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Abstract

Numerical relativity simulations of binary black hole inspiraling and mergers
are computationally costly and storage requirements can quickly become
unmanageable. By implementing a multi-domain spectral method we are
able to more efficiently store metric component data when increased time
resolution is desired over increased spatial metric resolution. Within the
framework of a binary black hole system, multi-domain spectral methods
work well using two different domain sets, one centered on each black hole,
so they are able to absorb the singular behavior at each black hole’s center.
There is no difficulty in transferring quantities from one domain to another,
or splitting the source function across two different domains, but there is no
a priori choice for the relative weighting function to split a metric component.
Here, we investigate what breakdown yields the highest accuracy.
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Chapter 1

Introduction

We have recently passed the century mark for Einstein’s publication of
his general theory of relativity [7]. This theory has provided us with the
framework to model gravity on scales ranging from terrestrial to cosmological.
To date, the general relativistic gravitational model has passed numerous test
across multiple length scales. This theory has allowed modeling of large-scale
cosmological structures, astrophysical objects such as black holes, neutron
stars and other compact bodies, as well as more everyday applications such as
GPS systems. Further evidence of the experimental accuracy of general
relativity occurred in September 2015, a century after the fundamental
predictions of Einstein and Schwarzschild, when the first direct detection
of gravitational waves occured. This was the first direct observation of a
binary black hole system merging to form a single black hole, in accordance
with the predictions of general relativity for the nonlinear dynamics of highly
disturbed black holes [1].

In an effort to construct and study more general solutions to the field
equations by approximately solving the Einstein equations numerically, the
field of numerical relativity was born. The first decomposition of spacetime
into separate space and time components was published by Richard Arnowitt,
Stanley Deser, and Charles W. Misner in the late 1950s in what has become
known as the ADM formalism [2]. Unfortunately, in its simplest form, the
so-called 3+1 split (representing the spatial and time dimensions, respectively)
is numerically unstable and not useful for simulating general configurations in
time. Current numerical efforts most commonly employ one of two particular
reformulations of Einstein’s equations: the generalized harmonic gauge [15]
or the BSSN (Barmgarte-Shapiro-Shibata-Nakamura) formalisms [3].

1



i
i

“thesis” — 2017/5/17 — 18:36 — page 2 — #11 i
i

i
i

i
i

Numerical methods to find solutions for valid initial data in general
relativity seek the solution of the Hamiltonian constraint [9]

∆ψ +
1

8
KabKabψ

−7 = 0, (1.1)

with boundary conditions ψ → 1 and r → ∞ where the physical extrinsic
curvature, K̂ab, is scaled by a conformal factor, ψ, to produce the conformal
extrinsic curvature, Kab, such that

Kab = ψ2K̂ab. (1.2)

A solution known to work for black hole spacetime configurations, the Bowen-
York solution to the momentum constraints, Kab, for two black holes, with
momentums P1 and P2, and spins S1 and S2, is given by

Kab =
2∑

k=1

3

2r2k

[
P a
k n

b
k + P b

kn
a
k − (γab − naknbk)(Pknk)

]
+

3

r3k

[
(Sk × nk)anbk + (Sk × nk)bnak

]
,

(1.3)

where
rk =

√
(x± b)2 + y2 + z2 (1.4)

is the coordinate distance to black holes k ∈ {1, 2} located at the points
(±b, 0, 0), nk is the radial unit normal vector given by

nk =
xa

rk
(1.5)

and γ is the conformal three-metric.
Binary black hole simulations, including those performed at RIT by

researchers in the Center for Computational Relativity and Gravitation
(CCRG), are most often performed using Eulerian evolution schemes in which
a grid of spatial coordinates is laid down, describing the set of points where
various quantities like the values of the spacetime metric tensor are calculated
via the partial differential equation (1.1). These calculations, which require
high spatial resolution near the respective black holes, as well as a large
numerical domain to capture the asymptotic behavior of the gravitational
radiation produced by the binary system, typically utilize adaptive mesh
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refinement using a sequence of nested, logically rectangular meshes on which
the partial differential equation is discretized [4]. This technique allows for
the adaptation of precision for areas of the model that exhibit dynamic
and/or multi-scale behavior. For our work on initial data, we use Carpet,
an adaptive mesh refinement and multi-patch driver [14], via code found at
http://einsteintoolkit.org/ [10]. These types of problems have extreme
data storage requirements since each level of refinement is often quite large,
potentially including millions of grid cells, with up to 15 levels of refinement
being called upon for the highest resolution simulations [11]. To combat
this we look for methods to store data more efficiently, preserving the vast
majority of the information content from a simulation while reducing the
overall storage requirements.

