% 

 

84% 

99%  

 

100% 

Table 1: Comparison between array devices developed for transfection 
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Irrespective of the results obtained, we can observe that most devices developed required forms of 

reactive ion etching, silicon microfrabrication techniques or other methods which can hinder their large-

scale development either due to lack of equipment availability or prohibitive costs. We thus wish to 

explore a low cost; high throughput manufacturing technique will make these devices available to 

researchers in need of such technology en masse.  

Another advantage of carbon nanotube based devices is the possibility of adding multifunctional 

capabilities through functionalization to convert them into sensors while being able to transfect into cells. 

Section 3.3.1 mentions the applications of carbon nanotubes for sensing through chemical 

functionalization. 

2.2. Carbon Nanotubes – Properties and Applications 

Carbon nanotubes are a unique fullerene type allotrope carbon. They can be in the form of ordered, rolled 

up sheets of graphene or have an amorphous crystal structure depending upon their manufacturing 

technique. Carbon nanotubes, due to their varied atomic arrangements, exhibit mechanical, optical and 

electronic properties which can vary across a large spectrum. This also makes them useful for a wide variety 

of nanobiological applications such as tissue engineering, drug delivery, in vivo sensing applications, gene 

therapy and cancer treatments. 
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Atomic Structure of CNTs 

Carbon nanotubes are classified as shown in Fig. 2.7: 

 

 

Amorphous CNTs have no long-range crystal structure and are basically amorphous carbon in a tubular 

shape. Graphitic CNTs are further classified as single walled nanotube (SWNT), multiwall nanotube 

(MWNT), double wall nanotube (DWNT). They can be visualized as rolled up sheets of graphene. SWNTs 

are a single tube while DWNT and MWNTs are visualized as concentric, multiple tubes. DWNTs are often 

classified as a separate category from MWNTs since they can be obtained with high purity. MWNT samples 

often have SWNTs present and vice versa. SWNTs have a diameter of 3-7nm while MWNTs can be up to 

25nm in diameter. The lengths of CNTs have been observed in the order of microns. During template based 

CVD, the dimensions of CNTs produced depend upon the template used.  

The structure of graphitic CNTs can be described by the ‘Chiral Vector’ for CNTs made out of rolled 

graphene sheets. In Fig. 2.8, the chiral vector is made of the components ma 1 and na 2 with a 1 lying across 

the carbon atoms and a 2 in the direction of the reflection of a 1 over the ‘arm chair vector’ which divides 

Carbon Nanotube 

Graphitic Amorphous 

 SWNT MWNT DWNT 

Figure 2.7: Classification of carbon nanotubes 
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all hexagons in half. The 

wrapping angle is defined at the 

angle between the chiral vector 

and arm chair vector. If ɸ=0, the 

tube is known as an armchair 

tube, if ɸ=30, it is a zigzag type 

and for 0<ɸ<30, it is a chiral tube. 

The values of m and n describe the 

chirality of the tubes and also its 

diameter. The chirality can be 

used to deduce the mechanical, 

electrical and optical properties of 

a nanotube. A single walled 

nanotube will exhibit conductive properties if n-m is a multiple of 3 and otherwise semiconducting. Carbon 

nanotubes have also been fabricated in an amorphous carbon form by multiple researchers. Carbon 

nanotubes formed after CVD are usually in the amorphous form since graphitization of carbon requires 

temperatures above 1200°C. Amorphous nanotubes differ from their graphitic counterparts in having lower 

electrical and thermal conductivity. The physical properties of amorphous tubes cannot be controlled by 

adjusting parameters such as chirality. However, for our application, amorphous nanotubes are easier to 

manufacture due to the lower CVD temperature and time needed. Dimensions of amorphous carbon 

nanotubes can be controlled by changing the template dimensions, leading to easy control of size over the 

resulting tubes.  

 

 

Figure 2.8: Chirality of graphitic carbon nanotube [78] 



34 

 

2.2.1. In Composite Materials 

Mechanical studies on CNTs have shown them to be the strongest materials known to mankind. They also 

possess an extremely high young’s modulus. This makes CNTs especially attractive in structural 

applications. Lau et al [47] have demonstrated the use of CNTs in epoxy composites. They observed that 

despite their high strength and stiffness, CNTs did not offer satisfactory interfacial bonding at the CNT-

epoxy interface. This work was further supplemented by Kim et al. who used surface modifications to 

improve interfacial bonding and showed the feasibility of using CNTs in epoxy composites. Nano-

biological applications of carbon nanotubes can greatly benefit from the high strength of carbon 

nanotubes in applications pertaining to cellular injections using CNT probes. Also, since cells can be of 

varying mass and sizes, stronger structures minimized the risk of yielding or breakage of tubes inside 

cells or within the extracellular matrix, eliminating chances of cytotoxicity. 

CNTs can also be looked at as the most idealized and defect free form of carbon fiber, with mechanical 

properties close to theoretically predicted values of properties for carbon fiber. Gojny et al. showed that 

even an addition of 0.1 wt.% CNTs in epoxy to led to an increase in Young’s modulus from 3.29 to 3.50 

GPa. [48] 

3.2.2 In Electronics: 

As consumer electronics continue to shrink with more functionality being added to smaller circuits, CNTs 

are looked up to replace metallic wires which cannot be shrunk down to the nano-scale. From an 

electronics point of view, nanotubes offer the following advantages: 

· Conventional metals and semiconductors have in their lattice structures multiple defects, holes 

and dangling bonds. This leads to collisions and scattering of charge carriers which in turn 

produces heat and reduces the maximum current density that can be carried by the conductors. 

Carbon nanotubes possess near perfect structures with all chemical bonds satisfied, this implies 
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that conduction is possible with lesser heat dissipation and at maximum current density of 109 

A/cm2 compared to 104 A/cm2 for metallic conductors [49] 

· CNTs have high mechanical and thermal stability. This is due to the strong covalent bonding 

between carbon atoms. 

· They can be made to behave as both metals and semiconductors depending upon their atomic 

arrangement. This property of CNTs can be utilized to make complete electronic circuits with 

both transistors and interconnects using only nanotubes.  

High conductivity and small size makes carbon nanotubes worthy of use in cellular electrochemistry, 

further enhancing their use as sensors and adding multifunctional capabilities to them.  

Nanoscale field effect transistors and gates have been developed using SWCNTs. It has been shown that 

CNTFETs even at a nascent stage of development are competitive compared to the current state of the art 

technology available.  IBM expects nano electronics to be realized within this decade as an alternative to 

silicon microstructures. CNT are also being looked into for use in Li-ion batteries and fuel cells [50-52]. 

They have a high surface area to volume ratio, offer more intercalation sites in the form of interstitial 

spaces and tube cavities. CNTs also have an affinity for hydrogen adsorption which makes them a 

potential candidate for use in fuel cells and replace traditional platinum catalysts. 

2.3 Carbon Nanotubes in Nano-Biotechnology applications 

Unique and flexible mechanical, chemical, optical and fluid transport properties have found CNTs a 

prominent spot in biomedical research. 

The use of carbon nanotubes in biomedical applications includes using them as drug carriers [53, 54], for 

transfection of DNA and proteins into cells [46], miniature biosensors with high selectivity and 

sensitivity, targeted enzyme delivery, cell tracking and labelling, building of tissue matrices and as 

imaging contrast agents. [49, 55, 56] 
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2.3.1 Bio sensing 

The nano-dimensions of CNTs make them suitable for interacting with individual cells. The possibility of 

being able to monitor cell behavior, analyzing cell chemistry, ion transport, enzyme behavior and 

secretions will be advantageous in comprehending many mysteries of drug behavior, physiological 

responses at the larger scale and identifying disorders or unnatural behavior with greater accuracy. 

Wang et al [57] have been at the forefront of exploring the use of CNTs as biosensors. They have shown 

the applications of CNT/Teflon composite electrodes in detecting hydrogen peroxide and NADH. 

Experiments also showed favorable response of the electrolyte over the complete potential range. The 

CNT/Teflon electrode also responds very rapidly to changes in the level of hydrogen peroxide and NADH 

and low noise levels. Wang et al also developed the first sensor with a CNT based electrode for 

amperometric and voltammetric determination of insulin. They observed increased electron transfer 

kinetics using CNTs. 

In another study, Li et al [58]. were able to fabricate a CNT array embedded in SiO2 for ultrasensitive 

DNA detection and were able to detect lower than a few attamoles of oligonucleotide targets. These 

applications using carbon nanotubes provide encouraging results to utilize CNT arrays as multifunctional 

devices for sensing, while at the same time behaving as drug delivery or transfection vectors. 

2.3.2 Cell tracking, labelling 

With the advent of artificial tissue constructs, it becomes important to be able to analyze the progress of 

tissue growth in-vivo and visualize cell migration, cell multiplication. This needs to be carried out with 

minimal intrusion to prevent external factors from influencing results. Conventional methods such as flow 

cytometry or fluorescence microscopy are either complex and time intensive methods [59]. CNTs can 

provide an alternative to these methods. Cherukuri et al [60] demonstrated the use of SWCNTs in optical 

labelling. Excitation of SWCNTs dispersed in a pluorinc surfactant incubated with mouse peritoneal 

macrophage-like cells resulted in a structured fluorescence spectrum. In vivo optical imaging is often 
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hampered due to tissues that absorb light, narrow optical absorption and broad emissions. CNTs possess 

optical transitions in the near infrared range which allows for greater penetration owing to lesser 

absorption. 

Nanotubes were also observed to have remained in cells after repeated cell divisions. This observation 

encourages the application of CNTs in studying cell divisions and stem cell differentiation. 

2.3.3 Imaging Contrast Agents and Radiotracers 

Carbon nanotubes being composed purely of carbon provide poor contrast in MRI. This is overcome by 

taking advantage of their ability to be functionalized. Heavy atoms such as gadolinium can be attached to 

the surface of the tubes or caged inside them. The ‘Gadonanotubes’ thus produced displayed proton 

relaxivities 40 times above Gd[(DTPA)(H2o)]-2 which is a standard clinical contrast agent. 

Singh et al. [61] were able to demonstrate the in vivo biocompatibility of CNTs by functionalizing them 

with radiotracers and studying their movement through the bloodstream. Indium (111In) was covalently 

bound to SWNTs and administered to mice. The CNTs did not show a tendency to accumulate in a certain 

organ and were cleared from the blood via renal excretion. They could also be visually observed in urine. 

No mortality or toxic side effects were noted. This showed that CNTs can be used in vivo without 

eliciting harmful side effects in the bloodstream and are excreted. 

2.3.4 Tissue Engineering 

Regenerative medicine is a method of healing that involves rebuilding damaged organs and body parts 

using stem cells or genetic modifications. Cells when grouped together create around themselves their 

own supporting structure called the extra cellular matrix or tissue scaffold which acts as a medium for 

signaling molecules between cells. Through proper understanding of the requirements of cells and tissues, 

there exists scope to modify or rebuild damaged tissues. [55, 62, 63] 

CNTs have simplified methods to track cells, understand development of the tissue and study its viability. 

Optical labelling of cells carried out using functionalized CNTs which easily permeate the cell membrane 
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has the potential to track cells without using expensive, complex methods such as flow cytometry or 

intravital microscopy. CNTs do not require specialized equipment or extraction of cells from the body to 

detect cells but can be used in vivo. The chemical functionalization of CNTs can be carried out using 

chemical methods only which greatly simplifies the process. CNTs with functional groups attached to 

them can be detected by Raman spectroscopy [53]. When inside a tissue matrix, the chemical changes in 

functional groups can be used to study microenvironments around the cell. 

Implantable biosensors which can relay information in real time about vital tissue parameters such as pH 

and glucose levels are also being explored [57, 64]. With a high surface area to volume ratio, the active 

area available for analysis is large, which allows for higher sensitivity. Since CNT array devices can 

interface with a number of cells in parallel, with the proper functionalization, they have the potential to 

monitor a large number of cells in vivo and provide substantial amounts of data regarding cell behavior.  

Another area of interest is the use of CNTs as structural support for tissue matrix [55, 63, 65]. The matrix 

is a critical component of tissues and greatly affects its development. Conventional matrix materials are 

usually synthetic polymers such as PLA, which lack the required mechanical strength.  CNTs dispersed in 

chitosan, a biopolymer, showed improved mechanical properties. 

Gene Transfection 

Carbon nanotube arrays have been used to achieve transfection into cells of different kinds. Park et al. 

demonstrated transfection into fibroblast cells with up to 35% efficiency. Golshadi et al. demonstrated 

transfection into HEK293 and were able to achieve 99% transfection in live cells. Carbon nanotube arrays 

have also demonstrated the ability to transfect dye, DNA and quantum dots into cells, proving that they 

can be used in a versatile manner.  

