
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2017

Vedic Based Division Core Design Vedic Based Division Core Design

Ryan Hinkley
rnh8227@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Hinkley, Ryan, "Vedic Based Division Core Design" (2017). Thesis. Rochester Institute of Technology.
Accessed from

This Master's Project is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9523?utm_source=repository.rit.edu%2Ftheses%2F9523&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

VEDIC BASED DIVISION CORE DESIGN

by

Ryan Hinkley

A Graduate Paper Submitted

in

Partial Fulfillment

of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electrical Engineering

Approved by:

PROF.

(GRADUATE PAPER ADVISER - MARK A. INDOVINA)

PROF.

(DEPARTMENT HEAD - DR. SOHAIL A. DIANAT)

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING

COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

MAY, 2017

I would like to dedicate this work to my family, Sue, Don, Kara, and Abby for all their love and

support throughout my entire life, and also to my friends for their love and inspiration

throughout all of my schooling.

Declaration

I hereby declare that except where specific reference is made to the work of others, that all

content of this Graduate Paper are original and have not been submitted in whole or in part for

consideration for any other degree or qualification in this, or any other University. This Graduate

Project is the result of my own work and includes nothing which is the outcome of work done in

collaboration, except where specifically indicated in the text.

Ryan Hinkley

May, 2017

Acknowledgements

I would like to thank my adviser, Mark A. Indovina, for his support, guidance, and feedback

through the past two years in both classes and in completion of this graduate paper. I would

also like to thank my colleague Julia Okvath for her assistance in finalizing this work. I am also

thankful for my other teachers that have taught me throughout my five years of college. Without

all of their help, I would not be where I am today.

Abstract

Processors and embedded systems perform algebraic manipulations such as addition, subtrac-

tion, multiplication and division on integers in order to complete and execute programs. Unfor-

tunately, most division cores in these devices take significantly more time to compute than other

manipulations. Because of this, research has been conducted on finding a division algorithm that

does not take as long to execute. This graduate paper discuses and proposes a division core de-

sign based on ancient Vedic mathematics. The design is created and simulated as a 4-bit system

for completion and analyzed for timing, power consumption, and cell area usage. Estimations

on larger designs are completed and used to compare this design to similar ones. It is found

that the timing and cell area usage are very minimal compared to other designs based on the

same algorithm. However, the power consumption is significantly higher. Possible optimizations

and improvements to the design are proposed for future use. At the end of this graduate paper,

recommendations are given to optimize and upgrade the current design.

Contents

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Research Goals . 1

1.2 Contributions . 2

1.3 Organization . 3

2 Preliminaries and Background Research 4

2.1 Pipelined System . 4

2.2 Vedic Division Algorithm . 4

2.3 Similar Architectures . 7

2.4 Verilog . 7

2.5 Python . 8

2.6 Simulation and Analysis Software . 8

3 Binary Division Algorithm Implementation 9

Contents vi

3.1 Single Manipulation Algorithm . 11

3.2 Final Manipulation Algorithm . 14

4 Simulation and Evaluation of the 4-bit Architecture 17

4.1 Simulation . 17

4.2 Timing Analysis . 18

4.3 Power Consumption Analysis . 18

4.4 Area Usage Analysis . 21

5 Future Work 24

5.1 Future and Complex Implementations . 24

5.2 Optimizations . 28

6 Conclusion 29

References 31

I Verilog Design Code 33

II Python Test Bench Generator 53

List of Figures

2.1 Paravartya Sutra in the decimal number system 5

2.2 Paravartya Sutra in the binary number system 6

2.3 Paravartya Sutra in the binary number system 6

3.1 Overall Algorithm . 10

3.2 Data flow . 10

5.1 Area estimation for rnh_div_singleX . 25

5.2 Total area estimation . 26

List of Tables

4.1 Power consumption distribution . 19

4.2 Power consumption by module . 20

4.3 Cell area by module . 21

5.1 Estimated single manipulation module values 25

Chapter 1

Introduction

Computers at their lowest level are just bit manipulators. They conduct arithmetic operations to

process, compute, and evaluate binary numbers. These numbers can be ASCII characters, pixel

colors, condition values for operations, and many more identifiers. The most common operations

are addition, subtraction, and logic AND, OR, and NOT. Part of the reason for these operations

are their simplicity and ability to compute the data in a short period of time. However, many

processors use additional operations to compute greater amounts data efficiently and effectively.

Examples of these operations are multiplication and division. However, to use these operations,

large arithmetic blocks must be designed for each function and most likely have a latency in their

output to the device. This paper describes a pipe-lined division core that can be used in this case.

1.1 Research Goals

The first goal of this graduate paper is to research and understand a division algorithm and then

use the algorithm to design a division core. The design will consist of Boolean logic formulas

based on the conditions of the algorithm. The chosen algorithm will be based on simplicity to

1.2 Contributions 2

work in a pipe-lined system and on the uniqueness of the actual design.

The second goal of this work is to create, simulate, and analyze using Verilog. The analysis

will include an investigation on timing, power consumption, and cell area usage which using

software. This will be used to predict the behavior and model of larger designs using the same

algorithm.

The third, and most important goal of this paper, is to determine if the chosen algorithm could

be successful when implemented in an actual processor or other devices. This will be done by

analyzing the output data and complexity of the final design.

1.2 Contributions

The first contribution is the research of possible algorithms that can be applied to a pipe-lined

division core and creation of a logic design based on this algorithm. Extensive research is com-

pleted in the search of algorithms that can be easily pipe-lined and modeled using Boolean logic.

The algorithm must also have the ability to scale from different size bits ranging from small to

large. In addition, choosing an algorithm that is not as well-known will create a more unique and

possibly better division core. From the chosen algorithm, a logic based design is created. This

design is modeled using a hardware description language (HDL) which is easily simulated and

analyzed.

The second contribution of this research refers to the simulation of the design. A test bench

generator must be created to output a test bench that simulates all possible combinations. This is

created using a high-level programming language. The string manipulation abilities of this soft-

ware allows for a simple text file containing every combination to be converted into an accurate

test bench with inputs and output verification.

The next contribution is the analysis of the output data to predict the behavior of larger scale

1.3 Organization 3

model and implementations. Due to limitations, only a small model is created, simulated, and

analyzed. Because of this, the larger sized division cores’ timing, power consumption, and cell

area are estimated. These predictions are used to justify and conclude the usefulness of this

algorithm as a pipe-lined division core.

All contributions are completed and analyzed together to prove whether or not this algorithm

could be successful if implemented in an actual processor. This research will provide possible

choices for the algorithm and lead to an actual digital design. Simulations prove the accuracy of

the design. Lastly, the analysis of the output data will lead to the conclusion and verdict about

the successful implementation of the algorithm.

1.3 Organization

The organization of this graduate paper is as follows: Chapter 2 will discuss the background and

preliminaries related to the proposed design’s evaluation. Chapter 4 proposes the architectures

for the Vedic division algorithm. Chapter 5 presents the simulation and attribute results. Further

developments to the design with predictions to large-scale models of the system are given in

Chapter 6 and the graduate paper is concluded in Chapter 7.

Chapter 2

Preliminaries and Background Research

Division algorithms from all around the world and history were considered as a possibility for

this paper. In addition, research was done to help complete the task. The research conducted is

presented below.

2.1 Pipelined System

A pipelined system is defined as a form of parallelism within a single core. It provides a faster

throughput than in a sequential system where one manipulation finishes before another one is

started[1]. The pipelined component of the designed division core will be that it computes mul-

tiple elements at a time. However, it can only take in one input and output one value at a time.

2.2 Vedic Division Algorithm

The chosen division algorithm used to compute both the divisor and remainder is based on Vedic

mathematics. Vedic mathematics are the mathematical functions used in the Vedic period (1500-

500 BCE) in India[2]. There is evidence that numbers as large as 1012 were being used at this

2.2 Vedic Division Algorithm 5

Divisor Dividend
1 2 5 2 3 7 1

-2 -5 -4 -10
2 5

2 -1 -1 6
20-1-1=18 125-10+6=121

Figure 2.1: Paravartya Sutra in the decimal number system

time in history[3]. Arithmetic used in this period was not for computation in processors, it was

for rituals. One ritual required a fire-altar to be created that has a square base with five layers of

bricks and 21 bricks in each layer. They would have to divide one square into three equal parts

and that part into seven smaller parts[4]. This may seem simple for today’s algebra, but at the

time, it was revolutionary.

The chosen algorithm is a special case of synthetic division called the Paravartya Sutra[5].

Synthetic division is a short cut method for dividing a polynomial by a linear divisor[6]. Fortu-

nately, the algorithm is compatible with pipelining. One element is computed at a time and is

used in the computation of the next element. Figure 2.1 shows an example in the decimal number

system where the number 2371 divided by 125.

Essentially, the most significant bit/digit (MSB) of the divisor is dropped and the rest of the

digits are negated. The negated part is multiplied by the MSB of the dividend and added to the

next set of MSBs. Then the negated part is multiplied by the total number in the second MSB

of the dividend. This last step repeats until it fills the length of the dividend. The length of the

negated part of the divisor determines the number of digits that correspond to the remainder (R).

The other digits represent the quotient (Q).

All the digits are summed and result the quotient and remainder. Because the remainder is

purely negative, 1 must be subtracted from the quotient. To determine the positive remainder,

the negative remainder must be subtracted from the original divisor and the positive digits of the

2.2 Vedic Division Algorithm 6

Divisor Dividend
1 0 0 1 1 0 0 0 0 1 1 0 1

0 0 -1 0 0 -1
0 0 0

0 0 0
0 0 1

0 0 0
0 0 -1

1 0 0 -1 0 1 10 0 0
Q=100001-10=11101 R=1000

Figure 2.2: Paravartya Sutra in the binary number system

Divisor Dividend
1 1 0 0 1 1 0 0 0 1 0 0 1

-1 0 -1 -1 0 0
0 0 0

0 0 0
0 0 0

0 0 0
-1 0 0

1 0 0 0 0 1 -1 0 1
Q=100001-1=100000 R=1100-100+1=1001

Figure 2.3: Paravartya Sutra in the binary number system

remainder are added (i.e. 125−10+6 = 121) [7].