In this thesis, we investigate methods of storing spacetime metric com-
ponent data of a binary black hole system on multi-domain spherical grids,
and using spectral methods to reconstruct the field for use in post-processing
applications such as radiative transfer [13]. We begin by constructing a multi-
domain grid, inputting known values of a function at the collocation points
required to perform a spectral decomposition, and constructing a grid of
spectrally expanded values in order to verify the accuracy of the method. We
then construct a Cartesian grid of known data, interpolate those values onto
the multi-domain grid, and analyze the error introduced by the interpolation
routine. Lastly, we construct two multi-domain grids, one centered at each
black hole, interpolate numerically derived data to the grid, split the metric
values between the two multi-domain grids, then reconstruct the original
metric and analyze the resulting error.
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Chapter 2

Multi-Domain Grids

Using the LORENE numerical libraries [8], we construct a multi-domain grid as
described in [5], consisting of an inner spherical domain, intermediate annular
domains, and an exterior domain extending to spatial infinity. We divide R3

into N domains (Dl)0≤l≤N−1 where N ≥ 2. Let us denote by Sl the boundary
surface between the domains Dl and Dl+1. D0 is simply connected and its
boundary is S0; we call it the nucleus. For 1 ≤ l ≤ N − 2, the inner boundary
of Dl is Sl−1 and outer boundary Sl. The infinite domain, DN−1, has inner
boundary SN−2 and extends to spatial infinity [5]. See Figure 2.1 on page 7
for an example.

2.1 Inner Domain

We begin by constructing the mapping

[0, 1]× [0, π]× [0, 2π)→ D0, (ξ, θ′, φ′) 7→ (r, θ, φ), (2.1)

where ξ = 0 corresponds to the origin [5]. We take the form of mapping 2.1
to be

r = R0(ξ, θ
′, φ′), (2.2)

θ = θ′, (2.3)

φ = φ′, (2.4)

where R0(ξ, θ, φ) satisfies

R0(1, θ, φ) = S0(θ, φ) (2.5)

4
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since the domain boundaries coincide with ξ = 1 [5]. So R0 is defined as

R0(ξ, θ, φ) = α0[ξ + A0(ξ)F0(θ, φ) +B0(ξ)G0(θ, φ)], (2.6)

where

A0(ξ) = 3ξ4 − 2ξ6, (2.7)

B0(ξ) = (5ξ3 − 3ξ5)/2, (2.8)

A0 being an even polynomial and B0 being an odd polynomial[5] and

α0 = S0(θ, φ). (2.9)

The functions F0(θ, φ) and G0(θ, φ) allow the inner domain to be spheroidal
in geometry since it allows for variation in the radial functions A0(ξ) and
B0(ξ) with respect to the angular variables. We are using spherical mappings
so we take F0(θ, φ) = G0(θ, φ) = 0.

2.2 Intermediate Domains

Domains Dl, such that 1 ≤ l ≤ N − 2, are intermediate domains and are
constructed with the mapping

[−1, 1]× [0, π]× [0, 2π)→ Dl, (ξ, θ′, φ′) 7→ (r, θ, φ) (2.10)

such that the form of mapping 2.10 is

r = Rl(ξ, θ
′, φ′), (2.11)

θ = θ′, (2.12)

φ = φ′, (2.13)

where Rl(ξ, θ, φ) satisfies

Rl(−1, θ, φ) = Sl−1(θ, φ), (2.14)

Rl(1, θ, φ) = Sl(θ, φ), (2.15)

so that the inner (outer) boundary of Dl is defined by ξ = −1 (ξ = 1) [5]. Rl

is defined as

Rl(ξ, θ, φ) = αl[ξ + Al(ξ)Fl(θ, φ) +Bl(ξ)Gl(θ, φ)] + βl, (2.16)
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where

Al(ξ) = (ξ3 − 3ξ + 2)/4, (2.17)

Bl(ξ) = (−ξ3 + 3ξ + 2)/4 (2.18)

and

αl =
Sl+1(θ, φ)− Sl(θ, φ)

2
, (2.19)

βl =
Sl+1(θ, φ) + Sl(θ, φ)

2
(2.20)

are defined from Sl+1 and Sl [5]. As with the inner domain, we take F0(θ, φ) =
G0(θ, φ) = 0.