2.4 Fabrication 

The success of carbon nanotube devices is in part contingent upon their ease of fabrication and 

accessibility. It was observed earlier that most array devices are manufactured using techniques which 
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cannot easily be adapted to commercial scale fabrication with reasonable costs. In order to develop a 

more feasible nanofabrication method, it becomes important to look at viable alternative techniques used 

in micro-nano fabrication. Given the variety of applications requiring the use of CNTs, researchers have 

formulated novel methods to fabricate them and control their physical dimensions. Some of the most 

prominent ones are mentioned below.  

2.4.1 Chemical vapor deposition 

Chemical vapor deposition is a method of applying thin film coatings to materials and also to produce 

high purity bulk materials. 

It requires flowing a precursor gas over the heated object to be coated. High temperatures are maintained 

by keeping the target item in a furnace. As the precursor gas flows over the target material, chemical 

reactions occurring over it result in the deposition of a thin film on the surface. CVD provides multiple 

advantages over other deposition processes such sputtering or physical vapor deposition. 

Because precursor gases used in the processes can be obtained in very high purities, the deposited 

material is devoid of contaminations, making CVD one of the most reliable methods to obtain a pure film. 

The gaseous nature of active material means that all crevices, pores and open surfaces are deposited with 

an even and continuous layer of film without breaks or large variations in thickness. It is also one of the 

few methods which can deposit material films with nanoscale precision.  

Apart from obtaining controlled and pure film depositions, CVD equipment and set ups are easier to use 

and operate. Unlike sputtering, there is no line of sight requirement for CVD, as long as the precursor can 

access the object to be coated. Regular CVD works without the requirement of plasma, ions or lasers but 

these methods are often employed for specialized applications to improve yield or reduce time for CVD.  

Depending upon the application, substrate requirement, material to be deposited, cost, precursors and 

deposition requirement, different kinds of CVD reactors are available. 
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1. Hot wall Reactor: These represent the more common and less complex CVD systems. They essentially 

consist of a chamber containing the target substrate, with the chamber surrounded by a heat source. Walls 

of the chamber are not cooled but heated by the heat source, thus the name ‘Hot Wall Reactor’. The 

chamber can be of different sizes depending upon the number of parts to be held, with shelves or might be 

as simple as a ceramic tube. Temperatures in these reactors are usually very high, limiting factor being the 

materials used in the process or construction of reactor. Their advantages include being able to maintain 

uniform temperatures resulting in even film thicknesses. On the downside, due to a heated chamber walls, 

some deposition occurs on the walls of the chamber and gas inlets or exhausts, requiring frequent 

cleaning. This may also lead to higher energy and precursor requirements. The CVD process used by 

Golshadi et al. utilizes a hot wall reactor due to ease of use, even thickness of deposited film and 

availability.  

2. Cold wall reactor: These are another major category of CVD reactors. In this type, the chamber walls are 

cooled by running coolant through them and only the substrate holder is allowed to heat up. The holder 

may be heated using resistance heaters, induction or lamp heated. They are often used in high pressure 

applications with more reactive precursors. Although they present the advantages of reduced deposition 

on walls and lower thermal loads on substrate due to faster heat up and cool down times and consequently 

lower energy consumption, they do present more complicated disadvantages which requires careful 

process monitoring. 

· Non-uniform temperature distribution on the substrate, leading to non-uniform film thicknesses 

· Thermal stresses in case of quick heating and cooling 

· Smaller batch sizes compared to hot wall reactors 

The use of TB CVD to grow nanotubes was first shown by Che et al in 1997 [66]. They showed that 

CNTs could be grown inside AAO membranes and develop into highly ordered arrays. Precursors used in 

the process were ethylene and pyrene. They also demonstrated the use of catalysts such as Ni, Fe and Co 

upon the CVD process and resulting nanotubes. 
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The compatibility of the nanotubes thus produced was not tested on biological systems since their primary 

focus was on applying them to the anode of a Li-ion battery. They observed that carbon nanotubes inside 

formed using ethylene as a precursor on Ni catalyzed AAO membranes were ordered and formed without 

any macroscopic defects. It is also observed that further exposure to higher temperatures after CVD 

converts the atomic structure of amorphous CNTs to ordered graphite. 

Fe and Co were also explored as catalysts with ethylene as a precursor as 580°C for 30 minutes. In the Co 

catalyzed membranes, CNT structures were formed but were not ordered or symmetric and fused 

together. Fe catalyzed membranes did not show any sign of CNTs in them. 

This study provides important insights for increasing the rate of CVD and possibly shortening fabrication 

times. The observation that CNTs thus formed were conductive motivated the idea of applying them as 

sensors.  

Xu et al. [67] also demonstrate the growth of carbon nanotubes on AAO membranes while using cobalt as 

a catalyst. They different from the devices manufactured by Che et al. since their CNTs grew out of the 

membranes onto its surface. They go a step ahead to show how CNTs produced can be modified to 

eliminate the effects of the catalyst on their applications by using ultrasonification to chop off the excess 

CNT lengths from above the membrane. The AAO membranes utilized by them had an average pore 

diameter of 60 nm and interpore spacing of 100nm. Co was deposited using electrodeposition and CNTs 

grown using CVD with ethylene as a precursor at 650°C. Etching of AAO membrane was carried out 

using an aqueous mixture solution of CuCl2 and HCl 

TB-CVD is thus a well-established method for fabrication of nanotubes with different sizes and for a 

variety of applications. The use of a hot wall reactor is selected for this study due to availability, uniform 

film deposition thickness and ease of use.  
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2.4.2 Etching technologies 

Wet Etching 

Alumina is an amphoteric oxide which can react well with both acids and bases. It has been established in 

a number  of studies  that AAO can be fully dissolved using dilute NaOH, H3PO4  and HF. Researchers 

have commonly used NaOH to release CNTs formed using TB CVD to release CNTs from the template 

[68-70].  

The following reactions take place when AAO reacts with an acid or base: 

2OH-  + Al2O3    2AlO2
- + H2O 

6H+   +  Al2O3    2Al 3+ + 3H2O 

There have been multiple studies carried out on wet etching of AAO membranes [68, 70-73]. The most 

common etchants include NaOH, H3PO4, Hu. et al [70] have investigated the etching of AAO with H3PO4 

and NaOH and reported linear mass dissolution rates for both. NaOH is also reported to be a stronger 

etchant whereas the slower etch rate of H3PO4 makes it more suitable for exposing nanotubes due to better 

control over exposed lengths. Golshadi et al. also carried out studies using wet etching with varied 

concentrations and reported similar trends as Hu et al. They also observed a decrease in etch rate with 

temperature.  Lee et al. [74] who used AAO as a template to create gold tipped nano arrays also utilized 

wet etching to eliminate the AAO template. They utilized a mixture of H3PO4 (6wt%) and Cr2O3 

(1.8%wt) at 60°C for 1 day.  

 

Dry Etching 

Dry etching is commonly used in microfabrication to selectively remove material. In template based 

manufacturing of array devices, dry etching has been used to selectively etch the template and expose 

carbon nanotubes from template [20, 75]. Dry etching can be both reactive and non-reactive. Material 
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removal achieved by exposing material to highly energized plasma. Plasma of reactive gases such as 

boron trichloride, oxygen and fluorocarbons might be used to achieve a combined reactive and physical 

etching mechanism, known as reactive ion etching (RIE). In other cases, non-reactive, heavy gases such 

as argon or gallium are used to achieve a purely physical etching, called sputtering or ion milling.  

Mechanism of dry etching 

A dry etching set up typically looks like the one shown in Fig. 2.9. The plasma chamber is a sealed, 

vacuum chamber with electrodes on the top and bottom. The lower electrode is where a sample to be 

etched is placed. It is connected to an RF power supply and a blocking capacitor. When the process is 

started, a vacuum pump evacuates the chamber down to low pressures (~5 MPa) and allows the required 

etching gas to flow into the chamber. An alternating electric field is set up inside the chamber using the 

RF supply. The most commonly used frequency for the electric field is 13.56MHz. At this time, electrons 

being lighter, move with the electric field. During this rapid movement, they strike other atoms with high 

energy which is usually higher than the ionization energy leading to either excitement of electrons in the 

atoms or ejection of electrons, which leads to formation of more ions. As the population of electron 

grows, cascade reactions take place which results in the formation of more and more ions. The plasma 

formed in a reactive ion etching chamber is a weakly ionized plasma, also known as a glow discharge 

plasma. An important characteristic of the glow discharge plasma is lack of thermal equilibrium between 

electrons and ions. The temperature of electrons is related to their Kinetic energy through the relation: 

[76] 

 ½𝑚𝑒𝑣𝑒 =
3

2
𝑘𝑇𝑒  
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Where k is the Boltzmann’s constant. Thus 𝑇𝑒 >> 𝑇𝑔, and the gas remains at approximately room 

temperature. Because glow discharge plasma is a weak plasma, the number of electrons is lesser than the 

number of ions, keeping the chamber at room temperature. The lower electrode upon which sample is 

placed experiences a negative DC bias due to the presence of a capacitor. This leads to repulsion of 

electrons from the region near the lower electrode. Since no electron-ion interactions take place here, this 

area is referred to as the dark region. As positive ions approach this region, they are accelerated due to the 

local negative potential created at the lower electrode. These ions gain energy and are responsible for the 

directional etching profiles obtained through dry etching. In our case, this process is able to uniformly 

etch away the AAO membrane, leaving behind a smooth surface with no debris. 

Ion Milling 

Ion milling is a non-reactive method of dry etching and can be used to etch away the template in template 

based fabrication techniques. It is not material specific, since the mechanism of dry etching is purely 

physical. Unlike focused ion beam (FIB) milling or electron beam milling, ion milling is used for material 

 

Figure 2.9: Mechanism of dry etching 
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removal over larger surface areas without specific targeting. Ion milling is a form of dry etching 

characterized by the use of inert gases for etching. Most dry etching processes are some form of reactive 

ion etching processes which involve chemical and well as physical interaction between ions and sample 

material. The chemical reactions aid in etching, thereby accelerating the etch rate. However, the gases 

used in reactive ion etching such as boron trichloride and carbon tetrafluoride are toxic and hazardous. 

These gases require special handling considerations while at the same time etch much slower compared to 

wet etchants such as NaOH or phosphoric acid. 

Ion milling relies purely on the physical interaction between ions and the sample for material removal. In 

its simplest form, it can be thought of as a method of ‘sandblasting using ions’. Energy transferred from 

ions to atoms of the surface of the material allows atoms at the surface to gain enough energy to break 

away from the crystal structure, resulting in material ablation. A lower pressure allows more ions to 

impact the surface since the mean free path is inversely proportional to the ambient pressure. This also 

decreases scattering of ions thus leading to a more directional etching profile, making ion milling 

applicable to a variety of materials without much variation in etch rate. Milling using argon is inexpensive 

and simple to carry out. 
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2.4.3 The AAO template 

 

 

 

Figure 2.10: Schematic representation of a cross section view for the Whatman Anodisc AAO membrane 

(A) Magnified cross section view of template with dimensions. Dotted line indicates end of lattice layer (B) 

fabrication process with lattice shown 

B 

A 
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Fig. 2.10 is a schematic showing the cross section view of AAO membranes used as templates. These 

membranes consist of ordered pores which run the entire thickness of the membrane and open at both 

ends. Pore diameter at the top is close to 200nm and 250nm at the bottom surface. The top is also 

characterized by presence of a mesh like AAO layer we call ‘lattice structure’. This lattice structure 

hinders direct access to the pores and is non-functional for our use. During etching, considerable time is 

spent in removing this lattice layer since ordered carbon nanotubes are not found in this region. The 

required length of nanotube exposure is only ~200nm but time spent in clearing away this layer slows the 

fabrication process. Removal of this layer prior to manufacturing is desirable because not only will it 

reduce etching but potentially improve the quality of the array fabricated using wet etching. The use of 

ion milling, wet etching and mechanical polishing are prospective methods of removing the lattice. 
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3. Selection of Alternative Nanofabrication Process 

In order to reduce fabrication time and increase yield, it became important to study and evaluate a number 

of fabrication processes which could replace the current process. This chapter discusses the process of 

selecting a feasible alternative nanomanufacturing method. Fig. 3.1 below shows the alternative processes 

that were proposed to replace current methods. 

 

Figure 3.2: SEM micrograph of array after etching with 1M NaOH for 6 minutes. Tubes 

can be seen embedded inside pores (circled). (A) Normal view (B) 35̊ tilt view. Scale bar 

500nm 

 

Figure 3.1: Alternative proposed fabrication processes 



49 

 

 

3.1 Wet Etching 

Reactive ion etching, being the most expensive and time-consuming process, was of highest priority in 

elimination. The wet etching of Aluminum oxide can be carried out by using easily obtainable compounds 

such as sodium hydroxide and phosphoric acid. These compounds also present the advantage of easy 

disposal and relatively safe handling. This makes wet etching a promising alternative to reactive ion 

etching. Initial trials were carried out for the above process using O2 plasma followed by etching in 1M 

NaOH.  

