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Table 1: Abbreviations 

Abbreviation Full name and description

p53

Tumor protein p53. Major protein responsible for the regulation of the cell cycle and 

inducement of cell cycle arrest or cell death ( apoptosis )    

G1

Gap phase prior to S phase and DNA replication. One of the the two phases p53 where 

induces cell arrest or  apoptosis 

G2

Gap phase prior to M phase involving nuclear division and cytoplasmic division. One 

of the two phases p53 where induces either cell arrest or  apoptosis .

CDKN1A

Cyclin Dependent Kinase Inhibitor 1A, also known as p21.  Regulates the cell cycle 

progression past the G1 phase, and is tightly controlled by p53.

BBC3

BCL2 Binding Component 3, also known as PUMA. Gene that has been strongly 

associated with the p53 signaling pathway.

BAX

BCL2 Associated X, Apoptosis Regulator. Responsible for p53 mediated apoptosis and 

strongly associated with p53 signaling.

5-FU 5-fluorouracil.  Drug used to induce p53 pathway.  

FPKM

Expected fragments per kilobase of transcript per million fragments sequenced, used 

as a scalar for expression data

lincRNA

Long intergenomic non-coding RNAs.  RNAs of 200bp or greater in length that do not 

encode for proteins and do not overlap with any protein coding genes 

miRNA microRNA.  RNAs of approximately 22 bp in length.

ERV1

ERV1/LTR.  A subclass of endogenous retroviruses (ERVs or LTR retrotransposons), 

which are a type of retrotransposons with an LTR (long terminal repeat) 

ChIP-seq Chromatin Immunoprecipitation sequencing

HCT116 Human cell line derived from colon cancer

High 

Throughput 

Sequencing Next Generation Sequencing

FDR False Discovery Rate. Modified p value denoted with a q instead of a p.

HG19 Version of the human genome produced in 2009.

TP53I3 Tumor Protein P53 Inducible Protein 3. Gene known to be induced by p53.

SMAD3 SMAD Family Member 3. Signaled by TGF-?, and interacts with p53 pathway.

MDM2

MDM2 Proto-Oncogene. Major regulator of p53, responsible for degradation of p53 

protein, and regulated by p53

HAUS6

HAUS Augmin Like Complex Subunit 6. Associated with chromosome congression and 

segregation

SAC3D1

SAC3 Domain Containing 1.  Paralog for MCM3AP, which is essential for DNA 

replication.

read The sequence of one cluster sequenced during High Throughput Sequencing.

TSS Transcription Start Site
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Abstract 

 

Called “the guardian of the genome,” p53 is one of the most studied proteins associated 

with cancer. After activation, p53 induces its target genes with different kinetics, i.e., early 

induction or delayed induction. However, this difference in kinetics of gene induction has not 

been examined genome-wide. This study uses RNA-seq time course data (0-hour, 6-hour, 12-

hour and 24-hour) via drug induction with 5-fluorouracil (5-FU), and compares that data to 

previously published ChIP-seq data. We found that, while there is an induction of a number of 

genes at 6 hours, there appears to be a delayed phase of induction occurring at 24 hours, 

including some of the genes that have been upregulated previously, such as CDKN1A and 

BBC3. Combining published ChIP-seq data, we are able to narrow our dataset to a select group 

of genes of particular interest, which are associated with known p53 functions such as apoptosis 

and cell cycle arrest. We propose that the early phase of induction is due to existing p53 proteins 

in cells, while the delayed phase of induction is probably due to accumulation of the p53 protein 

and lack of degradation of p53 protein, which is likely related to its interactions with MDMX 

and MDM2.  

   

I. Introduction 

 

Originally identified in 1979 [1], p53 has come to be referred to as the “guardian of the 

genome,” since it is responsible for regulation of the cell cycle [2]. If induced due to cell stress, 

p53 will induce either cell cycle arrest at the G1 or G2 stage, or apoptosis (cell death) [2]. 

Additionally, mutations to the p53 have been found in 50% of all human cancers [3]. Because of 
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p53’s importance in cancer and the regulation of the cell cycle, understanding which genes p53 

regulates, and how it interacts with them, is an active area of research. 

Given its status as ‘“guardian of the genome,”’ p53 is, in all likelihood, a transcription 

factor, and it directly and indirectly is responsible for the inducement of other proteins important 

for the regulation of cell cycle arrest/cell death [4]. Therefore, in the study of p53 and its 

regulation of the cell cycle, including discovering how and when p53 binds to and regulates 

particular genes, is important, and an ongoing area of investigation—in particular, discovering 

where p53 binds to the genome during stress, since p53 transcription is increased during cell 

stress, and its increased activation can lead to cell death [4] [5] [2]. Among the discovered genes 

associated with the p53 pathway are CDKN1A(p21), BBC3 (PUMA) and BAX, which are now 

often used as indicators of p53 activity [6] [7]. Inducing a stress response in cultured cells is 

achieved through the use of drug 5-fluorouracil (5-FU), or through introduction of other 

stressors, such as UV light [5]. 

Along with genes, other non-protein coding RNAs can have possibly important 

regulatory or other interactions with the p53 pathway. Among these RNAs are lincRNAs (long 

intergenomic non-coding RNAs), miRNA (microRNAs) and ERV1/LTR. LincRNAs are part of 

a larger group, although they are the most important of the group of lncRNAs (long non-coding 

RNAs) which are defined as being larger than 200 bp, although they can be much larger—up to 

tens of Kilobases in length [8]. LincRNAs are a subset of lncRNAs, but they may not overlap 

with any protein coding regions [9]. Of particular interest for this study is the fact that lincRNAs 

have been linked to the p53 regulatory network [8]. MicroRNAs are defined as being around 22 

bp (nt) in final length, and have been found to play important roles in regulation and degradation 

of mRNAs, which could include elements genes in the p53 pathway [10] [11]. ERV1 is a 
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subclass of endogenous retroviruses (ERVs or LTR retrotransposons), which are a type of 

retrotransposons with an LTR (long terminal repeat) [12]. ERV1s in cancer have been shown to 

upregulate lncRNAs (which lincRNAs are a subclass of) in cancer, and are often upregulated in a 

cancers, and since 50% of cancers have a mutated p53 gene, investigation of ERV1 is of interest 

[13].  

Two of the best ways to determine genes associated with upregulation of p53 are RNA-

seq and ChIP. RNA-seq, as the name implies, is the sequencing of resulting RNA from cells or 

tissue under stressful or non-stressful conditions [14]. After RNA extraction, the extracted RNA 

is then sequenced using High Throughput Sequencing techniques such as Illumina [14]. To 

determine the genes that are activated by p53, either directly or indirectly, stressed conditions 

must be compared to non-stressed conditions to determine the decrease or increase of gene 

expression. 

Alternatively, Chromatin Immunoprecipitation (ChIP) can be used to determine which 

genes p53 is a transcription factor for. Until recently, the most sensitive version has been ChIP-

seq [15]. ChIP-seq is an adaptation of the original ChIP. The reason ChIP-seq is one of the most 

sensitive ways to determine where a particular protein interacts with the chromatin is because 

ChIP is designed to isolate sections of DNA. It does this first by crosslinking any proteins 

associated with parts of the genome; the proteins are essentially stuck in place via a crosslinking 

agent, usually formaldehyde [16]. The cells are then lysed, and the DNA fragments, with 

crosslinked proteins, are then sheared to an appropriate size range (100-500 bp in the case ChIP-

seq), and the protein of interest is selected through the use of an antibody-inoculated bead [16]. 

The DNA is then removed from the beads and purified [16]. This enrichment of DNA fragments 

with the associated protein through antibody selection (in this study’s case the p53) is what 
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allows ChIP to determine the sites p53 associates with, especially during stress events. The 

difference between ChIP and ChIP-seq is the use of High Throughput sequencing, which makes 

it possible for the entire genome to be sequenced, thus allowing for more sensitivity and better 

determination of regions where p53 is associated [15].  

One cell line often used in this process is HTC116, which was first derived from colon 

cancer in 1981 [17], and which originally was homozygotic wildtype p53 (HTC116 +/+) [18]. 

This study will use the HTC116 +/+ cell line to investigate RNA-seq at 0, 6, 12, and 24 hours of 

5-FU in comparison with previously identified ChIP-seq genes [7] [19] [20]. This will allow the 

determination of which genes occur in both the RNA-seq and ChIP-seq datasets but also how the 

identified genes are up or downregulated at different drug timepoints.  

This study used RNA-seq data, which was aligned using the Cufflinks pipeline extracted 

from HTC116 p53 +/+ cells treated at 6, 12, and 24 hours with 5-FU, along with a non-treatment 

control, as can be seen in Figure 1. As can be seen in Figure 1, the differentially expressed genes 

at each different timepoint were determined through the use of CummeRbund.  Once the 

differentially expressed genes had been determined for each timepoint, including the control, the 

RNA-seq dataset was then subseted for genes that also had been reported in previous ChIP-seq 

studies. As can be seen in Figure 1, once the ChIP-seq subsets were created, each set was 

analyzed for differential expression of control, different RNA types, and finally, a GO analysis 

was run for subset.  Finally, as a verification, the initial steps of a ChIP-seq experiment were 

performed, and with the % input for CDKN1A and BBC3. Overall, this study showed that there 

is an initial induction at 6 hours, for most genes, that is followed by a further induction at 24 

hours. This was observed for all RNA-seq genes as well as those also found in the ChIP-seq data, 

and for most genes of interest which were investigated, such as CDKN1A and BBC3. 
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Additionally, through the comparison with ChIP-seq data, it appears that the dataset can be 

narrowed to a select group of genes of particular interest, which are actively associated with 

apoptosis and p53. This was seen through a comparison of GO Enrichment results between 

subsets of RNA-seq and intersected RNA-seq and ChIP-seq data. The results of the RNA-seq 

appear to be validated by the initial results of a ChIP-seq experiment using the same timepoints 

via % input for CDKN1A and BBC3, and showed the same pattern of association of p53 as can 

be seen with the expression of those same genes. The model proposed is that secondary 

upregulation occurring at 24 hours is due to accumulation of the p53 protein and the lack of 

degradation of new p53 protein, possibly due to MDMX associating with MDM2; while the 

increase at 6 hours is due to the already-existing p53 protein in the cell.  

 

  

. 
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Figure 1: Overall Flow of Design of the Study. 

