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 Metal-oxide chemical sensor technology has been praised as a cheap and efficient 

method of detecting both reducing and oxidizing gases depending on the metal-oxide’s 

carrier type. The research conducted in this thesis explored methods of enhancing the 

sensitivity of an n-type metal-oxide material (indium tin oxide, ITO) to a volatile organic 

compound (VOC) through changes in both device and testing characteristics. Two methods 

of testing prototype sensors were developed which consisted of short and long-term 

exposure to ethanol at different temperatures and concentrations. Maximum sensitivity at 

2000 ppm was achieved in devices with thin, annealed metal-oxide layers with a high 

temperature of operation; this sensitivity measurement was achieved using a prolonged 

exposure test with 100-nm of annealed ITO at an operating temperature of 360°C and 

yielded a sensitivity of 32.5%. A fabrication process consisting of two lift-off processes 

for the metal-oxide and contact metal was developed to create the prototype devices. 

Preliminary characterization on the metal-oxide materials confirmed its thickness, 

crystallinity / crystal structure, and grain size. In addition to the electrical tests, a future 

work chemical sensor was thermally and electrically simulated using SolidWorks and 

Silvaco Atlas, respectively; a proposed fabrication process of the device is also presented, 

along with a basic outline of future work experiments to further study sensitivity 

enhancements through other metal-oxide materials, noble catalytic metals, device 

architecture, and signal processing of proposed electrical testing. 
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The ability to both qualify and quantify chemistry is crucial in the development of 

technology which impacts people’s lives. Whether it deals with determining the dose of 

corticosteroids required for an asthma inhaler to detecting carbon monoxide leaks in 

buildings, society inherently relies on chemical sensors every day to ensure a high quality 

of life. Today, chemical sensor technologies are no longer limited to industrial settings as 

they were in the past. As chemical sensors are further miniaturized and easily manufactured 

at low cost, their applications, especially with personal devices and the Internet of Things 

(IoT), grow exponentially. In fact, in the next few years, the financial growth of chemical 

sensor technologies is expected to go up by 10.2% CAGR with an overall market of $31.2 

billion [1]. This large growth yields great opportunities to research marketable solutions 

for the pressing needs of industrial, domestic, and academic customers. 

 

 A promising, low-cost technology analyzed in recent years is chemical detection 

via metal-oxide materials. Metal-oxide materials have enabled chemical sensors to be 

efficient in detecting both reducing and oxidizing gases (especially the former) depending 

on carrier type and concentrations of the sensing material. These devices find their niche 

especially in the detection of volatile organic compounds (VOCs). VOCs are common 

chemicals used in industry and domestic applications which, if not handled properly, can 

cause both acute and chronic health problems such as asphyxia, nausea, irritation, 
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blindness, cancer, and death. In addition, the odor thresholds of certain VOCs tend to be 

small and, after the VOC concentration surpasses this threshold, the olfactory receptor 

neurons in the nose become saturated and are unable to detect higher, dangerous 

concentrations. This makes VOCs a much more potent threat.  

 This thesis focuses on methods of improving the sensitivity of metal-oxide 

materials to VOCs. To accomplish this, a thorough understanding of chemical interactions 

which cause chemicals to be “sensed” is first made along with information as to what 

makes a favorable metal-oxide for use in this chemical sensing technology. Then, device 

and testing parameters which have the greatest potential of sensitivity enhancement are 

determined and varied to understand optimal conditions for high sensitivity. A simple 

fabrication process, which develops prototype metal-oxide sensors that facilitate simple 

electrical testing, is made. Proper testing apparatuses and procedures that safely determine 

sensitivity readings to ethanol are also developed. In addition, a simulated metal-oxide 

chemical sensor, along with a simple fabrication process, is proposed for future work. 

Lastly, other facets of metal-oxide chemical sensing technology are also explored for future 

endeavors as well. 

 

Chapter 1 has talked about both the relevance of the research conducted in this 

thesis and a high-level overview of what will be discussed in this manuscript. 

 Chapter 2 gives a fundamental understanding of the systems engineering behind 

development of chemical sensor technology, the operating mechanisms of metal-oxide 
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chemical sensors, reasoning behind choices of metal-oxide selection, and an overview of 

the device and testing parameters explored in this research. 

 Chapter 3 gives an in-depth description of the fabrication techniques utilized to 

make the prototype chemical sensors tested in this thesis, including thermal oxidation, 

sputtering, photolithography, and lift-off processing. 

 Chapter 4 describes the thin film characterization techniques used for materials 

analysis of the fabricated sensors, including determinations of sheet resistance, 

crystallinity, thickness, grain size, and surface morphology. Micrographs are also analyzed 

at different steps of the fabrication process for quality assurance. 

 Chapter 5 presents the electrical testing performed on the prototype devices for both 

short and long-term exposure to ethanol. Testing procedures and apparatuses are described 

in detail along with the electrical testing results as device and testing parameters are varied. 

 Chapter 6 discusses the design of a micrometer-scaled metal-oxide chemical 

sensor, including thermal and electrical simulations which further characterize it. A basic 

fabrication process that is compatible with the Rochester Institute of Technology’s clean 

room is developed. 

 Chapter 7 presents ideas, other than the chemical sensor developed in Chapter 6, 

for future research that can be done regarding metal-oxide chemical sensors regarding 

device materials, architectures, and electrical testing. 

 Chapter 8 gives an executive summary of the research conducted in this thesis, key 

takeaways from the data collected, and general outlooks regarding future endeavors of 

research related to this chemical sensor technology. 
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This chapter discusses operating principles and systems design of generic chemical 

sensor technology with specifics to metal-oxide chemical sensors. The physical and 

chemical mechanisms that provide device functionality for metal-oxide chemical sensors 

are discussed in detail. Parameters that were varied to investigate changes of sensitivity are 

also discussed, including the hypothesized effects on sensitivity they may have. Lastly, the 

chemical sensor design used to test these theories is shown, including material 

specifications and a basic layout. 

 

 A chemical sensor, by definition, is a type of device that converts information 

relating to the material characteristics of a chemical into an analytically useful signal [2]. 

Sensors can range from small sizes in the form of personal breathalyzers to relatively large 

pieces of equipment such as a spectrophotometer to classify material properties of a 

specific chemical. The underlying principle behind each sensing technology, however, is 

similar in nature. Modern chemical sensors are operated to measure changes (i.e. electrical, 

optical, piezoelectric, etc.) in the sensing system, or the receptor, with respect to the 

introduction of a chemical, or analyte. At given operating conditions, the analyte will 

change a physical property of the receptor via chemical interactions; this change, in return, 

can be output as a change in an electrical characteristic of the receptor such as voltage, 

current, or resistance. This electrical change is monitored using outside circuitry and 
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further analyzed and output digitally through a data processor. A basic process flow [3] 

diagram of a basic chemical sensor system is shown in Figure 2.1. 

 

Figure 2.1. Basic chemical sensor system. 

The type of chemical sensor used in a given application depends on the type of 

analyte and the environmental surroundings. For example, chemical sensors based solely 

on changes of electrical parameters are not suitable for use in military or space applications 

as both battlefields and space yield large amounts of electromagnetic interference. In those 

applications, other novel devices such as fiber-optic sensors can be used to ensure 

unperturbed analytical signals for accurate measurement of an analyte. Regardless of the 

sensing mechanism, more precise measurements generally require more expensive sensor 

instrumentation. Metal-oxide chemical sensors have been found to be reliable in detecting 

reducing gases although more research is needed to ensure optimal analyte selectivity. 

They offer a low-cost sensor alternative for applications in medical equipment, industrial 

and domestic ventilation control, fire detection, the Internet of Things (IoT), and a wide 

variety of other applications with detectable concentrations as low as 0.1 part per billion 

(ppb) [4].  
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 N-type metal-oxide chemical sensors utilize oxygen-rich solid-state materials 

which change electrical characteristics based on chemical interactions of the analyte with 

adsorbed oxygen on the available surface area of the metal-oxide. A variety of materials, 

such as conductive transition metal-oxides (i.e. Fe2O3, Mn2O3) and conductive non-

transition-metal oxides (i.e. SnO2, ZnO), have been used for gas detection of either 

oxidizing or reducing gases [5]. These chemical interactions, which include adsorption, 

chemisorption, and desorption, require thermal energy for the analyte gas to successfully 

react with the sensing layer. These interactions are explained in further detail in the 

following subsections. 

 

 Adsorption refers to the physical binding of gas or liquid particles, the adsorbate, 

to a surface of a given material, the adsorbent. The first step in the sensing process requires 

the adsorption of oxygen to adsorption sites which exist on the metal-oxide surface; thus, 

this type of chemical sensor requires ambient air as it requires gaseous oxygen to function. 

At a high enough temperature (at least 250°C [6]), the oxygen molecules will adsorb to the 

metal-oxide surface and create a highly-resistive layer on the order of the Debye length, 

which can be theoretically calculated using Equation 2.1. 

𝜆𝐷 = √
𝜖0𝑘𝐵𝑇

𝑞2𝑁𝐶
                                                        (2.1) 

 ϵ0 represents the permittivity of free space, kB represents the Boltzmann constant, 

T represents the temperature, q is the charge of an electron, and Nc is the charge carrier 
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density. The adsorption process can be modeled based on a derivation of the Langmuir 

isotherm model [3] shown in Equation 2.2. 

 

 

θ represents the fraction of available oxygen adsorption sites, C represents the 

concentration of adsorbate, and kads and kdes represent the rate constants of the adsorption 

and desorption reactions, respectively. This isotherm model serves as a basic 

adsorption/desorption characteristic model which makes the following assumptions: 

1. Surface homogeneity (similar size and shape of adsorption sites) 

2. Monolayer adsorption 

3. Adsorption is reaction-rate limited (i.e. no further adsorbate will adsorb when 

each nucleation site is filled) 

4. Each interaction between the adsorbate and nucleation site releases a constant 

amount of heat energy 

5. The adsorption and desorption rates are independent of intermolecular 

interactions (i.e. heat of adsorption is the same in either high or low-populated 

adsorption areas) 

 The adsorption of oxygen and subsequent exchange of electrons is highly 

dependent on the temperature of the metal-oxide. Equation 2.3 reflects the adsorption 

sensitizing reaction [7] that takes place at an elevated temperature of roughly 300°C. 

𝑂2 + 2𝑒− → 2𝑂−                                                      (2.3) 

𝑑𝜃

𝑑𝑡
= 𝑘𝑎𝑑𝑠𝜃𝐶 − 𝑘𝑑𝑒𝑠(1 − 𝜃)                                           (2.2)  
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 As shown, the adsorption reaction requires two electrons from the metal-oxide 

itself, which explains why the resistance subsequent to oxygen adsorption increases. Due 

to the exchange of electrons, this type of adsorption is known as chemisorption, which is 

indicative of chemical interactions between the adsorbate and adsorbent. 

 

 After the sensitizing adsorption reaction occurs and the adsorption sites are filled 

with oxygen, the analyte can be “sensed” by the metal layer through a chemical reaction 

with the adsorbed oxygen. The actual reactions and resulting products are dependent on 

the type of chemical analyte. In this thesis, the reactions of ethanol with adsorbed oxygen 

are predominantly studied. At high temperatures similar to the sensitizing adsorption 

reaction with oxygen, ethanol will react with the adsorbed oxygen in two different chemical 

reactions (Equations 2.4a, 2.4b, 2.5a, and 2.5b) dependent on the type of adsorption site 

(basic for Rxn. 1 and acidic for Rxn. 2) [8]. 

 

[𝑂] + 𝐶2𝐻5𝑂𝐻(𝑔) → 𝐶𝐻3𝐶𝐻𝑂 + 𝐻2𝑂                                  (2.4a) 

2𝐶𝐻3𝐶𝐻𝑂 + 3𝑂2 → 2𝐶𝑂2 + 4𝐻2𝑂                                        (2.4b) 

 

[𝑂] + 𝐶2𝐻5𝑂𝐻(𝑔) → 𝐶2𝐻4 + 4𝐻2𝑂                                      (2.5a) 

𝐶2𝐻4 + 3𝑂2 → 2𝐶𝑂2 + 2𝐻2𝑂                                                 (2.5b) 

 

Rxn. 1: 

Rxn. 2: 



9 
 

 The first reaction, represented by Equations 2.4a and 2.4b, details the oxidative 

hydrogenation reaction that occurs on basic adsorption sites; the second reaction, 

represented by Equations 2.5a and 2.5b, details the dehydration reaction that occurs on 

acidic adsorption sites. The basicity and acidity of an adsorption site depends on the type 

of salt the metal-oxide forms; oxides with more metallic elements yield basic salts whereas 

oxides with non-metallic elements yield acidic salts. The first reaction is more prevalent 

and is preferred in the indium tin oxide (ITO) material system used in this thesis given the 

high percentage of basic ITO over acidic ITO in the mixture and the lower energy required 

to form acetaldehyde (Rxn. 1) compared to ethylene (Rxn. 2). As the two reactions occur, 

the electrons trapped by the adsorbed oxygen are reinjected into the conduction band of the 

metal-oxide (Figure 2.2) [6]. 

 

Figure 2.2. Reinjection of electron carriers into conduction band of metal-oxide. 

 As a result of the reinjection of carriers, the conductivity of the metal-oxide 

subsequently increases and can be output as an electrical signal. The high temperatures 

required for both reactions are normally obtained via pulsed voltage (on the scale of µs) of 
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the heating element of the device to conserve power output much like the MEMS heating 

elements in inkjet print heads. 

 

 As mentioned before, a wide variety of metal-oxide materials are used in gas sensor 

technologies with different electrical and mechanical properties. In this thesis, ITO (90% 

In2O3 to 10% SnO2) was chosen as the metal-oxide sensing layer. Although ITO is 

normally used as transparent conductors in a variety of optoelectronics, there have been 

certain publications, such as in Vaishnav et al., which have proven its sensitivity to low 

molecular weight alcohols such as ethanol [8]. This allows for safer testing compared to 

other gases. Basic properties of ITO, including its electronic configuration, thermal 

stability, and crystalline structure are discussed below. 

 

 The predominant metallic constituent of ITO, indium, forms an “n-type”, electron-

rich metal-oxide which allows localized oxidation of the metal-oxide’s surface at high 

temperatures for the sensitizing reaction described earlier. For reliable output signals, n-

type sensing materials such as ITO are advantageous because of their reversibility to their 

steady-state position. N-type materials form a highly resistive surface after the sensitizing 

reaction and, after exposure to a reducing gas, will revert back to its highly resistive state 

in normal, atmospheric conditions. P-type materials, however, operate opposite to that of 

n-type materials; as they are exposed to the analyte, there is an increase of resistance as 

electrons from the adsorbed oxygen are injected back into the conduction band and further 

recombine with holes in the valence band. N-type materials, in most cases, make better 
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sensing materials as increases in conductivity are more easily measurable with parameter 

analyzers and the electrical signal is found to be more producible in n-type materials 

compared to p-type ones [9]. Both the electronic configurations of indium and tin are also 

favorable in metal-oxide chemical sensing technology as they both have a filled d-orbital 

shell. Pre-transition (d0), transition (dn, 0 < n < 10), and post-transition (d10) metal-oxides 

are able to be used as metal-oxide sensing layers. However, pre-transition metal-oxides are 

less susceptible to oxidation compared to transition and post-transition metal-oxides due to 

their large band gap and inability to produce carriers easily for oxygen to adsorb with; it is 

imperative to ensure the sensitizing adsorption reaction of oxygen occurs so the reducing 

gas can interact with it. Some transition and post-transition metals can be used efficiently; 

however, post-transition metals are more favorable due to their stability of having a full d-

orbital shell and having a preferred crystal structure. Transition metal-oxides will react 

with the oxygen due to their high catalytic activity with multiple oxidation states and this 

may significantly change the properties of the sensing layer, including band gap, structural 

integrity, and electron configuration. Post-transition metals with a filled d-orbital have the 

ability to chemisorb oxygen to its surface and reinject the carrier after the oxygen is reduced 

[9]. ITO also has a bandgap between 3.5 eV and 4.2 eV [10] which makes it suitable for 

operating at the required high temperatures for the adsorption and chemical reactions 

required for device functionality. 

