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Abstract

A Machine Learning Approach on Providing Recommendations for
the Vacant Lot Problem

Md Towhidul Absar Chowdhury

Modeling municipal or urban decisions is challenging due to the abundance

of variables that guide end results. One such challenging issue is the ex-

istence of vacant lots in a city, which causes poorer standard of living for

the community. As a result, reclaiming these properties and putting them

into productive use is a primary concern. However, each time community

leaders had to “reinvent the wheel” and make decisions from scratch. To

this end, we propose the creation of a vacant lot model and utilizing it to

provide recommendations for vacant lot conversions, providing a starting

point for such decision making. We define a vacant lot model in terms of

determinants to a vacant lot’s impact, and evaluate the proposed method on

real-world vacant lot datasets from the cities of Philadelphia, Pennsylvania

and Baltimore, Maryland. Our results indicate that our prediction model

performs accurately on cities with a centralized approach to vacant lot con-

version.
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Chapter 1

Introduction

1.1 Background

We live in a data driven society, where every decision and every plan has

to be supported with historical data or statistics. Established data sets, such

as Data.gov [2], provide ample data for macro-level analysis and decisions.

However, at the community or neighborhood level, such as monitoring ur-

ban issues like traffic congestion, poverty or health care, these datasets by

themselves are not sufficient.

In the context of urban planning, a common issue for most cities are the

existence of vacant lots. A vacant lot is an abandoned property that has no

buildings on it [5]. In the past these properties did have buildings or houses

on them but they were demolished due to safety concerns as they became

abandoned and fell into disrepair.

These vacant lots are an issue of concern because they have a tendency

to attract illegal activities such as littering or dumping of solid waste, or

even spaces where criminal activities may take root. Since vacant lots result

in a poorer standard of living for the urban community [14], reclaiming
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these properties and putting them into productive use has become a primary

concern for the community.

In order to do that, the primary goal is to fill the empty space with at-

tractive and productive activities or projects that would not only bolster the

people’s attention but also increase the health of the community overall. For

example, the vacant lots can be converted to temporary community gardens,

urban farms etc. But the conversion of all vacant lots is not feasible, as

urban planners and community leaders have to focus on optimizing their

decision making. They need to ascertain which lots will provide the most

benefit once they are converted. Furthermore, vacant lots are a liability [5]

that cause depressed property value in the surrounding neighborhood [8].

As a result, urban planners may also focus on converting lots to prevent the

negative effect on neighborhood property value.

In their effort to tackle vacant lot conversions, urban planners and com-

munity leaders have to routinely analyze available data, and prioritize zones.

They need to identify how similar vacant lots in the past have been con-

verted, and the resulting effects of those conversions. Each time a vacant lot

needs to be converted, they have to “reinvent the wheel” and start from the

beginning.

While much research has been done in analyzing the impact of convert-

ing vacant lots [8, 12, 10], there is little research on predicting which vacant

lots to convert based on the determinants of previously successful vacant

lot conversions. Furthermore, while significant amount of data is available
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from cities that have tackled or are facing the problem, there is a lack of

normalized vacant lot data that would enable stakeholders to analyze and

estimate the optimality of the vacant lots.

The goal of this research is twofold: 1. develop general datasets consist-

ing of existing vacant lots and converted lots consisting of possible determi-

nants of vacant lot conversion, and 2. from this dataset, develop and analyze

sets of prediction models to predict which vacant lots should be converted,

and establish a foundation for further research in solving similar problems.

The motivation behind this thesis is discussed in Section 1.2. Section 1.3

outlines the specific research objectives for this project. Chapter 2 reviews

related works in current literature, Chapter 3 describes the approach taken

in analyzing and solving this problem. Chapter 4 discusses the results from

our experiments and Chapter 5 provides a summary of the work done and

the results, and outlines future work.

1.2 Motivation

At present, the primary method for tackling the vacant lot problem are

programs that attempt to engage members of the community to actively

work towards converting them. Community outreach programs such as

“Grounded in Philly” in Philadelphia, Pennsylvania [3], or the “Adopt-A-

Lot” [1] program in Baltimore, Maryland provide information for the gen-

eral public to assist in communities converting vacant lots.

But such programs only provide the information and data, and as a result
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there is a barrier to entry for anyone wishing to convert a vacant lot. A sys-

tem that would automatically parse the data and provide a recommendation

to users on which lots would provide the most benefit would go a long way

towards removing that barrier.

1.3 Research Objectives

There are two objectives that this thesis focuses on. The first objective is

focused towards building a general dataset that can be used to identify the

determinants of a vacant lot conversion in target cities.