This algorithm is very confusing at first with the cases for negatives and positives, but the

simplicity and ability to be a pipelined system makes it worthwhile to implement. An example

of the algorithm in the binary number system is shown in figure 2.2 where 269 divided by 9 is

calculated.

Another example is outlined in figure 2.3 where the division of 12 into 393 occurs. In this

case, the first bit of the remainder is negative. To calculate the remainder, all negative bits are

subtracted from the divisor and the positive bits are added. Also, an additional 1 is subtracted

from the quotient because of the negative sign.

2.3 Similar Architectures 7

2.3 Similar Architectures

Similar designs have been made based on the Vedic division algorithm.

In one design, the dividend is a 16-bit binary number and the divisor was 8-bits. The delay is

only about 10.5ns and only consumes about 24µW with a layout area of about 10.25mm2[8].

Another design shows different computation speeds for different size dividends and divisors.

The 16-bit system’s longest output time is only 3.9µs compared to the worst case of 49.290µs

for the non-restore or normal division algorithm[9].

2.4 Verilog

Verilog is one of the most popular hardware description languages (HDLs) with the others being

SystemVerilog and VHDL. Verilog is used to create the proposed design in this paper. HDL is

a language that supports the early conceptual stages of design with its behavioral and structural

abstractions[10]. Verilog contains hierarchical constructs that allow the designer to control the

complexity of the design. Verilog was first created in 1983-84 as a proprietary verification and

simulation product by Phil Moorby. Eventually, synthesis and timing analyzer tools were added

to the language. Input specification for logic and behavioral synthesis tools were also added later.

Verilog was standardized by IEEE in 1995 (IEEE Standard: 1364-1995) and revisited again in

2001 (IEEE Standard: 1364-2001) and 2005 (IEEE Standard: 1364-2005)[11].

Verilog can be used to design and test register transistor level (RTL) circuit. The test is

called a test-bench. The most common test-benches simulate different inputs into the design and

checks the outputs for correctness. Different simulation software packages allow the user to view

internal signals as well as the input and output signals. A good test-bench checks many different

input values especially at all the extreme inputs.

Verilog is used to design the division module and all of its components.

2.5 Python 8

2.5 Python

Python is a widely used high-level programming language. It was first implemented in 1989 [12]

with the design philosophy of emphasizing on code readability[13]. This is shown in the code

by the white-space and indentation instead of using brackets (that are used in C) or keywords

(such as ’begin’ and ’end’ in Verilog). One of the other unique traits about Python is that type

constraints, such as “int” or “string”, are not checked at compile time because they are assigned

as needed.

A Python 2 script is used to create a test bench by reading a simplified text file. Python 2.0

was released on October 16th, 2000[14]. The script converts simple division value, such as 15/4,

into an input to the division module. The same generated testbench also checks for the output of

the division statement x clock cycles later where x is the number of bits of the division module.

2.6 Simulation and Analysis Software

The design is both simulated and analyzed in this paper for correctness and operation.

The software used for simulation is Incisive Suite which includes SimVision (64) 15.10s-

014[15]. SimVision is a graphical debugging environment developed and distributed by Cadence

Design Systems. The software lets the user view individual waveforms of internal signals in the

system throughout the entire run-time. This software is very useful in determining whether

signals are correct or incorrect at any given time in the design.

For logic synthesis, DC Ultra is used. DC Ultra RTL synthesis is a software tool that com-

putes timing, area, power, and test optimization concurrently and is developed and distributed

by Synopsys. Synopsys has documented that the software gives results that correlate to physical

implementations within 10% error[16]. This software will be used to calculate the timing, cell

area, and power consumption of the design proposed by this graduate paper.

Chapter 3

Binary Division Algorithm Implementation

The preliminaries for the Vedic division algorithm are presented in this chapter. The different

components of the algorithm are separated into each individual step and the final step. The

overall design of this system is summarized in figure 3.1.

Figure 3.1 shows 6 different steps that are executed in the algorithm. The first step is to

read in the input. The second, third, and fourth are to manipulate the dividend, carry, and sign

bit using the single manipulation algorithm. Step 5 is the execution of the final manipulation

algorithm and the final step, step 6, is to output the quotient and remainder.

The movement of data from each step is shown in figure 3.2. The figure shows the flow of

the four main registers, which are the divisor, dividend, sign, and carry, throughout the design.

The divisor remains the same and only the dividend, carry, and sign values change. The only

other registers that get assigned values are the quotient and remainder registers at the end. It is

also seen that the system can easily be used as a pipeline. Steps 2 through 5 represent a different

clock cycle in the pipeline with continuous inputs from dividend_in and divisor_in and an output

sent to quotient_out and remainder_out every clock cycle.

10

Figure 3.1: Overall Algorithm

Figure 3.2: Data flow

3.1 Single Manipulation Algorithm 11

3.1 Single Manipulation Algorithm

This section focuses only on the single step algorithm that is taken N − 1 times where N is the

number of bits. This algorithm gets more complicated as the number of bits increases, but the

main algorithm stays roughly the same throughout. The modules that use this algorithm are

named “rnh_div_single0”, “rnh_div_single1”, and “rnh_div_single2” with all three referenced

as “rnh_div_singleX” in this paper.

The algorithm is broken down into three separate parts that generates three separate values.

These values are for each characteristic word, updated dividend, carry, and sign. Each part is

broken up into separate expressions for each individual bit of the characteristic word. Luckily,

each expression is the same for each bit of the same characteristic word.

The expressions for these characteristic words are created from truth tables that are generated

using different scenarios of current and previous bits using an online solver [17]. The conditional

bits are the divisor, most significant dividend, carry, and sign bits for the operation. Current divi-

dend, current carry, and current sign bits are used in the expressions to evaluate the characteristic

words. In the previously described algorithm addition and subtraction occur. For these algo-

rithms, it is simplified to a Boolean logic statement for each individual bit. Two logic statements

are created for each output because of the two different conditions from the sign bit, negative or

positive. This bit will determine if the operation being emulated is addition or subtraction.

The first value, the updated dividend, starts off as the original dividend value given to the

division core. The dividend will determine when any manipulation will occur. When the manip-

ulation occurs, the dividend value is adjusted and a new updated dividend is created. The new

updated dividend is used to determine if and when another manipulation occurs. This process

then repeats itself until all manipulations have occurred.

The number of bits being manipulated is determined by which manipulation step the current

3.1 Single Manipulation Algorithm 12

dividend is at. The number of bits corresponds to −M+4 where M is the number of the current

step.

The equations to calculate the new dividend, shown as Dnew, is:

Dnew = V̄ ∗Dcurrent +V ∗Dcurrent +V ∗Dcurrent ∗Ccurrent (3.1)

This equation does not change based on the sign of the manipulation bit.

In the equations, Dnew is the new assigned value to the dividend bit, Cnew is the new assigned

value to the carry bit, Snew is the new assigned value to the sign bit, V is the divisor bit that is

manipulating the value, Dcurrent is the current dividend bit, Ccurrent is the current carry value,

and Scurrent is the current sign value. Multiplication signs, ∗, are equivalent to a logic AND

and addition signs, +, are equivalent to a logic OR. The line seen above some of the variables

signifies a negation of that variable.

The second value calculated is the carry characteristic word. The carry bits correspond to

each dividend bit directly. Because of this, the same corresponding carry bits change when the

dividend bits change.

The carry bit works as the carry out when the sum of the dividend is greater than 1. This bit

is important because it allows the dividend bit to be larger than 1 which is necessary for many

cases. The current manipulation bit’s sign determines which of the two equations are used to

calculate the new bits.

The equations to calculate the new carry bit follows.

If the manipulation sign bit is positive:

Cnew =V ∗Ccurrent +Ccurrent ∗Dcurrent +Ccurrent ∗SCurrent +V ∗DcurrentScurrent +CcurrentV ∗Dcurrent

(3.2)

3.1 Single Manipulation Algorithm 13

If the manipulation sign bit is negative:

Cnew =Ccurrent +V ∗Dcurrent ∗Scurrent +V ∗Ccurrent (3.3)

The sign characteristic word is the third and final value that is calculated. Simply put, it

shows whether the dividend value at the shared bit location is negative or positive. For simplicity,

0 corresponds to positive and 1 corresponds to negative.

The sign bit is very important because it determines whether the divisor is added or subtracted

from the current dividend. In other words, it determines which equation will occur. The current

manipulation bit’s sign determines which of the two equations are used to calculate the new bits.

The equations to calculate the new sign bit follows.

If the manipulation sign bit is positive:

Snew = Scurrent +(V ∗Ccurrent ∗Dcurrent +Ccurrent) (3.4)

If the manipulation sign bit is negative:

Snew = Scurrent ∗V +Scurrent ∗Ccurrent (3.5)

The only way each of these manipulation occurs is if the most significant dividend bit or

carry bit for the operation is 1. If the bit is 0, then no addition or subtraction will occur which

leads to no manipulation to the dividend, carry, and sign values.

These manipulations will occur for every bit in the dividend except the least significant bit

(LSB). After the last single manipulation finishes the final manipulation will occur.

3.2 Final Manipulation Algorithm 14

3.2 Final Manipulation Algorithm

This section focuses on the algorithm used to generate the final quotient and remainder based

on the output from the previous single steps. This module is named “rnh_div_last” within the

design and this paper.

The divisor is compared to the final calculated dividend to determine which digits represent

the remainder and which represent the quotient. The number of remainder digits correspond to

I −1 where I is the number of digits in the divisor.