 

II. Materials and Methods 

A. Cell Culture 

 

All HTC116 p53 +/+ (John Hopkins University GRCF Biorepository & Cell Center, 

Catalog Number: 8) were grown in recommended McCoy’s 5a modified media (Life 

Technologies, Catalog Number: 16600-082) with 10% FBS. In addition, a 1X antibiotic mix was 

added to reduce the chances of contamination (Life Technologies, catalog number: 15240-062) 
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was added to the McCoy’s 5a modified media with 10% FBS.  Cells where grown in the media 

described at  37º C with 5% CO2. For each experimental replicate, the cells were grown in a 35 

mm plates until 70-80% confluent, at which point, either 6, 12 or 24 hours prior to RNA 

extraction, the media was changed, and 2 ml of fresh media, along with 375 µM 5-FU in DMSO, 

were added to the 70-80% confluent cells. In addition, there was a non-treatment control—which 

consisted of simply McCoy’s 5a modified media with 5% FBS and 1X antibiotic mix. Then 

RNA extraction occurred when the cells reached confluence, with media being changed at least 6 

hours prior to RNA extraction. 

B. RNA Extraction. 

 For each treatment, a total of 2 replicates per treatment, the RNA was extracted using the 

QUIAGEN RNeasy Mini Kit (QIAGEN, catalog number: 74104) and the QIAshredder 

(QIAGEN, catalog number: 79654) during the RNeasy Kit’s lyse and homogenization stage. The 

directions for each kit were followed, and the concentration after extraction was determined 

using a nanodrop. The samples were kept in the -21 ͦ C until they were sent to University of 

Rochester Genomics Research Center (URGRC) for sequencing, and the remaining RNA was 

stored at -80 ͦ C for possible further use. 

C. Illumina Sequencing 

 

Following RNA extraction, each sample was sent to University of Rochester Genomics 

Research Center (URGRC) for Illumina sequencing with at least 10 µl of sample, which had 

more than the minimum required amount of 15 ng of RNA required by URGRC. At URGRC, 

once the samples had been accessed for quality and sequenced, the sequenced reads were cleaned 

using Trimmomatic-0.32[21] with a cutoff 15 bp for the read size. 
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D. FASTQ Filtering and Quality Assessment. 

Once the High Throughput Sequenced files were received from URGRC, the FASTQ 

files in the “cleaned” folder—those that had been cleaned (adapters removed and quality filtered 

and reads with size lower than 25 bp filtered out)—were filtered for a quality score at least 28 

over 90% of the read using the Hannon lab’s FASTX-toolkit (version 0.0.13) fastq_quality_filter 

tool, which can be found at: http://hannonlab.cshl.edu/fastx_toolkit,. Following the FASTX 

filter, cutadapt (version 1.10) [22] was used to filter out all reads smaller than 50bp, which was 

the preference of our lab, and larger than 30-75 bp, as suggested by the Encode Project [23]. 

Before continuing on to alignment, the quality of each replicate was assessed using FastQC 

(0.11.4) (found at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to ensure that 

large amounts of data had not been lost due to filtering and there were no other quality issues that 

might affect the overall analysis. 

F. Alignment and Differential Analysis 

Prior to alignment with the HG19 genome, of which the GTF file was downloaded from 

iGenomes, Bowtie 2 indexes were constructed using a combined HG19 genome fa file and the 

iGenomes HG19 GTF file, using Bowtie’s bowtie2-build (Bowtie2 version 2.2.9). Following the 

construction of the Bowtie 2 indexes, TopHat (version 2.1.1) Transcriptome files were produced 

to reduce the overall time required by TopHat for each individual alignment [24]. Once the 

Transcriptome files were produced, and each was cleaned and filtered, the FASTQ sequencing 

file was aligned to the HG19 genome using TopHat, with BAM files not being converted to 

SAM, and secondary alignments reported. All other parameters were kept at their defaults [25]. 
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The produced BAM files were later sorted using SAM-tools (version 1.3.1), for visualization 

using the IGV browser [26]. 

Once the BAM (accepted_hits.bam) files had been produced for each sample (replicate 

and treatment), Cufflinks (version 2.2.1) [27] [28] was used for differential analysis.  The 

pipeline as suggested by the developers of Cufflinks can be seen in Figure 2. In brief, Cufflinks 

was run for each sample and produced an individual GTF file; following that, Cufflinks’ 

Cuffmerge merged the GTF files into one GTF; Cuffquant was then run for each BAM file and 

the merged GTF file, which then produced a CFX file; and finally, Cuffdiff was run using each 

CFX file, with the replicates for each treatment combined under one label, as well as the required 

merged GTF file was also added for Cuffdiff [28]. The -g (reference annotation) for Cufflinks 

and Cuffmerge was used, and the reference genome (HG19) was formatted as suggested by 

Cufflinks and downloaded from iGenomes [29]. Additionally, -b (fragmentation biases 

correction) was used with the provided HG19 genome file, as well as -u (multi-read correction), 

which improved the accuracy weights reads located in different parts of the genome. These 

options were available for Cufflinks, Cuffquant, and Cuffdiff [30]. When available, the labeling 

and renaming options were used; otherwise, all options were left at defaults. Once finished, the 

files produced by Cuffdiff and the Cuffmerge GTF file were used in CummerBund analysis. 
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Figure 2: Cufflinks Flow Through, from Cufflinks Website:  

Shows the flow through for both versions of Cufflinks previous to 2.2.0 and the flow through for 

versions 2.2.0 and greater than 2.2.0, We used the 2.2.0 and greater flow through. Image is 

modified from the Cufflinks manual website at http://cole-trapnell-

lab.github.io/cufflinks/manual/ 
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G. CummeRbund and Timepoint Analysis 

 Upon finishing the differential analysis, the first step was to check quality using 

CummeRbund [31]. This included verifications of a normal curve using cDensity function, 

normal curve occurring between the same treatments, a good linear regression between two 

different treatments using csScatterMatrix function, and, finally, replicates grouping using the 

csDendro function for the gene level.  

Once the quality control was verified for all the samples, it became necessary to match 

the identified ChIP genes with the significant RNA-seq genes generated for each timepoint (0hr, 

6hr, 12hr, and 24hr). To this end, the matrix with the tracking id (XLOCs).  

3associated with the gene name, which is the universal gene code, or NA if the location 

did not exist in the GTF file, was created. Additionally, for each treatment comparison (i.e. 0hr 

vs 6hr), all the significant tracking IDs were selected using the getSig command with 

alpha=0.05, and level=gene. The significant IDs were then used in the getGenes command to 

produce a cuffset, which was then used with the diffData command to produce a table of all the 

differentially expressed data in the cuffset. That table was then subset for only the significant 

genes (those with an FDR q=0.05), only showing a comparison between the treatment 

comparison, and finally subset for both up and down regulation compared to the treatment with 

fewer hours. Additionally, this step was skipped for the full dataset. Finally, both matrixes were 

merged and a CVS with the data was produced     Treatment pairs were used instead of one file 

of all significant genes because the merge did not work of if there were replicate tracking IDs in 

the differentially expressed data table. This data is the RNA-seq data discussed in the rest of this 

paper. 
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Previously the ChIP-seq data from Botcheva and McCorkle, Sanchez et al., and We et al. 

[7] [19] [20] had been processed and the unique fragments for all the datasets reported a long 

with the closet TSS site and the associated gene name [32]. This data was used for the ChIP-seq 

data that would be compared to the RNA-seq significant data just produced. Prior to the 

comparison between the ChIP dataset and the RNA-seq dataset the ChIP data needed to 

restructure to HG19. Due to identified lncRNA locations found in the UCSC Genome Browsers 

[33] only be available starting with HG19, and the ChIP dataset being in HG18 the ChIP dataset 

needed to be converted to HG19 via the Batch Coordinate Conversion tool (liftOver) found at the 

UCSC Genome Browser [33]. Since, the Batch Coordinate Conversion tool only worked for 

BED format that the ChIP data had both the ChIP identified site (labeled gene in the file) and the 

nearest TSS site (TSS in the file) two BED files were produced with gene names plus a digit 

(BBC_1 for example being the gene BBC and the first entry) so that the ChIP data could be 

matched together and reformed after the conversion. Additionally, to deal with any issues where 

a ChIP of mismatched names the RNA-seq location data was compared to the ChIP data if the 

TSS site was more than 5kb from the TSS and the RNA-seq location was less than 5kb from the 

ChIP or intersecting and the identified RNA-seq gene was not “NA” (indicting it did not occur in 

the GTF file) then the RNA-seq name replaced the TSS indicated name and the RNA-seq 

location information was put in TSS location information. Additionally, two ChIP files were 

produced one with TSS sites or RNA-seq sites less than 5kb or intersecting and one with all of 

the replaced sites and ChIP sites. 

Once the ChIP files had been produced they were compared to the RNA-seq 

differentially expressed data. First, before the comparison occurred the “NA” genes, RNA-seq 

expression that did not have a location in the GTF file, was compared to the ChIP file being 
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compared (all or 5kb) and if the RNA-seq location was within 5kb of the ChIP site or the TSS 

site or intersected either one then “NA” was replaced with the ChIP gene name. Once, all of the 

ChIP data was prepared the RNA-seq the RNA-seq data was sorted into sorted into groups 

(control, 6 hour, 12 hour and 24 hour). The ChIP dataset was then compared to the RNA-seq 

dataset and if the ChIP-seq gene matched the gene name of the RNA-seq gene name or an RNA-

seq gene was closer to the ChIP-seq site than the identified TSS site then the ChIP-seq gene was 

added to the ChIP-seq dataset if the ChIP site was within 5kb of the TSS site it was added to the 

5kb ChIP dataset. The hour groups from RNA-seq data were used in the ChIP-seq groups. 

Following the sorting time sets were search for a list of genes of interest (CDKN1A, BBC3, 

BAX, TP53I3, SMAD3, MDM2, HAUS6, and SAC3D1) and the time comparisons in which 

each gene was found to be significant were printed out into a file. Additionally, the differentially 

expressed XLOCs were written into 3 different files, one for all differential expression, those that 

intersected with any ChIP gene, and those that intersected with ChIP genes 5kb or less. 

Additionally, the XLOC IDs for the genes of interest were also written to a separate file. These 

files were used to create subsets for heatmaps and other images later on. In addition, the amount 

of differentially expressed genes for each treatment vs the control was of particular interest and 

the number of genes that were differentially expressed vs control for each treatment time were 

determined along with the number of genes found to be differentially expressed for two 

treatment points and all of them vs the non-treatment control. This was done for both up and 

downregulated differentially expressed sets along and for both ChIP datasets. 

