
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

5-11-2017 

Bayesian Hidden Topic Markov Models Bayesian Hidden Topic Markov Models 

Kenneth Tyler Wilcox 
ktw5691@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Wilcox, Kenneth Tyler, "Bayesian Hidden Topic Markov Models" (2017). Thesis. Rochester Institute of 
Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9443?utm_source=repository.rit.edu%2Ftheses%2F9443&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Bayesian Hidden Topic Markov Models

by

Kenneth Tyler Wilcox

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in

Applied Statistics

in the

School of Mathematical Sciences

of the

College of Science

of the

Rochester Institute of Technology

Committee in charge:

Associate Professor Ernest Fokoué, Chair
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Abstract

Bayesian Hidden Topic Markov Models

by

Kenneth Tyler Wilcox

Master of Science in Applied Statistics

Rochester Institute of Technology

Associate Professor Ernest Fokoué, Chair

Recent developments in topic modeling for text corpora have incorporated Markov models

in the latent space to better learn contextual content. Known as the Hidden Topic Markov

Model (HTMM), this natural extension of probabilistic mixture models relaxes the “bag-of-

words” assumption of the foundational latent Dirichlet allocation topic model by allowing

the discrete latent variables, or topics, to follow a special first-order Markov process. Pa-

rameter estimation is performed using an expectation-maximization (EM) algorithm with

fixed dimensionality of the topic space (Gruber, Rosen-Zvi, and Weiss 2007). I fully derive

the state space and EM algorithm for the HTMM. I then extend the Hidden Topic Markov

Model (HTMM) into a fully Bayesian framework using a Gibbs sampler. The necessary full

conditional distributions are derived and a Gibbs sampling algorithm proposed. I implement

both the HTMM EM algorithm (Gruber, Rosen-Zvi, and Weiss 2007) and the HTMM Gibbs

sampling algorithm in the R and C++ programming languages. The performance of both

inferential algorithms is evaluated on twelve simulated data sets and on a collection of pro-

ceedings from the Conference on Neural Information Processing Systems (NIPS). The results

suggest that the Gibbs sampling algorithm provides better recovery of the topic space than

a combination of the EM and Viterbi algorithms. Parameter estimation is comparable using
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point estimates with both algorithms. The convergence of the Gibbs sampler is studied and

is reliable for reasonably large data sets. Evaluation of both algorithms on the NIPS corpus

suggests that the HTMM is better able to handle polysemy than LDA and provides coherent

and contiguous topics. Predictive accuracy measured by perplexity is better on training

and test documents using the HTMM than using LDA on the NIPS corpus. Introducing

Markovian dynamics in topical space provides better topical segmentation of a corpus and

increased predictive accuracy for unseen documents.

Gibbs sampler; hidden Markov models; hierarchical Bayes; latent variable modeling; mixture

models; natural language processing; text mining; topic modeling.
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Chapter 1

Introduction

1.1 Problem Statement

The Hidden Topic Markov Model of Gruber, Rosen-Zvi, and Weiss (2007) is extended into

a Bayesian framework: posterior distributions are derived and a Gibbs sampling algorithm

is developed and implemented in the R and C++ programming languages. The expectation-

maximization algorithm for the Hidden Topic Markov Model is derived fully along with a

special extension of the forward-backward and Viterbi algorithms for hidden Markov models

in order to perform inference. The performance of the expectation-maximization algorithm

for the Hidden Topic Markov Model proposed by Gruber, Rosen-Zvi, and Weiss and the novel

Gibbs sampling algorithm is evaluated in a simulation study and on a real-world corpus of

conference proceedings.

1.2 Overview

The accessibility of vast quantities of text-based information has spurred the development of

many computational and statistical approaches to extract and summarize text-based data.

Document analysis, in particular, has posed a fruitful and challenging task within the broad
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set of natural language processing problems. Primary tasks when modeling discrete data like

text often include classifying documents or queries, summarizing a body of text, information

retrieval, novelty detection, authorship identification, and structural analysis. This thesis

concerns itself with topic modeling; topic models offer a statistical model of textual structure.

In this thesis, a novel extension of recent efforts to learn topical representations that are

more semantically coherent through the use of hidden Markov models is proposed using a

fully Bayesian framework. This is a marked departure from Blei, Ng, and Jordan (2003),

whose seminal latent Dirichlet allocation (LDA) assumes that topics are independently dis-

tributed in a document. While LDA has become popular for topic modeling, its underlying

assumptions ignore the meaning created by the order of words in sentences, paragraphs,

and documents. The introduction of a Markov process over the topics is expected to better

model the sequential meaning contained in sentences and paragraphs by assuming that the

topic of a sentence depends on the topic of the previous sentence. However, introducing a

Markov process into the latent space makes estimation and inference non-trivial in this con-

text. Analytical solutions can be intractable, necessitating computational solutions such as

the expectation-maximization (EM) algorithm or sampling algorithms like the Gibbs sam-

pler. The inferential approach for the Hidden Topic Markov Model proposed by Gruber,

Rosen-Zvi, and Weiss (2007) relies on an EM algorithm (Dempster, Laird, and Rubin 1977).

It is well known that the EM algorithm is not guaranteed to converge to a global maximum,

which motivates the use of a Gibbs sampling approach since Gibbs sampling produces a

Markov chain that will converge to the true posterior distribution in the limit (Gelfand and

Smith 1990), although Gibbs samplers may not converge in practice when taking a finite

sample. Another advantage of Gibbs sampling is the ability to recover the posterior distri-

bution of model parameters. The EM algorithm treats model parameters as fixed values,

and yields point estimates of parameters rather than distributions.

The Hidden Markov Topic Model of Andrews and Vigliocco (2010) proposes a Gibbs

sampler for a similar model that makes use of a traditional hidden Markov model, but relies

on a different generative model than that of Gruber, Rosen-Zvi, and Weiss (2007). While
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other time-dependent topic processes have been introduced by others (Blei and Moreno 2001;

Blei and Lafferty 2006; Wang and McCallum 2006), there does not appear to be any Bayesian

extensions of the Hidden Topic Markov Model.

The Hidden Topic Markov Model aims to produce more coherent topics than LDA by

capturing semantic relationships within and between sentences through its use of Markovian

dynamics in the topic space that LDA is unable to identify. Another potential benefit of

the Markov process is the extraction of topics that are more robust to chaining than LDA.

Chained topics occur when two or more distinct subsets of words are combined with words

that are ambiguous since they can belong to more than one subset (Boyd-Graber, Mimno,

and Newman 2014). Allowing a first-order Markov process to drive the topic transitions is

expected to reduce the negative impact of polysemy – multiple meanings for a single word –

on topic quality. A fully Bayesian framework for such a topic model allows the approximation

of the posterior distributions.

1.3 Organization

The contents of this proposal are organized into four sections. Chapter 1 motivates and

introduces the work presented in this thesis. In Chapter 2, related work in the context of

document analysis and topic modeling is reviewed with the objective of 1) arguing that a

hierarchical probabilistic model can represent the statistical structure of documents and 2)

motivating the departure from the “bag-of-words” assumption common to many topic models

as a means of obtaining more coherent topic assignments. In Chapter 3, the Gibbs sampler

and its use in Bayesian approaches to statistical modeling is discussed and the use of Gibbs

sampling for continuous latent variable models and discrete latent variable mixture modeling

is illustrated. Chapter 4 presents the hidden Markov model to motivate its use in topic

modeling. Chapter 5 introduces the state space required by the Hidden Topic Markov Model

and presents derivations of a special forward-backward algorithm, expectation-maximization

algorithm, and special Viterbi algorithm. Chapter 6 presents the Bayesian formulation
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of the Hidden Topic Markov model, derives full conditional distributions for the model

parameters and state space, and proposes a Gibbs sampling algorithm. Chapter 7 studies

the performance of the EM and Gibbs sampling algorithms on simulated data and then

compares the Hidden Topic Markov Model to Latent Dirichlet Allocation on a real-world

corpus. Chapter 8 presents conclusions and suggestions for future research.
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Chapter 2

Related Work

2.1 Document Analytics and Information Retrieval

Early foundational efforts in information retrieval relied primarily on vector representations

of documents using simple word frequencies in a document or transformations of those fre-

quencies such as tf-idf (Salton and McGill 1983). In tf-idf, term or word frequencies in each

document are counted (tf) and then weighted by the inverse of the number of documents

in the corpus (idf) to obtain the tf-idf measure. Frequently, term frequencies and inverse

document frequencies are both normalized to avoid overemphasizing overly common terms

or unusually rare terms. By representing a document as a vector of term frequencies, some

amount of compression is achieved since the original text no longer needs to be retained.

Comparisons of word frequencies and patterns can be performed directly on the vectorized

representations. Indeed, one can consider suitably normalized term frequencies and docu-

ment frequencies as empirical probability distributions of terms over a document or corpus.

A corpus can be represented in matrix form as a term-document matrix where a corpus’s

vocabulary of terms are represented as rows and the documents in the corpus are represented

as columns. One major drawback of this approach, however, is that minimal reduction is

achieved in this representation, which poses problems for storage as well as speed during
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tasks such as information retrieval (Blei, Ng, and Jordan 2003; Salton and McGill 1983).

2.2 Latent Semantic Indexing

Latent semantic indexing (LSI) was an initial effort to improve document retrieval for query-

based searches. Deerwester et al. (1990) noted that document retrieval solely based on term

matching is unreliable for two primary reasons. First, query terms may not be contained

in the document or its metadata; a relevant document without exact term matches will not

be returned. This problem is known as synonymy. Second, polysemy – multiple meanings

for a given word – can lead to the retrieval of irrelevant documents; these documents will

contain matches to a query term, but the documents’ terms may have entirely different

meanings than the query’s intent. Methods relying solely on the original term-document

matrix are prone to suffering from both synonymy and polysemy; while exact matches of a

query term may not exist in the corpus, synonymous words might. Similarly, polysemous

words can inappropriately match query terms as exact matches when the meaning of the

word in a document does not match the meaning in the query. Again, using the original

document-term matrix, it is impossible to disambiguate multiple word senses. Projection of

the document-term matrix into a lower-dimensional space can encode relationships among

synonymous words and disambiguate word senses for polysemous words by embedding related

words and multiple word senses in a subspace that captures relationships like synonymy and

polysemy.

Seminal work by Deerwester et al. (1990) suggested searching for a latent space where

projections of the term-document matrix into the latent space yielded a lower-dimensional

representation. Furthermore, they proposed that such a projection should capture any as-

sumed underlying semantic structure in the original term-document matrix. Their approach

used singular-value decomposition on the term-document matrix to reduce the dimension-

ality from V to K such that K < V where V is the size of the vocabulary of a corpus and

K is the number of latent dimensions. Simultaneously, orthogonal linear projections of doc-
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uments and terms are obtained by this matrix factorization. The complexity of the latent

representation is controlled by K. The LSI approximation of the original term-document

matrix can be shown to minimize the Frobenius norm and as such yields a rank-K optimal

approximation of the original document-term matrix (Hofmann 1999).

Queries can be projected into the resulting latent space and document similarity is as-

sessed by comparing the latent projection of the query to the latent representation of neigh-

boring documents using vector-based similarity measures such as the inner product. Methods

like factor analysis or clustering operate on document similarity matrices or term similarity

matrices and are unable to capture relationships between terms and documents.

Unfortunately, LSI assumes strictly linear relationships between terms and documents

and provides no probabilistic generative model of a corpus. Subsequent developments such

as probabilistic LSA and latent Dirichlet allocation (LDA) provide such a framework.

2.3 Probabilistic Latent Semantic Indexing

A critical development in latent representation of discrete data extended latent semantic

indexing (Deerwester et al. 1990)[LSI] by assuming a generative model of terms and topics

for each document in a corpus. Rather than find a latent representation of a corpus using a

geometric orthogonal norm as in LSI, probabilistic LSI (pLSI) fit a latent projection of the

term-document matrix by maximum likelihood for the generative model (Hofmann 1999).

From an application perspective, LSI is compelling since the singular value decomposition of

the term-document matrix can scale well for large data sets. However, the use of generative

probabilistic models for corpora tends to outperform the simplistic LSI model, though they

may not scale as easily (Hofmann 1999).

Probabilistic LSI assumes a common generative model (shown in Figure 2.1) for each

document in which a document d is chosen according to p(d). A latent variable or topic z is

then chosen according to p(z|d). Formally, a topic is a distribution over the vocabulary of all

words in the corpus. Finally, a term w in document d is chosen according to p(w|z). Under
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the “bag-of-words” assumption, documents are assumed to be independent and words w in

a document are assumed to be drawn independently given topic z. Hofmann proposed an

expectation-maximization solution. Documents can then be described by document-specific

distributions of topics p(z|d) instead of distributions of the entire vocabulary.

Nd

M

d
z w

Figure 2.1: Graphical model of probabilistic Latent Semantic Indexing

The distribution of the V -dimensional vocabulary is multinomially distributed over M

documents in the pLSI framework. Using the latent space representation, the words are

multinomially distributed as a sub-simplex over K < M topics. Therefore, information

retrieval can be performed by identifying words in the document space where p(w|d) gives

the location of words w on documents d, d ∈ {1, . . . , D}. Alternatively, a more efficient

representation identifies words in the topic space where p(w|z) gives the location of words

w on topics z, z ∈ {1, . . . , K}. Just as the latent vectors in LSI can be used for similarity

comparisons in information retrieval, p(w|z) can be used equivalently.

2.4 Latent Dirichlet Allocation

While pLSI represents documents as a set of the mixing proportions for the topics (i.e.,

a probability distribution on the fixed topics), it does not model the documents from a

probabilistic model. As a result, there are K(M + V ) parameters to learn for K topics,

M documents, and a vocabulary of V words. As a result, the number of parameters grows

linearly with the corpus size. Furthermore, it is difficult to assign probabilities to documents
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outside the training set (Blei, Ng, and Jordan 2003), prohibiting generalization of the pLSI

model outside the training corpus.

Latent Dirichlet allocation (LDA) resolves these limitations by providing a probabilistic

generative model of the documents, resulting in K + KV parameters to learn and further

allowing for unseen documents to be classified. The “bag-of-words” assumption in pLSI is

preserved in LDA such that the words are assumed to be independent given topics and the

topics are independent conditioned on the Dirichlet random variable θd for a given document.

The generative model for LDA is similar to that of pLSI, except that LDA assumes a

probabilistic model of the documents in addition to that of the topics and words. Latent

Dirichlet Allocation assumes that the corpus contains M documents where each document

d ∈ {1, . . . ,M} is generated by the following process:

1. Draw the number of words in the document Nd ∼ Poisson(ψ)

2. Draw θd ∼ Dirichlet(α)

3. For each word wn in document d, n ∈ {1, . . . , Nd}

a) Draw topic zn ∼ Multinomial(θd)

b) Draw word wn|zn ∼ Multinomial(βzn)

The topic distribution depends on the K-dimensional random variable θd which is drawn

once for each document. The words are drawn independently from a multinomial parame-

terized by β where β is a K×V matrix of the conditional probabilities of word j given topic

i, p(wj|zi = 1). Parameters α and β are corpus-level parameters that are the same for all

documents while θ is a document-level parameter. Note that symmetric prior distributions

are used for θd where the parameters for the Dirichlet prior are all equal to α. The graphical

model for the original LDA model (Blei, Ng, and Jordan 2003) is shown in Figure 2.2.

As a result of the structure of the generative model, all documents share a common set of

topics, but the topics are expressed with different probabilities in each document. The joint
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K

Nd
M

η
β

α
θ z w

Figure 2.2: Graphical model of Latent Dirichlet Allocation

distribution of the topic mixture θd, the Nd topics z1, . . . , zNd , and Nd words w1, . . . , wNd can

be written as

p(θd, z1, . . . , zNd , w1, . . . , wNd|α, β) = p(θd|α)p(z1, . . . , zNd|θd)p(w1, . . . , wNd |z1, . . . , zNd , β).

(2.1)

Taking advantage of the conditional independence of the Nd topics given θd, equation 2.1

can be rewritten as

p(θd, z1, . . . , zNd , w1, . . . , wNd |α, β) = p(θd|α)

Nd∏
n=1

p(zn|θd)p(wn|zn, β). (2.2)

By marginalizing out the document Dirichlet parameter θd and the topics in equation

2.2, the marginal distribution of a document is

p(w1, . . . , wNd |α, β) =

∫
θd

p(θd|α)

(
Nd∏
n=1

∑
zn

p(zn|θd)p(wn|zn, β)

)
dθd. (2.3)

Furthermore, the probability of a corpus D can be obtained simply since the documents

wd are assumed to be independent:
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p(D|α, β) = p(w1,w2, . . . ,wM |α, β)

=
M∏
d=1

p(wd|α, β)

=
M∏
d=1

∫
θd

p(θd|α)

(
Nd∏
n=1

∑
zn

p(zn|θd)p(wn|zn, β)

)
dθd. (2.4)

Finally, the joint distribution of words and topics for a document can be obtained by

marginalizing out θd:

p(w1, . . . , wNd , z1, . . . , zNd |α, β) =

∫
p(θd|α)

(
Nd∏
n=1

p(zn|θd)p(wn|zn)

)
dθd. (2.5)

One simpler alternative to LDA, a mixture of unigrams (Nigam et al. 2000), represents

documents as word distributions conditioned on a single topic (shown in Figure 2.3):

p(w1, . . . , wNd) =
∑
z

p(z)

Nd∏
n=1

p(wn|z). (2.6)

Nd

M

z w

Figure 2.3: Graphical model of mixture of unigrams

This much simpler mixture model has been shown to inadequately represent large corpora

(Blei, Ng, and Jordan 2003). However, it is informative to view LDA in the context of a

mixture of unigrams since LDA can be considered as a continuous mixture of unigrams if the

joint distribution of the words and topics conditioned on θd is marginalized over the topics:
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p(w1, . . . , wNd |θd, β) =
∑
zd

p(w1, . . . , wNd |z1, . . . , zNd , β)p(z1, . . . , zNd |θd). (2.7)

This results in a representation of documents from LDA as a continuous mixture:

p(w1, . . . , wNd |α, β) =

∫
p(θd|α)

(
Nd∏
n=1

p(wn|θd, β)

)
dθd. (2.8)

Here, (wn|θd, β) is a random variable and p(θd|α) defines mixture weights. Most interest-

ingly, the LDA continuous mixture of unigrams only requires K parameters to estimate for

p(θd|α) instead of the K − 1 parameters needed for p(z) in the simple mixture of unigrams

model shown in Figure 2.3 while improving the quality of topic allocation substantially.