The first bit evaluated is the MSB sign bit of the remainder. The MSB for the divisor is the

most significant digit that has value (dividend is 1 or carry is 1). If the sign bit is 1, the remain-

der’s MSB dividend bit and carry bit are negative. If this is the case, the negative remainder

digits are subtracted from the original divisor and the positive digits are added. If the bit is 0,

the remainder’s MSB dividend bit and carry bit are positive. This simplifies the process, by only

requiring the negative remainder digits to be subtracted from the positive digits. If any carry bits

are set, they will be added or subtracted to one bit shifted to the left.

The formula for the remainder for each case follows, but unlike the above equations, the

addition symbol, +, actually means addition.

If the remainder MSB sign bit is positive:

R = D[MR : 0]∗S[MR : 0]+{S[MR : 0]∗C[MR : 0]−S[MR : 0]∗C[MR : 0],0}−

S[MR −1 : 0]∗D[MR −1 : 0] (3.6)

3.2 Final Manipulation Algorithm 15

If the remainder MSB sign bit is negative:

R = D[N : 0]−{D[MR : 0]∗S[MR : 0]−{S[MR : 0]∗C[MR : 0]−S[MR : 0]∗C[MR : 0],0}}+

S[MR : 0]∗D[MR : 0] (3.7)

In these equations, R is the remainder output, Q is the quotient output, N is the number of

total bits, MR is the most significant bit of the remainder, D is the entire dividend value, S is the

entire sign value, and C is the entire carry value. The brackets after a value represent the bits

that are used. For example, D[MR : 0] means that the bits from the most significant bit of the

remainder, MR, down to 0, the least significant bit (LSB), are referenced. Whenever brackets are

used, {}, the bits separated by commas are concatenated together in order of their appearance in

the formula.

The final output evaluated is the quotient. The negative digits of the quotient are subtracted

from the positive digits of the quotient. If the MSB of the remainder was determined to be

negative, an additional subtraction of 1 occurs to account for the divisor subtraction. If any carry

bits are set, they will be added or subtracted to one bit shifted to the left.

The formulas for the quotient follow.

If the remainder MSB sign bit is positive:

Q = D[N : MR +1]∗S[N : MR +1]+{S[N −1 : MR +1]∗C[N −1 : MR +1]−

S[N −1 : MR +1]∗C[N −1 : MR +1],0}−

S[N −1 : MR +1]∗C[N −1 : MR +1] (3.8)

3.2 Final Manipulation Algorithm 16

If the remainder MSB sign bit is negative:

Q = D[N : MR +1]∗S[N : MR +1]+{S[N −1 : MR +1]∗C[N −1 : MR +1]−

S[N −1 : MR +1]∗C[N −1 : MR +1],0}−

S[N −1 : MR +1]∗C[N −1 : MR +1]−D[MR]−C[MR] (3.9)

Once all the necessary equations are evaluated, the quotient and remainder are outputted.

Chapter 4

Simulation and Evaluation of the 4-bit

Architecture

The section summarizes the simulation and evaluation of the proposed design as a 4-bit architec-

ture. Simulations are completed to evaluate the correctness of the design and analysis is executed

to measure values for timing, power consumption, and area usage.

In this paper, two software packages are used for simulation. These software packages are

Cadence Incisive (64) and Synopsys DC Ultra. Incisive (64) is used to simulate and check the

correctness of the overall design. DC Ultra is used for logic synthesis and also to calculate and

report the final parameters of the design.

4.1 Simulation

To create the test-bench used in the simulation, a Python script is created. This Python script

converts a simple division statement such as 15/4 into an input that can be sent to division

module. The same generated test-bench also checks for the output of the division statement x

4.2 Timing Analysis 18

clock cycles later where x is the number of bits of the division module (in this case, x = 4). If the

output is no correct, an error statement is send to the compiler’s output window.

All possible combinations up to 4-bits are tested in this simulation (i.e. 0/1, 0/2, ..., 0/15,

1/1, ...,1/15, ..., 15/1, ..., 15/15). No error statements are given which ensures correct imple-

mentation of the proposed design.

4.2 Timing Analysis

The timing is analyzed using a 50MHz (20ns period) clock signal. It is necessary to solve for

timing in every design because it can place limitations on the entire system. These limitations

come from the delay in time it takes for the clock to reach different components in the design.

The largest delay is the limiting factor of the entire design.

Using the simulation and analyze software, it is determined that the largest delay is 1.6529ns.

This is the needed width of the minimum clock period. This can be converted to a frequency

using equation 4.1.

f =
1
T

(4.1)

The necessary frequency is determined to be 403.332MHz. This frequency is very good

because it indicates that this division core will work with processor designs that use clock speeds

up to this amount.

4.3 Power Consumption Analysis

In this section, the power consumption of the 4-bit design is analyzed and outputted. For the test,

it is assumed the voltage on the system is 1V.

4.3 Power Consumption Analysis 19

Table 4.1: Power consumption distribution
Power Group Internal Power (µW) Switching Power (µW) Leakage Power (nW) Total Power (µW) % of Total

register 33.866 0.58848 16.7816 34.471e-02 86.%

combinational 3.2895 2.2737 50.5466 5.6138e-03 14.%

Total 37.156 2.8622 67.3282 40.085 100.%

Power consumption is one of the most important aspects when designing a system. The goal

of every design is to make the this as minimal as possible. A low power consumption will allow

batteries to last longer and will require less cooling. One of the biggest issues is leakage power

which is power not consumed by the device to perform its necessary task.

The power consumption is outlined in table 4.1. The columns describe the individual powers

that are consumed. Internal power is the energy needed to control each of the components such

as registers or logic gates. Switching power is the power needed to switch a gate or register from

one state to another. Leakage power is the amount of power that is wasted by the system when

maintaining a certain value or when parts of the design is not being used. Total power is the sum

of all the powers and the % of the total is the percentage of the sum amount of power consumed

by the individual power group.

The two power groups are register and combinational which are represented in the rows.

Register stands for the registers that consume power by storing and maintaining data every

clock cycle so that it can be used in the next clock cycle. Pipelined systems use registers to

store values at each step of the pipeline so other stages are not affected. Combinational stands

for the combinational gates that compute a value, but do not store that value. The last row is the

Total which represents the total of each column.

It is also seen that the total dynamic power usage is 40.0180µW . Ninety-three percent of that

is the cell’s internal power at 37.1558µW and 7% is the net switching power at 2.8622µW .

The dynamic power of each individual module of the overall division module is also deter-

4.3 Power Consumption Analysis 20

Table 4.2: Power consumption by module
Module Switching power (µW) Internal power (µW) Power Leakage (nW) Total power (µW) % of Total

rnh_div_last 1.28 6.46 40.073 7.78 19.4%

rnh_div_single2 0.248 6.31 5.734 6.56 16.4%

rnh_div_single1 0.417 6.53 7.473 6.95 17.3%

rnh_div_single0 0.540 6.55 8.571 7.10 17.7%

rnh_division 0.405 11.4 5.54 11.7 29.2%

Total 2.89 37.2 67.395 4.01 100.%

mined. This data can be found in table 4.2. Similar to the previous table, the columns describe

the individual powers that are consumed.

Each row represents a different module in the design. rnh_div_last represents the last ma-

nipulation that outputs the quotient and remainder. The three modules named rnh_div_single0,

rnh_div_single1, and rnh_div_single2, are each of the single modules that compute one of the

3 steps in the 4-bit design. There are 4 steps in a 5-bit design, 5 steps in a 6-bit design, and so

on. The top-level design module is rnh_division. This module contains mostly registers and very

few combinational logic gates. The last row, the Total row, represents the total of each column.

It can be seen in the table that most of the power consumption is found in the highest level

of the design where all the values for sign, carry, dividend, and divisor for each step are stored.

The next highest is rnh_div_last which account for the final manipulation that determines the

quotient and remainder based on all other manipulations. This makes sense due to the amount of

computing that occurs during this manipulation. However, 59.5% of the power leakage is from

this module. This shows that some design changes may be needed to optimize the performance

of the last algorithm.

Using the data for the three single modules, rnh_div_single0, rnh_div_single1, and

rnh_div_single2, an equation can be derived to estimate the power usage of larger single mod-

ules. The line fit is selected to be logarithmic because the power consumption should increase as

4.4 Area Usage Analysis 21

Table 4.3: Cell area by module
Module Combinational cell area (µm2) Non-combinational cell area (µm2) Total cell area (µm2) % of total

rnh_div_last 731.88 83.52 815.40 47.63%

rnh_div_single2 59.76 125.28 185.04 10.81%

rnh_div_single1 108.36 125.28 233.64 13.65%

rnh_div_single0 141.48 125.28 266.76 15.58%

rnh_division 2.16 208.80 210.96 12.32%

Total 1043.64 668.16 1711.80 100.%

the system becomes larger and approach an asymptotic value.

The logarithmic equation that is generated has an R2 value of 0.9879 related to the original

data. R2 is coefficient of determination that indicates the proportion of variance in the dependent

variable that is predictable from the independent variable[18]. In other words, the closer the R2

value is to 1, the closer the line is to the data. This equation can be found below.

0.4951∗ ln(x)+6.5766
1000

(4.2)

4.4 Area Usage Analysis

When designing devices, cell area should be as small as possible. It costs more to manufacture

large devices at both the device level and packaging level. Also, as the components of the device

get smaller, the number of components that can be implemented in the device increases.

The overall cell area is 1711.80µm2. The module by module breakdown can be found in table

4.3. The columns are broken down into 2 major category sets and 2 conclusion data sets. The

2 major category sets are combinational area and non-combinational area. Non-combinational

area comes from sequential elements in the design such as registers. Combinational area comes

from the logic gates. The last two columns, total area and % of total, represent the total area for

that row and the percentage of the overall sum that total is.

4.4 Area Usage Analysis 22

The rows in this table are similar to the rows used in table 4.2.

Unlike power consumption where the top level adds the most to the overall number,

rnh_div_last is takes up the most space. This is the last manipulation completed to output the

quotient and remainder. The combinational cell area is almost 90% of its total area, which is

understandable since there are many manipulations happening across all of the bits.