2.3 Infinite Domain

The external domain, Dext ≡ DN−1, is the outermost domain with inner
boundary Sext ≡ SN−2, which extends to infinity and has the following
mapping:

[−1, 1]× [0, π]× [0, 2π)→ Dext, (ξ, θ′, φ′) 7→ (r, θ, φ) (2.21)

such that the form of mapping 2.21 is

r =
1

U(ξ, θ′, φ′)
, (2.22)

θ = θ′, (2.23)

φ = φ′, (2.24)

where

U(ξ, θ, φ) = αext[ξ + Aext(ξ)Fext(θ, φ)− 1] (2.25)

is a smooth function that satisfies

U(−1, θ, φ) = Sext(θ, φ)−1, (2.26)

U(1, θ, φ) = 0 (2.27)
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Figure 2.1: Example of multi-domain grids.

and Aext(ξ) ≡ Al(ξ), as given in section 2.2 [5]. αext and Fext are

αext =
Sext(θ, φ)−1

−2 + Fext(θ, φ)
, (2.28)

Fext(θ, φ) ≤ 0. (2.29)

Condition (2.29) ensures a non-singular mapping [5].
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Chapter 3

Data Approximation

We approximate metric data from a finite Cartesian grid generated by the
Cactus routines within the EinsteinToolkit to the newly constructed multi-
domain grid. We utilize trilinear and tricubic approximation routines and
then compare the resultant error data to expected error trends.

3.1 Cubic Interpolation

We first define the distance from the target coordinate, (x, y, z), to the next
smaller coordinate with known data, (x0, y0, z0), along each axis, so we have

xd =
(x− x0)
(x1 − x0)

, (3.1)

yd =
(y − y0)
(y1 − y0)

, (3.2)

zd =
(z − z0)
(z1 − z0)

. (3.3)

8
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Let V [xi, yj, zk] be the function value at (xi, yj, zk) for i, j, k ∈ [−1, 2]. Inter-
polating first along the x-axis, we have

cjk = V (x−1, yj, zk)
xd(xd − 1)(xd − 2)

−6

+ V (x0, yj, zk)
(xd + 1)(xd − 1)(xd − 2)

2

+ V (x1, yj, zk)
(xd + 1)xd(xd − 2)

−2

+ V (x2, yj, zk)
(xd + 1)xd(xd − 1)

6
,

(3.4)

where j, k ∈ [−1, 2]. Next we interpolate along the y-axis

ci = c−1,i
yd(yd − 1)(yd − 2)

−6

+ c0,i
(yd + 1)(yd − 1)(yd − 2)

2

+ c1,i
(yd + 1)yd(yd − 2)

−2

+ c2,i
(yd + 1)yd(yd − 1)

6
,

(3.5)

for i ∈ [−1, 2]. We then interpolate along the z-axis

c = c−1
zd(zd − 1)(zd − 2)

−6

+ c0
(zd + 1)(zd − 1)(zd − 2)

2

+ c1
(zd + 1)zd(zd − 2)

−2

+ c2
(zd + 1)zd(zd − 1)

6
,

(3.6)

where c is the approximate function value at the target coordinate.
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3.2 Linear Interpolation

We again define the distance from the target coordinate, (x, y, z), to the next
smaller coordinate with known data, (x0, y0, z0), along each axis, so we have

xd =
(x− x0)
(x1 − x0)

, (3.7)

yd =
(y − y0)
(y1 − y0)

, (3.8)

zd =
(z − z0)
(z1 − z0)

. (3.9)

Let V [xi, yj, zk] be the function value at (xi, yj, zk) for i, j, k ∈ [0, 1]. Interpo-
lating first along the x-axis, we have

cjk = V [x0, yj, zk](1− xd) + V [x1, yj, zk]xd, (3.10)

where j, k ∈ [0, 1]. Next we interpolate along the y-axis,

ci = c0,i(1− yd) + c1,iyd. (3.11)

We then interpolate along the z-axis,

c = c0(1− zd) + c1zd, (3.12)

where c is the approximate function value at the target coordinate.