Blei, Ng, and Jordan (2003) used a variational Bayes algorithm to estimate the param-

eters and topics of the LDA model and demonstrated marked improvement over simple

unigrams, mixtures of unigrams, and pLSI, establishing LDA as a standard for topic model-

ing. However, a fully Bayesian solution was developed using Gibbs sampling (Griffiths and

Steyvers 2002, 2004). More recently, a faster collapsed Gibbs sampler for LDA was proposed

by Porteous et al. (2008).

2.5 Departures from the “Bag-of-Words” Assumption

The popularity and success of LDA (Blei, Ng, and Jordan 2003) spurred an active body

of research to extend LDA beyond its limiting assumptions. As mentioned in section 2.4,

the hierarchical Bayesian model proposed for LDA assumes (unrealistically) that the words

are exchangeable given a topic and that the documents are exchangeable within a corpus.

When treating a topic as a collection of related words, it is reasonable to ignore the meaning

created in natural language by the order of words in a sentence, the order of sentences

in a paragraph, the order of paragraphs in a document, and even the order of documents

in a corpus. Treating a corpus as an unordered collection of documents is reasonable in

many settings, but may not be reasonable, for example, when studying the development of
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literature on document analysis over the 20th century. While the “bag-of-words” assumption

is computationally convenient, improvements to topic modeling have generally been driven

by efforts to relax the assumption of independent topics or the assumption of independent

documents.

Correlated Topic Modeling

One approach to inducing a covariance structure in the LDA framework takes advantage of

the hierarchical structure of the model. Blei and Lafferty (2005) introduced correlated topic

models (CTM) to capture the covariance structure of topics. This allows for correlations

as well as independence among topics. The crucial difference between LDA and CTM is

the use of a logistic-normal distribution to model topic proportions instead of a Dirichlet

distribution.

Much like LDA, the correlated topic model assumes that the corpus contains M docu-

ments where each document d ∈ {1, . . . ,M} is generated by the following process:

1. Draw the number of words in the document Nd ∼ Poisson(ψ)

2. Draw ηd ∼ N(µ,Σ)

3. For each word wn in document d

a) Draw topic zn|ηd ∼ Multinomial(f(ηd))

b) Draw word wn|zn ∼ Multinomial(βzn)

where f(ηd) = exp ηi∑
j exp ηj

. The CTM graphical model is shown in Figure 2.4

Blei and Lafferty (2005, 2007) proposed a variational algorithm to perform inference for

CTM. Their results suggested that CTM provides a better fit to corpora than LDA and is

better able to represent larger numbers of topics. Recent work has examined correlated topic

modeling using a probit-normal model instead of the logistic-normal model of CTM (Yu and

Fokoue 2014).
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Nd
M

ε
β

µ

Σ
η z w

Figure 2.4: Graphical model of the correlated topic model

Dynamic Topic Modeling

While correlated topic modeling (CTM) allows for inference on the topic correlation struc-

ture to be performed, it does not allow for the evolution of topics over time. Blei and Lafferty

(2006) proposed an alternative extension of LDA that, like the correlated topic model, re-

laxes the independence assumption for topics. Rather than model the correlation structure

of topics, they assume that documents develop in a Gaussian time series and that topics in a

given interval of the document time span follow another Gaussian time series. Topic propor-

tions are assumed to follow a Dirichlet distribution as in LDA (Blei, Ng, and Jordan 2003)

and CTM (Blei and Lafferty 2005). Inference is performed using variational approximation

of the posterior distributions. Blei and Lafferty (2006) demonstrated that the dynamic topic

model outperformed static LDA topic models. The development of the dynamic topic model

was preceded by a simpler hidden Markov model approach to topic identification by Blei

and Moreno (2001) that solely focused on unstructured streams of words.

Other attempts to relax the “bag-of-words” assumption have been proposed. Wang and

McCallum (2006) developed a modified version of LDA that allows topics to develop over

time. They place a beta distribution over a normalized continuous time index and learn the

distribution of topics and time by Gibbs sampling. Wallach (2006) developed a hierarchical

Bayesian model that combines the latent structure of LDA with aspects of a hierarchical
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Dirichlet language model (MacKay and Peto 1995). In this model, the probability of a word

wi depends on the previous word wi−1 as well as the topics z. This effectively extends LDA by

imposing a first-order Markov process on the words in a document and relies on a Gibbs EM

algorithm to perform inference. Performance was better using this hybrid model than both

LDA and the hierarchical Dirichlet language model. A similar model was proposed within the

cognitive science community by Griffiths, Steyvers, and Tenenbaum (2007). Other notable

approaches to topic modeling include syntactic topic models (Boyd-Graber and Blei 2009),

constrained topic assignments (Chen et al. 2009), network analysis (Zhang, Zhu, and Zhang

2013; Bouveyron, Latouche, and Zreik 2016), author-topic models (Rosen-Zvi et al. 2010),

P’olya urn topic models (Mimno et al. 2011), spectral LDA (Anandkumar et al. 2012), neural

network topic models (Wan, Zhu, and Fergus 2012), hidden stochastic automata (Andrews

2013), and augmented max-margin topic models (Zhu et al. 2014). For an accessible review

of the development of topic modeling, see Blei (2012).

2.6 Hidden Topic Markov Modeling

Improved topic quality and predictive performance relative to latent Dirichlet allocation

(LDA) have been achieved by using Markov modeling for the observed words (Wallach 2006,

bigrams). Gruber, Rosen-Zvi, and Weiss (2007) noted that it would be reasonable to adopt

a Markov process in the latent space since it is reasonable to assume that topics would

change over time in a given document. Therefore, they modified LDA by introducing a

hidden Markov model (HMM); this is similar to the work of Blei and Moreno (2001), though

that model does not allow for a mixture of topics in a document or segment of text. The

hidden topic Markov model (HTMM) of Gruber, Rosen-Zvi, and Weiss (2007) assumes that

topics are likely to be contiguous throughout a document; this property is modeled with a

first-order discrete Markov chain in the topic space. Specifically, the HTMM assumes that

topics are fixed for a sentence so that all words in a sentence share a single topic. In the

LDA model, topics are independent when conditioned on topic proportions θd and sentences
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can be composed of multiple topics. In the HTMM, topics in a document are dependent on

θd and transition indicator variables ψn, n ∈ {1, . . . , Nd}, where ψ ∈ {0, 1}. When ψn = 1,

a new topic zn is drawn according to θd and when ψn = 0, the topic is not changed so

zn = zn−1. Since sentences are assumed to contain a single topic, the Markov chain is only

allowed to change state at the first word of each sentence (i.e., ψn = 0 for words other than

the first words in a sentence). The generative model of a document as shown in Figure 2.5

is described below:

1. For z ∈ {1, . . . , K}

Draw βz ∼ Dirichlet(η)

2. Draw θd ∼ Dirichlet(α)

3. Set ψ1 = 1

4. For each word wn in document d

a) If wn begins a sentence

Draw ψn ∼ Binomial(ε)

Else ψn = 0

b) For n ∈ {1, . . . , ND}

i. If ψn == 0

zn := zn−1

Else zn ∼ Multinomial(θd)

ii. Draw word wn|zn ∼ Multinomial(βzn)

One disadvantage of the hidden topic Markov model (HTMM) is its storage requirements.

While latent Dirichlet allocation (LDA) and other “bag-of-words” topic models use a term-

document matrix as input, HTMM requires the entirety of each document. The cost of

storing the entire corpus is balanced by allowing for more expressive representations of

documents. Perhaps most notably, words are more likely to be drawn from multiple topics

in a single document in HTMM than in LDA due to the Markov process which could allow
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Figure 2.5: (a) Graphical model of the latent Dirichlet allocation topic model. (b) Graphical
model of the hidden topic Markov model. Word generation is drawn explicitly to highlight
the topic independence in LDA versus the topic Markov chain in HTMM.

for better disambiguation of polysemous words. LDA tends to assign a given word to a single

or very few topics regardless of where the word occurs in a document or in a corpus. This is

undesirable, for example, if a mathematical paper discussing support vector machines also

referred to the support of a grant in its acknowledgments. Gruber, Rosen-Zvi, and Weiss

(2007) showed that for this example, HTMM is capable of assigning the word support in

the support vector machine context to a mathematical topic and the word support in the

acknowledgements section to a document metadata section. The HTMM may be of particular

interest for natural language processing due to its ability to better capture and disambiguate

these different word senses.

Gruber, Rosen-Zvi, and Weiss (2007) make use of the well-studied Hidden Markov Model

(HMM) to approximate the posterior probabilities. Conditioned on β and θ, the hidden topic

Markov model is a form of HMM so the forward-backward algorithm and the EM algorithm

can be easily used for parameter estimation. In this framework, latent variables zn and

driving variables ψn are drawn from p(zn, ψn|d, w1, . . . , wNd ; θd, β, ε) where θd, β, and ε are

considered parameters to be estimated. The joint conditional distribution of zn and ψn is

computed with the forward-backward algorithm for HMM and θd, β, ε are updated in the

maximization step.
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While the authors acknowledged that the EM algorithm may be less preferable than a

Gibbs sampler since EM is known to converge to local optima instead of a global optimum,

they argued that their EM algorithm was robust to various initializations. In this thesis,

I derive a Gibbs sampler to provide a Bayesian alternative to the EM algorithm. Further-

more, I am interested in studying the structure of the resulting topic model which is better

accomplished by approximating the joint posterior distribution of the model parameters by

Gibbs sampling than by point estimates alone. Results from Gruber, Rosen-Zvi, and Weiss

(2007) suggested that the HTMM provided lower perplexity scores than LDA which indi-

cated that HTMM better predicted the words in a new corpus. Furthermore, qualitative

analysis suggested that polysemy or word senses were better disambiguated using HTMM

than LDA. Unfortunately, perhaps due to lack of space for publication, Gruber, Rosen-Zvi,

and Weiss (2007) did not provide the derivation of the EM algorithm used for the HTMM.

I derive their EM algorithm, a special forward-backward algorithm, and a special Viterbi

algorithm and then derive a Gibbs sampling algorithm for inference and estimation. Finally,

the performance of the HTMM are assessed in a simulation study and on a real-world corpus.

It is worth noting that the Hidden Markov Topic Model proposed by Andrews and

Vigliocco (2010) is similar to the Hidden Topic Markov Model of Gruber, Rosen-Zvi, and

Weiss (2007). Since Andrews and Vigliocco did not mention Gruber, Rosen-Zvi, and Weiss, it

appears that the two approaches developed independently. This thesis focuses on the Hidden

Topic Markov Model, but future work could consider a comparison of the two approaches.
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Chapter 3

Gibbs Sampling and the Bayesian

Framework

3.1 Bayesian Probability

To motivate the use of Bayesian methods for topic modeling, it is important to understand the

philosophical framework of Bayesian probability. Classical or frequentist statistics consider

probability as a long-term expectations. Methods such as maximum likelihood and the

Expectation-Maximization algorithm consider probability in a frequentist sense.

For a set of n random variables X = {X1, X2, . . . , Xn}, let pθ(X|θ) be the likelihood or

joint probability of the data X given a parameter θ. Inference can be performed by seeking

a value of θ that was most likely to have generated the observed data X by solving

θ̂ = arg max
θ∈Θ
{p(X; θ)} .

This approach assumes that θ is fixed instead of being a random variable.

The Bayesian framework instead assumes that θ was drawn from a distribution known

as a prior distribution p(θ). Using Bayes Theorem, the likelihood function and the prior

distribution can be used to obtain a posterior distribution of θ|X. The introduction of a

prior distribution allows one to make probabilistic statements about θ given the available
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data. Different choices of prior distributions can be used to encode different a priori beliefs

about θ before observing data. Inference can be performed using the posterior distribution

instead of the likelihood function. The posterior distribution of the parameter(s) given the

data is expressed as

p(θ|X) =
p(X, θ)

p(X)
(3.1)

=
p(X|θ)p(θ)
p(X)

. (3.2)

Often, the value of p(X) is not needed as it is only a normalizing constant. It is often

sufficient to manipulate a distribution proportional to the posterior that is just the product

of the likelihood and the prior and then normalize that distribution since p(X) contains no

information about θ;

p(θ|X) ∝ p(X|θ)p(θ).

This approach can be used to obtain the posterior distribution of the parameter given

the data in addition to point estimates of the parameter. Furthermore, the use of explicit

prior distributions make a priori hypotheses about the parameter space clear. Indeed, it

should be straightforward to see that the use of an improper prior p(θ) ∝ 1 can be used to

write the likelihood as a posterior distribution in which all values of the parameter θ are

considered equally likely a priori. Notably, Bayesian estimates of parameters will converge to

their maximum-likelihood counterparts if the size of the data n grows large. Such estimates

also allow inference to be performed under conditions where maximum likelihood estimates

are not tractable (e.g., when a model is underdetermined). This is made possible by the use

of the prior distribution. Maximum-likelihood analogues can be obtained in the Bayesian

framework through maximum-a-posteriori estimates of parameters. Commonly chosen esti-

mators include the posterior mean, the posterior median, and the posterior mode, although

one advantage of obtaining the posterior distribution is the ability to use the full distribution

of θ|X to make probabilistic statements about θ|X.
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3.2 Markov Chain Monte Carlo

While direct analytical solutions can be determined in some cases for Bayesian formulations,

it is quite common that alternative computational solutions are proposed to avoid intractable

analytical problems. Markov chain Monte Carlo (MCMC) is a common general strategy for

sampling from distributions whose complete form cannot be specified or directly sampled

from. MCMC is used when a distribution p(x) cannot be sampled from directly but can be

evaluated up to some normalizing constant. An immediate use can be seen when considering

sampling from an intractable posterior distribution which can be approached by using MCMC

to sample from the posterior proportional to a normalizing constant instead of the posterior

itself. The goal of MCMC algorithms is to generate a sample of size m by sampling x(i), i =

1, . . . ,m from the state space of a Markov chain X . By construction, MCMC samplers

visit more probable locations in X , facilitating construction of p(x) without spending too

much time in unimportant regions of X provided that the transition kernel of the chain is

irreducible and aperiodic. Proper MCMC samplers are irreducible and aperiodic Markov

chains that converge to the target distribution (e.g. Andrieu et al. 2003).

The use of Gibbs sampling is motivated by discussing its relation to the Metropolis-

Hastings algorithm.

3.3 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is a general Markov Chain Monte Carlo (MCMC)

sampler (Hastings and K. 1970; Metropolis et al. 1953). Each step of the MH sampler

tries to sample from a target distribution p(x) by sampling a candidate x∗ from a proposal

distribution q(x∗|x) given the current value in the chain x. The chain moves to x∗ according

to the acceptance probability A(x, x∗) = min
{

1, p(x
∗)q(x|x∗)

p(x)q(x∗|x)

}
or else it remains at x:
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Initialize x(0);
for i = 0 to m− 1 do

sample u ∼ U(0, 1);

sample x∗ ∼ q(x∗|x(i));

if u < A(x(i)) = min
{

1, p(x
∗)q(x(i)|x∗)

p(x(i))q(x∗|x(i))

}
then

x(i+1) = x∗;
else

x(i+1) = x(i);
end

end

Figure 3.1: Metropolis-Hastings sampler

The successful convergence of the chain and its rate of convergence both depend on the

construction of the proposal distribution q(x∗|x). A poorly chosen proposal distribution

will result in slow convergence and may even result in the Markov chain being stuck in an

absorbing state (e.g. Andrieu et al. 2003). However, several key properties make the MH

algorithm appealing. The target distribution p(x) need not be fully specified and instead

need only be known proportional to its normalizing constant. Furthermore, independent

MH chains can be run in parallel, making the algorithm scaleable for large data. Of course,

careful assessment of the final chain is critical to assess proper mixing while strategies such

as thinning the chain can be used to decrease the correlation among samples. Furthermore,

application of simulated annealing can be used to increase the rate of sampling near the

global maxima of p(x) (e.g. Andrieu et al. 2003). Finally, a very useful property of the MH

algorithm is its utility as a component of an MCMC sampler that uses a mixture or cycle

of several samplers. Therefore, large regions of a state space X can be explored using a

global proposal sampler while more localized regions of X such as global maxima can be

explored using local proposals. Popular examples of this mixed sampler include reversible

jump MCMC (Green 1995) and block MCMC.
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3.4 Gibbs Sampling

While Bayesian formulations are theoretically appealing, they have historically proven dif-

ficult to obtain computationally. They often required the use of highly problem-specific

computational strategies and sophisticated analytical solutions (Gelfand and Smith 1990)

such as the general Metropolis-Hastings algorithm (3.3). However, as Gelfand and Smith

point out, the development of the Gibbs sampler and related substitution sampling schemes

provided general-purpose, if slightly slower, computational solutions for a wide body of

Bayesian problems. Indeed, Gelfand and Smith is widely considered to be the start of wider

use of Markov Chain Monte Carlo methods for Bayesian inference (Andrieu et al. 2003;

Cappé, Moulines, and Rydén 2005). The reason for the popularity of the Gibbs sampler is

its relatively simple formulation of proposal distributions that relies only on the availability

of full conditional distributions.