 

Figure 3.3: SEM micrograph of array after etching with 1M NaOH for 20 minutes. 

Tubes can be seen coalesced together. (A) 35o tilt view (B) Normal view. Scale 

bar (A) 500nm (B) 1µm 

 

 

Figure. 3.4:  Schematic showing the progression of wet etching 
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It was observed that despite the rapid speed of etching, its isotropic nature leads to a condition referred to 

as pore widening. In Fig 3.2, we observe that after 6 minutes of etching the CNT array, part of the lattice 

layer remains, covering the tubes. Tubes can be seen within the pores but they have not been exposed. At 

20 minutes of etching, tubes are very clearly exposed however, the template has been excessively etched 

and the thinner sections of AAO separating the pores have also been dissolved in the NaOH. This is 

illustrated in Fig. 3.3 above. The lack of support resulted in CNTs collapsing upon one another and 

forming a coalesced clump instead of an ordered array, depicted in Fig. 3.4. Another observation critical 

to our application was the formation of towers on the surface which implied that etching was not evenly 

carried out.  

Based upon the above results, the following conclusions were drawn 

1. In a short timeframe, wet etching is sufficient to expose a limited number of tubes. But, the lattice 

structure will remain dominant with random peaks across the surface. With extended duration of 

etching, pore widening becomes the dominant feature, this leads to a loss of support for the 

nanotubes and eventual clumping together, most likely due to the surface tension of etchant.  

2. If the lattice layer can be removed prior to etching the CNT arrays or prior to beginning the 

fabrication process, wet etching can potentially expose the required length of CNTs in a short 

amount of time without pore widening.  

From the above conclusions, it could be inferred that a method to eliminate the lattice layer would be 

beneficial prior to wet etching. Thus, a number of attempts were made to eliminate the lattice layer.  

 

 

 



51 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Removing lattice layer before etching 

 

Figure 3.6: SEM micrograph of bare AAO membrane after wet etching for 7 minutes in 1M 

NaOH (A) top down view, arrows showing pores under partially etched lattice (B) 35 tilt view 

showing pillars. Scale bar 1µm 
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Figure 3.5 depicts the fabrication process proposed, involving the removal of lattice layer. The lattice 

layer could be removed after the CVD process or prior to it. The first attempt was carried out using NaOH 

to etch away the lattice from a bare AAO membrane. The images in Fig. 3.6 show that compared to an 

unetched membrane, there is a significant reduction in the lattice, however, the presence of pillars is 

observed. Since a smooth surface is required for the exposure of coplanar CNTs, alternative methods 

were considered.  

3.2 Ion Milling 

A potential method to eliminate the lattice layer was to utilize ion milling. Initial studies carried out using 

ion milling have provided proof of concept and encouraging results for removing the lattice layer. As 

mentioned in Sec 2.4.2, the process of dry etching for AAO is not well documented. A method of wet 

etching (referred to as the drop method) followed by dry etching was studied to observe the prospects of 

using a hybrid method. This involved placing a small amount of etchant (in this case 1M NaOH) upon the 

membrane to form a drop as shown in Fig. 3.7. It was done so to minimize etching from the bulk of the 

template by reducing the rate of replenishment for available etchant in the pores. This sample was later 

exposed to ion milling.  

SAMCO RIE 1C, benchtop 

reactive ion etching machine 

was used to carry out all ion 

milling procedures. Ion milling 

with multiple conditions was 

attempted, mentioned in Table 2 

below: 

 

 

 

Figure 3.7: Utilization of minimal etchant or ‘drop method’. This is 

tried to reduce dissolution from bulk of membrane 

Template 

Pores 
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 Temperature Power Flow Rate Pressure 

Case 1 25ᵒC  100 W 45 SCCM 31.45 Pa 

Case 2 25ᵒC 200 W 10 SCCM 12.97 Pa 

Case 3 25ᵒC 200 W 74.21 SCCM 54 Pa 

Table 2: Process parameters for Ion Milling experiments 

3.2.1 Case 1:    

Temperature - 25ᵒC, Power- 100 W, flow rate- 45 SCCM, Pressure- 31.45 Pa 

Samples were of both types; bare AAO 

membranes and carbon coated 

membranes, with amorphous carbon layer 

present. The experiment was run for 10, 

20 and 30 minutes. 

Its observed that Ion milling at this 

specification did not have much effect on 

the membranes. Both samples, even after 

30 minutes did not show significant signs 

of material removal as seen in Fig. 3.8.  

3.2.2 Case 2 

Temperature – 25 C, Power- 200W, Flow rate- 10 SCCM, Pressure – 12.97 Pa 

Using a lower pressure as recommended by SAMCO Engineers, etching was carried out again on similar 

samples, both bare and carbon coated. Using a lower pressure increases the mean free path of gases. This 

increases the probability of an ion striking the surface of the membrane. Also since inter-ionic collisions 

are reduced, it is expected that ions with higher energy will strike the surface, leading to more material 

removal. Etching under these conditions was carried out for 30 minutes, 60 minutes and 90 minutes. The 

 

Figure 3.8: SEM micrograph, normal view of carbon coated 

membrane after 30-minute ion milling. No material removal 

is observed.  
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SEM micrographs in Fig. 3.9 show that considerable material removal took place at the end of 90 

minutes. In contrast, carbon coated membranes showed very little material removal as compared to bare 

membranes, promoting the idea that removal of lattice layer prior to CVD might be easier.  

 

3.2.3 Case 3 

Wet etched 7 minutes, 1M NaOH 

Temperature – 25 C, Power- 200W, Flow rate- 74.21 SCCM, Pressure – 54 Pa 

Membranes were first etched for 7 minutes using 1M NaOH. The method of etching was different 

because a small volume of etchant utilised to minimize etching from inside open pores as shown in Fig. 

3.7. This time, a higher pressure was utilised i.e. a higher gas flow rate to have a larger number of free 

radicals in the plasma and thus more etching. Ion milling was carried out for 1 hour with the above-

mentioned parameters in 4 runs of 15 minutes. This was done to prevent the machine from overheating. It 

was observed that there was significant exposure of the pores. The pores also appear to be clogged by 

  

Figure 3.9: SEM micrograph of plain AAO membrane after 1.5-hour ion milling. Pits and 

craters can be seen, indicating material removal. (A) Normal View (B) 35° Tilt view showing 

non-uniform etching. Scale bar 1µm 
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debris, which can be seen in Fig. 3.10. However, this is an encouraging result since removal of lattice 

layer is explicit and ordered pores can be identified.  

In the above processes, it was observed that ion milling had the potential to remove the lattice later but 

left the membrane with an uneven surface morphology. Ion milling is also not a physical process but a 

plasma based process which can potentially vary on different equipment. It is also important to note that 

carrying out CVD on clogged membranes with an uneven morphology would not result in coplanar 

CNTs. To overcome these disadvantages, other methods were considered. 

3.3 Mechanical Polishing  

The most desirable fabrication process is one that poses least variability, easy scale up opportunities and 

preferably can be carried out without the use of cleanroom facilities. Since the lattice layer is about 1µm 

deep from the top of the surface, polishing was considered as a potential option. Mechanical polishing 

poses the advantage that it is easy to scale up, is free of cleanroom requirements and is not subject to 

variations due to plasma or other dynamic systems.  

 

 

Figure 3.10: SEM Micrographs of bare AAO membranes after 7 minutes wet etching using 

‘drop method’ and subsequent ion milling for 1 hour. (A) scale bar 5µm (B) scale bar 2µm. 

Material removal is comparatively uniform and pores are beginning to show (marked with 

arrows) 
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3.3.1 Case 1: Polishing bare AAO membranes: 

 

Bare AAO membranes were polished on a Struers TegraPol using 1µm DiaPro diamond suspension. The 

polishing set up is shown in Fig. 3.11. Bare membranes were subjected to 12 minutes of polishing at 

150RPM.  

In Fig 3.12 and 3.13 it is seen that the lattice layer seems to have been eliminated and pores are visible. 

The pores are clogged with debris from polishing. Further trials were carried out using polishing followed 

 

Figure 3.11: Polishing set up schematic 

 

Figure 3.12: top down view micrographs of polished membranes, 15N, 150RPM (A) 3 minutes 

(B) 6 minutes (C) 9 minutes (D) 12 minutes, scale bar: 1um (A, B), 500nm (C, D) 

 

 

Figure 3.13: Top down micrographs of polished membranes with increasing force (A) 20N 

(B) 25N (C) 30N, for 5 minutes. Dark spots are covered pores. Scale bar 1um 
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by wet etching. After 3 minutes of polishing at 15N, there is significant reduction in the lattice, shown in 

Fig. 3.14 (A) By increasing force to 30N and stepping up the time to 18 minutes, there is a very clear 

elimination of lattice from the surface of membranes seen in Fig. 3.14 (B). This brings us to a definite 

conclusion that polishing is a very promising process for this task.  

These membranes were then annealed in preparation for CVD. Polished membranes after annealing 

resulted in curling of the membranes which rendered them imperfect for cell culture studies. Since 

polishing is a non-selective process, it can be carried out after the CVD step thereby leading to the 

reduction in steps, increasing yield by reducing damage to membranes during the polishing process and 

preventing polished and annealed membranes from curling during the CVD process.  

 

Figure 3.14: SEM micrographs showing polished bare membranes (A) 12 minutes, 15N (B) 

18 minutes, 30N.Both were followed by 3 min etching with 1M NaOH Scale 2µm 

 

 

Figure 3.15: Top down micrographs of CNT arrays. Polished for 20 minutes at 30N, etched 

with 1M NaOH. (A) 3 mins (B) 5 mins. Scale 2um 
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3.3.2 Case 2: Polishing carbon coated devices 

 

In Fig. 3.15 polished and etched CNT arrays are shown. The crusty appearance of the CNT arrays was 

found to be due to excessive sputter coating in preparation for electron imaging. Some amount of 

clogging can be observed within the CNTs. The cause and solution to clogging will be further discussed 

in the following chapter.  

From the above images, following conclusions can be drawn: 

1. Polishing is a simple and effective technique to eliminate the lattice layer. 

2. There exists control over the polishing process through mutually independent variables such as 

time and force 

3. Clean room facilities are not required for polishing 

4. Scaling up of polishing will be a much simpler operation than scaling up of a dry etching process 

5. Polishing poses a higher risk of damaging membranes 

Based upon the above points, it was decided that polishing, combined with wet etching is the most 

feasible fabrication technique for mass production of CNT arrays. Hence, further studies were dedicated 

to the optimization of this process and understanding the variables that affect it.  
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Chapter 4: Effects of Synthesis Parameters on Carbon 

Nanotubes 
 

After analyzing the observations made during experiments mentioned in chapter 4, it was clear that 

mechanical polishing was a viable alternative solution for the fabrication of CNT arrays. To effectively 

implement a fabrication process, it becomes important to comprehend in totality the behavior of the 

process under varying conditions. It was also important to understand the extent to which this process 

could be controlled in order to yield CNT array devices of required dimensions such as tube height and 

diameter. In this chapter, effects of the different process parameters with respect to physical properties of 

CNTs are discussed. During the polishing – wet etching process, the following parameters can be 

controlled: 

Polishing: Force, time, size of polishing particles 

Wet etching: Etchant, concentration of etchant, time 

4.1 Effect of Polishing Parameters 

Mechanical polishing was shown to potentially eliminate the lattice layer and overcome the issues 

associated with plasma based processes. The image in Fig. 5.1 depicts the polishing set up: 

1. Mounting of carbon deposited membranes on aluminum stubs: Aluminum stubs were cleaned 

thoroughly with acetone to make sure they were free of impurities and leftover wax from earlier 

processes. The stubs were then heated to 150 – 160°C on a hot plate, this is twice the flow point 

(78°C) of the 7071 Blanchard wax used. When stubs are warmed up, a stick of 7071 Blanchard 

holding wax (acquired from the J.H Young Co.) is used to apply a thin layer of wax on their 

surface. The wax so applied should be even thickness and have no air bubbles. The device is 

placed on the wax and let allowed to settle down for 45s – 1 minute, until it is seen that the entire 

surface of the devices contacts wax (this is confirmed by observing the wetting of the devices by 
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the wax which can be visibly observed). Any section of the membrane not in contact with that 

wax poses an increased risk of the device cracking during polishing. Care should be taken at this 

point to make sure that the wax film is even, this is imperative to prevent high and low spots on 

the mounted device and ensure even polishing. The stub is then allowed to cool down to room 

temperature. Excess wax can be cleaned by rubbing gently on a Kim wipe wetted with acetone.  

2. Polishing: The stub is placed in the holder of the Struers TegraPol and polished with set force for 

a given time. The MD-Floc polishing pad should be lubricated with 4-5 drops of green water 

based lubricant for every 5 minutes of polishing. After polishing, stub is placed under running 

water to clean off polishing slurry and allowed to dry under an air dryer.  