Figure 3.1: Depiction of three-dimensional linear interpolation [12].

3.3 Extrapolation

Since the spectral grids introduced by LORENE can extend to spatial in-
finity, they typically include collocation points located quite far from the
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coordinate origin, well beyond the extent of the rectangular grid used by
the EinsteinToolkit, to perform the original numerical simulation. Thus,
we require a method to take data from the finite-volume Cartesian grid and
extrapolate it to arbitrary distances. In doing so, we can take advantage
of the fact that all general relativistic field quantities under consideration
have known power law fall-off behavior proprtional with distance. Below,
we describe our method for fields that exhibit a 1/r fall-off behavior, with
obvious generalizations for other power law indices.

For target coordinates falling outside the rectangular grid of original
numerical simulation data, V , which we assume is centered at the origin, we
calculate the ratios

xratio =

∣∣∣∣ x∂Vx
∣∣∣∣ , (3.13)

yratio =

∣∣∣∣ y∂vy
∣∣∣∣ , (3.14)

zratio =

∣∣∣∣ z∂Vz
∣∣∣∣ , (3.15)

where ∂V is the boundary of V and ∂Vx, ∂Vx, and ∂Vx are the boundaries of
V in each axis.

We map a new set of target coordinates, (x′, y′, z′), onto ∂V along the
line segment connecting the points (0, 0, 0) and (x0, y0, z0) defined by

x = x0ζ, (3.16)

y = y0ζ, (3.17)

z = z0ζ, (3.18)

where ζ ∈ [0, 1].
Solving the line equations for the point (x′, y′, z′) we let ζ = 1

α
, so we have

x′ =
x0
α
, (3.19)

y′ =
y0
α
, (3.20)

z′ =
z0
α
, (3.21)

where α = max{xratio, yratio, zratio}.
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We interpolate the new target coordinate, (x′, y′, z′), in the same manner
as given in Section 3.2. We then scale the resultant approximation, c′, to
obtain the approximated function value at the original target coordinate

c =
c′

α
, (3.22)

where c is the approximate function value at the target coordinate.
This scaling gives us the desired metric behaviour

lim
α→∞

c = 0. (3.23)
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Chapter 4

Field Splitting

It is possible to generate a valid spacetime solution for multiple black holes
using superposition for their respective extrinsic curvatures, given the linear
nature of the momentum constraint. One may then solve for the conformal
factor numerically. Given this breakdown, it is natural to view every field
quantity, including the metric components, as representing superpositions
of terms taking their source as each of the two black holes, respectively. In
this picture, we can decompose every metric quantity into the form F =
fbkgrd + f1 + f2, where fbkgrd describes the asymptotic behavior of the field,
and f1 and f2 describe the local structure of spacetime around each black
hole. Splitting the black hole metrics into two spherical domains allows us to
utilize spectral methods on the system when reconstruction of the metrics is
desired, but this requires us to choose how we will determine the respective
values of f1 and f2 at a given point. To achieve this, we have to pick an
appropriate function, which we call the splitting function, to scale the metric
values at each collocation point such that it that minimizes the error of the
reconstructed metrics. The function has to account for the mass of, and
distance from, each sigularity, thus adjusting the weight given to each point
on the multi-domain grids.

The splitting function candidates we investigate are

g(Ri,j) =
(Mi,jRi,j)

n

(Mi,jRi,j)
n +

(
1

Mi,jRi,j

)n (4.1)

for n ∈ {1, 2, 4}, where the mass ratio between the pair of black holes of mass

13
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mi and mj is

Mi,j =
mi

mj

(4.2)

and the ratio of distances from the point in the multi-domain grid to each
singularity is

Ri,j =
rj
ri
. (4.3)

The candidate function must have some particular properties to establish
an accurate metric split. First, to ensure each singularity contributes one-
hundred percent of the system’s metric at its origin, F = fi with fj = 0 for
i 6= j, we have

g(R)→ 1 as R→∞ (4.4)

and
g(R)→ 0 as R→ 0. (4.5)

This means that we will limit our binary pairs to singularities where g(0) = 1
for both singularities. Second, since we are using an infinte compactified
external domain in order to represent all of space, we must have that

g(R)→ 1

2
as R→ 1 (4.6)

in order to achieve an equal split at the limits of the domain.
This leaves us with the following local values of the metric components:

f1 = g(R1,2) · (F − fbkgrd) (4.7)

and
f2 = g(R2,1) · (F − fbkgrd) (4.8)