The Gibbs sampler can be derived from the Metropolis-Hastings sampler. Consider a

p-dimensional probability vector x (i.e., x has a multivariate distribution over p random

variables). Define the full conditionals p(xj|x1, . . . , xj−1, xj+1, . . . , xp), j ∈ {1, . . . , p}. Re-

call that a Metropolis-Hastings algorithm requires a proposal distribution q(x∗|x) that is

proportional to the target distribution. Therefore, consider the proposal distribution for

j = 1, . . . , p

q(x∗|x(i)) =

p(x
∗
j |x

(i)
−j) x = x

(i)
−j

0 otherwise

where x−j denotes all components of x except xj.

The acceptance probability used to update x is
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A(x(i), x∗) = min

{
1,
p(x∗)q(x(i)|x∗)
p(x(i))q(x∗|x(i))

}
= min

{
1,
p(x∗)p(x

(i)
j |x

(i)
−j)

p(x(i))p(x∗j |x∗−j)

}

= min

{
1,
p(x∗−j)

p(x
(i)
−j)

}
= 1.

As a consequence, Algorithm 3.1 can be simplified to describe a generic Gibbs sampler:

Initialize x
(0)
1:p;

for i = 0 to m− 1 do

sample x
(i+1)
1 ∼ p(x

(i)
1 |x

(i)
2 , x

(i)
3 , . . . , x

(i)
p );

sample x
(i+1)
2 ∼ p(x

(i)
2 |x

(i)
1 , x

(i)
3 , . . . , x

(i)
p );

...
sample x

(i+1)
j ∼ p(x

(i)
j |x

(i)
1 , . . . , x

(i)
j−1, x

(i)
j+1, . . . , x

(i)
p );

...
sample x

(i+1)
p ∼ p(x

(i)
p |x(i)

1 , x
(i)
2 , . . . , x

(i)
p−1);

end

Figure 3.2: Gibbs sampler

3.5 A Gibbs Sampler for a Univariate Latent Variable

Model

For a simple Gibbs sampling example, consider a model for a continuous random variable Y

generated based on a continuous latent variable Z:

Y = θZ + ε

where it is assumed that ε ∼ N(0, σ2), σ2 is fixed and known, and Z ∼ N(0, 1). As a result,

(yi|θ, zi) ∼ N
(
θzi, σ

2
)
.
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A Bayesian framework to learn the posterior distribution of θ and Z is implemented using a

Gibbs sampler. Prior distributions must be specified for ε, Z, and θ:

θ ∼ N
(
µ0, τ

2
)
,

p(ε, Z) = p(ε)p(Z),

where µ0 and τ 2 are hyperparameters. With this choice of conjugate priors, the joint posterior

of θ and zi, i = 1, . . . , n is:

p(θ, zi) ∝ p(yi|θ, zi)p(θ, zi).

To implement the Gibbs sampler, the full conditional distributions of θ and zi are needed.

First, the full conditional distribution of zi is derived:

p(zi|yi, θ) ∝ p(yi|zi, θ)p(zi)

= exp

{
−1

2
(σ2)−1(yi − θzi)

}
· exp

{
−1

2
z2
i

}
= exp

{
−1

2
(yi − θzi)(σ2)−1(yi − θzi)2

}
· exp

{
−1

2
z2
i

}
= exp

{
−1

2

[
yi(σ

2)−1yi − yi(σ2)−1θzi − θzi(σ2)−1yi + θzi(σ
2)−1θzi

]}
· exp

{
−1

2
z2
i

}
.

Recognizing that this expression is a convolution of two Gaussians with respect to zi,

(zi|yi, θ) ∝ N

(
yi
θ
,
σ2

θ2

)
·N(0, 1).

Finally, the full conditional of (zi|yi, θ) is:

(zi|yi, θ) ∝ N

(
θyi

θ2 + σ2
,

σ2

θ2 + σ2

)
.

Next, the full conditional of θ is derived:
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p(θ|y, z) ∝ p(y|θ, z) · p(θ)

= exp

{
−1

2
(y − θz)T (σ2In)−1(y − θz)

}
· exp

{
−1

2
(θ − µ0)(τ 2

0 )−1(θ − µ0)

}
= exp

{
−1

2

[
yT (σ2In)−1y − yT (σ2In)−1θz − zT θT (σ2In)−1y + zT θT (σ2In)−1θz

]}
× exp

{
−1

2
(θ − µ0)(τ 2

0 )−1(θ − µ0)

}
.

Recognizing that this expression is a convolution of two Gaussians with respect to θ,

(θ|y, z) ∝ N
((
zT (σ2In)−1z

)−1
zT (σ2In)−1y,

(
zT (σ2In)−1z

)−1
)
·N(µ0, τ

2
0 )

= N

((
zT (σ2In)−1z

)−1
zT (σ2In)−1y · τ 2

0 + µ0 ·
(
zT (σ2In)−1z

)−1

(zT (σ2In)−1z)−1 + τ 2
0

,

(
zT (σ2In)−1z

)−1 · τ 2
0

(zT (σ2In)−1z)−1 + τ 2
0

)

= N

(
σ2||z||−2 · zTy(σ2)−1tau2

0 + µ0σ
2||z||−2

σ2||z||−2 + τ 2
0

,
σ2||z||−2τ 2

0

σ2||z||−2 + τ 2
0

)
= N

(
τ 2

0 z
Ty + µ0σ

2

||z||2
· ||z||2

σ2 + τ 2
0 ||z||2

,
σ2τ 2

0

σ2 + ||z||2τ 2
0

)
.

Finally,

(θ|y, z) ∝ N

(
τ 2

0 z
Ty + µ0σ

2

τ 2
0 ||z||2 + σ2

,
σ2τ 2

0

τ 2
0 ||z||2 + σ2

)
.

Equipped with the full conditional distributions, the resulting Gibbs sampler is:

Initialize θ;
for t = 0 to T − 1 do

for i = 1 to n do

sample z
(t)
i ∼ N

(
θyi

θ2+σ2 ,
σ2

θ2+σ2

)
;

end

sample θ(t) ∼ N
(
τ20 z

T y+µ0σ2

τ20 ||z||2+σ2 ,
σ2τ20

τ20 ||z||2+σ2

)
;

end

Figure 3.3: Gibbs sampler for univariate latent variable model
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Figure 3.4: Empirical posterior distribution of theta

The posterior distribution for a sample of size n = 200 with σ2 = 1 is shown in Figure

3.4. A data set of n = 200 observations were generated using θ = 10, σ2 = 1. The posterior

is approximately normal-distributed as expected form the theoretical form of the posterior.

Maximum a posteriori estimates of θ using the empirical mean and median are -9.3757 and

-9.3411, respectively. The prior mean µ0 for θ was initialized to µ0 = 5 to see if the sampler

could recover the true θ with a biased prior. The posterior includes θ = 10 although the

influence of the prior is evident since the posterior distribution is centered above θ = 10.

Finally, inference on θ can be performed using a 95% Bayesian credible interval: (-9.7201,

-9.4612). The Bayesian credible interval does not contain θ = 10, which demonstrates the

impact of choosing a prior for θ with a mean above the true θ.
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3.6 A Gibbs Sampler for a Mixture of Two Gaussians

Next, consider a simple model for a continuous random variable and a discrete latent space.

Suppose Y ∈ R where Y is assumed to be generated by a mixture of two univariate Gaussians:

p(y; θ) = πφ
(
y;µ1, σ

2
1

)
+ (1− π)φ

(
y;µ2, σ

2
2

)
where θ = (π, µ1, µ2, σ

2
1, σ

2
2).

Assume that membership in the two Guassians is represented by a latent class variable

Z ∈ {0, 1} where Z ∼ Bernoulli(π)

p(zi) = πzi (1− π)1−zi , i ∈ [n]

and assume priors:

(π|η) ∼ Beta(η, η)

where π|η is a symmetric distribution center about π = 1
2
,

(τk|αk, βk) ∼ Gamma(αk, βk)

where τk = 1
σ2
k

is the precision and βk is the rate parameter for a gamma distribution,

(µk|τk, µ0k, νk) ∼ N
(
µ0k, (νkτk)

−1
)

where µ0k is the prior mean for µk and νk is the number of pseudo-observations used to

estimate µk. Note that it is assumed that the joint prior for µk and τk is

p(µk, τk) = p(µk|τk) · p(τk).

Finally, the forms of these prior distributions are given explicitly:

p(π|η) =
Γ(2η)

Γ(η)Γ(η)
πη−1(1− π)η−1, π ∈ [0, 1], η ∈ R+.

p(τk|αk, βk) =
βαkk

Γ(αk)
ταk−1
k exp {−βkτk} , τk, αk, βk ∈ R+.
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p(µk|τk, µ0k, νk) = (2π)−
1
2 (νkτk)

1
2 exp

{
−1

2
(µk − µ0k) (νkτk) (µk − µ0k)

}
.

The generative model can be represented as a graphical model as shown in 3.5

K = 2

N

K = 2

K = 2

η νk µ0k αk βk

πk µk τk

zi

yi

Figure 3.5: Graphical model of a mixture of two Gaussians

In order to implement a Gibbs sampler to obtain the joint posterior distribution p(θ, z|y),

the full conditional distributions of θ and zi are needed. First, the full conditional distribution

of π is derived. Since z ∼ Bernoulli(π) and π ∼ Beta(η, η), conjugacy will yield a posterior

where (π|z) ∼ Beta(·, ·).

p(π|zi) ∝ p(zi|π) · p(π|η)

= πzi(1− π)1−zi · πη−1(1− π)η−1

= πzi+η−1(1− π)−zi+η.
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It can be seen that the full conditional distribution of π is

(π|zi) ∼ Beta(zi + η,−zi + η + 1).

Extending the result for π|zi to π|z,

p(π|z) ∝ p(π|η) ·
n∏
i=1

p(zi|π)

= πη−1(1− π)η−1π
∑n
i=1 zi(1− π)n−

∑n
i=1 zi

= πn2+η−1(1− π)n1+η−1,

which yields

(π|z) ∼ Beta(n2 + η, n1 + η).

Next, the full conditional distribution of zi is derived:

p(zi|yi, θ) ∝ p(yi|zi, θ) · p(zi|π)

=
[
φ
(
y;µ1, τ

−1
1

)]1−zi [φ (y;µ2, τ
−1
2

)]zi · πzi(1− π)1−zi

p(zi|yi, θ) ∝
[
(1− π)φ

(
y;µ1, τ

−1
1

)]1−zi [πφ (y;µ2, τ
−1
2

)]zi .
Next, the full conditional distribution of τk is derived. Since ynk ∼ N(µk, τk) and τk ∼

Gamma(αk, βk), conjugacy will yield a posterior where (τk|ynk) ∼ Gamma(·, ·):

p(τk|ynk , znk) ∝
nk∏
i=1

p(yi|zi, τk) · p(τk|αk, βk)

= τ
nk
2
k exp

{
−1

2

nk∑
i=1

(yi − µk)2 τk

}
· ταk−1
k exp {−βkτk}

= τ
nk
2

+αk−1

k exp

{
−

[
1

2

nk∑
i=1

(yi − µk)2 + βk

]
τk

}
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(τk|ynk , znk) ∼ Gamma

(
αk +

nk
2
, βk +

1

2

nk∑
i=1

(yi − µk)2

)
Finally, the full conditional distribution of µk is derived. Since ynk ∼ N(µk, τk) and

µk ∼ N(µ0k, (νkτk)
−1), conjugacy will yield a posterior where (µk|ynk , τk) ∼ N(·, ·).

p(µk|τk, ynk , znk) ∝
nk∏
i=1

p(yi|zi, µk, τk) · p(µk|τk, νk)

= exp

{
−1

2

nk∑
i=1

(yi − µ2
kτk)

}
· φ
(
µk;µ0k, (νkτk)

−1
)

= exp

{
−1

2

nk∑
i=1

yiτkyi − 2µkτk

nk∑
i=1

yi + µknkτkµk

}
· φ
(
µk;µ0k, (νkτk)

−1
)

= φ
(
µk; ȳnk , (nkτk)

−1
)
· φ
(
µk;µ0k, (νkτk)

−1
)

= φ

(
µk;

ȳnk
νkτk

+ µ0k
nkτk

1
nkτk

+ 1
νkτk

,

1
nkνkτ

2
k

1
nkτk

+ 1
νkτk

)

= φ

(
µk;

nkȳnk + νkµ0k

νk + nk
,

1

τk
· 1

νk + nk

)

(µk|τk, ynk , znk) ∼ N

(
nkȳnk + νkµ0k

νk + nk
,

1

τk
· 1

νk + nk

)
Using these full conditional distributions, a Gibbs sampling algorithm for this model is:
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Initialize πk, µk, τk,;
for t = 0 to T − 1 do

for i = 1 to n do

sample z
(t+1)
i ∼

[
(1− π(t))φ

(
y;µ

(t)
1 , 1

τ
(t)
1

)]1−z(t)i [
π(t)φ

(
y;µ

(t)
2 , 1

τ
(t)
2

)]z(t)i
;

end

update group sizes n
(t+1)
1 and n

(t+1)
2 and group means ȳ

(t+1)
1 and ȳ

(t+1)
2 ;

sample π(t+1) ∼ Beta(n
(t+1)
2 + η, n

(t+1)
1 + η);

sample τ
(t+1)
k ∼ Gamma

(
αk +

n
(t+1)
k

2
, βk + 1

2

∑n
(t+1)
k
i=1

(
yi − µ(t)

k

)2
)

;

sample µ
(t+1)
k ∼ N

(
n
(t+1)
k ȳ

(t+1)
nk

+νkµ0k

νk+n
(t+1)
k

, 1

τ
(t+1)
k

· 1

νk+n
(t+1)
k

)
;

end

Figure 3.6: Gibbs sampler for mixture of two Gaussians

Data were generated by drawing 500 samples from N(µ1 = −10, σ2 = 9) and 500 samples

from N(µ2 = 10, σ2 = 9). Assuming that p(y; θ) = 0.5 · φ (y;−10, 32) + 0.5 · φ (y; 10, 32), a

sample of size n = 200 is generated after an initial burn-in period of 3000 iterations and

thinning every 15 samples to decorrelate the Markov chain. The following initializations

were used: µ01 = −5, µ02 = 5, α1 = α2 = 1, β1 = β2 = 5, η = 0.5, ν1 = ν2 = 50.

The posterior distributions are shown in Figure 3.7. Note that all five posterior distribu-

tions are relatively symmetric and unimodal. Maximum a posteriori estimates using the pos-

terior means are: π = 0.4991, µ1 = −9.4976, τ1 = 0.1139, µ2 = 9.5430, τ2 = 0.1133. Finally,

inference on θ can be performed using 95% Bayesian credible interval: π: (0.4688, 0.5293); µ1:

(−9.7475,−9.2362); τ1: (0.0989, 0.1303); µ2: (9.3139, 9.7757); τ1: (0.1013, 0.1252). While

the Gibbs sampler is more complex than Algorithm 3.3, it successfully approximated the

joint posterior of all five parameters.
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Figure 3.7: Empirical posterior distributions for a mixture of two Gaussians.



34

Chapter 4

Hidden Markov Models

4.1 The Generative Hidden Markov Model

The mixture model discussed in the previous chapter assumed that the latent variables

were mutually independent, an assumption that eases computation significantly. While

convenient, this assumption is not always reasonable. It is often more realistic in applications

such as speech processing (e.g. Levinson, Rabiner, and Sondhi 1983) to abandon probabilistic

models that rely on stationary distributions and instead attempt to model the non-stationary

nature of data directly. This is particularly useful in speech and text applications since

language is inherently temporal.

A hidden Markov model (HMM) assumes that randomly observed variables are generated

by an unobserved finite-state Markov chain. The observed random variables are assumed to

be generated by a different distribution for each latent state. More formally, a hidden Markov

model consists of a discrete-time process {(Xt, Yt)} , t = 0, 1, . . . , T − 1 where Xt denotes the

state of the latent Markov chain at time t, Yt denotes the observed value at time t, and T

values are observed. It is assumed that Yt depends on Xt, but that Yt is independent of all

other latent values Xj, j 6= t. While it is theoretically possible to consider any configuration

of dependency in the latent space, it is most common for Xt to depend on Xt−1. The
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distribution of Yt|Xt can be discrete or continuous. For simplicity, only derivations for the

discrete case are considered. However, extensions to the continuous case are straightforward.

HMMs were first proposed in the literature in the 1960s (e.g. Baum and Petrie 1966) while

the EM algorithm for HMMs was proposed by Baum et al. (1970).