3. Dismounting of polished device from stub: The stub with the device on it is heated to 140°C on a 

hot plate. When the stub is warmed up, acetone is poured using a dropper on the stubs to help 

dissolve wax and free the device. Using constant addition of acetone via a dropper, the device is 

picked up using tweezers and rapidly transferred to a vessel containing 99% acetone.  This is 

carried out rapidly with great care to prevent the solidification of wax on the device which can 

result in the contraction of the wax and excess strain on the device resulting in damage or curling. 

The device is left in the acetone bath for 5 minutes to dissolve remaining wax. The device can 

now be removed from the acetone bath and allowed to dry. If visible traces of wax remain on the 

device surface, it should be immersed in fresh acetone for another 5 minutes while stirring.  

 

 

 

 

 

 

Figure 4.1: Polishing set up for CNT arrays 
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4.1.1 Effect of Polishing Time: 

The AAO template does not have pores with a constant diameter through the cross section. The diameter 

of pores varies along the thickness of the membrane. This is illustrated in Fig. 3.10. With an increase in 

polishing time, it was hypothesized the diameters of exposed CNTs can be controlled due to an increased 

removal of template material and exposure of wider or narrower pores.  

Experiment: 

AAO membranes without carbon on them were mounted on aluminum stubs using 7071 Blanchard wax 

acquired from Stronghold Wax Company. They were then polished for time periods ranging from 5 

minutes to 30 minutes in increments of 5 minutes using Struers DiaPro 1µm polishing suspension. 

Membranes were then etched in 1M NaOH for 3 minutes to clear polishing debris from the surface and 

expose pores while minimizing the effect of pore widening. They were then sputter coated for 3.5 minutes 

with Pd/Au to prepare for SEM imaging. Imaging was carried out on Tescan Mira 3 FESEM, 20kV gun 

voltage and 9mm working distance. All images were captured at a magnification of 40kx.  

Measurement of pore sizes was carried out using NIH ImageJ. Images were adjusted for threshold and 

pore areas and perimeter recorded. Hydraulic diameter was calculated using the equation H= 
4 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
. 

Depending upon the number of pores in an image, between 700-800 measurements were taken from each 

image. 2 images from different regions of the same membrane were analyzed.  

Results: 

Figure 4.2 shows SEM micrographs of the membranes after polishing and wet etching. The dark and light 

bands on the edges are caused due to charge build up during imaging. Visually, the pores appear to have 
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been perfectly exposed with no sign of the lattice layer. The graphs in Fig. 4.3 show average pore size and 

pore size distribution for each of the specimens. 

 

 

 

 

 

 

 

 

Figure 4.2: Membranes polished at 30N for (A) 5minutes (B) 10 minutes (C) 15 minutes (D) 

20 minutes (E) 25 minutes (F) 30 minutes, scale bar 2µm 
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Figure 4.3a: Variation of pore hydraulic diameter with increasing polishing time at 30N (A) 5 

min (B) 10 min (C) 15 min 



64 

 

  

 

Figure 4.3(b): Variation of pore hydraulic diameter with increasing polishing time  

(D) 20 min (E) 25 min (F) 30 min  
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Observations and conclusions: 

From the above data, a slight 

decrease in the average pore size is 

observed with increase in polishing 

time. This suggests that after just 5 

minutes, the membrane has been 

polished to expose pores higher than 

250nm in diameter and as polishing 

continues, a decrease in pore size 

can be observed. This indicates that 

polishing is taking place within the ‘neck’ area of the pores, after the lattice layer. The error bars indicate 

the standard deviation of pore sizes within a sample. The standard error value indicates that there is 

significant difference between pore sizes when polishing time is raised from 5 minutes to 10 minute and 

 

Figure 4.4: Change in Hydraulic Diameter with Polishing Time. Error bars show SD. 
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Figure 4.5: Cross section view of membrane showing 

region exposed by polishing in blue. Not to scale 
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further on to 20 minutes. There is no increase in the hydraulic diameter with polishing, suggesting that 

material is not removed to more than a few microns below the lattice layer as shown in fig. 4.5. 

4.1.2 Effect of Polishing force  

The geometry of pores through the AAO membrane cross section has been well documented by (Golshadi 

2016). The pores are shown to have a vase like geometry beyond the lattice layer, starting with a wide 

opening leading to a narrower neck and a wider body, depicted in Fig. 4.5. It can be deduced that by 

controlling the depth to which the membrane is polished, exposed CNT diameters can be controlled. The 

depth of polishing could be controlled by either polishing at a higher force or polishing for longer times.  

In this experiment, AAO membranes were exposed to 7 hours of CVD at 705 °C. Membranes were then 

polished for 5 minutes using the DiaPro 1µm diamond suspension at 10N, 30N and 50N. membranes 

were then wet etched in 1M NaOH for 5 minutes at room temperature. SEM imaging was carried out 

using the Mira TESCAN FESEM at a beam voltage of 20kV. The hydraulic diameter of the tube lumen 

was calculated using ImageJ particle analysis tool. Area and perimeter of pores were recorded and 

hydraulic diameter calculated as 
4 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
 . 2 images from difference regions on each membrane were 

analyzed and Students t-test assuming equal variance was used to make sure that the difference in data 

from the 2 images was not statistically significant. Fig. 4.6 shows the images used for analysis followed 

by graphs in Fig. 4.7 showing the distribution of CNT inner diameters.  

 

Figure 4.6: Top down view SEM micrographs of CNT arrays after polishing at (A) 10N (B) 

30N (C) 50N Scale bar 2µm 
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Observations and conclusions: 

 

Figure 4.7: Variation of inner hydraulic diameter of CNT with polishing force after 5 minutes 

of polishing (A) 10N (B) 30N (C) 50N 
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Recordings of tube diameters from the same membrane on different regions of the membrane were not 

statistically different from each other indicating that the polishing process could result in even polishing 

across the surface. There was little difference observed between the CNT inner diameters between 

devices polished with different forces, strongly suggesting that increasing force does not necessarily 

increase the depth to which polishing occurs. With increased polishing force, the membranes were found 

to be more likely to curl during the etching step, likely due to increased internal stresses. Increasing the 

polishing force also increased the likelihood that a membrane could get stripped off the polishing stub or 

develop cracks, thus compromising its functionality or leading to a complete loss. Therefore, a polishing 

force of not more than 30N was considered ideal for the process while keeping time as the variable 

parameter to adjust depth of polishing.  

4.2 Wet Etching: 

The aluminum oxide template used is an amphoteric oxide, soluble in both acids and bases. Wet etching 

of aluminum oxide is commonly carried out using NaOH or H3PO4. In this section, the effect of etching 

time and etchant molarity upon CNT height is discussed.  

4.2.1 Effect of etchant concentration:  

To better understand etch rates with respect to changing concentration etchants, CNT array devices were 

etched with NaOH ranging from 1M to 9M concentration after polishing for 5 minutes at 30N. CNT 

height measurements were carried out manually using ImageJ on SEM micrographs captured at 35° stage 

tilt. 200 data points were recorded from each image. Fig. 4.8 shows the qualitative change in array 

devices with increasing molarity of etchant. Pore widening is observed to be the limiting factor for tube 

heights when wet etching is used. Tube height distribution is shown in Fig. 4.9. 
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Results and Observations:  

 

 

Figure 4.8: 35° tilt micrographs of CNT array devices etched with NaOH (A) 1M (B) 2M (C) 

3M (D) 5M (E) 7M (F) 9M Inlets showing top down view and pore widening. Scale bar 2µm, 

inlet scale bar 1µm 
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Figure 4.9: CNT height distribution after etching 5 minutes with NaOH (A) 1M (B) 2M (C) 3M 
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Figure 4.9(b): CNT height distribution after etching 5 minutes with NaOH (D) 5M (E) 7M (F) 

9M 
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A consistent increase is observed in the CNT heights up to 3M concentration, as seen in fig. 4.10. The 

regime between 3M and 7M concentration does not show significant difference in tube heights. This is 

attributed to the isotropic nature of wet etching and resulting pore widening. Both the edges around the 

tubes and the bulk of the membrane experience the same etch rates. However, there is much lesser 

material to etch at the edges as compared to the bulk. Therefore, in a given amount of time, more of the 

edge gets etched, leading to a rapid widening of the pore instead of uniform top-down etching. 

Pore widening poses the risk of CNTs losing their structural support from the template and potentially 

clumping, if excess etching is carried out. It also adds ambiguity to the measurement of CNT heights 

because the actual point of intersection between the template surface plane through the CNT cannot be 

identified. Thus, CNT measurements from devices with significant pore widening cannot be accurately 

judged. 

4.3 Conclusion 

Polishing and wet etching can be controlled to yield CNT arrays of desirable physical parameters in a 

fraction of the time as compared to reactive ion etching. A typical polishing process will take 10 minutes 

of process time to yield 6 membranes compared to 6 hours for RIE. Thus, polishing and wet etching are 

significantly quicker and cheaper processes.  

 

Figure 4.10: Mean CNT height after etching for 5 minutes with varying NaOH 

concentrations 
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Chapter 5: CNT Quality Control 

CNTs fabricated through polishing and wet etching display quality issues unique to the polishing process. 

Polishing, being an abrasive process, poses the risk of damaging CNT arrays due cracks induced in the 

template during the process, uneven polishing due to improper mounting of CNT devices on polishing 

stub and microscale damage to CNTs from polishing particles. This chapter presents a qualitative 

assessment of CNT arrays using electron microscopy as the primary investigative tool. All SEM 

micrographs were captures on the TESCAN Mira3 FESEM, with an accelerating voltage of 20kV unless 

mentioned otherwise.   

5.1 Clogging of CNTs 

 

As seen in Fig. 4.1 earlier, the polishing set up consists of a number of materials which are directly 

involved in contact with the polishing pad and may lead to clogging of nanotubes. Clogging throughout 

this chapter is classified as 3 types, shown in fig. 5.1. Type 1 clogging indicates highly clogged pores 

which are often found alongside damaged tubes. Type 2 clogging is less compared to type 1 and less tube 

 

Figure 5.1: SEM micrographs of CNT arrays showing possible clogging (A) Type 1: Highly 

clogged and damaged, white circles show clogging in tubes (B) Type 2: Light clogging and 

minimal damage (C) Type 3: No clogging, no damage. Scale 500nm  
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damage is observed. Type 3 indicates well formed, unclogged CNTs with no damage. The presence of 

obstructions in CNTs can be undesirable if CNT devices are used for fluidic applications such as 

intracellular delivery or as a component of a microfluidic system. In order to understand the cause of 

clogging and methods to eliminate it, a number of experiments were carried out. 

Membranes during polishing come in contact with several materials. Blanchard holding wax, a commonly 

used wax for polishing silicon wafers in the microchips industry, is used to hold the AAO membranes 

onto the polishing stubs machined out of aluminum. The polishing pad used is a Struers MD FLOC non-

woven fiber pad. Polishing slurries used were 1µm, ¼ µm Struers DiaPro (Diamond) and 0.05µm alumina 

(powder suspended in water). With the above set up, 4 major elements can be identified as the potential 

source of clogging in CNT arrays: 

• Diamond – from polishing suspension 

• Wax – Used to hold the devices on the stub 

• Alumina  

• Carbon – from CNT devices 
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5.1.1 Identification of clogging source - Wax 

Initial hypothesis suggested that due to improper 

cleaning, residual wax was responsible for clogging 

the CNTs. This problem was not observed when plain 

membranes were polished with or without wax 

suggesting that the decreased diameter of lumen after 

carbon deposition was affecting the ability of acetone 

to completely remove wax. Since wax is soluble in 

acetone, longer acetone wash times, higher 

temperatures and ultrasonication in acetone were 

experimented with to understand its effect on 

clogging. Fig. 5.3 shows the results after the different 

rinsing processes. 

 

Figure 5.2: Bare membrane polished for 

5 minutes, 30N. No clogging observed. 

Scale 2µ 

 

Figure 5.3: Top down micrographs of CNT arrays after (A) rinsing in acetone (40°C) (B) 

Rinsing in water (100°C) (C) After forcing acetone through CNTs using syringe. Type 2 

clogging observed in all specimens. Scale 1µm 
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In the images shown in Fig. 5.3, it can be observed that clogging is persistent in all CNT devices despite 

the processing technique utilized. These experiments indicated that the hypotheses of wax clogging the 

nanotubes was likely to be a weak hypothesis and other causes should be considered. However, the 

experiments did not indicate a complete breakdown of the hypothesis since it could not be confirmed 

whether the acetone was truly effective at dissolving wax from the CNTs. Thus, these experiments 

assumed that acetone is 100% effective at dissolving all wax. To confirm the hypothesis, polishing was 

carried out without using wax as a mounting agent for 5 minutes and 30N followed by 5 minutes of 

etching with 1M NaOH. CNT arrays were mounted using Kapton tape on to aluminum stubs and 

polished. The resulting micrographs, shown in fig. 5.4, showed type 1 clogging in the CNTs, thereby 

confirming the hypothesis that wax was not 

responsible for clogging the CNTs.  