In each case, the coupled metric will be split by the candidate function, and
the error measured and analyzed.
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Figure 4.1: Heat maps of three candidate splitting functions used for a
singularity located at (−10, 0, 0) with its binary partner located at (10, 0, 0)
in R3.
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Chapter 5

Multi-Domain Spectral Method

The goal of utilizing a multi-domain spectral scheme is to expand each domain
as a finite sum. Any singular function can be represented in terms of a Taylor
series by

f(x, y, z) =
∑
i,j,k

ci,j,kxiyjzk. (5.1)

By the usual coordinate transformation we have

f(r, θ, φ) =
M∑

m=−M

L∑
`=|m|

r`T (r2) sin|m| θP`−|m|(cos θ)eimφ, (5.2)

where L and M are positive integers, L > M , P`−|m| is some polynomial of
degree `− |m| and T (r2) is some even polynomial.

The spectral expansion will be with repect to (ξ, θ, φ) instead of the
physical coordinates (r, θ, φ). The basis functions are chosen such that they
may be put in the form X(ξ)Θ(θ)Φ(φ).

5.1 φ Expansion

Since φ is periodic, the Fourier series is chosen as the basis functions

Φk(φ) = eikφ,
−Nφ

2
≤ k ≤ Nφ

2
, (5.3)

where Nφ is the number of degrees of freedom in φ [5]. The collocation points
are defined as

φk =
2πk

Nφ

, k = 0, . . . , Nφ − 1 (5.4)

16
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and are equally spaced in [0, 2π)[6]. So we have the approximation formula
for the φ expansion

INφfφ(φ) =

Nφ/2∑
k=−Nφ/2

akΦk(φ), (5.5)

where

ak =
1

Nφ

Nφ−1∑
k=0

fφ(φk)e
−ikφk (5.6)

are the discrete Fourier coefficients [6].

5.2 θ Expansion

In θ we take the basis functions as

Θkj(θ) =

{
cos(jθ), 0 ≤ j ≤ Nθ − 1 for m even

sin(jθ), 0 ≤ j ≤ Nθ − 1 for m odd
, (5.7)

where Nθ is the number of degrees of freedom in θ [5]. The collocation points
are defined as

θj =
πj

Nθ − 1
, j = 0, . . . , Nθ − 1 (5.8)

and are equally spaced in [0, π] [6]. So we have the approximation formula
for the θ expansion

INθfθ(θ) =

Nθ−1∑
j=0

ajΘj(θ), (5.9)

where

a0 =
1

Nθ

fθ(θ0) (5.10)

and

aj =
2

Nθ

Nθ−1∑
j=1

fθ(θj)e
−ijθj (5.11)

are the even Fourier coefficients [6].



i
i

“thesis” — 2017/5/17 — 18:36 — page 18 — #27 i
i

i
i

i
i

5.3 ξ Expansion

For the nucleus of the multi-domain grids we use the basis functions

Xkji =

{
T2i(ξ), 0 ≤ i ≤ Nr − 1 for j even

T2i+1(ξ), 0 ≤ i ≤ Nr − 2 for j odd
, (5.12)

where Nr is the number of degrees of freedom in r, and Tn is the nth degree
Chebyshev polynomial [5]. The collocation points are defined as

ξi = sin

(
π

2

i

Nr − 1

)
, i = 0, . . . , Nr − 1 (5.13)

and are spaced to minimize the Runge phenomenon [6]. For the intermediate
and external domains we use

Xkji = Ti(ξ) (5.14)

as basis functions, and the collocation points

ξi = − cos

(
πi

Nr − 1

)
, i = 0, . . . , Nr − 1. (5.15)

This leaves us with the radial approximation formula

INrfr(ξ) =
Nr−1∑
i=0

aiXkji(ξ), (5.16)

where

a0 =
1

Nr

fr(ξ0)T0(ξ0) (5.17)

and

ai =
2

Nr

Nr−1∑
i=1

fr(ξi)Ti(ξi) (5.18)

are the even Chebyshev coefficients [6].
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Figure 5.1: Examples of Chebyshev polynomials.
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Chapter 6

Numerical Error

Error is introduced in two places using this method. The first is when data
is interpolated onto the LORENE grids via cubic and linear interpolating
routines, and the second is when the field is reconstructed using spectral
expansions. The reconstruction error consists of error from the difference
between the exact function and the interpolant, as well as truncation error
caused by cutting off higher order modes of the series expansion. We look at
the error introduced and verify that it follows expected fall-offs based on grid
size and interpolation technique.

