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ROCHESTER INSTITUTE OF TECHNOLOGY 

Abstract 

By Uday Kant Jha 

School of Mathematical Sciences 

Master of Science in Applied Statistics 

Variable selection plays a major role in multivariate high-dimensional statistical modeling. 

Hence, we need to select a consistent model, which avoids overfitting in prediction, enhances 

model interpretability and identifies relevant variables. We explore various continuous, nearly 

unbiased, sparse and accurate technique of linear model using coefficients paths like penalized 

maximum likelihood and nonconvex penalties, and iterative Sure Independence Screening (SIS). 

The convex penalized (pseudo-) likelihood approach based on the elastic net uses a mixture of the 

ℓ1 (Lasso) and ℓ2 (ridge regression) simultaneously achieve automatic variable selection, 

continuous shrinkage, and selection of the groups of correlated variables. Variable selection using 

coefficients paths for minimax concave penalty (MCP), starts applying penalization at the same 

rate as Lasso, and then smoothly relaxes the rate down to zero as the absolute value of the 

coefficient increases. The sure screening method is based on correlation learning, which computes 

component wise estimators using AIC for tuning the regularization parameter of the penalized 

likelihood Lasso. To reflect the eternal nature of spectral data, we use the Functional Data approach 

by approximating the finite linear combination of basis functions using B-splines. MCP, SIS and 

Functional regression are based on the intuition that the predictors are independent. However, high-

dimensional grapevine dataset suffers from ill-conditioning of the covariance matrix due to 

multicollinearity. Under collinearity, the Elastic-Net Regularization path via Coordinate Descent 

yields the best result to control the sparsity of the model and cross-validation to reduce bias in 

variable selection. Iterative stepwise multiple linear regression reduces complexity and enhances 

the predictability of the model by selecting only significant predictors.  

Keywords: [Variable Selection; Elastic-Net; Minimax Concave Penalty; Sure 

Independence Screening; Functional Data Analysis] 



High Dimensional Analysis                                                                  iv 

Acknowledgements 

I would first like to thank my thesis advisor Dr. Peter Bajorski for his tremendous support 

and help. I learned a lot from him, and this thesis would not have been materialized without his 

encouragement. 

I wish to thank Dr. Jan van Aardt for his acceptance of being on my thesis committee and 

providing me with the data used in this thesis.  

I would also like to thank Dr. Ernest Fokoué for their acceptance of being on my thesis 

committee and helping with a solution to my queries.  

I would also like to thank Grant W.F. Anderson for providing me with the data used in this 

thesis. 

Finally, I would like to thank my parents, siblings, and family for their support and endless 

love.  

  



High Dimensional Analysis                                                                  v 

Table of Contents 

Declaration of Authorship…………..……………………………………………………………………i 

Abstract………………………………………………………………………………………………….iii 

Acknowledgments....................................................................................................................................iv  
Table of Contents………………………………………………………………………………………..v 

List of Figures……………………………………………………………………………………….....viii 

List of Tables………………………………………...…………………………………………………xii 

Chapter 1  Introduction……………………………………………………………..............1 

1.1   Background……………………………………………………………….…….1 
1.2   Thesis Organization……………………………………………………….….....2 

Chapter 2  Exploratory Data Analysis…………………………………………………..…..3  

2.1  Introduction………………………………………………………………….….3 
2.2   Missing Values……………………………………………………………….....3  
2.3  Outliers……………………………………………………………………….....4 
2.4   Robust Regression……………………………………………………………....5 
2.5   Robust Regression Methods………………………………………………….....5 
2.6   Multicollinearity………………………………………………………………...7 
2.7   Variable Selection……………………………………………………………....8  

Chapter 3  Methods of Variable Selection………………………………………………...10 

3.1   Introduction………………………………………………………………...….10 
3.2   Insight into High Dimensionality……………………………………………....11 
3.3  Dimensionality Reduction…………………………………………...………...11  
3.4   Variable selection………………………………………...…………………....12 
3.5   Stepwise multiple linear regression………………………………...……….....14  

Chapter 4  The regularization models………………………………………………..……15 

4.1   Introduction…………………..………………………………………………..15 
4.2  Ridge regression………………………..……………………………………...16 
4.3  Least Absolute Shrinkage and Selection Operator (Lasso)………………….....17 
4.4  Elastic net……………………………..…………………………………….....18 
4.5  Smoothly Clipped Absolute Deviations (SCAD)………………..………….....19  
4.6  Minimax Concave Penalty (MCP)...........................………………..................19 

Chapter 5  Sure Independence Screening…………………………………………….........21 

5.1   Introduction……………………………………………..……………………..21 
5.2   Sure Independence Screening……………………………………………….....21 

 



High Dimensional Analysis                                                                  vi 

Chapter 6  Functional Data Analysis………………………………………………………24 

6.1   Introduction…………………………………………………………………....24  
6.2   Functional Data……………………………………………………………..…24 
6.3   Proximities Notions………………………………………………....…............25 
6.4   Functional Regression Model………………………………………………….25 
6.5   Smoothing by Basis representation…………………………………………....26  
6.6   Validation criterion………………………………………………………….....28 

Chapter 7  Grapevine Data…………………………………………………………….…..29 

7.1   Location………………………………………………………………….…….29 
7.2   Spectral Data Collection……………………………………………….……....29 
7.3   Nutrient Analysis……………………………………………………….……...30 
7.4   Spectral Reflectance…………………………………………………………...30 

Chapter 8  Exploratory Data Analysis of Grapevine Data………………………………....32 

8.1   Data Analysis Methods………………………………………………………...32 
8.2   Outliers…………………………………………………………………….......33 
8.3   Multicollinearity………………………………………………………...…......37  
8.4   Residual Analysis…………………………………………………………...…44 

Chapter 9        Variable Selection of Riesling Bloom Leaf Analysis ……...…………………..48 

9.1  Introduction………………………………………………………………..…..48 
9.2  Methods for Wavelength Selection…………….……………………………....48 
9.3         Penalized (Pseudo) Likelihood Approach (Elastic Net) using package glmnet.49 
9.4  Minimax Concave Penalty using package ncvreg…………………………...59 
9.5  Iterative Sure Independence Screening using package SIS…………………….69 
9.6  Functional Data Analysis using package fda…..……………………………..73 

Chapter 10      Problem associated with Multivariate Dataset…………………………………85 

10.1 Introduction…………………………………………………………………....85 
10.2 Value of lambda.min and lambda.min.ratio as 0.004……………………….…85 
10.3 Value of lambda.min and lambda.min.ratio as 0.003…………….……………90 
10.4 Value of lambda.min and lambda.min.ratio as 0.0024…………………….…..94 

Chapter 11  Comparison among Grapevine Datasets……………………………………...100  
11.1 Introduction…………………………………………………………………..100 
11.2 Exploratory Data of Riesling Bloom Petiole Analysis at Leaf………….…….101 
11.3 Exploratory Data of Riesling Veraison Petiole at Nadir………………………103 
11.4 Exploratory Data of Cabernet Franc Leaf Analysis at 150…………….………105   
11.5 Exploratory Data of Cabernet Franc Leaf Analysis at Leaf…………………..107 
11.6 R-squared, adjusted R-squared and predicted R-squared…………………….109 
11.7 Comparison of the four grapevine datasets….………………………………..111 
11.8 Findings of the selected four grapevine datasets……………………………...112 
11.9 Recommendation based on analysis of four grapevine datasets………………112 



High Dimensional Analysis                                                                  vii 

Chapter 12   Conclusion……………………..……………………………………………..113 

References……………………………………….…………………………………………...118 

 
  



High Dimensional Analysis                                                                  viii 

List of Figures 
Figure 7.1:  Location of the farm for data collection………………………………………………...…29 

Figure 8.1:  Spectral Curve measurement of the Reflectance against the wavelength…...…………….33  

Figure 8.2:  Spectral Curve measurement of the Reflectance against the wavelength after replacing 

wrong observations with mean……..…………………………………………………34 

Figure 8.3:   Correlation plot of Wavelength for nitrogen….…………………………………………..37 

Figure 8.4:   Correlation plot of Wavelength for Potassium……………………………………………38 

Figure 8.5:   Correlation plot of Wavelength for Phosphorus………………………………………….39 

Figure 8.6:   Correlation plot of Wavelength for Magnesium………………………………………….39 

Figure 8.7:   Correlation plot of Wavelength for Zinc…………………………………………………39 

Figure 8.8:   Correlation plot of Wavelength for Boron……….………………………………………40 

Figure 8.9:   Scatterplot of VIF against Wavelength for Nitrogen……………………………………..41 

Figure 8.10: Scatterplot of VIF against Wavelength for Potassium……………………………………42 

Figure 8.11: Scatterplot of VIF against Wavelength for Phosphorus……………………………….….42 

Figure 8.12: Scatterplot of VIF against Wavelength for Magnesium…………………………………..43 

Figure 8.13: Scatterplot of VIF against Wavelength for Zinc………………………………………….43 

Figure 8.14: Scatterplot of VIF against Wavelength for Boron………………………………………...44 

Figure 8.15: Residual Plot of Nitrogen…………………………………………………………………45 

Figure 8.16: Residual Plot of Potassium……………………………………………………….……….45 

Figure 8.17: Residual Plot of Phosphorus………………………………………………………………46 

Figure 8.18: Residual Plot of Magnesium………………………………………………………………46 

Figure 8.19: Residual Plot of Zinc………………………………………………………………………46 

Figure 8.20: Residual Plot of Boron…………………………………………………………………….47 

Figure 9.1:  Model Coefficient Path using Elastic Net for the Nitrogen…………………………….….50 

Figure 9.2:  Mean-Squared Error and log (λ) using Elastic Net for the Nitrogen………………………51 

Figure 9.3:  Coefficients of Non-Zero Variables for the Nitrogen………………………………………52 

Figure 9.4:  Model Coefficient Path using Elastic Net for the Potassium………………………………52 

Figure 9.5:  Mean-Squared Error and log (λ) using Elastic Net for the Potassium………………………53 

Figure 9.6:  Coefficients of Non-Zero Variables for the Potassium…………………………………….53 

Figure 9.7:  Model Coefficient Path using Elastic Net for the Phosphorus………………………………54 

Figure 9.8:  Mean-Squared Error and log (λ) using Elastic Net for the Phosphorus……………………54 

Figure 9.9:  Coefficients of Non-Zero Variables for the Phosphorus……………………………………54 

Figure 9.10:  Model Coefficient Path using Elastic Net for the Magnesium……………………………55 



High Dimensional Analysis                                                                  ix 

Figure 9.11: Mean-Squared Error and log (λ) using Elastic Net for the Magnesium……………………55 

Figure 9.12: Coefficients of Non-Zero Variables for the Magnesium………………………………….56 

Figure 9.13: Model Coefficient Path using Elastic Net for the Zinc……………………………………56 

Figure 9.14: Mean-Squared Error and log (λ) using Elastic Net for the Zinc……………………………57 

Figure 9.15: Coefficients of Non-Zero Variables for the Zinc…………………………………….……57 

Figure 9.16: Model Coefficient Path using Elastic Net for the Boron……………………………..……58 

Figure 9.17: Mean-Squared Error and log (λ) using Elastic Net for the Boron………………………….58 

Figure 9.18: Coefficients of Non-Zero Variables for the Boron………….…………………………….58 

Figure 9.19: MCP Coefficient Paths for the response variable - Nitrogen……………………………...61 

Figure 9.20: MSE and log (λ) using MCP for the response variable - Nitrogen………………….…….62 

Figure 9.21: R-Squared and log (λ) using MCP for the response variable - Nitrogen…………….……63  

Figure 9.22: MCP Coefficient Paths for the response variable - Potassium……………………….……63 

Figure 9.23: MSE and log (λ) using MCP for the response variable - Potassium………………………63 

Figure 9.24:  R-Squared and log (λ) using MCP for the response variable - Potassium……………….64 

Figure 9.25: MCP Coefficient Paths for the response variable - Phosphorus…………………………..64 

Figure 9.26: MSE and log (λ) using MCP for the response variable - Phosphorus…………………….64 

Figure 9.27: R-Squared and log (λ) using MCP for the response variable - Phosphorus………………65 

Figure 9.28: MCP Coefficient Paths for the response variable - Magnesium……………………………65 

Figure 9.29: MSE and log (λ) using MCP for the response variable - Magnesium…………………….65 

Figure 9.30: R-Squared and log (λ) using MCP for the response variable - Magnesium………….……66 

Figure 9.31: MCP Coefficient Paths for the response variable - Zinc………………………….……….66 

Figure 9.32: MSE and log (λ) using MCP for the response variable - Zinc……………….……………66 

Figure 9.33: R-Squared and log (λ) using MCP for the response variable - Zinc………………………67 

Figure 9.34: MCP Coefficient Paths for the response variable - Boron……………………………..….67 

Figure 9.35: MSE and log (λ) using MCP for the response variable - Boron……………………….….67 

Figure 9.36: R-Squared and log (λ) using MCP for the response variable - Boron…………………….68 

Figure 9.37: Plot of beta coefficients for the response variable - Nitrogen…………….………………70 

Figure 9.38: Plot of beta coefficients for the response variable - Potassium………………………….…71 

Figure 9.39: Plot of beta coefficients for the response variable - Phosphorus………….………………71 

Figure 9.40: Plot of beta coefficients for the response variable - Magnesium…….……………………71 

Figure 9.41: Plot of beta coefficients for the response variable - Zinc…………………………………72 

Figure 9.42: Plot of beta coefficients for the response variable - Boron…………………………………72 

Figure 9.43: Beta coefficient of response variable Nitrogen for Functional Regression………….….…74 

Figure 9.44: CV of Functional Regression for response variable - Nitrogen………………………..….75  



High Dimensional Analysis                                                                  x 

Figure 9.45: CV of Functional Regression for response variable - Nitrogen…………………………...75 

Figure 9.46: Optimized beta function for response variable - Nitrogen…………………………………76  

Figure 9.47: Beta coefficient of Functional Regression for response variable - Potassium………….....76  

Figure 9.48: CV of Functional Regression for response variable - Potassium………………………….76  

Figure 9.49: CV of Functional Regression for response variable - Potassium………………………….77  

Figure 9.50: Optimized beta function for response variable - Potassium……………………………...,,77  

Figure 9.51: Beta coefficient of Functional Regression for response variable - Phosphorus………….,,77  

Figure 9.52: CV of Functional Regression for response variable - Phosphorus…………………………78 

Figure 9.53: CV of Functional Regression for response variable - Phosphorus…………………………78 

Figure 9.54: Optimized beta function for response variable - Phosphorus………………………………78 

Figure 9.55: Beta coefficient for Functional Regression of response variable - Magnesium……………79  

Figure 9.56: CV of Functional Regression for response variable - Magnesium…………………………79 

Figure 9.57: CV of Functional Regression for response variable - Magnesium………………………..79 

Figure 9.58: Optimized beta function for response variable - Magnesium…………………………..…80  

Figure 9.59: Beta coefficient of Functional Regression for response variable - Zinc………………..…80 

Figure 9.60: CV of Functional Regression for response variable - Zinc……………………………..…81 

Figure 9.61: CV of Functional Regression for response variable - Zinc……………………………..…81 

Figure 9.62: Optimized beta function for response variable - Zinc…………………………………..…81 

Figure 9.63: Beta coefficient of Functional Regression for response variable - Boron……………..….82  

Figure 9.64: CV of Functional Regression for response variable - Boron………………………..…….82 

Figure 9.65: CV of Functional Regression for response variable - Boron……………………………….82 

Figure 9.66: Optimized beta function for response variable - Boron…………………………………….83 

Figure 10.1: Scatterplot of VIF against Wavelength - Nitrogen…………………………………………86 

Figure 10.2: Scatterplot of VIF against Wavelength - Potassium……………………………………….87 

Figure 10.3: Scatterplot of VIF against Wavelength - Phosphorus…………………………………...…87 

Figure 10.4: Scatterplot of VIF against Wavelength - Magnesium ………………………………….…88 

Figure 10.5: Scatterplot of VIF against Wavelength - Zinc…………………………………………..…89 

Figure 10.6: Scatterplot of VIF against Wavelength - Boron………………………………………..….89   

Figure 10.7: Scatterplot of VIF against Wavelength - Nitrogen……………………………………..….90  

Figure 10.8: Scatterplot of VIF against Wavelength - Potassium…...…………………………….….…91 

Figure 10.9: Scatterplot of VIF against Wavelength - Phosphorus……….……………………….….…92 

Figure10.10: Scatterplot of VIF against Wavelength - Magnesium……..………………………………92 

Figure10.11: Scatterplot of VIF against Wavelength - Zinc…………….………………………………93 

Figure10.12:  Scatterplot of VIF against Wavelength - Boron…………..………………………………93 



High Dimensional Analysis                                                                  xi 

Figure10.13: Scatterplot of VIF against Wavelength - Nitrogen………………………………………94 

Figure10.14: Scatterplot of VIF against Wavelength – Potassium……………………………………..95 

Figure10.15: Scatterplot of VIF against Wavelength - Phosphorus……………………………………96 

Figure10.16: Scatterplot of VIF against Wavelength - Magnesium……………….……………………96 

Figure10.17: Scatterplot of VIF against Wavelength - Zinc……………………………………………97 

Figure10.18: Scatterplot of VIF against Wavelength - Boron……………………………………….….97 

Figure 11.1: Spectral Curve measurement of Riesling Bloom Petiole Analysis dataset……………….101 

Figure 11.2: Spectral Curve of Riesling Bloom Petiole Analysis dataset without wrong        

Observations…………………………………………………………..……….…….101 

Figure 11.3: Spectral Curve measurement of Riesling Bloom at Nadir dataset…………….……..........104  

Figure 11.4: Spectral Curve of Riesling Bloom Petiole Nadir dataset without wrong observation.........104 

Figure 11.5: Spectral Curve measurement of CF Bloom Leaf Analysis dataset……………………….106  

Figure 11.6: Spectral Curve measurement of CF Bloom Leaf dataset without wrong observation.........106 

Figure 11.7: Spectral Curve measurement of CF Bloom Leaf Analysis dataset………………………..108  

Figure 11.8: Spectral Curve measurement of CF Bloom Leaf Analysis dataset without wrong                     

Observations……………………………...………………………………..……..….108 

 

 
 

 

 

 

 

 

 

 

 

 



High Dimensional Analysis                                                                  xii 

 

List of Tables 

Table 8.1:  Max and Min correlation with the response variables of the grapevine dataset……………38 

Table 8.2:  Median VIF of significant predictors for response variable of grapevine dataset…………....42 

Table 8.3:  Outliers for response variable of grapevine dataset………………………………………….45 

Table 8.4:  Influential cases for response variable of grapevine dataset…………………………………47 

Table 9.1:  Lambda values corresponding to the minimum MSE…………………………………...…...51 

Table 9.2:  MCP coefficient paths of response variable of the grapevine dataset…………………...…...61 

Table 9.3:  Lambda values for response variable of the grapevine dataset using MCP…………………..62 

Table 9.4:  Iterations and significant variables for response variables using SIS…..................................70 

Table 10.1: Median VIF of significant predictors for lambda.min of 0.004……………………………..86 

Table 10.2: Median VIF of significant predictors for lambda.min of 0.003 …………………………….91 

Table 10.3: Median VIF of significant predictors for lambda.min of 0.0024……………………………95 

 

 

 

 



 

 
 

 

Chapter 1 

Introduction 

1.1 Background  

Due to changing consumption patterns, Technavio analysts forecast the global consumption 

of wine to reach more than 30 billion liters by 2020. To meet such a huge demand, the study of 

vineyard leaf spectra becomes the key determinant of grape characteristics like fruit ripening rate, 

water status, infestation, and disease. Macronutrients including nitrogen, phosphorus, potassium, 

and magnesium, and the micronutrients including boron, and zinc are found in the soil ("Mineral 

nutrients," 1998). By studying the leaf biochemistry, we can estimate the nutritional deficiencies 

caused by micro and macro elements (Zarco-Tejada et al., 2005). According to G. W. Anderson 

(2016) and Anderson et al. (2016), the six vital nutrients that interest the viticulturists for the 

growth of wine grapes are nitrogen, potassium, phosphorous, magnesium, zinc, and boron. 

Mineral Nutrition and Suppression of Plant Disease, (2014) and Mineral nutrients (1998) 

explains several essential macronutrients and micronutrients are found in grape vines.  Correct 

amounts of nitrogen (N), as nitrate or ammonium, is necessary for the faster growth of the plant 

and enhanced rate of photosynthesis. Excessive nitrogen may lead plant to lack resistance to 

disease whereas its deficiency may cause underdevelopment of the plants and their leaves turn 

yellow prematurely. Potassium (K) improves root growth, water, and nutrient uptake, and affect 

the occurrence of a plant disease. Phosphorus (P) plays a vital role in reproduction and metabolism 

of the plant. Its deficiency may lead to delayed flowering, spindly appearance and bronze-violet 

pigmentation of leaves and stalks. Magnesium (Mg) is a constituent of chlorophyll.  Due to its 

deficiency, the leaves turn yellow or brown and may shed prematurely. Zinc (Zn) is responsible 

for fruit set (flowers becoming berries); shoot elongation, pollen development, and antibiotic 

production to protect the plant cells. Boron (B) is essential for growth and metabolic processes that 

control plant defense. Its deficiency may reduce the yield of the vines according to G. W. Anderson 

(2016) and Anderson et al. (2016). 
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To ensure good crop quality and yield, we need to control the concentrations of these 

nutrients in plants. The reflectance value of leaf is expressed between 350 – 2500 nm. Hence using 

electromagnetic reflectance as the input, we can predict the chemical characteristics of these 

nutrients of grapevine leaves and petioles  (Ordóñez, Rodríguez-Pérez, Moreira, & Sanz, 2013).  

1.2 Thesis Organization  

This thesis has been broadly divided into four parts. The first part, comprising of five 

chapters (chapters 2 to 6), deals with the theory of all the statistical methodologies used in this 

thesis. Chapter 2 deliberates about the various aspects of exploratory data analysis, like missing 

values and outliers, including robust regression and multicollinearity. Chapter 3 discusses various 

aspects of variable selection and stepwise linear regression. Chapter 4 deliberates about various 

regularization models using coefficients paths like Ridge, Lasso, Elastic net, Smoothly Clipped 

Absolute Deviations and Minimax Concave Penalty (MCP).  Chapter 5 discusses various aspects 

of iterative Sure Independence Screening. Chapter 6 deliberates about different aspects of the 

functional approach to variable selection, including smoothing by basis representation and 

validation. The second part deals with the reflectance data of the leaves of Riesling, and Cabernet 

Franc variety of grapes collected from different view angle during their bloom and veraison period 

of growth. The third part comprising of three chapters (chapter 8 to 10) and deals with the data 

analysis of one of the various grapevine datasets.  In chapter 8, exploratory data analysis is 

performed on the above-selected data.  In chapter 9, selection of variables is carried out using 

coefficients paths, iterative sure independence screening and functional approach to obtain 

optimum values of adjusted R–Squared and predicted R–Squared. Then the value of R–Squared, 

adjusted R–Squared and predicted R–Squared, obtained from various methods, are compared for 

further study. Chapter 10 explains the problem of dealing with multivariate data. The last part; 

consist of two chapters (chapter 11 and 12). In chapter 11, four grapevine datasets are chosen from 

various combinations ensuring representation of each of the two varieties, growth periods, and 

view angle and analysis of leaf and petiole of the grapevine. Then these datasets are compared 

based on the best method of variable selection obtained from part three. Chapter 12 provides the 

conclusion of the thesis.  



High Dimensional Analysis                                                                  3 

Chapter 2 

Exploratory Data Analysis  

 

2.1   Introduction 

The quality of a large real-world data set depends on various issues. The source of the data 

is the essential factor. Data entry and acquisition is inherently prone to errors, both noncomplex 

and complex.  The field error rates in the data acquisition phase are typically around 5% or more 

even when the most sophisticated measures to prevent error are used. Recent studies have shown 

that as much as 40% of the collected data have some or other problem (Maimon & Rokach, 2005). 