First, consider the discrete observations case. Suppose that there are N possible latent

states, X ∈ Q = {q0, q1, . . . , qN−1} and M possible observed values, Y ∈ {0, 1, . . . ,M − 1}.

The Markov chain transitions from time t to time t + 1 according to the N × N transition

probability matrix

A = {aij}

where aij = p(xt+1 = qj|xt = qi) and A is row stochastic such that
∑

j aij = 1, i = 1, . . . , N .

The initial state probabilities are

πx0 = {p(x0 = qj)}

where
∑

j πj = 1. Observations are generated according to the N ×M emission matrix

B = {bj(k)}

where bj(k) = p(yt = k|xt = qj), B is row stochastic, and k ∈ {0, . . . ,M − 1}.

The model λ = (π,A,B) fully define a discrete HMM and presents three distinct prob-

lems. First, it is of interest to determine the likelihood of a particular observed sequence

p(Y |λ). Second, one may seek to estimate the latent state sequence {X} that generated

the observed sequence {Y }. This problem can be solved using either the Viterbi algorithm

(Viterbi 1967) – which seeks the sequence {X∗} which maximizes p(X|Y, λ) – or the forward-

backward algorithm (Baum et al. 1970). Finally, estimation of the model λ can be performed

by seeking the optimal model λ∗ which maximizes the likelihood p(Y |λ).
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4.2 The Likelihood of the Discrete Hidden Markov

Model

Our main concern is in optimizing λ by maximizing the likelihood, so first consider the

process of obtaining the likelihood p(Y |λ) where Y = {y0, y1, . . . , yT−1} is the observed

sequence generated by the state sequence X = {x0, x1, . . . , xT−1}.

Since the observations are independent given xt,

p(Y |X,λ) =
T∏
t=0

p(yt|xt, λ).

By definition of the emission matrix B,

p(Y |X,λ) = bx0(y0) · bx1(y1) · · · bxT−1
(yT−1).

Next, note that using the definition of conditional probability,

p(Y |X,λ) =
p(Y,X|λ)

p(X|λ)

can be rearranged to obtain

p(Y,X|λ) = p(Y |X,λ) · p(X|λ).

Using the definitions of π and A,

p(X|λ) = p(x0|λ) · p(x1|x0, λ) · · · p(xT−1|xT−2, λ)

= πx0 · ax0,x1 · · · axT−2,xT−1
.

Therefore,

p(Y,X|λ) = p(Y |X,λ) · p(X|λ)

= bx0(y0) · bx1(y1) · · · bxT−1
(yT−1) · πx0 · ax0,x1 · · · axT−2,xT−1

. (4.1)
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Summing over the latent space,

p(Y |λ) =
∑
X∈X

p(Y |X,λ) · p(X|λ)

=
∑
X∈X

bx0(y0) · bx1(y1) · · · bxT−1
(yT−1) · πx0 · ax0,x1 · · · axT−2,xT−1

=
∑
X∈X

πx0 · bx0(y0)ax0,x1 · bx1(y1) · · · axT−2,xT−1
bxT−1

(yT−1).

Unfortunately, computing the likelihood in this manner requires approximately 2TNT

multiplications (Rabiner 1989). This becomes computationally prohibitive when the number

of observations T and states N grows large.

4.3 The Forward-Backward Algorithm

One attractive feature of the HMM is the forward-backward algorithm of Baum et al. (1970)

which makes the computation of the likelihood and the most probable latent state sequence

much faster. Next, the forward algorithm (one half of the forward-backward algorithm) for

determining the likelihood p(Y |λ) is defined. Define αt(i) = p(y0, y1, · · · , yt, xt = qi|λ) for

t = 0, 1, · · · , T−1 and i = 0, 1, · · · , N−1 as the joint probability of the observation sequence

up to time t and the latent state at time t. Let αt(i) denote the forward variable for time t.

αt(i) can be obtained inductively:

1. α0(i) = πi · bi(y0), i = 0, 1, · · · , N − 1

2. αt+1(j) =
[∑N

i=1 αt−1(j)aij

]
bj(yt), 1 ≤ t ≤ T − 1, 0 ≤, j ≤ N − 1

3. p(Y |λ) =
∑N−1

i=0 αT−1(i).

An algorithm for computing the forward variables is provided in Figure 4.1.
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/* Given A, B, π */

c0 = 0 ;
for i = 0 to N − 1 do

α0(i) = πibi(y0) ;
c0 = c0 + α0(i) ;

end
c0 = 1

c0
;

for i = 0 to N − 1 do
α0(i) = c0α0(i) ;

end
for t = 1 to T − 1 do

ct = 0 ;
for i = 0 to N − 1 do

αt(i) = 0 ;
for j = 0 to N − 1 do

αt(i) = αt(i) + αt−1(j)aji ;
end
αt(i) = αt(i)bi(yt) ;
ct = ct + αt(i) ;

end
ct = 1

ct
;

for i = 0 to N − 1 do
αt(i) = ctαt(i) ;

end

end

Figure 4.1: Forward algorithm

Instead of the naive direct computation of the likelihood’s required 2TNT multiplications,

the forward algorithm only involves approximately N2T multiplications. While this will still

take longer to compute as N and T increase, it is much faster.

The second half of the forward-backward algorithm yields the backward variable βt(i)

which is defined as

β(i) = p(yt+1, yt+2, . . . , yT−1|xt = qi, λ).

Like the forward variables, the backward variables can be computed inductively:

1. βT−1(i) = 1, i = 0, 1, . . . , N − 1
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2. βt(i) =
∑N−1

j=0 aijbj(yt+1)βt+1(j), t = T − 2, T − 3, . . . , 0, i = 0, 1, . . . , N − 1.

An algorithm for computing the backward variables is given in Figure 4.2.

/* Given A, B, π */

for i = 0 to N − 1 do
βT−1(i) = cT−1 ;

end
for t = T − 2 to 0 do

for i = 0 to N − 1 do
βt(i) = 0 ;
for j = 0 to N − 1 do

βt(i) = βt(i) + aijbj(yt+1βt+1(j) ;
end
βt(i) = ctβt(i) ;

end

end

Figure 4.2: Backward algorithm

4.4 The Expectation-Maximization Algorithm for the

Discrete Hidden Markov Model

Equipped with the forward algorithm of Baum et al. (1970), it is feasible to compute the

likelihood p(Y |λ) and therefore obtain a maximum likelihood estimator (MLE) of λ. Since

there is no analytical solution for λ̂MLE, the EM algorithm is used to iteratively obtain λ̂MLE

corresponding to a (local) maximum of the likelihood function.

The rationale for this technique stems from Baum et al.’s proof using Jensen’s inequality

to show that the EM updates of the parameters maximize

Q(λ, λs) = Ex∈X log p(Y,X|λ)

and that this is guaranteed to increase the likelihood since

max
λs
{Q(λ, λs)} → p(Y |λs) ≥ p(Y |λ).
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Generally, the expectation step of the EM algorithm is

Q(λ, λs) = Ex∈X log p(Y,X|λ)

=
∑
x∈X

log [p(Y,X|λ)] · p(X|λs).

The maximization step is

λs+1 = arg max
λ
{Q(λ, λs)} .

The expectation and maximization steps are repeated until convergence. It is worth noting

for convenience that it is equivalent to maximize∑
x∈X

log [p(Y,X|λ)] · p(X, Y |λs)

instead of ∑
x∈X

log [p(Y,X|λ)] · p(X|λs).

Using Equation 4.1, the expectation step can be rewritten:

Q̂(λ, λs) =
∑
x∈X

log [p(Y,X|λ)] · p(X|λs)

=
∑
x∈X

log

[
πx0 · bx0(y0)ax0,x1 ·

T−1∏
t=1

bxt(yt)

]
· p(X, Y |λs)

=
∑
x∈X

log [πx0 ] · p(X, Y |λs) +
∑
x∈X

T−1∑
t=1

log
[
axt−1,xt

]
· p(X, Y |λs)+

∑
x∈X

T−1∑
t=0

log [bxt(yt)] · p(X, Y |λs). (4.2)

Since the rows of A and B and the vector π are stochastic, constraints must be added to

4.2 before maximizing with respect to πi, aij, and bi(j). Therefore, define
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L̂(λ, λs) = Q̂(λ, λs)− γπ

(
N∑
i=1

πi − 1

)
−

N−1∑
i=0

γai

(
N−1∑
j=0

γij − 1

)
−

N−1∑
i=0

γbi

(
M−1∑
j=0

bi(j)− 1

)
. (4.3)

First, maximize Equation 4.3 with respect to πi:

δL̂(λ, λs)

δπi
=

δ

δπi

(∑
x∈X

log [πx0 ] · p(X, Y |λs)

)
− γπ = 0

=
δ

δπi

(
N−1∑
j=0

log [πj] · p(x0 = j, Y |λs)

)
− γπ = 0

=
p(x0 = i, Y )|λs)

πi
− γπ = 0. (4.4)

Rearranging Equation 4.4

πi =
p(x0 = i, Y )|λs)

γπ

and using the constraint on π

N−1∑
i=0

πi =
1

γπ

N−1∑
i=0

p(x0 = i, Y )|λs) = 1

yields

γπ = p(Y |λs)

and our estimate for πi is

π̂i
(s+1) =

p(x0 = i, Y )|λs)
p(Y |λs)

= p(x0 = i|Y, λs). (4.5)

Using the forward and backward variables, Equation 4.5 can be rewritten:
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π̂i
(s+1) = p(x0 = i|Y, λs)

=
α0(i)β0(i)∑N−1
i=0 αT−1(i)

.

Defining

ω(xt = i) = p(xt|Y, λ)

=
αt(i)βt(i)∑N−1
i=0 αT−1(i)

,

an alternative form of π̂i
(s+1) is

π̂i
(s+1) = ω(x0 = i)

which is used later in the implementation of the EM algorithm.

Next, maximize Equation 4.3 with respect to aij:

δL̂(λ, λs)

δaij
=

δ

δaij

(∑
x∈X

T−1∑
t=1

log
[
axt−1,xt

]
· p(X, Y |λs)

)
− γai = 0

=
δ

δaij

(
N−1∑
j=0

N−1∑
k=0

T−1∑
t=1

log [ajk] p(xt−1 = j, xt = k, Y |λs)

)
− γai = 0

=
1

aij

T−1∑
t=1

p(xt−1 = i, xt = j, Y |λs)− γai = 0. (4.6)

Rearranging Equation 4.6

aij =
1

γai

T−1∑
t=1

p(xt−1 = i, xt = j, Y |λs)

and using the constraint on aij
N−1∑
j=0

aij = 1
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yields

γai =
N−1∑
j=0

T−1∑
t=1

p(xt−1 = i, xt = j, Y |λs)

=
T−1∑
t=1

p(xt−1 = i, Y |λs)

and our estimate for aij is

âij
(s+1) =

∑T−1
t=1 p(xt−1 = i, xt = j, Y |λs)∑T−1

t=1 p(xt−1 = i, Y |λs)

=

∑T−1
t=1 p(xt−1 = i, xt = j|Y, λs) · p(Y |λs)∑T−1

t=1 p(xt−1 = i|Y, λs) · p(Y |λs)

=

∑T−1
t=1 p(xt−1 = i, xt = j|Y, λs)∑T−1

t=1 p(xt−1 = i|Y, λs)
. (4.7)

Defining

ω(xt = i, xt+1 = j) = p(xt = i, xt+1 = j|Y, λ)

=
αt(i)aijbj(yt+1)βt+1(j)∑N−1

i=0 αT−1(i)
,

an alternative form of âij
(s+1) is

âij
(s+1) =

∑T−2
t=0 ω(xt = i, xt+1 = j)∑T−2

t=0 ω(xt = i)

which is used later in the implementation of the EM algorithm.

An algorithm for efficiently computing ωt(i, j) and ωt(i) is provided in Figure 4.3.
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/* Given α, β, A, B, π */

for t = 0 to T − 2 do
denom = 0 ;
for i = 0 to N − 1 do

for j = 0 to N − 1 do
denom = denom + αt(i)aijbj(yt+1)βt+1(j) ;

end

end
for i = 0 to N − 1 do

ωt(i) = 0 ;
for j = 0 to N − 1 do

ωt(i, j) =
αt(i)aijbj(yt+1βt+1(j))

denom
;

ωt(i) = ωt(i) + ωt(i, j)
end

end

end
denom = 0 ;
for i = 0 to N − 1 do

denom = denom + αT−1(i) ;
end
for i = 0 to N − 1 do

ωT−1(i) = αT−1(i)

denom
;

end

Figure 4.3: Compute update probabilities

Finally, maximize Equation 4.3 with respect to bi(j):

δL̂(λ, λs)

δbi(j)
=

δ

δbi(j)

(∑
x∈X

T−1∑
t=0

log [bxt(yt)] · p(X, Y |λs)

)
− γbi = 0

=
δ

δbi(j)

(
N−1∑
i=0

T−1∑
t=0

log [bi(yt)] · p(xt = i, Y |λs)

)
− γbi = 0. (4.8)

Rearranging Equation 4.8

bi(j) =
1

γbi

T−1∑
t=0

p(xt = i, Y |λs)I(yt = j)
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and using the constraint on bi(j)
M−1∑
j=0

bi(j) = 1

yields

γbi =
T−1∑
t=0

M−1∑
j=0

p(xt = i, Y |λs)I(yt = j)

=
T−1∑
t=0

p(xt = i, Y |λs)

and our estimate for bi(j) is

ˆbi(j)
(s+1)

=

∑T−1
t=0 p(xt = i, Y |λs)I(yt = j)∑T−1

t=0 p(xt = i, Y |λs)

=

∑T−1
t=0 p(xt = i|Y, λs)p(Y |λs)I(yt = j)∑T−1

t=0 p(xt = i|Y, λs)p(Y |λs)

=

∑T−1
t=0 p(xt = i|Y, λs)I(yt = j)∑T−1

t=0 p(xt = i|Y, λs)

=

∑T−1
t=0 ω(xt = i)I(yt = j)∑T−1

t=0 ω(xt = i)
. (4.9)

Using the updates given in Equations 4.5, 4.7, 4.9, the full EM algorithm for the dis-

crete HMM is given in Figure 4.4. Note that scaling is introduced to avoid underflow since

the product of many probabilities will decrease toward 0 as the number of observations T

increases. The scaling constant for observation t ct is defined as

ct =
1∑N−1

j=0 αt(j)

.
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Initialize A(0), B(0), π(0) ;
/* Run forward algorithm */

/* Backward algorithm */

/* Compute ωt(i, j) and ωt(i) */

/* Update π: */

for i = 0 to N − 1 do
πi = ω0(i) ;

end
/* Update A: */

for i = 0 to N − 1 do
for j = 0 to N − 1 do

numer = 0 ;
denom = 0 ;
for t = 0 to T − 2 do

numer = numer + ωt(i, j) ;
denom = denom + ωt(i) ;

end
aij = numer

denom
;

end

end
/* Update B: */

for i = 0 to N − 1 do
for j = 0 to M − 1 do

numer = 0 ;
denom = 0 ;
for t = 0 to T − 1 do

if yt == j then
numer = numer + ωt(i) ;

else
denom = denom + ωt(i) ;

end

end
bi(j) = numer

denom
;

end

end
/* Update log-likelihood: */

loglike = 0 ;
for i = 0 to N − 1 do

loglike = loglike + log(ci) ;
end
loglike = −loglike ;

Figure 4.4: Expectation-Maximization algorithm for discrete hidden Markov model
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4.5 An Example Application of the EM Algorithm

for a Discrete Hidden Markov Model

Finally, the performance of the EM algorithm for learning the parameters of a discrete HMM

is illustrated. Consider 10, 000 observations generated by a HMM λ = (π,A,B) where

π =
[
0.8 0.2

]
,

A =

0.8 0.2

0.3 0.7

 ,
and

B =

0.1 0.2 0.7

0.6 0.3 0.1


The HMM EM algorithm was initialized with

π̂(0) =
[
0.4934 0.5066

]
,

Â(0) =

0.5274 0.4725

0.4826 0.5174

 ,
and

B̂(0) =

0.3626 0.3542 0.2832

0.3356 0.3270 0.3374

 ,
which corresponded to an initial log-likelihood `(λ̂(0)) = −1111.2 and allowed to run for a

minimum of 10 iterations before converging in S = 72 iterations with a final log-likelihood,

`(λ̂(S)) = −1034. Model parameters were estimated as

π̂(S) =
[
1.0000 0.0000

]
,

Â(S) =

0.7625 0.2375

0.2752 0.7248

 ,
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and

B̂(S) =

0.1001 0.1496 0.7503

0.5848 0.3128 0.1024

 .
The EM algorithm’s estimate of λ is reasonably close despite the sensitivity of the EM

algorithm to the complex set of maxima of the log-likelihood function. It is worth noting in

earlier trials that the EM algorithm for this initialization converged in three iterations to a

very poor solution that did not differ substantially from the initial values. Enforcing a higher

minimum number of iterations or trying different initializations may allow the algorithm to

explore beyond poor local maxima. For a review of the discrete hidden Markov model as

well as proposed extensions and computational considerations, see Rabiner (1989). For an

excellent comparison of the EM algorithm and Gibbs sampling for hidden Markov models,

see Rydén (2008).
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Chapter 5

Maximum a Posteriori

Expectation-Maximization for

Estimation of Hidden Topic Markov

Models

5.1 The State Space for the Hidden Topic Markov

Model

In order to perform estimation of the parameters of the Hidden Topic Markov Model, recall

that Gruber, Rosen-Zvi, and Weiss (2007) used the well-known expectation-maximization

(EM) algorithm for hidden Markov models (HMM) described in Chapter 4 to perform esti-

mation of the HTMM parameters (θd, β, ε), d ∈ {0, . . . , D − 1}, of the d-th document. This

is possible because, conditioned on θd and β, the Hidden Topic Markov model is a form of

HMM. Therefore, the EM algorithm can be used to approximate the posterior distribution

p(wd, zd, ψd, d|θd, β, ε) and derive either maximum-likelihood or maximum-a-posteriori esti-

mates for (θd, β, ε),∀d. In order to do so, the conditional distribution of the latent variables
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(zd,t, ψd,t), t ∈ {0, . . . , Nd} is needed for each document. It is shown that this distribution

can be estimated using the forward-backward algorithm for HMMs for use in the expectation

step. With this distribution available, closed form updates for (θd, β, ε),∀d can be derived

in the maximization step. It is assumed that hyperparameters α and η are fixed and not

estimated.