 

 Thermal stability is important in a metal-oxide sensing material to ensure the 

material can both withstand high temperatures and maintain steady-state resistance values 

with changes of temperature. Compared to normal tin oxide films, ITO has been found to 
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be much more thermally stable regarding resistance variation [8]. In addition, the thermal 

stability increases as the metal-oxide grain size increases as well; annealing the metal-oxide 

allows the metal-oxide to recrystallize and form these larger grains required for this 

stability enhancement [11]. This effect from annealing the metal-oxide material is 

investigated in device fabrication/testing and will be further discussed later in this chapter.  

 

 Indium oxide, the main constituent of ITO, has two crystal structures: cubic 

bixbyite and rhombohedral. In the case with the deposition process used in this thesis, the 

indium oxide exhibits the cubic bixbyite structure; rhombohedral structures are formed at 

elevated substrate temperatures during sputtering. Cubic bixbyite is a base-centered cubic 

structure similar to the sesquioxide structure found in rare-earth metal-oxides. A unit cell 

for indium oxide (In32O48, consisting of 16 In2O3 units), where black molecules represent 

indium atoms and empty spheres represent oxygen atoms, is shown in Figure 2.3 [12]. 

 

Figure 2.3. Cubic bixbyite crystal structure of indium oxide. 
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 The lattice constant, a, of indium oxide in particular is roughly 10.1 Å as taken from 

literature [13]. Although the addition of tin oxide will subtly change the lattice constant, 

the average lattice constant of ITO can be assumed to be that of indium oxide for rough 

calculations. A publication has found the lattice constant of ITO to increase steadily upon 

the addition of tin oxide until the tin oxide content reached 10% by weight, where the value 

of the lattice constant plateaued to roughly 10.125 Å [14]. Even without annealing the 

metal-oxide material, sesquioxides tend to have favorable catalytic characteristics such as 

high adsorption capacity due to the high specific surface area of the cubic bixbyite structure 

[15]. This ensures ample amounts of oxygen adsorption sites for the sensitizing reaction 

and mitigates reaction-rate limitations from potential analyte oversaturation.   

 

 Certain device and testing parameters were varied to understand the parameters’ 

effects on device performance. To minimize the number of wafer splits in this thesis, two 

parameters (metal-oxide thickness and crystallinity) were varied in the device fabrication 

and two parameters (device operating temperature and VOC concentration) were varied in 

electrical testing. Each parameter’s values are summarized in Table 2.1 and further 

discussed in the following subsections. Given the two thicknesses, two crystalline phases, 

three operating temperatures, and four VOC concentrations, a design of experiments was 

created with these parameters to ensure all 48 combinations were tested. 
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Table 2.1. Testing parameters and their associated values. 

 

  

  

  

  

 

 As said before, oxygen will adsorb to the metal-oxide surface but only on the order 

of the Debye length into the material. Because the output electrical signal relies on the 

change of resistance facilitated by the highly-resistive metal-oxide surface, it is crucial to 

ensure the actual metal-oxide layer is also on the scale of the Debye length. Thinner films 

will ensure the current flowing through the metal-oxide is forced through the resistive zone 

[16]. A basic diagram (not to scale) illustrating the effects of thin and thick films on current 

flow is shown in Figure 2.4.  

 

Figure 2.4. Thick (a) / thin (b) metal-oxide film current flow with surface depletion. 

Parameter Annealed ITO 

Thickness 100 nm, 400 nm 

Crystallinity 
Amorphous (as-deposited), 

Polycrystalline (annealed) 

Device Operating Temperature 160°C, 260°C, 360°C 

VOC concentration 500 ppm, 1000 ppm, 1500 ppm, 2000 ppm 

a. 

b. 
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Rough calculations of a Debye length, using electrical/material properties obtained 

from a similar ITO deposition process to what was used in this thesis [10], yields an average 

Debye length of 3 nm. With this being said, films on the scale of nanometers are desired to 

ensure optimal changes of resistance. However, thinner metal-oxide films come at the cost 

of decreased uniformity and consistency. Ultra-thin metal-oxide films of ITO have been 

shown to have undesired hollows and pitting at thicknesses in the range of 5 to 20 nm [17] 

which may cause shorting of the metal-oxide path in some cases. The metal-oxide 

thicknesses tested in this thesis (100 nm and 400 nm) are large relative to the theoretical 

Debye length, but they were used to ensure film uniformity.  

 

Increasing the metal-oxide surface area increases the number of potential oxygen 

adsorption sites. Surface area is increased in this thesis by annealing the metal-oxide in an 

inert ambient. As-deposited metal-oxide tends to have smaller conglomerations of packed 

grains which limit adsorption of oxygen to the top surface of the layer. However, annealing 

a metal-oxide tends to increase the grain size and crystallize the film [18] to increase the 

surface area and conductivity of the film. The metal-oxide layer becomes porous as the 

grain size increases, which allows oxygen adsorption and subsequent chemical reaction 

within the layer rather than just at the geometric surface. A basic diagram of mass transport 

of the gas in compact and porous layers is shown in Figure 2.5 [3]. 
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Figure 2.5. Mass transport of gas in compact and porous grain layers. 

 Surface area enhancement ensures quicker response times with changes of analyte 

concentration as demonstrated by the Langmuir isotherm model discussed. The change in 

open adsorption sites with respect to analyte concentration is much greater for materials 

with higher surface areas compared to materials with low surface areas. This is due to the 

increase of the adsorption and desorption rate constants which are partially related to the 

number of adsorption sites. A basic graph demonstrating changes of the fraction of 

adsorption sites with respect to oxygen with a decrease in concentration for low and high 

surface area materials is given in Figure 2.6. This graph is relatable to initial electrical 

testing of the chemical sensors in Chapter 4 in which θ(1) assumes complete reaction of 

the analyte with the adsorbed oxygen and θ(0) represents the material’s steady state in 

which all adsorption sites are filled with oxygen. 
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Figure 2.6. Change of adsorption sites with respect to change of concentration. 

In addition to the increase of surface area, the increase of conductivity allows the 

resistance of the metal-oxide to reach lower values to the point where a measurable 

electrical signal can be output efficiently. Annealing the metal-oxide layer, as shown in 

Chapter 4, improved the sheet resistance uniformity across the wafer. This ensures a robust 

fabrication process with predictable device performance with all devices across the wafer. 

 

 Higher temperatures generate lattice vibration in metals which creates carrier 

scattering in the metal-oxide. This, in turn, causes the conductivity to decrease. However, 

this type of chemical sensor depends on the oxygen/adsorbent and analyte/oxygen 

interactions for output of electrical signals. Temperature plays a significant role in both the 

sensitizing reaction and the analyte reaction. Because both are chemical interactions, each 
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requires a certain amount of energy to react which is usually facilitated in the form of heat 

energy. Although the metal-oxide resistance increases, both the sensitizing and analyte 

rates of reaction are increased at high temperatures. The basic reaction can be modeled in 

a classic rate law shown in Equation 2.6. 

𝑟 = 𝑘(𝑇)[𝐴]𝑥[𝑂(𝑎𝑑. )]𝑦                                                   (2.6) 

 r represents the rate of reaction, [A] represents the concentration of the analyte, 

[O(ad.] represents the concentration of adsorbed oxygen, k(T) represents the rate constant 

which is dependent on temperature, and x and y represent stoichiometric coefficients in the 

balanced reaction depending on the analyte. As temperature increases, the rate constant 

will also increase which ultimately increases the rate of reaction. This allows for both more 

adsorbed oxygen and further analyte reaction which, in turn, increases the conductivity 

more as more electrons are reinjected back into the metal-oxide. In addition to temperature, 

Equation 2.6 shows that increasing the analyte concentration will also increase the rate of 

reaction. Both temperature and analyte concentration play important roles in sensitivity of 

metal-oxide chemical sensors. Although all the aforementioned device and testing 

parameters will inherently change the resistance value, it is important to study the percent 

change of resistance from steady-state resistance values of the specific sensor rather than 

the actual change of resistance. 

 

 Due to the complexity and time associated with fabricating and characterizing 

complex devices, a simpler, proof-of-concept chemical sensor was fabricated in this thesis 

which utilized an external heater placed underneath the substrate material. In most devices 
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incorporated in microsystems, however, a built-in MEMS heater is normally integrated 

underneath the metal-oxide layer to raise the temperature of the sensing layer to the point 

where chemical interactions may occur. Both chemical sensor structures – a basic device 

structure and the device structure used in this thesis – are discussed further in the following 

subsections. The design parameters and reasoning behind their incorporation are described 

for the proof-of-concept sensor.  

 

The device structure for a common metal-oxide chemical sensor consists of a base 

material which acts as a thermal and electrical insulator for the device. A relatively 

thermally-conductive layer (i.e. silicon nitride) is placed in between the metal-oxide and a 

MEMS heater which allows the device to heat up to the required temperatures for chemical 

reactivity. An example of a basic device structure (not to scale) is shown in Figure 2.7. 

 

Figure 2.7. Basic structure of metal-oxide chemical sensor. 

 The substrate used to build devices such as these is usually silicon oxide on silicon 

as silicon is relatively cheap and is able to withstand high-temperature processes easily. An 
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arbitrary amount of silicon oxide is grown to ensure any doping which may be in the silicon 

does not affect electrical measurements taken from the metal-oxide. In addition, the 

resistance of the polysilicon heater underneath the silicon nitride can be tuned using doping 

techniques such as ion implantation to vary the voltage and resulting power required to 

heat it to certain temperatures. A characteristic device which utilizes this structure is 

discussed further in Chapter 6, along with thermal and electrical simulations of the device. 

Because the device dissipates a large amount of heat, the heater normally has to be run at 

a higher temperature to account for heat conduction to the substrate and convective heat 

loss to the surrounding air. Furthermore, to ensure heat is not dissipated into nearby 

integrated electronics in a microsystem, the device itself may be suspended in air by etching 

underneath the device. Through-silicon vias (TSVs) may also be added to ensure quicker 

response times due to the long metal connections used to connect the sensor electrodes to 

the integrated circuitry. Figure 2.8 represents the integration of both a suspended device 

and TSVs in a chemical sensor microsystem [6]. 

 

Figure 2.8. Suspended device and TSV integration in chemical sensor microsystem. 

 

 The proof-of-concept sensor structure utilizes the same principle of the basic 

structure, but there is not a built-in MEMS heater; instead, the physical sensor was placed 
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on an external metal-ceramic heater (for chemical chamber testing) to heat it to the required 

temperature. The 2-D structure, along with the actual proof-of-concept sensor dimensions, 

are both shown in Figure 2.9. 

 

Figure 2.9. Proof-of-concept device structure and top-layer dimensions. 

The dimensions of this proof-of-concept structure were also made larger to ensure 

easier testability with larger metal contacts to probe to in the chemical chamber tests. The 

larger sensing area also ensured more obvious changes of resistance of the sensor that could 

be easily measured with the semiconductor parameter analyzer used in testing. The 

fabrication processing was also much easier given the device dimensions; due to 

difficulties with the photolithography steppers in the clean room throughout the duration 

of this project, the large dimensions allowed the use of the contact printer with masks easily 

made using cellulose acetate transparency paper. 

 

 The basic process flow of chemical sensor functionality was described. The two-

step sensing process of metal-oxide chemical sensors, which consists of an adsorption 

sensitizing reaction and subsequent chemical reaction of the analyte, was discussed. The 
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electronic, thermal, and structural properties of the material used as the metal-oxide in this 

thesis, ITO, were discussed. The device and testing parameters tested in this thesis, and 

their proposed effects on device sensitivity, were discussed in detail. Lastly, the device 

structures of a basic metal-oxide chemical sensor and the proof-of-concept sensor were 

discussed, including details regarding why the latter structure was fabricated and tested in 

this thesis. 
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This chapter describes each processing step used to fabricate the proof-of-concept 

chemical sensors tested in this thesis. The basic process flow is discussed. The fabrication 

processes were done in the Semiconductor & Microsystems Fabrication Laboratory 

(SMFL) at the Rochester Institute of Technology’s Kate Gleason College of Engineering.  

 

This section summarizes a high-level process sequence (Figure 3.1) which will be 

explained in further detail in future sections of Chapter 3.  

 

 

 

 

 

 

 

 

Figure 3.1. Basic fabrication process flow with cross-sections at each step. 

1. RCA clean of substrate surface 

2. 6500 Å wet oxide growth 

3. Preparation of lift-off process for ITO 

4. ITO deposition (target 1000 Å, 4000 Å splits)  

5. Lift-off process of ITO-covered photoresist 

 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

6. Annealing of ITO (optional)  

7. Preparation of lift-off process for Al 

8. Al deposition (target 3000 Å)  

9. Lift-off process of Al-covered photoresist 
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The chemical sensors were fabricated using silicon wafers as the base substrate 

material. The wafers used were p-type, boron-doped, (100) crystal orientation, and had a 

sheet resistance between 5-15 Ω/sq. confirmed via four-point probe measurement. To 

remove any native oxides or impurities from the surface of the silicon, an RCA clean was 

performed on the device wafers before thermal oxidation. The RCA clean consists of four 

subprocesses: a Standard Clean 1 (SC-1), an additional oxide strip, a Standard Clean 2 (SC-

2) and a spin-dry-rinse (SRD) of the wafer [19]. 

 

The wafers were first put in an ammonium peroxide mixture (APM) for ten 

minutes. This mixture removes any organic compounds or particles on the surface of the 

wafer. The mixture was made under a fume hood with 4500 mL of water, 300 mL of 30 

mol% ammonium hydroxide and 900 mL of hydrogen peroxide. The wafers were 

submerged in the mixture in a Teflon wafer boat for 10 minutes at 75°C and subsequently 

rinsed in deionized water for 5 minutes. 

 

An additional step to the standard RCA clean is removal of both the oxide formed 

from SC-1 and a small amount of ionic contaminants on the substrate surface. This is 

accomplished through chemical treatment of the wafers using a 6-L solution of 50:1 water 

to 49 mol% hydrofluoric acid (HF) made in a fume hood. After SC-1, the device wafers 

were put in a Teflon wafer boat and submerged in the mixture for 1 minute and 

subsequently rinsed in deionized water for 5 minutes.  
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SC-2 consists of a hydrochloric acid (HCl) and peroxide mixture (HPM) used to 

remove the rest of the ionic impurities on the wafer surface. This process also grows a thin 

passivating layer of oxide to prevent inevitable contamination of the silicon surface after 

removal from the mixture. The mixture was made under a fume hood with 4500 mL of 

water, 300 mL of 37 mol% HCl and 900 mL of hydrogen peroxide. After the HF oxide 

strip, the wafers were submerged in the mixture in a Teflon wafer boat for 10 minutes at 

75°C and subsequently rinsed in deionized water for 5 minutes. 