Once the initial timepoint analysis was done and assured to be working correctly, 

differential expression at different timepoints, and for different types of RNA expression, were 

explored. The first step was to produce a BED file with the full coverage of a gene as identified 
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by CummeRbund covers. To this end, a combination of gene_id (XLOC) and tss_id 

(transcript_id) was used. The locations were determined from the merged GTF file produced by 

Cuffmerge. Unlike the original GTF, this GTF file included the locations of transcripts that were 

not included in the original GTF file, which would otherwise have ended with gene name labels 

of “NA”. The start of any particular tss_id XLOC combination was the smallest location listed 

for the start of that particular tss_id, and the end was the furthest location listed for that particular 

tss_id. The location, along with the combined name (i.e. XLOC_015380-TSS24591), was printed 

in the BED file to be used to create a custom track in the UCSC Genome Browser [35]. 

Using the UCSC table browser [36], one can download or compare tracks [34] to ensure 

that the intersections between the RNA-seq data and these tracks was for only the genetic 

elements of interest (only protein coding genes, for example). Each UCSC browser track was 

downloaded, and material not of interest was edited out. The tracks used were lincRNA RNA-

seq Reads using the colon table, lincRNA Transcripts [9] [27], sno/miRNA [10] [11] [37], and 

RefSeq Genes [38] [39]. Additionally, using LTR/ERV1 sites identified from previously 

identified LTR/ERV1 sites [32], a user-defined track was created. The RefSeq Genes track was 

sorted so it only contained coding genes (noted as mRNA) and then reloaded back into the 

UCSC Genome Browser. Here, any intersections between the RNA-seq locations and RefSeq 

locations were found using the default settings in the UCSC Genome Browser. Two different 

BED files were produced, one that had the names of the protein coding genes, and the other that 

contained the names for the RNA-seq IDs. Both files had the locations of those named elements. 

Both lincRNA RNA-seq reads and lincRNA transcript tracks have transcripts of unknown coding 

potential in them (identified as names starting with tcons_l2). These were filtered out for both 

tracks so only the lincRNAs were in each track. Following the sorting, the tracks were loaded 
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back into the UCSC Genome Browser and intersected with the RNA-seq location file for any 

overlapping transcripts. Again, two files were produced. However, those files were intersected 

with the RefSeq mRNA track, and only those that didn’t intersect printed out into the two files. 

The sno/miRNA track was sorted so only the locations for type miRNA remained. Again, this 

track was then loaded back into the browser and intersected with the RNA-seq track, and the 

names and two BED files were produced. Finally, a BED file with LRT/ERV1 (ERV1) was 

loaded into the UCSC Genome Browser and intersected with the RNA-seq data track, and both 

BED files were produced. 

Once the intersection files were produced, the number of each treatment category was 

counted (control, 6hr, 12hr and 24hr). For the RNA-seq intersection, this was as simple as 

identifying the XLOC and matching it with the produced sets of differentially expressed XLOCs 

at different times, for both ChIP and all RNA-seq. However, for the files containing the names of 

the miRNA, coding genes, lincRNA or ERV1, this involved matching the location of the RNA-

seq data to the location of the element of interest. Either way, the names were kept track of, and 

each name was only counted once. This was particularly important for the lincRNA tracks, 

considering that two tracks were used, both potentially having the same names. Once each track 

was counted, the results were printed out, along with a file for the XLOCs containing the XLOC 

IDs for later reference. 

H. GO Enrichment Analysis 

 

 For the treatments, a GO Analysis was done using the DAVID Bioinformatics Database 

[40] [41]. For the upregulated RNA-seq data, along with the identified ChIP and 5kb ChIP, a list 

of official gene codes was produced with one gene per line, as is specified for loading genes into 

DAVID. Any remaining NA genes were omitted from dataset. Each treatment gene list (all 
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RNAseq and both ChIP lists) was then loaded into DAVID as a gene list, and then run through 

the DAVID’s upload gene list interface indicating that the file was a gene list using the official 

gene code. Once the gene list was uploaded under functional annotation, Homo sapiens was 

selected as the species, and only GO Biological Process terms where analyzed and the files for 

Functional Annotation Clustering and Functional Annotation Chart both were downloaded with 

the requested addition of FDR.  

 For Functional Annotation Chart, the text files were copied into an Excel sheet. Once 

there, the terms were sorted based on the lowest FDR score, and the top 5 scores for each 

treatment were chosen, assuming all five had an FDR score of q<0.05. For each top significant 

term, if that term was significant (q<0.05) in another treatment or grouping, that other 

treatment’s fold enrichment also was selected    

 

I. Image Production 

 

 Prior to heatmap generation, the significant RNA-seq genes and the ChIP subsets where 

divided into upregulated and downregulated groups. Additionally, the heatmap function in 

CummeRbund was not producing the desired results, so another R package was used. To allow 

for this, as well as other desired alterations, the gplots (version 3.0.1) function heatmap.2 was 

used. Additionally, amap (version 0.8-14) was used to select from a wider array of distance 

functions. In our case, manhattan worked the best to produce the sorting desired on our heatmap. 

To use heatmap.2 instead of CummeRbund’s heatmap, the FPKM (expected fragments per 

kilobase of transcript per million fragments sequenced) which is used as a scalar expression data, 

needed to be extracted into a matrix. This was done through the CummeRbund function 

repFpkmMatrix, which produced a matrix of FPKM values for any gene or cuffset. In our case, 

we used gene sets created by importing the XLOC ID files with the RNA-seq significant 
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differentially expressed genes (either upregulated or downregulated) that had been produced 

earlier for the all RNA-seq, all ChiP and all 5kb ChIP sets. This was done additionally to divide 

the genes into upregulated and downregulated sets for the heatmaps.  

Prior to heatmap creation, each FPKM matrix had the data reorganized (if necessary) so 

the matrix was set out in treatment ascending order. Additionally, the data was scaled to deal 

with the widely differing values in count that are seen between genes even in normalized FPKM. 

This was done so up and down regulation was more visible on the heatmap. Finally, heatmap.2 

was used with scaling turned off, and distance function for the column values turned off. A table 

of the gene locations in the heatmap was saved, and a vector created with only genes of interest 

the heatmap based on their location. The heatmap was then rerun with the vector and the 

previous settings to produce the heatmaps with genes of interest that are labeled in Figure 7. 

 Genome expression was visualized using the IGV browser [42] [43] instead of the UCSC 

Genome Browser. However, the tracks used previously (lincRNA, miRNA), with their changes, 

were imported using the file import option for each track, and the refSeq genome track was 

downloaded using the IGV interface. Each of the sorted BAM files produced using TopHat, and 

then sorted using SAM tools for each sample, were imported into the IGV browser and 

visualized with the coverage track. For each gene or area of interest in the genome, the highest 

expression count rounded up was used for each of the other tracks, so the differences in height 

were based on the same range of values. Images were saved using IGV’s native image exporter, 

and then further edited for inclusion in the figures. 

 Venn diagrams were produced using the R package VennDiagram. The numbers for the 

intersections for significantly differentially expressed genes, for control vs each of the 
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treatments, were calculated during the sorting, and the command draw.triple.venn was used with 

the calculated number of genes for each intersection.  

The expressionBarplot and the Expressionplots were created using CummeRbund’s 

function, and the imported XLOC IDs for the gene(s) of interest shown. All figures, including 

heatmaps, were further edited using Libre Office Draw, for items such as changing the way 

names were formatted or stated were done. Tables were produced by Libre Office Calc and then 

imported into Draw for again further editing. 

J. ChIP-qPCR 

 

 Initial ChIP-seq experiments were performed given the results from the RNA-seq results.  

HTC116 cells were grown and treated with 5-FU in the same manner as employed with RNA-

seq treatments, except that all of the treatments and controls were grown in 150 mm dishes 

instead of the 35 mm used to grow cells for RNA extraction. Sonication, input validation, and 

immunoprecipitation were performed using the ChIP-IT High Sensitivity Kit (Active Motif, 

catalog number: 53040).  The protocol for the kit was followed, except that the number of 

strokes for the Dounce homogenizer was increased to 80 in Section A, step 11, and sonication 

was in a 1.5 ml tube at 65% for 10 minutes 30 seconds on/30 seconds off, using the Model 120 

Sonic Dismembrator sonicator (Fisher Scientific, catalog number: FB120110). In Section F step 

9, the ChIP DNA was eluted following the protocol for ChIP-seq (step 9b).  The ChIP DNA was 

stored in -20 ͦ C for future use. 

 To validate the immunoprecipitation, and to validate the RNA-seq results, qPCR was 

performed using the ChIP-IT qPCR Analysis kit (Active Motif, catalog number: 53029).  The 

protocol for qPCR was followed, and the dilution for ChIP-seq DNA was used as instructed by 

the protocol.  The positive and negative primers were the human versions provided by the qPCR 
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kit. The primers for BBC3, and CDKN1A were based off of Gnomes and Espinosa’s 

supplemental material (PUMA (BB3) +1313 and P21 (CDKN1A) -2283) [14]. Both primers 

were ordered from Life Tech, and used DSL purification. 

 The qPCR reaction was then run on Bio-Rad CFX 96 (catalog number 1855196) and the 

Starting Amount for input, all treatments, and the control, were taken from the Bio-Rad CFX 

manager software, input into the Excel file provided by Active Motif. The resulting binding 

events/10,000 cells were divided by 1,000, as suggested by the kit, to produce % input.  The % 

input was then graphed using Excel, and the resulting amplification compared to the results for 

the RNA-seq data.  

 

IV. Results and Discussion 

A. Quality Control 

 

The first part of ensuring that the quality for the initial reads and then the alignments 

were good involved using FastQC to verify the quality of the samples. This was done after the 

samples were filtered using FastX (filter), and the reads less than 50 bp in length were removed 

with Cutadapt (cutadapt). FastQC gives a number of different stats and figures for the 

determination of quality. The basic stats give a good general summary and enable some basic 

comparisons between the samples. However, two important ones for the validation of overall 

quality are the overall quality score (Figure 3) and the total number of reads (Figure 4). FastQC 

gives a quality score of 0-36 with 28-36 being considered good quality scores. As can be seen, 

the average quality score, which is calculated from the per sequence quality score, is around 35, 

and does not show much change between the filtered and cutadapted scores. Additionally, the 

number of reads, while slightly lower for cutadapt, as would be expected, show very little overall 
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change in the number of reads, indicating that removal of the smaller reads did not affect the 

overall size of the sample. In other words, the smaller reads were not the majority of the reads in 

any of the samples. Based on this, the samples were determined to be of good quality and 

alignment, and differential analysis was commenced. 