Therefore, for existing data sets the logical solution is to explore the dataset for possible problems 

and attempt to correct the errors. To enhance the data reliability, data cleansing, such as handling 

missing values and removal of noise or outliers, becomes necessary. Hence, exploratory data 

analysis can be regarded as a first step, or a preprocessing step, for any data analysis.   

 

2.2   Missing Values  

To find some attribute values missing in much real-life data is ubiquitous in modern 

research. Missing values is a problem because nearly all standard statistical methods presume 

complete information for all the variables included in the analysis. A few missing values on some 

variables can dramatically shrink the sample size, and if some important attributes missing, then 

the entire study may fail. There is a variety of reasons why data sets are affected by missing 

attribute values. Some attribute values were not recorded because they are considered irrelevant, 

forgotten or placed into the table but later on mistakenly erased.  Dealing with missing values 

requires a careful examination of the data to identify the type and pattern of missing values. 

Missing data can introduce bias in the parameter estimation. Hence, a suitable method should make 

that bias as small as possible. The most common approach to handling such missing attribute 

values is the following method (also called as preprocessing method). The method includes 
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techniques based on replacing a missing attribute value by the most common value of that attribute, 

deleting observations with missing attribute values, mean for numerical attributes or value taken 

from the closest fit case. 

 

2.3  Outliers 

In the real datasets, it often happens that some observations, called outliers, are different 

from the majority. These outliers may be errors, or they could have been recorded under 

exceptional circumstances, or belong to another population. Hence the first steps towards finding 

a coherent analysis are the detection of outliers.  Although outliers are often considered as an error 

or noise, they may include relevant information. Detected outliers are candidates for abnormal data 

that may otherwise adversely lead to model misspecification, biased parameter estimation, and 

incorrect results. It is, therefore, important to identify them before modeling and analysis. Hawkins 

defines an outlier as an observation that deviates so much from other observations as to arouse 

suspicion that a different mechanism generated it. For a field fi in a record, rj can be considered as 

an outlier if the value of fi > μi + ε σi or the value of fi < μi - ε σi.  Where μi is the mean for the field 

fi, σi is the standard deviation, and ε is a user defined factor. Regardless of the distribution of the 

field fi, most values should be within a certain number ε of standard deviations from the mean. The 

value of ε  can be user-defined, based on some domain or data knowledge (Maimon & Rokach, 

2005). 

There are numerous modeling methods, which are resistant to outliers or reduce their 

impact. In the classical least squares (LS) method, which is acutely sensitive to regression outliers, 

one often tries to detect outliers and replaces them with mean or median. At times, these outliers 

may contain some useful information; hence, removing or replacing all of them with mean or 

median may fail to capture the correct pattern. Hence, we need to strike a balance between 

replacing and retaining outliers.  
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2.4   Robust Regression 

In high dimensional data, the occurrence of outliers is expected, and these outliers may 

receive considerably more weight leading to distorted estimates of regression coefficients. This 

distortion makes detection of deviated observations (outliers) difficult because their residuals are 

much smaller than they would otherwise be without distortion. Also, multivariate leverage outliers 

can be masked by the effect of good leverage points, on the other hand, some good data points 

might even appear to be outliers, which is known as swamping. To avoid these effects, robust 

regression down weights the influence of outliers, which makes their residuals larger and easier to 

identify. A robust measure is the median of all absolute deviations from the median (MAD): 

MAD =  1.483 median
𝑖𝑖=1,…,𝑛𝑛

|𝑥𝑥𝑖𝑖 −  median
𝑖𝑖=1,…,𝑛𝑛

(𝑥𝑥𝑖𝑖)| 

A correction factor, constant of 1.483 is used to make the MAD unbiased at the normal 

distribution. The smallest fraction of outliers called breakdown point that may cause an estimator 

to take on arbitrarily large aberrant value is around 50% for most of the robust regression method. 

In other words, robust regression can provide resistant results in the presence of outliers  

Rousseeuw & Hubert (2011).  

 

2.5   Robust Regression Methods 

Linear regression analysis uses the least squares, which would not be appropriate in solving 

a problem containing outliers or extreme observations. Therefore, we need a parameter estimation 

method, which is robust where the value of the estimation is not much affected by small deviations 

in the data. The robust regression applies numerous methods to restrict the influence of outliers; 

robust regression uses numerous methods. Least Trimmed Squares (LTS) estimation, M-

estimation, S-estimation and MM estimation will be explained in robust regression to determine a 

regression model. 

 Rousseeuw & Hubert (2011) developed Least Trimmed Squares (LTS) estimation method 

as given below. 
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�̂�𝛽𝐿𝐿𝐿𝐿𝐿𝐿 = argmin
𝛽𝛽

�(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝐿𝐿𝛽𝛽)2
ℎ

𝑖𝑖=1

= argmin
𝛽𝛽

�ϵ𝑖𝑖2
ℎ

𝑖𝑖=1

  

where ϵ12 ≤ ϵ22 ≤ . . . ≤ ϵ𝑛𝑛2 , are the ordered squared residuals from smallest to largest and i = 1, 2, 

…, n. LTS is calculated by minimizing the h ordered squares residuals, where h= [n/2]+[(p+1)/2], 

with n and p being sample size and number of parameters, respectively. The largest squared 

residuals are excluded from the summation in this method, which allows those outlier data points 

to be excluded completely.  

 

The most common method of robust regression is M-estimation, introduced by Huber. Here 

M indicates an estimation of the maximum likelihood type (Alma, 2011). The M-estimation 

principle is to minimize the sum of a chosen function ρ of the errors, rather than minimizing the 

sum of squared errors. The M-estimate objective function is,  

�̂�𝛽𝑀𝑀 = argmin
𝛽𝛽

�𝜌𝜌
�𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝐿𝐿�̂�𝛽�

𝜎𝜎�

𝑛𝑛

𝑖𝑖=1

 

where 𝜌𝜌 is a symmetric function and continuously differentiable with a unique minimum at zero 

and 𝜎𝜎� is an estimator. An estimate of 𝜎𝜎� is given by  

𝜎𝜎� =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝜖𝜖𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜖𝜖𝑖𝑖)|

0.6745
 

Iteratively reweighted least squares (IRLS) is used in the calculation of M-estimates. In 

IRLS, the first fit is calculated, and then a new set of weights is computed based on the results of 

the original fit. The iterations are continued until a specified number of iterations are finished, or 

a convergence criterion is met. Thus, function ρ gives the contribution of each residual. However, 

M-estimation lacks the consideration of the data distribution and uses only the median as the 

weighted value; hence, it is not a function of the overall data.  

 

To overcome the weaknesses of media, Rousseeuw & Hubert (2011) introduced a high 

breakdown value method, called S-estimation. Here S indicates that it is based on estimates of 

scale. S-estimators minimize the dispersion of the residuals, in the same way, that the least squares 

estimator minimizes the variance of the residuals. Since the S estimate satisfies the necessary 

conditions as the M estimate, hence it has the same asymptotic covariance as M estimate. The 
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objective function is minimized residual standard deviation 𝜎𝜎�𝑠𝑠 (∊1(β),...,∊n(β)), where ∊i (β) is the 

ith  error term dependent on the regression coefficients β.  

�̂�𝛽𝐿𝐿 =   𝑚𝑚𝑚𝑚𝑚𝑚�𝜌𝜌
�𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝐿𝐿�̂�𝛽�

𝜎𝜎�𝑠𝑠

𝑛𝑛

𝑖𝑖=1

 

where 𝜌𝜌 is a symmetric function and continuously differentiable with a unique minimum at zero 

and 𝜎𝜎�𝑠𝑠 is a robust scale estimator. An estimate of 𝜎𝜎�𝑠𝑠 is given by  

 

𝜎𝜎�𝑠𝑠 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝜖𝜖𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜖𝜖𝑖𝑖)|

0.6745
 

 

MM estimation is a particular type of M-estimation with an aim to obtain estimates that 

have a high breakdown value and more efficient. Yohai (1987) developed the MM-estimates as a 

three-stage procedure. In the first stage, an initial regression parameter is computed using S-

estimator, which is consistent, and robust with high breakdown point, but not necessarily efficient.  

 

In the second stage, a more efficient M-estimate of the errors scale is computed using 

residuals based on the initial estimate. The objective function used in this phase is labeled ρ0.  

 

Finally, in the third stage, an M-estimate of the regression parameters based on a proper 

redescending the Psi-function is computed. The last step computes the MM estimate of scale as 

the solution to 

�̂�𝛽𝑀𝑀𝑀𝑀 = argmin
𝛽𝛽

�𝜌𝜌�
𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝐿𝐿�̂�𝛽
𝜎𝜎�𝑀𝑀𝑀𝑀

 �
𝑛𝑛

𝑖𝑖=1

 

where 𝜎𝜎�𝑀𝑀𝑀𝑀 is the standard deviation obtained from the residual of S estimation. 

2.6   Multicollinearity 

In multiple regression models, multicollinearity (also collinearity) refers to a phenomenon 

in which two or more predictors are highly correlated with each other or the response variable.  It 

increases the variance of the coefficient estimates and makes the estimates very sensitive to minor 

changes in the model. As a result, the coefficient estimates are unstable and difficult to interpret. 
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In other words, by overinflating the standard errors, multicollinearity makes some variables 

statistically insignificant when they should be significant.  

To fit the model Y = X𝛽𝛽 + ∊. The LS solution b = (XTX)-1 XTY would usually be sought. 

However, if XTX is singular, we cannot perform the inversion and the normal equations will not 

have a unique solution. In this situation, at least one column of X is linearly dependent on the other 

columns (i.e., linear combination of the columns of the X matrix is zero). We would assume 

"multicollinearity" when there exists a "near dependence" in the X columns (Draper & Smith, 

1998). Multicollinearity can be reduced by removing one of the correlated predictors from the 

model, because they supply redundant information. 

In addition to removing correlated predictors, multicollinearity can be dealt by using other 

methods, like an elastic net and functional data analysis. The elastic net can select clusters of 

correlated features when the groups are not known in advance by inducing a grouping or clustering 

effect during variable selection. These groups of highly correlated variables tend to have 

coefficients of similar magnitude.  

 

2.7   Variable Selection  

  Variable selection in multivariate analysis is a critical step in regression, especially when 

the number of covariates is large in comparison to the sample size. It is an essential step because 

the removal of non-informative variables will produce better prediction results with simpler 

models. Hence, the selection methods are based on judicious selection of a subset of variables from 

the original set, which will allow easier interpretation, better prediction, and reduction in the 

complexity of the model. Penalized likelihood estimation of the coefficients, based on continuous 

penalty functions, provide an attractive approach to performing variable selection and estimation 

of regression coefficient by simultaneously identifying a subset of variables that are associated 

with a response. In the next three chapters, we discuss various continuous, nearly unbiased, sparse 

and accurate methods of variable selection using coefficients paths like penalized maximum 

likelihood and nonconvex penalties, and (SIS).methods of based on convex, non-convex, penalty 
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and their combination. Also, we discuss the iterative Sure Independence Screening and application 

of functional data analysis for the high dimensional data.  
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Chapter 3 

Methods of Variable Selection 

 

3.1   Introduction 

Traditional multivariate data analytical approaches assume the data of large sample size (n) 

with a few predictors (p). With the amazing development of modern technology, including 

computing power and storage, higher dimensional (n ‹‹ p) and high-throughput data of vast size 

and complexity are being produced for contemporary statistical studies. To perform efficient and 

reliable model selection for such high-dimensional multivariate data can be challenging. Let 

X1, . . . , Xp is the set of predictors, with n observations and Y be the response variable. The problem 

of variable selection arises when p is enormous and a subset of X1, . . . , Xp is thought to contain 

many redundant variables. In recent years, the study of such dataset with the curse of 

dimensionality has received great attention from the research community. Ill-conditioning of the 

variance-covariance matrix for such high-dimensional dataset renders typical multivariate data 

analysis unattractive (Wu & Müller, 2010). Hence penalized likelihood procedures can provide an 

attractive approach for variable selection and regression coefficient estimation by simultaneously 

identifying a subset of predictors that are associated with a response. For example, Cp (Mallows, 

1973), AIC (Akaike, 1974) and BIC (Schwarz, 1978) are all motivated from ℓ0 penalized likelihood 

regression. ℓ0 penalty directly penalizes the number of non-zero coefficients in the model and is 

intuitively suitable for the purpose of variable selection.  However, there are two major limitations 

in this type of penalized likelihood procedure. First, the ℓ0 penalty is not continuous at the origin 

point, and hence the resulting estimators are likely to be unstable.  Second, ℓ0 penalized likelihood 

procedure involves an exhaustive search over all possible models; hence it is computationally 

infeasible for a large number of potential covariates.  Hence, we require a penalized likelihood 

estimation based on continuous penalty functions, like ℓ2-norm or ℓ1-norm or mixed. Ridge 

regression (Hoerl & Kennard, 1970) as a continuous shrinkage method, achieves its better 

prediction performance through a bias–variance trade-off by minimizing the residual sum of 

squares based on the ℓ2-norm of the coefficients. However, ridge regression cannot yield a 
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parsimonious model, for it always keeps all the predictors in the model. Hence it is not a suitable 

technique for an asymptotic setup (p > n).  Regularization technique like Least Absolute Shrinkage 

and Selection Operator (Tibshirani, 1996) based on ℓ1-norm, can reduce dimensionality, select 

variables and estimate coefficients simultaneously. However, it becomes unstable when there is 

collinearity in the dataset. Hence, a regularization technique like an elastic net (Zou & Hastie, 

2005), which can reduce dimensionality, selects variables and encourages a grouping effect 

simultaneously, appears to be a better option.  

 

3.2   Insight into High Dimensionality 

A challenge with high dimensionality is that significant predictors can be highly correlated 

with some unimportant ones, which increases with dimensionality. The maximum spurious 

correlation also increases with dimensionality. Consider a situation where all the predictor variable 

X1, . . . , Xp is standardized. The distribution of Z = 𝚺𝚺−1/2𝐗𝐗  is spherically symmetric,  

X = (X1,...,Xp)T and 𝚺𝚺 = cov(X). For better understanding, of the difficulties of high dimensionality 

we, need to separate the effects of the covariance matrix 𝚺𝚺 and the distribution of Z (Fan & Lv, 

2008). 

When dimension p is larger than sample size n, then the design matrix X is rectangular, 

having more columns than rows. Hence, the matrix XTX is large and singular.  Due to 

dimensionality, the spurious correlation between a covariate and the response could be large. The 

unimportant predictors, which are associated with significant ones (predictors), become highly 

correlated with the response variable, and the population covariance matrix 𝚺𝚺 may become ill 

conditioned as n grows. The minimum non-zero absolute coefficient |𝛽𝛽i | may decay with n and 

fall close to the noise level.  

3.3   Dimensionality Reduction  

The curse of dimensionality is strongly linked with the sparseness of data in a high-

dimensional space. Dimension reduction or variable selection is an effective strategy to deal with 

high dimensionality. With dimensionality reduction from high to low, the computational workload 
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can be radically reduced. Now, accurate coefficient estimation can be found by using one of the 

well-developed lower dimensional models. The motivation for dimensionality reduction from the 

original variables is to find the wavelengths significantly responsible for the calculation of various 

nutrients, rather than linear combinations of all the wavelengths. 

We consider the high-dimensional setting of a linear model, 

Y = X𝜷𝜷 + 𝜀𝜀 

      Where dimension of matrix X is n × p, regression vector 𝜷𝜷, p × 1 and response vector Y and ε 

with n × 1. We denote the active set of variables by 

S0 = {j; 𝜷𝜷j ≠ 0, j = 1, . . . , p} 

       The idealistic goal is to make dimensionality reduction with an estimated sparse set of 

variables  

S� ⊆ {1, . . . , p} such that 

|S�| < n-1 

Since the data are not high dimensional anymore, one can rely on more classical techniques 

such as least squares estimation for further analysis using variables from the sparse set S� .  

Based on the principle of parsimony, one needs to reduce the amount of complexity in the 

model while dealing with huge numbers of predictors. To select useful subsets of variables, which 

may be contributing significantly to the model, we use stepwise regression based on P-values of 

interest.  

3.4   Variable selection  

Effective variable selection can lead to parsimonious models with better prediction accuracy 

and easier interpretation. Ideally, the variable selection procedure should be unbiased, sparse and 

continuous.  
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 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑖𝑖 + 𝜖𝜖𝑖𝑖 is modelled by a linear function, where 𝑦𝑦𝑖𝑖 is the response 

variable, i = 1,…, n,  𝑥𝑥𝑖𝑖𝑖𝑖 is the explanatory variables, j = 1, . . . ,p, 𝜖𝜖𝑖𝑖  𝑖𝑖𝑖𝑖𝑖𝑖~  𝑁𝑁(0,𝜎𝜎2) are error terms 

and  𝛽𝛽j’s are regression, coefficients.  

      Without loss of generality, we can standardize the response and each covariate with zero mean 

and unit standard deviation. Hence, after removing the intercept term, the regression model 

mentioned above can be rewritten as given below. 

𝑦𝑦𝑖𝑖 = �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ 𝜖𝜖𝑖𝑖 

      With a large number of predictive variables, we often would like to determine a smaller subset 

that exhibits the strongest effects. For the purpose of feature selection, we consider the penalized 

least squares (LS) estimation.  

=  min
𝛽𝛽𝑗𝑗

�
1

2n
��𝑦𝑦𝑖𝑖 −�𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�

2𝑛𝑛

𝑖𝑖=1

+ 𝜆𝜆�p𝜆𝜆

𝑝𝑝

𝑖𝑖=1

�|βj| ��  

where 𝜆𝜆 is a non-negative tuning parameter and p𝜆𝜆(∙) is a sparsity-induced penalty function that  

which may not depend on 𝜆𝜆 (Geng, 2014). 

The standard techniques for improving the Ordinary Least Square (OLS) estimates are best 

subset selection, ridge regression, lasso and elastic net. Best subset selection provides models that 

can be extremely variable because it is a discrete process either retains or drops variables from the 

model. Its prediction is highly sensitive to minor changes in the dataset. Best subset selection fails, 

when we have many variables because of several combinations. Ridge regression is a continuous 

process that improves prediction error by shrinking large regression coefficients to reduce 

overfitting. However, it fails to perform covariate selection and hence is not very useful when the 

number of explanatory variables exceeds the number of observation. Because of the l1 -penalty, 

Lasso does variable selection and shrinkage, thus retaining the useful techniques of ridge 

regression and subset selection (Tibshirani, 1996). Hence, it is very helpful when the number of 

covariates exceeds the sample size. However, it becomes unstable when there is collinearity in the 
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dataset. To remedy this limitation, one can use Elastic-net regularization, which adds ridge 

regression-like penalty. It allows the model to select strongly correlated variables together and 

improves overall prediction accuracy when the number of a covariates is larger than the sample 

size.  

 

3.5   Stepwise multiple linear regression  

  In the algorithm for stepwise multiple linear regression, original variables are selected 

iteratively according to their correlation with the target property. For a selected variable, a 

regression coefficient is determined and tested for significance using a t-test at a critical level (e.g., 

5%). If the coefficient is found to be significant, the variable is retained, and another variable is 

selected according to its partial correlation with the residuals that are obtained from the model 

built with the first variable. This procedure is called forward selection. The significance of the two 

regression coefficients and their association with the two retained variables are then tested again, 

and the non-significant terms are eliminated from the equation (backward elimination). Forward 

selection and backward elimination are alternated and repeated until no significant improvement 

of the model fit can be achieved by including more variables and all regression terms that are 

already selected are important (Balabin & Smirnov, 2011). In this method, each variable is studied 

independently, and no consideration is given to variable interaction. The stepwise subset selection 

approach increases the search space to enhance the predictability of the models. Hence it suffers 

from statistical problems when p is large and fails in asymptotic setup (p > n).  
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Chapter 4 

The regularization models 

 

4.1   Introduction 

To reduce variability and achieve a more interpretable model, we often seek a smaller subset 

of relevant variables. However, searching through subsets of potential predictor variables for an 

adequate smaller model can be unstable and is computationally unfeasible even of modest 

dimensions. The objective of variable selection is to identify features in the dataset that are 

important and discard variables with irrelevant and redundant information. Since variable selection 

reduces the dimensionality of the data, it holds out the possibility of more efficient & rapid 

operation of the data set. The ordinary least squares (OLS) estimates often have low bias but 

significant variance. With great number predictors, we often would like to determine a smaller 

subset that exhibits the strongest effects. With sparsity, feature selection can improve the accuracy 

of estimation by effectively identifying the subset of significant predictors, and enhance model 

interpretability with parsimonious representation. Consider a linear model with a response variable 

Y, depended on p explanatory variable X ∊ ℝ𝑝𝑝. For small p, proper penalty on the number of 

selected variables based on the Cp, AIC, BIC or a data driven method for subset selection can be 

used to obtain a good guess of the pattern. However, for large p, subset selection is not 

computationally feasible, so we will have to use continuous penalized or gradient threshold 

methods.  

We describe here algorithms for estimation of linear models with convex penalties, including 

ℓ1 (the Lasso), ℓ2 (ridge regression) and combinations of the two (the elastic net). This algorithm 

optimizes each parameter separately, holding all other fixed. Updates are trivial. Then it cycles 

around until coefficients stabilize. This process, called cyclical coordinate descent along a 

regularization path, achieves dramatic speedups over other competitors. The methods can handle 

high dimensional data and can deal efficiently with sparse features. 
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The basic linear regression model used to predict the nutrients with the regularization models 

is: 

Y = Xβ + ∊, 

where Y=(y1,...,yn)T is the vector of observed response variable, X is n × p matrix of predictors; 𝜷𝜷 

is the vector of the regression coefficients of the predictors and ∊ is the vector of the residual errors 

with variance (∊) = 𝜎𝜎𝜖𝜖2 . For simplicity, we, assume that the observed variables have been mean-

centered, so that we have no need for a constant term in the regression. In other words Xij are 

standardized, such that ∑ 𝑋𝑋𝑖𝑖𝑖𝑖 = 0𝑛𝑛
𝑖𝑖=1 , 1

 𝑛𝑛
∑ 𝑋𝑋𝑖𝑖𝑖𝑖2 = 1𝑛𝑛
𝑖𝑖=1 , for j = 1, . . ., p.  

4.2   Ridge regression 

The least square estimate suffers from the deficiency of mathematical optimization techniques 

that give point estimates. To control the inflation and general instability associated with the least 

square estimates, one can use ridge regression (Hoerl & Kennard, 1970). Ridge regression 

performs well only when there is a subset of true coefficients that are small or zero. Ridge 

regression shrinks all coefficients by a uniform (ℓ2 – norm) penalty to produce a unique solution. 

In the case of k identical predictors, they each get equal coefficients with 1/kth the size, which any 

single predictor would get if fit alone. Ridge regression is like least squares but shrinks the 

estimated coefficients towards zero. For a given response vector Y ∈ ℝn and a predictor matrix X 

∈ ℝn×p, the ridge regression coefficients are defined as: 

�̂�𝛽(ridge) =  arg min
𝛽𝛽𝜖𝜖ℝ𝑝𝑝

{∥ 𝐘𝐘 − 𝐗𝐗𝐗𝐗 ∥22+ 𝜆𝜆 ∥ 𝐗𝐗 ∥22}  

Where ∥ 𝐘𝐘 − 𝐗𝐗𝐗𝐗 ∥22 = ∑ (y𝑖𝑖 − x𝑖𝑖𝐿𝐿β)2𝑛𝑛
𝑖𝑖=1   is the ℓ2 –norm (quadratic) loss function (i.e. residual 

sum of squares), x𝑖𝑖𝐿𝐿 is the ith row of X, ∥ 𝐗𝐗 ∥22 = ∑ 𝛽𝛽𝑖𝑖2
𝑝𝑝
𝑖𝑖=1     is the ℓ2 –norm penalty on 𝛽𝛽, and  

𝜆𝜆 ≥ 0 is the tuning (penalty, regularization, or complexity) parameter which regulates the strength 

of the penalty (linear shrinkage) by determining the relative importance of the data-dependent 

empirical error and the penalty term. As 𝜆𝜆 tends to infinity, the coefficients will approach zero. In 

other words, the larger the value of 𝜆𝜆, the greater is the amount of shrinkage. As the value of 𝜆𝜆 is 

dependent on the data, it can be determined using data-driven methods, such as cross-validation. 
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The intercept is assumed to be zero due to mean centering of the variables. (Schulz-Streeck, Ogutu, 

& Piepho, 2012). Since ridge regression does not set the coefficients exactly to zero unless 𝜆𝜆 = ∞, 

in which case all the coefficients are zero. Hence ridge regression cannot select a model with the 

most relevant and predictive subset of predictors.  