 

Lastly, to ensure the substrate surface was not in contact with impurities after the 

wafer was removed from the mixture, the Teflon wafer boat was placed in an SRD machine 

for 5 minutes where it was cascade-water rinsed and subsequently dried. 

 

A wet-oxide growth process was performed in Bruce Furnace Tube #1 using Recipe 

406 in the RIT furnace recipe database. The target thickness of this wet-oxide growth 

process was 6500 Å. The wafers are put into a quartz boat and loaded into the furnace. The 

recipe, including the temperature, duration, gas flow rates, and brief description of each 

interval, is summarized in Table 3.1. 
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The wafers were slowly pulled out of the furnace after wet oxidation to prevent 

thermal shock of the oxide layer grown on the silicon; substrate cracking may result if the 

wafers are pulled too quickly out of the furnace into room temperature conditions. 

 Table 3.1. Bruce Furnace Tube #1; Recipe 406 – Wet Oxide Growth (6500 Å). 

 

 

The basic lift-off process used in this study consists of three main steps: preparation 

of the lift-off photoresist, a sputtering process of the sensitive metal-oxide layer or metal 

contact layer and the lifting off of the material-covered photoresist. The lift-off photoresist 

acts a hard mask for deposition processes and can be used to make features with thicknesses 

less than 500 nm. For both the metal-oxide and aluminum deposition processes, the 

preparation and removal of the photoresist are the same. 

 

 

Interval Description Temperature Time at Step N2 flow rate (lpm) O2 flow rate (lpm) H2 flow rate (lpm) 

0 Boat Out / Load 25°C N/A N/A N/A N/A 

1 Boat In / Push 800°C 12 min 10 0 0 

2 Stabilization 800°C 15 min 10 0 0 

3 Ramp-up 800°C to 1100°C 30 min 5 0 0 

4 Soak 1100°C 5 min 0 5 0 

5 Soak 1100°C 65 min 0 10 10 

6 Anneal 1100°C 5 min 15 0 0 

7 Ramp-down 1100°C to 800°C 55 min 10 0 0 

8 Boat Out / Pull 800°C 15 min 15 0 0 
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Photoresist processing was done using the Semiconductor Systems, Inc. (SSI) 150 

Wafer Track. The system consists of two separate wafer tracks; Track 1 is used for 

photoresist coating and Track 2 is used for photoresist development. The device wafers 

were loaded into a wafer boat on Track 1. The recipes “COATNLOF” and “DEVNLOF” 

were used for Track 1 and Track 2, respectively, and are both summarized, along with the 

flood UV exposure step, below. 

The coating process first starts with a priming step which allows better adhesion of 

the photoresist to the wafer surface; hexamethyldisilazane (HMDS) was used as the primer 

in this process. The wafer was heated to 140°C and HMDS was dispensed for 30 seconds; 

the wafer was then primed for 60 seconds. The wafer was then put onto a spin-coater where 

the lift-off photoresist was manually dispensed onto the wafer surface using a filled, 7-mL 

pipette. AZ n-LOF-2020 Image Reversal Resist, a negative photoactive lift-off photoresist, 

was used in both lift-off processes. After puddle dispensing the photoresist, the spin coater 

was ran at 2500 RPM for 60 seconds to ensure an average photoresist thickness of roughly 

2500 nm. Afterwards, a soft post-coat bake (PCB) was performed at 110°C for 60 seconds 

to both solidify the photoresist and evaporate any remaining solvents after the spin-coat. 

The wafers are then automatically loaded into the wafer boat on the end of the track. 

A flood UV exposure was done on the Karl Suss 150 Contact Printer with clear-

field masks to expose the photoresist. Figure 3.2 shows the layout of the sensing metal-

oxide and metal contact layers, respectively. Each clear-field mask has an alignment 

marking at the center to ensure alignment to each layer. Due to the large feature sizes of 

the devices, the masks were easily designed to scale in Adobe Photoshop CC and printed 
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out on cellulose acetate transparency paper using an industrial laser printer with solid black 

toner.  

 

  

 

 

 

 

 

 

 

 

 

Figure 3.2. First-layer metal-oxide sensing area (left) and second-layer metal contacts 

(right) clear-field masks. 

 

The width of the metal-oxide sensing area feature on the mask was aligned to be 

parallel to the flat of the wafer for first-level lithography. The transparency was carefully 

placed on the photoresist-covered wafer ensuring the laser-printed side was facing 

upwards; this mitigates any contamination that may result from contact between the black 

toner and photoresist. Small amounts of dust that were collected on both sides of the 

transparency from normal storage were cleaned off using a compressed air gun; both 

inorganic and organic solvents cannot be used to clean the mask as they may dissolve the 

black toner and/or the transparency itself. 

The time of exposure was calculated by dividing the required dose of exposure of 

the photoresist from its technical data sheet [20] (65 mJ/cm2) by the average intensity of 
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the contact printer (~19 mW/cm2); this gives an exposure time of roughly 3.4 seconds. 

Overexposure of the photoresist is preferable over underexposure as underexposure will 

cause incomplete chemical reaction in the clear-field areas of the photoresist; this will 

undesirably remove areas of the clear-field area in a strong base developer. The sidewalls 

of the photoresist may be tapered from potential overexposure, but the change of feature 

sizes (on the scale of micrometers) will not be enough to cause catastrophic device failure 

given the allotted amount of overlay (on the scale of millimeters) in the mask design. 

After UV exposure, the wafers were placed back into a wafer boat and loaded on 

to SSI Track 2. A post-exposure bake (PEB) was done at 110°C for 60 seconds to promote 

crosslinking in the exposed photoresist material and effectively allow exposed portions to 

become base insoluble. The wafer was then placed on a spin-coater where the wafer was 

slowly spun and the photoresist developer, 0.05 N tetramethylammonium hydroxide 

(TMAH) CD-26 Developer, was dispensed onto the wafer surface for 5 seconds; the spin-

coater was stopped and, for an additional 5 seconds, more developer solution was 

dispensed. The developer solution was left on the photoresist to puddle develop for 70 

seconds. The spin-coater was then turned on and spun for 30 seconds at 1000 RPM to 

ensure full coverage of the wafer with the developer. To dry the wafers, the spin-coater 

was run at 3750 RPM for 30 seconds. The wafers were then loaded back onto the wafer 

boat on the opposite side of the track. A hard bake was not done for this photoresist as it 

may damage its sidewall profile and structural integrity. 

 

 Thin film deposition was performed using the CVC 601 DC Sputtering System. 

Sputtering is a physical vapor deposition (PVD) process in which inert, high-energy gas 
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ions in the process chamber ambient (usually argon) bombard a sputtering target and the 

target material is ejected and deposited onto the substrate surface. This specific sputtering 

system sputters the material upwards with the substrates located above the target. The 

mean-free-path length (usually denoted as λ) of the process chamber must be large enough 

for the sputtered material to travel from the target to the substrate, so a very-high vacuum 

(~10-6 – 10-10 torr) is recommended for optimal sputtering conditions. 

The tool itself has a continuously-rotating platen with 6”-diameter substrate holders 

where the wafers are placed face-down; rotating the wafers during a sputtering process 

improves thickness uniformity. However, due to slight misalignments that occur in the 

installation of each sputtering target, there is always a characteristic “parabolic” shape that 

results from any sputtering process done in the tool as shown in Figure 3.3 resulting in 

higher sputtered thicknesses on opposite sides of the wafer [21]. This non-uniformity can 

be mitigated via metal shielding plates of the back sides of the substrate holders. 

 

Figure 3.3. Uniformity profile of sputtering process in CVC 601 DC Sputter Tool. 

To maintain consistency with measurements for each device wafer, each of the 

wafers were aligned arbitrarily with the flat facing the left in the substrate holder closest to 
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the operator as demonstrated in Figure 3.4. The rest of the substrate holders in the platen 

were filled with dummy wafers. 

 

Figure 3.4. Alignment of wafer flat to the left in sputtering chamber platen. 

The sputtering tool has a dual-vacuum pump system consisting of a mechanical 

roughing pump and a high-vacuum cryopump to allow the process chamber to reach an 

acceptable vacuum pressure. After the wafers were loaded into the substrate holders of the 

platen, the process chamber lid was shut and the vacuum system was initiated. The 

roughing pump brought the chamber pressure down to a set point of roughly 40 mTorr in 

15 minutes and the cryopump continued the pump-down process to roughly 10-6 to 10-7 

torr in 16 to 18 hours. 
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Both sputtering process parameters of the metal-oxide (ITO) and the aluminum 

contacts are summarized in Table 3.2. Pulsed DC sputtering with a low sputtering power 

was used over traditional sputtering methods for ITO to greatly reduce arcing and particle 

generation so purer metal-oxide films could be fabricated [22]. Higher purity ITO films 

allow for a greater amount of adsorption sites for VOC detection; however, due to the low 

sputtering power and the fact that it is a pulsed DC sputter, the deposition rate is 

significantly smaller compared to traditional DC sputtering processes. 

           Table 3.2. Process parameters for metal sputtering processes. 

 

 

 

 

 

 

 

 Before any sputtering processes are done to the actual wafers, the targets are 

conditioned via pre-sputtering. This ensures that any impurities from the target surface are 

cleaned off and that the number of arcs generated from sputtering runs are mitigated [21]. 

Using the same parameters outlined in Table 3.2 for each sputtering process, the target 

shutter is placed over the respective target to block the substrate and the sputtering 

processes in both cases are run for 5 minutes.  

 ITO Sputtering Process Al/Si Sputtering Process 

Base pressure (torr) 10-6 - 10-7 10-6 - 10-7 

Process pressure (torr) 5 × 10-3 5 × 10-3 

Argon flow rate (sccm) 40 28 

Sputtering power (W) 180 2000 

Type of sputter process 

 Pulsed DC sputter 

 Pulse width = 1600 ns 

 Pulse frequency = 250 kHz 

 

     Standard DC sputter 

 

Deposition rate (nm/min) 4 30 

Target description 

 6” inch diameter 

 90% indium oxide 

 10% tin oxide 

 Purity: 99.9999% 

 6” inch diameter 

 99% aluminum 

 1% silicon 

 Purity: 99.9999% 
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 The lift-off photoresist was removed using an ultrasonic wet bench and an organic 

solvent which dissolves the photoresist and lifts off the metal layer on top. The wet bench 

is equipped with a large tank of water and a wire frame suspension. A square, glass 

container filled with roughly 100 mL of Nano™ Remover PG Solvent Stripper was 

prepared in a fume hood; the individual wafer was then submerged carefully into the glass 

container ensuring the surface of the wafer was completely covered by the solvent. The 

glass container was then set into the wire frame and the water in the tank was filled up 

enough to completely touch the bottom of the glass container. When the power is turned 

on in the tank, ultrasonic vibrations are induced in the water and transferred to the glass 

and, ultimately, the wafer; the vibrations are strong enough to initiate immediate removal 

of the photoresist material. If certain areas of the lift-off photoresist could not lift-off 

initially, a light scrape in the metal/photoresist layer outside of the device region was made 

using a wafer tweezer’s edge to generate initial points of contact between the solvent and 

the photoresist.  

Because the solvent itself became filled quickly with the lifted-off metal, the metal-

filled solvent solution was, at times, taken and filtered through a Chemwipe into a glass 

beaker to remove a majority of the lifted-off metal. This mitigated redepositing of the metal 

back on the wafer surface and allowed for solvent reuse for other wafers. The wafers were 

then put into a separate glass container in a fume hood where acetone was sprayed onto the 

surface to remove minute amounts of metal that may have settled on the wafer surface. The 

average time taken for removal of the metal/photoresist layer was roughly 30 minutes for 
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each wafer for both deposited metals. The wafers were then dried using a compressed-air 

gun ensuring all organic solvents were removed. 

 

 To study the effects of crystalline structure on device performance, some control 

and device wafers were annealed using a high-temperature, inert ambient in Bruce Furnace 

Tube #8 before metal contact lift-off processing. The wafers were loaded into a quartz boat 

for processing. The annealing process is summarized in Table 3.3. 

Table 3.3. Bruce Furnace Tube #1; Recipe 835 – 1 hour, 450°C Anneal in Nitrogen. 

  

 

 

 

The furnace tube was also heated up to 300°C prior to the annealing process to cut 

down on residency time of the wafers in the furnace tube. Similarly to the aforementioned 

oxidation process, the wafers are slowly pulled out to prevent thermal shock to the 

substrate. 

 

 After each wafer is fabricated, they are each cleaved using a diamond scribe. The 

scribe was scratched on the edge of the wafer and manually broken; due to the crystal 

structure of the silicon wafers, the wafer is cleaved in a straight line through the wafer from 

Interval Description Temperature Time at Step N2 flow rate (lpm) 

0 Idle 300°C N/A N/A 

1 Load 300°C N/A 5 

2 Ramp-up 300°C to 450°C 15 min 10 

3 Anneal 450°C 60 min 0 

4 Pull Out 450°C 15 min 0 
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the point of where the wafer was scratched. Each of the devices were stored in a small 

plastic container to be stored for electrical testing. 

 

The process flow of the proof-of-concept chemical sensor fabrication, including 

both cross-sectional diagrams of the devices at each step and in-depth explanations 

regarding each process step, is presented. The processes mentioned in this chapter are 

crucial elements of fabrication and include detailed information of the RCA cleaning 

process, oxide growth process, lift-off photoresist preparation, sputtering processes for 

both metal depositions, lift-off photoresist dissolution using an organic solvent, wafer 

cleaving and the additional high-temperature annealing process utilized for some splits 

before the metal contact layer is fabricated.  The parameters used in each process are also 

summarized. 
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This chapter describes characterization methods utilized to verify qualitative and 

quantitative metrics established for the proof-of-concept chemical sensors. Each method 

used, including thickness measurements, sheet resistance characterization, and 

microscopic inspection, is discussed in detail. The measurements were done in both the 

SMFL and the Advanced Materials Laboratory at the Rochester Institute of Technology’s 

Kate Gleason College of Engineering. 

 

 Two thickness measuring tools were used to measure oxide, metal-oxide, and metal 

contact thicknesses for deposition rate confirmation. The Prometrix SM300 SpectraMap 

was used to measure global thickness whereas the Tencor P2 Profilometer was used to 

measure localized feature thicknesses of the metal-oxide regions and metal contacts. 

 

 The oxide thicknesses on both the control and device wafers, along with the metal-

oxide thicknesses on the control wafers, were measured using global measurements from 

the Prometrix SM300 SpectraMap. The SpectraMap uses average indices of refraction of 

the materials being measured to calculate the thickness of the top film in a thin film stack. 

Films below the desired film to be measured must be explicitly defined in the machine to 

ensure selective measurement of the top film [23]. After the wet oxidation process of both 
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the control and device wafers, a control wafer is taken for oxide thickness measurements.  