 

 

Figure 3: Quality Score Comparison: 

Comparison between the quality score for the cleaned, sequenced files after quality filtration 

(filter), and after removal of all reads under 50 bp through the use of cutadapt. The quality 

scores produced by FastQC are 0-36, with 36 being the best quality, and 28-36 being considered 

good quality scores. The average quality score for each sample was produced using the data 

from per sequence quality score data. 
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Figure 4: Number of Reads: 

Comparison between the read lengths of the cleaned sequenced files, after quality filtration 

(filter), and after removal of all reads under 50 bp through the use of cutadapt. 

 

 Once alignment and differential analysis were complete, and the cuffdiff files produced, 

and being used by CummeRbund, a final quality control check was necessary. There are several 

quality metrics that come with the CummeRbund package. We used dispersion plot and the 

dendrogram at the gene level (Figure 5) and the csScatterplot (Figure 6). For the dispersion plot, 

for good quality data, all treatments must have a normal curve. Ideally, the normal curves would 

all be at a similar position. This is what can be seen in Figure 5A. The dendrogram is a check for 

the different replicates for each treatment. What is needed when running the dendrogram is to 
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have the individual replicates for each treatment divide into different groups, which can be seen 

in Figure 5B, assuring that the replicates for each treatment are more similar to each other than 

they are to any other replicate from another treatment. Additionally, one can see that the 12- and 

6-hour treatments are most similar to each other, and that the 24-hour is the most different from 

the other treatments, occurring in its own cluster, with just the two 24-hour replicates. For the 

csScatterplot (Figure 6), this gives two quality metrics. First, each scatterplot between two 

different treatments should be roughly along the scatterplot regression line, and dispersed along 

that line, which can be seen with most of the individual gene values log10(FPKM) following 

along the generated regression line. Also, those values are spread out and not in one clump, 

indicating good dispersion. In addition, when a scatterplot is done against the same treatment, a 

normal curve is produced again. This indicates that the treatments are dispersing correctly. Given 

all of these factors, it was determined that that the samples and treatments were of good quality, 

and that results of differential analysis would be accurate. 
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Figure 5: Differential Analysis Quality Metrics: 

 A) Dispersion plot at the gene level. A good dispersion is shown by a normal curve for all 

samples, and normal curves covering roughly the same dispersion range. B) Dendrogram at the 

gene level. This shows that the replicates divide into different groups, indicating that the 

replicates are more similar to each other than other samples. 
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Figure 6: Scatterplotmatrix for All Treatments:  

This Figure shows that the dispersion is of good quality. First, that the scatterplots between two 

different treatments result in most of the genes occurring along or relatively close to the line. 

Second, in the comparison between the same samples, this results in a normal curve.  

 

B. Timepoint Differential Analysis 

 

 To understand the overall expression patterns of the RNA-seq data, the significantly 

differentially expressed genes were divided into up and downregulation groups for each 
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timepoint. All these groups will be called the RNA-seq data throughout this paper. The RNA-seq 

data was then further divided into two groups: first, those RNA-seq data that have a 

corresponding gene in the ChIP-seq datasets that had been previously identified (ChIP-seq genes 

or ChIP genes), and second, those that have a corresponding gene with a ChIP-seq site that is 

within 5kb of its TSS site (5kb ChIP genes or 5kb ChIP-seq genes). The ChIP genes contain all 

the 5kb ChIP genes. 

To demonstrate how exposure to 5-fu, and therefore the induction of a stressor and 

activation of p53, affected the regulation expression of associated genes (either up or down), the 

comparison between timepoints was undertaken. Also, a focus was on the control (non-

treatment) vs the treatments (6-hour, 12-hour and 24-hour). Additionally, already-identified ChIP 

genes that had corresponding significantly differentially expressed RNA-seq genes were 

investigated. Figure 7 A, B, and C are heatmaps showing the significantly differentially 

upregulated genes (for both replicates) at all timepoints. Figure 7A is a heatmap of all the 

significantly differentially expressed RNA-seq genes (although these are not necessarily protein 

coding), Figure 7B is all previously-identified ChIP-seq genes in our dataset [19] [20] [7] that are 

also significantly differentially expressed RNA-seq genes, and Figure 7C is all previously-

identified ChIP-seq 5kb genes (where the ChIP-seq site and the TSS site are within 5 kb of each 

other), and are also significantly differentially expressed RNA-seq genes. Figure 7D shows the 

downregulated RNA-seq genes. Figure 7E is the downregulated ChIP genes, and Figure 7F 

shows the 5kb ChIP genes that are downregulated.  

As can be seen in all heatmaps, there is a reversal between the control (0hr) and 24hr, 

with mostly high amounts in the upregulated heatmaps for 24 hours, and mostly low amounts for 

the control, and the reverse for the downregulated heatmaps. Additionally, there are blocks of 
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high expression for 6 hours in both the up and downregulated heatmaps. However, one should 

keep in mind that a gene could be differentially upregulated in 6 hours, and the 24 hours be 

differentially expressed enough higher from the 6-hour that it would appear that the 6-hour gene 

is at the same or similar level of expression compared to the control when the two timepoints are 

differentially expressed.  

To show differences in sorting, and where particular genes occur for upregulated genes 

(7A, 7B and 7C) CDKN1A, BBC3, BAX, TP53I3, SMAD3 and MDM2 were used as indicators. 

While CDKN1A, BBC3, BAX, MDM2 and SMAD3 occur in all sets (RNA-seq, ChIP genes, 

5kb ChIP genes), TP53I3 does not. This is particularly interesting with TP53I3, due to the fact 

that it is highly differentially expressed. Additionally, while CDKN1A, BBC3 and TP53I3 

appear to upregulated only at 24 hour, they are actually upregulated compared to the control in 

all the treatments. Considering how easy it is to find this within commonly p53-associated genes, 

care should be taken not to discount that earlier hours might also be upregulated, just not to the 

same level as 24 hours. 

 To demonstrate similarly, the difference in patterns in each heatmap sorting HAUS6 and 

SAC3D1 were used. Both were found in the 5kb gene downregulated dataset. It is also 

noticeable that HAUS6 is downregulated at 12 hours, while SAC3D1 is downregulated 

significantly at 6 hours and 12 hours, but not 24 hours, putting it in one of the areas where there 

is not an expression difference between control and 24 hours, which there appears to be 

relatively more of in Figure 7F.  
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Figure 7: Heatmaps: 

All are significant RNA-seq genes q<0.05 A) Significant upregulated RNA-seq has 2794 genes. 

B) Significant upregulated ChIP-seq genes in RNA-seq dataset has 524 genes. C) Significant 

upregulated ChIP-seq genes within 5kb of TSS site that correspond to RNA-seq dataset has 123 

genes. D) Significant downregulated RNA-seq has 3425 genes. E) Significant upregulated ChIP-

seq genes in RNA-seq dataset has 511 genes. F) Significant upregulated ChIP-seq genes within 

5kb of TSS site that correspond to RNA-seq dataset has 53 genes. See discussion for how each 

dataset was determined. 

 Another way of understanding this is to look at the overall significant genes for each 

timepoint. To this end, the significant genes were examined in two ways. Since the non-

treatment (control) vs a treatment time was of particular interest, the up and down significant 

genes for control vs 6-hour, control vs 12-hour and control vs 24-hour, and the intersects for 
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significant differential expression, are found in these 3 sets. The venn diagrams between these 

sets were produced (Figures 8 and 9).  

For both Figures 8 and 9 A and B are the RNA-seq differential expression for 

upregulated compared to control (Figure 8A and 9A), and downregulated compared to control 

(Figures 8B and 9B). As can be noted, all the genes of interest are the same set as in Figure 7. As 

with the Figure 7, SMAD6, MDM2, TP53I3, CDKN1A, BBC3 and BAX are all upregulated and 

SAC3D1 and HAUS6 are downregulated (Figure 8 and Figure 9). It can also be noted that 

MDM2, TP53I3, CDKN1A, BBC3 and BAX are upregulated at all timepoints compared to the 

control (Figure 8A and Figure 9A). Also, as with the heatmaps, TP53I3 does not occur in the 

ChIP genes subsets (Figure 8C and Figure 9C). SMAD6, on the other hand, is the only 

upregulated gene that does not occur at all three timepoints. It is upregulated at only 6 and 24 

hours (Figures 8A, 8C, 9A, and 9C).  

Finally, SAC3D1 and HAUS6 are not downregulated at 24 hours; instead, they are 

downregulated at6 hours and 12 hours for SAC3D1, and 12 hours for HAUS6. Additionally, of 

the genes that are up or downregulated individually, 24-hour has the most for up and 

downregulated, with more for upregulated genes. The same is seen for ChIP-seq differential 

expressed genes (Figure 8 C and D), which has more genes overall when compared with both the 

full ChIP RNA-seq intersection or the 5kb ChIP-seq differentially expressed gene (Figure 9 C 

and D). This is not to say that genes occurring at 24 hours are not also differentially expressed at 

other timepoints. While 24 hours has the largest number of individual genes, of the total genes 

upregulated at 24 hours, between 44-67% are also upregulated at other timepoints. 

For 6 hours for RNA-seq (Figures 8 A&B and 9 A&B), up and downregulated are 

roughly the same, which is also true with ChIP 5kb (Figure 9C and Figure 9D). However, there 
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are more downregulated genes for all ChIP RNA-seq compared to upregulated (Figure 8 C&D). 

Conversely, for 12 hours, there are more downregulated genes compared with upregulated, and 

this holds true for the full differentially expressed RNA-seq dataset, as well as the ChIP subsets. 

Additionally, for the 5kb ChIP upregulated genes, control vs 12-hour does not have any genes 

that are not upregulated at either control vs  6-hour or control vs 24-hour. Furthermore, for all 

upregulated sets, control vs 24-hour has the highest number of upregulated genes that do not 

intersect with any other sets. This is the same for RNA-seq and ChIP downregulated genes, but 

for ChIP 5kb, all the comparisons have roughly the same number of genes (Figure 9D). 
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Figure 8: Venn Diagrams for RNA-seq and ChIP Genes: 

Shows the up and downregulated number of genes compared to the control for each treatment 

timepoint, and which timepoints those genes intersect, along with where SMAD3, MDM2, 

TP53I3, CDKN1A, BBC3, SAC3D1 and HAUS6 occur. A) RNA-seq up. B) ChIP-seq genes up. 