4.3  Least Absolute Shrinkage and Selection Operator (Lasso) 

Due to the nature of the ℓ1-penalty, the lasso does both continuous shrinkage and automatic 

variable selection simultaneously. Even though the prediction performance of the Lasso and Ridge 

regression are similar, however, the Lasso is more appealing due to its sparse representation (Zou 

& Hastie, 2005). The Lasso shrinks the magnitude of all the coefficients by a constant value and 

sets them to zero if they reach that value, as in the best subset selection case. In other words, Ridge 

regression shrinks all regression coefficients towards zero; the Lasso tends to give a set of zero 

regression coefficients, which leads to a sparse solution. The Lasso penalty corresponds to a 

Laplace prior, which expects a large number of coefficients to be zero, and only a small subset to 

be nonzero. The Lasso estimator uses the ℓ1 penalized least squares criterion to obtain a sparse 

solution to the following optimization problem: 

β�(Lasso) =  arg min
𝛽𝛽𝜖𝜖ℝ𝑝𝑝

{∥ 𝐘𝐘 − 𝐗𝐗𝐗𝐗 ∥22  + 𝜆𝜆 ∥ 𝐗𝐗 ∥1}   

Where ∥ 𝐘𝐘 − 𝐗𝐗𝐗𝐗 ∥22 = 1
2𝑛𝑛
∑ (y𝑖𝑖 − x𝑖𝑖𝐿𝐿β)2𝑛𝑛
𝑖𝑖=1   is the ℓ2 –norm (quadratic) loss function (i.e. residual 

the sum of squares), x𝑖𝑖𝐿𝐿 is the ith row of X,  ∥ 𝐗𝐗 ∥1 = ∑ |𝛽𝛽𝑖𝑖|𝑝𝑝
𝑖𝑖=1   is the ℓ1 –norm penalty on 𝛽𝛽, which 

induces sparsity in the solution, and 𝜆𝜆⩾0 is the tuning parameter. 

The ℓ1 penalty enables the Lasso to simultaneously regularize the least squares fit and shrink 

some components of β�Lasso To zero for some suitably chosen 𝜆𝜆 (Schulz-Streeck et al., 2012). 

Although the Lasso has many excellent properties, it is a biased estimator and the bias for a truly 

nonzero variable is about λ for large regression coefficients. It is not robust to highly correlated 

predictors. It also fails to do grouped selection. If there is a group of variables among which the 

pairwise correlations are very high, then the lasso tends to arbitrarily pick one variable from the 

group and ignore the others. In the extreme case when all predictors are identical, the lasso breaks 
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down. In addition, Lasso also restricts the number of variables that can be selected. If p>n, the 

lasso selects at most n variables. 

4.4   Elastic net 

From the Bayesian standpoint, the ridge penalty is ideal when there are many predictor 

variables with non-zero coefficients (drawn from a Gaussian distribution). The Lasso penalty, on 

the other hand, corresponds to a Laplace prior that assumes many coefficients to be zero, and only 

a small subset to be nonzero. The elastic net is a compromise between ridge and lasso that is robust 

to extreme correlations among the predictors. The elastic net encourages a grouping or clustering 

effect when strongly correlated predictors enter or exit the model together. The elastic net is mainly 

useful when the number of predictors (p) is bigger than the sample size (n). The elastic net is very 

helpful to analyze high dimensional data and to avoid the instability of the lasso solution paths 

when pairwise correlations are very high. The elastic net uses a mixture of the ℓ1 (lasso) and ℓ2 

(ridge regression) penalties. It is formulated as given below: 

β�(enet) = arg min
𝛽𝛽𝜖𝜖ℝ𝑝𝑝

{∥ 𝐘𝐘 − 𝐗𝐗𝐗𝐗 ∥22 + 𝜆𝜆𝑃𝑃𝛼𝛼(𝛽𝛽)}  

where ∥ 𝐘𝐘 − 𝐗𝐗𝐗𝐗 ∥22= 1
2𝑛𝑛
∑ (y𝑖𝑖 − x𝑖𝑖𝐿𝐿β)2𝑛𝑛
𝑖𝑖=1 ,  and P𝛼𝛼(𝛽𝛽) is the elastic net penalty subject to   

𝑃𝑃𝛼𝛼(𝛽𝛽) = (1 − 𝛼𝛼) ∥ 𝐗𝐗 ∥22+ 𝛼𝛼 ∥ 𝐗𝐗 ∥1 = ∑ [1
2

(1 − 𝛼𝛼)𝛽𝛽𝑖𝑖2
𝑝𝑝
𝑖𝑖=1 + α|βj|] ≤ s   for some s 

P(𝛽𝛽) creates a useful compromise between the ridge-regression penalty (α = 0) and the 

lasso penalty (α = 1). The ℓ1 part of the elastic net does automatic variable selection, while the ℓ2 

part encourages grouped selection and stabilizes the solution paths with respect to random 

sampling, thereby improving prediction. As α increases from zero (0) to one (1), for a given λ the 

sparsity of the solution (i.e., the number of coefficients equal to zero) increases monotonically 

from zero to the sparsity of the lasso solution. This penalty is particularly useful in the p ≫ n 

situation, or any situation where there are many correlated predictor variables However, unlike the 

lasso, when p ≫ n, the elastic net may select more than ‘n’ variables (Schulz-Streeck et al., 2012).  
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4.5  Smoothly Clipped Absolute Deviations (SCAD)  

It is known that the ℓ2 does not satisfy the sparsity condition, and the convex ℓ1 penalty 

does not meet the unbiasedness condition and the concave ℓq penalty with 0 ≤ q < 1 does not meet 

the continuity status. In other words, none of these ℓ penalties satisfies all three conditions 

simultaneously. In high a dimension condition, the bias of penalized estimators can almost be 

removed by choosing a constant penalty beyond a second threshold level 𝛾𝛾𝜆𝜆. Fan & Lv (2010) 

introduced the Smoothly Clipped Absolute Deviation (SCAD), which retains the penalization rate 

(and bias) of the lasso for small coefficients, but continuously relaxes the rate of penalization as 

the absolute value of the coefficient increases. The SCAD penalty is continuously differentiable 

on (-∞, 0) U (0, ∞), but singular at zero with its derivatives zero outside the range [−𝛾𝛾λ, 𝛾𝛾λ]. These 

results in small coefficients being set to zero, a few other coefficients being shrunk towards zero 

while retaining the large coefficients as they are. Thus, SCAD can produce sparse set of solution 

and approximately unbiased coefficients for large coefficients. Fan & Lv (2008) defined the 

continuously differentiable penalty SCAD by 

𝑝𝑝λ′ (|𝛽𝛽|) = λ �𝐼𝐼(|𝛽𝛽| ⩽ λ) + (γλ−|β|)+
(γ−1)λ

𝐼𝐼(|𝛽𝛽| > 𝜆𝜆)�      for some 𝛾𝛾 > 2 

where 𝑝𝑝λ′ (|𝛽𝛽|) is a concave penalty with respect to |𝛽𝛽|. The authors suggested using 𝛾𝛾 = 3.7. It 

coincides with the Lasso until |X| = λ, then smoothly transit to a quadratic function until |X| = 𝛾𝛾𝜆𝜆, 

after which it remains constant for all |X| > 𝛾𝛾𝜆𝜆.  These results apply to general classes of loss and 

penalty functions but do not address the uniqueness of the solution or provide methodologies for 

approximating the local minimizer with the stated properties. A major cause of computational and 

analytical difficulties in these studies of nearly unbiased selection methods is the non-convexity 

of the minimization problem.  

4.6  Minimax Concave Penalty (MCP) 

The Minimax Concave Penalty (MCP) starts by applying the same rate of penalization as the 

lasso, and then smoothly relaxes the penalization rate to zero as the absolute value of the coefficient 

increases. The MCP relaxes the penalization rate immediately, whereas for SCAD the rate remains 

flat for a while, before decreasing. 
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Zhang (2010) defined MCP as, 

𝜌𝜌(𝑡𝑡; λ) = λ ∫ �1 − 𝑥𝑥
γλ
�
+
𝑚𝑚𝑥𝑥𝑡𝑡

0 , 

with a regularization parameter 𝛾𝛾 > 0. It minimize the maximum concavity 

𝜅𝜅(𝜌𝜌) ≡ 𝜅𝜅(𝜌𝜌; λ) ≡ sup
0<𝑡𝑡1<𝑡𝑡2

{�̇�𝜌(𝑡𝑡1; λ) − �̇�𝜌(𝑡𝑡2; λ)}/(𝑡𝑡2 − 𝑡𝑡1) 

subject to the following unbiasedness and features selection: 

�̇�𝜌(𝑡𝑡; 𝜆𝜆) = 0     ∀𝑡𝑡 ≥ 𝛾𝛾𝜆𝜆,         �̇�𝜌(0+; λ) = λ. 

      Convexity ensures that the algorithm converges to the unique global minimum and �̂�𝛽 is 

continuous with respect to λ, which in turn ensures good initial values, thereby reducing the 

number of iterations required by the algorithm. In the absence of convexity, �̂�𝛽 is not necessarily 

continuous with respect to the data—that is, a small change in the data may produce a large change 

in the estimate. Such estimators tend to have high variance in addition to being unattractive from 

a logical perspective. Besides, discontinuity with respect to λ increases the difficulty of choosing 

a good value for the regularization parameter. The coordinate descent algorithms are also not 

guaranteed to converge to a global minimum in general. However, it is not always necessary to 

attain global convexity. In high-dimensional settings where p > n, global convexity is neither 

possible nor relevant. In such settings, sparse solutions for which the number of nonzero 

coefficients is much lower than p, we will still have stable estimates and smooth coefficient paths 

in the parameter space of interest (Breheny & Huang, 2011).  

       MCP provides the sparse convexity to the broadest extent by minimizing the maximum 

concavity. The MCP achieves 𝜅𝜅(𝜌𝜌; λ) = 1/𝛾𝛾. A larger value of its regularization parameter 𝛾𝛾 affords 

less unbiasedness and more concavity. For each penalty level 𝜆𝜆, the MCP provides a continuum of 

penalties with the ℓ1 penalty as 𝛾𝛾 ⟶ ∞ i.e., the MCP and lasso solutions are the same, and the “ℓ0 

penalty” as 𝛾𝛾 ⟶0+ (Zhang, 2010). 
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Chapter 5 

Sure Independence Screening 

 

5.1   Introduction  

Variable selection plays a major role in high-dimensional statistical modeling, which 

nowadays appears in many areas and is key to various scientific discoveries. For problems of high 

dimensionality p, the accuracy of estimation and computational cost are two top concerns. One 

popular family of feature selection methods for parametric models is based on the penalized 

(pseudo-)likelihood approach. It includes the Lasso (Tibshirani, 1996), the SCAD (Fan & Li, 

2001), the elastic net (Zou & Hastie, 2005), the MCP (Zhang, 2010), and related techniques. 

Nevertheless, in ultrahigh dimensional statistical learning problems, these methods may not 

perform well due to the concurrent challenges of computational expediency, statistical accuracy, 

and algorithmic stability. Motivated by these concerns,  Fan & Lv (2008) introduced the concept 

of sure screening method based on correlation learning, called sure independence screening. It 

reduces dimensionality from high to a moderate scale, below the sample size. As a methodological 

extension, iterative sure independence screening is also proposed to enhance its finite sample 

performance.  

 

5.2   Sure Independence Screening 

Consider estimating a p-vector of parameters 𝛽𝛽 from the linear model  

Y=X𝛽𝛽 +∊, 

where Y = (Y1, . . . , Yn)T is an n-vector of responses, X = (X1,..., Xn)T is  n x p matrix, which is 

independent and identically distributed.   X1,..., Xn, 𝛽𝛽 = (𝛽𝛽1, . . . , 𝛽𝛽p)T is a p-vector of parameters 

and ∊= (∊1, . . . , ∊n)T is an n-vector of IID random errors. When the dimension p is high, it is 

assumed that only a small number of predictor variables among X1, . . . , Xp contribute to the 
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response, which amounts to assuming ideally that the parameter vector 𝛽𝛽 is sparse. With sparsity, 

variable selection can improve the accuracy of estimation by effectively identifying the subset of 

important predictors, and enhance model interpretability with parsimonious representation. 

Sparsity comes frequently with high dimensional data, which is a growing feature in many areas 

of contemporary statistics. The problems arise frequently in genomics, imaging, and finance, 

where the number of variables or parameters p are much larger than sample size n. Let us assume 

that the predictors X1, . . . , Xp are independent and follow the standard normal distribution. Then, 

the design matrix is an n x p random matrix, each entry an independent realization from N (0, 1). 

The maximum absolute sample correlation coefficient between predictors can be very large.  The 

multiple canonical correlation between two groups of predictors (e.g. 2 in one group and 3 in 

another) can be even larger. We can filter out the predictors, which have weak correlation with the 

response using the concept of sure independence screening. By sure screening, Fan & Lv (2008) 

mean that all the important variables survive after applying a variable screening procedure with 

probability tending to 1. Fan & Lv (2008) introduces a simple sure screening method using 

component wise regression or equivalently correlation learning, where input variables are 

independent and follow the standard normal distribution N (0, 1). 

Let ℳ∗ = {1 ⩽ 𝑚𝑚 ⩽ 𝑝𝑝 ∶ 𝛽𝛽𝑖𝑖 ≠ 0}  be the true sparse model with non-sparsity size s = |ℳ* |. 

The other (p – s) variables can also be correlated with the response variable via linkage to the 

predictors that are contained in the model. Let 𝜔𝜔 = (𝜔𝜔1, . . . , 𝜔𝜔p)T be a p-vector that is obtained by 

component-wise regression, i.e. 

𝜔𝜔 = XT Y 

Where n x p data matrix X is first standardized column-wise. Hence, 𝜔𝜔 is a vector of marginal 

correlations of predictors with the response variable, rescaled by the standard deviation of the 

response. For any given 𝛾𝛾 ∈ (0, 1), we sort the p component-wise magnitudes of the vector 𝜔𝜔 in a 

decreasing order and define a sub-model 

ℳγ = {1 ⩽ 𝑚𝑚 ⩽ 𝑝𝑝 ∶ |𝜔𝜔𝑖𝑖|  is among the first [𝛾𝛾n] largest of all}, 

Where [𝛾𝛾n] signifies the integer part of 𝛾𝛾n. This is a straightforward way to shrink the full model 

{1, . . . , p} down to a sub-model ℳ𝛾𝛾 with size d = [𝛾𝛾n] < n. Such correlation learning ranks the 
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importance of variable according to their marginal correlation with the response variable and filters 

out those that have weak marginal correlations with the response variable. This correlation 

screening method is called SIS, since each variable is used independently as a predictor to decide 

how useful it is for predicting the response variable and the concept is applicable to generalized 

linear models (Fan & Lv, 2008). 
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Chapter 6 

Functional Data Analysis 

6.1   Introduction  

In the last few decades, data collection technology has evolved to measure observations 

densely sampled over time, wavelength, space and other continua. For modeling this type of data, 

it is more natural to think in functional terms even though only finite numbers of observations are 

available. In such case, the random variables can take values into an infinite dimensional space 

and is represented by a set of curves. Theoretically, the infinite dimension is the largest source of 

difficulty in modeling such data (Jacques & Preda, 2014). Since an observed value is available at 

each point on a line segment, a portion of a plane, hence, curves and images can be considered as 

functions. For this reason, we call observed curves as functional data, and statistical methods for 

analyzing such data are termed functional data analysis (J. O. Ramsay & Dalzell, 1991). In recent 

years, many researchers have proposed various methods to solve these functional data, including 

functional regression analysis, functional principal components analysis, functional clustering, and 

functional multi-dimensional scaling (Mizuta & Kato, 2007). A functional regression model, which 

is the functional version of the regression model, can provide a useful tool for analyzing such 

dataset (Matsui, Kawano, & Konishi, 2009).  

 

6.2   Functional Data 

A functional datum is not a single observation, but rather a set of measurements along a 

continuum that, taken together, are regarded as a single entity, curve or image belonging to an 

infinite dimensional space (Levitin, Nuzzo, Vines, & Ramsay, 2007). Let a functional variable X 

be a random variable taking values in an infinite dimensional space (or a functional space) E. Then; 

a technical dataset is just a sample {X1,…, Xn} drawn from a functional variable X. Here, E is 

assumed to be a normed or semi normed metric space. If functional data are sparsely sampled, or 

there are many missing data points or E is a Hilbert space, then probably the representation in a 

basis is mandatory. If a random variable can be observed at different times in the range (tmin, tmax), 
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then the observation can be expressed by the random family { X1(t),…,Xn(t) }. In other words, we 

can consider the data as an observation of the continuous family X = {X (t); t ∈ T (time interval or 

wavelengths)}. We restrict ourselves to the case where E is a space of real-valued functions 

(Jacques & Preda, 2014).  

 

6.3   Proximities Notions 

Proximities measure between mathematical objects play a major role in all statistical 

methods. In a finite dimensional Euclidean space (ℝp) there is an equivalence between all norms. 

The most popular in ℝp is the Euclidean norm ||.||, which is based on the sum of squares of the 

components of any vector.  

Let X = (X1,..., Xp)T be a vector of ℝp ; then, the classical Euclidean norm is defined by  

||X ||2 = ∑ �𝑿𝑿𝒋𝒋�
𝟐𝟐𝒑𝒑

𝒋𝒋=𝟏𝟏  = XTX 

However, in an infinite dimensional space, the equivalence between norms fails. In the 

functional context, the choice of the preliminary norm becomes more crucial, especially when the 

normed or metric spaces is too restrictive. In such case, semi-metric spaces are better adapted than 

metric spaces. By definition a semi-norm ||.|| which is similar to norm except that ||X|| = 0 ⇏ X = 

0. Similarly, a semi-metric d can be defined to be a metric but such that d(x, y) = 0 ⇏ x = y. In 

other words, the semi-metrics act as a filter and a “good semi-metric” will be a priori, which can 

select all the pertinent information (Ferraty & Vieu, 2006). 

6.4   Functional Regression Model 

In the linear regression, both the response variable Y and the predictors (covariates) Xj are 

scalar, and the model takes the form 

𝑌𝑌 = Σ𝑖𝑖=0
𝑝𝑝 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 + ϵ ,   j= 1,2,…, p 
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The error term ∊ allows for sources of variation, such as measurement error, trivial causal 

factors, and are assumed to be independently and identically distributed. However, this model does 

not account for the fact that X1 represents a wavelength that is right next to the wavelength of X2, 

and so on. In other words, the above linear model fails to capture the smoothness of the X variables 

on the wavelength.  In such a situation, using a functional approach makes more sense. Functional 

regression analysis is widely used to describe the relationship between response and predictor 

variables when at least one of the variables contains a random function. We can convert the data 

to a functional form in two steps: choose and define a set of basis functions, and compute the best 

linear combination. 

If we replace at least one of the p covariate observations Xi = (Xi1, …, Xip) in the linear 

equation by a functional covariate Xi(t), we get a model consisting of a single functional 

independent variable, plus an intercept term. 

Now, we can discretize each of the n functional covariates Xi(t) by choosing a set of times 

t1, …, tq and consider fitting the model.  

𝑌𝑌𝑖𝑖 = 𝛼𝛼0 + Σ𝑖𝑖=0
𝑞𝑞 x𝑖𝑖(𝑡𝑡𝑖𝑖)𝛽𝛽𝑖𝑖 + 𝜖𝜖𝑖𝑖 

If we continue refining the selected time, the summation will approach an integral equation, 

and we will get a functional linear regression model for the scalar response: 

𝑌𝑌𝑖𝑖 = 𝛼𝛼0 + ∫ x𝑖𝑖(𝑡𝑡)𝛽𝛽(𝑡𝑡) d𝑡𝑡 + 𝜖𝜖𝑖𝑖 , i = 1, … , n  Yi ~ N (µ, σ2) 

where the functional regression seeks to quantify the relationship between a scalar outcome Yi and 

a random functions xi(t) (J. O. Ramsay, Hooker, & Graves, 2009).  

Here the constant 𝛼𝛼0 is the intercept term that adjusts for the origin of the response variable. 

The parameter β is in the infinitely dimensional space of ℓ2 functions (the Hilbert space of all 

square integral functions over a certain interval) (Febrero-Bande & Oviedo de la Fuente, 2012).  

6.5   Smoothing by Basis representation  

If we consider each time 𝑡𝑡 as index for a separate scalar independent variable, X(t)  then 

the model will look like any conventional multiple regression.  However, now we will have 
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potentially infinite independent variables at our disposal to predict limited number of scalar values, 

which will result in over-fitting of the data. To avoid this problem, we approximate a function with 

a finite linear combination of basis functions using B-splines (piece wise polynomial).  When we 

assume the data is d to belong to ℓ2 space, then we can represent a curve by a basis.  A basis is a 

set of known functions {𝜙𝜙k}k ∈ ℕ that any function could be arbitrarily approximated by taking a 

weighted sum or a linear combination of a sufficiently large number K of these functions (Febrero-

Bande & Oviedo de la Fuente, 2012).   

Basis function procedures represent a function X(t) by using a fixed truncated basis 

expansion regarding K known basis elements,  

𝑋𝑋(𝑡𝑡) = �𝑐𝑐𝑘𝑘𝜙𝜙𝑘𝑘(𝑡𝑡) ≈� 𝑐𝑐𝑘𝑘𝜙𝜙𝑘𝑘(𝑡𝑡) = 𝑐𝑐𝐿𝐿𝚽𝚽(𝐭𝐭)
𝐾𝐾

𝑘𝑘=1𝑘𝑘∈ℕ

 

The smoothing (or hat) matrix H is square, symmetric and of order n.  

H = Φ(ΦTΦ)-1ΦT,  

The effective degrees of freedom for functional fit is defined by;  

df = trace(H) = K, 

moreover, the associated degrees of freedom for error is n – df. 

When smoothing penalization 𝜆𝜆 is used then the hat matrix H is given by:  

H = Φ(ΦTΦ+𝜆𝜆R)-1ΦT,  

where R is the penalization matrix, with the integral of the square of the derivative of order 2. 

As 𝜆𝜆 ⟶0,  df(𝜆𝜆) ⟶min (n, K), where n = the number of observations and K = the number 

of basis functions. Similarly, as 𝜆𝜆 ⟶∞,  df(𝜆𝜆) ⟶m, where m is the order of the highest derivative 

used to define the roughness penalty. 
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The regression approach to smoothing data only works if the number K of basis functions 

is substantially smaller than the number of observations. Larger values of K will tend to 

undersmooth or overfit the data (J. O. Ramsay et al., 2009).  

 

6.6   Validation Criterion 

The choice of the smoothing parameter is important and, in principle, no universal rule 

would enable an optimal choice. Among the different selection criteria to select the parameter 𝜆𝜆, 

we will discuss two: Cross-validation (CV) and generalized cross validation (GCV).  The basic 

idea behind cross-validation is to set part of the data to one side, calling it a validation sample, and 

fit the model to the balance of the data, called the training sample. In that way, we see how well 

the model fits data that were not used to estimate the model, thus avoiding the somewhat incestuous 

procedure of using the data to both fit the model and assess fit. However, the method is not suitable 

for large sample sizes due to computational intensity, and minimizing CV can lead to under 

smoothing the data. To overcome these problems, generalized cross-validation criterion (GCV) 

was developed to locate a best value for smoothing parameter (𝜆𝜆) (J. Ramsay & Silverman, 2005).  