A rough estimate of the metal-oxide thickness was also determined using the same control 

wafer after an ITO sputtering process with a target thickness of 1000 Å; a custom thickness 

measurement for ITO, with an average index of refraction of 2.33 obtained from terahertz 

spectroscopy of the ITO sample, was used. The statistics of both measurements are 

summarized in Table 4.1. The measured oxide was roughly 300 Å more than the target 

oxide thickness in the process, but the oxide layer was found to be conformal with low 

standard deviation. The ITO film was found to be very close to the target thickness of 1000 

Å with a slightly higher standard deviation. 

               Table 4.1. Statistics of oxide and ITO measurements for single control wafer. 

 

 

 

 

 

 

 A profilometer utilizes a small stylus which is moved across the edge of a film to 

obtain a change of vertical height which is defined as the film thickness. To reduce the 

amount of noise on the measurement, a longer distance scan of 100 µm was done on each 

film measurement to obtain a more pronounced change between the film and the baseline 

oxide layer. Localized thickness measurements of the metal-oxide sensing layer and metal 

t (Å) SiO2 ITO 

Average 6826.6 986.2 

Standard Deviation 16.1 24.3 

Standard Deviation (%) 0.236% 2.5% 

Minimum 6794.4 960.3 

Maximum 6862.5 1012.2 

Range 68.1 51.9 
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contacts were taken at five distinct locations, which are labeled in Figure 4.1, on wafers 

with different sputter target thicknesses of 1000 Å and 4000 Å. The thicknesses of the 

features at each location on the wafer for both wafers of differing ITO thickness are 

summarized in Table 4.2. The material thicknesses across the wafer of both the 1000 Å and 

4000 Å ITO deposition processes were found to be similar, but the former process was 

much closer to its target thickness.  

 

 

 

 

 

 

 

The metal contact thickness for both wafer splits were similar and very close to the 

target thickness of 3000 Å. Thickness measurements of Locations 1, 2, 4, and 5 were 

slightly greater than thickness measurements of features at Location 3; this is consistent 

with the characteristic “parabolic” shape of thickness profiles sputtered in the CVC 601 

DC Sputter Tool discussed in Chapter 3. 

 

 

Figure 4.1. Numbered device locations used for thickness measurements. 

1 2 

3 

4 5 



39 
 

Table 4.2. Material thickness versus target thickness of ITO and Al features. 

 

 

 The CDE ResMap 4-Point Resistivity Mapper was used to measure sheet resistance 

of the ITO on both control wafers to see effects of annealing metal-oxide films. Four-point 

probe measurements were performed on both control wafers to measure sheet resistance of 

a 1000 Å metal-oxide layer on 6500 Å of oxide. This is summarized in Table 4.3.  

Table 4.3. Statistics of ITO sheet resistance of both control wafers. 

 

 

 

 

 

The sheet resistance measurements indicate that annealing the metal-oxide at a high 

temperature in the presence of an inert gas drastically decreased the average sheet 

Location 

Actual Thickness with 1000 Å 

Target Thickness of ITO (Å) 

Actual Thickness with 4000 Å 

Target Thickness of ITO (Å) 

Actual Thickness with 3000 Å 

Target Thickness of Al (Å) 

1 987.3 3567.4 2934.2 

2 985.4 3522.1 2951.6 

3 948.9 3409.2 2809.7 

4 982.5 3545.0 2975.1 

5 988.8 3582.6 2967.0 

Rs (Ω/sq.) As-deposited ITO Annealed ITO 

Average 660.8 125.9 

Standard Deviation 363.7 27.9 

Standard Deviation (%) 55% 22% 

Minimum 194.6 95.9 

Maximum 1433.1 188.8 

Range 1238.5 92.9 
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resistance across the wafer. This is consistent with the theory of recrystallization of the 

metal-oxide structure under high-heat conditions; crystalline, semiconducting materials 

tend to have higher conductivity which has been shown with the annealed ITO over the as-

deposited ITO [18]. The increase in crystallinity is further demonstrated in Section 4.3.1. 

In addition, the sheet resistance uniformity is also improved significantly after the 

annealing process as well. This is beneficial regarding bulk fabrication of devices and 

ensures a robust, predictable process.  

 

 Thin film characterization was performed via x-ray diffraction (XRD) and scanning 

electron microscopy (SEM) to study the effects of annealing on both crystallinity and 

surface morphology. Basic microscope inspections were also conducted after each step in 

the fabrication process to ensure completeness of the lift-off processing. 

 

 The two control wafers in this experiment, after sheet resistance analysis was 

complete, were further studied via XRD to verify crystalline planes, crystal structure, and 

an estimated characteristic grain dimension. An XRD instrument was utilized which 

studies thin film materials as opposed to powders. 

The control wafers were cleaved using a diamond scribe; a 9-cm2 square from each 

wafer was cleaved and used as samples for XRD analysis. The intensity plots are obtained 

by measurement of the x-ray intensity when the test material is positioned on a goniometer 

and set at different angles. Each prevalent peak represents a distinct crystal orientation in 

the material described as (hkl), with h, k, and l being the Miller indices. The more peaks 
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an intensity graph has, the more crystalline the material is. The intensity graphs for the ITO 

samples are shown in Figures 4.2 and 4.3. 

 

Figure 4.2. XRD intensity graph of as-deposited ITO. 

 

Figure 4.3. XRD intensity graph of annealed ITO. 
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 Annealing the metal-oxide sensing layer, as demonstrated by Figures 4.2 and 4.3, 

generated more intensity peaks; this is indicative of a change of crystalline structure from 

an amorphous to polycrystalline state. Each peak’s associated crystal plane (denoted in 

both Figures 4.2 and 4.3) can be determined through a ratio analysis of the sine-squared 

values of theta at each peak. The smallest sine-squared value is taken and divided through 

the sine-squared values obtained for the other peaks. Each ratio, denoted as R in Table 4.4, 

represents (h2 + k2 + l2), or the summation of squares of each Miller index in a proposed 

crystal plane (hkl); (h2 + k2 + l2) is directly related to the lattice constant of the material in 

a cubic crystal system. The ratio of each peak is multiplied by equivalent positive integers 

until two conditions are met: the determined ratio for each peak must be roughly equal to 

an integer value and the determined peak ratios should all relate to the theoretically-

determined lattice constant of the material in question. Table 4.4 summarizes the ratio 

analysis performed on the set of data for the annealed ITO. 

Table 4.4. Ratio Analysis of XRD Peaks. 

Peak # 2θ sin
2
θ R, sin

2
θ / 0.0344 2R 3R 4R 5R 6R 

1 21.37° 0.0344 1 2 3 4 5 6 
2 30.42° 0.0688 2.00 4.00 6.01 8.01 10.0 12.0 
3 35.34° 0.0921 2.68 5.36 8.04 10.7 13.4 16.1 
4 45.58° 0.1500 4.36 8.73 13.1 17.5 21.8 26.2 
5 50.87° 0.1845 5.37 10.7 16.1 21.5 26.8 32.2 

6 60.4° 0.2530 7.36 14.7 22.1 29.4 36.8 44.2 
 

 The ratios of each peak when multiplied by either 3 or 6 (bolded) were very close 

to integer values; however, upon further analysis, the ratios multiplied by 6 were much 
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closer to the theoretically-determined lattice constant of indium oxide which was taken to 

be 10.1 Å from literature [13]. Equation 4.1 relates the material’s lattice constant with 

Bragg’s Law and Miller indices in a cubic crystal system [24].  

𝑛𝜆

2𝑠𝑖𝑛𝜃
=

𝑎

√ℎ2 + 𝑘2 + 𝑙2
                                               (4.1) 

Lambda (λ) represents the wavelength of x-ray used (taken to be 1.54 Å for Cu-K 

alpha radiation in this XRD instrument), theta represents the angle at which the peak 

occurs, a represents the material’s lattice constant, and h, k, and l are the Miller indices of 

the plane. First-order diffraction is normally assumed in XRD analysis, so n is equal to 1. 

The values of the lattice constants for each value in the sets of 3R and 6R were found to be 

7.2 Å and 10.2 Å, respectively. As a result, the rounded values of the 6R set were used for 

crystal plane determination. 

Each value of (h2 + k2 + l2) is characteristic to a family of crystal planes denoted as 

{hkl}. In a cubic crystal system, each plane in a family of crystal planes is 

crystallographically equivalent to the others regardless of both the sign and position of the 

Miller indices in the parentheses [25]; however, when describing the determined crystal 

plane from XRD analysis, the indices are usually arranged from largest to smallest in the 

parentheses. Given the largest rounded value of (h2 + k2 + l2) to be 44 for Peak 6, a 3-D, 7 

× 7 × 7 matrix was programmed in MATLAB to determine all possible 343 (73) 

permutations of (h2 + k2 + l2) with integer values between 0 and 6 for h, k, and l. The 

experimental, rounded values of (h2 + k2 + l2) in Table 4.4 were compared with the values 

from the 3-D matrix and verified via literature values from the Powder Diffraction File [26] 

(PDF) Database in Table 4.5. 
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 Table 4.5. Experimentally-determined crystal planes versus PDF database. 

 

 

 

 

 

 

Because there are two sets of solutions that satisfy (h2 + k2 + l2) for Peak 4, both 

(431) and (510) were found to be potential crystal planes. Along with the crystal planes, 

the crystal structure of ITO can also be found using guidelines summarized in Table 4.6. 

Using these guidelines for cubic crystal structures, the cubic bixbyite structure of ITO, 

which is base-center cubic structure, is verified; adding up the Miller indices of each 

specific crystal plane found yields all even numbers which is consistent with the rule 

defining base-center cubic structures. 

Table 4.6. Determinations of crystal structure via Miller indices [27]. 

 

 

 

 

 

Peak 

# 2θ Rounded (h
2
 + k

2
 + l

2
) 

(experimental) 
Potential 

Crystal Plane(s) 
Crystal Plane at each 

2θ from PDF Database 

1 21.37° 6 (211) (211) 

2 30.42° 12 (222) (222) 

3 35.34° 16 (400) (400) 

4 45.58° 26 (431), (510) (431) 

5 50.87° 32 (440) (440) 

6 60.4° 44 (622) (622) 

Crystal 

Structure Diffraction Occurs Diffraction Does Not 

Occur 

Simple cubic Value of (h
2
 + k

2
 + l

2
) exists 

Value of (h
2
 + k

2
 + l

2
)  does 

not exist 

Base-centered 

cubic 
h + k + l ≡ even number h + k + l ≡ odd number 

Face-centered 

cubic 

h, k, and l are comprised of both odd 

and even numbers 
h, k, and l are either all odd 

or all even numbers 
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Short-width, high-intensity peaks are indicative of larger, loose characteristic 

grains which are optimal for metal-oxide chemical sensor technology; they provide greater 

surface area for reaction and space for vapor to travel through. Although grain size can be 

determined using other crystallography methods more accurately, a rough estimate of the 

minimum grain characteristic length can be obtained via the Scherrer equation [28] using 

data from an XRD intensity graph (Eq. 4.2).  

𝐷𝑡(2𝜃) =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
                                                          (4.2) 

Dt represents the characteristic grain dimension, K represents the Scherrer constant 

(taken to be 0.94 for cubic crystallite shapes [29]), λ represents the wavelength of Cu-K 

alpha x-rays (1.54 Å), β represents the full width at half maximum (FWHM) of the most 

prevalent peak (in radians), and θ represents the Bragg angle (in radians) [28]. Both rough 

estimates of the crystallite sizes and the parameters used to calculate them are summarized 

in Table 4.7; the increase in crystalline size is drastic when the ITO film is annealed. 

Table 4.7. Calculated mean size dimension with specific parameters. 

 

 

 

 

The topology of the as-deposited and annealed metal-oxide surfaces were studied 

using a scanning electron microscope to understand the effects of annealing on surface 

roughness of the metal-oxide layer. A 25-cm2 square was cleaved from the center of each 

 
As-deposited ITO Annealed ITO 

β (Δθ) 0.166 0.00873 

2θ (rad) 0.545 0.545 

Dt (nm) 1.03 19.4 
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control wafer for the study. The sample was placed on a goniometer which was placed 

inside the microscope chamber. An electron beam from a lanthanum hexaboride (LaB6) 

source is utilized to bombard the sample [30]; the electron beam must reach the sample’s 

surface without interactions from the chamber ambient, so a high vacuum between 10-5 and 

10-6 torr was established before microscopy is conducted. This also ensures the sensitive 

filament does not burn out at atmospheric pressure. 

The micrographs (Figure 4.4) were taken towards the edges of the samples to focus 

on small particulates that were created when the wafers were cleaved. The magnification 

of both micrographs was roughly 10,000x. 

 

Figure 4.4. Surface morphology of as-deposited (left) and annealed (right) ITO. 

As demonstrated, annealing the metal-oxide generates surface topology which was 

relatively consistent with what was found from the Scherrer equation. The as-deposited 

ITO had a very smooth surface with small crystallites that could not be imaged via SEM 

accurately. On the other hand, the annealed ITO had noticeable grain boundaries with 

grooves which allow for increased surface area for adsorption sites. The surface-area-to-

volume ratio is technically greater for the as-deposited ITO grains compared to the 

annealed ITO; however, the benefit of the increase of surface area for these smaller grains 
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is inhibited due to their closely-packed formation which decreases the amount of available 

adsorption sites and the ability for gases to react with adsorbed oxygen at those sites [31]. 

 

 Microscopy was done using the Leica inspection station in the SMFL after each 

processing step to ensure the lift-off processes of each of the metals were successful. 

Because the feature sizes of the devices were on the order of millimeters and were therefore 

too large to be seen using this specific microscope, the lowest order of magnification (5x) 

was utilized. The edge boundary of the left side of the metal-oxide square was imaged after 

each process to qualify the lift-off resist and to determine if any metal still remained in 

undesired locations either through incomplete lift off of the photoresist or redeposition of 

the lifted-off metal during the lift-off process. Figure 4.5 demonstrates the process flow of 

the fabrication with each step and material labeled.  
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Figure 4.5. Micrographs steps in fabrication for 100 nm ITO thickness. 

 The numbers at the top left of each micrograph correspond to the steps in the 

process and are summarized as follows: 

1. Preparation of lift-off photoresist (PR) before ITO sputter on oxide (Ox) 

2. After ITO sputter, before ITO lift-off process 

3. After ITO lift-off process 

4. Preparation of lift-off photoresist before Al sputter on ITO on oxide (Ox) 

5. After Al sputter, before Al lift-off process 

6. After Al lift-off process 
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As shown in micrographs 1, 2, and 3, the lift-off photoresist had, and subsequently 

imaged, a rough ITO edge boundary. This, in most cases, is due to light scattering occurring 

between both the mask and the photoresist surface. However, due to the large feature sizes 

of these chemical sensors, the change of dimension from the edge roughness is not enough 

to inhibit the performance of the devices. Nevertheless, a way to mitigate light scattering 

for lift-off processing of smaller feature sizes is to ensure as close contact as possible 

between the mask and the resist surface [32]. However, in practical applications, the 

transparency mask will always have small amounts of particulates on its surface due to the 

presence of static charge on the cellulose acetate’s surface; quartz would make a better 

mask material as it is much easier to clean and will not be soluble with organic solvents 

like cellulose acetate and the printed ink pattern. 