The same reasoning justifies the size of the non-combinational area of the top level design,

rnh_division. This design contains almost no logic, instead it just stores values in registers for

the entire system. It also explains why all the rnh_div_singleX designs have the same non-

combinational cell area because they all have the same amount of register outputs.

The combinational logic decreases from rnh_div_single0 down to rnh_div_single2 due to

fewer manipulations occuring. It can be seen that when more bits are being manipulated, such

as in rnh_div_single0, the area increases to the step in a logarithmic trend. Using the data, it can

be found that the increase follows the trend shown in equation 4.3 where x is the number of bits

being manipulated. Similar to equation 4.2, the fit will be a logarithmic trend because the cell

area will always increase with the overall size and approach an asymptote.

f (x) = 73.925∗ ln(x)+59.048 (4.3)

This logarithmic equation fits the original data with an R2 of 0.9983.

To make a complete estimation of the total area of the single modules, an expression must

be made that includes both the combinational and non-combinational cell areas. Note that the

non-combinational area must also be added for each single manipulation. The expression for this

total cell area for the single modules can be found in equation 4.4 and simplified in equation 4.5

wherey is the total bit width. The value 10.44 in equation 4.4 comes from the constant size of a

4.4 Area Usage Analysis 23

register for one bit and the value 3 comes from the number of characteristic word registers.

y

∑
x=1

f (x)+ y∗3∗10.44∗ (y−1) (4.4)

y

∑
x=1

f (x)+31.32(y2 − y) (4.5)

This equation can be used to estimate larger scale designs and what the cell areas could be.

Chapter 5

Future Work

This chapter outlines how to upgrade the design to perform larger and more complex implemen-

tations. It also outlines what could possibly be upgraded or optimized to result in a better and

more efficient system.

5.1 Future and Complex Implementations

To implement the design proposed in larger and more complex systems, more components must

be added to the design.

For each bit that is added to the design, a new single manipulation module must be created.

Each new module must contain one more bit operation than the previous one. This means that

the size of the single manipulation modules will increase exponentially. The estimated sizes and

power consumption values are outlined in table 5.1 based on the data collected from the 4-bit

design using equations 4.2 and 4.5. A plot of the areas can be found in figure 5.1 and the total

area per bit is plotted in figure 5.2.

The columns of the table are set up with bit width being the main variable. Bit width is the

5.1 Future and Complex Implementations 25

Table 5.1: Estimated single manipulation module values
Bit width # # of Manipulations Estimated cell area (µm2) Total cell area (µm2) Estimated power usage (µW) Total power usage (µW)

4 3 140.26 685.44 7.12 20.6

5 4 161.53 1097.53 7.26 27.9

6 5 178.03 1588.76 7.37 35.3

7 6 191.50 2156.10 7.46 42.7

8 7 202.90 2797.48 7.54 50.3

16 15 259.24 10464.97 7.92 112.

32 31 312.91 38672.90 8.28 243.

64 63 365.33 144861.88 8.63 514.

Figure 5.1: Area estimation for rnh_div_singleX

5.1 Future and Complex Implementations 26

Figure 5.2: Total area estimation

5.1 Future and Complex Implementations 27

first column. The values 4 through 8 are given to show consecutive numbers and the bit values 16,

32, and 64 are given as the common bit widths for integer operations. The second column is the

number of manipulations that must occur before the quotient and remainder can be calculated.

This value happens to be one less than the bit width number. The third column is the estimated

combinational cell area for the largest rnh_div_singleX for the bit width. The next column is the

estimated total cell area for all the rnh_div_singleX modules combined. Estimated power usage

is the consumption from the largest rnh_div_singleX module for the given bit width. The final

column is the total power consumption of all the rnh_div_singleX modules. It is estimated that

this total power usage is about 50% of the overall total power consumption. For instance, the

overall total power consumption for a 16-bit design is estimated to be about 224µW . Similarly,

the cell area will be about 40% of the total design’s cell area leading to an estimated overall cell

area of 26000µm2for a 16-bit design.

It can be seen from the estimated data that the total area for a bit width increases exponen-

tially as expected. However, the estimated power consumption ends up being linear though it is

expected to be exponential. This may be because the estimation of the total power usage does not

include an increase for the additional bits stored in additional registers for each rnh_div_singleX

due to limitations in the original testing. This would also increase linearly due as the rise of the

bit number. This increase along to the estimated linear total power usage would combine to make

an exponential increase.

It is expected that timing should remain roughly the same when the bit width increases. This

is due to the all the modules being very close to the top level design. In other words, timing is

expected to not be the limiting factor of larger designs.

In addition to the exponential findings, upgrades must be performed on the algorithm to ac-

count for some extra states that were not designed or tested for. The extra states result when the

most significant dividend bit being acted upon has a carry bit value of 1. Due to this, the ex-

5.2 Optimizations 28

pressions to update the dividend, carry, and sign values change. In some cases, the dividend and

carry value will also have to exceed the limitation of 2 bits, which leads to even more complexity.

Because of this, the design will work best with smaller and simpler systems.

5.2 Optimizations

The proposed system works completely and efficiently, but there are some areas for improvement.

One area for improvement is the overall system evaluating every single manipulation mod-

ule. This it isn’t necessary. The current design requires every bit to be checked for a possible

manipulation. A better design could can perform more efficiently by only checking for the most

significant 1. It could also stop checking for manipulations after the entire divisor has been

completely used. This could lead to less power consumption of the entire system and therefore

optimizing the design. The downside of this optimization is more controls would needed to be

implemented which result is higher cell area usage.

Due to the large amount of power loss from the module rnh_div_last, optimizations should

be made to limit this. Combining logic together to limit the number of logic gates that are not

used in every scenario will help bring the power loss down.

Another example of optimization is the final manipulation to solve for the quotient and re-

mainder. The final manipulation could be completed in earlier steps, resulting in the throughput

latency being one clock cycle less. However, this results in the algorithm not being straight

forward.

Chapter 6

Conclusion

A model of a 4-bit division core based on an ancient Vedic mathematics operation is successfully

designed and created. The core is modeled using Verilog and simulated using Cadence’s Incisive

Suite. The design is synthesized and analyzed using Synopsis’s DC Ultra and used to estimate

the operation larger models.

The design is successfully simulated with every possible input combination and checked for

correct operation using a generated test-bench. The test-bench is generated using Python which

allows for future test-benches to be created and implemented easily.

In timing analysis, the design has very little impact. The maximum allowable clock is found

to be about 400MHz as opposed to the 50MHz clock used to analyze the design. This means

that timing will not be a factor when implementing this design in larger models or in processors.

With a clock cycle of 400MHz, 16-clock cycles would take 40ns. This means that the worst case

for a 16-bit system would take about 40ns to compute the quotient and remainder. In comparison

to a similar design based on the same algorithm, the worst case is 3.9µs[9]. This shows current

design may end up being more efficient when considering timing. However, more research and

experimentation must be completed to conclude this.

30

The total power consumption is 40.085µW with 67.3282nW being consumed as leakage.

It is estimated that in a 16-bit design, the total power consumption will increase exponentially

towards 224µW . After comparing this to a similar design showing only 24µW [8], it is clear that

this design needs to be reworked.

The cell area usage is 1711.80µm2. It is predicted that the area will increase exponentially

and end up being 0.026mm2 for a 16-bit design. Comparing this to 10.25mm2 in a similar

design[8], it can be seen that while power consumption is higher, the design takes up signifi-

cantly less space.

From the comparisons, it can be seen that some improvements must be made in order to

increase the ability of the design. Different components must be added to the current design to

allow for the evaluation of all the combinations of inputs into the Vedic division algorithm. In

addition, the power consumption must be minimized by modifying the design to not consume

as much power when evaluating the quotient and remainder especially in the final algorithm

implementation.

Overall, the possibility of this design to be implemented in a processor or other embedded

systems is quite high. After some optimizations and upgrading, this design could fully function in

many different sized bit systems by replacing older, slower, or less optimized division cores. The

recommendation of this graduate paper is to continue research and development of this method

so that it can be implemented in an actual physical design in the future.

References

[1] J. Squire. Cmsc 411 lecture 19, pipelining data forwarding.

[2] Kenneth Pletcher. The History of India. Britannica Educational Pub. in association with

Rosen Educational Services, 2011.

[3] Gavin D. Flood. The Blackwell companion to Hinduism. Blackwell, 2005.

[4] Pierre-Sylvain Filliozat. Ancient sanskrit mathematics: An oral tradition and a written

literature. History of Science, History of Text Boston Studies in the Philosophy of Science,

2004.

[5] Bharatikrshnatirtha and Vasudeva S. Agrawala. Vedic mathematics, or, sixteen simple math-

ematical formulae from the Vedas (for one-line answers to all mathematical problems).

Motilal Banarsidass, 1970.

[6] Lianghuo Fan. A generalization of synthetic division and a general theorem of division

polynomials. Mathematical Medley, 30(1), Jun 2003.

[7] Swami Bharati Krishna Tirtha and Vasudeva Sharana. Vedic Mathematics. Motilal Banar-

sidass Publishers Private Limited, 2004.

[8] Prabir Saha, Arindam Banerjee, Partha Bhattacharyya, and Anup Dandapat. Vedic divider:

References 32

Novel architecture (asic) for high speed vlsi applications. 2011 International Symposium

on Electronic System Design, 2011.

[9] D. Sengupta, M. Sultana, and A. Chaudhuri. An algorithm facilitating fast bcd division

on low end processors using ancient indian vedic mathematics sutras. 2012 International

Conference on Communications, Devices and Intelligent Systems (CODIS), 2012.

[10] D. E. Thomas and Philip R. Moorby. The Verilog Hardware Description Language. Kluwer

Academic Publishers, 1991.

[11] Verilog. Introduction to Verilog, 2015.

[12] Guido van Rossum. The history of python, Jan 1970.

[13] Python. General python faq. 2017.

[14] Moshe Zadka and A M Kuchling. Whats new in python 2.0, Oct 2000.

[15] Cadence. SimVision Debug.

[16] Synopsis. DC Ultra, 2015.