The criterion is  

GCV (𝜆𝜆) = � 𝑛𝑛
𝑛𝑛−𝑖𝑖𝑑𝑑(𝜆𝜆)� �

𝐿𝐿𝐿𝐿𝑆𝑆
𝑛𝑛−𝑖𝑖𝑑𝑑(𝜆𝜆)� 

The right factor is the unbiased estimate of error variance σ2 familiar in regression analysis 

and thus signifies some discounting by subtracting df (λ) from n. The left factor further discounts 

this estimate by multiplying by n/(n − df (λ)). 
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Chapter 7 

Grapevine Data 

7.1   Location 

The vineyard farm is located in Lansing, NY (42ᴼ34′22.1′′ N, 76ᴼ35′47.9′′ W) with two different 

grape cultivars, used for data collection: a block of Riesling (shown in blue in Figure -7.1), and a 

block of Cabernet Franc (shown in red in Figure 7.1). Since different soil management 

treatments were applied to these blocks over the last several years, one could expect a broad range 

of nutrient concentrations in the leaves. This soil management treatment should add variability to 

the spectral data, which translates to a range of values across the collected spectral and nutrient 

data. 

     

Figure 7.1:   Location of the farm for data collection 

7.2   Spectral Data Collection 

Reflectance spectra were collected during the bloom and the veraison period of growth for 

the nutrient analysis from the farm, located in Lansing NY in two separate grape blocks namely 

Riesling, and Cabernet Franc. For Riesling field, two sets of three panels in each row were grouped 

together in a single block to give us 24 different samples. The Cabernet Franc field consisted of 8 

rows with four viable panels in each. Each panel was considered a block on its own giving the 

nutrient analysis of 32 unique samples. One of the panels from the first row was dead, resulting in 
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the reduction of the total number of sample for this grape variety down to 31. These blocks were 

selected for analysis as they had different soil management treatments applied to them throughout 

the last several years, which theoretically should have resulted in a wide range of nutrient 

concentrations in the leaves. The data were then averaged to match that of the cultivar nutrient 

sampling approach. Data for Cabernet Franc were obtained by averaging the two samples taken 

from each view angle in each panel and lumped together in the nutrient sampling. On the other 

hand, data for Riesling involved averaging the six samples collected between the three panels 

according to G. W. Anderson (2016) and Anderson et al. (2016). 

 

7.3   Nutrient Analysis 

The collection of samples from the grape vines were timed such that they were collected, 

within hours of the spectral samples being collected from the vines, and typically within minutes 

of the spectra being collected. According to typical nutrient analysis, the petioles for each panel 

were collected, dried, ground up and combined before analysis. The petioles from the vines in each 

panel were collected and prepared using the viticulture standard method mentioned by G. W. 

Anderson (2016) and Anderson et al. (2016).  A second nutrient analysis was conducted on the 

leaf blades, prepared in the same way as the petioles, to compare the results between the petioles 

and leaves. 

 

7.4   Spectral Reflectance 

During the bloom data collection, a traditional the Spectralon (reflectance coefficient = 

0.993) panel for calibration was used as it has a near 100% reflectance across the 350- 2500nm 

range. However, due to non-availability of the Spectralon panel, a section of Tyvek (reflectance 

coefficient = 0.97) was used for data collection during the veraison season. Since we are concerned 

with the relative reflectance of the grape leaves, and the difference in their reflectance coefficient 

does not matter.    
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Two samples per vineyard panel were selected for data collection to overcome spurious 

results, using a Spectra Vista Corporation (SVC) spectroradiometer, (SVC HR-768i) for each of 

three different view angles. Then the collected data were averaged. The first view angle was at 

nadir for the individual grape leaves by holding the SVC approximately 0.30m (+0.03m/-0.10m) 

from each leaf. The second view angle was the vine canopy at nadir using a ladder beside the row 

of grape vines and holding the sensor approximately 1m (+0.3m/-0.3m) above the bulk of the 

canopy. The third view angle was canopy at 15° off-nadir, using a ladder, with the sensor held 

approximately 1m (+0.3m/-0.3m) parallel to the side of the row G. W. Anderson (2016) and 

Anderson et al. (2016). 
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Chapter 8 

Exploratory Data Analysis of Grapevine Data 

 

8.1  Data Analysis Methods 

The grapevine data were collected for two different grape cultivars, namely Riesling and 

Cabernet Franc, and growing period, viz. bloom and veraison from three separate angles against 

the nutrient data. The data, their source, and the data collections efforts are described in G. W. 

Anderson (2016) and Anderson et al. (2016).  Among the various combination of grapevine data, 

we selected one dataset, about the Petiole Analysis, where the reflectance has been taken directly 

from the individual leaves of the Riesling variety during the bloom period of growth. The 986 

observations of spectral data were collected for the wavelength spread from 334 nanometers (nm) 

to 2510 nanometers. These spectral data were read in R–studio by merging 144 files containing 

Spectra Vista SIG data against their wavelength. This information was transposed to obtain one 

value for each file against the 986 different values of wavelength. Thus a table with 144 rows and 

986 variables are formed. Since there was only 24 observation for the six different nutrients, 

namely nitrogen, potassium, phosphorus, magnesium, zinc, and boron, each value were replicated 

six times to match the number of rows of the merged file. The data are merged with the spectral 

data, to obtain a matrix of 144 rows and 987 variables, i.e., 986 predictors and one dependent 

variable. Since we are interested in detecting and predicting the nutrients values of the grapevine 

by using reflectance, we treat this as a regression problem. Hence, after merging the files, we need 

to explore the data for any missing values, outliers, and multicollinearity, before proceeding with 

prediction.  

After scrutinizing the data, we found that there were no missing values for the predictor as 

well as response variables. 
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8.2   Outliers 

One of the challenges in data analysis is dealing with outliers. When analyzing data, 

outliers cause problems because they may strongly influence the result. We can check the outliers 

by plotting the spectral curve measurement of the wavelengths against their value of reflectance 

as shown in Figure 8.1.  

    

Figure 8.1: Spectral Curve measurement of the Reflectance against the wavelength  

From the Figure 8.1, we can see there are some outliers. Since the value of reflectance 

is given as a percentage, it cannot exceed 100 and at the same time cannot contain negative values. 

Detailed study shows that there are 828 and 72 observations with values more than 100, often due 

to atmospheric noise, and less than zero respectively, indicating an error in data collection or entry. 

Outliers could not only represent an inaccuracy in the data, but they may also indicate a 

significant new trend. It might be the clue to data behaviors that are not revealed by the rest of the 

information. Hence, an optimum balance between replacing and retaining outliers needs to be 

considered. However, in this case, due to the presence of certain extreme outliers the standard 

deviation is very high, resulting in Coefficient of Variation of around 125 percent. The standard 

convention of considering values more than three standard deviations as outliers fail to resolve the 

issue. Hence, we replace all values less than 0 and more than 100 percent by the mean value of the 

matrix, which is within one and two standard deviations, respectively. We often omit values near 

1400 nm, 1900nm, and 2100nm due to atmospheric noise. 

The matrix of predictor variables has 144 observation and 986 covariates with values of 

reflectance in percentage. In this matrix, there are 900 wrong observations with value more than 
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100 and less than 0 (zero). We replace these bad observations with a mean value of the matrix. 

Now we can plot the spectral curve measurement of the wavelength against their value of 

reflectance in percentage. 

 

Figure 8.2:    Spectral Curve measurement of the Reflectance against the wavelength 

after replacing w observations with mean   

From the Figure 8.2, we can see that certain portions of the spectrum of wavelengths 

under study indicate the higher values of reflectance in the percentage term than the other portions. 

In particular, the wavelengths between 700 to 1400 nanometers (near infrared range) and from 

1800 to 1900 nanometers (atmospheric noise) shows the higher value of reflectance in percentage 

term. Again, isolated wavelengths between 2400 and 2500 nanometers due to low signal or noise 

could be seen with a high value of reflectance. Also, the spectral reflectance is highly correlated 

to the tune of 98% in certain cases as expected, because they are observed at wavelengths separated 

by 1.5 to 2.7 nanometers. This multicollinearity increases the standard errors of the coefficients, 

which in turn indicates that coefficients for some independent variables may not be significantly 

different from zero.   

Since there is no single model to establish the importance of outliers in the given data, we 

will exam this with the help of the value we obtain for R-Squared, adjusted R-Squared and 

predicted R-Squared. We will compare three models. In the first linear regression model, we will 

use the original matrix of 144 observation and 987 covariates. In the second linear regression 

model, we will replace the 900 wrong observations, from the input matrix of 144 observation and 

986 covariates, with values more than 100 and less than 0 (zero) by the mean. In the third model, 
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we will use the original matrix of 144 observation and 987 covariates but apply the robust 

regression.  

Since the given dataset has more covariates than the sample size, hence the matrix suffers 

from the curse of dimensionality. Therefore, ordinary least square cannot be performed on this 

data. On the other hand, ridge regression as a continuous shrinkage method will be able to achieve 

better prediction performance. However, it cannot produce a parsimonious model, for it always 

keeps all the predictors in the model. To perform linear regression, we need to reduce the number 

of covariates from 987 to less than 144. Owing to the nature of the convex optimization, in high 

dimensional case (p > n), Lasso can select maximum n variables before it saturates, by continuous 

shrinkage and automatic variable selection (Zou & Hastie, 2005). It will also be unable to 

overcome the problem of multicollinearity in the given data. Hence, we take advantage of the 

property of the elastic net, which simultaneously achieves automatic variable selection, continuous 

shrinkage, and selection of the groups of correlated variables. It is like a “stretchable fishing net 

that retains all the big fish.” We use the function glmnet and cv.glmnet in the package 

glmnet with a very high value of alpha (𝛼𝛼) for variable selection and a very small value of lambda 

minimum for cross-validation of the model (J Friedman, Hastie, & Tibshirani 2010 & 2013). The 

function cv.glmnet runs glmnet nfolds (10) +1 times; the first to get the lambda sequence, 

and then the remainder to compute the fit with each of the folds omitted. The error is accumulated, 

and the average error and standard deviation over the folds is computed. Selection of the value for 

the lambda.min determines the minimum mean cross-validated error. Thereafter stepwise, multiple 

linear regression, based on Bayesian Information Criterion, was iteratively used to obtain only 

significant variables.  

For a comparative study of these techniques, same parameters of seed= 5226, and alpha= 

0.93 were selected, whereas the value of lambda.min was changed to calculate the optimum value 

of R-squared, adjusted R-squared and predicted R-squared.  

First, we will use the complete data without removing any outliers from the original matrix 

of 144 observation, and 987 covariates to calculate the value of R-Squared, adjusted R-Squared 

and predicted R-Squared. These R-Squared values calculated with lambda.min (minimum mean 

cross-validated error ) of 0.005 is given below. 
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               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.Squared      0.65        0.63      0.59       0.59      0.42 0.57  
Adj.R.Squared  0.59        0.54      0.51       0.55      0.39 0.50  
Pred.R.Squared 0.39        0.39      0.40       0.50      0.30 0.42  

 

Second, since the original matrix of 144 observation and 987 covariates has 900 bad 

observations with value more than 100 and less than 0, we can replace them with the mean of the 

matrix of predictor variables mean. Then the values of R-Squared, adjusted R-Squared and 

predicted R-Squared using the same parameters and lambda.min = 0.0041 are as given below.  

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.Squared      0.79        0.57      0.67       0.56      0.70 0.56  
Adj.R.Squared  0.74        0.50      0.61       0.51      0.65 0.49  
Pred.R.Squared 0.63        0.40      0.55       0.44      0.54 0.38 
      

To avoid the masking or swamping effects prevalent in linear regression models, we will 

use the robust linear regression to find a fit that is close to the fit we would have found without the 

outliers. Then we can identify the outliers by their significant deviation from that robust fit 

(Rousseeuw & Hubert, 2011). Instead of function step, in the package stats, we will use the 

function lmrob in the package robustbase to fit generalized linear models by robust methods. 

This function computes an MM-type regression estimator and the associated M-, S- and D 

estimators. M-estimation is an extension of the maximum likelihood estimate method and a robust 

estimation. S-estimation minimizes the scale of the residual from M-estimation (Susanti & Pratiwi, 

2014). We have selected the setting as ''KS2014,'' which uses the setting method = 'SMDM.' In this 

procedure, first estimate the regression parameter using S-estimation, followed by with M-

estimation then proceed with a Design Adaptive Scale estimation and a final M-step (Maechler et 

al., 2016). The values of R-Squared, adjusted R-Squared, and predicted R-Squared using the same 

parameters and lambda.min = 0.009 are as given below.  

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.squared      0.15        0.15      0.16       0.46      0.29 0.25  
Adj.R.Squared  0.13        0.13      0.15       0.44      0.27 0.21  
Pred.R.Squared 0.10        0.08      0.12       0.38      0.16 0.14  

 Robust regression uses repeated median estimates to maintain up to 50% breakdown 

value. In other words even when nearly half of the data are outliers, robust regression can resist its 

effect. From a sample size of 144, there are 47, 38, 46, 41, 44 and 46 outliers of nitrogen, 



High Dimensional Analysis                                                                  37 

potassium, phosphorus, magnesium, zinc and boron, respectively, with weights other than one, 

which is more than 30 percent of the data. Despite removing such a large number of outliers, it 

fails to remove all the wrong observations, because they lie within three standard deviations from 

the median. These explanations mentioned above might be the cause for such low values of  

R-Squared, adjusted R-Squared and predicted R-Squared.  

 

8.3 Multicollinearity  

The spectral reflectance is measured at leaf or canopy level over the wavelength from 330 

to 2510 nanometers, and the nutrient analysis was conducted at the petiole level in the grapevine 

dataset. Since it is a case of multiple linear regression of the same type of data measured at a close 

interval of 1.5 to 2.7 nanometers, hence we can expect the predictor variables to be highly 

correlated. Data visualization using a correlation matrix plot can help to gain a better understanding 

of the problem of collinearity in the grapevine dataset. These pairwise correlations can give an 

idea of which attributes change together. The areas covered by the sector shows the absolute value 

of corresponding correlation coefficients. The bigger the sector, the larger the correlation. The 

diagonal of the matrix plot are perfectly positively correlated because it illustrates the correlation 

of each attribute with itself. Also, the area of each pie is shaded blue or red depending on the sign 

of the correlation, and with the strength of color scaled 0–100% in proportion to the magnitude of 

the correlation. Blue represents positive correlation and red negative.  

 
Figure 8.3:   Correlation plot of Wavelength for Nitrogen 
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Figure 8.3 to Figure 8.8 shows the correlation matrix plot for nitrogen, 

potassium, phosphorus, magnesium, zinc and boron, respectively. The correlation matrices with 

the response variables of the grapevine dataset are symmetrical and perfectly positively correlated 

along the diagonal. The range of pairwise correlation in percentage is given in Table 8.1.  

 Nitrogen Potassium Phosphorus Magnesium Zinc Boron 

Max Correlation 98% 98% 98% 94% 97% 98% 

Min Correlation -5% 2% -32% -30% -9% -24% 

 

  Table 8.1: Max and Min correlation with the response variables of the grapevine dataset 

 
      Figure 8.4:   Correlation plot of Wavelength for Potassium 

       

Figure 8.5:   Correlation plot of Wavelength for Phosphorus 
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Figure 8.6:   Correlation plot of Wavelength for Magnesium 

 

Figure 8.7:   Correlation plot of Wavelength for Zinc 

          

Figure 8.8:  Correlation plot of Wavelength for Boron 
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Since the predictors are highly correlated, we need to calculate the variance inflation factor 

(VIF), which quantifies the severity of multicollinearity in a multiple linear regression. The square 

root of VIF gives the magnitude of standard error as compared with uncorrelated predictors. Hence, 

lower levels of VIF is desirable, as higher levels of VIF adversely affect the results associated with 

a multiple regression analysis. However, for the grapevine dataset, to achieve the VIF of less than 

10, the model removes all the variables which are highly correlated. This result in a very low value 

of R-Squared adjusted R-Squared and predicted R-Squared for all the six nutrients as given below.  

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.Squared      0.26        0.21      0.35       0.50      0.56 0.29  
Adj.R.Squared  0.24        0.19      0.31       0.45      0.51 0.28  
Pred.R.Squared 0.20        0.16      0.22       0.40      0.39 0.27  

Elastic net is known to select groups of correlated variables, which does not affect the 

predictability of the model. Since multicollinearity does not influence the overall fit of the model 

or produce wrong predictions, hence, the upper limit of the VIF has been selected as 80. By 

selecting the upper limit of VIF as 80, elastic net selects a few the predictors with very high, but 

the median VIF is around 10. The process mentioned above ensures the optimum value of  

R-Squared adjusted R-Squared and predicted R-Squared for all the six nutrients as given below. 

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.Squared      0.79        0.57      0.67       0.56      0.7  0.56  
Adj.R.Squared  0.74        0.5       0.61       0.51      0.65 0.49  
Pred.R.Squared 0.63        0.4       0.55       0.44      0.54 0.38 

Significant Wavelength (nm):   334.3, 347.8, 571.3, 684.6, 756.9, 1434.4, 1826.4, 1858.4, 1872.6, 

1893.8, 1903.8, 1906.6, 1912.2, 1928.9, 1934.5, 1942.8, 1956.6, 1962.1, 1994.8, 2355.2, 2371,  

2386.7, 2393.3, 2419.7, 2426.2, 2430.5, 2439.1, 2483.6 

Variance Inflation Factor (VIF):  11.98, 15.5, 10.8, 22.31, 2.49, 24.2, 69.73, 52.29, 40.84, 48.98, 

2.21, 2.83, 3.34, 2.74, 2.79, 5.15, 13.61, 16.48, 14.02, 42.45, 26.78, 9.65, 24.31, 12.31, 6.3, 6.44, 

3.03, 5.33 
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Figure 8.9: Scatterplot of VIF against Wavelength for Nitrogen 

Significant Wavelength (nm):  334.3, 338.8, 341.8, 515.1, 646.9, 867.9, 1348.1, 1419.4, 1862, 

1869.1, 1915, 1928.9, 1951.1, 1962.1, 1989.3, 2323.2, 2382.2, 2393.3, 2487.8, 2506.4 

Variance Inflation Factor (VIF):  9.96, 20.58, 26.02, 68.94, 51.73, 1.85, 37.03, 9.87, 30.85, 30.67, 

2.58, 3.32, 3.37, 4.29, 11.53, 38.08, 15.97, 16.54, 2.71, 2.36 

Figure 8.9 to Figure 8.14 displays the scatterplot of VIF against the wavelengths for 

nitrogen, potassium, phosphorus, magnesium, zinc and boron, respectively. The concentration of 

significant wavelengths for the response variables for the grapevine dataset can be seen to have 

VIF around 10. Certain significant wavelengths have very high VIF; however, the median VIF of 

significant predictors (wavelength) has been tabulated in table 8.2. 

 Nitrogen Potassium Phosphorus Magnesium Zinc Boron 

Median of VIF Around 10  Around 14  Around 10 Around 4 Around 8 Around 10 

Table 8.2: Median VIF of significant predictors for response variable of grapevine dataset 
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Figure 8.10:  Scatterplot of VIF against Wavelength for Potassium 

Significant Wavelength (nm):     338.8, 691.3, 1438.2, 1822.8, 1897.3, 1900.8, 1909.4, 1920.6, 23
23.2, 2355.2, 2362, 2382.2, 2386.7, 2426.2, 2437, 2458.4, 2500.3, 2473.2, 359.7, 925.6, 349.3 

Variance Inflation Factor (VIF):  10.21, 13.06, 23.98, 41.64, 29.33, 21.15, 1.7, 2.72, 47.54, 29.85, 
37.85, 12.19, 7.55, 5.03, 6.41, 5.69, 2.74, 4.86, 16.56, 2.01, 17.82  

          
Figure 8.11: Scatterplot of VIF against Wavelength for Phosphorus 

Significant Wavelength (nm): 349.3, 427.5, 963.3, 1014, 1419.4, 1909.4, 1923.4, 1948.3, 1959.3, 

2016.3, 2371, 2419.7, 2483.6, 2487.8, 2492 

Variance Inflation Factor (VIF):  10.63, 10.88, 6.49, 3.87, 7.42, 1.54, 2.04, 2.12, 4.05, 10.19, 9, 7.

31, 2.93, 2.01, 2.07 
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              Figure 8.12: Scatterplot of VIF against Wavelength for Magnesium 

Significant Wavelength (nm):    338.8, 341.8, 516.5, 742.6, 756.9, 1113.1, 1143.5, 1415.7, 1830, 

1926.2, 1956.6, 1962.1, 2008.3, 2325.5, 2357.5, 2382.2, 2386.7, 2410.9, 2437, 2441.3, 2462.6,  

2471.1, 2498.2, 2500.3 

Variance Inflation Factor (VIF):      22.2, 27.55, 13.96, 35.85, 5.56, 4.83, 8.57, 10.78, 37.89, 2.62, 

6.03, 7.93, 9.11, 36.37, 28.53, 13.12, 10.33, 8.68, 8.51, 8.55, 6.25, 4.21, 3.9, 3.37 

              
   Figure 8.13: Scatterplot of VIF against Wavelength for Zinc 

Significant Wavelength (nm):  337.3, 346.3, 457.9, 515.1, 656.4, 1400.7, 1869.1, 1903.8, 1906.6, 

1942.8, 1945.6, 1948.3, 1953.8, 1997.5, 2410.9, 2430.5, 2452, 2456.3, 2473.2, 2481.6 

Variance Inflation Factor (VIF):  11.82, 15.91, 10.24, 46.85, 57.18, 11.59, 10, 1.91, 2.34, 4.22, 

13.99, 6.83, 6.61, 6.77, 6.61, 5.97, 9, 6.54, 4.81, 4.78 
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Figure 8.14:  Scatterplot of VIF against Wavelength for Boron 

The elastic net is known to select highly correlated predictors due to grouping effect, 

without compromising its predictive ability. Hence, we can notice high VIF due to the very high 

pair wise correlation between some predictor variables. Therefore, such high VIF may be 

acceptable in this case. 

 

8.4 Residual Analysis 

 So far, we have checked regression results, such as slope coefficients, p-values, 

multicollinearity and R-Squared to understand fitment of a model for the given data. Residual 

analysis is a useful class of techniques for the evaluation of the goodness of fit. Residuals are 

leftover, after fitting a model (predictors) to data, and they could reveal unexplained patterns in 

the data. Examining the underlying assumptions is important since most linear regression 

estimators require a correctly specified regression function and independent and identically 

distributed residual to be consistent. A residual plot is a nice way to show the residuals on the 

vertical axis and the independent variable on the horizontal axis. When the points in a residual plot 

are randomly dispersed around the horizontal axis, then the linear regression model is considered 

appropriate for the dataset.  
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Figure 8.15:  Residual Plot of Nitrogen 

For the residual vs. fitted plot for nitrogen, potassium, phosphorus, magnesium, zinc and 
boron are shown in the Figure 8.15 to Figure 8.20 in sequence. The observations number 
with large values of standardized residual, which may be considered as outliers, shown in Table 
8.3. 

 
 Nitrogen Potassium Phosphorus Magnesium Zinc Boron 

Outliers 41, 112 and 

141 

51, 55 and 

59 

38, 108 and 

110 

37, 38 and 40 44, 68 

and 70 

51, 54 and 

56 

Table 8.3: Outliers for response variable of grapevine dataset 

  

Figure 8.16:   Residual Plot of Potassium 
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Figure 8.17:  Residual Plot of Phosphorus 

 
Figure 8.18:   Residual Plot of Magnesium 

 
Figure 8.19:   Residual Plot of Zinc 
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Figure 8.20:  Residual Plot of Boron 
 

However, their distribution appears to be equally spread around, a horizontal line without 

any distinctly discernable patterns, which indicates that we do not have non-linear relationships. 

The normal Q-Q plot in the Figure 8.15 to Figure 8.20 shows that residuals are normally 

distributed without much deviation, as desired. The scale-Location plot indicates that the residuals 

are more or less equally (randomly) spread along the ranges of predictors. Almost all the residuals 

are within two standard deviations. The explanation mentioned above satisfies the assumption of 

equal variance (homoscedasticity). The residuals vs. leverage plot do indicate residual for the 

certain observations as given in Table 8.4 have large Cook’s distance and possible influential 

cases, but their exclusion would not alter the regression results.  