During the timeframe in which the second lift-off process was completed, the SSI 

Track had technical difficulties regarding its spin-coating system on Track 1; the spin-

coater could not keep a constant rotational speed for the duration in which the photoresist 

was spun on. This may potentially be the reason why the lift-off photoresist had holes in it 

(micrographs 4 in Figure 4.5) as there was most likely variations of photoresist thickness 

across the wafer due to the varying rotational speeds which would be most noticeable after 

the post-exposure bake. Particulates from the cellulose acetate mask could have also 

contributed to the holes in the photoresist, but the masks went through the same cleaning 

procedure and, as demonstrated in micrograph 1 in Figure 4.5, the lift-off photoresist had 

excellent uniformity. 

Comparing the lift-off processes through these micrographs, it is demonstrated that 

the ITO lift-off process was much more successful compared to the Al lift-off process 
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based on the greater amount of particulates generated on the device surface after the Al 

lift-off process. The particulates shown on the Al contact surface in micrograph 6 of Figure 

4.5 could have been generated through two sources: potential particulates from the 

photoresist preparation or from redeposition of the lifted-off metal dispersed in the 

photoresist remover. The same amount of photoresist remover was used in both lift-off 

processes which may explain the increase of particulates because more Al was deposited 

(300 nm) compared to ITO (100 nm). This alone would increase the metal particulate 

concentration in the solvent during the lift-off process and subsequently increase chances 

of redeposition. This can also be shown through micrographs of the 100 nm and 400 nm 

target deposition processes of ITO as well (Figure 4.6).  

 

 

 

 

 

Figure 4.6. Lift-off process of ITO for 100 nm (a) and 400 nm (b) thickness.  

This reaffirms the importance of ensuring small deposited material thicknesses for 

lift-off processing. The remover solution was filtered and an additional acetone rinse was 

done on the wafer surface before each of the micrographs were taken, but even then, it has 

proven to not remove all particulates generated in the photoresist dissolution. 

 

(a) (b) 

Ox Ox ITO/Ox ITO/Ox 
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 The characterization methods utilized in this thesis, including thickness 

measurements, sheet resistance characterization, and microscopic inspection, are 

discussed. All of the thicknesses measured in both the control wafers and test wafers were 

found to be relatively precise, but the lower thickness deposition of ITO was found to be 

more comparable with the target thickness compared to the higher thickness deposition of 

ITO. The sheet resistance of the ITO was found to be lower and more uniform when it was 

annealed compared to when it was measured as-deposited. Using XRD, the annealed ITO 

yielded more noticeable peaks compared to as-deposited ITO which indicates higher 

crystallinity. The crystalline structure of ITO was also proven using the sine-squared 

indexing method of finding crystalline planes and relating these findings to guidelines of 

Miller indices in each plane and how it relates to crystal structure. The grain sizes of as-

deposited and annealed ITO were calculated by the Scherrer equation and the characteristic 

length of annealed ITO grains were found to be greater compared to as-deposited ITO 

grains. This increase in surface roughness in annealed ITO was also demonstrated through 

SEM analysis of the ITO-covered control wafers. Lastly, micrographs obtained using a 

Leica microscope demonstrated the effects of light scattering due to mask interference. The 

micrographs also showed higher effectiveness of particulate removal from the wafer with 

lower metal thickness deposition processes. 
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 This chapter describes the initial and standard methods used to test the sensitivity 

of the fabricated metal-oxide chemical sensors. The testing procedures for both initial and 

standard methods used, along with associated apparatuses and equipment used to obtain 

the measurements, are discussed. The results obtained from both procedures are analyzed 

in this chapter and conclusions are drawn regarding the effects of metal-oxide thickness, 

crystalline structure/morphology, volatile organic compound concentration, and 

temperature on chemical sensitivity and metal-oxide activation energy. 

 

 Before rigorous testing was done on individual devices in consistent ambient 

conditions, initial tests were done on the device wafer in 35% relative humidity (RH) to 

confirm response to volatile organic compounds, analyze recovery time curves, and 

investigate effects of humidity on device performance. The 400-nm metal-oxide thickness 

lots were not completed yet, so the 100-nm as-deposited and annealed ITO devices were 

tested. To maintain consistency with differences of metal-oxide thickness across the two 

wafers, a device in proximity to the alignment mark in the center was tested in the same 

place across the device wafers. Due to safety concerns with the hot plate in the electrical 

testing laboratory, the maximum temperature utilized in the initial tests was 350°C.  
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 A hot plate was used to bring the wafer, and subsequently the metal-oxide layer, to 

uniform, high temperatures to ensure adsorption of ambient oxygen to the metal-oxide and 

chemical reaction of the volatile organic compound with the adsorbed oxygen. Surface 

temperatures were confirmed using a thermocouple. Probes were placed on the metal 

contacts of an individual device on the wafer for resistance measurements. The probes were 

wired to an electrical box which was connected to an HP 4145B Semiconductor Parameter 

Analyzer to actively measure the resistance over time using Metrics Interactive 

Characterization Software (ICS). The hot plate set-up is shown in Figure 5.1.  

 

Figure 5.1. Initial chemical sensitivity testing set-up for short exposures.  

A resistor was modeled in the ICS and both leads to the resistor were defined as 

SMU1 (Probe 1) and SMU2 (Probe 2). SMU1 was set to supply a constant voltage of 3 V 

and SMU2 was grounded. Both the voltage and current drops were measured automatically 

across the resistor; the resistance, given constant voltage and changing current over time, 

Probe 1 

Probe 2 

Hot plate 
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was calculated in the software using Ohm’s Law and output in a data file. The sensitivity 

of the devices in both the initial and standard testing procedures was calculated in the same 

manner using Equation 5.1, as defined by Chandra et al [16].  

𝑆 =
𝑅0 − 𝑅𝐺

𝑅𝐺
                                                         (5.1) 

R0 and RG represent the steady-state resistances before and after exposure to 

ethanol, respectively. This is done to normalize the resistances to solely measure chemical 

sensitivity as crystal structure, thickness, and temperature of the metal-oxide will change 

the measured resistance as well. Two 100-mL spray bottles with fine mist spray nozzles 

were filled with the testing solutions: water and an ethanol solution of roughly 40% by 

volume ethanol and the rest tap water. The ethanol was diluted with water to increase its 

flash point to make it safer to work with in a semi-open setting. For each test, the 

measurement was ran for thirty seconds and then the solution was sprayed once above the 

apparatus. A portion of the high heat transferred via conduction from the hot plate surface 

to the wafer was transferred from the wafer surface to the air via convection; this created a 

small, high-heat region above the wafer surface to quickly evaporate the mist droplets.  

It is imperative to ensure small, less-concentrated droplets are created from the 

spray when doing this test; larger droplets have smaller surface-area-to-volume ratio and 

will land and skid across the wafer surface due to the Leidenfrost effect; the bottom of a 

large droplet will evaporate more quickly than the top and, as a result, create an insulating 

barrier of vapor between the liquid and the hot surface and cause delayed evaporation. To 

ensure optimum surface-area-to-volume ratio of the fine droplets in the mist for 

evaporation, the bottles were sprayed about a half a meter above the actual apparatus 
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upwards so the droplets would spread far enough apart from air resistance to mitigate 

surface cooling which may result from highly concentrated mist. The concentration 

naturally “decreased” over time as the alcohol was dispersed in the surrounding ambient 

and the evaporation rate was assumed to be similar for each tested temperature. 

 

 The response to the ethanol solution was studied with an as-deposited ITO chemical 

sensor in the center of the device wafer at different temperatures. The sensitivity data was 

taken and is summarized in Figure 5.2. 

  

Figure 5.2. 100-nm, as-deposited ITO short response to EtOH at varied temperatures. 

 As shown, higher temperatures of operation result in much greater sensitivity 

readings from short ethanol exposure and faster recovery time to 0% sensitivity. This is 

due to more energy available which allows for enhanced adsorption of oxygen and 
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increased rate of reaction of the ethanol. The steady decrease of sensitivity after ethanol 

exposure for the trials at different temperatures is characteristic with relative low surface 

area for adsorption as described by the Langmuir adsorption isotherm model discussed in 

Chapter 2. Higher temperatures of device operation recovered more closely to their original 

resistance values at 0% sensitivity which may demonstrate greater reactivity of the ethanol 

and evaporation of the water in the solution. Lower temperatures reached lower resistance 

equilibrium states which may indicate blocking of oxygen adsorption sites due to 

incomplete, aforementioned phenomena of ethanol and water with the metal-oxide. 

 

 The response to the ethanol solution was also studied with the 100-nm, annealed 

ITO chemical sensors at different temperatures with a chemical sensor at the center of the 

device wafer and is summarized in Figure 5.3. 

 

Figure 5.3. 100-nm, annealed ITO short response to EtOH at varied temperatures. 
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 Annealing the ITO slightly improved the sensitivity of the devices at each operating 

temperature from short exposure to ethanol. However, the recovery time improved 

significantly and was shorter compared to as-deposited ITO chemical sensors. This 

demonstrates higher surface area based on the Langmuir adsorption isotherm model 

compared to the as-deposited ITO and also confirms what was found in the characterization 

of the metal-oxide surface area in Chapter 4. The sensitivity of the chemical sensors after 

the recovery time was also much closer to 0% which demonstrates enhanced chemical 

reactivity and product removal from ethanol oxidation so that more oxygen can readsorb. 

 

  The response to water was studied with the 100-nm, as-deposited ITO chemical 

sensors at different temperatures with a chemical sensor at the center of the device wafer 

and is summarized in Figure 5.4. 

 

Figure 5.4. 100-nm, as-deposited ITO short response to water at varied temperatures. 
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The as-deposited ITO chemical sensors had some response to the water, but not as 

much as to ethanol. The effect is relatively short-lived as the sensor returns back to its 

original resistance value fairly quickly. High humidity, at temperatures above 200°C, will 

cause chemisorption of water to the oxygen adsorption sites. Each chemisorbed water 

molecule dissociates and forms two hydroxyl ions and blocks any further oxygen from 

adsorbing to those sites. The chemisorption of water increases the conductivity and is 

suspected to slightly increase the sensitivity in this experiment, but the sensitivity increase 

is more likely to be from ionic compounds in the water itself. Significant water 

chemisorption occurs only after prolonged exposure to high humidity whereas the time of 

exposure to water in the initial tests were relatively small. In practice, a way of mitigating 

effects of humidity is operating the device at higher temperatures than ones tested in this 

thesis. At temperatures slightly above 400°C, the hydroxyl ions will begin to desorb from 

the metal-oxide and the adsorption sites will be freed for oxygen adsorption [33].  
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  The response to water was studied with the 100-nm, annealed ITO chemical 

sensors at different temperatures with a chemical sensor at the center of the device wafer 

and is summarized in Figure 5.5.  

 

Figure 5.5. 100-nm, annealed ITO short response to water at varied temperatures. 
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deposited ITO. The volume of water used in both tests were the same which may indicate 

both the water adsorption and ionic compounds accounted for smaller fractions of the total 

surface area. However, after exposure to water at an operating temperature 350°C, the 
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to temperatures above 400°C will allow the hydroxyl groups to desorb, allow oxygen to 

readsorb, and increase the resistance to the sensor’s original value of R0.  

 

 A robust testing procedure was developed to understand the effects of prolonged, 

constant exposure of pure, 200-proof ethanol at different concentrations in air ambient with 

35% RH. The effects of ethanol concentration, crystalline structure, metal-oxide thickness, 

and temperature were studied. The effects of temperature on steady-state resistance of each 

device structure were analyzed. An Arrhenius relationship was used to characterize the 

activation energy of each sensor. As done in the previous testing procedure, a single device 

in the center of the wafer was analyzed on the same area of each of the device wafers.  

 

 The apparatus used for prolonged exposure to ethanol was a burn box with a steel 

plate insert at the bottom to hold the magnetic probes in place. A square, metal-ceramic 

100 mm2 heater suspended in air was used to heat the devices; the temperature varied 

depending on the voltage put through the heater. The temperatures at different voltages 

were determined using a thermocouple and are summarized in Table 5.1. The temperature 

of the sensor surface was verified to be the temperatures that were found at each voltage. 

Table 5.1. Characterization of metal-ceramic heater. 

Voltage (V) Measured Temperature (°C) 

1 160 
2 260 
3 360 
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 The wires used to connect the heater and the probes were put through holes in the 

back of the chamber and secured with HVAC foil tape to maintain relatively consistent 

ethanol concentration. The inside of the chamber set-up is shown in Figure 5.6. 

 

Figure 5.6. Standard chemical sensitivity testing set-up for prolonged exposures. 

The ethanol was injected into the test chamber using a micropipette fit with a needle 

in an opening close to the sensor from the bottom of the box; given the chamber volume, 

liquid volume, liquid density, molar volume of air, and ethanol’s molecular weight, the 

concentration of ethanol in the chamber, CE, can be calculated using a manipulation of the 

ideal gas equation (Equation 5.2). 

𝐶𝐸 =
𝜌𝐸𝑉𝐸

𝑊𝐸

𝑉𝑚

𝑉𝑐ℎ
                                                        (5.2)  
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 ρE is the density of ethanol (taken to be 789 kg/m3 at room temperature [34]) and 

WE is the molecular weight of ethanol (taken to be 46.042 g/mol [35]). Given a volume of 

ethanol, VE, the number of moles of ethanol in the chamber can be calculated. This is 

subsequently multiplied by the ratio of the molar volume of air (Vm) to the chamber volume 

(Vch). At standard temperature and pressure (STP), the calculated molar volume of air is 

roughly 22.4 L/mol. The chamber itself has a volume of roughly 0.01365 m3. Given these 

values, the required volumes to emulate specific concentrations in the chamber were 

calculated and are summarized in Table 5.2. Larger concentrations were used for testing to 

clearly see the change of resistance due to inherent noise generated from measurements. 

Table 5.2. Calculated ethanol volumes for target testing concentrations. 

Target concentration (ppm) Required Volume (µL) 

500 16 
1000 33 
1500 49 
2000 65 

 

The hole was quickly closed after injection of the ethanol. After each test, the 

ambient ethanol in the chamber was removed using a portable vacuum and the inside 

surfaces were wiped with a wet cloth to remove any condensed ethanol vapor. The 

electrical testing conditions that were done in ICS for the previous resistor testing, 

including determination of sensitivity, were repeated for this testing set-up as well. All 

prolonged exposure tests were run for 100 seconds. 
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 A study of change of resistance was conducted for the metal-oxide layers of each 

device wafer at different temperatures. Each of the sensors that were salvaged from each 

device wafer were tested in the chamber. The lid of the testing chamber was left open. The 

operating temperature was manipulated using the voltages described in Table 5.1. It took 

about a minute for each of the devices to reach a constant resistance value. The average 

resistance values and the standard deviation, σ, of the resistance measurements (also 

denoted by vertical error bars) are summarized in Figure 5.7. Devices that were closest to 

the average resistance value for each wafer at each temperature were used for testing. 