[17] 32x8.com. Logic circuit simplification (sop and pos).

[18] Stat Trek. Statistics and Probability Dictionary. 2017.

Appendix I

Verilog Design Code

1 module r n h _ d i v i s i o n (r e s e t , c lk , d i v i s o r _ i n , d i v i d e n d _ i n ,

q u o t i e n t _ o u t , r e m a i n d e r _ o u t , s can_ in0 , scan_en , t e s t_mode ,

s c a n _ o u t 0) ;

2 i n p u t

3 r e s e t , / / sys t em r e s e t

4 c l k ; / / sys t em c l o c k

5 i n p u t

6 scan_ in0 , / / t e s t s can mode d a t a i n p u t

7 scan_en , / / t e s t s can mode e n a b l e

8 t e s t _ m o d e ; / / t e s t mode s e l e c t

9 o u t p u t

10 s c a n _ o u t 0 ; / / t e s t s can mode d a t a o u t p u t m o d u l e

r n h _ d i v i s i o n

11

12 i n p u t [3 : 0] d i v i s o r _ i n , d i v i d e n d _ i n ;

34

13

14 o u t p u t [3 : 0] q u o t i e n t _ o u t , r e m a i n d e r _ o u t ;

15 wi r e [3 : 0] d i v i s o r _ i n , d i v i d e n d _ i n ;

16

17 wi r e [3 : 0] q u o t i e n t _ o u t , r e m a i n d e r _ o u t ;

18

19 / /−−−−−−−− i n t e r n a l s i g a n l s −−−−−−−−−−−//

20 r e g [3 : 0] d i v i s o r 0 ; / / 4 4− b i t r e g i s t e r s f o r d i v i s o r

21 r e g [3 : 0] d i v i d e n d 0 ; / / 4 4− b i t r e g i s t e r s f o r d i v i d e n d

22

23 wi r e [3 : 0] d i v i d e n d _ o u t [3 : 0] ; / / 4 4− b i t w i r e s f o r

d i v i d e n d o u t p u t s

24 wi r e [3 : 0] c a r r y _ o u t [2 : 0] ;

25 wi r e [3 : 0] s i g n _ o u t [2 : 0] ;

26 r e g [3 : 0] d i v i s o r 1 , d i v i s o r 2 , d i v i s o r 3 ;

27 wi r e [3 : 0] d i v i d e n d 1 , d i v i d e n d 2 , d i v i d e n d 3 ;

28 wi r e [3 : 0] c a r r y 1 , c a r r y 2 , c a r r y 3 ;

29 wi r e [3 : 0] s ign1 , s ign2 , s i g n 3 ;

30

31 / /−−−−−−−−−−− c o n n e c t e d modules −−−−−−−−−−−−−//

32 r n h _ d i v _ s i n g l e 0 my_div0 (c lk , r e s e t , d i v i s o r 0 , d i v i d e n d 0 , 4 ’

b0000 , 4 ’ b0000 , d i v i d e n d 1 , c a r r y 1 , s ign1 ,

33 scan_ in0 , scan_en , t e s t_mode , s c a n _ o u t 0) ;

34 r n h _ d i v _ s i n g l e 1 my_div1 (c lk , r e s e t , d i v i s o r 1 , d i v i d e n d 1 ,

c a r r y 1 , s ign1 , d i v i d e n d 2 , c a r r y 2 , s ign2 ,

35

35 scan_ in0 , scan_en , t e s t_mode , s c a n _ o u t 0) ;

36 r n h _ d i v _ s i n g l e 2 my_div2 (c lk , r e s e t , d i v i s o r 2 , d i v i d e n d 2 ,

c a r r y 2 , s ign2 , d i v i d e n d 3 , c a r r y 3 , s ign3 ,

37 scan_ in0 , scan_en , t e s t_mode , s c a n _ o u t 0) ;

38 r n h _ d i v _ l a s t m y _ l a s t (c lk , r e s e t , d i v i s o r 3 , d i v i d e n d 3 , c a r r y 3 ,

s ign3 , q u o t i e n t _ o u t , r e m a i n d e r _ o u t ,

39 scan_ in0 , scan_en , t e s t_mode , s c a n _ o u t 0) ;

40 / /−−−−−−−−− module b e g i n −−−−−−−−−−−−−−−−//

41

42 always@ (posedge c l k o r posedge r e s e t) b e g i n

43 i f (r e s e t == 1 ’ b1) b e g i n

44 d i v i s o r 0 = 4 ’ b0000 ; d i v i s o r 1 = 4 ’ b0000 ; d i v i s o r 2 = 4 ’

b0000 ; d i v i s o r 3 = 4 ’ b0000 ;

45 d i v i d e n d 0 = 4 ’ b0000 ;

46 end

47 e l s e b e g i n

48 d i v i s o r 3 = d i v i s o r 2 ;

49 d i v i s o r 2 = d i v i s o r 1 ;

50 d i v i s o r 1 = d i v i s o r 0 ;

51 d i v i s o r 0 = d i v i s o r _ i n ;

52 d i v i d e n d 0 = d i v i d e n d _ i n ;

53 end

54 end

55 endmodule

56

36

57 module r n h _ d i v _ s i n g l e 0 (c lk , r e s e t , d i v i s o r , d i v i d e n d , c a r r y ,

s ign , d i v i d e n d _ o u t , c a r r y _ o u t , s i g n _ o u t , s can_ in0 , scan_en ,

t e s t_mode , s c a n _ o u t 0) ;

58 i n p u t c lk , r e s e t ;

59 i n p u t [3 : 0] d i v i s o r , d i v i d e n d , c a r r y , s i g n ;

60 o u t p u t [3 : 0] d i v i d e n d _ o u t , c a r r y _ o u t , s i g n _ o u t ;

61 i n p u t

62 scan_ in0 , / / t e s t s can mode d a t a i n p u t

63 scan_en , / / t e s t s can mode e n a b l e

64 t e s t _ m o d e ; / / t e s t mode s e l e c t

65 o u t p u t

66 s c a n _ o u t 0 ; / / t e s t s can mode d a t a o u t p u t m o d u l e

r n h _ d i v i s i o n

67

68 wi r e [1 : 0] b i t_num ;

69 wi r e [2 : 0] temp_div ;

70

71 r e g [3 : 0] d i v i d e n d _ o u t , c a r r y _ o u t , s i g n _ o u t ;

72

73 r n h _ d i v i s o r _ d e t e c t my_de tec t (d i v i s o r , bi t_num , temp_div ,

s can_ in0 , scan_en , t e s t_mode , scan_ou t0 , r e s e t , c l k) ;

74 always@ (posedge c l k o r posedge r e s e t) b e g i n

75 i f (r e s e t == 1 ’ b1) b e g i n

76 d i v i d e n d _ o u t = 4 ’ b0000 ;

77 c a r r y _ o u t = 4 ’ b0000 ;

37

78 s i g n _ o u t = 4 ’ b0000 ;

79 end

80 e l s e b e g i n

81 s i g n _ o u t = s i g n ;

82 c a r r y _ o u t = c a r r y ;

83 d i v i d e n d _ o u t = d i v i d e n d ;

84 i f (b i t_num <= 3) b e g i n

85 c a s e x ({ c a r r y [3] , d i v i d e n d [3] , s i g n [3] })

86 3 ’ bx11 , 3 ’ b1x1 : b e g i n

87 i f (b i t_num > 0) b e g i n

88 i f (d i v i d e n d [3] == 1 ’ b1)

89 d i v i d e n d _ o u t [2] = (~ (temp_div [bi t_num −1]) & d i v i d e n d

[2]) | (t emp_div [bi t_num −1] & ~(d i v i d e n d [2]) &

d i v i d e n d [3]) ;

90 c a r r y _ o u t [2] = c a r r y [2] | ~(s i g n [2]) &

temp_div [bi t_num −1] & d i v i d e n d [2] | (

c a r r y [3] & temp_div [bi t_num −1]) ;

91 s i g n _ o u t [2] = (c a r r y [2] & s i g n [2]) | (s i g n

[2] & ~(temp_div [bi t_num −1])) ;

92 end

93 i f (b i t_num > 1) b e g i n

94 i f (d i v i d e n d [3] == 1 ’ b1)

95 d i v i d e n d _ o u t [1] = (~ (temp_div [bi t_num −2]) & d i v i d e n d

[1]) | (t emp_div [bi t_num −2] & ~(d i v i d e n d [1]) &

d i v i d e n d [3]) ;

38

96 c a r r y _ o u t [1] = c a r r y [1] | ~(s i g n [1]) &

temp_div [bi t_num −2] & d i v i d e n d [1] | (

c a r r y [2] & temp_div [bi t_num −2]) ;

97 s i g n _ o u t [1] = (c a r r y [1] & s i g n [1]) | (s i g n

[1] & ~(temp_div [bi t_num −2])) ;

98 end

99

100 i f (b i t_num > 2) b e g i n

101 i f (d i v i d e n d [3] == 1 ’ b1)

102 d i v i d e n d _ o u t [0] = (~ (temp_div [bi t_num −3]) & d i v i d e n d

[0]) | (t emp_div [bi t_num −3] & ~(d i v i d e n d [0]) &

d i v i d e n d [3]) ;

103 c a r r y _ o u t [0] = c a r r y [1] | ~(s i g n [0]) &

temp_div [bi t_num −3] & d i v i d e n d [0] | (

c a r r y [3] & temp_div [bi t_num −3]) ;

104 s i g n _ o u t [0] = (c a r r y [0] & s i g n [0]) | (s i g n

[0] & ~(temp_div [bi t_num −3])) ;

105 end

106 end

107 3 ’ bx10 , 3 ’ b1x0 : b e g i n

108 i f (b i t_num > 0) b e g i n

109 i f (d i v i d e n d [3] == 1 ’ b1)

110 d i v i d e n d _ o u t [2] = (~ (temp_div [bi t_num −1]) & d i v i d e n d

[2]) | (t emp_div [bi t_num −1] & ~(d i v i d e n d [2]) &

d i v i d e n d [3]) ;