The second is to utilize the dataset to determine if a prediction model

can be made for vacant lot conversions, evaluate the prediction model and

provide foundation for a system that would ease the burden of vacant lot

selection on community leaders. The end result of this research objective is

to present preliminary predictions on which vacant lots should be converted,

analyze why these vacant lots were chosen and to provide a starting point for

urban planners to focus limited resources to prioritize certain vacant lots. It

is important to note that the purpose of this research is not to develop a new

novel algorithm for predicting vacant lot conversions, but to use existing

models in literature to build a vacant lot recommender.
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Chapter 2

Related Works

The concept of vacant lots and possible solutions are modeled extensively

well in existing literature. Accordino et. al. [5] provides a detailed look

at how the existence of vacant lots cause concern for the community, and

provides an overview of how they are solved in various cities. Accordino

[5] further concludes that the solution to such problems not only happen

from an urban planning side, but also from the neighborhood community

as well. However, the study is focused towards cities as a whole and does

not take into account whether each problem tackled resulted in success for

those vacant lots.

A better look at the effects of vacant lot conversion is covered by Branas

et. al. [7], where estimates showed that vacant lot greening was associ-

ated with consistent reductions in gun assaults across all four sections of

the city and consistent reductions in vandalism in one section of the city.

Regression-adjusted estimates also showed that vacant lot greening was as-

sociated with residents reporting less stress and more exercise in select sec-

tions of the city. Once greened, vacant lots may reduce certain crimes and

promote some aspects of health.
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Furthermore Kremer [14] also suggests that by assessing vacant lot uses,

ecological characteristics and the social characteristics of neighborhoods

in which vacant lots are located, urban planners may be able to more ef-

fectively address vacant lots while promoting urban sustainability and re-

silience. Automating such analysis using machine learning algorithms may

decrease effort for urban planners.

Similar systems for making suggestions have been developed, and their

use in different types of data are highlighted in Capdevila et. al. [9] for

geolocation based data and in Ramesh et. al. [4] for social media data.

These papers, however, provide a recommender system approach rather than

a machine learning approach.

Tayebi et. al. [16] presented a novel approach to crime suspect recom-

mendation utilizing a random walk method based on partial knowledge of

offenders involved in a crime incident and a known co-offending network.

Ruining et. al. [11] built a large-scale recommender systems to model

the dynamics of a vibrant digital art community, Behance, consisting of tens

of millions of interactions (clicks and ‘appreciates’) of users toward digital

art.

Our prediction model needs to estimate the present utility of the vacant

lot along with the future utility after a conversion. The concept of utility for

urban infrastructures, including vacant lots, was introduced in [15], along

with a detailed case study analysis. The theory and data analysis tools pro-

vided by the paper can be utilized in solving similar problems, but most of
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the heavy burden of performing the calculations fall on the data scientist or

urban planner. The introduction of the proposed system will remove this

burden and increase planning efficiency.
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Chapter 3

Approach

3.1 Determinants of A Vacant Lot Conversion

This section proposes a unified formal model of describing a vacant lot in

terms of attributes related to its surrounding neighborhood. This model is

built on the assumption that each vacant lot has a set of features that define

the impact converting the particular vacant lot will have. Specifically, the

formal model aims at bridging the conceptual gap between data level, min-

ing level and interpretation level, and facilitates separating the description

of data from the details of data mining and analysis. By gradually trans-

forming and reducing the unified model to more specific views, we obtain

the final vacant lot model as one such view.

For the purposes of our prediction model and the classification of whether

a vacant lot should be converted. A set of vacant lot, V = {v1, v2, v3, ..., Vn},

consists of all vacant lots in the dataset with each vacant lot, Vi represented

as a dependency of its feature set F where:

F = {f1, f2, f3, f4, f5, f6} (3.1)
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f1 = Utility from public services and infrastructure

f2 = Access to vacant lot

f3 = neighborhood property value indicator

f4 = vacant lot density

f5 = crime density

f6 = zone

Detailed discussion on the selection of each of the attributes, how they

were collected and how they are represented in our final datasets are dis-

cussed in detail in the following sections.

3.1.1 Utility from Public Services and Infrastructure

A primary indicator of the wellness of any land unit is the utility received

from the closest public infrastructure. As described in Meidar-Alfi [15],

distance from these infrastructure is inversely proportional to the utility the

target location receives. Public infrastructure common to all cities are public

libraries, schools and parks.

In order to get an indication of utilities provided by these facilities, for

each vacant lot we calculated the distance in meters to the closest library,park

and school. An increasing distance from the closest public infrastructure

would result in a decreased utility received from those infrastructures.