It is not obvious in Gruber, Rosen-Zvi, and Weiss (2007) that the state space needed

for an EM approach is distinctly different than a dual space of both topics zd and driving

variables ψd. In fact, considering such a state space would lead to a naive approach in which

the transition dynamics of the state space would have 2(K2 − K) free parameters to be

estimated: One could consider two transition matrices Ad and A′d where Ad is a K × K

matrix of transitions from topic zd,t−1 = i to zd,t = j when ψd,t = 1 and A′d is a K × K

matrix of transitions from topic zd,t−1 = i to zd,t = j when ψd,t = 0. However, we show

that the mechanics of the HTMM model allow for estimation of a much smaller set of K

free parameters rather than K2 − K free parameters. This was originally sketched out in

an unpublished and incomplete technical note included in the open source code for HTMM

(Gruber and Popat 2007), but the derivation of the forward-backward algorithm and EM

algorithm was not provided in that note or the original HTMM paper (Gruber, Rosen-Zvi,

and Weiss 2007).

Instead of a dual state space of topics zd,t controlled by ψd,t, t ∈ 0, . . . , Nd − 1, define a

state space sd,t = (zd,t, ψd,t) at word t such that

sd,t =

zd,t = zd,t−1, ψd,t = 0

zd,t ∼ Multinomial(θd), ψd,t = 1.

(5.1)

Equation 5.1 can be encoded concisely by defining

sd,t = zd,t +K(1− ψd,t), (5.2)

where sd,t ∈ {0, . . . , 2K − 1}. Clearly, if ψd,t = 1, sd,t ∈ {0, . . . , K − 1} corresponds to
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drawing a new topic for zd,t. If instead ψd,t = 0, then sd,t ∈ {K, . . . , 2K − 1} corresponds

to setting zd,t = zd,t−1. As a result, the new state space has 2K possible states that encode

both the topic zd,t and transition indicator ψd,t at word t.

The transition matrix of the Markov chain governing the behavior of sd,t is Cd = {cd,ij} =

p(sd,t = j|sd,t−1 = i; θd, β, ε) where

εθd,j, 0 ≤ j < K

1− ε, K ≤ j < 2K − 1, i ∈ {j −K, j}.
(5.3)

The transition matrix Cd is as follows,

Cd =



∣∣∣∣ ∣∣∣∣ ∣∣∣∣
εθd,0 εθd,1 · · · εθd,K−1∣∣∣∣ ∣∣∣∣ ∣∣∣∣

1− ε

1− ε
. . .

1− ε

∣∣∣∣ ∣∣∣∣ ∣∣∣∣
εθd,0 εθd,1 · · · εθd,K−1∣∣∣∣ ∣∣∣∣ ∣∣∣∣

1− ε

1− ε
. . .

1− ε



, (5.4)

where the Markov chain transitions from sd,t−1 = i to sd,t = j, j ∈ {0, . . . , K − 1} with

probability p(sd,t = j|psd, t− 1) = εθd,j regardless of the previous state sd,t−1. However,

if j ∈ {K, . . . , 2K − 1}, a new topic is not drawn so the chain can only transition to one

possible state with non-zero probability p(sd,t = j|sd,t−1 = i) = 1 − ε, i ∈ {j −K, j} where

topic zd,t is the same as topic zd,t−1 deterministically (i.e., ψd,t = 0) or stochastically (i.e.,

ψd,t = 1). No other transitions are possible. Therefore, the transition matrix of the Markov

chain has K + 1 parameters in a given document: (θd,0, . . . , θd,K−1, ε), only K of which are

free parameters due to the constraint that
∑K−1

i=0 θd,i = 1, d ∈ {0, . . . , D−1}. It can be easily

confirmed that each row of Cd is row stochastic. As a result, the transition dynamics of the
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Markov process governing the topics in a document can be obtained by simply estimating

K parameters instead of the K2 − K + 1 required by a naive formulation. Perhaps most

interesting is that the transition matrix is learned by performing estimation for the mixture

components of a document θd and a measure of the dependency in the topic space ε.

5.2 The Forward-Backward Algorithm for the Hidden

Topic Markov Model

Given the special state space for this model, a straightforward adaptation of the forward-

backward algorithm is derived to assist with the E-step in the EM algorithm. First, a prior

distribution for the initial state sd,0 ∼ πd is proposed where

πd,i = p(sd,0 = i; θd) =

θd,i, 0 ≤ i < K

0, K ≤ i < 2K.

(5.5)

In effect, this is equivalent to a simple multinomial distribution with parameter θd that

initializes the topic for word wd,0. Since ψd,0 = 1,∀d by assumption, no probability is assigned

to states where ψd,0 = 0.

Emission probabilities for wd,t|sd,t are represented by an emission matrix B,

B = {bj(k)} = p(wd,t = k|sd,t = j) s.t.
V−1∑
k=0

bj(k) = 1 (5.6)

where

p(wd,t|sd,t = j) =

p
′(wd,t|zd,t = j) 0 ≤ j < K

p′(wd,t|zd,t = j −K) K ≤ j < 2K.

(5.7)

From the model, it is assumed that p(wd,t = k|zd,t = j) = βj,k.
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Having fully identified the initial state distribution, transition matrix, and emission ma-

trix for a given document, the standard formulation of the forward and backward variables

described in Chapter 4 can be used.

For document d, and parameters λd = (θd, β, ε), we define the forward variable αd,t(i) =

p(wd,0, . . . , wd,t, sd,t = i;λ). For t = 0,

αd,0(i) = p(sd,0 = i;λ) · p(wd,0|sd,0 = i;λ)

and

αd,t(j) =

[
2K−1∑
i=0

αd,t−1(i) · p(sd,t = j|sd,t−1 = i;λ)

]
×

p(wd,t|sd,t = j;λ), t ∈ {1, . . . , Nd − 1}. (5.8)

Note that p(wd,0, . . . , wd,Nd−1;λ) =
∑2K−1

i=0 αd,Nd−1(i).

Define the backward variable ρd,t(i) = p(wd,t+1, . . . , wd,Nd−1|sd,t = i;λ). For t = Nd − 1,

ρd,Nd−1(i) = 1, i ∈ {0, . . . , 2K − 1}

and

ρd,t(i) =
2K−1∑
j=0

cd,ijbj(wd,t+1)ρd,t+1(j), t ∈ {0, . . . , Nd − 2}. (5.9)

Equipped with the forward and backward variables, it is possible to use the standard

EM estimates for πd,i, cd,ij, and bj(k) given in Chapter 4. However, it is of more interest

to estimate the parameters of the HTMM (θd, β, ε),∀d to study the structure of the corpus.

Furthermore, estimation of the latter set of parameters allows easy estimation of the former

HMM parameters. Therefore, the EM algorithm is used to estimate λ = (θd, β, ε),∀d.

First, the expression of the forward variables αd,t(i) can be simplified for faster compu-

tation due to the special structure of the transition matrix Cd. Using Equation 5.8 and the

assumed model structure,
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αd,0(i) =

θd,iβi,wt , i ∈ {0, . . . , K − 1}

0, i ∈ {K, . . . , 2K − 1}.
(5.10)

αd,t(j) can be further simplified. Recall,

αd,t(j) =

[
2K−1∑
i=0

αd,t−1(i) · p(sd,t = j|sd,t−1 = i;λ)

]
· p(wd,t|sd,t = j;λ), t ∈ {1, . . . , Nd − 1}

(5.11)

and that

cd,ij =


εθd,j, 0 ≤ j < K

1− ε, K ≤ j < 2K, i ∈ {j −K, j}

0, otherwise.

(5.12)

Therefore,

αd,t(j) =


[∑2K−1

i=0 αd,t−1(i) · εθd,j
]
· βj,wd,t , 0 ≤ j < K[∑2K−1

i=0 αd,t−1(i) · (1− ε)I(i ∈ {j −K, j})
]
· βj−K,wd,t , K ≤ j < 2K

=


[∑2K−1

i=0 αd,t−1(i)
]
· εθd,j · βj,wd,t , 0 ≤ j < K

[αd,t−1(j −K) + αd,t−1(j)] · (1− ε) · βj−K,wd,t , K ≤ j < 2K

(5.13)

where t ∈ {1, . . . , Nd − 1}

Conveniently, if αd,t−1 was normalized such that
∑2K−1

i=0 αd,t−1(i) = 1, then Equation 5.13

simplifies to

αd,t(j) =

εθd,jβj,wd,t , 0 ≤ j < K

[αd,t−1(j −K) + αd,t−1(j)] (1− ε)βj−K,wd,t , K ≤ j < 2K

(5.14)
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and the forward variables for document d can be computed using the algorithm in Figure

5.1.

/* Given θd, β, ε, K */

/* normd is a vector of length Nd − 1 */

normd,0 = 0 ;
for i = 0 to K − 1 do

αd,0(i) = θd,iβi,wd,t ;

αd,0(i+K) = 0;
normd,0 = normd,0 + αd,0(i) + αd,0(i+K) ;

end
for i = 0 to K − 1 do

αd,0(i) = αd,0(i)/normd,0 ;
end
for t = 1 to Nd − 1 do

normd,t = 0 ;
if wt is the beginning of a sentence then

for j = 0 to K − 1 do
αd,t(j) = εθd,jβj,wd,t ;

αd,t(j +K) = [αd,t−1(j) + αd,t−1(j +K)] (1− ε)βj,wd,t ;

normd,t = normd,t + αd,t(j) + αd,t(j +K) ;

end

end
else

for j = 0 to K − 1 do
αd,t(j) = 0 ;
αd,t(j +K) = [αd,t−1(j) + αd,t−1(j +K)] βj,wd,t ;

normd,t = normd,t + αd,t(j +K) ;

end

end
for i = 0 to 2K − 1 do

αd,t(i) = αd,t(i)/normd,t ;
end

end

Figure 5.1: Forward algorithm for Hidden Topic Markov Model

Similarly, the computation of the backward variables ρd,t(i) can be simplified. Recall that

ρd,t(i) = p(wd,t+1, . . . , wd,Nd−1|sd,t = i;λ)
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and ρd,Nd−1
(i) = 1,∀i.

Using the assumed model structure,

ρd,t(i) =
2K−1∑
j=0

cd,ijbj(wd,t+1)ρd,t+1(j)

=
K−1∑
j=0

cd,ijbj(wd,t+1)ρd,t+1(j)+

2K−1∑
j=K

cd,ijbj−K(wd,t+1)ρd,t+1(j)

=
K−1∑
j=0

εθd,jβj,wd,t+1
ρd,t+1(j)+

2K−1∑
j=K

(1− ε)βj−K,wd,t+1
ρd,t+1(j)I(i ∈ {j −K, j}). (5.15)

Since ρd,t(j) = ρd,t(j +K), j ∈ {0, . . . , K − 1},

ρd,t(i) =
K−1∑
j=0

εθd,jβj,wd,t+1
ρd,t+1(j) +

K−1∑
j=0

(1− ε)βj,wd,t+1
ρd,t+1(j)I(i = j)

=
K−1∑
j=0

εθd,jβj,wd,t+1
ρd,t+1(j) + (1− ε)βi,wd,t+1

ρd,t+1(i), (5.16)

and the backward variables for document d can be computed using the algorithm in

Figure 5.2.
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/* Given θd, β, ε, K, normd */

for i = 0 to K − 1 do
ρNd−1(i) = normd,Nd−1 ;

end
for t = Nd − 2 to 0 do

d = 0;
if wt+1 is the beginning of a sentence then

for j = 0 to K − 1 do
ρd,t(j) = 0 ;
d = d+ εθd,jβj,wd,t+1

ρd,t+1(j) ;

end
for i = 0 to K − 1 do

ρd,t(i) = d+ (1− ε)βi,wd,t+1
ρd,t+1(i) ;

ρd,t(i) = ρd,t(i)/normd,t ;
ρd,t(i+K) = ρd,t(i) ;

end

end
else

for j = 0 to K − 1 do
ρd,t(j) = βj,wd,t+1

ρd,t+1(j) ;

ρd,t(j) = ρd,t(j)/normd,t ;
ρd,t(j +K) = ρd,t(j) ;

end

end

end

Figure 5.2: Backward algorithm for Hidden Topic Markov Model

5.3 Maximum A Posteriori

Expectation-Maximization

The forward-backward algorithm computes the conditional distribution of the state space of

a document p(sd|d, wd;λ) and allows for the computation of the expectation step in an EM

algorithm.

The objective function R(λ, λ(q)) at iteration q is
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R(λ, λ(q)) = Q(λ, λ(q)) + log [p(λ)] , (5.17)

where p(λ) is the prior distribution of λ and

Q(λ, λ(q)) = Esd|d,wd,λ(q)
[

log

[
D−1∏
d=0

p(wd, sd;λ
(q))

] ]
=
∑
s∈S

D−1∑
d=0

log
[
p(wd, sd;λ

(q))
]
· p(sd|d, wd;λ(q)).

Next, the log-prior log [p(λ)] is written using

θd ∼ Dirichlet(α), ∀d ∈ {0, . . . , D − 1}, θd ∈ [0, 1]K , (5.18)

βj ∼ Dirichlet(η),∀j ∈ {0, . . . , K − 1}, βj ∈ [0, 1]V , (5.19)

where V is the size of the corpus vocabulary.

While Gruber, Rosen-Zvi, and Weiss (2007) did not use a prior distribution for ε, it would

be straightforward to use a Beta prior for ε. This strategy is used for the Gibbs sampler

proposed in Chapter 6.

Since p(θd) and p(βj) are assumed independent,

log [p(λ)] = log

[
D−1∏
d=0

p(θd)
K−1∏
j=0

p(βj)

]

∝ log

[
D−1∏
d=0

K−1∏
j=0

θα−1
d,j

K−1∏
j=0

V−1∏
k=0

βη−1
j,k

]
.

For convenience, define

̂log [p(λ)] = (α− 1)
D−1∑
d=0

K−1∑
j=0

log(θd,j) + (η − 1)
K−1∑
j=0

V−1∑
k=0

log(βj,k) (5.20)
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and note that

arg max
λ

{
R(λ, λ(q))

}
= arg max

λ

{
R̂(λ, λ(q))

}
where

R̂(λ, λ(q)) = Q(λ, λ(q)) + ̂log [p(λ)]. (5.21)

Next, Lagrangian constraints are introduced to Equation 5.21

L̂(λ, λ(q)) = R̂(λ, λ(q))−
D−1∑
d=0

γθd

(
K−1∑
i=0

θd,i − 1

)
−

K−1∑
i=0

γβi

(
V−1∑
k=0

βi,k − 1

)
. (5.22)

Maximization of L̂(λ, λ(q)) with respect to λ is performed in the M- step. First, we

maximize L̂(λ, λ(q)) with respect to θd,i:

δL̂(λ, λ(q))

δθd,i
=
δQ(λ, λ(q))

δθd,i
+
δ ̂log [p(λ)]

δθd,i
−
δ
[∑D−1

d=0 γθd

(∑K−1
i=0 θd,i − 1

)]
δθd,i

. (5.23)

First,
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δQ(λ, λ(q))

δθd,i
=

δ

δθd,i

[
D−1∑
d=0

2K−1∑
j=0

log
[
p(wd, sd = j;λ(q))

]
· p(sd = j|d, wd;λ(q))

]

=
δ

δθd,i

[
D−1∑
d=0

2K−1∑
j=0

log
[
p(sd,0 = j;λ(q))

]
· p(sd,0 = j|d, wd;λ(q))

]
+

δ

δθd,i

[
D−1∑
d=0

2K−1∑
j=0

Nd−1∑
t=1

log
[
p(sd,t = j|sd,t−1;λ(q))

]
· p(sd,t = j|d, wd;λ(q))

]
+

δ

δθd,i

[
D−1∑
d=0

2K−1∑
j=0

Nd−1∑
t=1

log
[
p(wd,t|sd,t = j;λ(q))

]
· p(sd,t = j|d, wd;λ(q))

]

=
δ

δθd,i

[
D−1∑
d=0

K−1∑
j=0

log [θd,j] · p(sd,0 = j|d, wd;λ(q))

]
+

δ

δθd,i

[
D−1∑
d=0

K−1∑
j=0

Nd−1∑
t=1

log [εθd,j] · p(sd,t = j|d, wd;λ(q))

]

=
δ

δθd,i

[
D−1∑
d=0

log [θd,i] · p(sd,0 = i|d, wd;λ(q))

]
+

δ

δθd,i

[
D−1∑
d=0

Nd−1∑
t=1

log [εθd,i] · p(sd,t = i|d, wd;λ(q))

]
δQ(λ, λ(q))

δθd,i
=

∑Nd−1
t=0 p(sd,t = i|d, wd;λ(q))

θd,i
. (5.24)

Next,

δ ̂log [p(λ)]

δθd,i
=

δ

δθd,i

[
(α− 1)

D−1∑
d=0

K−1∑
j=0

log(θd,j) + (η − 1)
K−1∑
j=0

V−1∑
k=0

log(βj,k)

]
δ ̂log [p(λ)]

δθd,i
=
α− 1

θd,i
. (5.25)

Finally,

δ
[∑D−1

d=0 γθd

(∑K−1
i=0 θd,i − 1

)]
δθd,i

= γθd . (5.26)
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Using Equations 5.24, 5.25, and 5.26, Equation 5.23 becomes

δL̂(λ, λ(q))

δθd,i
=

∑Nd−1
t=0 p(sd,t = i|d, wd;λ(q)) + α− 1

θd,i
− γθd . (5.27)

Setting δL̂(λ,λ(q))
δθd,i

:= 0,

θd,i =

∑Nd−1
t=0 p(sd,t = i|d, wd;λ(q)) + α− 1

γθd
. (5.28)

Using the constraint that
∑K−1

i=0 θd,i = 1,∀d ∈ {0, . . . , D − 1},

K−1∑
i=0

θd,i =

∑K−1
i=0

∑Nd−1
t=0 p(sd,t = i|d, wd;λ(q)) +Kα−K

γθd
= 1.