39

111 c a r r y _ o u t [2] = (c a r r y [2] & ~ temp_div [

bi t_num −1]) | (c a r r y [2] & d i v i d e n d [2]) |

(s i g n [2] & c a r r y [2]) |

112 (s i g n [2] & temp_div [bi t_num −1] & d i v i d e n d [2]) | (

c a r r y [3] & temp_div [bi t_num −1]) ;

113 s i g n _ o u t [2] = s i g n [2] | (~ c a r r y [2] &

temp_div [bi t_num −1] & ~ d i v i d e n d [2]) ;

114 end

115 i f (b i t_num > 1) b e g i n

116 i f (d i v i d e n d [3] == 1 ’ b1)

117 d i v i d e n d _ o u t [1] = (~ (temp_div [bi t_num −2]) & d i v i d e n d

[1]) | (t emp_div [bi t_num −2] & ~(d i v i d e n d [1]) &

d i v i d e n d [3]) ;

118 c a r r y _ o u t [1] = (c a r r y [1] & ~ temp_div [

bi t_num −2]) | (c a r r y [1] & d i v i d e n d [1]) |

(s i g n [1] & c a r r y [1]) |

119 (s i g n [1] & temp_div [bi t_num −2] & d i v i d e n d [1]) | (

c a r r y [3] & temp_div [bi t_num −2]) ;

120 s i g n _ o u t [1] = s i g n [1] | (~ c a r r y [1] &

temp_div [bi t_num −2] & ~ d i v i d e n d [1]) ;

121 end

122 i f (b i t_num > 2) b e g i n

123 i f (d i v i d e n d [3] == 1 ’ b1)

124 d i v i d e n d _ o u t [0] = (~ (temp_div [bi t_num −3]) & d i v i d e n d

[0]) | (t emp_div [bi t_num −3] & ~(d i v i d e n d [0]) &

40

d i v i d e n d [3]) ;

125 c a r r y _ o u t [0] = (c a r r y [0] & ~ temp_div [

bi t_num −3]) | (c a r r y [0] & d i v i d e n d [0]) |

(s i g n [0] & c a r r y [0]) |

126 (s i g n [0] & temp_div [bi t_num −3] & d i v i d e n d [0]) | (

c a r r y [3] & temp_div [bi t_num −3]) ;

127 s i g n _ o u t [0] = s i g n [0] | (~ c a r r y [0] &

temp_div [bi t_num −3] & ~ d i v i d e n d [0]) ;

128 end

129 end

130 d e f a u l t : b e g i n

131 d i v i d e n d _ o u t [2 : 0] = d i v i d e n d [2 : 0] ;

132 s i g n _ o u t = s i g n ;

133 c a r r y _ o u t = c a r r y ;

134 end

135 e n d c a s e

136 d i v i d e n d _ o u t [3] = d i v i d e n d [3] ;

137 end

138 end

139 end

140 endmodule

141 module r n h _ d i v _ s i n g l e 1 (c lk , r e s e t , d i v i s o r , d i v i d e n d , c a r r y ,

s ign , d i v i d e n d _ o u t , c a r r y _ o u t , s i g n _ o u t , s can_ in0 , scan_en ,

t e s t_mode , s c a n _ o u t 0) ;

142 i n p u t c lk , r e s e t ;

41

143 i n p u t [3 : 0] d i v i s o r , d i v i d e n d , c a r r y , s i g n ;

144 o u t p u t [3 : 0] d i v i d e n d _ o u t , c a r r y _ o u t , s i g n _ o u t ;

145 i n p u t

146 scan_ in0 , / / t e s t s can mode d a t a i n p u t

147 scan_en , / / t e s t s can mode e n a b l e

148 t e s t _ m o d e ; / / t e s t mode s e l e c t

149 o u t p u t

150 s c a n _ o u t 0 ; / / t e s t s can mode d a t a

o u t p u t m o d u l e r n h _ d i v i s i o n

151

152 wi r e [1 : 0] b i t_num ;

153 wi r e [2 : 0] temp_div ;

154

155 r e g [3 : 0] d i v i d e n d _ o u t , c a r r y _ o u t , s i g n _ o u t ;

156

157 r n h _ d i v i s o r _ d e t e c t my_de tec t (d i v i s o r , bi t_num , temp_div ,

s can_ in0 , scan_en , t e s t_mode , scan_ou t0 , r e s e t , c l k) ;

158 always@ (posedge c l k o r posedge r e s e t) b e g i n

159 i f (r e s e t == 1 ’ b1) b e g i n

160 d i v i d e n d _ o u t = 4 ’ b0000 ;

161 c a r r y _ o u t = 4 ’ b0000 ;

162 s i g n _ o u t = 4 ’ b0000 ;

163 end

164 e l s e b e g i n

165 s i g n _ o u t = s i g n ;

42

166 c a r r y _ o u t = c a r r y ;

167 d i v i d e n d _ o u t = d i v i d e n d ;

168 i f (b i t_num <= 2) b e g i n

169 c a s e x ({ c a r r y [2] , d i v i d e n d [2] , s i g n [2] })

170 3 ’ bx11 , 3 ’ b1x1 : b e g i n

171 i f (b i t_num > 0) b e g i n

172 i f (d i v i d e n d [2] == 1 ’ b1)

173 d i v i d e n d _ o u t [1] = (~ temp_div [bi t_num −1] & d i v i d e n d

[1]) | (t emp_div [bi t_num −1] & ~ d i v i d e n d [1] &

d i v i d e n d [2]) ;

174 c a r r y _ o u t [1] = c a r r y [1] | ~(s i g n [1]) &

temp_div [bi t_num −1] & d i v i d e n d [1] | (

c a r r y [2] & temp_div [bi t_num −1]) ;

175 s i g n _ o u t [1] = (s i g n [1] & ~(temp_div [bi t_num

−1])) | (s i g n [1] & c a r r y [1]) ;

176 end

177

178 i f (b i t_num > 1) b e g i n

179 i f (d i v i d e n d [2] == 1 ’ b1)

180 d i v i d e n d _ o u t [0] = (~ temp_div [bi t_num −2] & d i v i d e n d

[0]) | (t emp_div [bi t_num −2] & ~ d i v i d e n d [0] &

d i v i d e n d [2]) ;

181 c a r r y _ o u t [0] = c a r r y [0] | ~(s i g n [0]) &

temp_div [bi t_num −2] & d i v i d e n d [0] | (

c a r r y [2] & temp_div [bi t_num −2]) ;

43

182 s i g n _ o u t [0] = (s i g n [0] & ~(temp_div [bi t_num

−2])) + (s i g n [0] & c a r r y [0]) ;

183 end

184 end

185 3 ’ bx10 , 3 ’ b1x0 : b e g i n

186 i f (b i t_num > 0) b e g i n

187 i f (d i v i d e n d [2] == 1 ’ b1)

188 d i v i d e n d _ o u t [1] = (~ (temp_div [bi t_num −1]) & d i v i d e n d

[1]) | (t emp_div [bi t_num −1] & ~(d i v i d e n d [1]) &

d i v i d e n d [2]) ;

189 c a r r y _ o u t [1] = (c a r r y [1] & ~ temp_div [

bi t_num −1]) | (c a r r y [1] & d i v i d e n d [1]) |

(s i g n [1] & c a r r y [1]) |

190 (s i g n [1] & temp_div [bi t_num −1] & d i v i d e n d [1]) | (

c a r r y [2] & temp_div [bi t_num −1]) ;

191 s i g n _ o u t [1] = s i g n [1] | (~ c a r r y [1] &

temp_div [bi t_num −1] & ~ d i v i d e n d [1]) ;

192 end

193 i f (b i t_num > 1) b e g i n

194 i f (d i v i d e n d [2] == 1 ’ b1)

195 d i v i d e n d _ o u t [0] = (~ (temp_div [bi t_num −2]) & d i v i d e n d

[0]) | (t emp_div [bi t_num −2] & ~(d i v i d e n d [0]) &

d i v i d e n d [2]) ;

196 c a r r y _ o u t [0] = (c a r r y [0] & ~ temp_div [

bi t_num −2]) | (c a r r y [0] & d i v i d e n d [0]) |

44

(s i g n [0] & c a r r y [0]) |

197 (s i g n [0] & temp_div [bi t_num −2] & d i v i d e n d [0]) | (

c a r r y [2] & temp_div [bi t_num −2]) ;

198 s i g n _ o u t [0] = s i g n [0] | (~ c a r r y [0] &

temp_div [bi t_num −2] & ~ d i v i d e n d [0]) ;

199 end

200 end

201 d e f a u l t : b e g i n

202 d i v i d e n d _ o u t [1 : 0] = d i v i d e n d [1 : 0] ;

203 s i g n _ o u t = s i g n ;

204 c a r r y _ o u t = c a r r y ;

205 end

206 e n d c a s e

207 end

208 end

209 end

210 endmodule

211 module r n h _ d i v _ s i n g l e 2 (c lk , r e s e t , d i v i s o r , d i v i d e n d , c a r r y ,

s ign , d i v i d e n d _ o u t , c a r r y _ o u t , s i g n _ o u t , s can_ in0 , scan_en ,

t e s t_mode , s c a n _ o u t 0) ;

212 i n p u t c lk , r e s e t ;

213 i n p u t [3 : 0] d i v i s o r , d i v i d e n d , c a r r y , s i g n ;

214 o u t p u t [3 : 0] d i v i d e n d _ o u t , c a r r y _ o u t , s i g n _ o u t ;

215 i n p u t

216 scan_ in0 , / / t e s t s can mode d a t a i n p u t

45

217 scan_en , / / t e s t s can mode e n a b l e

218 t e s t _ m o d e ; / / t e s t mode s e l e c t

219 o u t p u t

220 s c a n _ o u t 0 ; / / t e s t s can mode d a t a o u t p u t m o d u l e

r n h _ d i v i s i o n

221

222 wi r e [1 : 0] b i t_num ;