5.1.2 Identification of Clogging Source – 

Aluminum Oxide 

Aluminum oxide, if involved in clogging the 

CNTs, should ideally have been dissolved by 

the action of wet etchants such as NaOH or 

phosphoric acid. It is possible that due to the 

small diameters of CNTs, etchants were not 

able to access the lumen and dissolve the 

alumina.  

 

 

 

 

 

Figure 5.4: Top down micrograph of CNT array, 

polished without wax, 5mins, 30N. Clogged 

tubes encircled.  
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To overcome this, X-ray microanalysis using scanning electron microscopy (SEM) was utilized.  

 

The image in Fig. 5.5 strongly suggests that alumina is present in some quantities in the clogged pores. It 

must be noted that EDX results cannot be taken as conclusive but were used as a guide for future 

experiments. To eliminate traces of alumina from the clogging, devices were exposed to reactive ion 

etching using BCl3 and wet etching techniques. It was expected that BCl3 will result in selective etching of 

AAO and a reduction in clogging can be observed.  

 

Figure 5.5: EDX spectra overlay - showing aluminum in red. Clogged pore circled. Red color 

suggests presence of aluminum 

 

Figure 5.6: Top down micrographs of CNT devices processed with RIE for (A) 15 minutes 

(B) 30 minutes (C) 45 minutes followed by wet etching for 5 minutes with 1M NaOH. A, B 

show type 2 clogging and C shows type 3 clogging. Scale 1µ 
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Reactive ion etching was carried out for 15, 30 and 45 minutes at a flow rate of 20SCCM argon and 

80SCCM BCl3 on different devices immediately after polishing. The devices were then subject to wet 

etching with 1M NaOH for 5 minutes. It was expected that reactive ion etching will selectively etch away 

aluminum oxide, thereby unclogging the tubes to some degree. The images in Fig. 5.6 show that RIE has 

influenced the clogging of CNT arrays but type 1 clogging is seen in Fig. 5.6 (C) and type 2 in panels A, 

B. The devices used for this batch of experiments also show some variability in polishing but clogging is 

observed in all sections of the devices irrespective of the quality of polishing. Further experiments were 

carried out using by using variations of wet etching.  

In Fig. 5.7, all devices were etched using 1M NaOH for 5 minutes unless specified. Significant etching 

has taken place when using higher concentration of NaOH or warm NaOH, indicated by the presence of 

pore widening. However, clogging is still observed in the CNTs. With the increase in NaOH 

concentration, an increase in the viscosity and surface tension of solution is observed. To enable better 

access to the CNT lumen, a lower molarity of NaOH was used to etch the device for a second round. 

Using a lower molarity of NaOH for a second round of etching after 5 minutes of etching with 1M NaOH 

also did not show any reduction in clogging.   

 

 

Figure 5.7: Top down micrographs of CNT devices etched with (A) 7M NaOH for 5 minutes 

(B) 9M NaOH for 5 minutes (C) 1M NaOH for 5 minutes followed by 0.1M NaOH for 5 

minutes (D) 1M NaOH, ~40°C, 5 minutes, Scale 1µ 
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5.1.3 Identification of Clogging: Carbon  

 

Since all the methods above selectively dissolve or etch away aluminum oxide, it could be concurred that 

aluminum oxide was not the primary element responsible for clogging of CNTs because there appeared to 

be negligible change in the number of clogged CNTs in each experiment. This in conclusion implied that 

the clogging was most likely being caused by carbon being smeared from damaged CNTs during the 

polishing process. 

In order to confirm the hypothesis, attempts were made to oxidize carbon using oxygen plasma etching. 

The 2 routes to eliminate carbon from the polishing process are shown in Fig. 5.8 below. In route A, 

carbon is etched away prior to polishing and therefore is not involved in the polishing process, 

eliminating any possibility of it clogging the CNTs. In route B, carbon is etched after CNTs have been 

exposed. In an ideally controlled process, just the right amount of etching would take place to eliminate 

the clogging. In the case of excessive etching, the CNT array could be further wet etched to dissolve more 

of the membrane and re-expose nanotubes. Since, neither of the processes provide an advantage over the 

other, the selection criteria were limited to the route which would offer better control over the geometry 

of CNT array device.  
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In Fig. 5.9 below, results from method A are shown. Initially oxygen plasma (SAMCO RIE-1C) was 

carried out for 2 and 4 minutes at 50SCCM flow rate and 200W RF power on carbon coated membranes 

prior to polishing. The devices were then polished for 25 minutes at 30N and etched in 1M NaOH for 5, 

8minutes. It is seen that carbon is completely etched off in some regions from the membranes and no 

clogging is observed. Plasma treatment therefore resulted in excessive etching. To better control the 

process, oxygen plasma was carried at 50W and 50SCCM on carbon coated devices and followed by 25 

minutes of polishing at 30N 5, 7 minutes of etching in 1M NaOH. In fig. 5.10 (A, B) are images from 2 

different membranes. (A) displays clogging while minimal tubes are observed in (B). Since the etch rate 

of amorphous carbon within the geometry of porous membrane is not documented, it was not possible to 

estimate the depth to which carbon was being etched. From 5.10 (A, B) it is clear that the process presents 

variability. Owing to the above factors, it was decided to try route B shown in fig. 5.8.   

 

Figure 5.8: Schematic depicting two methods of implementing oxygen plasma to remove 

carbon (A) O2 plasma is used to eliminate carbon from the polishing process (B) O2 plasma is 

used to etch the top of CNTs which can then be exposed again by etching 
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Figure 5.9: SEM micrographs of devices after O2 plasma at 50SCCM, 200W (A) 2 minutes 

(B) 4 minutes followed by polishing for 25 minutes at 30N and wet etching for (A) 5 minutes 

(B) 8 minutes. Scale 2µm 

 

Figure 5.10: CNT arrays fabricated using procedure outlined in fig. 6.8 (A). O2 plasma 

carried out at 50SCCM, 50W for 1 minute followed by polishing for 25 minutes, 30N (A, B) 

Wet etched 3 minutes (C) 7 minutes with 1M NaOH. Scale 2µm  
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We observe that despite the layer of debris from polishing, oxygen plasma significantly reduced clogging 

in the carbon nanotubes. With increasing oxygen plasma time, the number of unclogged pores increases 

significantly.  The removal of clogging appears to be a relatively quick process since pores are observed 

with clogged CNTs or completely clean. This gives strong evidence for the hypothesis that clogging is 

caused primarily due to carbon.  

 

 

Oxygen plasma was also carried out on polished devices after etching, to understand whether the process 

of eliminating clogging could be controlled when nanotubes are exposed. Fig. 5.11 shows the resulting 

devices after 60, 90, 120 seconds of oxygen plasma at 50W, 50SCCM of oxygen flow. The devices were 

etched again in NaOH after oxygen plasma to increase the length of exposed tubes. After 1 minute of 

treatment with oxygen plasma, seen in Fig. 5.11 A (i), certain regions of the membranes show excessive 

etching and no tubes are observed. In Fig. 5.11 (A (ii)) clogged tubes of type I are observed.  After 2 

minutes of treatment and more, almost all carbon is etched away and no nanotubes are observed on the 

surface, implying excessive etching.  

Although oxygen plasma treatments were successful to a limited extent in helping unclog the CNT 

devices, a high level of variability and lack of control made the use of O2 plasma unfeasible.  

Corona plasma treatment was also briefly explored as an aid to unclog the CNT arrays. A corona 

discharge is formed when a highly charged conductor ionizes the insulating fluid around it, in most cases 

this fluid is air. The corona discharge will result in the production of ozone and other ions. A handheld 

corona discharge device known as the plasma wand was used for this task. Since CNT devices are 

conductive, an arc was formed between the conducting tip of the corona device and CNT device. 

Membranes were treated either before etching or after etching for 30s and 120s. Fig. 5.12 shows the 

 

Figure 5.11: Devices polished for 5 minutes, 30N followed by wet etching for 5 minutes with 

1M NaOH. O2 plasma carried out for (A) 60s (B) 90s (C) 120s at 50W, 50SCCM flow rate 

followed by etching again for 5 minutes with 1M NaOH. Scale (A) 1µm (B) ½ µm (C) 1 µm 
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results of the experiment. In Fig. 5.12 (A, C) we can see that corona treatment immediately after polishing 

for 30 seconds does not result in a significant reduction in the clogging of carbon nanotubes in some 

region while other regions show a complete elimination of nanotubes. After 120s of corona treatment, 

CNTs have been etched and bare AAO can be observed. The process exhibits a high amount of localized 

variability.  

5.2: Effect of CVD Time and Membrane Position in Furnace on CNTs 

It was found that the position of membranes on the CVD holder, referred to as the ‘boat’ and CVD time 

had a major effect on the clogging of CNT arrays. The following experiments were carried out to 

qualitatively observe how CVD time and membrane placement affects CNT quality.  

Experiment 1: 

The CVD boat consists of 35 slots, of which 9 were filled as shown in fig. 5.13. The membranes were put 

through CVD for 5 hours and 7 hours. Membranes were then taken in groups of three, depending on their 

position in the boat (near gas inlet, center, near exhaust). 1 membrane in each group was polished with 

 

Figure 5.12: Plasma wand used before etching (A) 30s (B) 120s, Plasma wand used after 

etching (C) 30s (D) 120s, followed by etching for 1 minute with 1M NaOH. Scale 1µm, (C) 

scale 500nm 
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15N force for 5 minutes while the other two in the group were polished at 30N for 5 minutes followed by 

5 minutes of wet etching with 1M NaOH. The results are shown in fig. 5.14 and 5.15 below.  

 

Figure 5.13: Arrangement of membranes to study CNT quality changes due to position in 

tube furnace and CVD time 

 

Figure 5.14: SEM micrographs of 5-hour CVD (A, C, E) 15N 5 min polished devices (B, D, 

F) 30N 5 min polished devices (A, B) near exhaust (C, D) center (E, F) near inlet. Scale 2µm 
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The position of devices in the polishing equipment 

holder was also tracked to rule out any variability 

due to the polishing set up.  

Results: It was observed that after 5 hours of CVD, 

irrespective of polishing force, CNTs were easily 

damaged during the polishing process and appeared 

to be clogged. CNT wall thicknesses appear to be 

consistent across all samples indicating uniform 

carbon deposition. After 7 hours of CVD, an 

interesting observation was made. Specimens closer 

to the exhaust seem to have lesser clogging in the 

Figure 5.15: SEM micrographs of 7-hour CVD (A, C, E) 15N 5 min polished devices (B, D, 

F) 30N 5 min polished devices (A, B) near exhaust (C, D) center (E, F) near inlet. Scale 2µm 

 

Figure 5.16: Unclogged, undamaged tubes 

after 7 hours CVD. Device was placed near 

exhaust during CVD. Scale 1000nm  
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tubes and displayed lower tube damage, despite equivalent tube wall thicknesses. This experiment was 

repeated to confirm results, seen in fig. 5.16. 

 

Figure 5.17: Experimental set up to study variation in CNT quality after polishing due to 

membrane positioning in sample holder and interdependence of membranes in different 

positions. CVD carried out for 7 hours 

 

Figure 5.18: Membranes imaged corresponding experiments described by fig. 6.17. (A) 

Type 1 clogging observed in all samples (B) No clogging in one sample (shown here). Inlet 

shows tube damage (C) Type 2 clogging observed. All specimens imaged were from the 

group near the exhaust. Scale 2µm (A, B scale is the same), (B inlet) 200nm 
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A third experiment was designed to study whether the removal of membranes from other positions in the 

boat would yield similar results. In this experimental set up the boat was filled with membranes as shown 

in figure 5.17. The membranes were then exposed to 7 hours of CVD and polishing at 30N for 5 minutes 

using 1µm diamond slurry followed by etching using 1M NaOH for 5 minutes. Fig. 5.18 shows the results 

of this experiment. Only the marked membrane showed unclogged tubes. This result strongly suggested 

an interdependence of membranes in different positions with respect to how devices reacted to polishing.  

 

To verify that CNTs were unclogged all the way through, cross section of etched, broken membranes was 

imaged. In Fig. 5.19, the CNTs show no clogging, neither at the upper opening of the CNTs nor in the 

lower sections. In the clogged CNT arrays, it is seen that the clogging does not extend down below the 

very top, implying that there are no impurities that remain in the tubes from the polishing process. This is 

an important observation since the presence of impurities within the nanotubes would pose larger 

problems for the purposes of cleansing as compared to impurities at the very openings. 