Therefore,

γθd =
K−1∑
i=0

Nd−1∑
t=0

p(sd,t = i|d, wd;λ(q)) +Kα−K. (5.29)

The M-step update for θd,i is

θ̂d,i =

∑Nd−1
t=0 p(sd,t = i|d, wd;λ(q)) + α− 1∑K−1

i=0

∑Nd−1
t=0 p(sd,t = i|d, wd;λ(q)) +Kα−K

. (5.30)

From this full update, the proportional update given by Gruber, Rosen-Zvi, and Weiss

(2007) is easily obtained since

θ̂d,i ∝
Nd−1∑
t=0

p(sd,t = i|d, wd;λ(q)) + α− 1

=

Nd−1∑
t=0

p(zd,t = i, ψd,t = 1|d, wd;λ(q)) + α− 1 (5.31)

assuming that θ̂d,i is normalized. Equation 5.31 reveals that the i-th topic proportions of

document d is estimated as the prior modal estimate plus the average number of words in

document d that were assigned to topic i.
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The M-step update for βj,k is derived by maximizing L̂(λ, λ(q)) with respect to βj,k:

δL̂(λ, λ(q))

δβj,k
=
δQ(λ, λ(q))

δβj,k
+
δ ̂log [p(λ)]

δβj,k
−
δ
[∑K−1

i=0 γβi

(∑V−1
m=0 βi,m − 1

)]
δβj,k

. (5.32)

First,

δQ(λ, λ(q))

δβj,k
=

δ

δβj,k

[
D−1∑
d=0

2K−1∑
i=0

log
[
p(wd, sd = i;λ(q))

]
· p(sd = i|d, wd;λ(q))

]

=
δ

δβj,k

[
D−1∑
d=0

2K−1∑
i=0

Nd−1∑
t=0

log
[
p(wd,t|sd,t = i;λ(q))

]
· p(sd,t = i|d, wd;λ(q))

]

=
δ

δβj,k

[
D−1∑
d=0

K−1∑
i=0

Nd−1∑
t=0

log
[
β
I(wd,t=k)

i,k

]
· p(sd,t = i|d, wd;λ(q))

]
+

δ

δβj,k

[
D−1∑
d=0

2K−1∑
i=K

Nd−1∑
t=0

log
[
β
I(wd,t=k)

i−K,k

]
· p(sd,t = i|d, wd;λ(q))

]

=
δ

δβj,k

[
D−1∑
d=0

Nd−1∑
t=0

log
[
β
I(wd,t=k)

j,k

]
· p(sd,t = j|d, wd;λ(q))

]
+

δ

δβj,k

[
D−1∑
d=0

Nd−1∑
t=0

log
[
β
I(wd,t=k)

j,k

]
· p(sd,t = j +K|d, wd;λ(q))

]
δQ(λ, λ(q))

δβj,k
=

∑D−1
d=0

∑Nd−1
t=0 p(sd,t = j|d, wd;λ(q))I(wd,t = k)

βj,k
+∑D−1

d=0

∑Nd−1
t=0 p(sd,t = j +K|d, wd;λ(q))I(wd,t = k)

βj,k
. (5.33)

Next,

δ ̂log [p(λ)]

δβj,k
=

δ

δβj,k

[
(α− 1)

D−1∑
d=0

K−1∑
i=0

log(θd,i) + (η − 1)
K−1∑
i=0

V−1∑
k=0

log(βi,k)

]
δ ̂log [p(λ)]

δβj,k
=
η − 1

βj,k
. (5.34)

Finally,
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δ
[∑K−1

i=0 γβi

(∑V−1
m=0 βi,m − 1

)]
δβj,k

= γβj . (5.35)

Using Equations 5.33, 5.34, and 5.35, Equation 5.32 becomes

δL̂(λ, λ(q))

δβj,k
=

∑D−1
d=0

∑Nd−1
t=0 p(sd,t = j|d, wd;λ(q))I(wd,t = k)

βj,k
+∑D−1

d=0

∑Nd−1
t=0 p(sd,t = j +K|d, wd;λ(q))I(wd,t = k)

βj,k
+

η − 1

βj,k
− γβj . (5.36)

Setting δL̂(λ,λ(q))
δβj,k

:= 0,

βj,k =

∑D−1
d=0

∑Nd−1
t=0 p(sd,t = j|d, wd;λ(q))I(wd,t = k)

γβj
+∑D−1

d=0

∑Nd−1
t=0 p(sd,t = j +K|d, wd;λ(q))I(wd,t = k)

γβj
+

η − 1

γβj
. (5.37)

Using the constraint that
∑V−1

m=0 βj,m = 1,∀j ∈ {0, . . . , K − 1},

V−1∑
m=0

βj,m =

∑V−1
m=0

∑D−1
d=0

∑Nd−1
t=0 p(sd,t = j|d, wd;λ(q))I(wd,t = m)

γβj
+∑V−1

m=0

∑D−1
d=0

∑Nd−1
t=0 p(sd,t = j +K|d, wd;λ(q))I(wd,t = m)

γβj
+

V η − V
γβj

= 1.

Therefore,



CHAPTER 5. MAXIMUM A POSTERIORI EXPECTATION-MAXIMIZATION FOR
ESTIMATION OF HIDDEN TOPIC MARKOV MODELS 64

γβj =
V−1∑
m=0

D−1∑
d=0

Nd−1∑
t=0

p(sd,t = j|d, wd;λ(q))I(wd,t = m)+

V−1∑
m=0

D−1∑
d=0

Nd−1∑
t=0

p(sd,t = j +K|d, wd;λ(q))I(wd,t = m)+

V η − V. (5.38)

The M-step update for βj,k is

β̂j,k =

∑D−1
d=0

∑Nd−1
t=0 p(sd,t = j|d, wd;λ(q))I(wd,t = k)

γβj
+∑D−1

d=0

∑Nd−1
t=0 p(sd,t = j +K|d, wd;λ(q))I(wd,t = k)

γβj
+

η − 1

γβj
. (5.39)

From this full update, the proportional update given by Gruber, Rosen-Zvi, and Weiss

(2007) is easily obtained since

β̂j,k ∝
D−1∑
d=0

Nd−1∑
t=0

p(sd,t = j|d, wd;λ(q))I(wd,t = k)+

D−1∑
d=0

Nd−1∑
t=0

p(sd,t = j +K|d, wd;λ(q))I(wd,t = k)+

η − 1

=
D−1∑
d=0

Nd−1∑
t=0

p(zd,t = j, wd,t = k|d, wd;λ(q)) + η − 1 (5.40)

assuming that β̂j,k is normalized. Equation 5.40 reveals that the k-th word proportions

of topic j is estimated as the prior modal estimate plus the average number of times word k

was assigned to topic j in the corpus.

Finally, the M-step update for ε is obtained by maximizing Q(λ, λ(q)) with respect to ε:
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δL̂(λ, λ(q))

δε
=
δQ(λ, λ(q))

δε
+
δ ̂log [p(λ)]

δε
. (5.41)

Define the indicator variable

I(ss) =

1, word wt is first in a sentence

0, otherwise.

First,
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δQ(λ, λ(q))

δε
=
δ

δε

[
D−1∑
d=0

2K−1∑
i=0

log
[
p(wd, sd = i;λ(q))

]
· p(sd = i|d, wd;λ(q))

]

=
δ

δε

[
D−1∑
d=0

2K−1∑
i=0

2K−1∑
j=0

Nd−1∑
t=1

log
[
p(sd,t = j|sd,t−1 = i;λ(q))

]
· p(sd,t = j|d, wd;λ(q))

]

=
δ

δε

[
D−1∑
d=0

K−1∑
j=0

Nd−1∑
t=1

log
[
(εθd,j)

I(ss)
]
· p(sd,t = j|d, wd;λ(q))

]
+

δ

δε

[
D−1∑
d=0

2K−1∑
i=0

2K−1∑
j=K

Nd−1∑
t=1

log
[
(1− ε)I(ss,i∈{j−K,j})

]]
·

p(sd,t = j, sd,t−1 = i|d, wd;λ(q))

=
δ

δε

[
D−1∑
d=0

K−1∑
j=0

Nd−1∑
t=1

log
[
εI(ss)

]
· p(sd,t = j|d, wd;λ(q))

]
+

δ

δε

[
D−1∑
d=0

K−1∑
j=0

Nd−1∑
t=1

log
[
θ
I(ss)
d,j

]
· p(sd,t = j|d, wd;λ(q))

]
+

δ

δε

[
D−1∑
d=0

2K−1∑
i=0

2K−1∑
j=K

Nd−1∑
t=1

log
[
(1− ε)I(ss,i∈{j−K,j})

]]
·

p(sd,t = j, sd,t−1 = i|d, wd;λ(q))

=
1

ε

D−1∑
d=0

K−1∑
j=0

Nd−1∑
t=1

p(sd,t = j|d, wd;λ(q))I(ss)−

1

1− ε

D−1∑
d=0

2K−1∑
j=K

Nd−1∑
t=1

p(sd,t = j|d, wd;λ(q))I(ss). (5.42)

Setting δQ(λ,λ(q))
δε

:= 0,
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1− ε
ε

=

∑D−1
d=0

∑2K−1
j=K

∑Nd−1
t=1 p(sd,t = j|d, wd;λ(q))I(ss)∑D−1

d=0

∑K−1
j=0

∑Nd−1
t=1 p(sd,t = j|d, wd;λ(q))I(ss)

1

ε
=

∑D−1
d=0

∑Nd−1
t=0

∑2K−1
j=0 p(sd,t = j|d, wd;λ(q))I(ss)∑D−1

d=0

∑K−1
j=0

∑Nd−1
t=1 p(sd,t = j|d, wd;λ(q))I(ss)

=

∑D−1
d=0 Nd,sen −D∑D−1

d=0

∑K−1
j=0

∑Nd−1
t=1 p(sd,t = j|d, wd;λ(q))I(ss)

.

The M-step update for ε is

ε̂ =

∑D−1
d=0

∑K−1
j=0

∑Nd−1
t=1 p(sd,t = j|d, wd;λ(q))I(ss)∑D−1
d=0 Nd,sen −D

(5.43)

and can be rewritten equivalently as given in Gruber, Rosen-Zvi, and Weiss (2007) as

ε̂ =

∑D−1
d=0

∑Nd−1
t=1 p(ψd,t = 1|d, wd;λ(q))I(ss)∑D−1

d=0 Nd,sen −D
(5.44)

which can be interpreted as the average number of times in the corpus that the topic for

a sentence switched (excluding the first sentence of each document) relative to the number

of sentences in the corpus (excluding the first sentence of each document).

5.4 A Viterbi Algorithm for the Hidden Topic

Markov Model

Since the EM algorithm does not provide “hard” state assignments for the state space, the

Viterbi algorithm is extended to the HTMM framework. The Viterbi algorithm seeks the

most likely sequence of states rather than the most likely state for each observation. For a

given document, let

δt(i) = max
s0,...,st−1

{p(s0, . . . , st−1, st = i, w0, . . . , wt)} . (5.45)

where i ∈ {0, . . . , 2K − 1} and t ∈ {0, . . . , Nd − 1}. Let
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δt+1(j) =
[
max
i
{δt(i)p(st = j|st−1 = i)}

]
p(wt+1|st+1 = j). (5.46)

Define the index variable

ψt+1(j) = i, (5.47)

which holds the previous state that maximizes δt(i)p(st+1 = j|st = i). For the first word

in a document, let

δ0(i) = p(s0 = i)p(w0|s0 = i)

=

θiβi, k
I(w0=k), i = 0, . . . , K − 1

0, i = K, . . . , 2K − 1

, (5.48)

and ψ0(i) = −1. For t = 1 to t = Nd− 1, compute δt(j) and ψt(j) as follows. If wt is the

first word in a sentence:

δt(j) = max
i
{δt−1(i)p(st = j|st−1 = i)} p(wt|st = j)

=

max
i


δt−1(i)εθj, j = 0, . . . , K − 1

δt−1(i)(1− ε), i ∈ {j −K, j}

0, otherwise

 βI(wt)j , (5.49)

and

ψt(j) = arg max
i


δt−1(i)εθj, j = 0, . . . , K − 1

δt−1(i)(1− ε), i ∈ {j −K, j}

0, otherwise

. (5.50)
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If wt is not the first word in a sentence, then transitions are deterministic rather than

stochastic, and instead,

δt(j) = max
i
{δt−1(i)}


β
I(wt)
j , j =

i+K, i ∈ {0, . . . , K − 1}

i, i ∈ {K, . . . , 2K − 1}

0, otherwise

, (5.51)

and

ψt(j) = arg max
i
{δt−1(i)p(st = j|st−1 = i)}

= arg max
i
{δt−1(i)} . (5.52)

In order to obtain the optimal state sequence, compute

s∗Nd−1 = arg max
i
{δNd−1(i)} (5.53)

and then for t = Nd − 1 to t = 0, find

s∗t = ψt+1(s∗t+1) (5.54)

to obtain resulting highest probability sequence of states s∗.
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Chapter 6

Posterior Approximation with Gibbs

Sampling for Inference in Hidden

Topic Markov Models

6.1 Derivation of Full Conditional Distributions for a

Gibbs Sampler

Recall that the parameters of interest for inference are λ = (θ, β, ε). Since the words wn are

the only observed data, we seek to design a Gibbs sampling algorithm that can approximate

draws from the joint posterior distribution

p(θd, β, ε, sd|d, wd;α, η). (6.1)

We start by noting that the joint posterior distribution can be written proportionally
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p(θd, β, ε, sd|d, wd;α, η) ∝p(θd;α) · p(β; η) · p(sd,0|θd) · p(wd,0|sd,t, β)·
Nd−1∏
t=1

p(sd,t|sd,t−1, θd, ε) · p(wd,t|sd,t, β). (6.2)

We can use a Gibbs sampling algorithm to sample from this posterior by sampling from

each full conditional distribution separately. First, we consider p(θd|d, sd;α). We define the

indicator variable I(ss) to be equal to 1 if word wd,t is the first word in a sentence and 0

otherwise.

p(θd|d, sd;α) ∝p(θd;α) · p(sd,0|θd) ·
Nd−1∏
t=1

p(sdt|sd,t−1, θd, ε)

=
K−1∏
k=0

θα−1
dk ·

K−1∏
k=0

θ
I(sd0=k)
dk ·

Nd−1∏
t=1

p(sdt = j|sd,t−1 = i, θd, ε)

=
K−1∏
k=0

θ
α+I(sd0=k)−1
dk ·

Nd−1∏
t=1

p(sdt = j|sd,t−1 = i, θd, ε). (6.3)

Since the Markov chain of the state space either transitions to a new topic j with prob-

ability εθj or does not transition to a new topic with probability 1− ε, Equation 6.3 can be

written as
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p(θd|d, sd;α) ∝
K−1∏
k=0

θ
α+I(sd0=k)−1
dk ·

Nd−1∏
t=1

(εθdj)
I(sdt∈{0,...,K−1},ss=1)·

(1− ε)I(sdt∈{K,...,2K−1},sd,t−1∈{j−K,j},ss=1)

∝
K−1∏
k=0

θ
α+I(sd0=k)−1
dk ·

Nd−1∏
t=1

θdkI(sdt = k, k ∈ {0, . . . , K − 1}, ss = 1)

=
K−1∏
k=0

θ
α+I(sd0=k)+

∑Nd−1
t=1 I(sdt=k,k∈{0,...,K−1},ss=1)−1

dk

=
K−1∏
k=0

θ
α+

∑Nd−1
t=0 I(sdt=k,k∈{0,...,K−1},ss=1)−1

dk

p(θd|d, sd;α) ∝
K−1∏
k=0

θ
α+

∑Nd−1
t=0 I(zdt=k,ψdt=1,ss=1)−1

dk . (6.4)

This is recognizable as a Dirichlet distribution. Defining ndz=i as the number of times a

sentence in document d was assigned to topic i while ψd = 1,

(θd|zd;α) ∼ Dirichlet(α + ndz=0, . . . , α + ndz=K−1), d ∈ {0, . . . , D − 1}. (6.5)

This is nicely interpretable since the parameters of the prior Dirichlet distribution for θd

are updated for a given topic proportion θdk by the number of new draws of topic k in the

document.