C) RNA-seq down. D) ChIP genes down. RNA-seq is all of the differentially expressed genes at 

each timepoint comparison. ChIP genes are the ChIP-seq genes that correspond with the RNA-

seq genes for each timepoint comparison. 
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Figure 9: Venn Diagrams for RNA-seq and 5kb ChIP Genes: 

Shows the up and downregulated number of genes compared to the control for each treatment 

timepoint, and which timepoints those genes intersect, along with where SMAD3, MDM2, 

TP53I3, CDKN1A, BBC3, SAC3D1 and HAUS6 occur. A) RNA-seq up. B) 5kb ChIP genes up. 

C) RNA-seq down. D) 5kb ChIP genes down. RNA-seq are all the significant differentially 

expressed RNA-seq genes at each timepoint, while 5kb ChIP genes are the RNA-seq differentially 

expressed genes that correspond to ChiP-seq sites within 5kb of their TSS site. 

 

 Finally, the numbers for differential expression for treatment and all the treatments were 

computed, along with the number of protein coding genes for up and downregulation. As can be 

seen in Figure 10, overall there are more down differentially expressed genes than up 

differentially expressed genes for 6 hours and 24 hours. The converse is true for the control, but, 

given an upregulated control gene must have a downregulated gene at another timepoint, this 

would be expected. Interestingly, when one looks at 12 hours for only the 5kb ChIP genes 
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subset, the numbers are close between down and upregulation, but there are more upregulated. 

However, when one looks at the differentially expressed genes for 24 hours (Figure 10E), there 

are more upregulated genes than there are downregulated genes. Additionally, the difference 

between the up and downregulated genes is smaller for 24 hours than it is for the other 

treatments. A similar pattern is observed for the up and downregulated coding genes.  

 

 

Figure 10: Protein Coding and All Genes, Regulation by Timepoint: 

Up and downregulated genes found at each timepoint along with the RNA-seq genes and protein 

coding genes shows all A) control. B) 6-hour. C) 12-hour. D) 24-hour. The genes are the RNA-

seq genes that are significantly differently expressed. ChIP genes are the subset of RNA-seq 

genes that also occur in the ChIP-seq dataset previously produced. The 5kb ChIP genes are the 

subset of the ChIP genes that also are within 5kb of their TSS site. 
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C. Non-protein Coding RNA 

 

 To further investigate the differentially expressed RNA that is not a protein coding gene, 

and to investigate non-protein coding RNA that has been associated with p53 in previous studies 

(such as [7]), we used already identified lincRNA, miRNA and ERV1 elements. For linRNA and 

miRNA, these were from publicly-available datasets found at the UCSC Genome Browser, with 

some modification (see materials and methods section). An intersection was then preformed both 

ways between the RNA-seq significant genes and RNA elements of interest, or between RNA 

elements of interest and significant RNA-seq genes. The results of the treatment series 

breakdown can be seen in Figures 11 and 12. For these elements, miRNAs have the largest 

number of intersections, with the larger number occurring in downregulated genes (except for the 

control, but again an upregulated control indicates a downregulated treatment), which is reversed 

in the 5 kb RNA-seq ChIP genes, possibly due to the 5kb selection. ERV1 is the same as 

miRNA. However, lincRNA is reversed, with more upregulated genes intersecting with lincRNA 

at 24 hours, which was not seen for the other timepoints. This could be due to the selection for 

non-coding genes that occur for the lincRNA. Interestingly, there appear to be more than one 

RNA element intersection with a number of RNA-seq. This could be due to biologically different 

elements, or two elements with different names that occupy the same or very similar locations. 

This can be seen in Figure 13A and Figure 15A and 15C, which is more prevalent and will 

require further investigation. 
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Figure 11: Non-coding RNA Genes Regulation by Timepoint: 

Up and downregulated genes at each timepoint that intersect with either lincRNA, ERV1/LTR, or 

miRNA. A) Control intersections. B) 6-hour intersections. C) 12-hour intersections. D) 24-hour 

intersections. The genes are the RNA-seq genes that are significantly differently expressed. ChIP 

genes are the subset of RNA-seq genes that also occur in the ChIP-seq dataset previously 

produced. The 5kb ChIP genes are the subset of the ChIP genes that also are within 5kb of their 

TSS site. 
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Figure 12: Non-coding Intersections per Timepoint: 

Up and downregulated RNA-seq genes of which lincRNA, ERV1/LTR, and miRNA have an 

intersection. A) Control intersections. B) 6-hour. C) 12-hour intersections. D) 24-hour 

intersections. The genes are the RNA-seq genes that are significantly differently expressed. ChIP 

genes are the subset of RNA-seq genes that also occur in the ChIP-seq dataset previously 

produced. The 5kb ChIP genes are the subset of the ChIP genes that also are within 5kb of their 

TSS site. 

D. Expression and Imaging. 

 

 To better illustrate expression, and to show that no treatment had replicates with widely 

varying counts, several genes of interest were imaged using the IGV browser. In addition to the 

tracks for each one, sample tracks were used from the ref-seq (NCBI database), miRNA, ERV1 

and lincRNA and the ChIP-seq sites. This enabled viewing of the expression at any particular 

location of interest.  
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Figure 13 is a comparison between CDKN1A (13A and 13C) and TP53I3 (13B and 13D). 

TP53I3, while it has not been identified in our previously processed ChIP-seq data [32], it had 

been noted previously as having a large increase in expression when compared to 12 and 6 hours 

of treatment [45]. The same thing is seen here as can be seen in 13B and 13D. Twenty-four hours 

is much more expressed than 6 hours. However, it should be noted that even though 6 hours 

appears to be similar in expression to 6 and 12 hours, both of those timepoints are also 

significantly upregulated when compared to the control. Comparatively, with CDKN1A 13A and 

13C, while there is a difference between 6 hours and 12 hours and 24 hours, there is again an 

increase at 24 hours. It is visually clear that there was also an increase at 6 and 12 hours when 

compared to the control.  

Figure 14 is a comparison between BBC3 and BAX, two other genes that have been 

associated with p53. As can be seen, BBC3 (Figure 14A and 14C) has a similar pattern to 

CDKN1A: an initial increase in expression at 6 hours, with 12 hours being similar in expression, 

followed by another, larger, increase in expression at 24 hours. BAX, however, doesn’t have that 

jump in expression seen at 24 hours in the other 3 genes to varying degrees. Instead, it has a slow 

increase in expression that does not result in any significantly different expression between the 

treatment timepoints (6hr, 12hr, 24hr). 

 It was noted that SMAD3 (Figure 15) is one of the subset of 5kb ChIP genes that appear 

visually to be upregulated at 6 hours. Because of this, and due to the fact that it has been shown 

that SMAD3 in response to TGEF-β signaling induces BBC3 [46], we investigated SMAD3. 

Additionally, SMAD3 has been found to complex FOXO genes in response to TGEF-β 

signaling, and that the complex of FOXO genes and the SMAD3 gene results in the induction 

(upregulation) of CDKN1A [47]. SMAD3 through TGEF-β activation has also been found to 
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associate with MDM2’s second promoter region, resulting in an increase in the already increased 

MDM2’s expression [48]. This is on top of the induction that has been shown to occur via p53 

directly, even though MDM2 is the main repressor of p53 results through the degradation of the 

p53 protein [49].   

First, it should be noted when looking at SMAD3’s IGV plot (Figure 15A), that is hard to 

visually see any real difference between the control and 6 hours or 24 hours (the treatment times 

where SMAD3 is differentially expressed). Also of note is that the FPKM values are lower than 

seen in Figure 13 or Figure 14 for SMAD3 (Figure 15C). MDM2, on the other hand, is a 

different story, with high with FPKM values similar to the FPKM values (Figure 15D) of BAX, 

BBC3, and TP53I3 (Figure 13D, Figure 14C and Figure 14D). With the IGV plot, it is also 

visually obvious that there is a difference between the control and all treatment timepoints, and 

between 12-hour and 24-hour. What is very interesting is that that both SMAD3 and MDM2 

have extremely similar expression patterns (Figure 15C and Figure 15D). The expression pattern 

is this: an increase in expression at 6 hours, followed by a reduction at 12 hours, and then another 

increase at 24 hours, coinciding with the second much larger increase in expression observed in 

this study.  

 HAUS1 and SAC3D1 (Figure 16) are examples of downregulated genes. In other words, 

the control has higher expression than at least one of the treatment timepoints, and none of the 

treatments have a higher expression than the control. Several interesting observations can be 

noted. First, compared to the expression range for the upregulated genes, both HAUS1 and 

SAC3D1 have a lower maximum in the tens instead of the hundreds for FPKM (16C, 16D, 14C, 

14D, 13C and 13D). The results in the lower count seen on the IGV plots as well (16A and 16B). 

Because it is downregulation of active cellular process, this would not have initially been as high 
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as seen in genes upregulated specially in the p53 cycle. Second, there isn’t that large jump 

between treatments. This results in treatments in other than 24-hour differentially expressed 

timepoints. One explanation, particularly when taking 7D and 7E into account (which have much 

less 24-hour clear downregulation), is that 5kb ChIP sites for downregulated genes are rare—a 

total of 53 genes—which might be the result of p53 not directly downregulating genes.  

 GAPDH is a housekeeping gene and to assure that the differential expression seen is not 

due to possible other factors a housekeeping gene (GAPDH) was examined Figure 17.  Despite 

what appears to be an increase in the FPKM value at 12 hours (Figure 17B) all of the timepoints 

are not differentially expressed from one another. The IGV plot shows this more clearly, with the 

expression quite clearly being very similar between all of the samples (Figure 17A).  

Additionally, GAPDH has the largest counts and FKPM values of any of the genes of interest 

looked at in this study, demonstrating how common GAPDH expression is.  This gives support 

that the differential expression observed in the RNA-seq data is due to actual biological effects 

and not effects of sample differences that effected expression overall. 