 Nitrogen Potassium Phosphorus Magnesium Zinc Boron 

Influential 

cases 

127, 129 

130 

72, 125 

and 131 

110, 124 

and 129 

72, 128 and 

135 

101, 131 

and 132 

126, 135 

and 140 

Table 8.4: Influential cases for response variable of grapevine dataset 
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Chapter 9 

Variable Selection of  

Riesling Bloom Leaf Analysis  

 

9.1  Introduction 

In chapter 8, we have seen that grapevine dataset, about the petiole chemical analysis of 

the Riesling variety, as modeled via the individual leaf reflectance during the bloom period, has 

900 bad observations. Complete scrutiny of this grapevine dataset has revealed 828 and 72 

observations with values more than 100 and less than zero respectively. Due to the presence of 

certain extreme outliers, the standard deviation is high, resulting in a high Coefficient of Variation 

of around 125 percent. Hence, we replace all values less than 0 and more than 100 percent by the 

mean value of the matrix, even though it is within one and two standard deviations, respectively. 

We have seen that the best value of R-squared adjusted R-squared and predicted R-squared were 

obtained by accepting the slightly higher value of VIF.  

9.2  Methods for Wavelength Selection 

     With many predictors, fitting the full model without penalization will result in large 

prediction intervals, and the least square regression estimator may not uniquely exist. The 

coefficients for some predictors may not be significantly different from 0, and hence they may not 

influence the prediction of the response variable. A proper choice of selection methods and under 

appropriate conditions will help to build consistent models to select variables and estimate 

coefficients simultaneously, avoid model overfitting, and obtain satisfactory prediction accuracy. 

Since the number of predictors is more than the sample size, hence to provide a sparser 

representation of the data and a reasonable statistical model, we explore four efficient algorithms 

for variable selection. In this thesis, we consider the feature selection under optimization 

algorithms for penalized regression methods and functional regression.  



High Dimensional Analysis                                                                  49 

9.3 Penalized (Pseudo-) Likelihood Approach (Elastic Net) using package glmnet 

First, we take advantage of algorithms for estimation of linear models with the convex 

penalized (pseudo-) likelihood approach. The models include elastic net for high-dimensional 

correlated variables, which uses a mixture of the ℓ1 (lasso) and ℓ2 (ridge regression) penalties to 

achieve a sparse solution. The regularization path is computed for the elastic net penalty at a grid 

of values for the regularization parameter lambda. It has the effect of averaging wavelengths that 

are highly correlated and then entering the averaged wavelengths into the model. The algorithm is 

used to compute of the entire path of solutions for each method, at 100 values of the regularization 

parameter spaced on the log-scale. 

These algorithms use cyclical coordinate descent, computed along a regularization path 

developed in the package glmnet (J Friedman et al., 2013 & 2010). The regularization path is 

computed for the elastic net penalty at a grid of values for the regularization parameter lambda. 

For "Gaussian," (this case) glmnet standardizes y to have unit variance before computing its 

lambda sequence and then removes standardization to yield the resulting coefficients. The 

coefficients for any predictor variables with zero variance are set to zero for all values of lambda. 

The algorithm used for this loops through the number of observations every time an inner product 

is computed. Coordinate descent fits the elastic net sequence of models implied by lambda. The 

function cv.glmnet has been used for cross-validation and the lambda.min for obtaining the value 

of λ that gives the minimum mean cross-validated error. The default value of lambda.min.ratio, 

which is the smallest value for lambda, as a fraction of lambda.max (the data derived entry value) 

is 0.01 when the sample size is less than some variables. A small value of lambda.min.ratio will 

lead to a full model in this case. Hence, the selection of the value of lambda.min.ratio was done 

considering these factors, and to obtain the best possible value of R–Squared, adjusted R–Squared 

and predicted R–Squared, the value of alpha and lambda minimum ratio were varied.  For fair 

comparison, seed of 5226, alpha = 0.93, lambda.min = 0.0041 and lambda.min.ratio = 0.0041 has 

been considered after replacing all the outliers with the mean of the input matrix in the data. Each 

curve represents a coefficient in the regression model. The x-axis is a function of lambda, the 

regularization penalty parameter. The y-axis gives the value of the coefficient.   
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Figure 9.1: Model Coefficient Path using Elastic Net for Nitrogen 

The  Figure 9.1, Figure 9.4, Figure 9.7, Figure 9.10, Figure 

9.13 and Figure 9.16 displays Model Coefficient Path using Elastic Net for nitrogen, 

potassium, phosphorus, magnesium, zinc and boron respectively. These figures demonstrate, how 

the coefficients of the nutrients enter the model (become non-zero) as lambda changes. Most of 

the variables have coefficients close to zero, which indicates high collinearity. However, the elastic 

net is capable of handling such multicollinearity, by the grouping effect. 

The red dots are the mean computed using leave-one-out cross-validation. Confidence 

intervals represent error estimates for the loss metric (red dots). The vertical lines show the 

locations of λmin and λ1se. The numbers across the top are the number of nonzero coefficient 

estimates. The best λ to use is either the one giving minimum MSE or the largest λ, such that error 

is within one standard deviation from the minimum. However, in this thesis, the value of λmin has 

been used to calculate the non-zero variables. 
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Figure 9.2:  Mean-Squared Error and log (λ) using Elastic Net for Nitrogen 

The Figure 9.2, Figure 9.5, Figure 9.8, Figure 9.11, Figure 

9.14 and Figure 9.17 displays the plot of Mean-Squared Error against the log of lambda for 

nitrogen, potassium, phosphorus, magnesium, zinc and boron, respectively. The sharp drop in 

mean square error around log lambda minimum and log lambda 1se explains a substantial fraction 

of the variability in all the six nutrients. We can also notice that the standard errors are initially 

wide, and then it narrows down. However, for the further study, we will pursue with lambda min. 

The value of lambda minimum, log of lambda minimum, lambda displaced by one standard error 

(SE), a log of lambda 1 SE corresponding to the minimum value of Mean Square Error for the six 

nutrients obtained from these figures have been tabulated in Table 9.1. Some variables with 

nonzero coefficients corresponding to the value of the log of lambda minimum and a log of lambda 

1 SE has been included in this table. 

 Nitrogen Potassium Phosphorus Magnesium Zinc Boron 

Lambda minimum 0.01 284.07 283.56 49.87 0.75 0.31 

Log Lambda minimum -4.68 5.65 5.65 3.91 -0.29 -1.16 

No. nonzero coefficients 
(𝜆𝜆min) 

15 14 18 25 25 14 

Lambda 1SE 0.03 1344.62 1074.87 143.23 1.71 0.58 

Log Lambda 1SE -3.57 7.20 6.98 4.96 0.54 -0.55 

No. nonzero coefficients 
(𝜆𝜆1SE) 

8 1 6 12 15 10 

  Table 9.1: Lambda values corresponding to the minimum MSE 
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Figure 9.3: Coefficients of Non-Zero Variables for Nitrogen 

Figure 9.3 shows the regression coefficients of 986 variables obtained by the elastic 

net. Based on the value of lambda min of 0.01, there are 77 non-zero coefficients are selected into 

regression model for the prediction of nitrogen; remaining coefficients have shrunk to be zero. The 

grouping or clustering of the wavelengths is clearly visible. Grouping of the wavelengths into five 

clusters and one lone variable are clearly visible. Cluster 1: 334.3, 337.3, 338.8, 340.3, 347.8, 

373.1, 386.4 and 392.3 nm. Cluster 2: 568.5, 569.9, 571.3, 684.6, 685.9, 687.3, 756.9, 877.5, 882.2, 

and 884.6 nm. Lone variable (wavelength) is 1109.2 nm.  Cluster 3: 1419.4, 1434.4 and 1438.2 

nm. Cluster 4: 1819.3, 1822.8, 1826.4, 1854.9, 1858.4, 1865.5, 1872.6, 1893.8, 1903.8, 1906.6, 

1912.2, 1920.6, 1926.2, 1928.9, 1931.7, 1934.5, 1942.8, 1948.3, 1956.6, 1959.3, 1962.1, 1978.5, 

1994.8, 1997.5 and 2016.3 nm.  Cluster 5: 2355.2, 2368.8, 2371, 2386.7, 2388.9, 2393.3, 2410.9, 

2415.3, 2419.7, 2426.2, 2430.5, 2432.7, 2437, 2439.1, 2443.4, 2447.7, 2452, 2462.6, 2464.8, 

2473.2, 2475.3, 2483.6, 2485.7, 2487.8, 2492, 2496.1, 2498.2, 2500.3, 2504.4 and 2506.4 nm. 

 
Figure 9.4: Model Coefficient Path using Elastic Net for Potassium 
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Figure 9.5: Mean-Squared Error and log (λ) using Elastic Net for Potassium 

 

 Figure 9.6: Coefficients of Non-Zero Variables for Potassium 

The Figure 9.6 shows the regression coefficients of 986 variables obtained by elastic 

net. Based on the value of lambda min of 284, there are 82 non-zero coefficients are selected into 

regression model for the prediction of potassium; remaining coefficients have shrunk to be zero. 

The grouping or clustering of the wavelengths is clearly visible. Grouping of the wavelengths into 

five clusters are clearly visible. Cluster 1: 334.3, 337.3, 338.8, 340.3, 341.8, 356.8, 383.5, 398.2, 

443.5, 449.3, 515.1, 516.5, 517.9, 638.7, 640.1, 641.5 and 646.9 nm.  Cluster 2: 855.8, 867.9, 914, 

926.8, 963.3, 987.3, and 1063.5 nm. Cluster 3: 1344.3, 1348.1 and 1419.4 nm. Cluster 4: 1826.4, 

1830, 1858.4, 1862, 1869.1, 1876.1, 1890.2, 1897.3, 1903.8, 1912.2, 1915, 1928.9, 1934.5, 1937.3, 

1940, 1942.8, 1945.6, 1948.3, 1951.1, 1956.6, 1962.1, 1989.3 and 2005 nm. Cluster 5: 2323.2, 

2325.5, 2359.8, 2371, 2373.3, 2380, 2382.2, 2393.3, 2406.6, 2410.9, 2413.1, 2419.7, 2441.3, 

2449.9, 2458.4, 2462.6, 2469, 2471.1, 2477.4, 2479.5, 2483.6, 2485.7, 2487.8, 2492, 2494.1, 

2496.1, 2498.2, 2500.3, 2502.3, 2504.4, 2506.4 and 2508.5 nm. 
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Figure 9.7:  Model Coefficient Path using Elastic Net for Phosphorus 

 
Figure 9.8: Mean-Squared Error and log (λ) using Elastic Net for Phosphorus 

 
Figure 9.9: Coefficients of Non-Zero Variables for Phosphorus 

Figure 9.9 shows the regression coefficients of 986 variables obtained by the elastic 

net. Based on the value of lambda min of 284, there are 71 non-zero coefficients are selected into 

regression model for the prediction of phosphorus; remaining coefficients have shrunk to be zero. 
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The grouping or clustering of the wavelengths is clearing visible. Grouping of the wavelengths 

into six clusters are clearly visible. Cluster 1: 334.3, 338.8, 340.3, 347.8, 349.3 and 359.7 nm. 

Cluster 2: 687.3, 688.6, 691.3 and 692.6 nm.  Cluster 3: 855.8, 860.7, 925.6, 967.9 and 979.1 nm. 

Cluster 4: 1423.2, 1434.4, 1438.2 and 1441.9 nm. Cluster 5: 1822.8, 1858.4, 1893.8, 1897.3, 

1900.8, 1903.8, 1906.6, 1909.4, 1912.2, 1915, 1920.6, 1928.9, 1931.7, 1934.5, 1942.8, 1948.3, 

1951.1, 1978.5, 1986.6, 2016.3 nm. Cluster 6: 2323.2, 2353, 2355.2, 2362, 2368.8, 2371, 2382.2, 

2386.7, 2404.4, 2410.9, 2413.1, 2426.2, 2430.5, 2437, 2439.1, 2441.3, 2447.7, 2452, 2458.4, 

2462.6, 2464.8, 2473.2, 2479.5, 2483.6, 2485.7, 2489.9, 2492, 2498.2, 2500.3, 2502.3, 2506.4 and 

2508.5 nm. 

 

Figure 9.10: Model Coefficient Path using Elastic Net for Magnesium 

         

Figure 9.11:   Mean-Squared Error and log (λ) using Elastic Net for Magnesium 
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   Figure 9.12:  Coefficients of Non-Zero Variables for Magnesium 

The Figure 9.12 shows the regression coefficients of 986 variables obtained by the 

elastic net. Based on the value of lambda min of 49.9, there are 58 non-zero coefficients are 

selected into regression model for the prediction of magnesium; remaining coefficients have 

shrunk to be zero. The grouping or clustering of the wavelengths is clearly visible. Grouping of 

the wavelengths into six clusters and one lone variable are clearly visible. Cluster 1: 337.3, 340.3, 

341.8, 343.3, 349.3, 411.4 and 427.5 nm. Cluster 2: 695.3, 699.2, 700.6, 712.5, 717.8 and 719.1 

nm.  Cluster 3: 963.3, 1010.2, 1014, 1017.8, 1021.6, 1097.8 and 1419.4 nm. Cluster 4: 1858.4, 

1862, 1903.8, 1909.4, 1912.2, 1917.8, 1920.6, 1923.4, 1928.9, 1931.7, 1937.3, 1948.3, 1959.3, 

1962.1, 2010.9 and 2016 nm. Cluster 5: 2343.9, 2355.2, 2371, 2373.3, 2384.4, 2419.7, 2432.7, 

2437, 2439.1, 2466.9, 2469, 2471.1, 2481.6, 2483.6, 2487.8, 2492, 2494.1, 2500.3, 2502.3, 2504.4, 

2506.4 and 2508.5 nm.  

 

Figure 9.13: Model Coefficient Path using Elastic Net for Zinc 
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Figure 9.14:  Mean-Squared Error and log (λ) using Elastic Net for Zinc 

     

 Figure 9.15:  Coefficients of Non-Zero Variables for Zinc 

The Figure 9.15 shows the regression coefficients of 986 variables obtained by elastic 

net. Based on the value of lambda min of 0.75, there are 65 non-zero coefficients are selected into 

regression model for the prediction of boron; remaining coefficients have shrunk to be zero. The 

grouping or clustering of the wavelengths is clearly visible. Grouping of the wavelengths into six 

clusters are clearly visible. Cluster 1: 334.3, 338.8, 340.3, 341.8, 390.9 nm. Cluster 2: 516.5, 517.9, 

742.6, 756.9 nm.  Cluster 3: 959.9, 1094, 1113.1, 1143.5 nm. Cluster 4: 1348.1, 1411.9, 1415.7, 

1505.3, 1509.1 nm. Cluster 5: 1830, 1897.3, 1903.8, 1906.6, 1909.4, 1912.2, 1915, 1920.6, 1923.4, 

1926.2, 1928.9, 1934.5, 1940, 1942.8, 1948.3, 1951.1, 1956.6, 1962.1, 1983.9, 1992.1, 2008.3 nm. 

Cluster 6: 2323.2, 2325.5, 2357.5, 2377.7, 2382.2, 2386.7, 2402.1, 2410.9, 2421.9, 2426.2, 2437, 

2441.3, 2445.6, 2458.4, 2462.6, 2471.1, 2479.5, 2487.8, 2489.9, 2494.1, 2496.1, 2498.2, 2500.3, 

2502.3, 2504.4, 2508.5 nm. 
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Figure 9.16: Model Coefficient Path using Elastic Net for Boron 

  

Figure 9.17: Mean-Squared Error and log (λ) using Elastic Net for Boron 

  

 Figure 9.18:   Coefficients of Non-Zero Variables for Boron 
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The Figure 9.18 shows the regression coefficients of 986 variables obtained by Elastic 

net. Based on the value of lambda min of 0.31, there are 81 non-zero coefficients are selected into 

regression model for the prediction of boron; remaining coefficients have shrunk to be zero. The 

grouping or clustering of the wavelengths is clearly visible. Grouping of the wavelengths into six 

clusters and a lone variable are clearly visible. Cluster 1: 335.8, 337.3, 340.3, 346.3, 353.8 nm.  

Cluster 2: 449.3, 457.9, 512.2, 513.7, 515.1, 516.5, 517.9, 519.3 nm. Cluster 2: 656.4, 657.7, 705.9, 

707.2, 708.5, 709.8, 713.8, 715.1, 716.5, 717.8 nm. Cluster 3: 855.8, 860.7, 867.9, 870.3, 914, 

933.7 nm. A lone wavelength is 1400.7 nm. Cluster 4: 1854.9, 1869.1, 1903.8, 1906.6, 1909.4, 

1915, 1917.8, 1920.6, 1928.9, 1931.7, 1934.5, 1940, 1942.8, 1945.6, 1948.3, 1951.1, 1953.8, 

1956.6, 1997.5 nm. Cluster 5: 2359.8, 2380, 2386.7, 2406.6, 2410.9, 2413.1, 2417.5, 2428.4, 

2430.5, 2432.7, 2437, 2441.3, 2449.9, 2452, 2454.1, 2456.3, 2471.1, 2473.2, 2475.3, 2477.4, 

2481.6, 2485.7, 2487.8, 2489.9, 2492, 2496.1, 2498.2, 2500.3, 2502.3, 2504.4, 2506.4, 2508.5 nm. 

Thereafter, stepwise multiple linear regression, based on Bayesian Information Criterion, 

was iteratively used to obtain only significant variables with maximum variation inflation factor 

(VIF) of 100. The process mentioned above has ensured that most of the variables are around VIF 

of 10. The value of R–Squared, adjusted R–Squared and predicted R–Squared for the six nutrients 

are given below. 

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.Squared      0.79        0.57      0.67       0.56      0.70 0.56  
Adj.R.Squared  0.74        0.50      0.61       0.51      0.65 0.49  
Pred.R.Squared 0.63        0.40      0.55       0.44      0.54 0.38  

9.4  Minimax Concave Penalty using package ncvreg 

Second, we used group descent algorithms for nonconvex penalized linear regression 

models for high-dimensional regression and variable selection. To improve the efficiency of 

algorithms and to achieve simultaneous selection consistency and asymptotic unbiasedness, we fit 

the minimax concave penalty (MCP) in the package ncvreg (Breheny & Breheny, 2016). 

Estimation using MCP models depends on the choice of the tuning parameters gamma (γ) and 

lambda (λ). The value of lambda is usually obtained using cross-validation. However, cross-

validation is computationally intensive, particularly when performing over a two-dimensional grid 

of values for γ and λ, some of which may not possess convex objective functions. The value of γ 
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is selected so that it produces parsimonious models while circumventing the pitfalls mentioned 

above for non-convexity (Breheny & Huang, 2011).  

In linear regression, the scaling factor by which solutions are modified toward their 

unpenalized solution is a constant [1 − 1/𝛾𝛾 for MCP] for all values of λ and for each covariate. 

Since for global convexity: 𝛾𝛾 must be greater than 1/c∗ for MCP, where c∗ denotes the minimum 

eigenvalue of   n-1XTX. We use the value (default) of 𝛾𝛾 = 3, so that only the covariates with nonzero 

coefficients are included in the calculation of c∗. Thus, the local convexity of the objective function 

will not be an issue for large λ, but may cease to hold as λ is reduced below critical value λ∗. Thus, 

the penalty is indexed by a regularization parameter λ, which controls the tradeoff between loss 

and penalty.  

Since a grid of 100 values for 𝜆𝜆 that averages 10 iterations until convergence at each point, 

hence the algorithm calculates 1000 lasso paths to produce a single approximation to the MCP.  

The function cv.ncvreg is used for cross-validation and the lambda.min for obtaining the 

value of λ that gives minimum mean cross-validated error. To obtain the optimum number of 

variables and the best possible value of R–Squared, adjusted R–Squared and predicted R–Squared, 

the value lambda minimum are varied.  Since MCP is a nonconvex penalty, on a large number of 

occasions they fail to converge. Hence, to ensure convergence, the smallest value for lambda, as a 

fraction of maximum lambda is 0.091. This is the smallest value lambda, for which all penalized 

coefficients become zero. The penalty applied to the model is "MCP" (the default). The tuning 

parameter gamma (γ) of this MCP penalty is three. For fair comparison, the same seed of 5226 are 

considered. The matrix of 144 observation and 986 covariates has 900 bad observations with value 

more than 100 and less than 0 (zero), which were replaced by the mean.  

MCP allow the estimated coefficients to reach large values more quickly than the elastic 

net. In other words, MCP applies less shrinkage to the nonzero coefficients. The tuning parameter 

γ for the MCP estimates controls how fast the penalization rate goes to zero. The objective function 

is not locally convex in the shaded region, and hence the solutions are discontinuous and erratic. 

However, the solutions in the locally convex regions are continuous and stable.  
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   Figure 9.19:  MCP Coefficient Paths for the response variable - Nitrogen 

The Figure 9.19, Figure 9.22, Figure 9.25, Figure 9.28, Figure 

9.31 and Figure 9.34 display the MCP coefficient paths for nitrogen, potassium, 

phosphorus, magnesium, zinc and boron, respectively. Notice how fast the penalization rate goes 

to zero on selecting the tuning parameter gamma (γ) = 3 for the MCP estimates. The shaded region 

depicts areas that are not locally convex. The value of lambda (λmin) for all nutrients except for 

Magnesium lies outside the shaded region; hence, their solutions are continuous and stable. Since 

the value of λmin for Magnesium lies inside the shaded region, its solutions are discontinuous and 

erratic. Some variables and the value of lambda (λmin), at which the variables enter the model have 

been tabulated in Table 9.2. 

 Nitrogen Potassium Phosphorus Magnesium Zinc Boron 

Number of variables 

entering model 

8 7 9 6 13 5 

Lambda minimum (λmin) 0.01 605 680 120 2.7 0.6 

λmin lies outside the 

shaded region 

Yes Yes Yes No Yes Yes 

Table 9.2: MCP coefficient paths of response variable of the grapevine dataset 
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Typically, one would carry out cross-validation to assess the predictive accuracy of the 

model at various values of λ.  

 
Figure 9.20: MSE and log (λ) using MCP for the response variable - Nitrogen 

The Figure 9.20, Figure 9.23, Figure 9.26, Figure9.29, Figure 

9.32 and Figure 9.35 shows that the cross-validation error for nitrogen, potassium, 

phosphorus, magnesium, zinc and boron, respectively. The value of the lambda minimum (λmin) 

and a log of lambda minimum corresponding to the minimum value of cross-validation error have 

been tabulated in Table 9.3. Some variables corresponding to the minimum value of cross-

validation error and number of statistically significant variables have been included in the response 

variable of grapevine dataset. 

 

 Nitrogen Potassium Phosphorus Magnesium Zinc Boron 

Lambda minimum (λmin) 0.01 604.87 680.37 119.74 2.67 0.63 

Log Lambda minimum -4.43 6.41 6.52 4.79 0.98 -0.46 

No. of variables at min 

cross validation error 

5 3 3 4 2 3 

No. of significant variables 3 4 3 2 4 2 

Table 9.3: Lambda values for response variable of the grapevine dataset using MCP 
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Figure 9.21: R-Squared and log (λ) using MCP for the response variable - Nitrogen 

The Figure 9.21 shows that the R-Squared value for nitrogen is maximum at the lambda (λmin) 

of 0.01 and its log lambda value of -4.43. On either side, the value of R-Squared drops significantly. 

Even the maximum value of R-Squared indicates that the five variables explain about 8% of the 

variance. 

    
Figure 9.22: MCP Coefficient Paths for the response variable -  Potassium 

             
Figure 9.23:  MSE and log (λ) using MCP for the response variable - Potassium 
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  Figure 9.24: R-Squared and log (λ) using MCP for the response variable - Potassium 

The Figure 9.24 shows that the R-Squared value for potassium is maximum at the 

lambda (λmin) of 605 and its log lambda value of 6.4. On either side, the value of R-Squared drops 

significantly. Even the maximum value of R-Squared indicates that the three variables explain 

about 9% of the variance.  