 

Figure 5.7. Temperature variations of metal-oxide layers for each device wafer. 
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As confirmed from sheet resistance measurements taken in Chapter 4, annealing the metal-

oxide layer decreased the metal-oxide resistance in both the 100-nm and 400-nm processes; 

however, the drop in resistance was more pronounced with the 400-nm process compared 

to the 100-nm process. The percent changes of resistance between 160°C and 260°C for 

the four types of devices (between 7-8%) were found to be less compared to the change of 

resistance between 260°C and 360°C (between 15-20%). However, this was not found with 

regards to the 100-nm annealed metal-oxide film, which gave a percent change of 

resistance from 260°C and 360°C of only 7.5%. This may be an indication that thinner 

metal-oxide films which are crystalline tend to be more electrically stable with changes of 

temperatures compared to their amorphous counterparts. More oxygen adsorption sites for 

the 100-nm annealed metal-oxide layers may have been filled at lower temperatures which 

also may explain why the resistance did not change as much at higher temperatures 

compared to other devices; oxygen adsorption may begin to occur at temperatures as low 

as 250°C assuming the metal-oxide layer has a sufficient amount of surface area [6]. This 

combination of lower-temperature oxygen adsorption and electrical stability with 

increasing temperature makes thin, annealed metal-oxide films an optimal choice. 

 

 Due to large amounts of noise generated from the measurements from the probes 

measuring high-temperature surfaces, the results were leveled via exponential smoothing 

using Equation 5.3.  

𝑠𝑡 = 𝛼 ∙ 𝑥𝑡 + (1 − 𝛼) ∙ 𝑠𝑡−1                                             (5.3) 
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 st represents the smoothed value which is a weighted average of the current value, 

xt, and the previous smoothed value, st-1. The weight is carried out by the smoothing factor, 

α, which was taken to be 0.1; smaller smoothing factors will further level the data. The 

maximum sensitivity value was taken to be the weighted average of the plateau of the 

highest sensitivity readings after exposure to ethanol. Each test for each device structure 

was taken at the same operating temperature with different ambient ethanol concentrations. 

Figure 5.8 demonstrates an example of exponentially-smoothed results obtained for the 

response of different ethanol concentrations to 100-nm, annealed ITO at 360°C with 

average maximum sensitivity values indicated with each concentration. The other 

smoothed graphs can be found in Appendix A. 

 

Figure 5.8. 100-nm, annealed ITO response to prolonged EtOH conc. at 360°C. 
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The effects of ethanol concentration were similar with all tested device structures; 

the maximum sensitivity increased as the ethanol concentration increased. However, the 

increase was much more evident with certain structures as shown in Figure 5.9 with the 

device operating temperature set at 360°C.  

 

Figure 5.9. Sensor response to ethanol concentrations at 360°C. 

 Annealing the metal-oxide, in both the 100-nm and 400-nm metal-oxide devices, 

caused a much greater increase in sensitivity with increase of ethanol concentration. The 

greater change of sensitivity with crystallinity, as demonstrated by the previous short 

exposure tests, is also consistent with the Langmuir adsorption isotherm model; a larger 

change of sensitivity (which can be related to fluctuations in the number of oxygen 

adsorption sites) with respect to changes in reducing gas concentration is characteristic of 
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larger material surface area with more oxygen adsorption sites. The annealed metal-oxide 

layers also give more pronounced differences of sensitivity in between concentration 

readings. Larger changes of sensitivity is beneficial as it creates a larger range of sensitivity 

values which enables easily-distinguishable values of concentration that correspond to each 

sensitivity value. As-deposited ITO sensors gave smaller ranges of sensitivity over the 

tested concentrations which, as demonstrated by Figure 5.10, gave what seemed to be 

saturated readings that could potentially lead to errors in concentration determination in 

practical devices. 

 

Figure 5.10. 100-nm, as-deposited ITO response to prolonged EtOH conc. at 360°C. 
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400-nm counterpart. This may be due to the mass-transfer limited nature of the depletion 

layer that forms towards the surface of the metal-oxide [16]. A more noticeable change in 

resistance will occur as the thickness of the oxidized depletion layer becomes comparable 

to the metal-oxide thickness itself. 

 

 The effects of annealing the metal-oxide and temperature on activation energy were 

studied for the four device structures; this energy value was determined for each sensor 

using an Arrhenius relationship (Equation 5.4) of the changes of resistance for the 2000 

ppm concentration tests as they yielded the strongest signals to changes of sensitivity.   

𝑙𝑛𝑅𝑔 = 𝑙𝑛𝑅0 +
𝛥𝐸𝐴

𝑘𝐵𝑇
                                                    (5.4) 

R0 and Rg represent the resistance values of the sensors before and after exposure 

to ethanol, respectively, T is the temperature, kB is the Boltzmann constant taken to be 

approximately 8.62 × 10-5 eV/K, and EA is the activation energy. Equation 5.4 can be 

manipulated and plotted ln(Rg / R0) versus inverse temperature. The Arrhenius relationship 

of each analyzed device structure is shown in graphical form in Figure 5.11.  
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Figure 5.11. Empirical determination of EA with ln(Rg / R0) versus 1000/T. 

 The Arrhenius relationships shown in Figure 5.11 demonstrate that the activation 

energy of the ITO material system is very responsive to changes in temperature. This 

phenomenon can also be seen in other metal-oxides such as n-type zinc oxide as 

demonstrated by Yadav et al [36]. Due to this effect, there are two linear zones (denoted in 

Figure 5.11) which exhibit different slopes and, consequently, different activation energies. 

The slope between two points in this graph represents EA/kB; from here, the activation 

energy can be determined by simply multiplying the slope by the Boltzmann constant. The 

resulting activation energies for each device structure within each temperature zone are 

summarized in Table 5.3. 
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Table 5.3. Activation energies of each device structure at different temperature zones. 

Device Structure E
A
 between 160°C and 260°C (eV) E

A
 between 260°C and 360°C (eV) 

400 nm, as-deposited 1.69 × 10
-3 5.56 × 10

-3 
400 nm, annealed 9.31 × 10

-4 1.00 × 10
-2 

100 nm, as-deposited 6.11 × 10
-4 1.00 × 10

-2 
100 nm, annealed 1.29 × 10

-3 1.34 × 10
-2 

 

 At higher temperatures, the activation energy was found to increase drastically 

between one to two orders of magnitude. In most cases, the activation energy was found to 

increase when the metal-oxide was annealed; higher activation energies, based on findings 

from Black regarding electromigration in thin films, correlate with larger grain structures 

[37]. The effects of grain boundary scattering are mitigated as the grain size increases; 

smaller grains exhibit more grain boundaries which, in return, increases the resistance of 

the electrical path across the metal-oxide. This phenomenon itself has been documented in 

studies of annealed ITO and nickel nanostructures from Sobri et al [38]. However, this was 

not found with the 400-nm devices between 160°C and 260°C which may indicate more 

grain boundaries beneath the depletion region compared to the 100-nm devices. 

 

 Both the short and prolonged exposure testing procedures were discussed in detail, 

including the apparatuses and software used to facilitate the measurements. The short 

exposure tests were done using solutions that were sprayed in a fine mist on the chemical 

sensors to ensure evaporation on the hot surface of the wafer. The annealed ITO devices 

tested with both short and prolonged exposures gave higher sensitivity readings to the 
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ethanol compared to their as-deposited ITO counterpart devices. In addition, in the short 

exposure tests, annealed ITO devices had a more drastic change of sensitivity back to 

steady state after exposure compared to as-deposited ITO devices which could be due to 

higher adsorption surface area. The devices did not give a noticeable change of sensitivity 

to tap water in short exposures; annealing the ITO decreased the sensitivity to water. 

Increasing the temperature was found to drastically increase the sensitivity for all 

measurements; at lower temperatures of operation for the devices in short exposures, the 

resistance did not go back to its normal state which could indicate the blocking of oxygen 

adsorption sites due to incomplete reaction or physical blocking from the ethanol. The 

steady-state resistance of the devices in air increased with increasing temperature due to 

both oxygen adsorption and the metallic nature of the metal-oxide layer itself. The devices 

showed increased sensitivity to increasing ethanol concentration using the prolonged 

ethanol exposure test. The variation of sensitivity values, however, was greater for the 

annealed ITO devices compared to the as-deposited ITO devices; this allows for clearer 

distinctions between concentration values. Thinner metal-oxide films were found to be 

more sensitive. The activation energy of each device was strongly dependent on 

temperature and was split into two separate activation energies in the Arrhenius 

relationship for each temperature range tested. Annealing the metal-oxide layer increased 

the activation energy more noticeably in higher temperatures of operation.  
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 This chapter details electrical and thermal simulations done on a micrometer-scaled 

chemical sensor designed for future work. The basic design of the simulated chemical 

sensor is discussed, along with a proposed fabrication process and basic electrical 

characteristics. The thermal simulation, along with key parameters and assumptions, are 

discussed. The electrical simulation, along with key parameters and assumptions, is done 

to explore how metal-oxide thickness and oxygen vacancy concentration affect sensitivity; 

temperature effects on change of steady-state resistance are also investigated. 

 

 Although the chemical sensors fabricated and tested in this thesis proved core 

concepts of metal-oxide chemical sensor working mechanisms, it is unlikely that these 

specific sensors could be put into a true microsystem because the active sensing area is too 

large and the device itself does not have a reliable way of heating itself to high temperatures 

without the use an external heating source. To address these two matters, a micrometer-

scaled metal-oxide chemical sensor was designed in Mentor Graphics software. A basic 

fabrication process for the sensor was also developed. 
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 To discuss the structure of the device and corresponding dimensions of the sensor 

features, a scope of the process flow of the fabrication process, including 3-D views of 

each step in both directions, is summarized in Figure 6.1. 

 

Figure 6.1. Process flow of future work chemical sensor at key points in fabrication. 

Each device model above is discussed in detail in the following steps, including 

processing done which may not inherently change the device structure.  
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1. Before fabrication is done, an RCA clean (as described in Chapter 3.3) is done 

to clean the substrate surface (shown in greyish brown) and grow a thin 

passivating oxide layer to prevent contamination. 

2. A 2000-Å oxide layer (shown in white) is grown on the wafer surface via wet 

oxidation. A proposed oxidation process based on thickness results from 

furnace recipes utilizing Bruce Furnace Tube #1, is summarized in Table 6.1. 

Table 6.1. Proposed wet oxidation process of future work chemical sensors. 

 

3. Utilizing positive photoresist as an etchant mask, a 23 µm × 32 µm rectangle is 

imaged on the surface of the oxide and the oxide in the imaged area is etched 

down 1 µm to make room for the underlying MEMS heater. Using etch rates 

confirmed for the SMFL website [39], 1 µm of thermally-grown oxide can be 

etched in roughly two minutes using 10:1 buffered oxide etch at 20.7°C.  

4. Two sub-processes are done in this specific step. First, 1 µm of polysilicon 

(shown in black) is deposited via low-pressure chemical vapor deposition 

Interval Description Temperature Time at Step N2 flow rate (lpm) O2 flow rate (lpm) H2 flow rate (lpm) 

0 Boat Out / Load 25°C N/A N/A N/A N/A 

1 Boat In / Push 800°C 12 min 10 0 0 

2 Stabilization 800°C 15 min 10 0 0 

3 Ramp-up 800°C to 1000°C 20 min 5 0 0 

4 Flood 1000°C 5 min 0 10 0 

5 Soak 1000°C 40 min 0 3.6 2.0 

6 Anneal 1000°C 5 min 15 0 0 

7 Ramp-down 1000°C to 800°C 15 min 10 0 0 

8 Boat Out / Pull 800°C 15 min 15 0 0 
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(LPCVD) to ensure enhanced uniformity. This can be done using a MEMS 

LPCVD recipe [40] using the SMFL’s LPCVD tool with specifications in Table 

6.2. The average deposition rate of this process is roughly 200 Å/min. 

Table 6.2. MEMS LPCVD polysilicon process parameters. 

 

 

 

In addition, to achieve certain resistance values of the heater which will be 

further discussed in the next section, the LPCVD polysilicon must be doped via 

ion implantation using the Varian 350D Implanter. A total dose of 1016 cm-2 

phosphorus is used to ensure a total average dopant concentration of 1020 cm-3 

within the polysilicon layer.  

5. A chemical-mechanical planarization (CMP) process using the Strausbaugh 

CMP tool would most likely be used to create a level polysilicon layer inside 

the heater region equal to the surrounding oxide layer. The CMP process, 

including the polish rates with different slurries and processing conditions, must 

be characterized to ensure the removal of 1 µm of polysilicon. 

6. Using LPCVD, a 0.5-µm layer of silicon nitride (shown in light orange) is 

deposited onto the wafer surface. Silicon nitride ensures optimal heat transfer 

from the heater to the metal-oxide layer as silicon nitride has higher thermal 

conductivity compared to basic silicon oxide. A proposed uniform process [40] 

is explained in Table 6.3. The deposition rate is roughly 55 Å/min. 

Temperature (°C) 650°C 

Process pressure (mtorr) 300 

Reactive gas species Silane (SiH4) 

Gas flow rate (sccm) 400 
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Table 6.3. Silicon nitride deposition process parameters. 

 

 

 

 

 

7. Using a lift-off process similar to what was done with metal-oxide patterning 

in this thesis described in Chapter 3.5, a 29 µm × 23 µm metal-oxide (shown in 

dark yellow) rectangle is patterned and placed perpendicular and centered 

across the polysilicon heater. The longer length is to ensure ample room for 

metal connections on both sides, which take up 3 µm of length for each. The 

target thickness of this metal-oxide was designed to be 100 nm as it yielded the 

most promising sensitivity from results tested in Chapter 5. Assuming a sputter 

rate and process similar to what was done in Chapter 3.5.2, the deposition would 

take roughly 25 minutes. 

8. 21 µm × 1 µm aluminum contacts (shown in solid grey) would be patterned in 

the silicon nitride for the polysilicon heater at each end, ensuring a spacing of 

1 µm from each of the heater dimensions. Using experimentally-determined 

etch rates of silicon nitride [41], proposed process parameters for the anisotropic 

etch of silicon nitride in the Drytek 482 Quad Etcher are presented in Table 6.4. 

The etch rate of this process is roughly 375 Å/min. 

 

Temperature (°C) 
Ramped from door to pump 

(790°C – 800°C – 810°C) 

Process pressure (mtorr) 300 

Reactive gas species 
Dichlorosilane (SiH2Cl2) 

Ammonia (NH3) 

Gas flow rates (sccm) 
60 (SiH2Cl2) 

150(NH3) 
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Table 6.4. Proposed silicon nitride etching parameters. 

 

 

 

 

 

9. As in the previous lift-off process for the metal-oxide, a lift-off process would 

pattern 23 µm × 23 µm aluminum contacts for both the MEMS heater and 

metal-oxide sensing layer. A lift-off process is proposed over blanket 

deposition with wet etch due to either potential contamination of the metal-

oxide surface with leftover aluminum or etchant chemicals or over-etch which 

may remove the metal-oxide layer itself due to its small thickness. To ensure 

the contact cuts are filled completely, the total deposition thickness of 

aluminum would be 600 nm; the processing conditions would be the same used 

in Chapter 3.5.2. Due to the high thickness of aluminum for the lift-off process, 

more lift-off photoresist should be used to ensure complete lift-off of the metal 

contacts. Additionally, the same annealing process used in this thesis described 

in Chapter 3.6 would also be applied to the finished device. Due to the relative 

low temperature of the annealing process (450°C), phenomena such as dopant 

migration in the polysilicon is mitigated. At this temperature, it would also 

allow the aluminum contacts to sinter as done in CMOS processes. 