 

Figure 5.19: Cross section view of membranes (A) No clogging is observed in the tubes 

below the surface (B) Unclogged membrane, no clogging in tubes below surface. Thus, 

clogging is only on the surface. Scale (A) 1µ (B) 2µ 
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Although unclogged CNTs could be obtained 

by the above-mentioned method, it added 

time to the process while reducing yield by 

50% because only 3 membranes at a time 

could be obtained unclogged. Unclogged 

membranes also displayed signs of tube 

damage and jugged CNT walls as shown in 

fig. 5.20. 

The issue of clogging was also studied with 

respect to the grain size of polishing slurry 

used. The following solutions were available 

for use: 

1. Struers DiaPro Nap 1µm  

2. Struers DiaPro Nap ¼ µm 

 

Figure 5.20: Arrows showing jagged tube walls 

 

Figure 5.21: 35° tilt micrographs of CNT arrays polished using (A) 50nm Alumina for 5 minutes 

at 30N, inlet shows top down view of tubes (B) ¼ µ DiaPro for 5 minutes, 30N, inlet shows top 

down view. Scale (A) 2µ, inlet 500nm (B) 1µ, inlet 250nm 



89 

 

3. Electron Microscopy Sciences: Type DX alpha alumina powder 0.05µm  

The Struers acquired suspensions are proprietary suspensions of mono-crystalline diamonds, coolant and 

lubricant to minimize heat generation during the process and increase the life of the polishing pad. The 

Alumina powder was mixed with water or Struers proprietary DP Green Lubricant. Results of polishing 

from the different suspensions are shown in Fig. 5.21. A marked observation is that the reduction in 

suspension size has a marked increase upon the smoothness of tube walls and reduction of clogging 

within CNTs. The DX alpha alumina powder shows the best results with respect to clogging, however, 

due to the lack of lubrication, coolant and imperfect concentration of particles, accelerated polishing pad 

wear was observed along with increased damage to membranes during the polishing process.  

In conclusion, alternative processes of fabrication have been developed which can produce CNT arrays of 

quality comparable to CNT arrays produced via dry etching in a fraction of the time. The use of smaller 

suspension particles for polishing results in increased coplanarity of tubes and decrease in clogging of 

CNTs.  
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Chapter 6: Cell Culture on CNT arrays and Transfection 

To confirm that CNT array devices were 

ready for use with cell transfection, basic 

fluid flow experiments were carried out. 

These experiments were not designed to 

quantify fluid flow parameters through 

nanotubes but rather to confirm that flow of 

fluid was possible through the devices. The 

experiment was set up as follows.  

Devices were placed cell growth side down 

on a sheet of paper and a drop of DI water 

was placed on the device. The device was 

covered to prevent evaporation of the drop. 

After 2 hours, wetting of paper under the 

device confirmed that water had gone 

through the CNT array, depicted in Fig. 6.1 

below.  

 

6.1 Cell culture – Experiment 1: 3T3 Cell Growth on CNT arrays 

The first experiment to study cell growth was carried out on devices that had been exposed to 3 minutes 

of oxygen plasma at 300 mTorr, 250W RF power and 100 sccm of oxygen flow. The devices were then 

wet etched using 1M NaOH for 15, 17 and 20 minutes.  The aim of this experiment was to understand 

basic cell culture protocols and handling of equipment in a tissue culture room.  

 

Figure 6.1: (A) Devices placed on dry paper with 

water droplet (B) wetting observed under device 

after 2 hours, confirming fluid flow capability 



91 

 

Cells used were of the NIH/3T3 type fibroblasts. Cells were detached from cell flask by letting them sit in 

trypsin for 7 minutes. Trypsin was aspirated and Dulbecco’s Modified Eagle’s Medium (DMEM) was 

added to neutralize the effects of trypsin. 20µl of cells in media was taken and dyed blue with 20µl of 

trypan blue to identify dead cells. 0.5µl of cells was put into a hemocytometer for counting. Each device 

was to be coated with 40,000 cells which was calculated as approximately 500µl.  

2 of 17 minute and 15-minute etched devices each were coated with cells. Devices were rinsed with 

ethanol prior to use. The devices were left to dry for 5 minutes and PBS used to rinse devices to remove 

leftover ethanol if any. 0.5ml of cell solution was added to each well and allowed to incubate for 24 

hours. To observe cells under a microscope, they were fixed using paraformaldehyde diluted in PBS 

(unknown concentration) and stained with a green actin filament dye. Images in Fig. 6.2 show cells 

growing on the devices.  

The images in Fig. 6.2 show that cells 

adhered to the surface of the CNT array 

device and appear to be healthy as per their 

morphology.  

 

 

 

 

6.2 Cell Culture – Experiment 2: HE293 Cell growth and EYFP transfection attempt 

HEK 293 cells were cultured on CNT array devices fabricated using mechanical polishing. Devices were 

fabricated by carrying out CVD for 5 hours followed by polishing for 5 minutes at 30N of force using 

DiaPro 1µm diamond suspension. The devices were then etched using 1M NaOH for 3 minutes, 5 

 

Figure 6.2: Fluorescent image of fixed 3T3 cells 

on CNT array etched for 17 minutes with 1M 

NaOH (A) 20x (B) 100x 
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minutes and 7 minutes. The CNT heights were measured as 104 ± 30nm, 114±30nm and 134±39nm for 3 

min, 5 min and 7 min etched devices respectively. The distribution of tube heights can be seen in fig. 6.3. 

48,000 cells were added to each device as a drop on the CNT devices facing cell growth side up. The cells 

were allowed to adhere onto the device for 2 hours. 1ml of DMEM was added to the wells and cells 

 

Figure 6.3: CNT height distribution after etching with 1M 

NaOH (A) 3 min (B) 5 min (C) 7 min 



93 

 

allowed to incubate for 48 hours. Cells were stained using Calcein AM green to view under fluorescent 

microscope. Confluency was observed ranging between 50-70% on different locations of the devices. 

This can be seen in fig. 6.4 below.  

The devices were then transferred to the transfection set up shown in Fig. 6 and transfection was 

attempted using Venus Enhanced Yellow Fluorescent Protein (EYFP). EYFP was prepared by adding 

36µl of Venus DNA in 600µl of patch clamp buffer. 100µl of DNA was added to each device and they 

were allowed to incubate for 2 hours. 

Cells were harvested from device using trypsin after 2 hours and transferred to tissue culture plastic. They 

were allowed to incubate for 24 hours and then viewed under a fluorescent microscope. The cells were 

found to show no fluorescent activity and it could be concluded that transfection was not successful. The 

cause of failure was hypothesized as a combination of multiple issues. As seen in Fig. 3, the devices can 

be seen to possess clogging within nanotubes. CNTs were also observed to have peaks and jagged edges 

unlike the smooth coplanar surfaces of devices fabricated through RIE. In order to increase chances of 

success, the above issues were addressed in preparation for the next experiment.  

6.3 Cell Culture – Experiment 3: HEK293 Cell growth and EYFP transfection attempt 

HEK 293 cells were cultured on arrays devices fabricated via 7 hours of CVD followed by polishing for 5 

minutes at 30N. Devices were etched using 1M NaOH for 5 minutes and 7.5 minutes. As mentioned in 

Chapter 6, this method of fabrication resulted in unclogged CNTs. 5 devices were used for this 

 

Figure 6.4: HEK293 cells harvested after 48 hours from CNT arrays (A) from 3 min etched 

device (B) from 5 min etched device (C) from 7 min etched device 



94 

 

experiment. 3 were etched for 5 minutes and 2 were etched for 7.5 minutes. Devices were coated with 

48,000 cells and allowed to incubate for 2.5 hours. 2ml of DMEM was added to each of the 5 wells 

containing CNT devices after 2.5 hours and 1 ml of DMEM was added to the control well in a 24-well 

plate. Cells were dyed red using CellTracker CMTPX. Dye was prepared by adding 50µg of CellTracker 

red to 70µl of Dimethyl Sulfoxide (DMSO). 2µl dye was added to 2ml of media in 6 well plates and 

allowed to sit for 30 minutes. Cells were then viewed under a rhodamine filter and had appeared to have 

achieved confluency of 90%. Lipofection was used for the control experiment. 50µl Jet Prime buffer was 

mixed with 1µl jet prime reagent and 0.5µg of Venus YFP. Control well media was aspirated and 0.5ml 

of fresh media added and the lipofection solution added. For transfection using CNT devices, 600µl patch 

clamp buffer was mixed with 36µl Venus DNA. Each device received 100µl of Venus DNA solution.  

Devices were pulled out of the incubator after 2.5 hours and transferred to new well plates.  They were 

viewed again under the rhodamine filter and appeared to be confluent. It should be noted at this point that 

the microscope was not equipped with a camera and thus images were not acquired. Devices were washed 

with trypsin and cells were transferred to 6 well plates, allowed to incubate for 24 hours. Very few cells 

were observed after 24 hours and no fluorescence was observed either. In contrast, the control well cells 

fluoresced bright yellow. This indicated another failure in transfection. The leading cause for this failure 

was identified as mishandling when cells were harvested from CNT array devices to well plates after 

transfection. Also, cells were plated on the device for only 24 hours prior to transfection. According to 

Golshadi, the time that cells were allowed to grow on devices prior to transfection had a significant 

impact on transfection efficiency. The low concentration of DNA was as also cited as a major reason for 

lack of fluorescence. Transfection using CNT array device requires a much higher concentration of DNA 

as compared to lipofection.   

In parallel with this experiment, the following set up was also tested for transfection. Fig. 6.5 shows a 

Whatman paper which has been wetted with DMEM. Instead of laying CNT devices on cylinders, the 

device was laid down cell side down on the Whatman paper. Protocols for cell culture, dye preparation 
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and DNA preparation followed were the same as above in this experiment. Cells were transfected in the 

same method as above. Cells were found to adhere well to the device and did not adhere to the Whatman 

paper. However, no transfection was observed. This method has potential for reducing device damage and 

improve ease of handling during the transfection process.  

Keeping in mind the above-mentioned drawbacks, the next cell culture experiment was carried out using 

propidium iodide (PI), a cell impermeable dye and cells allowed to culture for 48 hours.  

6.4 Cell culture – Experiment 4: HEK293 Cell Growth, PI injection 

3 devices were used for this cell culture experiment. The devices were exposed to CVD for 7 hours, 

followed by 5 minutes of polishing at 30N using 1µm DiaPro diamond suspension. The devices were then 

wet etched for 5 minutes and 7.5 minutes with 1M NaOH. Each device came from 3 distinct regions of 

the boat. Calcein AM purple was used to stain cells for fluorescence and Propidium Iodide was used as 

cargo for delivery inside cells. Calcein Purple was created by adding 42µl of sterile DMSO to 25µg of 

dye. 40µl of this solution was added to 1250µl of buffer to create 200x working solution. For 6 wells, at 

1ml per well, 30µl of working solution was needed. Propidium Iodide was used at 75µm concentration in 

patch clamp buffer (PCB). A 100x stock solution was made by adding 5mg of PI per 1ml of PBS. 

Therefore, the final solution required 300µl of PCB in 3µl of 100x PI.  

Each device was coated with 24,000 cells by placing a 100µl drop of cells in media on the top surface of 

device. The cells were then allowed to attach for 2 hours on the surface in an incubator and 2ml of media 

was added to each well with the devices. Cells were allowed to incubate for 48 hours before transfection. 

Due to a handling error, excess PI was added on the devices, leading to quick cell death since high 

concentrations of PI can be toxic to cells. Transfection data was thus not obtained. PI was seen to have 

 

Figure 6.5: Set up for transfection using Whatman paper 
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been transferred to through CNTs. After only a small number of cells could be harvested from the device 

again.  

A critical observation from the above experiments was the small number of cells harvested after 

transfection from CNT devices. This lead to re-evaluation of the experimental set up and identification of 

potential problems.  

 

Fig. 6.6 shows the handling and manipulation required throughout the process. CNT arrays are first 

placed in a 6 well plate and sterilized using ethanol. The ethanol is allowed to dry, followed by rinsing 

with PBS. A 100-150µl drop of media containing the required number of cells is placed on the device. 

This is preferred over immersing the device in 1-2ml of media with cells to prevent cells from adhering 

and growing on the underside of the device where cargo to be transfected will be placed. Cells are 

allowed 2 hours to adhere on to the surface before each well is filled with 1-2ml of media and left to 

incubate for 24-48 hours. Devices are then transferred into the transfection set up. Each cylinder in is 

 

Figure 6.6: Schematic showing steps involved in transfection process (A) Cell adherence 

by placing a drop of cells on device (2 hours) (B) Adding media to let cells grow (48 hours) 

(C) Placing device upside down in cylinder, cell side in DMEM, cargo placed on top (2 

hours) 
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filled with 150µl of fresh media and device is placed such that the cell adherent surface is immersed in 

media. A drop of solution (PCB or DMSO) containing the required cargo is placed on the other side of 

the device with great care to prevent the drop from breaking and leaking into the media or sliding off the 

device. The set-up is placed in the incubator for 2 hours. After this step, devices are washed with PBS and 

cells trypsinized. The cells are then transferred to a new 6 well plate with 1-2ml of media and allowed to 

incubate for 24 hours to show transfection.  