      
  Figure 9.25:   MCP Coefficient Paths for the response variable - Phosphorus 

       
Figure 9.26: MSE and log (λ) using MCP for the response variable - Phosphorus 
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   Figure 9.27: R-Squared and log (λ) using MCP for the response variable - Phosphorus 

The Figure 9.27 shows that the R-Squared value for phosphorus is maximum at the 

lambda (λmin) of 680 and its log lambda value of 6.52. On either side, the value of R-Squared drops 

significantly. Even the maximum value of R-Squared indicates that these three variables explain 

about 4.5% of the variance.  

          
  Figure 9.28:  MCP Coefficient Paths for the response variable - Magnesium 

         
   Figure 9.29: MSE and log (λ) using MCP for the response variable - Magnesium 
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   Figure 9.30: R-Squared and log (λ) using MCP for the response variable - Magnesium 

The Figure 9.30 shows that the R-Squared value for magnesium is maximum at the 

lambda (λmin) of 120 and its log lambda value of 4.8. On either side, the value of R-Squared drops 

significantly. Even the maximum value of R-Squared indicates that these four variables explain 

about 15% of the variance.  

 
      Figure 9.31:  MCP Coefficient Paths for the response variable - Zinc 

 
Figure 9.32: MSE and log (λ) using MCP for the response variable - Zinc 
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    Figure 9.33: R-Squared and log (λ) using MCP for the response variable - Zinc 

The Figure 9.33 shows that the R-Squared value for zinc is maximum at the lambda 

(λmin) of 2.67 and its log lambda value of 0.98. On either side, the value of R-Squared drops 

significantly. Even the maximum value of R-Squared indicates that these three variables explain 

about 13% of the variance.  

 
Figure 9.34: MCP Coefficient Paths for the response variable - Boron 

   
Figure 9.35: MSE and log (λ) using MCP for the response variable - Boron 
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 Figure 9.36: R-Squared and log (λ) using MCP for the response variable - Boron 

The Figure 9.36 shows that the R-Squared value for boron is maximum at the lambda 

(λmin) of 0.63 and its log lambda value of -0.46. On either side, the value of R-Squared drops 

significantly. Even the maximum value of R-Squared indicates that these three variables explain 

about 18% of the variance.  

The value for R–Squared, adjusted R–Squared and predicted R–Squared for the six 

nutrients are given below: 

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.squared      0.19        0.18      0.22       0.34      0.26 0.17  
Adj.R.Squared  0.18        0.16      0.20       0.33      0.24 0.15  
Pred.R.Squared 0.15        0.13      0.17       0.31      0.21 0.14  

 MCP performs well when there are many rather sparse groups of predictors, i.e. when the 

underlying model exhibits less grouping of predictors. MCP suffers when the non-zero coefficients 

are clustered into tight groups. MCP makes insufficient use of the grouping information and hence, 

selects too few cluster. Since the grapevine dataset is clustered into tight groups, the sparse solution 

due to MCP selects a smaller number of predictors than desired. The process mentioned above has 

adversely affected the predictive ability of regression model based on Minimax Concave Penalty. 

The values of R–Squared are close to the adjusted R–Squared and predicted R–Squared values. 

However, they are lower than the linear regression using elastic net penalty.   
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9.5  Iterative Sure Independence Screening using the SIS (R package) 

Third, to carry out the Sure Independence Screening (SIS) variable selection procedure, we 

initially fit marginal versions of models with component-wise covariates.  To avoid the numerical 

instability associated with high-dimensional estimation problems, we need to compute component 

wise estimators and implement modularly. The SIS package then ranks the importance of features 

according to the magnitude of their marginal regression coefficients, excluding the intercept in the 

case of GLM. Therefore, a set of variables is given below. 

ℳ�𝛿𝛿𝑛𝑛 = {1 ≤ 𝑗𝑗 ≤ 𝑝𝑝: |�̂�𝛽𝑖𝑖𝑀𝑀| ≥ 𝛿𝛿𝑛𝑛} 

Where δn is a threshold value chosen so that top-ranked covariates are picked, so that 

dimensionality is reduced from ultrahigh to below the sample size, we consider d = [n/log n].  

Improvement of finite sample performance using SIS, variable selection, and parameter estimation 

can be simultaneously achieved via penalized likelihood estimation, using the joint information of 

the covariates in ℳ�𝛿𝛿𝑛𝑛 (Saldana & Feng, 2016).  

Iterative Sure Independence Screening (ISIS) fits the regression model using the R 

packages ncvreg and glmnet for regularized log likelihood for the variables selection by ISIS. 

In this case, “lasso” is selected as the penalty for the regularized likelihood for the sub-problems 

and “AIC” for tuning the regularization parameter of the penalized likelihood for the sub-problems 

and the final model selected by ISIS. By nature of their marginal approach, sure independence 

screening procedures have massive false selection rates,  ℳ∗
𝑐𝑐 are selected after the screening steps. 

In order to reduce the false selection rate, (Saldana & Feng, 2016) suggested the idea of sample 

splitting. Without loss of generality, the SIS package has randomly split the sample into two halves, 

used random permutation, and cross- validation sampling of training and test sets (Fan et al., 2016). 

Taking advantage of the fast cyclical coordinate descent algorithms developed in the packages 

glmnet (J Friedman et al., 2013) and ncvreg (Breheny & Breheny, 2016), for convex and 

nonconvex penalty functions, respectively, we were able to efficiently perform the moderate scale 

penalized pseudo-likelihood steps from the ISIS procedure. This variable selection technique 

outperforms direct use of glmnet and ncvreg in terms of both computational time and 

estimation error.  
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The function SIS initially makes 20 attempts to split the complete sample. After that, it 

tries a more conservative variable screening approach with a data-driven threshold for marginal 

screening.  

 
Figure 9.37: Plot of beta coefficients for the response variable - Nitrogen 

The Figure 9.37 to Figure 9.42 displays the sparse matrix of the beta coefficients 

for nitrogen, potassium, phosphorus, magnesium, zinc and boron, respectively. After a certain 

number of iterations for screening, the sure independence screening method selects significant 

predictive variables for the response variables of the grapevine dataset. The coefficient of the 

remaining predictive variables is reduced to zero. Some iterations and significant variables for 

response variables of the grapevine have been tabulated in Table 9.4. 

 Nitrogen Potassium Phosphorus Magnesium Zinc Boron 

No. of iterations 3 4 3 2 2 3 

No. of significant variables 1 2 11 4 8 9 

Table 9.4: Iterations and significant variables for response variables of the grapevine 

dataset using SIS 
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Figure 9.38:  Plot of beta coefficients for the response variable - Potassium 

 
Figure 9.39: Plot of beta coefficients for the response variable - Phosphorus 

 
Figure 9.40: Plot of beta coefficients for the response variable - Magnesium 
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Figure 9.41: Plot of beta coefficients for the response variable - Zinc 

 
Figure 9.42: Plot of beta coefficients for the response variable - Boron 

The values of R–Squared, adjusted R–Squared and predicted R–Squared for the six 

nutrients using iterative sure independence screening are given below. 

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.squared      0.04        0.22      0.41       0.33      0.41 0.38  
Adj.R.Squared  0.04        0.2       0.36       0.31      0.38 0.34  
Pred.R.Squared 0.02        0.19      0.29       0.28      0.31 0.31  

SIS computes, component wise estimators using the method of AIC for tuning the 

regularization parameter of the penalized likelihood Lasso. This procedure iteratively performs 

variable selection to recruit a small number of predictors and computes residuals based on the 

model fitted using these recruited predictors. Then these residuals are used as the working response 

variable to continue recruiting new predictors.  
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All the variables are selected within 2 - 3 iterations except potassium, where four iterations 

were required. Except for nitrogen, the values of R–Squared, adjusted R–Squared and predicted 

R–Squared for the other nutrients are either comparable or better than the value obtained using the 

nonconvex penalty of MCP in the package ncvreg.  However, these values are lower than the 

one obtained using convex penalty of the elastic net in the package glmnet. 

 

9.6  Functional Data Analysis using package fda.usc 

Since, the value of reflectance has been taken for wavelengths, spread between 334 

nanometers (nm) and 2510 nanometers separated by 1.5 to 2.7 nm. Hence, we can regard the 

spectral reflectance data measured along the continuum of wavelength as a single entity. 

Then using the function fdata from the fda.usc package, we can convert the data 

(predictors) object of class “matrix” or “data.frame” to an object of class “fdata”  by basis of 

smoothing, where [1,986] is the range of discretization points. This representation, which 

implicitly assumes a ℓ2 space, is not related to the information of the response variable. In other 

words, the vertical shift of these curves has no special relation with the nutrients. Since predictors 

are a non-periodic functional data, we can use spline functions for approximation, which combines 

the fast computation of polynomials with substantially greater flexibility and a modest number of 

basis functions. Then fregre.basis function in the fda.usc package computes functional 

regression between functional explanatory variable X(t) and scalar response Y is one of the six 

nutrients using B-spline (default) basis representation.  

Y = ⟨X, 𝛽𝛽⟩ + 𝜖𝜖 = ∫ 𝑋𝑋(𝑡𝑡)𝛽𝛽(𝑡𝑡)𝑚𝑚𝑡𝑡𝐿𝐿 + 𝜖𝜖 

where ⟨⋅, ⋅⟩ denotes the inner product of the covariates of the reflectance value of the grapevine 

data  on ℓ2 space, and 𝜖𝜖 are random errors with mean zero, finite variance 𝜎𝜎2 and E[X(t)𝜖𝜖] = 0 

(Bande et al., 2016). 

This function allows covariates of class “fdata,” “matrix,” or “data.frame” and gives default 

values to arguments basis.x and basis.b for representation by functional data X(t) and the functional 
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parameter 𝛽𝛽(t), respectively. We do not consider any roughness penalty (𝜆𝜆) for this functional data. 

In addition, the function fregre.basis.cv uses the validation criterion to estimate the number of 

basis elements and/or the penalized parameter (𝜆𝜆) that best predicts the response. 

     

  Figure 9.43:   Beta coefficient of response variable - Nitrogen for Functional Regression 

The Figure 9.43, Figure 9.47,   Figure 9.51, Figure 9.55, Figure 

9.59 and Figure 9.63 displays the plot of the beta coefficients for nitrogen, potassium, 

phosphorus, magnesium, zinc and boron, respectively. 98-basis functions (K) with zero roughness 

penalty were used to smooth the data.  B-spline basis representation was used to compute the 

functional regression between functional explanatory variable (spectral reflectance) X (t) and 

scalar response variables of grapevine dataset. Since the number of basis functions (K) is not 

substantially smaller than the number of observations (n) of 144, the regression approach tends to 

overfit the data.  

In spline smoothing, as in other smoothing methods, the mean squared error (MSE), is one 

way of capturing the quality of the estimate. For imposing smoothness on the estimated curve, 

MSE is reduced by sacrificing some bias to reduce sampling variance. Since the estimates are 

expected to vary gently from one value to another, we are effectively borrowing information from 

neighboring data values, thereby expressing our faith in the regularity of the underlying function, 

x, that we are trying to estimate. This pooling of information is what makes our estimated curve 

more stable, at the cost of some increase in bias (J. Ramsay & Silverman, 2005). 
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Figure 9.44:   CV of Functional Regression for response variable - Nitrogen  

The Figure 9.44 shows cross-validation of functional regression of grapevine data 

for the response variable nitrogen, based on ten iterations. Based on minimum mean MSE the 

number of basis function appears to be between 5 and 16. 

It is desirable to have a lower-dimensional B-spline basis defined by some appropriate 

more limited knot sequence, τ, provided there remain sufficient flexibility to capture the features 

of interest. 

 
Figure 9.45:   CV of Functional Regression for response variable - Nitrogen  

The Figure 9.45 shows cross-validation of functional regression of grapevine data 

for the number of basis functions between 5 and 16, based on 30 iterations. Based on minimum 

mean MSE the number of basis function appears to be 8. 
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Figure 9.46: Optimized beta function for response variable - Nitrogen  

The optimized beta function for nitrogen, based on eight basis functions, was obtained from 

Figure 9.45. 

 
 Figure 9.47:   Beta coefficient of Functional Regression for response variable - Potassium  

 
Figure 9.48:   CV of Functional Regression for response variable - Potassium  

The Figure 9.48 shows cross-validation of functional regression of grapevine data for 

the response variable potassium, based on ten iterations. Based on minimum mean MSE, the 

number of basis functions appears to be between 5 and 15. 



High Dimensional Analysis                                                                  77 

 
Figure 9.49:   CV of Functional Regression for response variable - Potassium  

The Figure 9.49 shows cross-validation of functional regression of grapevine data 

for some basis functions between 5 and 15 based on 30 iterations. Based on minimum mean MSE, 

the number of basis functions appears to be 14. 

        
Figure 9.50:  Optimized beta function for response variable - Potassium  

The optimized beta function for Potassium based on 14, basis function obtained from the 

Figure 9.49. 

 
 Figure 9.51: Beta coefficient of Functional Regression for response variable - Phosphorus  
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Figure 9.52:   CV of Functional Regression for response variable - Phosphorus 

The Figure 9.52 shows cross-validation of functional regression of grapevine data for 

the response variable phosphorus, based on ten iterations. Based on minimum mean MSE, the 

number of basis functions appears to be between 5 and 15. 

 
Figure 9.53: CV of Functional Regression for response variable - Phosphorus 

The Figure 9.53 shows cross-validation of functional regression of grapevine data for 

some basis functions between 5 and 15, based on 30 iterations. Based on minimum mean MSE, 

the number of basis functions appears to be six. 

 
Figure 9.54: Optimized beta function for response variable - Phosphorus 
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The optimized beta function for Phosphorus-based on six, basis function obtained from the 

Figure 5.53. 

 
Figure 9.55:  Beta coefficient for Functional Regression of response variable - Magnesium  

 
Figure 9.56: CV of Functional Regression for response variable - Magnesium 

The Figure 9.56 shows cross-validation of functional regression of grapevine data for 

the response variable magnesium, based on ten iterations. Based on minimum mean MSE, the 

number of basis functions appears to be between 5 and 14. 

         
Figure 9.57: CV of Functional Regression for response variable - Magnesium 
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The Figure 9.57 shows cross-validation of functional regression of grapevine data for 

some basis functions between 5 and 14, based on 30 iterations. Based on minimum mean MSE, 

the number of basis function appears to be six. 

 

Figure 9.58:  Optimized beta function for response variable - Magnesium  

The optimized beta function for magnesium based on six, basis function obtained from the 

Figure 9.57. 

  
Figure 9.59:   Beta coefficient of Functional Regression for response variable - Zinc 
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Figure 9.60: CV of Functional Regression for response variable - Zinc 

The Figure 9.60 shows cross-validation of functional regression of grapevine data for 

the response variable zinc, based on ten iterations. Based on minimum mean MSE, the number of 

basis functions appears to be between 5 and 14. 

 
Figure 9.61:  CV of Functional Regression for response variable - Zinc 

The Figure 9.61 shows cross-validation of functional regression of grapevine data for 

some basis functions between 5 and 14, based on 30 iterations. Based on minimum mean MSE, 

the number of basis functions appears to be six. 

 
   Figure 9.62: Optimized beta function for response variable - Zinc 
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The optimized beta function for zinc based on six, basis functions obtained from the  

Figure 9.61. 

 
Figure 9.63:   Beta coefficient of Functional Regression for response variable - Boron  

 
Figure 9.64:   CV of Functional Regression for response variable - Boron 

The Figure 9.64 shows cross-validation of functional regression of grapevine data for 

the response variable boron, based on ten iterations. Based on minimum mean MSE, the number 

of basis functions appears to be between 5 and 14. 

 
Figure 9.65:  CV of Functional Regression for response variable - Boron 
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The Figure 9.65 shows cross-validation of functional regression of grapevine data for 

some basis functions between 5 and 14, based on 30 iterations. Based on minimum mean MSE, 

the number of basis functions appears to be 14. 

 
Figure 9.66:  Optimized beta function for response variable - Boron 

The optimized beta function for Boron based on 14, basis function obtained from the  

Figure 9.65.  

By default 98 (10%) basis function is selected by the function fregre.basis , which 

can be verified using function summary.fregre.fd(). It is worth mentioning that only 10, 6, 

6, 5, 11 and 5 basis functions are statistically significant for nitrogen, potassium, phosphorus, 

magnesium, zinc and boron, respectively. By carrying out cross validation, we can determine that 

the optimal number of basis function for nitrogen, potassium, phosphorus, magnesium, zinc and 

boron as 31, 13, 7, 29, 23, and 21, respectively. The fregre.basis.cv () uses validation 

criterion, which is defined to estimate the number of basis elements and/or the penalized parameter 

(𝜆𝜆) that best predicts the response. However, even these basis functions appears to be high, hence 

the optimal number of basis function was obtained by plotting mean MSE on y-axis against the 

number of basis functions on x-axis. The number of basis functions that gives the minimum mean 

MSE were chosen for further study. The values of R-Squared, adjusted R-Squared and predicted 

R-Squared based on the number of basis function obtained against the minimum value of mean 

MSE are given below.  

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.squared      0.25        0.37      0.23       0.25      0.19 0.30 
Adj.R.Squared  0.20        0.31      0.19       0.22      0.16 0.22  
Pred.R.Squared 0.17        0.25      0.14       0.17      0.06 0.07  
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 We notice that the best values of R-squared, adjusted R-squared, and predicted R-squared 

could be achieved by using a generalized linear model via penalized maximum likelihood in the 

package glmnet. Selection of lambda was made using 10-fold cross-validation, based on mean 

squared error criterion.  Hence, we will use the generalized linear model via penalized maximum 

likelihood in the package glmnet, for the rest of our calculation and discussion.  
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Chapter 10 

Problem associated with Multivariate Dataset  

10.1 Introduction 

In this chapter, we study the grapevine data for leaf-level reflectance and petiole-level 

chemical analysis of the Riesling variety, taken during the bloom period of growth from the view 

angle directly over the individual grape leaves. In the last chapter, we have noticed that the best 

results for the value of R-squared, adjusted R-squared, and predicted R-squared values were 

obtained using the elastic net regularization path for fitting the generalized linear regression paths, 

by maximizing the appropriately penalized log-likelihood in the package glmnet.  

Lambda min ratio is the smallest value for lambda, as a fraction of the maximum value of 

lambda. It is also the lowest value for which all coefficients are zero. The lambda min is the value 

of lambda that gives minimum mean cross-validated error - a vector of length (lambda). In this 

chapter, the comparative study of different values of lambda min ratio and lambda min has was 

examined, based on generalized linear model via penalized maximum likelihood. For a fair 

comparison, same parameters of seed= 5223, and alpha= 0.92 were selected.  Since the 

predictors are highly correlated, slight variation in the value of Lambda min ratio and Lambda 

min, the selection of predictor variables change, impacting the values of R-squared, adjusted R-

squared and predicted R-squared. 

10.2 Value of lambda.min and lambda.min.ratio as 0.004 

With the selection of lambda.min and lambda.min.ratio as 0.004, to calculate the optimum 

value, we got the following values of R-squared, adjusted R-squared and predicted R-squared.  

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.Squared      0.80        0.57      0.63       0.66      0.74 0.56  
Adj.R.Squared  0.74        0.50      0.57       0.60      0.67 0.49  
Pred.R.Squared 0.68        0.40      0.48       0.47      0.59 0.38  
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Significant Wavelength (Nitrogen; nm):     334.3, 347.8, 569.9, 684.6, 756.9, 1434.4, 1826.4,  

1858.4, 1872.6, 1893.8, 1903.8, 1906.6, 1912.2, 1928.9, 1934.5, 1942.8, 1956.6, 1962.1, 1994.8, 

2355.2, 2368.8, 2371, 2386.7, 2393.3, 2419.7, 2426.2, 2430.5, 2439.1, 2483.6 

Variance Inflation Factors (VIF):  12.1, 15.58, 11.11, 22.26, 2.63, 26.67, 75.41, 52.66, 42.87,  

53.26, 2.21, 2.84, 3.48, 2.78, 2.81, 5.34, 13.67, 16.97, 19.64, 42.63, 6.99, 27.03, 9.72, 25.12,  

13.11, 6.31, 6.5, 3.04, 5.63 

       
Figure 10.1:  Scatterplot of VIF against Wavelength - Nitrogen 

Figure 10.1 to Figure 10.6 displays the scatter plot of VIF against the 

wavelengths for nitrogen, potassium, phosphorus, magnesium, zinc and boron, respectively. The 

concentration of significant wavelengths for the response variables for the grapevine dataset can 

be seen to have a VIF around 10. Certain significant wavelengths have high VIF; however, the 

median VIF of significant predictors (wavelength) has been tabulated in Table 10.1.  

 

 Nitrogen Potassium Phosphorus Magnesium Zinc Boron 

Median of VIF Around 10  Around 12  Around 12 Around 7 Around 8 Around 7  

Table 10.1: Median VIF of significant predictors for lambda.min of 0.004 
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Significant Wavelength (Potassium; nm):334.3, 338.8, 341.8, 515.1, 646.9, 867.9, 1348.1,1419.4, 

1862, 1869.1, 1915, 1928.9, 1951.1, 1962.1, 1989.3, 2323.2, 2382.2, 2393.3, 2487.8, 2506.4 

Variance Inflation Factors (VIF):  9.96, 20.58, 26.02, 68.94, 51.73, 1.85, 37.03, 9.87, 30.85, 30.6

7, 2.58, 3.32, 3.37, 4.29, 11.53, 38.08, 15.97, 16.54, 2.71, 2.36 

    
Figure 10.2:   Scatterplot of VIF against Wavelength - Potassium 

Significant Wavelength (Phosphorus; nm): 334.3, 359.7, 925.6, 1438.2, 1903.8, 2323.2, 2353,  

2386.7, 2410.9, 2426.2, 2437, 2439.1, 2441.3, 2458.4, 2473.2, 2500.3, 1909.4, 1928.9 

Variance Inflation Factors (VIF):  9.02, 8.76, 1.52, 15.11, 1.9, 22.89, 22.92, 7.17, 2.61, 5.65,  

7.49, 2.64, 9.1, 5.69, 3.96, 2.79, 1.97, 2.27 

    
Figure 10.3:   Scatterplot of VIF against Wavelength - Phosphorus 
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Significant Wavelength (Magnesium; nm):  349.3, 411.4, 695.3, 963.3, 1014, 1419.4, 1872.6,  

1903.8, 1909.4, 1923.4, 1937.3, 1959.3, 1962.1, 1992.1, 2016.3, 2343.9, 2371, 2384.4, 2437, 247

1.1,  

2483.6, 2487.8, 2492, 2500.3 

Variance Inflation Factors (VIF):   18.07, 14.55, 8.63, 8.85, 4.23, 13.19, 12.82, 1.96, 1.86, 2.39,  

2.92, 6.65, 2.85, 15.54, 17.01, 25.15, 16.92, 8.32, 7.68, 4.14, 3.03, 2.2, 2.24, 2.76 

      

Figure 10.4:  Scatterplot of VIF against Wavelength - Magnesium 

Significant Wavelength (Zinc; nm):    337.3, 340.3, 516.5, 756.9, 963.3, 1113.1, 1415.7, 1837.1,  

1897.3, 1903.8, 1926.2, 1951.1, 1962.1, 2002.9, 2323.2, 2357.5, 2382.2, 2386.7, 2410.9, 2437,  

2462.6, 2471.1, 2485.7, 2492, 2496.1, 2500.3, 2508.5, 341.8 

Variance Inflation Factors (VIF):  22.71, 24.03, 23.16, 6.45, 8.95, 5.38, 12.66, 41.32, 40.44, 2.16, 

2.85, 4.4, 9.56, 7.05, 43.59, 25.92, 18.96, 10.62, 7.35, 7.45, 9.52, 5.57, 4.83, 3.01, 3.29, 2.98,  

1.65, 12.6 
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Figure 10.5:  Scatterplot of VIF against Wavelength - Zinc 

Significant Wavelength (Boron; nm):   337.3, 346.3, 457.9, 515.1, 656.4, 1400.7, 1869.1, 1903.8,  

1906.6, 1942.8, 1945.6, 1948.3, 1953.8, 1997.5, 2410.9, 2430.5, 2452, 2456.3, 2473.2, 2481.6 

Variance Inflation Factors (VIF):     11.82, 15.91, 10.24, 46.85, 57.18, 11.59, 10, 1.91, 2.34, 4.22, 

13.99, 6.83, 6.61, 6.77, 6.61, 5.97, 9, 6.54, 4.81, 4.78 

      

Figure 10.6:   Scatterplot of VIF against Wavelength – Boron 
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10.3 Value of lambda.min and lambda.min.ratio as 0.003 

The value of lambda.min and lambda.min.ratio has been selected as 0.003, to calculate the 

optimum value of R-squared, adjusted R-squared and predicted R-squared.  