We compare the error introduced when data is approximated at the
collocation points over multiple Cartesian grid sizes. The error calculated
is the root-mean-square deviation (RMSD) and represents the difference
between approximated values and exact values.

RMSD =

√∑n
k=1(x̂− x)2

n
, (6.1)

where x̂ is the approximated value, x is the exact value, and n is the sample
size.

To test the error introduced, we use the function

f(r, θ, φ) =

(
r2√

1 + r6

)
cos(θ) sin(θ)[sin(φ) + cos(φ)] (6.2)

which is exactly representable by the spectral expansion methods used.

20
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6.1 Single-Domain Error

We begin by generating Cartesian grids of varying densities to investigate the
expected interpolation error introduced as data is transferred from the Carte-
sian grid to the multi-domain grids generated from the LORENE routines.
Next, we feed the exact values of Equation (6.2) into the collocation points of
the multi-domain grid and compare it to the spectral expansion generated by
the LORENE routines at the same points, looking for minimal error, which
signifies that the expansion routines work as designed. Finally, we combine
both interpolation and spectral expansion and look at the error produced
when a Cartesian grid of data generated from Equation (6.2) is interpolated
onto a multi-domain grid, spectrally expanded, and then calculated at the
original Cartesian grid points to determine the error of a fully reconstructed
field. In all cases, the RMSD is then calculated in the standard way using
Equation (6.1).

6.1.1 Interpolation Error

Interpolating data onto the LORENE grid will introduce error. We aim to
quantify how much is introduced using different Cartesian grid densities. We
utilize two interpolation routines: linear and cubic. We expect the linear
routine to produce error fall-off approximately ∝ h2, and the cubic routine to
produce error fall-off approximately ∝ h4.

Figures 6.1 and 6.2 show the interpolation error, εI , as a function of
Cartesian grid point spacing, h, associated with linear and cubic interpolation
routines, respectively. We see that the error approximately follows a power
law convergence εI ∝ h−β, as seen by the tracking curve plotted in each
figure, as expected. The Cartesian grids are in the interval [−10, 10] and
have a varying grid spacing of h = 2.22222 to h = 2× 10−8. Note that only
the points in each grid needed for the interpolation are loaded into memory,
thus reducing the computational overhead. The multi-domain grid extends to
spacial infinity due to the exterior domain compactification. The x-axis is the
rectangular grid spacing h, and the y-axis is the interpolation error εI . Both
the linear and cubic interpolation error is calculated using only the points
contained within the interior voxels of the Cartesian grid. Points contained
in any of the outermost voxels where only the linear interpolation routine
can function, as well as any points exterior to the Cartesian grid where only
extrapolation takes place, were excluded so that the resulting error from each
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routine may be compared properly over the same domain. From the graph
we can see both the linear and cubic interpolation routines exhibit power law
fall-off, as expected. We see that saturation begins to occur at approximately
h = 1× 10−8 in the linear case and occurs at approximately h = 1× 10−4 in
the cubic case.
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Figure 6.1: The interpolation error, εI , of a linear interpolating routine as
a function of grid spacing, h, over the interval [−10, 10] on all axes. The
multi-domain grid interpolated onto consists of three domains: an inner
domain, an intermediate domain, and a compactified external domain that
extends to spacial infinity.
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Figure 6.2: The interpolation error, εI , of a cubic interpolating routine as
a function of grid spacing, h, over the interval [−10, 10] on all axes. The
multi-domain grid interpolated onto consists of three domains: an inner
domain, an intermediate domain, and a compactified external domain that
extends to spacial infinity.

6.1.2 Reconstruction Error

When reconstructing the field with a spectral expansion, we expect error to
be introduced into the data. The error is the result of a difference in the exact
function and that function’s interpolant, as well as truncation error caused by
cutting off higher order modes of the series expansion. We expect the error
will become evanescent when a large number of collocation points is used in
the multi-domain grid. We verify an exactly representable function in (r, θ, φ)
inputted onto the LORENE spectral expansion routine can be extracted as
an approximated function with negligible error introduced, confirming the
spectral routines work as expected.