Similarly, we can determine the full conditional distribution of βj for topic j.
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p(βj|d, sd;α) ∝p(βj; η) · p(wd|sd, βj)

=
V−1∏
k=0

βη−1
jk ·

D−1∏
d=0

Nd−1∏
t=0

p(wdt = k|sdt = j)

=
V−1∏
k=0

βη−1
jk ·

D−1∏
d=0

Nd−1∏
t=0

β
I(sdt∈{j+K,j},wdt=k)
jk

=
V−1∏
k=0

β
η+

∑D−1
d=0

∑Nd−1
t=0 I(sdt∈{j+K,j},wdt=k)−1

jk

=
V−1∏
k=0

β
η+

∑D−1
d=0

∑Nd−1
t=0 I(zdt=j,wdt=k)−1

jk . (6.6)

This is recognizable as another Dirichlet distribution. Defining nz=j,w=k as the number

of times that topic j and word k co-occur in the corpus,

(βj|z, w; η) ∼ Dirichlet(η + nz=j,w=0, . . . , η + nz=j,w=V−1), j ∈ {0, . . . , K − 1}. (6.7)

Next, we consider a full conditional distribution for ε. While Gruber, Rosen-Zvi, and

Weiss (2007) did not introduce a prior for ε, we propose a Beta(ζ, ζ) prior distribution with

equal shape parameters ζ to incorporate prior belief about topic coherence and to allow for

updating estimates of ε in the presence of new data (i.e., using the posterior distribution of ε

from one model as the prior distribution for ε for a new model of new data). Using identical

parameters yields symmetric priors for ε of the form

p(ε; ζ) =
Γ(2ζ)

Γ(ζ)Γ(ζ)
εζ−1(1− ε)ζ−1. (6.8)

We now derive the full conditional distribution of ε,
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p(ε|s; ζ) ∝p(ε; ζ) ·
D−1∏
d=0

Nd−1∏
t=1

p(sdt|sd,t−1,θd , ε)

=εζ−1(1− ε)ζ−1·
D−1∏
d=0

Nd−1∏
t=1

2K−1∏
i=0

2K−1∏
j=0

[
(εθdj)

I(sdt=j,j∈{0,...,K−1},ss=1) ]
[
(1− ε)I(sdt=j,j∈{K,...,2K−1},sd,t−1=i,i∈{j−K,j},ss=1)

]
=εζ−1(1− ε)ζ−1

D−1∏
d=0

Nd−1∏
t=1

[ 2K−1∏
i=0

K−1∏
j=0

εθdj
]I(sdt=j,ss=1)·

[ ∏
i∈{j−K,j}

2K−1∏
j=K

(1− ε)
]I(sdt=j,sd,t−1=i,ss=1)]

∝εζ+
∑D−1
d=0

∑Nd−1
t=1

∑2K−1
i=0

∑K−1
j=0 I(sdt=j,ss=1)−1·

(1− ε)ζ+
∑D−1
d=0

∑Nd−1
t=1

∑
i∈{j−K,j}

∑2K−1
j=K I(sdt=j,sd,t−1=i,ss=1)−1

p(ε|s; ζ) ∝εζ+
∑D−1
d=0

∑Nd−1
t=1 I(ψdt=1,ss=1)−1(1− ε)ζ+

∑D−1
d=0

∑Nd−1
t=1 I(ψdt=0,ss=1)−1. (6.9)

We define nψ=1 as the number of sentences in a corpus where ψdt = 1 (i.e., the number of

sentences for which a new topic was drawn). We then define nsen as the number of sentences

in the corpus and recall that D is the number of documents in the corpus.

We can rewrite the full conditional posterior distribution of ε as

p(ε|s; ζ) ∝ εζ+nψ=1−1(1− ε)ζ+nsen−D−nψ=1−1, (6.10)

Therefore,

(ε|s; ζ) ∼ Beta(ζ + nψ=1, ζ + nsen −D − nψ=1). (6.11)

Finally, we need to learn the posterior distribution of the Markov chain in the state space,

so we derive the full conditional distribution of the initial state in a document sd0 and later

derive the full conditional distribution of state t in a document sdt.
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For the first state in a document

p(sd0|wd, θd) ∝ p(sd0|θd)p(wd|sd0, β)

= p(sd0|θd)p(wd0|sd0, β)p(wd1, . . . , wd,Nd−1|sd0, β). (6.12)

It should be clear that p(wd1, . . . , wd,Nd−1|sd0, β) is simply the backward variable ρd0

defined in Chapter 6. Therefore,

p(sd0 = i|wd, θd) ∝ θdiβi,w0ρd0(i). (6.13)

Similarly, we can derive the full conditional distribution of state t in document d,

p(sdt|sd,t−1, wdt, . . . , wd,Nd−1, θd) ∝ p(sdt|sd,t−1, θd, ε)p(wdt, . . . , wd,Nd−1|sdt, β)

= p(sdt|sd,t−1, θd, ε)p(wdt|sdt)p(wd,t+1, . . . , wd,Nd−1|sdt, β)

(6.14)

Taking advantage of the model structure,

p(sdt = j|sd,t−1 = i, wdt:(Nd−1), θd) ∝


εθjβj,wdt

ρdt(j) , j ∈ {0, . . . ,K − 1}

(1− ε)βj−K,wdt
ρdt(j) , j ∈ {K, . . . , 2K − 1} ,

i ∈ {j −K, j}

(6.15)

6.2 A Gibbs Sampling Algorithm for HTMM

Equipped with the full conditional distributions of ε, θ, β, and s, a Gibbs sampling algorithm

for the Hidden Topic Markov Model is shown in Figure 6.1 where T is the number of iterations

or sweeps of the sampler and K is the number of topics.
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Initialize s, α, η, ζ1, ζ2;
for r = 0 to T − 1 do

for d = 0 to D − 1 do
for z = 0 to z = K − 1 do

Compute ndz ;
end

end
for k = 0 to k = V − 1 do

for z = 0 to z = K − 1 do
Compute nz=j,w=k ;

end

end
Compute nψ=1 ;
for j = 0 to j = K − 1 do

Sample βj ∼ Dirichlet(η + nz=j,w=0, . . . , η + nz=j,w=V−1) ;
end
Sample ε ∼ Beta(ζ + nψ=1, ζ + nsen −D − nψ=1) ;
for d = 0 to D − 1 do

Sample θd ∼ Dirichlet(α + ndz=0, . . . , α + ndz=K−1) ;
end
Compute backward variables ρd ;
for i = 0 to i = K − 1 do

Sample sd0(i) ∼ θdiβi,w0ρd0(i) ;
Set sd0(i+K) := 0 ;

end
for t = 1 to t = Nd − 1 do

for j = 0 to j = 2K − 1 do
if j ∈ {0, . . . , K − 1} then

Sample sdt(j)|sd,t−1 = i ∼ εθjβj,wdtρdt(j) ;
end
else if i ∈ {j −K, j} then

Sample sdt(j)|sd,t−1 = i ∼ (1− ε)βj−K,wdtρdt(j) ;
end

end

end

end

Figure 6.1: Gibbs sampler for the Hidden Topic Markov Model
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Chapter 7

Evaluation of the Gibbs Sampler and

EM Algorithm for Hidden Topic

Markov Models

7.1 Simulation Study of HTMM

In order to assess the performance of the expectation-maximization algorithm and the Gibbs

sampler proposed for inference for the hidden topic Markov model (HTMM), a simulation

study was conducted. Twelve data sets were simulated from the generative model assumed

for the HTMM. Each data set contained 600 documents and was generated from a vocabulary

of V = 1000 words. I assumed that each sentence would contain an average of 20 words,

so the number of words per sentence Ns was drawn according to Nw ∼ Poisson(λ = 20).

The average number of sentences Ns was drawn from either Ns ∼ Poisson(λ = 10) or

Ns ∼ Poisson(λ = 250) to approximate the average number of sentences that might be

expected in an abstract and a scientific journal article, respectively. The number of topics

used to generate the corpora was either K = 2 or K = 10 topics. Finally, ε was set to be in

ε ∈ {0.1, 0.5, 0.9}. I set α for each document to be a random permutation of
(

1
K
, 2
K
, . . . , K

K

)
.
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Similarly, I set η for each topic to be a random permutation of
(

1
V
, 2
V
, . . . , V

V

)
. The generative

attributes of the 12 synthetic data sets are shown in Table 7.1.

Data D V Nw Ns K ε

1 600 1000 20 10 2 0.1
2 600 1000 20 10 2 0.5
3 600 1000 20 10 2 0.9
4 600 1000 20 10 10 0.1
5 600 1000 20 10 10 0.5
6 600 1000 20 10 10 0.9
7 600 1000 20 250 2 0.1
8 600 1000 20 250 2 0.5
9 600 1000 20 250 2 0.9
10 600 1000 20 250 10 0.1
11 600 1000 20 250 10 0.5
12 600 1000 20 250 10 0.9

Table 7.1: Attributes of data sets simulated from the generative HTMM

For each data set, both the EM and Gibbs sampling algorithms were trained on 500 of

the documents from a given data set. The EM algorithm was run until convergence where

convergence was defined to be a change in log-likelihood of magnitude less than 0.01. The

Gibbs samplers were run for a burn-in period of 1000 iterations with a thinning rate of 10.

A final sample of n = 100 was obtained for each data set. Both the EM and Gibbs models

used hyperparameters α = 1 + 50/K where K was set to match the known generative K for

a given data set and η = 1.01 following Gruber, Rosen-Zvi, and Weiss (2007). Furthermore,

the hyperparameter for ε was set to ζ = 1 such that ε ∼ Beta(1, 1) was an non-informative

uniform prior, ε ∼ Uniform(0, 1).

Results for EM and Gibbs inference are given in Tables 7.1 and 7.1. Estimates of ε and

the absolute relative error of ε̂ are reported. The estimation error of θ and β were calculated

using the L1 norm of the difference between the true parameter matrix and the estimated

matrix relative to the number of entries in the difference matrix. Finally, topic recovery

accuracies are provided.
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Data Ns K ε ε̂ |ε̂−ε|
ε

||θ̂−θ||1
DK

||β̂−β||1
KV

Topic Recovery Accuracy

1 10 2 0.1 0.085 0.150 0.197 0.000103 0.780
2 10 2 0.5 0.394 0.212 0.195 0.000103 0.739
3 10 2 0.9 0.678 0.247 0.186 0.000101 0.736
4 10 10 0.1 0.102 0.020 0.060 0.000900 0.365
5 10 10 0.5 0.490 0.019 0.060 0.000810 0.282
6 10 10 0.9 0.889 0.012 0.059 0.000700 0.276
7 250 2 0.1 0.082 0.181 0.166 0.000021 0.832
8 250 2 0.5 0.462 0.075 0.086 0.000021 0.753
9 250 2 0.9 0.877 0.026 0.051 0.000021 0.764
10 250 10 0.1 0.096 0.039 0.061 0.000696 0.376
11 250 10 0.5 0.492 0.015 0.073 0.000873 0.277
12 250 10 0.9 0.898 0.002 0.078 0.000872 0.276

Table 7.2: Performance of HTMM-EM on simulated data

As shown in Table 7.1, the HTMM EM algorithm recovers ε well. For the twelfth data set,

the lowest estimation error for ε̂ is only 0.2%, while the largest estimation error on the third

data set is 24.7%. These results suggest that the accuracy of the EM algorithm estimates for

ε are poorest when the number of sentences per document is relatively small and the number

of topics is small regardless of the true value of ε. Since the number of sentences in a corpus

drive the estimate of ε, it is reasonable to expect that a corpus of shorter documents (e.g.,

scientific abstracts) would provide less information about the Markovian dynamics of topics

when using sentences as the smallest unit of topic assignment. Conversely, the EM algorithm

is most precise in its estimation of ε when the average number of sentences per document

is large and the number of topics is large. This is also reasonable since the large number

of sentences in the corpus and the larger number of topics allow for more variable topical

dynamics. One reasonable hypothesis for future research is that the quality of ε̂ depends on

its degrees of freedom (i.e., the number of sentences in the corpus and the number of topics

considered).

A similar pattern of results emerged for the accuracy of the EM algorithm when esti-

mating the document topic proportions θ = (θ0, . . . , θD−1). Larger estimation errors for θ
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were observed for smaller data sets where the average number of sentences per document

(Ns = 10) was small and the number of topics (K = 2) was smallest regardless of ε. Esti-

mation errors for θ were relatively low and similar for larger average numbers of sentences

and topics. Future work could consider examining whether the quality of θ̂ depends on the

number of sentences in the corpus and the number of topics considered.

An interesting exception to these results were the estimates obtained for the seventh data

set (Ns = 250, K = 2, ε = 0.1). While estimates of ε and θ were otherwise better for larger

Ns, the error in estimates of both ε and θ for this data set were comparable with errors in

estimation of ε and θ for the first three data sets where Ns = 10 and K = 2.

The EM algorithm seemed to do universally well at estimating the topic-word probability

matrix β for all data sets. The errors in estimation were an order of magnitude smaller for

the seventh, eighth, and ninth data sets than the others. These three data sets had a

large average number of sentences per document (Ns = 250) but only two topics. It is not

surprising that the topic-word probabilities were estimated more precisely for these data

sets since word frequencies were greater and the number of topic-word associations to be

estimated were small, resulting in an optimal ratio of observed words to parameters for

inference.

Finally, the accuracy of word-to-topic assignments was computed using a modification of

the standard Viterbi algorithm that took into account the structure of the HTMM. Label

switching was addressed by creating equivalencies between the true topics and inferred topics

using the simple argmax of the true and inferred topic co-occurrences. Topic assignment

accuracies were universally better when the number of topics was small (K = 2) than when

the number of topics was large (K = 10). Regardless of the number of topics and the

average number of sentences per document, topic assignment accuracy was slightly higher

when ε = 0.1 than when ε = 0.5 or ε = 0.9. Performance degraded dramatically as the

number of topics increased, which suggests that the Viterbi algorithm is not a particularly

accurate method for predicting topics for simulated data.

Another potential source of error in state assignments is label switching. The labeling of



CHAPTER 7. EVALUATION OF THE GIBBS SAMPLER AND EM ALGORITHM
FOR HIDDEN TOPIC MARKOV MODELS 81

learned topics from the EM algorithm and especially from the Gibbs sampler do not have

to correspond to the true labels in the simulated data since the likelihood in EM and the

posterior distributions in the Gibbs sampler are invariant to permutations of topics (Jasra,

Holmes, and Stephens 2005). More sophisticated methods of handling label switching could

be considered to remedy this limitation, particularly if the EM algorithm is used.

Data Ns K ε ε̂ |ε̂−ε|
ε

||θ̂−θ||1
DK

||β̂−β||1
KV

Topic Recovery Accuracy

1 10 2 0.1 0.086 (0.077, 0.093) 0.137 0.197 0.000102 0.998
2 10 2 0.5 0.390 (0.377, 0.406) 0.219 0.196 0.000103 0.993
3 10 2 0.9 0.669 (0.655, 0.683) 0.257 0.186 0.000101 0.992
4 10 10 0.1 0.092 (0.083, 0.100) 0.085 0.060 0.000804 0.992
5 10 10 0.5 0.483 (0.467, 0.496) 0.033 0.060 0.000741 0.960
6 10 10 0.9 0.872 (0.862, 0.882) 0.031 0.060 0.000815 0.935
7 250 2 0.1 0.082 (0.080, 0.083) 0.184 0.168 0.000021 0.999
8 250 2 0.5 0.459 (0.457, 0.462) 0.081 0.088 0.000021 0.994
9 250 2 0.9 0.872 (0.870, 0.874) 0.031 0.052 0.000021 0.991
10 250 10 0.1 0.096 (0.094, 0.098) 0.036 0.064 0.000867 0.996
11 250 10 0.5 0.490 (0.487, 0.492) 0.021 0.069 0.000781 0.972
12 250 10 0.9 0.894 (0.892, 0.896) 0.006 0.071 0.000789 0.954

Table 7.3: Performance of HTMM-Gibbs on simulated data

As shown in Table 7.1, the HTMM Gibbs sampler recovers ε well. ˆepsilon is the mean of

the sample path of ε and is accompanied by a 95% Bayesian credible interval. Paralleling the

results for the EM algorithm, for the twelfth data set, the lowest estimation error for ε̂ is only

0.6%, while the largest estimation error on the third data set is 25.7%. These results suggest

that the accuracy of the Gibbs sampler for ε is, like the accuracy of the EM algorithm, poorest

when the number of sentences per document is relatively small and the number of topics is

small regardless of the true value of ε. Conversely, both the Gibbs sampler and EM algorithm

are most precise in their estimation of ε when the average number of sentences per document

is large and number of topics is large. One reasonable hypothesis for future research is that

the quality of ε̂ depends on its degrees of freedom (i.e., the number of sentences in the corpus

and the number of topics considered). Since ε is tied to the number of topics such that ε
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increases as a function of the number of topics (Gruber, Rosen-Zvi, and Weiss 2007), the

most important factor in the estimation of ε is likely the number of sentences in the corpus.