To normalize distances across different cities, and to account for geo-

graphic and spatial weights, the distances were split into ten equal portions

and assigned a score from 1-10, with 10 indicating the lowest distances and
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1 indicating the highest distances. This normalization method is used to

convert pure distance measures into categorical indicators known as utility

scores. A utility score indicates the amount of utility or benefit received

from an urban infrastructure as defined by Meidar-Alfi in [15]. As a result,

our model will focus more on relative distances across cities rather than

overfit on the exact distances.

After the necessary calculations, we get three attributes distance to school,

distance to park, distance to library. They were combined into a public util-

ity score as given in Equation 3.2.

U = [(Swi
+ Pwi

+ Lwi
)/3] (3.2)

U = Total utility score

S = Utility score from school

P = Utility score from park

L = Utility score from library

wi = Weight of each utility

3.1.2 Access to Vacant Lots

Once a vacant lot is converted to a green space, the benefit it provides will

be dependent on the ease of access it has. A study by Wachter et. al. [17] an-

alyzes the effect of public transit on vacant land management, and suggests

that it may be a determinant.

Similar to our measure of public infrastructure utility, we also measure
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distance from each vacant lot to the nearest public transit stop, with the data

having been normalized to utility scores after the distances were calculated.

3.1.3 Neighborhood Property Value

There is a significant amount of work in current literature that focuses on

the impact of vacant lots on neighborhood property values. Most of the

work done focuses on a hedonic or spatial difference-in-difference analysis

of the impacts [12, 8, 7]. We utilize concepts from both these approaches in

estimating how a vacant lot or community garden affects the neighborhood

property values at present time.

Utilizing property assessment data for target cities, we calculate the mean

property value in a quarter mile radius for each vacant lot for two points

in time. For the purpose of our research, we chose property assessment

data for the years 2015 and 2014 due to the availability of recent data. The

difference between the two points provides a simplified estimate of the trend

in property values, and may indicate how the immediate surrounding area is

affected by the existence of vacant lots.

A better estimate would have been to compare property values before a

vacant lot was converted to a community garden, but due to the unavail-

ability of such data a much more simplified estimate was used. Another

indication of the status of the area a vacant lot is situated in is the median

property values for that area. In most cases, vacant lots situated in a higher

value market have a higher probability of success [7] than those in more
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distressed market. Furthermore, the existence of vacant lots will negatively

affect the overall market value of a neighborhood in the long term.

3.1.4 Vacant Lot Density

In terms of spatial characteristics that define a vacant lot, a primary indicator

is to get an understanding of how many vacant lots are in the vicinity i.e.

whether there is a cluster of vacant lots in the location. As a result, vacant

lot density is calculated. Vacant lot density for each individual vacant lot is

defined as the number of vacant lots in a quarter mile radius.

Areas of lower vacant lot density may increase the impact of a vacant lot

being converted, while with higher vacant lot density one vacant lot conver-

sion may not result in a significant impact [15, 14, 7].

3.1.5 Crime

An effect on crime through the conversion of vacant lot has been studied

extensively in [10]. Due to the extent of the impact on crime, crime den-

sity can work as an indicator of the optimality of the vacant lot conversion.

However, crime density will vary based on neighborhood population and

recommendation models for crime is out of scope for this paper as they

have been covered in detail by Tayebi [16].

As a result, we will focus primarily on the number of crime incidents in

one standard year around a quarter mile radius for a particular vacant lot.
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This gives us a categorical indication of crime patterns for each distinct va-

cant lot without making our model dependent on representing crime patterns

directly.

3.1.6 Zoning Policies

Zoning is the process of dividing land in a municipality into zones (e.g.

residential, industrial) in which certain land uses are permitted or prohibited.

Thus, zoning is a technique of land-use planning as a tool of urban planning

used by local governments in most developed countries.

Every city divides its land into zones with a specific purpose. Each zone

defines what can and cannot be built upon the vacant lot, or whether it can

be converted as well [6]. Since zoning policies dictate the development of

vacant lots so strongly, we used it as an attribute for our vacant lot model.

Zoning policies are categorical variables that are either residential, in-

dustrial, business or special purpose.

The resulting model for a vacant lot is summarized in Table 3.1.

3.2 Datasets

This section discusses the datasets used to build the proposed vacant lot

model for our experiments. The two primary datasets this research utilizes

are from the cities of Baltimore, Maryland and Philadelphia, Pennsylvania.