 For each lincRNA, miRNA and ERV1, one RNA-seq gene that they had intersected with 

was chosen for demonstration purposes (Figure 18). Two things are immediately clear. The 

expression count levels are lower than the genes of interest, and the increase pattern seen in the 

genes strongly associated with the p53 pathway are not observed. For the lincRNAs (Figure 

16A), instead of expression increasing vs the control, there is a decrease (downregulation) 

compared to the control. However, as with Figure 13, all of the replicates are similar to each 

other for each treatment. In addition, for one of the lincRNA tracks there are two lincRNAs at 

almost identical locations. There is only one timepoint with difference in expression from the 

control for the miRNA example (Figure 18B), and that is a decrease in expression at the 6-hour 
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timepoint. In this case, there is only one miRNA which can be seen in both the Ref-seq track and 

the miRNA track. ERV1 (Figure 18C) is interesting. First there are, again, two ERV1 RNAs at 

basically the same location. Second, the expression pattern is interesting. At 6 hours, there is an 

increase in expression compared to the control, followed by a decrease in expression, and then 

the same increase again at 24 hours, possibly due to a second induction or increase of p53 at 24 

hours. The downregulation for both lincRNA and miRNA makes sense due to the overall larger 

number of downregulated RNA elements of interest when compared to the control. 
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Figure 13: Expression of CDKN1A and TP53I3:  

 Charts the expression as shown through the IGV browser, and through expression plots which 

show the error bars for each treatment. TP53I3 is interesting because it has previously been 

identified by Szak et al. as having a large increase in expression at later hours [45]. A) CDKN1A 

IGV plot. B) TP53I3 IGV plot. C) CDKN1A expression plot. E) TP53I3 expression plot. 
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Figure 14: Expression of BBC3 and BAX:    

Charts the expression as shown through the IGV browser, and through expression plots which 

show the error bars for each treatment. A) BBC3 IGV plot, B) BAX IGV plot, C) BBC3 

expression plot. E) BAX expression plot. 
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Figure 15: Expression of SMAD3 and MDM2: 

Charts the expression as shown through the IGV browser, and through expression plots which 

show the error bars for each treatment   SMAD3 has been associated with final p53 activation of 

BBC3[46] and SMAD and, in conjunction with FOXO genes, has been associated with activation 

of CDKN1A [47]. A) SMAD3 IGV plot. B) MDM2 IGV plot. C) SMAD3 expression plot. E) 

MDM2 expression plot. 
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Figure 16: Expression of HAUS6 and SAC3D1: 

Charts the expression as shown through the IGV browser, and through expression plots which 

show the error bars for each treatment. A) HAUS6 IGV plot. B) SAC3D1 IGV plot. C) HAUS6 

expression plot. E) SAC3D1 expression plot. 
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Figure 17: Expression GAPDH 

Charts the expression as shown through the IGV browser, and through expression plots which 

show the error bars for each treatment   GAPDH is a known housekeeping gene and is not 

significantly different between the different timepoints 
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Figure 18: Expression of Non-coding RNA Examples:  

Charts the expression as shown through the IGV browser for lincRNA, miRNA, ERV1 expression 

examples. A) lincRNA. B) miRNA. C) ERV1. 

 

E. GO Enrichment 
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 GO terms can give an idea of areas of increase between treatments to show what 

biological processes may have become active. To this end, the top significant terms for each 

treatment and ChIP association were plotted in Figure 19, and, since the descriptions for the 

terms where very long, abbreviations were used, and full terms can be found in Figure 20. As can 

be seen, many of the biological processes terms with significant (q<0.05) fold increases are 

related to either the cell cycle or apoptosis. In fact, the term with the highest fold increase is 

“DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest,” 

which relates directly to p53. This again is another validation that p53 was active, and the 

differences that have been observed in the RNA-seq data is a result of the activation of the p53 

cycle. Additionally, ChIP genes, particularly those within 5kb of a TSS site, tend to be more 

associated with apoptosis and have a higher fold enrichment value. This could be due to the 

selection that occurs with only taking genes that can be found through ChIP and those that are 

situated within 5kb of the gene in question. 
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Figure 19: GO Biological Term Fold Enrichment Top Significant Terms: 

Terms selected of the top 5 of each treatment that are q<0.05. If the term was significant for 

another term, that fold enrichment was also included. There is an enrichment for p53-related 

terms in the 5kb ChIP terms in particular, but also the overall ChIP terms. 
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Figure 20: GO Terms Full Descriptions:  

Gives the abbreviated terms used in Figure 19, and the full term description associated with that 

term. 

 

F. ChIP-qPCR. 

 

 To determine whether the common pattern seen in the RNA-seq data could be observed 

with ChIP data, an initial ChIP-seq experiment was run using the same treatment and control 

conditions.  Following the immunoprecipitation, the % input was calculated for replicates 1 and 

2 of the control and 24-hour treatment, and replicate 1 of the 6- and 12-hour treatments.  As can 

be seen in Figure 21, the ChIP, which shows the protein interactions with the chromatin, shows a 

pattern very similar to what was observed for BBC3 and CDKN1A.  As can be noted in Figure 
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21, both the negative and positive primers are at low percentages, indicating that there isn’t a 

large amount of non-specific binding of our antibody. Additionally, the same pattern that was 

observed for both BBC3 and CDKN1A, and overall for the RNA-seq data, was observed: an 

initial increase in % input at 6 hours, and reduction in the % input at 12 hours, and a much larger 

increase in % input at 24 hours. This validates that the pattern seen in the RNA-seq data is also 

seen in the protein chromatin interaction, and that it is a real biological effect of 5-FU induced 

p53. 
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Figure 21: ChIP qPCR of p53 target genes: 

Shows the % input of two genes of interest that have been shown to be upregulated by p53 with 

our RNA-seq data BBC3 and CDKN1A.  The pattern of % input increase is similar to what was 

observed in RNA-seq data validating the pattern observed. 

  

 

 

  

V. Conclusions 

 This study focused on RNA-seq data for p53 activation via the drug 5-FU for 6 hours, 12 

hours, and 24 hours, along with the non-treatment control, and the comparison between those 

timepoints, plus a selection of RNA-seq identified genes that have also been identified in 
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previous ChIP-seq studies. One of the things that has been noted in a number of different 

instances is that at 6 hours there is an initial induction of genes, and at 24 hours there seems to a 

further induction of the same genes. This can be seen in Figure 13 and Figure 14, where, on the 

expression plots for CDKN1A (13C) and BBC3 (14C), there is an initial upregulation at 6 hours, 

with 12 hours having an upregulation similar to 6 hours, and then a further noticeable increase in 

expression at 24 hours. This pattern has also been observed in initial ChIP-seq % input qPCR 

results from the same treatment conditions and cells which show a similar pattern that has been 

observed from the RNA-seq results (Figure 21). 

Several genes have been shown to be upregulated at 6 hours and again at 24 hours, but 

have the appearance on heatmaps of only being induced at 24 hours. This is particularly true with 

TP53I3 (13D). When just examining visual representations of expression among all 4 timepoints, 

this increase in regulation can look as if there is no increase between 6 hours and the control. For 

most genes in the data, when a gene is upregulated, it is either induced at 24 hours, or induced at 

6 or 12 hours, and then further induced at 24 hours. This explains why the increase in expression 

is clear for 24 hours in Figures 7A, 7B and 7C, but is only seen for a subset of the 6-hour genes. 

For example, CDKN1A on Figure 7C is upregulated compared to the control at 6, 12, and 24 

hours, but it is only visible at 24 hours because of how much larger the increase in expression 

was at 24 hours. Therefore, stating that there are more genes induced later, at 24 hours, compared 

to earlier at 6 hours, is based purely on the expression patterns. However, what is observed in 

Figure 8 and Figure 9 is this: there are a number of genes which are upregulated at all timepoints. 

Again, between 44-67% of the control vs 24-hour genes are also induced at other timepoints, 

with increasing percentages in the ChiP gene subsets. Bottom line, there is a large increase in 

expression for most of the upregulated genes at 24 hours, and a large downregulation at 24 hours 
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for genes downregulated when compared to the control. SMAD3 and the similar pattern 

observed in MDM2 may be one reason for this increased induction at 24 hours, and the cause of 

this increase is definitely and important area for future investigation. 

 Additionally, when only RNA-seq genes also intersect with known ChIP-seq genes 

(particularly those where the TSS site is within 5kb of the ChIP site), there is an increase in 

relevant genes. This can be seen in GO terms (Figure 15) that show when, with the RNA-seq 

ChIP genes, there is an increase in terms related directly to apoptosis and the p53 pathway. This 

is particularly true when the ChIP genes are in the 5kb set. This shows that RNA-seq by itself 

can identify genes as significant that may not be directly related to the p53 pathway, but are 

instead genes related to the turning on or off of certain functions that p53 is directly responsible 

for. Additionally, only doing ChIP-seq can result in some genes not being identified. Our ChIP-

seq data does not have TP53I3, an p53-induced gene. This is one of the genes that is induced 

initially at 6 hours, but is then highly re-induced at 24 hours, and if we had only looked at those 

genes that occur in the ChIP-seq and RNA-seq intersection, we would have missed this gene. 

Therefore, neither ChIP-seq or RNA-seq by themselves can give the whole picture, but, taken 

together, they have the ability to indicate genes of high interest in whichever pathway is being 

investigated. 

 Many of the non-coding RNA at much smaller counts, if at all, with the datasets we used, 

particularly for 5kb from the TSS sites. Additionally, a number of genes can have more than one 

non-coding RNA element. Therefore, to further understand how these elements interact with a 

genome, it is important to get a better idea of when an intersection with an RNA-seq gene 

indicates the presence of an active element, or when it is an identification of an exon for a larger 

gene, and what this might mean. 



53 

 

 Given the increase in induction at 24 hours seen for most upregulated genes, it was 

necessary to develop a way to explain the large increase in induction seen at the 24-hour 

timepoint, when compared to the induction for the same gene seen at 6 hours, as well as the 

constant or slightly reduced induction at 12 hours. To understand what might cause this increase 

in p53 induced RNA expression to occur at 24 hours, previous studies of p53’s response to 5-FU 

were researched.  In particular, phosphorylazation of p53 was explored, since it has been 

reported to be a major stabilizer of p53 during stress-inducing conditions [50].  However, that is 

not what has been reported in the literature with regard to 5-FU.  Surprisingly, the p53 protein 

does not have any increases in phosphorylazation detected after 6 hours, which would be needed 

to stabilize and increase the protein for the 24-hour increase [50] [51].  Additionally, even at 24 

hours, studies of the phosphorylated form have not consistently been found to have increased at 

24 hours [50] [51].  Interestingly, however, the p53 protein has been found to have an initial 

increase at 6 hours, and a sharp increase at 24 hours, in the protein but not the mRNA[51].  This 

protein pattern is very similar to the pattern observed in most of the gene expression found in this 

study.  Given that there is an observed protein increase, but not a mRNA increase, there would 

need to be a mechanism to prevent the newlymade p53 proteins from that consistent amount of 

p53 mRNA from being degraded by the increase in MDM2 that occurs with p53 induction.  One 

possible explanation is that MDMX protein (which has been detected in 5-FU treated cells) may 

interact with MDM2, and block MDM2 from degrading the created p53 protein [50].   