223 wi r e [2 : 0] temp_div ;

224

225 r e g [3 : 0] d i v i d e n d _ o u t , c a r r y _ o u t , s i g n _ o u t ;

226

227 r n h _ d i v i s o r _ d e t e c t my_de tec t (d i v i s o r , bi t_num , temp_div ,

s can_ in0 , scan_en , t e s t_mode , scan_ou t0 , r e s e t , c l k) ;

228 always@ (posedge c l k o r posedge r e s e t) b e g i n

229 i f (r e s e t == 1 ’ b1) b e g i n

230 d i v i d e n d _ o u t = 4 ’ b0000 ;

231 c a r r y _ o u t = 4 ’ b0000 ;

232 s i g n _ o u t = 4 ’ b0000 ;

233 end

234 e l s e b e g i n

235 s i g n _ o u t = s i g n ;

236 c a r r y _ o u t = c a r r y ;

237 d i v i d e n d _ o u t = d i v i d e n d ;

238 i f (b i t_num <= 1) b e g i n

239 c a s e x ({ c a r r y [1] , d i v i d e n d [1] , s i g n [1] })

46

240 3 ’ bx11 , 3 ’ b1x1 : b e g i n

241 i f (b i t_num > 0) b e g i n

242 i f (d i v i d e n d [1] == 1 ’ b1 | (s i g n [0] == 1 ’ b1

& d i v i d e n d [0] == 1 ’ b1))

243 d i v i d e n d _ o u t [0] = (~ (temp_div [bi t_num −1]) & d i v i d e n d

[0]) | (t emp_div [bi t_num −1] & ~(d i v i d e n d [0])) |

244 (d i v i d e n d [0] & temp_div [bi t_num −1] & c a r r y [1]) ;

245 c a r r y _ o u t [0] = c a r r y [0] | ~(s i g n [0]) &

temp_div [bi t_num −1] & d i v i d e n d [0] | (

c a r r y [1] & temp_div [bi t_num −1]) ;

246 s i g n _ o u t [0] = (s i g n [0] & ~(temp_div [bi t_num

−1])) | (s i g n [0] & c a r r y [0]) ;

247 end

248 end

249 3 ’ bx10 , 3 ’ b1x0 : b e g i n

250 i f (b i t_num > 0) b e g i n

251 i f (d i v i d e n d [1] == 1 ’ b1 | (s i g n [0] == 1 ’ b0

& d i v i d e n d [0] == 1 ’ b1))

252 d i v i d e n d _ o u t [0] = (~ (temp_div [bi t_num −1]) & d i v i d e n d

[0]) | (t emp_div [bi t_num −1] & ~(d i v i d e n d [0])) |

253 (d i v i d e n d [0] & temp_div [bi t_num −1] & c a r r y [1]) ;

254 c a r r y _ o u t [0] = (c a r r y [0] & ~ temp_div [

bi t_num −1]) | (c a r r y [0] & d i v i d e n d [0]) |

(s i g n [0] & c a r r y [0]) |

47

255 (s i g n [0] & temp_div [bi t_num −1] & d i v i d e n d [0]) | (

c a r r y [1] & temp_div [bi t_num −1] & ~ d i v i d e n d [0]) ;

256 s i g n _ o u t [0] = s i g n [0] | (~ c a r r y [0] &

temp_div [bi t_num −1] & ~ d i v i d e n d [0]) | (

c a r r y [1]) ;

257 end

258 end

259 d e f a u l t : b e g i n

260 d i v i d e n d _ o u t [0] = d i v i d e n d [0] ;

261 s i g n _ o u t = s i g n ;

262 c a r r y _ o u t = c a r r y ;

263 end

264 e n d c a s e

265 end

266 end

267 end

268 endmodule

269

270 module r n h _ d i v _ l a s t (c lk , r e s e t , d i v i s o r , d i v i d e n d , c a r r y , s ign

, q u o t i e n t _ o u t , r e m a i n d e r _ o u t , s can_ in0 , scan_en , t e s t_mode ,

s c a n _ o u t 0) ;

271 i n p u t c lk , r e s e t ;

272 i n p u t [3 : 0] d i v i s o r , d i v i d e n d , c a r r y , s i g n ;

273 o u t p u t [3 : 0] q u o t i e n t _ o u t , r e m a i n d e r _ o u t ;

274 i n p u t

48

275 scan_ in0 , / / t e s t s can mode d a t a i n p u t

276 scan_en , / / t e s t s can mode e n a b l e

277 t e s t _ m o d e ; / / t e s t mode s e l e c t

278 o u t p u t

279 s c a n _ o u t 0 ; / / t e s t s can mode d a t a o u t p u t m o d u l e

r n h _ d i v i s i o n

280 r e g [3 : 0] q u o t i e n t _ o u t , r e m a i n d e r _ o u t ;

281 wi r e [1 : 0] b i t_num ;

282 wi r e [2 : 0] temp_div ;

283 wi r e [1 : 0] rem_num ;

284

285 r n h _ d i v i s o r _ d e t e c t my_de tec t (d i v i s o r , bi t_num , temp_div ,

s can_ in0 , scan_en , t e s t_mode , scan_ou t0 , r e s e t , c l k) ;

286 r n h _ r e m a i n d e r _ d e t e c t m y _ r d e t e c t (d i v i d e n d , bi t_num , rem_num ,

scan_ in0 , scan_en , t e s t_mode , scan_ou t0 , r e s e t , c l k) ;

287 always@ (posedge c l k o r posedge r e s e t) b e g i n

288 i f (r e s e t == 1 ’ b1) b e g i n

289 q u o t i e n t _ o u t = 4 ’ h0 ;

290 r e m a i n d e r _ o u t = 4 ’ h0 ;

291 end

292 e l s e b e g i n

293 c a s e (b i t_num)

294 3 : b e g i n

295 i f (s i g n [rem_num] == 1 ’ b1) b e g i n

49

296 r e m a i n d e r _ o u t = d i v i s o r [3 : 0] − {1 ’ b0 , ((3 ’ b111

& d i v i d e n d [2 : 0] & (s i g n [2 : 0])) − { (~ (s i g n

[2 : 0]) & c a r r y [2 : 0]) −

297 (s i g n [2 : 0] & c a r r y [2 : 0]) ,1 ’ b0 }) }

298 + (d i v i d e n d [2 : 0] & ~ s i g n [2 : 0]) ;

299 q u o t i e n t _ o u t = (1 ’ b1 & d i v i d e n d [3] & ~(s i g n [3])) +

{ (~ (s i g n [2]) & c a r r y [2]) − (s i g n [2] & c a r r y [2]) ,1 ’

b0 }

300 − d i v i d e n d [rem_num] − c a r r y [2] ;

301 end

302 e l s e b e g i n

303 r e m a i n d e r _ o u t = (3 ’ b111 & d i v i d e n d [2 : 0] & ~(

s i g n [2 : 0])) + { (~ (s i g n [2 : 0]) & c a r r y [2 : 0]) −

304 (s i g n [2 :0]& c a r r y [2 : 0]) ,1 ’

b0 } − (s i g n [2 : 0] &

d i v i d e n d [2 : 0]) ;

305 q u o t i e n t _ o u t = (1 ’ b1 & d i v i d e n d [3] & ~(s i g n [3])) +

{ (~ (s i g n [2]) & c a r r y [2]) − (s i g n [2] & c a r r y [2]) ,1 ’

b0 } ;

306 end

307 end

308 2 : b e g i n

309

310 i f (s i g n [rem_num] == 1 ’ b1) b e g i n

50

311 r e m a i n d e r _ o u t = d i v i s o r [2 : 0] − {1 ’ b0 , ((2 ’ b11

& d i v i d e n d [1 : 0] & (s i g n [1 : 0])) − { (~ (s i g n

[1 : 0]) & c a r r y [1 : 0])−

312 (s i g n [1 : 0] & c a r r y [1 : 0]) ,1 ’ b0 }) }

313 + (d i v i d e n d [1 : 0] & ~ s i g n [1 : 0]) ;

314 q u o t i e n t _ o u t = (2 ’ b11 & d i v i d e n d [3 : 2] & ~(s i g n [3 : 2]))

+ (~ (s i g n [2]) & c a r r y [2]) − (s i g n [2] & c a r r y [2])

315 − (s i g n [2] & d i v i d e n d [2]) −

d i v i d e n d [rem_num] − c a r r y [1] ;

316 end

317 e l s e b e g i n

318 r e m a i n d e r _ o u t = (2 ’ b11 & d i v i d e n d [1 : 0] & ~(s i g n

[1 : 0])) + { (~ (s i g n [1 : 0]) & c a r r y [1 : 0]) −

319 (s i g n [1 : 0] & c a r r y [1 : 0]) ,1 ’

b0 } − (s i g n [0] & d i v i d e n d

[0]) ;

320 q u o t i e n t _ o u t = (2 ’ b11& d i v i d e n d [3 : 2] & ~(s i g n [3 : 2]))

+ { (~ (s i g n [2]) & c a r r y [2]) − (s i g n [2] & c a r r y [2])

,1 ’ b0 }

321 − (s i g n [2] & d i v i d e n d [2]) ;

322 end

323 end

324 1 : b e g i n

325 i f (s i g n [rem_num] == 1 ’ b1) b e g i n

51

326 r e m a i n d e r _ o u t = d i v i s o r [1 : 0] − {1 ’ b0 , ((1 ’ b1 &

d i v i d e n d [0] & s i g n [0])− { (~ (s i g n [0]) & c a r r y

[0]) −(s i g n [0] & c a r r y [0]) ,1 ’ b0 }) }

327 + (d i v i d e n d [0] & ~ s i g n [0]) ;

328 q u o t i e n t _ o u t = (3 ’ b111 & d i v i d e n d [3 : 1] & ~(s i g n [3 : 1])