As we can see from the results in Figure 6.3, reconstruction error, εR,
becomes evanescent as the number of collocation points increases when the
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routine is provided an exactly representable function. Saturation occurs at
approximately 3.5×105 collocation points. After the saturation point, further
refinement of the multi-domain grid will not yield better accuracy and will
only add to the computational overhead of the routine.

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

103 104 105 106

R
ec

on
st

ru
ct

io
n

E
rr

or
,
ε R

Number of collocation points, N

Figure 6.3: The reconstruction error, εR, of the spectral expansion over an
exactly representable function, as a function of the number of collocation
points, N , in the multi-domain grid. The multi-domain grid used for the
spectral expansion consists of four domains: an inner domain, two intermediate
domains, and a compactified external domain that extends to spacial infinity.

6.1.3 Reconstruction Error of an Interpolated Data
Set

In this section we look at the combined effects of interpolation and reconstruc-
tion error. To measure this error we interpolate Cartesian grids comprised of
equally spaced points, whose values were once again computed from Equation
(6.2), onto multi-domain grids containing varying numbers of collocation
points. We then extract the spectral expansion approximation functions
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from the LORENE routines and approximate the values of the metric at the
coordinates in the Cartesian grids in order to compare the original values to
the spectrally expanded values. Due to the high number of points needed to
calculate the error, we use a reduced sample set.

Figure 6.4 shows the total error, ε, as a function of Cartesian grid-point
spacing, h, associated with the linear and cubic interpolation routines, re-
spectively. We see that saturation occurs at a much higher error value due
to under resolution by the spectral expansion in the data series with fewer
degrees of freedom.
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Figure 6.4: The total error, ε, introduced during the interpolation and
subsequent spectral expansion as a function of grid-point spacing, h, over
the interval [−10, 10] in R3. The multi-domain grid interpolated onto and
then spectrally expanded consists of three domains: an inner domain, one
intermediate domain, and a compactified external domain that extends to
spacial infinity. The first data series (+) shows the error associated with a
multi-domain grid consisting of 1, 638 collocation points. The second data
series (×) shows the error associated with a multi-domain grid consisting of
37, 962 collocation points. The third data series (∗) shows the error associated
with a multi-domain grid consisting of 170, 190 collocation points. The fourth
data series (�) shows the error associated with a multi-domain grid consisting
of 460, 530 collocation points.The upper plot utilized a linear interpolation
routine and the lower plot utilized a cubic interpolation routine.

Figure 6.5 shows the total error, ε, as a function of the number of colloca-
tion points in the multi-domain grid, N , associated with the linear and cubic
interpolation routines, respectively. In this case, saturation at higher error is
driven by initial data grid density.
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Figure 6.5: The total error, ε, introduced during the interpolation and
subsequent spectral expansion as a function of the number of collocation points,
N , over the interval [−10, 10] in R3. The multi-domain grid interpolated onto
and then spectrally expanded consists of three domains: an inner domain,
one intermediate domain, and a compactified external domain that extends
to spacial infinity. The first data series (+) shows the error associated with
a Cartesian grid spacing h = 0.645161. The second data series (×) shows
the error associated with a Cartesian grid spacing h = 0.0660066. The third
data series (∗) shows the error associated with a Cartesian grid spacing
h = 0.00666001. The upper plot utilized a linear interpolation routine and
the lower plot utilized a cubic interpolation routine.

6.2 Two-Domain Error

With the linear and cubic interpolation error behaving as expected and the
spectral expansion error becoming evanescent as one would expect, we turn
our attention to the behavior of the these errors when implemented in a two
domain scheme, with the addition of black hole spacetime metric decoupling.
Splitting the fields of the black holes in an optimal manner minimizes the
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error of the spectral expansion.
Figure 6.6 shows the total error, ε, from each of the candidate splitting

functions, defined in Section 4, as a function of the number of collocation
points, N , used in the calculation. The original field was given by Equation
(6.2) over the domain [−128, 128] in R3 with the black holes centered at
(±10, 0, 0). We see each splitting function resulting in approximately equal
error.
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Figure 6.6: Results of testing to compare the candidate metric splitting
functions effect on accuracy of the spectral expansion of a binary black hole
system. The total error, ε, of the interpolation and subsequent reconstruction
of the original field as a function of the number of collocation points, N , over
the interval [−128, 128] in R3. Each multi-domain grid interpolated onto and
then spectrally expanded consists of five domains: an inner domain, three
intermediate domains, and a compactified external domain that extends to
spacial infinity. A data set is plotted for each splitting function given by
Equation (4.1) for n ∈ {1, 2, 4}.
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Chapter 7

Results

Our goal was to minimize the storage requirements of general relativistic
evolution simulations and, at the same time, minimize the error introduced by
the compression routine. In order to do this we needed to consider both the
initial Cartesian grid density used for the interpolation, and the multi-domain
grid density used for the spectral expansion.