In the above protocol, the first step of attaching cells to the device is rife with ambiguity about cells 

adhering to the CNT surface. Golshadi et. al had immersed CNT devices in media for 24 hours to allow 

cells to grow on the device. However, this poses the risk of cells growing on the bottom surface too. 

Moreover, due to the extremely smooth surface finish of polished CNT arrays, it is difficult to make sure 

that the drop of cells in media remains completely upon the device and much of it can slide off with ease. 

This can potentially lead to a loss of cells on the device. With a thin layer of cells on the device and high 

variability in confluency, it is likely that the cargo takes the path of least resistance like any other fluid 

flow system, allowing cargo to leach into the media below.  

6.5 3D Printed Nanofluidic Device 

Whatman Anodisc 13 alumina membranes are 60µm in thickness. This results in extreme fragility and in 

turn results in easy loss of devices by cracking during handling and manipulations carried out during 

experiments. In order to ease handling of the CNT devices, three-dimensional (3D) printing was used to 

create a support structure for the membranes. 3D printing was utilized to encapsulate the CNT array in a 

microfluidic device. In Fig. 6.7 shows the geometry of the proposed structure and different sizes of rings 

printed around a bare AAO membrane.  

The 3D printed rings around CNT devices served multiple purposes during the course of culturing 

cells and subsequent transfection. Apart from developing cracks or due to handling errors in dry 

conditions, during the production of devices, CNT devices were found to adhere to wet surfaces due to 
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surface tension. This required very delicate handling, which was operator dependent and could not be 

standardized for large-scale use. This problem was further exacerbated when the liquid in question was of 

higher viscosity as is commonly observed in with growth media in cell culture or wet etchants during 

production such as phosphoric acid (H3PO4). This lead to the device being damaged when lifting off from 

a wet surface while transferring from one culture dish to another. The 3D printed ring provided an uneven 

surface, which easily breaks surface tension and can be easily held by tweezers while minimizing the risk 

of damage to CNT device. 

During the process of transfection, the ring not only could provide physical support but also serve as a 

reservoir for the purpose of holding cargo to be delivered into cells. The thickness of 3D printed ring may 

potentially be increased to accommodate larger volumes of reagent and this also prevents tweezer - cell 

contact, thereby minimizing the risk of cell death due to any stress that might be inflicted upon them by  

 

 

Figure 6.7: (A, B, C) CAD illustrations of proposed 3D printed rings (D) 3D printed 

prototypes of different sizes on plain AAO membranes  
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tweezers. Moreover, since the active area of the device is now defined by the inner diameter of the ring, it 

provides for a more confident analysis of cell growth and transfection. This is because the edges of the 

device display imperfections, which can hinder functionality. 

To demonstrate cell culture on 3D printed devices, HEK 293 cells were cultured on the 3D printed 

CNT array devices for 48 hours and stained with CellTracker Green to observe cell growth and 

morphology. Devices were coated with Polylysine to aid in cell adhesion. Cells displayed morphology 

similar to devices without support structure or standard tissue culture plastic as shown in Fig. 6.8.  

The cell growth results were as expected due to the nature of the process used to fabricate the rings. 

The PLA does not contact the bulk of CNT device surface during 3D printing and serves purely as a 

holder for these devices without affecting cell culture on the surface of the device. Thus, the presence of a 

support structure had no detrimental effect on cell growth.  

 Conclusion 

It can be concluded that cells grow on CNT array devices using regular cell culture protocol. However, 

more work needs to be done to establish a technique which will minimize loss of cells from the device to 

maximize transfection. A 3D printed support was developed to aid in handling of device and cell culture 

was demonstrated on the device.  

 

Figure 6.8: HEK 293 cells stained with CellTracker Green on (A) standard tissue culture 

plastic (B) CNT device (C) CNT device with support structure. Scale: 50 µm 
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Chapter 7: Conclusion 

7.1 Research Summary 

Carbon nanotube arrays have shown the potential to be used as a device for intracellular delivery of 

biomolecules of different size and charges into immortalized cell lines and also hard to transfect cells 

such as stem cells, neurons and macrophages. With an increased demand for novel therapeutics which 

offer features such as targeted drug delivery, personalized treatments and combination of gene therapy 

and stem cell therapy, the CNT array device can potentially be an indispensable tool for the future of 

medicine. Since carbon is a conductive material, this device also offers the potential of being used an 

intracellular probe which can carry out single cell analysis on multiple cells simultaneously. This makes it 

highly desirable for use in biomedical research applications as an aid to study cell functioning. However, 

a major limiting factor for the development of this device and expansion of its use in the scientific and 

medical community was the expensive and time-consuming fabrication process involved in their 

manufacture. Depending upon the physical requirements of the device, the time spent in etching 8 devices 

could go up to 12 hours using reactive ion etching.  

In this thesis, a number of alternative nanofabrication processes have been outlined for the production of 

CNT array with the aim of reducing time for production and increasing yield. An emphasis was given on 

avoiding processes which required clean room facilities or plasma based processes in order to minimize 

variability due to environmental and equipment based factors. This was also important to keep costs low 

and enable scaling up the production of devices. Mechanical polishing, a purely physical and 

economically feasible method, along with wet chemical etching were selected as an alternative to reactive 

ion etching. Both processes require minimal resources and can be scaled up in a linear manner at low cost. 

The effects of parameters such as polishing force, time, etching time and etchant molarity on physical 

dimensions of CNT arrays were documented. It was shown that the presented alternative processes could 

control CNT height distribution to a fine degree in a relatively short processing time ranging from 5-30 
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minutes of polishing followed by 5-30 minutes of wet etching. Compared to the reactive ion etching 

process, this implies a time saving of nearly 97%. It also has the advantage of being able to increase yield 

by using equipment with a larger holding capacity since polishing and wet etching are not dependent upon 

the scale of the device. 

The quality of CNTs was qualitatively analyzed using scanning electron microscopy. Issues associated 

with the polishing process included clogging of nanotubes, damaged tubes, cracked and broken 

membranes during polishing and rough CNT wall edges. The use of process variables such as CVD time, 

positioning of samples in CVD furnace tube and change in polishing particle size to control CNT quality 

was shown. CNTs could be produced with clogged or unclogged tubes depending upon the need of 

application.  

Lastly, cell growth has been demonstrated on CNT arrays and attempts made to transfect with EYFP and 

Propidium Iodide dye. Potential causes of failure and variability were identified.  

7.2 Future work: 

7.2.1 Future work in nanofabrication technique:  

The newly developed fabrication process can save up time by up to 97%. However, a number of issues 

such as variability in polishing due mounting membranes on the polishing set up and loss of devices due 

to formation of cracks were identified. Future work can be carried out to refine the technique and scale up 

the process. The use of alumina slurry had shown potential in producing CNTs with smooth edges, 

minimal damage and no clogging. The alumina particles in turn lead to accelerated wear of the polishing 

pad. Work on studying the right amount and type of polishing lubricant and coolants to be added would 

be a valuable input.  

Whatman Anodisc AAO membranes are extremely fragile and are easily damaged during handling over 

the course of experiments. To aid in handling the device and also providing a built-in reservoir for fluid 

over the device, fused deposition modeling 3D printer was used to print a ring around the CNT arrays. 



102 

 

This provided the CNT array device with added rigidity and ease of handling. Future work on 

incorporating more extensive 3D printed devices using CNT devices is of great interest. Development of 

microfluidic chips with CNT devices can eliminate the need to for multiple handling steps during 

experiments and provide a simple, sterile and disposable platform for carrying out transfection. 

7.2.2 Future work in cell culture and transfection 

In this thesis, only devices polished with 1µm DiaPro were used to study cell growth on CNT arrays. This 

resulted in devices that were clogged with damaged tubes or CNTs with jagged walls. The presence of 

variability in cells adhering to the device also was a potential issue that was identified. With respect to 

cell growth, a number of parameters need to be understood such as the ideal CNT height for transfection 

and cell growth, use of membranes with different pore spacing or diameters as the CVD template to study 

cell growth when CNT diameters and CNT spacing changes.  

The effect of time and cell growth is also not documented in depth for CNT arrays. It was noted by 

Golshadi that an increase in cell culture time prior to transfection would lead to an increase in transfection 

efficiency. An in-depth study to understand the correlation between transfection efficiency and culture 

time can lead to interesting insights about CNT – cell interfacing. It has also been shown that stem cells 

are highly sensitive to their physical surroundings. Therefore, it will be required to understand the effect 

of CNT arrays on stem cell differentiation 

  



103 

 

REFERENCESReferences  

[1] "Gene Therapy." Gene Therapy. American Medical Association. Web. 04 Mar. 2016. 

[2] Hunt, K.K., Vorburger, S.A., Swisher, S.G., 2006, "Gene Therapy for Cancer," Humana 

Press, Totowa, NJ, . 

[3] Liu, S., Xia, Z., and Zhong, Y., 2014, "Gene Therapy in Pancreatic Cancer," World Journal 

of Gastroenterology : WJG, 20(37) pp. 13343-13368. 

[4] Sinn, P. L., Anthony, R. M., and McCray, J., Paul B, 2011, "Genetic Therapies for Cystic 

Fibrosis Lung Disease," Human Molecular Genetics, 20(R1) pp. R86. 

[5] Tebas, P., Stein, D., Tang, W. W., 2014, "Gene Editing of CCR5 in Autologous CD4 T Cells 

of Persons Infected with HIV," New England Journal of Medicine, 370(10) pp. 901-910. 

[6] Berkhout, B., Ertl, H.C.J., Weinberg, M.S., 2015, "Gene Therapy for HIV and Chronic 

Infections," Springer New York, New York, NY, . 

[7] Bennett, J., 2009, "Gene Therapy for Color Blindness," New England Journal of Medicine, 

361(25) pp. 2483-2484. 

[8] Kootstra, N. A., and Verma, I. M., 2003, "Gene Therapy with Viral Vectors," Annual Review 

of Pharmacology and Toxicology, 43pp. 413-439. 

[9] Woods, N., Muessig, A., Schmidt, M., 2003, "Lentiviral Vector Transduction of NOD/SCID 

Repopulating Cells Results in Multiple Vector Integrations Per Transduced Cell: Risk of 

Insertional Mutagenesis," Blood, 101(4) pp. 1284-1289. 

[10] Kay, M. A., Thomas, C. E., and Ehrhardt, A., 2003, "Progress and Problems with the use of 

Viral Vectors for Gene Therapy," Nature Reviews Genetics, 4(5) pp. 346-358. 

[11] Walther, D. W., and Stein, U., 2012, "Viral Vectors for Gene Transfer," Drugs, 60(2) pp. 

249-271. 

[12] FUCHSLUGER, T., 2011, "Viral Vectors for Gene Transfer," Acta Ophthalmologica, 

89(s246) pp. 0. 

[13] Neumann, E., Schaefer-Ridder, M., Wang, Y., 1982, "Gene Transfer into Mouse Lyoma 

Cells by Electroporation in High Electric Fields," The EMBO Journal, 1(7) pp. 841-845. 

[14] Potter, H., 2001, "Transfection by Electroporation," Current Protocols in Neuroscience / 

Editorial Board, Jacqueline N. Crawley ... [Et Al.], Appendix 1pp. Appendix 1E. 

[15] Niidome, T., and Huang, L., 2002, "Gene Therapy Progress and Prospects: Nonviral 

Vectors," Gene Therapy, 9(24) pp. 1647-1652. 



104 

 

[16] Henry, S., McAllister, D. V., Allen, M. G., 1998, "Microfabricated Microneedles: A Novel 

Approach to Transdermal Drug Delivery," Journal of Pharmaceutical Sciences, 87(8) pp. 922-

925. 

[17] Ali, R. R., 2004, "Prospects for Gene Therapy," Novartis Foundation Symposium, 255pp. 

165. 

[18] Li, S., and Huang, L., 2000, "Nonviral Gene Therapy: Promises and Challenges," Gene 

Therapy, 7(1) pp. 31-34. 

[19] Golshadi, M., and Schrlau, M. G., 2013, "Template-Based Synthesis of Aligned Carbon 

Nanotube Arrays for Microfluidic and Nanofluidic Applications," ECS Transactions, 50(33) pp. 

1-14. 

[20] Golshadi, M., Wright, L. K., Dickerson, I. M., 2016, "High-Efficiency Gene Transfection of 

Cells through Carbon Nanotube Arrays," Small, pp. n/a. 

[21] Wirth, T., Parker, N., and Ylä-Herttuala, S., 2013, "History of Gene Therapy," Gene, 525(2) 

pp. 162-169. 