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.Squared      0.68        0.73      0.67       0.74      0.79 0.65  
Adj.R.Squared  0.62        0.65      0.61       0.68      0.73 0.57  
Pred.R.Squared 0.52        0.41      0.55       0.61      0.58 0.48  

Significant Wavelength (Nitrogen; nm):     337.3, 340.3, 571.3, 687.3, 758.2, 1438.2, 1872.6,  

1906.6, 1912.2, 1928.9, 1942.8, 1956.6, 2355.2, 2368.8, 2386.7, 2393.3, 2419.7, 2452, 2483.6, 3

96.8,  

1822.8 

Variance Inflation Factors (VIF):  21.83, 24.35, 15.43, 47.68, 2.33, 26.94, 23.73, 2.29, 2.82, 2.53, 

4.59, 7.01, 23.73, 4.43, 4.26, 16.51, 10.09, 6.78, 4.48, 17.19, 43.43 

      
Figure 10.7:  Scatterplot of VIF against Wavelength - Nitrogen 

Figure 10.7 to Figure 10.12 displays the scatter plot of VIF against the 

wavelengths for nitrogen, potassium, phosphorus, magnesium, zinc and boron, respectively. The 

concentration of significant wavelengths for the response variables for the grapevine dataset can 

be seen to have VIF around 10. Certain significant wavelengths have very high VIF; however, the 

median VIF of significant predictors (wavelength) has been tabulated in Table 10.2.  
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 Nitrogen Potassium Phosphorus Magnesium Zinc Boron 

Median of VIF Around 10  Around 18  Around 12  Around 10 Around 12 Around 11  

Table 10.2: Median VIF of significant predictors for lambda.min of 0.003 

Significant Wavelength (Potassium; nm): 334.3, 338.8, 341.8, 356.8, 398.2, 443.5, 1063.5,  

1344.3, 1419.4, 1858.4, 1862, 1869.1, 1915, 1928.9, 1937.3, 1953.8, 1956.6, 1962.1, 1970.3,  

1989.3, 2005.6, 2010.9, 2323.2, 2382.2, 2393.3, 2406.6, 2410.9, 2430.5, 2464.8, 2487.8, 2494.1, 

2496.1, 2500.3 

Variance Inflation Factors (VIF):  9.74, 26.68, 28.6, 47.19, 75.81, 26.82, 1.74, 60.06, 23.2, 59.81, 

52.27, 51.07, 3, 3.8, 8.19, 10.59, 16.97, 17.34, 11.94, 17.81, 16.79, 13.13, 58.47, 21.56, 29.37,  

16.41, 6.89, 7.99, 14.47, 3.38, 6.41, 4.3, 3.61   

         
Figure 10.8:   Scatterplot of VIF against Wavelength - Potassium 

Significant Wavelength (Phosphorus; nm):  338.8, 691.3, 1438.2, 1822.8, 1897.3, 1900.8, 1909.4,  

1920.6, 2323.2, 2355.2, 2362, 2382.2, 2386.7, 2426.2, 2437, 2458.4, 2500.3, 2473.2, 359.7,  

925.6, 349.3 

Variance Inflation Factors (VIF):  10.21, 13.06, 23.98, 41.64, 29.33, 21.15, 1.7, 2.72, 47.54,  

29.85, 37.85, 12.19, 7.55, 5.03, 6.41, 5.69, 2.74, 4.86, 16.56, 2.01, 17.82 
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Figure 10.9:   Scatterplot of VIF against Wavelength - Phosphorus 

Significant Wavelength (Magnesium; nm):  349.3, 359.7, 512.2, 693.9, 963.3, 1021.6, 1419.4, 18

26.4, 1865.5, 1909.4, 1923.4, 1959.3, 1992.1, 2016.3, 2355.2, 2371, 2384.4, 2419.7, 2424, 2437, 

2452, 2471.1, 2483.6, 2492, 2502.3, 2506.4, 2477.4 

Variance Inflation Factors (VIF):    20.16, 17.95, 39.19, 25.18, 9.86, 4.62, 23.11, 53.43, 24.02, 

 1.9, 2.73, 11.43, 16.76, 22.79, 38.22, 33.25, 9.06, 15.19, 9.65, 9.82, 5.95, 5, 3.74, 2.69, 2.42, 

 2.09, 6.36 

    

Figure 10.10:    Scatterplot of VIF against Wavelength - Magnesium 

Significant Wavelength (Zinc; nm):   337.3, 338.8, 340.3, 516.5, 646.9, 1113.1, 1415.7, 1512.8,  

1830, 1837.1, 1897.3, 1903.8, 1951.1, 1962.1, 1992.1, 2323.2, 2357.5, 2377.7, 2382.2, 2386.7, 2

393.3, 2404.4, 2426.2, 2437, 2462.6, 2466.9, 2471.1, 2485.7, 2492, 2500.3, 2502.3, 2508.5 
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Variance Inflation Factors (VIF):     24.34, 9.75, 25.12, 68.19, 61.55, 2.46, 17.94, 56.1, 59.42, 55, 

60.71, 2.25, 4.69, 9.32, 15.45, 58.69, 36.83, 8.33, 19.88, 15.11, 14.79, 15.61, 5.73, 11.6, 9.86,  

11.18, 5.79, 6.3, 2.16, 4.83, 3.5, 1.88 

        
Figure 10.11:   Scatterplot of VIF against Wavelength - Zinc 

Significant Wavelength (Boron; nm):   337.3, 346.3, 449.3, 516.5, 656.4, 870.3, 1400.7, 1869.1,  

1940, 1942.8, 1945.6, 1948.3, 1953.8, 1997.5, 2323.2, 2362, 2406.6, 2410.9, 2430.5, 2449.9, 245

4.1, 2456.3, 2473.2, 2481.6, 2485.7, 2487.8, 2426.2 

Variance Inflation Factors (VIF): 14.19, 17.34, 10.28, 44.38, 55.31, 2.05, 14.8, 12.21, 10.32, 5.66

, 14.93, 7.56, 10.02, 19.05, 75.77, 52.75, 12.48, 9.31, 7.17, 6.76, 9.79, 8.26, 7.47, 7.51, 6.19, 3.11

, 6.15 

    
Figure 10.12:  Scatterplot of VIF against Wavelength - Boron 
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10.4 Value of lambda.min and lambda.min.ratio as 0.0024 

The value of lambda.min and lambda.min.ratio has been selected as 0.0024, to calculate 

the optimum value of R-squared, adjusted R-squared and predicted R-squared.  

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.Squared      0.60        0.73      0.75       0.61      0.79 0.61  
Adj.R.Squared  0.54        0.65      0.68       0.55      0.73 0.52  
Pred.R.Squared 0.37        0.41      0.59       0.35      0.59 0.29  
 

Significant Wavelength (Nitrogen; nm):    392.3, 571.3, 685.9, 925.6, 1438.2, 1858.4, 1893.8, 

 1903.8, 1928.9, 1934.5, 1942.8, 1962.1, 1994.8, 2355.2, 2386.7, 2393.3, 2419.7, 2426.2 

Variance Inflation Factors (VIF):  16.09, 9.35, 35.3, 1.84, 11.41, 34.78, 32.57, 1.64, 2.47, 2.34,  

3.54, 5.8, 9.21, 29.62, 4.03, 12.77, 7.9, 3.32 

    

Figure 10.13:   Scatterplot of VIF against Wavelength - Nitrogen 

Figure 10.13 to Figure 8.18 displays the scatter plot of VIF against the 

wavelengths for nitrogen, potassium, phosphorus, magnesium, zinc and boron, respectively. The 

concentration of significant wavelengths for the response variables for the grapevine dataset can 

be seen to have VIF around 10. Certain significant wavelengths have high VIF; however, the 

median VIF of significant predictors (wavelength) has been tabulated in Table 10.3.  
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 Nitrogen Potassium Phosphorus Magnesium Zinc Boron 

Median of VIF Around 8  Around 17  Around 8 Around 10 Around10 Around  15  

Table 10.3: Median VIF of significant predictors for lambda.min of 0.0024  

Significant Wavelength (Potassium):     334.3, 338.8, 341.8, 356.8, 398.2, 443.5, 1063.5, 1344.3, 

1419.4, 1858.4, 1862, 1869.1, 1915, 1928.9, 1937.3, 1953.8, 1956.6, 1962.1, 1970.3, 1989.3,  

2005.6, 2010.9, 2323.2, 2382.2, 2393.3, 2406.6, 2410.9, 2430.5, 2464.8, 2487.8, 2494.1, 2496.1, 

2500.3 

Variance Inflation Factor (VIF):  9.74, 26.68, 28.6, 47.19, 75.81, 26.82, 1.74, 60.06, 23.2, 59.81, 

52.27, 51.07, 3, 3.8, 8.19, 10.59, 16.97, 17.34, 11.94, 17.81, 16.79, 13.13, 58.47, 21.56, 29.37,  

16.41, 6.89, 7.99, 14.47, 3.38, 6.41, 4.3, 3.61 

    
Figure 10.14:  Scatterplot of VIF against Wavelength - Potassium 

Significant Wavelength (Phosphorus):     334.3, 338.8, 340.3, 349.3, 359.7, 687.3, 925.6, 1438.2, 

1826.4, 1897.3, 1903.8, 1906.6, 1909.4, 1912.2, 1942.8, 2323.2, 2355.2, 2362, 2371, 2382.2,  

2386.7, 2410.9, 2426.2, 2437, 2439.1, 2462.6, 2473.2, 2483.6, 2500.3, 2502.3, 2508.5 

Variance Inflation Factor (VIF):  20.88, 11.94, 26.47, 29.19, 20.89, 32.74, 2.33, 29.3, 65.99,  

36.15, 2.76, 2.77, 2.54, 3.73, 6.22, 65.9, 38.64, 49.65, 30.75, 15.53, 10.54, 6.35, 6.36, 6.22, 3.84, 

6.99, 5.5, 5, 5.1, 4.09, 1.87 
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Figure 10.15:  Scatterplot of VIF against Wavelength for Phosphorus 

Significant Wavelength (Magnesium):   510.8, 693.9, 934.8, 1021.6, 1348.1, 1419.4, 1869.1,  

1903.8, 1923.4, 2019, 2355.2, 2371, 2384.4, 2406.6, 2419.7, 2424, 2452, 2462.6, 2483.6, 2506.4 

Variance Inflation Factor (VIF):  21.73, 19.89, 13.81, 12.62, 36.85, 9.91, 31.39, 1.72, 3.25, 22.39, 

35.9, 18.57, 6.95, 8.84, 10.07, 6.74, 4.59, 2.87, 3.7, 2.22 

    
Figure 10.16:  Scatterplot of VIF against Wavelength - Magnesium 

Significant Wavelength (Zinc):  338.8, 341.8, 517.9, 646.9, 756.9, 963.3, 1113.1, 1415.7, 1512.8, 

1830, 1837.1, 1883.2, 1897.3, 1903.8, 1926.2, 1951.1, 1967.6, 1992.1, 2323.2, 2357.5, 2382.2, 2

402.1, 2410.9, 2458.4, 2462.6, 2471.1, 2485.7, 2500.3, 2502.3, 2508.5 
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Variance Inflation Factor (VIF):  23.12, 31.6, 64.36, 57.38, 7.96, 10.52, 5.29, 14.85, 52.08, 71.01, 

56.3, 69.55, 60.25, 2.33, 2.72, 3.73, 7.57, 15.52, 50.06, 35.39, 11.78, 9.95, 4.78, 6.1, 5.43, 5.18,  

5.63, 4.4, 3.16, 1.79 

          
Figure 10.17: Scatterplot of VIF against Wavelength - Zinc 

Significant Wavelength (Boron):  341.8, 343.3, 359.7, 517.9, 677.9, 725.7, 870.3, 1400.7, 1453.1, 

1869.1, 1883.2, 1915, 1931.7, 1945.6, 1948.3, 1953.8, 2380, 2386.7, 2397.7, 2406.6, 2430.5,  

2434.9, 2441.3, 2443.4, 2452, 2487.8, 2498.2, 2477.4 

Variance Inflation Factor (VIF):      17.5, 14.77, 18.72, 29, 22, 44.74, 2.34, 33.67, 41.78, 30.01,  

46.33, 2.4, 3.42, 9.69, 7.43, 8, 19, 8.74, 17.81, 12.02, 16.09, 9.33, 13.76, 19.76, 11.37, 2.98, 2.91, 

8.03 

    

Figure 10.18:  Scatterplot of VIF against Wavelength - Boron 
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The values of R-squared, adjusted R-squared, and predicted R-squared depends on the 

number of statistically significant predictors. In the case of nitrogen, 29, 21 and 18 significant 

predictors were selected when the values of lambda.min and lambda.min.ratio was 0.004, 0.003 

and 0.0024, respectively. A slight reduction in the value of lambda min reduces the number of 

significant predictors. In the case of potassium, 20, 33 and 33 predictors were selected when the 

values of lambda.min and lambda.min.ratio was 0.004, 0.003 and 0.0024, respectively. A slight 

reduction in the value of lambda min increases the number of significant predictors, and then it 

flattens out. In the case of phosphorus, 18, 21 and 31 predictors are selected when the value of 

lambda.min and lambda.min.ratio was 0.004, 0.003 and 0.0024, respectively. A slight reduction in 

the value of lambda min increases the number of significant predictors. In the case of Magnesium 

24, 27 and 20 predictors are selected when the value of lambda.min and lambda.min.ratio was 

0.004, 0.003 and 0.0024, respectively. A slight reduction in the value of lambda min increases the 

number of significant predictors to the crest, and after that, it drops. In the case of zinc, 28, 32 and 

30 predictors are selected when the value of lambda.min and lambda.min.ratio was 0.004, 0.003 

and 0.0024, respectively. A slight reduction in the value of lambda min increases the number of 

significant predictors, and then it drops. In the case of boron, 20, 27 and 28 predictors are selected 

when the value of lambda.min and lambda.min.ratio was 0.004, 0.003 and 0.0024, respectively. A 

slight reduction in the value of lambda min increases the number of significant predictors. Except 

for the case of boron, when the number of predictors surges from 27 to 28, the value of R-squared, 

and adjusted R-squared increase with a rise in the number of significant predictors. Predicted R-

squared also generally follows this trend.  

It can be noticed that the increase or decrease in predictors is within the group selected by 

the elastic net. Additional predictors are usually the adjoining variable, and at times, the adjoining 

predictors replace the original predictor due to the nature of the elastic net. The change in the 

number of significant predictors, with a slight reduction in the value of lambda min and lambda 

min ratio, does not follow any one pattern. The decrease in the value of lambda min decreases the 

number of significant predictors for nitrogen and increases for phosphorus. In the case of 

potassium, a reduction in the value of lambda min initially enhances the number of significant 

predictors and then flattens out, whereas for magnesium, zinc, and boron the number of significant 

predictors initially increases, thereafter it drops. Hence, it is possible to get higher values of R-

squared, adjusted R-squared, and predicted R-squared when the nutrients are studied separately. 
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The best overall values of R-squared, adjusted R-squared, and predicted R-squared were 

obtained by using the values of lambda.min and lambda.min.ratio of 0.003. Hence, we will use 

this value for the rest of the study. 
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Chapter 11 

Comparison among Grapevine Datasets  

11.1 Introduction 

In this chapter, a comparative study of four grapevine datasets is carried out for the spectral 

reflectance of leaf and associated petiole chemical analysis collected during the bloom and 

veraison periods for the two varieties namely Riesling and Cabernet Franc. For a better 

understanding, data have been taken from all the three angle of view namely; directly over 

individual grape leaves, the vine canopy at nadir and 15° off-nadir.  The data, its source, and the 

data collection efforts are described in G. W. Anderson (2016) and Anderson et al. (2016).  The 

first grapevine data are of petiole chemical analysis of the Riesling variety taken during the period 

of growth of bloom from the view angle directly over the individual grape leaves. The second 

grapevine dataset is based on Petiole analysis of the Riesling variety, taken during the veraison 

period of growth from the view angle directly at the nadir of the vine canopy. The third grapevine 

data are of Leaf of the Cabernet Franc variety but taken during the period of growth of bloom from 

the view angle at 15° off-nadir of the vine canopy. The fourth grapevine data are again of the leaf 

of the Cabernet Franc variety but taken during the period of growth of bloom from the view angle 

directly over the individual grape leaves.  

We have noticed that the best result for the values for R-squared adjusted R-squared and 

predicted R-squared are obtained using the elastic net regularization path for fitting the generalized 

linear regression paths, by maximizing the appropriately penalized log-likelihood in the package 

glmnet. Hence, in this chapter, generalized linear model via penalized maximum likelihood is 

being used for the comparative study of four grapevine datasets. Also, the same parameters of 

seed= 5223, and alpha= 0.92 were selected, whereas the value of lambda.min and 

lambda.min.ratio were changed to calculate the optimum values of R-squared, adjusted R-squared, 

and predicted R-squared.  
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11.2 Exploratory Data of Riesling Bloom Petiole Chemistry Analysis and Leaf Reflectance 

Since the radiance reflected from the leaf is expressed as a percentage of incident radiance 

through the range of wavelengths, it will have a value between 0 and 100. Hence, a spectral 

reflectance of less than 0 and more than 100 is considered a wrong observation. Detailed study 

shows that there are 72 and 828 observations with values less than zero and more than 100 

respectively, indicating an error in data collection or entry. Thus, the grapevine dataset of petiole 

chemical analysis of the Riesling taken during bloom period directly over the individual leaves has 

900 bad observations out of 141,984. It ranges from -8499 to less than 0 and more than 100 to 

5962, as seen in the figure 11.1, below.  

         
Figure 11.1:  Spectral Curve measurement of Riesling Bloom Petiole Analysis dataset 

Replacing these wrong observations with the mean value of the input (predictors) matrix, 

we get the spectral curve as given below. 

 
Figure 11.2:   Spectral Curve measurement of Riesling Bloom Petiole Analysis dataset 

without wrong observations 
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From the Figure 11.2, we can see that there is strong multicollinearity. The elastic net 

is known to select groups of correlated variables, which does not affect the predictability of the 

model. Hence, based on the best values of R-squared adjusted R-squared and predicted R-squared, 

we select 100 as the limit upper limit of the VIF. The process mentioned above will ensure that 

most of the variable will be within VIF of 10, but for a few variables, the VIF will be high. The 

wavelength, which is statistically significant for each nutrient and the associated VIF are given 

below. 

Significant Wavelength (Nitrogen; nm):     337.3, 340.3, 571.3, 687.3, 758.2, 1438.2, 1872.6,  

1906.6, 1912.2, 1928.9, 1942.8, 1956.6, 2355.2, 2368.8, 2386.7, 2393.3, 2419.7, 2452, 2483.6, 3

96.8,  

1822.8 

Variance Inflation Factors (VIF):  21.83, 24.35, 15.43, 47.68, 2.33, 26.94, 23.73, 2.29, 2.82, 2.53, 

4.59, 7.01, 23.73, 4.43, 4.26, 16.51, 10.09, 6.78, 4.48, 17.19, 43.43 

Significant Wavelength (Potassium; nm):     334.3, 338.8, 341.8, 356.8, 398.2, 443.5, 1063.5,  

1344.3, 1419.4, 1858.4, 1862, 1869.1, 1915, 1928.9, 1937.3, 1953.8, 1956.6, 1962.1, 1970.3, 198

9.3,  

2005.6, 2010.9, 2323.2, 2382.2, 2393.3, 2406.6, 2410.9, 2430.5, 2464.8, 2487.8, 2494.1, 2496.1, 

2500.3 

Variance Inflation Factors (VIF):  9.74, 26.68, 28.6, 47.19, 75.81, 26.82, 1.74, 60.06, 23.2, 59.81, 

52.27, 51.07, 3, 3.8, 8.19, 10.59, 16.97, 17.34, 11.94, 17.81, 16.79, 13.13, 58.47, 21.56, 29.37,  

16.41, 6.89, 7.99, 14.47, 3.38, 6.41, 4.3, 3.61 

Significant Wavelength (Phosphorus; nm):  338.8, 691.3, 1438.2, 1822.8, 1897.3, 1900.8, 1909.4,  

1920.6, 2323.2, 2355.2, 2362, 2382.2, 2386.7, 2426.2, 2437, 2458.4, 2500.3, 2473.2, 359.7,  

925.6, 349.3 

Variance Inflation Factors (VIF):  10.21, 13.06, 23.98, 41.64, 29.33, 21.15, 1.7, 2.72, 47.54, 

 29.85, 37.85, 12.19, 7.55, 5.03, 6.41, 5.69, 2.74, 4.86, 16.56, 2.01, 17.82 

Significant Wavelength (Magnesium; nm):  349.3, 359.7, 512.2, 693.9, 963.3, 1021.6, 1419.4,  

1826.4, 1865.5, 1909.4, 1923.4, 1959.3, 1992.1, 2016.3, 2355.2, 2371, 2384.4, 2419.7, 2424, 243

7, 2452, 2471.1, 2483.6, 2492, 2502.3, 2506.4, 2477.4 
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Variance Inflation Factors (VIF):    20.16, 17.95, 39.19, 25.18, 9.86, 4.62, 23.11, 53.43, 24.02,  

1.9, 2.73, 11.43, 16.76, 22.79, 38.22, 33.25, 9.06, 15.19, 9.65, 9.82, 5.95, 5, 3.74, 2.69, 2.42, 2.0,  

6.36 

Significant Wavelength (Zinc; nm):   337.3, 338.8, 340.3, 516.5, 646.9, 1113.1, 1415.7, 1512.8,  

1830, 1837.1, 1897.3, 1903.8, 1951.1, 1962.1, 1992.1, 2323.2, 2357.5, 2377.7, 2382.2, 2386.7, 2

393.3, 2404.4, 2426.2, 2437, 2462.6, 2466.9, 2471.1, 2485.7, 2492, 2500.3, 2502.3, 2508.5 

Variance Inflation Factors (VIF): 24.34, 9.75, 25.12, 68.19, 61.55, 2.46, 17.94, 56.1, 59.42, 55,  

60.71, 2.25, 4.69, 9.32, 15.45, 58.69, 36.83, 8.33, 19.88, 15.11, 14.79, 15.61, 5.73, 11.6, 9.86,  

11.18, 5.79, 6.3, 2.16, 4.83, 3.5, 1.88 

Significant Wavelength (Boron; nm):   337.3, 346.3, 449.3, 516.5, 656.4, 870.3, 1400.7, 1869.1, 

 1940, 1942.8, 1945.6, 1948.3, 1953.8, 1997.5, 2323.2, 2362, 2406.6, 2410.9, 2430.5, 2449.9, 24

54.1, 2456.3, 2473.2, 2481.6, 2485.7, 2487.8, 2426.2 

Variance Inflation Factors (VIF): 14.19, 17.34, 10.28, 44.38, 55.31, 2.05, 14.8, 12.21, 10.32, 5.66

, 14.93, 7.56, 10.02, 19.05, 75.77, 52.75, 12.48, 9.31, 7.17, 6.76, 9.79, 8.26, 7.47, 7.51, 6.19, 3.11

, 6.15 

 

11.3 Exploratory Data of Riesling Veraison Petiole Chemical Analysis at Nadir 

The grapevine dataset of Riesling petiole chemical analysis taken during the veraison from 

directly at the nadir of the vine canopy has 1784 bad observations out of 141,984. Detailed study 

shows that there are 405 and 1379 observations with values less than zero and more than 100 

respectively, indicating an error in data collection or entry. It ranges from -14905 to less than 0 and 

more than 100 to 10433.5 as seen in the figure, 11.3, below.  
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Figure 11.3: Spectral Curve measurement of Riesling Bloom at Nadir dataset  

Replacing these incorrect observations with the mean value of the input (predictors) matrix, 

we get the spectral curves as given below. 