) + { (~ (s i g n [2 : 1]) & c a r r y [2 : 1]) − (s i g n [2 : 1] &

c a r r y [2 : 1]) ,1 ’ b0 }

329 − (s i g n [2 : 1] & d i v i d e n d [2 : 1])−

d i v i d e n d [rem_num] − c a r r y [0] ;

330 end

331 e l s e b e g i n

332 r e m a i n d e r _ o u t = (1 ’ b1 & d i v i d e n d [0] & ~(s i g n

[0])) + { (~ (s i g n [0]) & c a r r y [0]) −

333 (s i g n [0]& c a r r y [0]) ,1 ’ b0 } ;

334 q u o t i e n t _ o u t = (3 ’ b111 & d i v i d e n d [3 : 1] & ~(s i g n [3 : 1])

) + { (~ (s i g n [2 : 1]) & c a r r y [2 : 1]) − (s i g n [2 : 1] &

c a r r y [2 : 1]) ,1 ’ b0 }

335 − (s i g n [2 : 1] & d i v i d e n d [2 : 1]) ;

336 end

337 end

338 d e f a u l t : b e g i n

339 q u o t i e n t _ o u t = d i v i d e n d [3 : 0] ;

340 r e m a i n d e r _ o u t = 4 ’ h0 ;

341 end

342 e n d c a s e

52

343 i f (r e m a i n d e r _ o u t [3 : 0] != 0 && r e m a i n d e r _ o u t [3 : 0] ==

d i v i s o r [3 : 0]) b e g i n

344 q u o t i e n t _ o u t = q u o t i e n t _ o u t + 1 ;

345 r e m a i n d e r _ o u t = 4 ’ h0 ;

346 end

347 end

348 end

349 endmodule

Appendix II

Python Test Bench Generator

1 # c r e a t e s t e s t b e n c h f i l e t o t e s t a 4− b i t d i v i s o r

2

3 f i l e n a m e = " r n h _ d i v i s i o n _ t b _ t x t . t x t "

4 d e s t f i l e = " r n h _ d i v i s i o n _ t e s t . v "

5 h e a d f i l e = " r n h _ d i v i s i o n _ t b _ h e a d . v "

6 f o o t f i l e = " r n h _ d i v i s i o n _ t b _ f o o t . v "

7 NC f i l e = " r n h _ d i v i s i o n _ t b _ N C . t x t "

8

9 e r r o r = 0

10

11 temp = open (NCfi le , ’w’)

12 t r y :

13 wi th open (f i l e n a m e) as l i n e s :

14 f o r l i n e i n l i n e s :

15 temp . w r i t e (l i n e . r e p l a c e ("%" , " \ n%") . s p l i t ("%") [0])

54

16 e x c e p t :

17 p r i n t (" F i l e %s n o t found \ n " % f i l e n a m e) ;

18 e r r o r = e r r o r + 1

19

20 temp . c l o s e () ;

21

22 t x t = open (NCfi le , ’ r ’)

23 c o n t e n t = t x t . r e a d l i n e s ()

24

25 t r y :

26 t r y :

27 f i l e S t a r t = c o n t e n t . i n d e x (" . f i l e _ s t a r t \ n ") + 1

28 e x c e p t :

29 f i l e S t a r t = c o n t e n t . i n d e x (" . f i l e _ s t a r t ") + 1

30 e x c e p t :

31 e r r o r = e r r o r + 1

32 p r i n t (" . f i l e _ s t a r t NOT FOUND\ n ")

33

34 t r y :

35 t r y :

36 f i l e E n d = c o n t e n t . i n d e x (" . f i l e _ e n d \ n ") − 1

37 e x c e p t :

38 f i l e E n d = c o n t e n t . i n d e x (" . f i l e _ e n d ") − 1

39 e x c e p t :

40 e r r o r = e r r o r + 1

55

41 p r i n t (" . f i l e _ e n d NOT FOUND\ n ")

42

43 d i v i s o r = []

44 d i v i d e n d = []

45 q u o t i e n t = []

46 r e m a i n d e r = []

47

48 j = 0

49

50 f o r i i n r a n g e (f i l e S t a r t , f i l e E n d) :

51 l i n e = c o n t e n t [i]

52 i f ’ / ’ i n l i n e :

53 sym_loc = l i n e . i n d e x (’ / ’)

54 i f i n t (l i n e [0 : sym_loc]) > 15 :

55 p r i n t (" Div idend a t l i n e %s , %s , i s t o o l a r g e " % (i

+2 , l i n e [0 : sym_loc]))

56 d i v i d e n d . append (’ 0 ’)

57 e r r o r += 1

58 e l s e :

59 d i v i d e n d . append (l i n e [0 : sym_loc])

60

61 i f i n t (l i n e [sym_loc +1: l e n (l i n e) −1]) > 15 :

62 p r i n t (" D i v i s o r a t l i n e %s , %s , i s t o o l a r g e " % (i

+2 , l i n e [sym_loc +1: l e n (l i n e) −1]))

63 d i v i s o r . append (’ 0 ’)

56

64 e r r o r += 1

65 e l s e :

66 d i v i s o r . append (l i n e [sym_loc +1: l e n (l i n e) −2])

67

68 i f d i v i s o r [j] == ’ 0 ’ :

69 q u o t i e n t . append (’ 0 ’)

70 r e m a i n d e r . append (’ 0 ’)

71

72 e l s e :

73 q u o t i e n t . append (i n t (i n t (d i v i d e n d [j]) / i n t (d i v i s o r [j

])))

74 r e m a i n d e r . append (i n t (d i v i d e n d [j])%i n t (d i v i s o r [j]))

75 j += 1

76

77 o u t p u t = open (d e s t f i l e , ’w’)

78

79 wi th open (h e a d f i l e) a s l i n e s :

80 f o r l i n e i n l i n e s :

81 o u t p u t . w r i t e (l i n e)

82

83 f o r i i n r a n g e (0 , j +4) :

84 i f (i >= 4 and i >= j) :

85 o u t p u t . w r i t e (" a p p l y _ t e s t _ v e c t o r (0 , 0 , 4 ’ h0 , 4 ’ h0 , 4 ’ h%s

, 4 ’ h%s) ; / / Na / Na ; %s /% s = %s R:% s \ n \ t " % \

57

86 (’ { 0 : 0 x} ’ . f o r m a t (i n t (q u o t i e n t [i −4])) , ’ { 0 : 0

x} ’ . f o r m a t (i n t (r e m a i n d e r [i −4])) , \

87 d i v i d e n d [i −4] , d i v i s o r [i −4] , q u o t i e n t [i −4] ,

r e m a i n d e r [i −4]))

88 e l i f (i < 4 and i >= j) :

89 o u t p u t . w r i t e (" a p p l y _ t e s t _ v e c t o r (0 , 0 , 4 ’ h0 , 4 ’ h0 , 4 ’ h0 ,

4 ’ h0) ; / / Na / Na ; Na /NA = Na R : Na \ n \ t ")

90 e l i f i >= 4 :

91 o u t p u t . w r i t e (" a p p l y _ t e s t _ v e c t o r (0 , 0 , 4 ’ h%s , 4 ’ h%s , 4 ’ h

%s , 4 ’ h%s) ; / / %s /% s ; %s /% s = %s R:% s \ n \ t " % \

92 (’ { 0 : 0 x} ’ . f o r m a t (i n t (d i v i d e n d [i])) , ’ { 0 : 0 x}

’ . f o r m a t (i n t (d i v i s o r [i])) \

93 , ’ { 0 : 0 x} ’ . f o r m a t (i n t (q u o t i e n t [i −4])) , ’

{ 0 : 0 x} ’ . f o r m a t (i n t (r e m a i n d e r [i −4])) , \

94 d i v i d e n d [i] , d i v i s o r [i] , d i v i d e n d [i −4] ,

d i v i s o r [i −4] , q u o t i e n t [i −4] , r e m a i n d e r [i

−4]))

95

96 e l s e :

97 o u t p u t . w r i t e (" a p p l y _ t e s t _ v e c t o r (0 , 0 , 4 ’ h%s , 4 ’ h%s , 4 ’

h0 , 4 ’ h0) ; / / %s /% s ; NA/ Na = Na R : Na \ n \ t " % \

98 (’ { 0 : 0 x} ’ . f o r m a t (i n t (d i v i d e n d [i])) , ’ { 0 : 0 x}

’ . f o r m a t (i n t (d i v i s o r [i])) , \

99 d i v i d e n d [i] , d i v i s o r [i]))

100

58

101 o u t p u t . w r i t e (" \ nend \ n \ n ")

102

103 wi th open (f o o t f i l e) a s l i n e s :

104 f o r l i n e i n l i n e s :

105 o u t p u t . w r i t e (l i n e)

106

107 o u t p u t . c l o s e ()

108

109 i f e r r o r == 0 :

110 p r i n t (" \ nExpor t t o %s was s u c c e s s f u l ! \ n " % (d e s t f i l e))

111 e l s e :

112 p r i n t (" \ nExpor t t o %s was UNSUCCESSFUL wi th %d e r r o r s ! \ n " %

(d e s t f i l e , e r r o r))

113

114 i m p o r t t ime

115 r a w _ i n p u t (" P r e s s E n t e r t o e x i t ;) \ n ")

	Vedic Based Division Core Design
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Goals
	1.2 Contributions
	1.3 Organization

	2 Preliminaries and Background Research
	2.1 Pipelined System
	2.2 Vedic Division Algorithm
	2.3 Similar Architectures
	2.4 Verilog
	2.5 Python
	2.6 Simulation and Analysis Software

	3 Binary Division Algorithm Implementation
	3.1 Single Manipulation Algorithm
	3.2 Final Manipulation Algorithm

	4 Simulation and Evaluation of the 4-bit Architecture
	4.1 Simulation
	4.2 Timing Analysis
	4.3 Power Consumption Analysis
	4.4 Area Usage Analysis

	5 Future Work
	5.1 Future and Complex Implementations
	5.2 Optimizations

	6 Conclusion
	References
	I Verilog Design Code
	II Python Test Bench Generator