[22] Karson, E. M., 1990, "Prospects for Gene Therapy." Biology of Reproduction, 42(1) pp. 39-

49. 

[23] ROGERS, S., and PFUDERER, P., 1968, "Use of Viruses as Carriers of Added Genetic 

Information," Nature, 219(5155) pp. 749-751. 

[24] Cross, D., and Burmester, J. K., 2006, "Gene Therapy for Cancer Treatment: Past, Present 

and Future," Clinical Medicine and Research, 4(3) pp. 218-227. 

[25] Cavazzana, M., Ribeil, J. A., Payen, E., 2014, "Outcomes of Gene Therapy for Beta 

Thalassemia Major Via Transplantation of Autologous Hematopoietic Stem Cells Transduced Ex 

Vivo with a Lentiviral Beta A T87Q Globin Vector," Human Gene Therapy, 25(11) pp. A22. 

[26] Ylä-Herttuala, S., and Martin, J. F., 2000, "Cardiovascular Gene Therapy," The Lancet, 

355(9199) pp. 213-222. 

[27] Escors, D., and SpringerLink (Online service), 2012, "Lentiviral vectors and gene therapy," 

Springer, New York; Basel, . 

[28] Kaiser, J., 2009, "GENE THERAPY Beta-Thalassemia Treatment Succeeds, with a Caveat," 

Science, 326(5959) pp. 1468-1469. 

[29] Aubourg, P., Hacein-Bey-Abina, S., Bartholomae, C., 2011, "Hematopoietic Stem Cell 

Gene Therapy with Lentiviral Vector in X-Linked Adrenoleukodystrophy," Blood, 118(21) pp. 

80. 



105 

 

[30] Cavazzana-Calvo, M., Hacein-Bey, S., Basile, G. d. S., 2000, "Gene Therapy of Human 

Severe Combined Immunodeficiency (SCID)-X1 Disease," Science, 288(5466) pp. 669-672. 

[31] National Institutes of Health [NIH] (United States). Recombinant DNA Advisory 

Committee, 2002, "NIH Report: Assessment of Adenoviral Vector Safety and Toxicity: Report 

of the National Institutes of Health Recombinant DNA Advisory Committee," . 

[32] Anderson, W. F., 2002, "Adenoviral Vector Safety and Toxicity," Human Gene Therapy, 

13(1) pp. 1. 

[33] Felgner, P. L., Gadek, T. R., Holm, M., 1987, "Lipofection: A Highly Efficient, Lipid-

Mediated DNA-Transfection Procedure," Proceedings of the National Academy of Sciences of 

the United States of America, 84(21) pp. 7413-7417. 

[34] C. Madeira, R. D. Mendes, S. C. Ribeiro, 2010, "Nonviral Gene Delivery to Mesenchymal 

Stem Cells using Cationic Liposomes for Gene and Cell Therapy," Journal of Biomedicine and 

Biotechnology, 2010pp. 735349-13. 

[35] Onishi, A., Iwamoto, M., Akita, T., 2000, "Pig Cloning by Microinjection of Fetal 

Fibroblast Nuclei," . 

[36] Brinster, R. L., Chen, H. Y., Trumbauer, M. E., 1985, "Factors Affecting the Efficiency of 

Introducing Foreign DNA into Mice by Microinjecting Eggs," Proceedings of the National 

Academy of Sciences of the United States of America, 82(13) pp. 4438-4442. 

[37] Kaushik, S., Hord, A. H., Denson, D. D., 2001, "Lack of Pain Associated with 

Microfabricated Microneedles," Anesthesia and Analgesia, 92(2) pp. 502-504. 

[38] Prausnitz, M. R., 2004, "Microneedles for Transdermal Drug Delivery," Advanced Drug 

Delivery Reviews, 56(5) pp. 581-587. 

[39] Bariya, S. H., Gohel, M. C., Mehta, T. A., 2012, "Microneedles: An Emerging Transdermal 

Drug Delivery System," Journal of Pharmacy and Pharmacology, 64(1) pp. 11-29. 

[40] Yang, N., Burkholder, J., Roberts, B., 1990, "In Vivo and in Vitro Gene Transfer to 

Mammalian Somatic Cells by Particle Bombardment," Proceedings of the National Academy of 

Sciences of the United States of America, 87(24) pp. 9568-9572. 

[41] Gómez-Chiarri, M., Livingston, S. K., Muro-Cacho, C., 1996, "Introduction of Foreign 

Genes into the Tissue of Live Fish by Direct Injection and Particle Bombardment," Diseases of 

Aquatic Organisms, 27pp. 5-12. 

[42] Shalek, A. K., Robinson, J. T., Karp, E. S., 2010, "Vertical Silicon Nanowires as a 

Universal Platform for Delivering Biomolecules into Living Cells," Proceedings of the National 

Academy of Sciences of the United States of America, 107(5) pp. 1870-1875. 



106 

 

[43] Kim, W., Ng, J. K., Kunitake, M. E., 2007, "Interfacing Silicon Nanowires with Mammalian 

Cells," Journal of the American Chemical Society, 129(23) pp. 7228-7229. 

[44] McKnight, T. E., Melechko, A. V., Griffin, G. D., 2003, "Intracellular Integration of 

Synthetic Nanostructures with Viable Cells for Controlled Biochemical Manipulation," 

Nanotechnology, 14(5) pp. 551-556. 

[45] VanDersarl, J. J., Xu, A. M., and Melosh, N. A., 2012, "Nanostraws for Direct Fluidic 

Intracellular Access," Nano Letters, 12(8) pp. 3881. 

[46] Park, S., Kim, Y., Kim, W. B., 2009, "Carbon Nanosyringe Array as a Platform for 

Intracellular Delivery," Nano Letters, 9(4) pp. 1325. 

[47] Lau, K. K. S., Bico, J., Teo, K. B. K., 2003, "Superhydrophobic Carbon Nanotube Forests," 

Nano Letters, 3(12) pp. 1701-1705. 

[48] F. H.H. Gojny, M H G Wichmann, 2004, "Gojny, F.H., Et Al.: Carbon Nanotube-

Reinforced Epoxy-Composites:Enhanced Stiffness and Fracture Toughness at Low Nanotube 

Content. Compos. Sci. Technol. 64, 2363-2371," Composites Science and Technology, 64(15) 

pp. 2363-2371. 

[49] Yang, W., Thordarson, P., Gooding, J. J., 2007, "Carbon Nanotubes for Biological and 

Biomedical Applications," Nanotechnology, 18(41) pp. 412001. 

[50] Lim, H. D., Park, K. Y., Song, H., 2013, "Enhanced Power and Rechargeability of a LiO2 

Battery Based on a Hierarchical-Fibril CNT Electrode," Advanced Materials, 25(9) pp. 1348-

1352. 

[51] Li, L., Yang, H., Zhou, D., 2014, "Progress in Application of CNTs in Lithium-Ion 

Batteries," Journal of Nanomaterials, 2014pp. 1-8. 

[52] Wang, X. H., Sun, L. N., Susantyoko, R. A., 2014, "Ultrahigh Volumetric Capacity Lithium 

Ion Battery Anodes with CNT-Si Film," Nano Energy, 8pp. 71-77. 

[53] O'Connell, M., Wisdom, J. A., Dai, H., 2005, "Carbon Nanotubes as Multifunctional 

Biological Transporters and Near-Infrared Agents for Selective Cancer Cell Destruction," 

Proceedings of the National Academy of Sciences of the United States of America, 102(33) pp. 

11600-11605. 

[54] Khawli, L. A., and Prabhu, S., 2013, "Drug Delivery Across the Blood-Brain Barrier," 

Molecular Pharmaceutics, 10(5) pp. 1471. 

[55] Harrison, B. S., and Atala, A., 2007, "Carbon Nanotube Applications for Tissue 

Engineering," Biomaterials, 28(2) pp. 344-353. 



107 

 

[56] Kohli, P., and Martin, C. R., 2003, "The Emerging Field of Nanotube Biotechnology," 

Nature Reviews Drug Discovery, 2(1) pp. 29-37. 

[57] Wang, J., 2005, "Carbon‐nanotube Based Electrochemical Biosensors: A Review," 

Electroanalysis, 17(1) pp. 7-14. 

[58] Li, J., Ng, H. T., Cassell, A., 2003, "Carbon Nanotube Nanoelectrode Array for 

Ultrasensitive DNA Detection," Nano Letters, 3(5) pp. 597-602. 

[59] Brigger, I., Dubernet, C., and Couvreur, P., 2002, "Nanoparticles in Cancer Therapy and 

Diagnosis," Advanced Drug Delivery Reviews, 54(5) pp. 631-651. 

[60] Cherukuri, P., Gannon, C. J., Leeuw, T. K., 2006, "Mammalian Pharmacokinetics of Carbon 

Nanotubes using Intrinsic Near-Infrared Fluorescence," Proceedings of the National Academy of 

Sciences of the United States of America, 103(50) pp. 18882-18886. 

[61] Singh, R., Pantarotto, D., Lacerda, L., 2006, "Tissue Biodistribution and Blood Clearance 

Rates of Intravenously Administered Carbon Nanotube Radiotracers," Proceedings of the 

National Academy of Sciences of the United States of America, 103(9) pp. 3357-3362. 

[62] Saltzman, W. M., and Olbricht, W. L., 2002, "Building Drug Delivery into Tissue 

Engineering," Nature Reviews. Drug Discovery, 1(3) pp. 177-186. 

[63] Abarrategi, A., Gutiérrez, M. C., Moreno-Vicente, C., 2008, "Multiwall Carbon Nanotube 

Scaffolds for Tissue Engineering Purposes," Biomaterials, 29(1) pp. 94-102. 

[64] Yang, N., Chen, X., Ren, T., 2015, "Carbon Nanotube Based Biosensors," Sensors and 

Actuators B: Chemical, 207pp. 690-715. 

[65] Gelain, F., 2008, "Novel Opportunities and Challenges Offered by Nanobiomaterials in 

Tissue Engineering," International Journal of Nanomedicine, 3(4) pp. 415-424. 

[66] Che, G., Lakshmi, B. B., Martin, C. R., 1998, "Chemical Vapor Deposition Based Synthesis 

of Carbon Nanotubes and Nanofibers using a Template Method," Chemistry of Materials, 10(1) 

pp. 260-267. 

[67] Xu, J., Zhang, X., Chen, F., 2005, "Preparation and Modification of Well-Aligned CNTs 

Grown on AAO Template," Applied Surface Science, 239(3) pp. 320-326. 

[68] Williams, K. R., Gupta, K., and Wasilik, M., 2003, "Etch Rates for Micromachining 

Processing-Part II," Journal of Microelectromechanical Systems, 12(6) pp. 761-778. 

[69] Zhou, B. R., W.F, 1996, "Kinetics and Modeling of Wet Etching of Aluminum Oxide by 

Warm Phosphoric Acid," Journal of the Electrochemical Society, 143(2) pp. 619. 



108 

 

[70] Guofeng Hu, Haiming Zhang, Wenwen Di, 2009, "Study on Wet Etching of AAO 

Template," Applied Physics Research, 1(2) pp. 78. 

[71] Xiao, Z. L., Han, C. Y., Welp, U., 2002, "Fabrication of Alumina Nanotubes and Nanowires 

by Etching Porous Alumina Membranes," Nano Letters, 2(11) pp. 1293-1297. 

[72] Kim, N. H., Kim, D. S., Lee, H. U., 2007, "Fabrication of Microchannel Containing 

Nanopillar Arrays using Micromachined AAO (Anodic Aluminum Oxide) Mold," 

Microelectronic Engineering, 84(5) pp. 1532-1535. 

[73] Jee, S. E., Lee, P. S., Yoon, B., 2005, "Fabrication of Microstructures by Wet Etching of 

Anodic Aluminum Oxide Substrates," Chemistry of Materials, 17(16) pp. 4049-4052. 

[74] Lee, K. H., Huang, Y. P., and Wong, C. C., 2011, "Nanotip Fabrication by Anodic 

Aluminum Oxide Templating," Electrochimica Acta, 56(5) pp. 2394-2398. 

[75] Park, S., Kim, Y., Kim, W. B., 2009, "Carbon Nanosyringe Array as a Platform for 

Intracellular Delivery," Nano Letters, 9(4) pp. 1325. 

[76] Nojiri, K., and SpringerLink (Online service), 2014, "Dry Etching Technology for 

Semiconductors," Springer International Publishing, Cham, . 

[77] Anonymous "Electroporation," 2016. 

[78] https://commons.wikimedia.org/w/index.php?curid=350191, "Chirality of Carbon 

Nanotube," Public Domain. 

  

 

 

 

 

 

 

https://commons.wikimedia.org/w/index.php?curid=350191

	Efficient Template-Based Nanomanufacturing of Carbon Nanotube Arrays for Cell Applications
	Recommended Citation

	tmp.1502466537.pdf.sjM5y