The accuracy of the Gibbs sampler and the EM algorithm when estimating the document

topic proportions θ = (θ0, . . . , θD−1) were virtually indistinguishable. Critically, errors for

both methods were larger when the number of sentences in the corpus was smaller. The

Gibbs sampler and EM algorithm were quite similar in their estimation of the topic-word

probability matrix β for all data sets.

Finally, the accuracy of word-to-topic assignments was computed. Inferred topic as-

signments were determined using the median topic for each word in a document from the

sample path. Label switching was resolved in the same manner described above for the EM

algorithm. These accuracies were incredibly high and ranged from 93.5% to 99.9%. All

accuracies were substantially better than those obtained using the Viterbi algorithm with

the EM algorithm. As noticed with the EM-Viterbi approach, topic assignment accuracies

were better when the number of topics was small (K = 2) than when the number of topics

was large (K = 10) and slightly higher when ε = 0.1 than when ε = 0.5 or ε = 0.9. However,

the relative drop in accuracy was nearly negligible using Gibbs sampling.

Despite using a simply approach to handling label switching, the Gibbs sampler for

HTMM recovered the underlying latent structure nearly perfectly across the twelve different

data sets while the EM and Viterbi algorithms struggled to recover the underlying latent

structure. At the same time, model parameter estimates errors were nearly equivalent using

both methods. One advantage of the Gibbs sampling approach for inference is the ability to

form Bayesian credible intervals and give distributional information about the model instead

of the point estimates provided by the EM algorithm.

For small data sets, both algorithms are relatively fast and memory efficient. For large

numbers of topics, vocabulary, documents, and words, Gibbs sampling becomes far slower

and memory-expensive than the EM algorithm. This is a common limitation of Gibbs

sampling and Markov Chain Monte Carlo (MCMC) in general, but is not necessarily in-

surmountable. Given the substantial gains in the accuracy of topic recovery using Gibbs
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sampling, future research on more efficient MCMC algorithms for the HTMM would be of

interest. From experience, the HTMM EM algorithm can converge quickly and does not seem

to be overly sensitive to initializations. However, the algorithm can also take a long time

to converge, particularly for large data sets, and is not guaranteed to converge to a global

maximum on the log-likelihood. There are advantages and disadvantages to both algorithms

that warrant careful consideration in application, not unlike the choice between variational

EM (Blei, Ng, and Jordan 2003) and Gibbs sampling (Griffiths and Steyvers 2004).

Finally, the rate of convergence of both methods is considered. For the sake of brevity,

convergence is assessed for the EM and Gibbs algorithms on data set 1 where Ns = 10,

K = 2, and ε = 0.1. The quick convergence of the EM algorithm is evident in the asymptotic

behavior of both the log-likelihood and ε̂ shown in Figure 7.1. It is unknown whether the

algorithm converged to a global maximum or a local maximum, but empirically, convergence

is typically swift and reasonably robust to variable initializations.
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Figure 7.1: Convergence of log-likelihood for HTMM-EM algorithm (left). Convergence of
estimated transition probability (right).

Assessment of the convergence of the Gibbs sampler is evident by examining the sample

path for ε shown in Figure 7.2. Although ε is randomly initialized far from its true value,
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the sampler quickly moves away from this initialization and mixes. It is evident that the

sampler explores the parameter space for ε as some draws explore regions above and below

ε = 0.9, but the chain stabilizes quickly around ε = 0.09.

0.00

0.05

0.10

0.15

0.20

0 250 500 750 1000

Iteration

S
am

pl
ed

 ε

Figure 7.2: Sample path of transition probability from simulated data set 1.

The posterior distribution shown in Figure 7.3 of ε is unimodal with little variability and

centered just below 0.1. While it’s mode falls below the true parameter ε = 0.1, the posterior

distribution does include the true parameter value.
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Figure 7.3: Posterior distribution of transition probability from simulated data set 1.

Inspection of the sample path in Figure 7.4 for the topic proportions θ0 in the first

document reveal while the sampler does explore smaller and larger values of θ0, it struggles

to converge in the absence of sufficient data (recall that there were only an average of 10

sentences per document in data set 1).
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Figure 7.4: Sample path of topic proportions in the first document of simulated data set 1.

Furthermore, the sampler’s estimate of θ0 reflects the prior placed on θ0 which was cen-

tered and heavily concentrated at 0.5 with a concentration parameter α = 26; given the small

amount of data available, is heavily influencing the sample path of θ0 to remain near 0.5.

This is typical of posterior samples when there is minimal information regarding a parameter

in the data. The posterior distributions shown in Figure 7.5 for the topic proportions are

symmetric and unimodal with a mode near the prior mean.
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Figure 7.5: Posterior distribution of topic proportions in the first document from simulated
data set 1.

The sample path of β in Figure 7.6 for topic-word probabilities of the first word for topics

1 and 2 reveals that the sample path for topic 1 favors draws for larger values of β11 while

the sample path for topic 2 favors draws for values of β21 near the prior mean of 0.001.
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Figure 7.6: Sample path of topic-word probabilities for the first word from simulated data
set 1.

The posterior distributions shown in Figure 7.7 for both components of β are unimodal

and symmetric, but the distribution for topic 2 is centered at the prior mean of 0.001 while

the distribution for topic 1 is shifted to the right of the prior mean. This suggests that the

first word was drawn from the first topic, but not from the second topic. However, there is a

fair amount of variability for both distributions which reflects the small size of the data set.



CHAPTER 7. EVALUATION OF THE GIBBS SAMPLER AND EM ALGORITHM
FOR HIDDEN TOPIC MARKOV MODELS 89

Topic 1 Topic 2

0.000 0.001 0.002 0.000 0.001 0.002

0

1000

2000

3000

β

D
en

si
ty

Figure 7.7: Posterior distributions of topic-word probabilities for the first word from simu-
lated data set 1.

To assess the importance of the corpus size, a similar assessment of the model parameters

inferred by Gibbs sampling is performed for data set 7. The only difference between data set

7 and data set 1 is that there was an average of 250 sentences per document in the former

and an average of only 10 sentences per document in the latter.

The sample path for ε after burn-in and thinning in Figure 7.8 shows that the sampler

converged for ε near 0.8 and remained stable.
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Figure 7.8: Sample path of transition probability from simulated data set 7.

The posterior distribution of ε is unimodal with less variability than the posterior dis-

tribution of ε for data set 1. The posterior for data set 7 is centered near 0.8 as shown in

Figure 7.9.
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Figure 7.9: Posterior distribution of transition probability from simulated data set 1.

The sample path of θ0 in Figure 7.10 in this data set provides clearer insight into a

common dilemma in Bayesian mixture modeling: label switching. Here, only the thinned

sample after burn-in is shown for clarity. The behavior of the sample path for the two topic

proportions clearly shows label switching; the magnitudes of the two parameters switch back

and forth between approximately 0.4 and 0.6 and this is reflected as multimodality in the

posterior distributions shown in Figure 7.10. Two common approaches have been proposed

for other Bayesian mixture models to address this phenomenon. First, ordered constraints

can be placed on the parameters to enforce identifiability. While simple, this approach has

been criticized for biasing the resulting parameter estimates. Second, relabeling algorithms

have been proposed to choose optimal labeling schemes (Jasra, Holmes, and Stephens 2005;

Stephens 2000). Post-processing of the MCMC samples was used in this thesis rather than

ordered constraints since ordered constraints would force a handful of topics to dominate a

given corpus and yielded excellent topic recovery as shown in Table 7.1.
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Figure 7.10: Sample path of topic proportions in the first document of simulated data set 7.
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Figure 7.11: Posterior distribution of topic proportions in the first document from simulated
data set 7.

The sample path of β in Figure 7.12 for topic-word probabilities of the first word for

topics 1 and 2 reveals that the larger size of the corpus in data set 7 relative to data set
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has allowed the sampler to converge. It is clear the sample path for topic 1 favors draws for

small values of β11 near 0.00045 while the sample path for topic 2 favors draws for values of

β21 near the prior mean of 0.001.
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Figure 7.12: Sample path of topic-word probabilities for the first word from simulated data
set 7.

The posterior distributions shown in Figure 7.13 for both components of β are both

unimodal, but the distribution for topic 2 is centered at the prior mean of 0.001 while the

distribution for topic 1 is shifted to the left of the prior mean near 0.0005. This suggests that

the first word was drawn from the first topic very rarely, but was more likely to be drawn

from the second topic. Compared to the posterior distributions for these parameters in data

set 1, there is very little variability for both distributions which reflects the larger amount

of information available in the data set.
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Figure 7.13: Posterior distributions of topic-word probabilities for the first word from simu-
lated data set 7.

7.2 A Comparison of LDA and HTMM on the NIPS

Corpus

The performance of the Hidden Topic Markov Model was contrasted with Latent Dirichlet

Allocation (LDA) on a corpus of NIPS (Neural Information Processing Systems) conference

proceedings. Following Gruber, Rosen-Zvi, and Weiss (2007), K = 100 topics were con-

sidered with priors on θd ∼ Dirichlet(1.5) for d ∈ {0, 1, . . . , 1557}, βk ∼ Dirichlet(1.01) for

k ∈ {0, 1, . . . , 99}, and ε ∼ Beta(1, 1) on a corpus of Dtrain = 1557 randomly selected journal

articles with a vocabulary of V = 12113 words after removing stop words. The text was very

simply tokenized into sentences using “.”, “?”, “!”, and “;” as delimiters. All appearances of

“e.g.” and “i.e.” were also removed due to their frequent use in journal articles. A randomly

selected test set of Dtest = 180 was held out for use in evaluating perplexity.

The EM HTMM algorithm was run on the training set for 1000 iterations, although
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convergence was reached within 10 iterations as shown in Figure 7.14. An estimated ε̂ = 0.291

suggests that the topics in the training set were relatively contiguous since ε̂, the estimated

probability of a topic transition, was substantially smaller than 0.5. Recall that if ε = 1,

topics transition on every token, which, if the token chosen is a word, yields the LDA model.

If ε = 0, topics never transition and documents are represented by a single topic as in the

mixture of unigrams model. A variational EM algorithm for LDA was run until convergence

at 37 iterations.
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Figure 7.14: Convergence of log-likelihood for HTMM-EM algorithm (left). Convergence of
estimated epsilon parameter (right)

A sample of the ten most probably words for four topics obtained from the LDA model

are shown in Figure 7.15. These topics are nicely interpretable and seem to represent hidden

Markov models, neuroscience, function approximation, and circuit design (clockwise from

top left). While these topics are coherent, there are some words like “figure”, “data”, and

“networks” that are not as thematically coherent with the interpretation of the topics. This

is particularly undesirable because LDA models do not typically favor assignment of a word

to multiple topics. Since the three words highlighted above are germane to practically any

article in the corpus, their high probabilities in these four topics will likely result in these
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topics being assigned to these words in documents and sections of documents that are not

discussing hidden Markov models, neuroscience, kernel functions, and circuit design.
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Figure 7.15: The ten most probable words for topics 13, 16, 55, and 75 from the NIPS LDA
model

For comparison, a sample of the ten most probable words from four topics obtained from

the HTMM are shown in Figure 7.16. Words within a sentence are now constrained to a
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single topic now, whereas LDA induced multiple topics within a single sentence. These topics

are also clearly interpretable. Topic 7 can be interpreted as a neural network topic, topic

51 can be interpreted as a support vector machine topic (SVM), and topic 63 has captured

reference and acknowledgement sections. Examination of topic 51 and topic 63 demonstrates

the disambiguation of two word senses for support : support vector machine and funding

support. Topic 79 is very interesting since it has captured professional affiliations of the

authors; examination of the 100 LDA topics did not reveal a similar topic. Instead, many

topics were incoherent and featured some professional affiliation words among other topical

words. This suggests that an HTMM is capable of learning more semantically coherent

topics than LDA and, furthermore, is capable of generating contiguous sequences of topics

in a document; this result is less common using LDA.
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Figure 7.16: Sample topics from NIPS HTMM model

The documents can also be represented by their distribution over the 100 topics. As

shown in Figure 7.17, LDA represents some documents using only a few topics, while other

documents are represented with a larger set of topics.
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Figure 7.17: Sample topic proportions from NIPS LDA model

Interestingly, the same documents are represented with a richer set of topics using

HTMM. As seen in Figure 7.18, documents 63, 600, and 1479 in particular are composed of

many more topics with HTMM than with LDA while HTMM assigned document 323 fewer

topics than LDA did.
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Figure 7.18: Sample topic proportions from NIPS LDA model

Finally, the predictive performance of LDA and HTMM were compared using perplexity.

Perplexity of a corpus D of M documents was computed as

P (D) = exp

{
−
∑M−1

d=0 log p(wd;λ)∑M−1
d=0 Nd

}
(7.1)



CHAPTER 7. EVALUATION OF THE GIBBS SAMPLER AND EM ALGORITHM
FOR HIDDEN TOPIC MARKOV MODELS 101

where wd is the vector of words in document d, Nd is the number of words in document d,

and λ is a vector of model parameters. The perplexity of a corpus decreases monotonically

as the likelihood of a corpus increases. Therefore, lower perplexity is an indicator of better

generalization error. LDA had a perplexity of 1460.1 on the training set and a perplexity

of 1952.7 on the test set. In comparison, HTMM had a perplexity of 1159.8 on the training

set and 1157.3 on the test set. The perplexity for HTMM was lower than that of LDA for

both the training and test sets which suggests that HTMM provided a better fit to the NIPS

corpus than LDA through its use of Markovian dynamics. It was surprising that HTMM

achieved very similar perplexity scores on both the training and testing set. This suggests

that the HTMM model was not over-fit and that the model performed not only better than

LDA for both training and testing sets, but equally well with new data as with the training

data. The choice of a 90%/10% train-test split of the corpus was made in keeping with

similar decisions made by other researchers such as Blei, Ng, and Jordan (2003) and Gruber,

Rosen-Zvi, and Weiss (2007). It is possible that the use of such a large proportion of the

corpus for training is responsible for the performance of HTMM on the test set, although

this was not the case for LDA. Further evaluation with different ratios of training and test

data would help understand these results.
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Chapter 8

Conclusions

This thesis successfully extended the Hidden Topic Markov Model (HTMM) proposed by

Gruber, Rosen-Zvi, and Weiss (2007) from a purely frequentist framework into a fully

Bayesian framework. First, the state space used by the hidden Markov model embedded

in the HTMM was elucidated to facilitate the first published derivation of the expectation-

maximization (EM) algorithm used by Gruber, Rosen-Zvi, and Weiss. The necessary forward-

backward algorithm was derived for the first time, filling in a crucial missing piece required

for both frequentist and Bayesian inference that was never formally derived. In order to per-

form inference for the state space when using the EM algorithm, a modification of the Viterbi

algorithm proposed by Gruber and Popat (2007) was derived that properly respects state

transition restrictions when using sentences as a topical unit since the algorithm proposed

by Gruber and Popat is only appropriate when the topical unit is a word.

Using the forward-backward algorithm derived in Chapter 5, full conditional distributions

for the HTMM parameters ε, θ, β, and latent states s were derived. Equipped with these

distributions, a Gibbs sampling algorithm was proposed in Chapter 6.

Both the EM and Gibbs sampling algorithms were implemented in the R and C++ pro-

gramming languages. The performance of both algorithms was assessed on twelve simulated

data sets in a study of the impact of the number of sentences, number of topics, and transi-
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tion probability ε on the accuracy of parameter estimation and topic recovery. The results of

the simulation study suggested that both algorithms perform comparably in estimating the

model parameters, but the Gibbs sampling algorithm dramatically outperformed the com-

bination of the EM and Viterbi algorithms in recovering the topic space. Furthermore, both

algorithms were shown to converge relatively quickly in the presence of moderately sized

data sets. Assessment of the Gibbs sampling algorithm revealed that the prior distributions

are dominant for small data sets, but that larger data sets yield precise posterior distribu-

tions that capture the true generative parameters well. Label switching was observed with

both the EM and Gibbs algorithms and future work to address this phenomenon would be

worthwhile.

Finally, the Hidden Topic Markov Model (HTMM) was compared with the popular Latent

Dirichlet Allocation (LDA) on a corpus of published proceedings from the Conference on

Neural Information Processing Systems (NIPS). Topical assignments were interpretable using

both models, but the topic assignments extracted by the HTMM were more contiguous

and subjectively appeared to be more coherent than those obtained by LDA. Predictive

performance was assessed using perplexity: lower perplexity was observed for both training

and test corpora for the HTMM than for LDA. Furthermore, HTMM demonstrated nearly

identical perplexity on the test corpus as the training corpus, suggesting that the HTMM

model generalized very well to unseen documents. Future work to optimize the speed and

memory usage of the HTMM EM and Gibbs sampling algorithms would be worthwhile as

both algorithms require longer computing times for large corpora and large quantities of

memory in the case of the Gibbs sampler. A theoretical study of the HTMM model is

recommended to better understand the quality of inference in the presence of small corpora

and asymptotic properties as the number of documents, topics, and the vocabulary size grow

large. Nonparametric extensions to learn the number of topics could be considered. Finally,

human evaluation of the quality of topics extracted by the HTMM and other topic models

like LDA is vitally important to assess the interpretability and linguistic utility of these

models.
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