 Given that our expression patterns match the p53 protein expression previously observed 

with exposure to 5-FU at 6, 12 and 24 hours [51], the model (Figure 22) that is being proposed is 

that the initial p53 induction at 6 hours is due to the signaling of already-existing p53 protein 

(Figure 22). After 6 hours, MDMX begins to associate with the newly-created MDM2 and 
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prevent MDM2 from degrading the p53 protein. This results at 24 hours with 5-FU induction still 

showing an increase in p53 protein, due to the background-produced p53 protein not being 

degraded (Figure 22). This increase in the p53 protein results in a further induction of the genes 

that have already been induced, causing them to be induced again, and an increase in the RNA 

expression of those genes is due to the secondary induction of the larger amount of p53.  This 

secondary induction is large because, first, there is a greater amount of p53 protein available, as 

has been observed previously. This results in a larger induction due to that large amount of 

protein, and this large induction is added to the mRNA that has already increased and is still in 

the cell, since it has not been degraded yet.  The result is a large—sometimes very large—

increase in the amount of p53-induced expression for most, but not all (BAX, for example) genes 

associated with the p53 pathway.  However, it should be noted that an increase in MDMX RNA 

was not detected in the RNA-seq data for this study.  And further validation of MDMX 

interaction with 5-FU induction needs to be explored. 
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Figure 22: Model for 5-FU induced p53 signaling.  

This model depicts the possible explanation for the large further induction seen for most genes in 

the RNA-seq dataset.  At 6 hours, 5-FU induces the already existing p53, which goes on to 

induce its own targets, including MDM2.  Due to the presence of 5-FU, MDMX associates to 

MDM2, and prevents the degradation of newly produced p53, which results in an accumulation 

of new p53 protein from already existing levels of p53 mRNA.  This results in a secondary larger 

induction of p53 genes, and that increase in expression is added to the increased levels of RNA 

that where already induced at 6 hours, resulting, in some cases in truly large—more than 

twofold—increase in expression. 

 To further investigate the findings of this study, an investigation into the same timepoints 

will be conducted. First, the ChIP-seq experiments that have been begun, and preliminary data 

discussed here (Figure 21), will completed, and the sequenced results analyzed.  This analysis 

will compare the results from this study to the results from the ChIP-seq experiments, to 

determine if the pattern already noted to be replicated with % input results (Figure 21) occurs for 

the rest of the dataset, and results in a similar pattern, as observed with the RNA-seq results. The 
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protein levels will be investigated for p53 and MDMX to determine whether there is an increase 

in MDMX amounts in response to 5-FU, and if the p53 protein for the cells in this study have the 

same increase in protein amount that has been previously observed.  Additionally, RT-qPCR will 

be used to validate the results with several of the genes of interest discussed in this study. 

 Overall, this study has shown some interesting suggestions regarding how p53 induction 

occurs at different timepoints. Of particular interest is the increase in expression found between a 

gene upregulated at 6 hours, and that same gene when it is upregulated again at 24 hours. It has 

been proposed that the further upregulation at 24 hours is due to the increase in the p53 protein 

that has previously been observed [51]. This increase is not due to an increase in p53 RNA, but 

instead is due to lack of degradation by MDM2, p53’s primary regulator, possibly due to 

interaction with MDMX to block degradation of p53.  Further investigation of MDMX needs to 

be conducted because of the lack of an increase of RNA expression of MDMX in this study.  

Additionally, the reason for the subset of genes, including BAX, that do not result in an 

increased expression at 24 hours should be investigated, since this might give clues to the overall 

mechanism that results in the accumulations of new p53 at 24 hours. 

Acknowledgements 

 

 Thanks to NIH for funding this research through grant GM116102-01. To John Ashton 

and Michelle Zanche at URGRC for sequencing and initial cleaning of sample FASTQ files. And 

finally, to Feifei Bao, for the collection of the ChIP-seq fragments used in this thesis. 

 

 

  



57 

 

References 

 

[1] Levine, A.J., Finlay, C.A., & Hinds, P.W. “P53 is a Tumor Suppressor Gene” Cell 116, 

supplement 2 (2004): S67-S69 doi:  http://dx.doi.org/10.1016/S0092-

8674(04)00036-4 

[2] Sugrue, M.M., Shin, D.Y., Lee, S.W. & Aaronson, S.A. “Wild-type p53 triggers a rapid 

senescence program in human tumor cells lacking functional p53” Proceedings of 

the National Academy of Sciences 94, no. 16. (1997): 9648-9653. 

http://www.pnas.org/content/94/18/9648.full  

[3] Levine, A.J. “p53, the Cellular Gatekeeper for Growth and Division.” Cell 88, no. 3 

(1997): 323-331. doi: http://dx.doi.org/10.1016/S0092-8674(00)81871-1 

[4] Espinosa, J. M. & Emerson, B.M. “Transcriptional Regulation by p53 through Intrinsic 

DNA/Chromatin Binding and Site-Directed Cofactor Recruitment” Molecular Cell 8, 

no. 1. (2001): 57-69. doi: http://dx.doi.org/10.1016/S1097-2765(01)00283-0 

[5] Chang, G.S., Chen, X.A, Park, B., Rhee, H.S., Li, P., Han, K.H., Mishra, T., Chan-Salis, 

K.Y., Li, Y., Hardison, R.C., Wang, Y. & Pugh, B.F. “A Comprehensive and High-

Resolution Genome-wide Response of p53 to Stress” Cell Reports 8, no. 2 (2014): 

514-527. doi: http://dx.doi.org/10.1016/j.celrep.2014.06.030 

[6] Gomes, N.P. & Espinosa, J.M. “Gene-specific repression of the p53 target gene PUMA 

via intragenic CTCF -Cohesin binding” Genes and Development 24, no. 10. (2010): 

1022-1034. doi: 10.1101/gad.1881010 

[7]   Sanchez, Y.,  Segura, V., Marin-Bejar, O., Athie, A., Marchese, F.P., Gonzalez, J., 

Bujanda, L., Guo, S., Matheu, A.,  & Huarte, M., “Genome-wide analysis of the 

human p53 transcriptional network unveils a lncRNA tumour suppressor signature” 

Nature Communications 5, no. 5812 (2014) doi:10.1038/ncomms6812. 

[8] Zhang, A., Mo, Y. “Role of the lncRNA–p53 regulatory network in cancer” Journal of 

Molecular Cell Biology. 6, no. 3. (2014): 181-191. doi:10.1093/jmcb/mju013 

[9] Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A. & Rinn, J.L. 

“Integrative annotation of human large intergenic noncoding RNAs reveals global 

properties and specific subclasses” Genes and Development, 25, n. 18 (2011): 1915-

1927. doi: 10.1101/gad.17446611 

[10] Griffiths-Jones, S. “The microRNA Registry” Nucleic Acids Research. 32, n. suppl_1. 

(2004): D109-D11. DOI: 10.1093/nar/gkh023 

[11] Griffiths-Jones, S., Saini, H.K., Dongen, S.V. & Enright, A.J. “miRBase: tools for 

microRNA genomics” Nucleic Acids Research. 35, n. suppl_1 (2008): D154-D158. 

[12] Thompson, P.J., Macfarlan, T.S. & Lorincz, M.C. “Long Terminal Repeats: From 

Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire” 

Molecular Cell. 62, n.5 (2016): 766-776. doi: 10.1016/j.molcel.2016.03.029. 

[13] Kaczkowski, B., Tanaka, Y., Kawaji, H., Sandelin, A., Andersson, R., Itoh, M., 

Lassmann, T., the FANTOM5 consortium, Hayashizaki, Y., Carninci, P. & Forrest, 

A.R.R. “Transcriptome Analysis of Recurrently Deregulated Genes across Multiple 

Cancers Identifies New Pan-Cancer Biomarkers.”  Cancer Research. 76, n.2 (2016): 

216-226. doi: 10.1158/0008-5472.  

http://www.pnas.org/content/94/18/9648.full


58 

 

[14] Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M. & Gilad, Y. “RNA-seq: An 

assessment of technical reproducibility and comparison with gene expression arrays” 

Genome Research 18, n. 9 (2008): 1509-15017. doi: 10.1101/gr.079558.108 

[15] Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B.,  Lieberman, E., Giannoukos, G., 

Alvarez, P., Brockman, W., K, T., Koche, R.P., Lee, W., Mendenhall, E., 

O’Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, 

R., Nusbaum, C., Lander, E.S. & Bernstein, B.E. “Genome-Wide Maps of 

Chromatin State in Pluripotent and Lineage-Committed Cells” Nature 448, n. 7153 

(2007): 553-560. doi:10.1038/nature06008 

[16] Collas, P. “The Current State of Chromatin Immunoprecipitation” Molecular 

Biotechnology 45, no. 1 (2010): 87-100. doi: 10.1007/s12033-009-9239-8 

[17] Brattain, M.G., Fine, W.D., Khaled, F.M., Thomson, J. & Brattain, D.E. “Heterogeneity 

of Malignant Cells from a Human Colonie Carcinoma” Cancer Research 41, n. 5. 

(1981): 1751-1756. http://cancerres.aacrjournals.org/content/41/5/1751.long 

[18] Bunze, F, Dutriax, A, Langauer, C., Waldman, T., Zhou, S., Brown, J.P., Sedivy, J.M., 

Kinzler, K.W. & Volgenstein, B. “Requirement for p53 and p21 to Sustain G1 Arrest 

After DNA Damage.” Science 282, no. 5393 (1998): 1497-1501.doi: 

10.1126/science.282.5393.1497. 

[19] Wei, C., Wu, Q ,Vega,, V.B.,Chiu, K.P.,Ng, P.,Zhang, T., Shahab, A., Yong, H.C., Fu, 

Y., Weng, Z., Liu, J., Zhao, X.D., Chew, J., Lee, Y.L., Kuznetsov, V.A., Sung, W., 

Miller, L.D., Lim, B., Liu, E.T., Yu, Q., Ng, H. & Ruan, Y. “A GlobalMap of p53 

Transcription-Factor Binding Sites in the Human Genome” Cell. 124, n.1 (2006): 

207-219. DOI: 10.1016/j.cell.2005.10.043. 