 

Process pressure (mtorr) 75 

Power (W) 600 (@13.56 MHz) 

Reactive gas species 
Dichlorodifluoromethane (CCl2F2) 

Oxygen (O2) 

Gas flow rates (sccm) 
35 (CCl2F2) 

15 (O2) 
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 A 3-D rendered device from SolidWorks, along with the layout designed in Mentor 

Graphics and associated voltages for each aluminum probe pad, is shown in Figure 6.2. 

 

 

Figure 6.2. 3-D render (left) and IC layout (right) of future work chemical sensor. 

 VS1 and VS2 represent the voltages of the probe pads of the metal-oxide sensor; 

because the metal-oxide layer acts as simple resistor with a direct relationship between 

voltage and current, the voltage was arbitrarily set at 3 V like the devices fabricated in this 

thesis. VH1 and VH2 represent the voltages of the probe pads of the MEMS heater; in 

operation, VH2 would be set to ground. The temperature of the polysilicon heater required 

to elevate the temperature of the metal-oxide layer to a set temperature (630 K) was 

determined through a thermal simulation analysis done in SolidWorks. To simplify the 

mesh of the model, the aluminum contacts were taken out. The steady-state temperature of 

the exposed surfaces in the model was set at 300 K. The polysilicon heater was assumed to 

have a consistent temperature on all six faces inside the oxide layer. The analysis was also 
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done using a “worst-case scenario” in which convection from the sensor surface to air was 

taken into account; the convective heat transfer coefficient was taken to be 27 W/m2·K 

[42], which is characteristic of air traveling roughly 5 m/s perpendicular across the surface. 

The material properties used in this simulation are shown in Table 6.5 and, unless otherwise 

denoted, were values in predefined materials in SolidWorks. 

Table 6.5. Densities and thermal conductivities used for simulated materials. 

 

 

 

 

 Cut-through and top-down views of the temperature simulation are shown in Figure 

6.3. Thermal expansion in the simulation was assumed to be negligible as the thermal 

expansion coefficients of silicon, silicon oxide, and silicon nitride are rather small. 

 

Figure 6.3. Cut-through (left) and top-down (right) temperature distribution of heater. 

Material Density (kg/m3) Thermal Conductivity (W/m·K) 

Silicon / Polysilicon 2330 124 

Silicon oxide 2648 1.4 

Silicon nitride 3170 [34] 18.5 [43] 

Indium tin oxide 7140 [44] 11 [44] 



80 
 

The temperature output from the MEMS heater was manipulated until the 

calculated average temperature of the sensor surface was roughly 630 K. It was found the 

polysilicon heater needed to be roughly 725 K to accomplish this. From here, the required 

voltage to obtain a temperature of 725 K was back-calculated using relations between 

thermal resistance with respect to heat transfer through the oxide to the silicon substrate, 

Rth, and power, P, supplied to the resistor itself using Equation 6.1. 

𝑇𝐹 = 𝑇0 + 𝑃 ∙ 𝑅𝑡ℎ                                                      (6.1) 

T0 and TF represent the ambient temperature (taken to be 300 K) and the desired 

temperature, respectively. The power is calculated using a relationship between voltage, 

V, and resistance, R (Equation 6.2). 

𝑃 =
𝑉2

𝑅
                                                             (6.2) 

The resistance of the heater is dependent on the sheet resistance, Rs, the dimensions 

of the heater (L, W, H), the implanted dose, ϕ, an empirically-determined mobility based 

on dopant concentration [45], µ, and a correction factor (shown in parentheses in Equation 

6.3) which takes grain boundaries of polysilicon into account and assumes an empirically-

determined resistance per polysilicon grain boundary, RGB, of 0.9 Ω. It also assumes a grain 

size of half the polysilicon thickness with a total number of grains equal to the electical 

path length of the heater divided by the grain size [43] (hence the multiplication of 2 in the 

numerator). The resistance of the heater was calculated to be roughly 46 Ω. 

𝑅 =
1

𝑞𝜇𝜙
·

𝐿

𝑊
· (

2𝑅𝐺𝐵𝐿

𝐻
)                                               (6.3) 
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The thermal resistance is calculated through manipulation of the basic heat 

conduction equation in Equation 6.4a to 6.4b. 

𝑄 = 𝑘𝐴
𝑑𝑇

𝑑𝑥
                                                          (6.4a) 

1

𝑄
∫ 𝑑𝑇

𝑇0

𝑇𝐹

=
1

𝑘𝐴
∫ 𝑑𝑥

𝑑

0

      𝑅𝑡ℎ                                          (6.4b) 

 Q is the power dissipation (in W), k is the thermal conductivity of silicon oxide 

(taken to be 1.4 W/m·K from Table 6.5), A is the area of heat transfer (taken to be the area 

of the bottom of the heater, 23 µm × 32 µm), and d is the distance through which heat is 

transferred in the material (taken to be the thickness of silicon oxide under the heater, 1 

µm). The computation of the left-hand side of Equation 6.4b directly represents the thermal 

resistance, which has units of K/W. The assumed boundary conditions are T = TF at x = 0 

and T = T0 at x = d, where d is taken to be the thickness of the oxide under the polysilicon 

heater. Using this relation, the right-hand side of Equation 6.4b can be calculated to solve 

for the thermal resistance, which was found to be roughly 1116.1 K/W. Knowing both the 

heater resistance and the thermal resistance, the voltage and associated power were 

calculated using Excel’s solver function and found to be 4.2 V and 381 mW, respectively. 

Although this is a relatively easy heater to fabricate, the power required to heat the device 

is relatively high compared to other MEMS heaters. Ways to mitigate this power loss is to 

etch underneath the heater itself to expose it to air [46] or run it in a power-compensated 

pulsed mode which can significantly reduce the amount of power [47]. Running the heater 

in a power-compensated mode is feasible as the required time to heat the sensor to the 

required temperature is small due to the small mass of the polysilicon and have been 

achieved in heaters similar in scale with pulses of 1 ms every second [46]. 



82 
 

 

 The chemical sensor was electrically simulated using Silvaco Atlas to undertand 

the effects of physical parameters on change of resistance. The simulation structure, testing 

conditions, and summaries of the effects of metal-oxide thickness and oxygen vacancy 

concentration on changes of resistance are described in this section. The effects of 

annealing the metal-oxide layer were not studied due to the complexity of modeling 

adsorption sites with respect to fixed charge in Silvaco Atlas. Additionally, the effects of 

change of temperature on reaction kinetics were also not investigated as it would require 

an advanced model to portray how the amount of alcohol reacted (assumed to be a fixed 

charge set on the metal-oxide surface) changes with temperature; each sensitivity 

simulation was tested with discrete values of fixed charge on the metal-oxide surface. 

 

    The device itself was designed to have an metal-oxide path length of 23 µm which 

was exposed to air. Like the device processing discussed earlier, the aluminum contacts 

were 600 nm thick and placed with 2 μm of overlap on the ITO layer. The heater was not 

put into the device structure; instead, the temperature of the simulation was set externally 

to set the temperature of the metal-oxide layer. The ITO material properties, including the 

density of states (taken to be the same for the conduction and valence bands, NCV = NCC), 

bandgap (Eg), electron mobility (μn), and oxygen vacancy concentration (NOV), were taken 

from a publication [10] which utilized a similar sputtering method and deposition 

thickness; these properties are summarized in Table 6.6. These aforementioned parameters, 
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along with the values in Table 6.6, were set as default values to compare subsequent 

simulations to. The device structure is shown Figure 6.4 with an ITO thickness of 100 nm. 

Table 6.6. ITO material properties used in Silvaco Atlas simulations. 

 

 

 

 

 

Figure 6.4. Silvaco Atlas chemical sensor device structure. 

NCV = NCC (cm-3) 2.3 × 1019 

Eg (eV) 3.5 

μn (cm2/V·s) 40 

NOV (cm-3) 9 × 1020 
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 The oxygen vacancy concentration, NOV, was set close to the metal-oxide surface 

at an energy level equal to the bandgap of the material. The device was modeled using the 

Fermi model to study temperature effects. For each simulation, the voltage was swept from 

0 V to 4 V and, using the resulting I-V curve, the resistance using Ohm’s Law was 

determined. However, the current values obtained at each voltage value represent current 

per micron of length; to determine the actual resistance value, the current was multiplied 

by the length into-the-page of the sensor. Because the length and width of the metal-oxide 

sensor were the same, the calculated resistance was equal to the sheet resistance of the 

material. The steady-state sheet resistance, at a temperature of 300 K with parameters taken 

from Table 6.6 and a “base” interfacial fixed charge (Qss) of 1011 cm-2, was roughly 117.6 

Ω/sq. This value is similar to sheet resistance values obtained via characterization of the 

ITO material in Chapter 4. Thus, this sheet resistance value was taken to be the default. 

However, each simulation was done at an elevated temperature of 625 K to best reflect 

device operating conditions. Each simulation study is summarized in the sections below. 

 

 Keeping the parameters described in Table 6.6 constant, the metal-oxide thickness 

was varied at thicknesses of 10 nm, 100 nm, and 500 nm to understand how thickness 

affects sensitivity as interfacial fixed charge changes. Using the sensitivity equation 

described in Chapters 2 and 5, sensitivity was calculated with the steady-state value of 

resistance taken to be at an interfacial fixed charge of 1011 cm-2. The resulting sensitivity 

curves at each aforementioned thickness is summarized in Figure 6.5. 
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Figure 6.5. Sensitivity at different metal-oxide thicknesses with changes in Qss. 

 As confirmed from experimental findings in Chapter 5, decreasing the thickness of 

the metal-oxide layer significantly improves the sensitivity of the device as the interfacial 

fixed charge increases. This is due to the fixed charge with respect to the total mass of the 

metal-oxide layer; as the thickness increases, the presence of surface charges are mitigated 

as there is already substantial current flow throughout the thickness of metal-oxide layer. 

Although there is great potential for thinner metal-oxide films for chemical sensors, pitting 

in the sensing material begins to form at lower thicknesses [17] and may potentially cause 

shorting of the electrical path in the metal-oxide. Thus, it is crucial to find the correct 

balance of overall sensitivity and film continuity. 

 

 A material characteristic that was not investigated in the fabricated devices was the 

effects of oxygen vacancy concentration on sensitivity. The oxygen vacancy concentration 

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

1.00E+13 1.00E+14 1.00E+15

S
en

si
ti

v
it

y

Interfacial fixed charge (cm-2)

t = 10 nm

t = 100 nm

t = 500 nm



86 
 

essentially describes how conductive or insulative the metal-oxide material is. In practice, 

ways of increasing the oxygen vacancy concentration is via reactive sputtering in an 

oxygen. The oxygen vacancy concentration, assuming other parameters held constant, was 

varied with increasing conductive nature at concentrations of 9.0 × 1019 cm-3, 9.0 × 1020 

cm-3, and 9.0 × 1021 cm-3. These simulations are summarized in Figure 6.6. 

 

Figure 6.6. Sensitivity at different NOV with changes in Qss. 

 As demonstrated, decreasing the oxygen vacancy concentration in the metal-oxide 

layer increases the sensitivity as the interfacial fixed charge increases. This may be due to 

a greater percent change in electron carriers of a highly-resistive metal-oxide compared to 

that of a conductive metal-oxide. The effect is very similar to the effect of thickness on 

sensitivity, but not as exaggerated; as the resistance of the electrical path decreases, the 

ability of the sensing material to detect subtle changes of electron carriers from the 

interfacial fixed charge also decreases. In addition to these simulations, the percent change 
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of resistance with respect to a change of temperature at different oxygen vacancy 

concentrations was also studied keeping other device parameters constant. The resistance 

values were taken for each material at 300 K given a “base” interfacial fixed charge of 1011 

cm-2. These results are shown in Figure 6.7. 

 

Figure 6.7. Percent resistance change with change of temperature. 

 Although lower oxygen vacancy concentrations yield higher sensitivity to the 

interfacial fixed charge, they will also result in higher resistance fluctuations with changes 

of temperature. Thus, it is crucial to ensure the sensing material is kept at a relatively 

constant temperature with the polysilicon heater to ensure false positives or negatives are 

mitigated if there are slight fluctuations in power from the heater to the metal-oxide. With 

that being said, there exists an inherent tradeoff between sensitivity from change oxygen 

vacancy concentration and need for precise electronics to ensure the temperature of the 

metal-oxide is kept at a constant value. 
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 The design of a micrometer-scaled chemical sensor using metal-oxide sensing 

technology was discussed, including a feasible way of fabricating the device using tools 

available in the SMFL. In addition, basic electrical operating characteristics of the device, 

including the sensing layer and the polysilicon heater, were found and discussed using both 

SolidWorks thermal simulations and Silvaco Atlas electrical simulations. The basic device 

was modeled in Silvaco Atlas with similar properties to what was found in ITO material 

characterization in Chapter 4; in addition, oxygen vacancy concentration was analyzed as 

a potential parameter which can be further investigated in future work via reactive 

sputtering of ITO in the presence of oxygen. 

 

 

 

 

 

 

 

 

 

 

 



89 
 

  This chapter discusses three potential future work concepts, other than fabrication 

of the sensor design described in Chapter 6, which can be investigated further. Initial 

starting points of each concept are given. 

 This thesis focused on the incorporation of n-type ITO films to sense reducing 

gases. However, there are a variety of other metal-oxide materials that can be used to sense 

a variety of reducing gases that have been documented in literature. 

Other metal-oxides have been documented in literature to be sensitive to either 

reducing or oxidizing gases. Highly-conductive n-type metal oxides, such as gallium oxide 

(Ga2O3), aluminum oxide (Al2O3), zinc oxide (ZnO), vanadium oxide (V2O3), and other 

stable transition metals, have been proven to be sensitive to reducing gases such as nitrous 

oxide [5] with similar reaction characteristics to the ITO tested in this thesis. In addition, a 

variety of other n-type composite materials have also been studied and have proven to work 

more effectively compared to each specific material. Material systems which facilitate each 

portion of a catalytic reaction have been hypothesized to be more efficient than single 

components. In a study done on a SnO2 / ZnO composite, research has found that, in the 
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catalytic reaction of butanol to the composite material, the tin oxide most effectively 

dehydrogenated the butanol to butanal and, subsequently, the zinc oxide catalyzes the 

butanal so electrons in the chemisorbed oxygen can be reinjected [48]. This synergy allows 

for both higher and faster rates of reaction of the analyte to the sensing material and, 

ultimately, higher sensitivity. However, further characterization of these metal-oxides must 

be done to fully understand the effects of each constituent in a metal-oxide material system 

with regards to the role it plays in catalysis of a given analyte. P-type metal-oxide materials, 

such as perovskite compounds (i.e. LaCoO3, NdCoO3) have been found to be effective at 

detecting oxygen and harmful gases normally found in mining/petroleum refining 

environments such as carbon monoxide, nitrous oxide, and sulfurous oxide [9]. In addition, 

p-type materials may pave the way towards lower operating temperatures as they have been 

found to be more sensitive to reducing gases at low temperatures relative to n-type 

materials [49]; lower operating temperatures allows for power reduction of the sensor 

microsystem and practical applications in wearable technology. However, to test these 

devices, it is important to ensure a safer testing apparatus in a well-ventilated area as the 

effects of the aforementioned gases are much more hazardous compared to ethanol. 