       
Figure 11.4:   Spectral Curve of Riesling Bloom at Nadir dataset without wrong observations 

From the Figure 11.4, we can see that there is a strong multicollinearity. Since the 

elastic net is known to select groups of correlated variables, which does not affect the predictability 

of the model. Hence, based on the best values of R-squared adjusted R-squared and predicted R-

squared, we select 100 as the limit upper limit of the VIF. The method mentioned above will ensure 

that most of the variable will be within VIF of 10, but for a few variable, the VIF will be high. The 

wavelength which is statistically significant for each nutrient and the associated VIF is given 

below. 
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Significant Wavelength (Nitrogen; nm): 343.3, 1415.7, 1858.4, 1923.4, 1940, 1962.1, 1981.2,  

2447.7, 2492 

Variance Inflation Factors (VIF):   1.4, 6.36, 4.63, 2.98, 2.3, 1.69, 1.52, 2.63, 1.93 

Significant Wavelength (Potassium; nm):   341.8, 692.6, 998.7, 1055.9, 1389.4, 1415.7, 1733,  

1909.4, 1915, 1917.8, 1942.8, 1951.1, 1959.3, 1967.6, 1986.6, 2021.7, 2297.6, 2313.9, 2384.4, 2

413.1, 2419.7, 2426.2, 2437, 2481.6, 2496.1, 2498.2, 2506.4 

Variance Inflation Factors (VIF):  18.57, 15.97, 62.45, 3.94, 88.83, 14.16, 81.79, 3.01, 3.6, 3.06,  

3.77, 3.03, 3.27, 3.94, 2.2, 10.92, 20.53, 9.86, 6.29, 4.22, 4.52, 2.94, 5.36, 5.8, 4.06, 3.9, 3.28 

Significant Wavelength (Phosphorus; nm):  530.6, 1423.2, 1920.6, 2334.7, 2437, 2460.5, 2500.3,  

2504.4, 1862 

Variance Inflation Factors (VIF):    3.97, 5.89, 1.88, 5.94, 2.03, 1.85, 2.01, 2.2, 6.19 

Significant Wavelength (Magnesium; nm):   1940, 2343.9, 2454.1 

Variance Inflation Factors (VIF):    1.92, 1.07, 1.99 

Significant Wavelength (Zinc; nm):     1415.7, 1886.7, 1897.3, 1912.2, 2377.7, 2434.9, 2452,  

2454.1 

Variance Inflation Factors (VIF):    7.01, 7.92, 9.45, 1.74, 1.8, 2.03, 2.77, 3.17 

Significant Wavelength (Boron; nm):   335.8, 933.7, 2056.2 

Variance Inflation Factors (VIF):    3.79, 1.55, 4.8 

 

11.4 Exploratory Data of Cabernet Franc Leaf Analysis at 150 

The grapevine data of the Leaf of the Cabernet Franc taken during blooming from a view 

angle at 15° off-nadir of the vine canopy has 303 bad observations out of 61,132. Detailed study 

shows that there are 14 and 289 observations with values less than zero and more than 100 

respectively, indicating an error in data collection or entry. It ranges from -7.46 to less than 0 and 

more than 100 to 175.15 as seen in the figure 11.5, below.  
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Figure 11.5: Spectral Curve measurement of CF Bloom Leaf Analysis dataset  

Replacing these wrong observations with the mean value of the input (predictors) matrix, 

we get the spectral curve, figure 11.6 as given below.  

 

 Figure 11.6: Spectral Curve of CF Bloom Leaf datasets without wrong observations  

From the figure 11.6, we can see that there is a strong multicollinearity. Since the 

elastic net is known to select groups of correlated variables, which does not affect the predictability 

of the model. Hence, based on the best values of R-squared adjusted R-squared and predicted R-

squared, we select 68 as the limit upper limit of the VIF. The method mentioned above will ensure 

that most of the variables will be within VIF of 10, but for a few variables, the VIF will be very 

high. The wavelength which is statistically significant for each nutrient and the associated VIF, are 

given below. 
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Significant Wavelength (Nitrogen; nm):  343.3, 1981.2, 2458.4, 2483.6, 2489.9, 2494.1 

Variance Inflation Factors (VIF): 3.69, 12.19, 6.99, 3.85, 1.89, 1.58 

Significant Wavelength (Potassium; nm):  344.8, 1063.5, 1906.6, 1928.9, 1934.5, 2377.7, 2447.7,  

2458.4, 2481.6 

Variance Inflation Factors (VIF): 4.44, 1.22, 1.61, 2.64, 1.24, 21.73, 5.08, 15.82, 4.52 

Significant Wavelength (Phosphorus; nm):  334.3, 343.3, 352.3, 426, 1351.8, 1903.8, 1912.2, 

1926.2, 1931.7, 1937.3, 2424, 2445.6, 2449.9, 2473.2, 2475.3, 2487.8, 2500.3, 2504.4 

Variance Inflation Factors (VIF): 13.65, 18.25, 26.21, 19.47, 8, 2.23, 2.85, 3.65, 6.11, 4.13, 23.07, 

17.33, 6.95, 10.98, 13.78, 3.14, 3.33, 3.9 

Significant Wavelength (Magnesium; nm):   337.3, 1837.1, 1906.6, 1923.4, 2489.9, 2496.1 

Variance Inflation Factors (VIF):    2.71, 4.62, 1.88, 1.91, 1.79, 1.77 

Significant Wavelength (Zinc; nm):   335.8, 337.3, 723, 827.7, 1815.7, 1906.6, 1915, 1920.6, 

1926.2, 1931.7, 1934.5, 2443.4, 2447.7, 2466.9, 2489.9, 2498.2 

Variance Inflation Factors (VIF): 10.96, 11.65, 31.1, 2.28, 26.39, 3.68, 3.29, 2.53, 2.96, 3.63, 2.51, 

12.39, 9.44, 14.76, 2.23, 3.05 

Significant Wavelength (Boron; nm):  335.8, 1906.6, 1934.5, 2447.7, 2481.6, 2492, 2496.1,  

2498.2 

Variance Inflation Factors (VIF): 3.58, 1.95, 1.67, 5.96, 4.3, 1.68, 2.53, 2.93 

 

11.5 Exploratory Data of Cabernet Franc Leaf Analysis at Leaf 

The grapevine data of the Leaf of the Cabernet Franc taken during blooming from directly 

over the individual grape leaves has seven incorrect observations out of 61,132. All the wrong 

observation has negative values, minimum being -25, as seen in the figure 11.7, below. 
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Figure 11.7:  Spectral Curve measurement of CF Bloom Leaf Analysis dataset  

Replacing these wrong observations with the mean value of the input (predictors) matrix, 

we get the spectral curve, figure 11.8 as given below.  

             

Figure 11.8: Spectral Curve measurement of CF Bloom Leaf Analysis 

dataset without wrong observation 

From the figure 11.8, we can see that there is a strong multicollinearity. Since the 

elastic net is known to select groups of correlated variables, which does not affect the predictability 

of the model. Hence, based on the best values of R-squared adjusted R-squared and predicted R-

squared, we select 68 as the limit upper limit of the VIF. The method mentioned above will ensure 

that most of the variables will be within VIF of 10, but for a few variables, the VIF will be high. 
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The wavelength, which is statistically significant for each nutrient and the associated VIF, are 

given below. 

Significant Wavelength (Nitrogen; nm):  340.3, 359.7, 701.9, 1627.3, 1912.2, 1920.6, 1923.4,  

1937.3, 1962.1, 2443.4, 2471.1, 2489.9, 2500.3, 2506.4 

Variance Inflation Factors (VIF): 25.81, 13.48, 10.1, 8.24, 2.57, 2.26, 2.85, 3.52, 11.61, 7.87,  

6.19, 2.67, 1.88, 3.26 

Significant Wavelength (Potassium; nm): 1937.3, 2002.9, 2475.3, 2498.2, 2500.3, 2506.4 

Variance Inflation Factors (VIF): 1.76, 1.78, 3.22, 1.27, 1.34, 2.64 

Significant Wavelength (Phosphorus; nm):  708.5, 870.3, 1906.6, 1937.3, 2439.1, 2496.1, 2500.3 

Variance Inflation Factors (VIF): 3.41, 3.79, 1.53, 1.68, 3.72, 1.53, 1.48 

Significant Wavelength (Magnesium; nm):   1920.6, 1931.7, 1953.8, 2366.5, 2439.1, 2458.4, 

 2466.9, 2475.3, 2485.7, 2498.2 

Variance Inflation Factors (VIF): 3.16, 1.74, 6.9, 10.69, 12.56, 15.77, 6.45, 6.56, 2.58, 1.98 

Significant Wavelength (Zinc; nm):  1411.9, 1893.8, 1928.9, 1945.6, 2013.6, 2366.5, 2377.7, 

 2439.1, 2445.6, 2464.8, 2477.4, 2492, 2494.1 

Variance Inflation Factors (VIF): 37.32, 24.99, 2.26, 4.97, 27.59, 23.96, 20.61, 14.51, 12.45, 

 5.84, 5.17, 3.66, 2.36 

Significant Wavelength (Boron; nm):  692.6, 768.5, 1411.9, 1928.9, 1964.8, 2013.6, 2475.3 

Variance Inflation Factors (VIF): 7.09, 13.31, 25.33, 1.9, 8.01, 17.18, 2.52 

 

11.6 R-squared, adjusted R-squared and predicted R-squared values 

We consider the grapevine dataset of petiole chemical analysis of Riesling, taken directly 

from the individual grape leaves during the bloom period. The value of seed and alpha has been 

chosen as 5223 and 0.92, respectively. The values of lambda.min and lambda.min.ratio were 

selected as 0.003, to calculate the optimum values of R-squared, adjusted R-squared and predicted 

R-squared.  
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               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.Squared      0.68        0.73      0.67       0.74      0.79 0.65  
Adj.R.Squared  0.62        0.65      0.61       0.68      0.73 0.57  
Pred.R.Squared 0.52        0.41      0.55       0.61      0.58 0.48 
        

Now, we consider the grapevine dataset of petiole of Riesling, taken at the nadir of the 

grapevine canopy during the veraison period. The values of lambda.min and lambda.min.ratio 

were selected as 0.05, to calculate the optimum values of R-squared, adjusted R-squared and 

predicted R-squared.  

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.Squared      0.49        0.56      0.51       0.43      0.51 0.16  
Adj.R.Squared  0.46        0.46      0.48       0.42      0.48 0.14  
Pred.R.Squared 0.40        0.35      0.44       0.39      0.44 0.11  

Next, we consider the grapevine dataset of Leaf analysis of the Cabernet Franc, taken at 

15° off-nadir of the vine canopy during the bloom period. The values of lambda.min and 

lambda.min.ratio were selected as 0.011, to calculate the optimum values of R-squared, adjusted 

R-squared and predicted R-squared.  

 

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.Squared      0.35        0.65      0.82       0.59      0.79 0.58  
Adj.R.Squared  0.28        0.59      0.75       0.55      0.71 0.52  
Pred.R.Squared 0.20        0.46      0.51       0.43      0.63 0.45  

Lastly, we consider the grapevine dataset of Leaf analysis of the Cabernet Franc, taken 

directly over the individual grape leaves during the bloom period. The values of lambda.min and 

lambda.min.ratio were selected as 0.0145, to calculate the optimum values of R-squared, adjusted 

R-squared and predicted R-squared.  

               Nitrogen(%) Potassium Phosphorus Magnesium Zinc Boron 
R.Squared      0.73        0.59      0.54       0.72      0.80 0.52  
Adj.R.Squared  0.65        0.54      0.48       0.66      0.75 0.45  
Pred.R.Squared 0.45        0.46      0.40       0.57      0.69 0.35  
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11.7 Comparison of the four grapevine datasets 

Notice that the prediction of the six nutrients is better when the readings of spectral 

reflectance taken directly from the grape leaves during the bloom period rather than taken at the 

nadir for the grapevine canopy during the veraison period. However, when the dataset of Riesling 

grape leaves is compared with the dataset of Leaf of the Cabernet Franc, taken at 15° off-nadir 

during the bloom period, we achieve a mixed result. The prediction of nitrogen, Phosphorus, 

magnesium, and boron is better by the leaf-level dataset, whereas potassium and zinc can be 

predicted better by the nadir leaf dataset. Similarly, we can compare the dataset of petiole chemical 

analysis of Riesling, taken at the nadir of the grapevine canopy during the veraison period with a 

leaf of the Cabernet Franc, taken at 15° off-nadir of the grapevine canopy during the bloom period. 

We again get a mixed result. Except for nitrogen, the remaining five nutrients can be predicted 

better by the dataset of Cabernet Franc, taken at 15° off-nadir during the bloom period. Now, 

compare the datasets of leaf analysis of the Cabernet Franc, taken at 15° off-nadir of the vine 

canopy with the one taken directly from the individual grape leaves during the bloom period. We 

again achieve mixed results. The predicted value of nitrogen, magnesium, and zinc is better for the 

readings taken directly from the individual grape leaves, whereas for phosphorus and boron can 

be predicted better by taking reading 15° off-nadir. The prediction of potassium is same for both 

the datasets.  

Next, we compare the dataset of petiole chemical analysis of Riesling, taken at the nadir of 

the grapevine canopy during the veraison period and Leaf of the Cabernet Franc, taken directly 

from the grape leaves during the bloom period. Except for Phosphorus the prediction of remaining 

five nutrients are better for the readings taken directly from the Cabernet Franc grape leaves during 

the bloom period. Lastly, compare the dataset of petiole chemical analysis of Riesling, and leaf 

analysis of the Cabernet Franc, taken directly from the individual grape leaves during the bloom 

period. Except for potassium and zinc, the prediction of the remaining four nutrients is better for 

petiole chemical analysis of Riesling. 
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11.8 Findings of the selected four grapevine datasets 

For the prediction of nitrogen, the best result (52%) can be achieved when the reflectance 

taken directly from the individual Riesling grape leaves during the bloom period. 

For the prediction of potassium, the best result (46%) can be achieved when the reflectance 

from the leaf of the Cabernet Franc, taken at 15° off-nadir of the vine canopy or over the individual 

Riesling grape leaves during the bloom period. 

For the prediction of phosphorus, the best result (55%) can be achieved when the 

reflectance from Petiole of the Riesling, is taken directly from the individual Riesling grape leaves 

during the bloom period. 

For the prediction of magnesium, the best result (61%) can be achieved when the 

reflectance from Petiole of Riesling, is taken directly from the individual Riesling grape leaves 

during the bloom period. 

For the prediction of zinc, the best result (69%) can be achieved when the reflectance from 

leaf analysis of the Cabernet Franc, is taken directly from the individual Riesling grape leaves 

during the bloom period. 

For the prediction of boron, the best result (48%) can be achieved when the reflectance 

from petiole of Riesling, is taken directly from the individual Riesling grape leaves during the 

bloom period. 

 

11.9 Recommendation based on analysis of four grapevine datasets 

Based on the analysis of four grapevine datasets, it is recommended to take the spectral 

reflectance reading directly over the grapevine leaves during the bloom period to get the best-

predicted values. Spectral reflectance of Riesling yields best-predicted values for nitrogen, 

phosphorus, magnesium, and boron while for potassium and zinc Cabernet Franc variety yields 

best-predicted values.  
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Chapter 12 

Conclusion 

Meeting the growing demand for wine over next couple of decades has generated much 

interest in the study of various characteristics of grapes, like fruit ripening rate, water status, 

infestation, and disease. To estimate the nutritional deficiencies of grapes, viticulturists are 

interested in six key nutrients: nitrogen, potassium, phosphorous, magnesium, zinc, and boron. 

The leaf reflectance of grapevine was collected from three different angles of view for Riesling 

and Cabernet Franc varieties during the bloom and the veraison period to predict the nutrients 

mentioned above. The nutrient analysis was performed at the petiole-level. Four datasets were 

selected to provide a correct representation of grape variety, growth period, the angle of view and 

parts of grapevine. The data, its source, and the data collections efforts are described in G. W. 

Anderson (2016) and Anderson et al. (2016). 

The spectral reflectance of leaves was taken through wavelengths ranging from 330 to 2510 

nanometers, at an interval of 1.5 to 2.7 nm. The reading for data collection was taken at 986 

different wavelengths. The dataset of the Riesling variety had 144 observations whereas Cabernet 

Franc had 62 observations against 986 predictor variables. These high dimensional datasets, with 

a larger number of variables than the sample size, suffered from the curse of dimensionality and 

hence required shrinkage and variable selection.  

Initially, these datasets were explored for missing values, wrong observations (outliers) and 

multicollinearity. There were no missing values. Since the radiance reflected from a leaf is 

expressed as a percentage of incident radiance through the range of wavelengths, it should have a 

value between 0 and 100. However, three grapevine datasets have spectral reflectance less than 

zero and an equal number of datasets with more than 100.  Hence, all the four datasets had some 

bad observations; however, the severity of outliers was more for the datasets of Riesling than the 

Cabernet Franc variety. Robust regression and replacement of bad observations with the mean of 

the input matrix were examined to overcome the problem mentioned above. Based on their 

predictive ability, the second approach was selected for further study.  
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Since the spectral reflectance of leaves was collected through the range of wavelengths 

from 330 to 2510 nanometers, the datasets suffered from severe multicollinearity to the tune of 

98% in certain cases. The Variance Inflation Factor (VIF) was restricted within ten as far as 

possible by utilizing the properties of Elastic Net and eliminating highly correlated predictors, 

wherever applicable.  

Since these grapevine datasets are high dimensional, with multicollinearity, statistical 

inference is possible only by dimensionality reduction through sparse representation.  The 

dimensional reduction will not only decrease the computational burden but also improve the 

estimation accuracy. For variable selection by sparsity, the coefficient of many predictors are 

reduced to zero, and non-zero components are considered as relevant variables. Thus, the 

estimation accuracy was improved by effectively identifying the subset of relevant predictors and 

the model interpretability enhanced with parsimonious representation. Four different methods 

were explored for variable selection, based on best-predicted values for the six nutrients utilizing 

the dataset of leaf spectral reflectance for Riesling grapes, taken directly from the leaves during 

the bloom period. The first three models dealt with linear regression while the fourth one was 

Functional Data Analysis. 

The first regression model was based on convex penalized (pseudo-) likelihood using 

Elastic-Net regularization path via coordinate descent, which concurrently uses a mixture of the ℓ1 

(lasso) and ℓ2 (ridge regression). This generalized linear model takes advantage of the property of 

elastic net, which simultaneously makes the automatic variable selection and continuous 

shrinkage, and selects groups of correlated variables using the R package, glmnet.  Elastic net 

averages wavelengths that are highly correlated and then enters the averaged wavelength into the 

model. The predictive ability of this high dimensional grapevine dataset with high multicollinearity 

was good. 

The second regression model was based on the regularization paths for Minimax Concave 

Penalty (MCP) with the so-called oracle property using the R package, ncvreg. This generalized 

linear model takes advantage of MCP, which takes off at the origin as the ℓ1 penalty, but 

continuously relaxes that penalization until the rate of penalization drops to zero. However, the 

non-convexity nature of MCP introduces numerical challenges in fitting these models. For the 
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high-dimensional grapevine dataset, global convexity is neither possible nor relevant. Since the 

objective function of the grapevine dataset is convex in the local region that contains the sparse 

solutions, we still have stable estimates and smooth coefficient paths in the parameter space of 

interest. Though MCP tends to be more accurate as p increases, (possibly due to multicollinearity) 

the sparse solution of grapevine dataset selects a lesser number of nonzero coefficients than 

desired. This sparse solution adversely influences the predictive ability of the regression model 

based on Minimax Concave Penalty. 

The third regression model was based on Iterative Sure Independence Screening (ISIS) 

using the R package, SIS. The sure screening method is based on correlation learning, which 

selects variables by filtering out the features that have a weak correlation with the response.  This 

method ensures that all the relevant variables survive after the variable screening with a probability 

tending to one. SIS is based on the intuition that the predictors are independent; however, the 

absolute correlation coefficient between some of the predictors of high dimensional 

grapevine dataset are enormous. This collinearity between predictors of the grapevine 

dataset creates a problem in variable selection. It is possible that some unimportant 

predictors that are highly correlated with the significant predictors would be selected 

instead of important predictors that are relatively weakly related to the response. It is also 

possible that SIS would not have picked a significant predictor that was marginally 

uncorrelated but jointly correlated with the response variable. An iterative application of 

the SIS approach seeks to overcome the limitations of SIS, by making more use of the 

shared covariate information while retaining computational expediency and stability as in 

the original SIS. However, possibly due to multicollinearity, even ISIS selects fewer predictors 

than desired, which adversely affects the predictive ability of regression model.  

Finally, functional data are defined as discrete observations of a phenomenon that 

can be represented by smooth curves, which reflect the dependence structure between 

neighboring points, so that the phenomenon can be evaluated at any point in time. The 

spectral reflectance of leaves was taken through wavelengths ranging from 330 to 2510 

nanometers, at an interval of 1.5 to 2.7 nm. Hence, the spectral reflectance data measured along 

the continuum of wavelength can be represented by a smooth curve belonging to an infinite 

dimensional space. B-spline basis representation is used to compute the functional regression 
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between a functional explanatory variable (spectral reflectance of the grapevine data) X(t) and the 

scalar response of the six nutrients. In spline smoothing, as in other smoothing methods, the mean 

squared error (MSE) is one way of capturing the quality of the estimate. For imposing smoothness 

on the estimated curve, MSE is reduced by sacrificing some bias to reduce sampling variance. 

Since the estimates are expected to vary gently from one value to another, we are effectively 

“borrowing information” from neighboring data values, thereby expressing our faith in the 

regularity of the underlying function x that we are trying to estimate. This pooling of information 

makes the estimated curve more stable, at the cost of some increase in bias (J. Ramsay & 

Silverman, 2005). Based on minimum mean MSE the number of basis function are chosen to 

calculate the predictive ability of functional data analysis. Since some basis functions (K) are not 

substantially smaller than the number of observations (n) of 144, the regression approach tends to 

overfit the data. Only a few basis functions are statistically significant. Hence the predictive ability 

of grapevine dataset is low. 

The regression model, based on convex penalized (pseudo-) likelihood using Elastic-Net 

regularization path, provides the best predictive ability for the high-dimensional grapevine dataset 

with high multicollinearity. 

The grapevine dataset is multivariate with correlation, which follows a different pattern. In 

other words, change in the parameters has a different impact on the predictability of the various 

nutrients. Hence, depending on the requirement to predict a particular nutrient, the parameters 

could be changed to obtain the best predictive value for that nutrient. 

The comparison of four grapevine datasets was made based on the spectral reflectance of 

leaves of Riesling and Cabernet Franc grapes collected during the bloom and veraison period. It 

was noticed that different grapevine datasets are required for the best predictive value of the 

various nutrients. However, based on the analysis of datasets, the reading of the spectral reflectance 

for the Cabernet Franc or Riesling was taken at 15° off-nadir of the vine canopy or directly over 

the individual grapevine leaves during the bloom period, respectively, performed best.   

It was found that all six nutrients in the four grapevine datasets have most of their 

significant predictors (wavelength) in three distinct ranges. The first range of wavelengths with 

significant predictors is from1820 to 2510 nanometers. The second range of wavelength with 
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significant predictors is between 330 and 450 nm. The third most prominent range of wavelengths 

with significant predictors is between 1340 and 1440 nm. Apart from these, all over the remaining 

range of wavelengths, there are a few isolated predictors, which are statistically significant.   
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