[20] Botcheva, K. & McCorkle, S.R. “Cell Context Dependent p53 Genome-Wide Binding 

Patterns and Enrichment at Repeats” Plos One 9, n.11 (2014): e113492. doi: 

10.1371/journal.pone.0113492 

[21] Bolger, A.M., Lohse, M. & Usadel, B. “Trimmomatic: A flexible trimmer for Illumina 

Sequence Data” Bioinformatics. 30, n. 15 (2014): 2114-2120. doi: 

10.1093/bioinformatics/btu170 

[22] Martin, M. “Cutadapt removes adapter sequences from high-throughput sequencing 

reads” EMB.net Journal 17, n.1 (2011): 10-12. DOI: 

http://dx.doi.org/10.14806/ej.17.1.200 

[23] The ENCODE Consortium. “Standards, Guidelines and Best Practices for RNA-Seq 

V1.0”  Encode Project. https://genome.ucsc.edu/ENCODE/  

[24] Trapnell1, C.,  Pachter, L. & Salzberg, S.L. “TopHat: discovering splice junctions with 

RNA-Seq”  Bioinformatics. 25, n.9 (2009): 1105-1111. 

doi:10.1093/bioinformatics/btp120 

[25] Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, & Salzberg S. L. “TopHat2: 

accurate alignment of transcriptomes in the presence of insertions, deletions and 

gene fusions.” Genome Biology. 14, n.4 (2013): R36. doi: 10.1186/gb-2013-14-4-

r36. 

[26] Li1, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., 

Abecasis, G., Durbin, R. & 1000 Genome Project Data Processing Subgroup. “The 

Sequence Alignment/Map format and SAMtools” Bioinformatics. 25, n.16 (2009): 

2078–2079. doi:10.1093/bioinformatics/btp352 

http://cancerres.aacrjournals.org/content/41/5/1751.long


59 

 

[27] Trapnell1, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Baren, M.J.V., 

Salzberg, S.L., Wold, B.J. & Pachter, L. “Transcript assembly and quantification by 

RNA-Seq reveals unannotated transcripts and isoform switching during cell 

differentiation” Nature Biotechnology. 28, n. 5 (2010): 511-515. 

doi:10.1038/nbt.1621 

[28] Trapnell1, C,Hendrickson, D.G., Sauvageau, M., Goff. L., Rinn, J.L. & Pachter, L. 

“Differential analysis of gene regulation at transcript resolution with RNA-seq” 

Nature Biotechnology. 31, n.1 (2013):46-53. doi:10.1038/nbt.2450 

[29] Roberts. A., Pimentel, H., Trapnell, C. & Pachter, L. “Identification of novel transcripts 

in annotated genomes using RNA-Seq” Bioinformatics. 27, n. 17 (2011): 2325–2329. 

doi:10.1093/bioinformatics/btr355 

[30] Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L. & Pachter, L. “Improving RNA-Seq 

expression estimates by correcting for fragment bias” Genome Biology. 12, n. 3 

(2011): R22. doi: 10.1186/gb-2011-12-3-r22 

[31] Goff L, Trapnell C and Kelley D cummeRbund: Analysis, exploration, manipulation, 

and visualization of Cufflinks high-throughput sequencing data.. (2013) R package 

version 2.14.0. 

[32] Bao, F.,  LoVerso P.R., Fisk, J.N.,Zhurkin, V.B. & Cui, F. “P53 binding sites in normal 

and cancer cells are characterized by distinct chromatin context” (Unpublished). 

[33] Kent,W.J., Sugnet, C.W.,Furey,T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M. & 

Haussler, D. “The Human Genome Browser at UCSC” Genome Research. 12, n.6. 

(2002): 996-1006. doi: 10.1101/gr.229102 

[34] Rosenbloom K.R., Armstrong J, Barber G.P., Casper J, Clawson H, Diekhans M, 

Dreszer T.R., Fujita P.A., Guruvadoo L., Haeussler M., Harte R.A., Heitner S., 

Hickey G., Hinrichs A.S., Hubley R., Karolchik D., Learned K., Lee B.T., Li C.H., 

Miga K.H., Nguyen N., Paten B., Raney B.J., Smit A.F., Speir M.L., Zweig A.S., 

Haussler D., Kuhn R.M., Kent W.J.. “The UCSC Genome Browser database: 2015 

update”. Nucleic Acids Research. 43, n. Database issue (2015):D670-81. doi: 

10.1093/nar/gku1177  

[35] Raney, B.J., Dreszer, T.R., Barber, G.P., Clawson, H., Fujita, P.A., Wang, T., Nguyen, 

N., Paten, B., Zweig, A.S., Karolchik D. & Kent, W.J. “Track data hubs enable 

visualization of user-defined genome-wide annotations on the UCSC Genome 

Browser” Bioinformatics. 30, n.7 (2014): 1003-1005. 

doi:10.1093/bioinformatics/btt637  

[36] Karolchik, D.,Hinrichs A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Haussler, D. & 

Kent, W.J. “The UCSC Table Browser data retrieval tool” Nucleic Acids Research. 

32, n. Database issue. (2004): D493-D496. DOI: 10.1093/nar/gkh103 

[37] Weber, M. “New human and mouse microRNA genes found by homology search” The 

FEBS Journal. 272, n.1 (2005): 59-73. 

[38] Pruitt, K.D., Tatusova, T. & Maglott, D.R. “NCBI Reference Sequence (RefSeq): a 

curated non-redundant sequence database of genomes, transcripts and proteins”  

Nucleic Acid Research. 33, n. Database issue (2005): D501-4. DOI: 

10.1093/nar/gki025 

[39] Pruitt, K.D., Brown, G.R., Hiatt, S.M., Thibaud-Nissen, F., Astashyn, A., Ermolaeva, 

O.,  Farrell, C.M., Hart, J.,. Landrum, M.J., McGarvey, K.M., Murphy, M.R., 

O’Leary, N.A., Pujar, S., Rajput, B., Rangwala, S.H., Riddick, L.D., Shkeda, A., 



60 

 

Sun, H., Tamez, P, Tully, R.E., Wallin, C., Webb, D., Weber, J., Wu, W., DiCuccio, 

M.,  Kitts, P. Maglott, D.R., Murphy, T.D. &  Ostell, J.M. “RefSeq: an update on 

mammalian reference sequences” Nucleic Acid Research. 42, n. Database issue 

(2014): D756–D763. doi:10.1093/nar/gkt1114 

[40] Huang, D.W., Sherman, B.T. &  Lempicki, R.A. “Bioinformatics enrichment tools: 

paths toward the comprehensive functional analysis of large gene lists” Nucleic Acid 

Research. 37, n.1 (2009): 1-13. doi:10.1093/nar/gkn923 

[41] Huang, D.W., Sherman, B.T. &  Lempicki, R.A. “Systematic and integrative analysis 

of large gene lists using DAVID bioinformatics resources.” Nature Protocols. 4, n.1 

(2009): 44-57. doi: 10.1038/nprot.2008.211. 

[42]  Robinson, J.T., Thorvaldsdóttir, H.,Winckler, W., Guttman, M., Lander, E.S., Getz, G., 

& Mesirov, J.P. “Integrative Genomics Viewer” Nature Biotechnology. 29, n.1 

(2011): 24-26. doi: 10.1038/nbt.1754 

[43] Thorvaldsdóttir, H., Robinson, J.T. &  Mesirov, J.P. “Integrative GenomicsViewer 

(IGV): high-performance genomics data visualization and exploration”  Briefings in 

Bioinformatics. 14, n. 2 (2013): 178-192. doi:10.1093/bib/bbs017 

[44] Gomes, N.P. & Espinosa, J.M. “Gene-specific repression of the p53 target gene PUMA 

via intragenic CTCF -Cohesin binding” Genes and Development 24, no. 10. (2010): 

1022-1034. doi: 10.1101/gad.1881010 

[45] Szak,S.T. Mays, D., & Pietenpol, J.A. Kinetics of p53 binding to promoter sites in 

vivo” Molecular and Cellular Biology, 21, n.10 (2001): 3375-3386. DOI: 

10.1128/MCB.21.10.3375–3386.2001 

[46] Spender L.C., Carter M.J., O'Brien D.I., Clark LJ., Yu J, Michalak E.M., Happo L., 

Cragg M.S. & Inman G.J. “Transforming growth factor-β directly induces p53-up-

regulated modulator of apoptosis (PUMA) during the rapid induction of apoptosis in 

myc-driven B-cell lymphomas.”  Journal of Biological Chemistry, 288, n.7 (2013): 

5198-5209. doi: 10.1074/jbc.M112.410274 

[47] Eijkelenboom A & Burgering B.M. “FOXOs: signalling integrators for homeostasis 

maintenance.” Nature Review Molecular Cell Biology, 14, n.2: 83-97. doi: 

10.1038/nrm3507 

[48] Araki S., Eitel J.A., Batuello C.N., Bijangi-Vishehsaraei K., Xie X.J., Danielpour D., 

Pollok K.E., Boothman D.A. & Mayo L.D. “TGF-beta1-induced expression of 

human Mdm2 correlates with late-stage metastatic breast cancer.”  The Journal of 

Clinical Investigation, 121, n.1 (2010): 290-302. doi: 10.1172/JCI39194 

[49] Shi, D. & Gu, W. “Dual Roles of MDM2 in the Regulation of p53: Ubiquitination 

Dependent and Ubiquitination Independent Mechanisms of MDM2 Repression of 

p53 Activity.” Genes & Cancer,3, n.3-4 (2012): 240-248. doi:  

10.1177/1947601912455199 

[50] Balmer, M.T., Katz, R.D., Liao, S., Goodwine, J.S. & Gal, S. “Doxorubicin and 5-

fluorouracil induced accumulation and transcriptional activity of p53 are independent 

of the phosphorylation at serine 15 in MCF-7 breast cancer cells.”  Cancer Biology 

& Therapy. 15, n. 8. (2014): 1000-1012. doi: 10.4161/cbt.29112. 

[51] Ju, J., Schmitz, C.S, Song, B., Kudo, K. & Chu, E. “Regulation of p53 Expression in 

Response to 5-Fluorouracil in Human Cancer RKO Cells” Clinical Cancer Research. 

13, n.14. (2007): 4245-4251. DOI: 10.1158/1078-0432.CCR-06-2890  


	Identification of Differential Expression of p53 associated RNAs at 3 Different Treatment Timepoints, and Association with ChIP-seq Identified p53 Genes.
	Recommended Citation

	tmp.1497633341.pdf.LBsBL