In terms of the optimal grid density for our interpolation routines, we are
looking for a Cartesian grid density that achieves maximum accuracy. For the
cubic interpolation routine, this occurs below the grid spacing h = 1× 10−4,
keeping in mind that the outer voxels utilize a linear interpolation routine,
and saturation occurs below h = 1 × 10−8 in this case. If the outer voxels
contain relatively smooth data then the saturation density of the cubic routine
should suffice, otherwise the linear saturation density should be considered,
although the computational overhead will be greater.

To reconstruct the metrics with suitable accuracy, the spectral expansion
should utilize grid densities that, like in the case of the optimal interpolation
grid densities, minimize error and computational requirements. This occurs at
approximately 3.5× 105 collocation points in our test cases. Some variabililty
can occur here due to the number of domains used in the reconstruction and
the interval of each domain. Optimally, the highest density of collocation
points will occur where the data is most dynamic (e.g. in the immediate area
of the singularity, near an accretion disk, etc...).

In order to optimize accuracy, we tested multiple functions to decouple the
black holes’ metric fields. The different functions assigned differing amounts
of the combined metric F to each isolated metric f1 and f2.

In Figure 6.6 we see that each splitting function tested yields approximately
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equal error. No one function stands out as more accurate, though at higher
collocation point counts, greater than approximately 105 points per grid, the
three functions error converges to the same value. From a computational
perspective, choosing the function

g(Ri,j) =
(Mi,jRi,j)

(Mi,jRi,j) +
(

1
Mi,jRi,j

) (7.1)

will lower the computational overhead required since fewer exponents are
used, though the savings would be negligible.

Figure 7.1 shows the relative compressed file sizes for the three splitting
functions defined in Section 4 over varying multi-domain grid densities. No
appreciable difference in file storage size can be distinguished between different
splitting functions, which is to be expected since the storage requirements
are a function of total data points, not the value of the data itself.

Now, when comparing the compressed data to the original data in terms
of storage space, we have a significant reduction in storage requirements.
Table 7.1 summarizes the data compression achieved by our routines. This
level of compression allows an immense amount of data storage. A metric
field could be stored for future work and, due to the nature of the spectral
expansion, can be reconstructed in any desired configuration. It is not
necessary to reconstruct the original field, as the expansion can accept any
arbitrary coordinate (r, θ, φ). In addition, the use of multiple domains allows
this method to be utilized in not only black hole calculations, where the
field is smooth everywhere but at the singularity, but also in calculations
involving objects where the surface is non-differentiable. By aligning the
boundary surface, S0, of the nucleus, D0, we avoid the issues associated with
non-differentiability.
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Figure 7.1: Histogram of compressed file sizes (MB) for the three splitting
functions tested as a function of the number of collocation points, N , in each
multi-domain grid. Each set of collocation points is associated with Equation
(4.1) where the left column is calculated with n = 1, the center column is
calculated with n = 2, and the right column is calculated with n = 4.
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Collocation Points Size (MB) Original Size (MB) % Reduction Error
2730 0.052680

568.6

99.99% 0.000359739
11550 0.235448 99.96% 7.61397e-05
30450 0.638737 99.89% 3.33353e-05
63270 1.345334 99.76% 2.59806e-05
113850 2.447111 99.57% 2.0246e-05
186030 4.023237 99.29% 1.58614e-05
283650 6.163660 98.92% 1.33373e-05
410550 8.959538 98.42% 1.24144e-05
570570 12.491530 97.80% 1.12602e-05
767550 16.847986 97.04% 9.67996e-06

Table 7.1: Summary of data compression achieved through multi-domain
spectral methods. The initial grid size consists of 201 points over the interval
[−128, 128] in R3.
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