 Metal-oxides are favored for their ability to both act as a semiconductor in 

integrated circuitry and serve as a catalyst for redox reactions. However, to further enhance 

the sensitivity of a metal-oxide chemical sensor, precious metal nanostructures of 

palladium, gold, and platinum can be deposited on the surface of the metal-oxide to 

facilitate catalytic reactions. The precious metal structures usually participate in the 
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splitting of the oxygen for the initial sensitizing reaction required for subsequent analyte 

reaction. The functional mechanism is highly debated, but it is proposed it to be based 

equally on both electronic and catalytic phenomena. Precious metals are able to easily 

dissociate oxygen due to their overabundance of electrons that atmospheric oxygen is able 

to adsorb with; after dissociation, the high-energy oxygen radicals formed on the precious 

metal structures are transferred to the metal-oxide surface via charge transfer where they 

are subsequently adsorbed. An example of a proposed mechanism of these phenomena is 

shown in Figure 7.1 [50]. 

 

Figure 7.1. Normal (a) adsorption compared to noble metal (b) adsorption. 

 An easy, cost-effective method of fabricating these precious metal structures is 

through nanosphere lithography. Nanosphere lithography is a type of lift-off process which 

utilizes a self-assembling mask of polystyrene nanospheres which, when coated with lift-

off resist and subsequently removed, leave a holed pattern in the lift-off photoresist which 

can be used to fabricate precious metal particles. The size of the holes can be varied via 

reactive ion etch of the polystyrene balls. Although work has been done to characterize the 

process in the SMFL clean room [51], further development into the process must be done 

to ensure robust fabrication techniques for geometrically-constrained surfaces such as the 

metal-oxide sensing layer. 

a. b. 
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 As discussed in Chapter 2, surface-area-to-volume ratio is crucial in ensuring 

enough active space for the sensitizing reaction to take place. Although as-deposited ITO 

crystallites have a significantly higher surface-area-to-volume ratio than annealed ITO 

crystallites, the benefits are mitigated due to their closely-packed nature which limits the 

available adsorption surface area to the geometric surface of the layer. Some research has 

been done in an effort to increase the available surface area for the sensitizing reaction via 

metal-oxide nanostructures. Perpendicular nanostructures to the sensor surface, as 

demonstrated in Figure 7.2 [52], allow for greater surface area for oxygen adsorption in 

geometrically-constrained metal-oxide layers, which is important as the pressing need for 

increasingly smaller devices with high surface area grows.  

 

Figure 7.2. Geometric (a) surface area compared to nanostructured (b) surface area.  

Fabrication techniques utilizing vapor-liquid-solid (VLS) growth have been used 

to grow certain metal-oxides. The process normally uses nanoscale precious metal surface 
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particles as a catalyst which are placed directly on the substrate surfaces. At high 

temperatures, the metal-oxide is evaporated in a crucible via electron beam evaporation 

and, through atomic supersaturation of the metal-oxide material in the catalyst metal, the 

nanowire is growth underneath the catalyst particle as the temperature of the metal-oxide 

reaches the catalyst’s melting point [53]. 

 The focus of this thesis was to analyze the responses of a variety of chemical 

sensors to a certain analyte at a variety of concentrations. A future study could be done 

regarding the selectivity of the devices with respect to certain chemicals. However, it has 

been shown in publications [49] that metal-oxide chemical sensors have poor selectivity as 

any reducing gas will reinject electrons trapped by the adsorbed oxygen. At high 

temperature ranges of operation, several gases may have the potential of reacting with the 

chemisorbed oxygen. Two methods, discussed further in the following subsection, have 

the potential ability of determining the identity of the analyte. 

 The changes of sensitivity to similar organic compounds (i.e. alcohols, ketones) 

may be hard to detect due to their similarity in chemical reaction regarding their functional 

groups. The ability to detect this change may be subtle and inconclusive to the actual 

analyte determination. In certain biological microsystems, the poor selectivity of metal-

oxide materials is exploited and multiple metal-oxide materials are utilized in an array 

which outputs multiple electrical signals from each metal-oxide. Due to several material 
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parameters such as active surface area, catalytic activity (dependent on temperature), and 

band gap, the ability of metal-oxides to detect both reducing and oxidizing gases is unique. 

Creating an array of different metal-oxide layers can allow for higher-dimensional data 

collection which may give distinct characteristic signals as opposed to just one. Some 

publications have been able to create an array of metal-oxide materials to detect air 

pollutants (i.e. CO, NO2, SO2) out of both n-type and p-type materials with optimal 

operating temperatures for each sensing material [54].  

 If the geometrical surface area of the sensing region is constrained and an array of 

metal-oxides cannot be fabricated, pulsed electrical testing can be done on the sensor’s 

heater to determine the identity of an analyte. Each gas has a unique optimal temperature 

of oxidation which is dependent on stereochemistry, molecular weight, and functional 

group. Because of this, accurately varying the temperature (in the form voltage change) of 

the heater will yield different responses for each unique analyte. These electrical signals 

can be processed via fast Fourier transform (FFT). One publication has demonstrated that 

applying a rectangular waveform on the heater, which varied from 1 V, 3V, and 5V on 

packaged tin oxide chemical sensor devices, yielded different electrical signals when 

exposed to ethanol, benzene, isopropyl alcohol, isoamyl alcohol, and 1-butanol [55]. 
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 Potential ideas of future work, including utilizing different metal-oxide materials 

and noble metal additives, forming metal-oxide nanostructures for geometrically-

constrained sensing regions for surface area enhancement, and formulating device 

structures and testing methods for analyte determination, were discussed. The importance 

of material selection for metal-oxides, including what makes optimal composite metal-

oxide materials, was discussed. The importance of noble metals’ effects on sensitivity 

enhancement, and a potential way of fabricating noble metal nanodots, were both 

discussed. The enhancement of sensitivity in geometrically-constrained metal-oxide layers 

via nanostructures, including a method of fabricating nanowires/nanocolumns, were both 

discussed. The formulation of an “E-tongue” and electrical tests that can be done to 

determine the identity of an analyte, were discussed. 
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 The research undertaken in this thesis project was to understand the effects of both 

device and testing parameters on sensitivity of metal-oxide chemical sensors. Before any 

fabrication work was done, initial research was done to determine key parameters that have 

been found to greatly affect the sensitivity of n-type metal-oxide gas sensors to volatile 

organic compounds. In addition, to realize how each parameter affects device sensitivity, 

a literature research was done to understand how the sensing mechanism works in this type 

of technology, including models and assumptions taken to characterize the sensitizing 

reaction and subsequent chemical reaction of the analyte. Research was also done regarding 

metal-oxide material selection and what makes favorable candidacy of certain materials as 

chemical sensing layers. 

A basic metal-oxide chemical sensor, including a robust and predictable fabrication 

process, were both developed with ease of device testability in mind. The device was 

designed in millimeter-scale to ensure that both the active area was large enough for 

reactivity to most certainly occur and the metal connections were large enough to probe to 

without the use of a microscope. This scale also ensured easy fabrication techniques 

without the use of the photolithography stepper machines in the clean room which were 

also consistently down throughout the semester. The basic fabrication process consisted of 

a basic thermal oxide growth and two lift-off processes for both the metal-oxide and 
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aluminum layers. Although this type of device would not be incorporated into an actual 

microsystem due to the external heater required to heat the large device, it allowed for rapid 

prototyping for device testing and mitigated wait time from commonly-used machines and 

process modules in the clean room. 

 Characterizing the metal-oxide was found to be a crucial component of the thesis 

research as it determined crucial properties which made devices either more or less 

sensitive. The important conclusions obtained from the material characterization were 

mostly from the effects of annealing the metal-oxide. Annealing the metal-oxide in inert 

conditions yielded larger grain structures and more of a presence of indium oxide’s base-

centered cubic structure, cubic bixbyite, via XRD analysis and the Scherrer equation. Both 

of these properties are crucial in metal-oxide chemical sensor development, as the former 

ensures ample surface area for the sensitizing reaction to occur and the latter ensures 

relatively low resistance values in which changes of reinjected carriers can easily be output 

as electrical signals. 

 Both chemical testing procedures undertaken in this thesis yielded crucial results 

regarding device functionality and how device/testing parameters affected overall 

sensitivity. The first testing procedure, consisting of short-exposure to an ethanol/water 

mixture, demonstrated how annealed ITO samples had slightly improved sensitivity 

compared to as-deposited ITO. In addition, the change of sensitivity from the point of 

maximum signal output to the metal-oxide’s steady-state resistance demonstrated the 

increase of surface area of annealed ITO compared to as-deposited ITO when compared 

with the theory behind the Langmuir isotherm model. Larger changes of sensitivity, which 
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can be related to the amount of available oxygen adsorption sites defined in the isotherm 

model, are characteristic of materials with large surface areas and was concluded with the 

results obtained for the annealed ITO compared to the as-deposited ITO. The increase of 

adsorption sites also allowed for larger concentrations to be detected as low-surface area 

metal-oxide devices were oversaturated which caused reaction-rate limitations with respect 

to the adsorbed oxygen. Lastly, the effects of the larger grain sizes also affected the 

activation energies of electrical conduction when exposed to ethanol. Because the 

material’s activation energy was dependent on temperature, the activation energy was 

found via Arrhenius relationships of each temperature zone and was found to increase with 

temperature which could be due to greater oxygen adsorption at higher temperatures.  

Thickness was also found to be another crucial aspect of analyte sensitivity due to 

the mass-transfer limited adsorption of oxygen within one Debye length into the metal-

oxide surface. In the prolonged exposure tests, it was found that shrinking this metal-oxide 

thickness increased both the maximum sensitivity and the range of sensitivity values with 

different analyte concentrations. This ultimately allowed for easier signal processing of the 

resulting change of conductivity of the metal-oxide layer.  

The sensitivity of the devices tested was found to increase with an increase of the 

analyte rate of reaction which was dependent on both the concentration of analyte and 

operating temperature. Both the sensitizing adsorption reaction of oxygen and subsequent 

analyte reaction requires high temperatures to take place so it is crucial for the device to be 

operated at an elevated temperature. At lower temperatures, the sensitivity dropped 

significantly due to either lower amounts of oxygen adsorption or incomplete analyte 
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reaction which may have led to the blocking of oxygen adsorption sites. In addition, with 

basic characteristics of Le Châtelier’s principle, adding more analyte pushes the oxidation 

process to the right and subsequently increases the rate of reaction, leading to higher 

sensitivity measurements. 

A variety of future work building off what was done in this thesis has been 

presented, including the design of a micrometer-scale chemical sensor device which 

utilizes a built-in MEMS heater rather than the external heater used to heat the proof-of-

concept chemical sensors tested. In addition, a plausible fabrication process along with 

theoretical characterization of the device via thermal and electrical simulations done in 

SolidWorks and Silvaco Atlas, respectively, were all discussed and have given reasonable 

results regarding the simplicity of the device design. Other than the effects of metal-oxide 

thickness in the electrical simulations done in this thesis, the manipulation of oxygen 

vacancy concentration has been examined as well; it was found that decreasing the oxygen 

vacancy concentration led to higher sensitivity values but at the cost of increased 

fluctuation with temperature. This leads to a trade-off between sensitivity and regulation 

of temperature control within the MEMS heater.  

Other future work topics that can be examined further are the use of other metal-

oxides and precious metals for analyte detection, metal-oxide nanostructure integration for 

enhanced surface area in geometrically-constrained areas in microsystems, and abilities of 

chemical identification via metal-oxide layer arrays through an “E-nose” or via pulsed 

electrical signaling of the chemical sensor’s heater to both classify analytes based on their 

oxidation at a variety of temperatures and mitigate operational power. 
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Figure A.1. 100-nm, annealed ITO response to prolonged EtOH conc. at 160°C. 

 

Figure A.2. 100-nm, as-deposited ITO response to prolonged EtOH conc. at 160°C. 
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Figure A.3. 400-nm, annealed ITO response to prolonged EtOH conc. at 160°C. 

 

 

Figure A.4. 400-nm, as-deposited ITO response to prolonged EtOH conc. at 160°C. 
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Figure A.5. 100-nm, annealed ITO response to prolonged EtOH conc. at 260°C. 

 

Figure A.6. 100-nm, as-deposited ITO response to prolonged EtOH conc. at 260°C. 
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Figure A.7. 400-nm, annealed ITO response to prolonged EtOH conc. at 260°C. 

 

Figure A.8. 400-nm, as-deposited ITO response to prolonged EtOH conc. at 260°C. 
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Figure A.9. 100-nm, annealed ITO response to prolonged EtOH conc. at 360°C. 

 

Figure A.10. 100-nm, as-deposited ITO response to prolonged EtOH conc. at 360°C. 
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Figure A.11. 400-nm, annealed ITO response to prolonged EtOH conc. at 360°C. 

 

  

Figure A.12. 400-nm, as-deposited ITO response to prolonged EtOH conc. at 360°C. 
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go atlas simflags="-P 8" 

 

############## BG 

 

# Set Variables 

#----ITO Thickness (um) 

set T=0.1 

#----Channel Length 

set L=23 

#----“S/D-gate Overlay" 

set OL=2 

#----Gate dielectric thickness 

set BGI=0.1 

#----Top gate dielectric thickness 

set TGI=1.2 

#----Density of Oxygen Vacancies (OV), donor type  

set nov=9e20     

#---------- Fixed charges, ITO Surface 

set qf=5e11 

#-----------Capture cross-section 

set sig=1e-15  

#-----------Temperature 

set temp=300 

 

# Mesh Outfile Statement  

 

mesh width=1 master.out 

 

x.m l=0 s=0.25 

x.m l=2*$"OL"+$"L" s=0.25 

y.m l=0 s=0.01 

y.m l=$"TGI" s=0.001 

y.m l=$"TGI"+$"T" s=0.001 

y.m l=$"TGI"+$"T"+$"BGI" s=0.01 

 

 

# Define ITO 

region num=1 material=ito y.min=$"TGI" y.max=$"TGI"+$"T" 

region num=2 material=sio2 y.min=$"TGI"+$"T" 

y.max=$"TGI"+$"T"+$"BGI" 

region num=3 material=vacuum y.max=$"TGI"  

 

# elec num=1 name=gate bottom 

elec num=1 name=source y.max=$"TGI" y.min=$"TGI"/2 x.min=0.0  

x.max=$"OL" 

elec num=2 name=drain  y.max=$"TGI" y.min=$"TGI"/2 x.min=$"OL"+$"L" 

x.max=2*$"OL"+$"L" 
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# “S/D” Contacts 

contact num=1 workf=4.28 

contact num=2 workf=4.28 

 

 

models fermi print temp=$temp  

 

 

# Set ITO Parameters 

material region=1 mun=35 nc300=1e20 nv300=1e20 eg300=3.5 

 

# Defects 

# Bulk defects 

trap donor e.level=3.5 density=$"nov" degen=1 sign=$"sig" 

sigp=$"sig" 

#defects nga=0.0 ngd=$"nov" egd=3.4 wgd=0.1  

  

# ITO fixed charge on surface 

interface y.min=$"TGI" y.max=$"TGI" qf=$"qf" 

 

method autonr climit=1e-4 carrier=1 electron 

 

#structure outfile=itosensor.str 

#tonyplot itosensor.str 

 

# Id-Vd 

 

log outf=L=$"L"-T=$"T"_qf=$"qf"_nov=$"nov"_temp=$"temp".log 

solve vdrain=0 vstep=0.1 vfinal=4 name=drain 

 

log off 

 

quit 
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