The primary reason for the choice of these two cities was the availability

of sufficient quantifiable data on the status of current vacant lots, and also
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Variable Description Type

libDist Distance from the closest library numeric
parkDist Distance from the closest park numeric

schoolDist Distance from the closest school numeric
transitDist Distance from the closest transit stop numeric
priceDiff Difference in mean property value numeric

vacantDensity Density of vacant lots numeric

crimeDensity Density of crime incidents numeric

zone Zoning policy for vacant lot categorical

Target Variable Status of the vacant lot

Table 3.1: Summary of the vacant lot model

their determinants. A sample of our dataset from the city of Philadelphia is

shown in Figure 3.1.

For public utility measurements and access, we collected map data on

library, schools, parks and public transit stops in the city as shown in Figure

3.2. Publicly available crime incident reports were used for calculation of

crime density as shown in Figure 3.3, and neighborhood property value data

were gathered from yearly assessment records.

The dataset proportion is given in Table 3.2, with the size of each dataset,

proportion of vacant lots and their conversions. After all the data was col-

lected, a final dataset was built to represent the vacant lot model. A sample

of the dataset is given in Table 3.2.

Furthermore, we also utilize another dataset from the City of Rochester

to visually analyze the results from our prediction model and provide rec-

ommendations on approaching the vacant lot problem for the particular city.
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Figure 3.1: Vacant lots and community gardens in Philadelphia

City Size Vacant Conversions

Baltimore 1907 1000
ADOPTED: 517
URBAN FARM: 127
QCMOS: 243

Philadelphia 1101 500 COMMUNITY GARDENS: 601

Table 3.2: Summary of the dataset

3.3 Prediction Models and Classifiers for Vacant Lot Model

We utilized five different classifiers to build our prediction models. The

primary reason for this was to analyze the results and the accuracy given by

each, as each classifier has their own nuances and tuning parameters to use.

We selected each of the classifiers to represent a broader category each of

these algorithms fall under. For example, Multilayer Perceptron falls under

the broad category of neural network, while k-Nearest Neighbors fall under

Instance Based Learning. Each of the classifiers are introduced and a brief

description of them are given in the following sections.
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Figure 3.2: Location of public infrastructures in Philadelphia

publicUtil vacantDensity crimeDensity transitDist priceDiff category class
8 36 42 10 1077 R ADOPTED
4 237 64 10 3026 B QCMOS
9 147 74 10 -1872 S URBAN FARM
7 53 91 20 -3315 M AVAILABLE

Table 3.3: Sample dataset of the vacant lot model for Baltimore

3.3.1 Random Forest

Random forests are an ensemble learning algorithm used for classification

problems. Each random forest consists of multiple decision trees that are

constructed at training time and classifying based on the each of the at-

tributes in the data. Random forest was developed to tackle the problem of

decision trees overfitting to the training data [13].
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Figure 3.3: Crime density from the Philadelphia dataset

3.3.2 Multilayer Perceptron

A multilayer perceptron (MLP) is a feed-forward artificial neural network.

It consists of input nodes, multiple layers of hidden nodes. Each layer is

connected to the next layer, and the network itself is represented as a di-

rected graph.

Each node is responsible for processing the input data with the help of

an activation function. With each iteration, the network is trained with a

backpropagation algorithm that enables weights to be updated with each

training instance coming in, to decrease the error of predictions made.

3.3.3 Naive Bayes

Naive Bayes is a classification algorithm based on Bayes Theorem that as-

sumes that each of the independent variables are independent of one another.
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It’s the simplest form of a Bayesian classifier, and it’s strength with categor-

ical variables suit the design of the vacant lot problem as well.

3.3.4 k-Nearest Neighbors

k-NN is categorized as a lazy learner, and falls under the class of instance

based learners. It utilizes similarity between objects and an unknown ob-

ject is classified by a majority vote of its most similar objects. Furthermore,

k-NN does not build a model and only approximates a prediction upon re-

ceiving an unknown instance.

3.3.5 Support Vector Machines

SVM is a classification technique that constructs linear separating hyper-

planes in high-dimensional vector space to separate data points based on

their features. The purpose of an SVM is to maximize the separation of the

data points from these hyperplanes in order to increase confidence of the

classification.

3.4 Experiments

This section describes the methodology and process we followed in experi-

menting with the generated dataset described in Section 3.2. The objective

for these experiments were to build multiple prediction models on differ-

ent combinations of our pre-determined independent variables, evaluate the

accuracy of our classifiers and select the best one that can be used in the
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future.

We decided to at first analyze how each of the features can be used to

predict vacant lot conversion. To that end we built simple classifiers on a

subset of features and evaluated their results based on our test set.

3.4.1 Single City Prediction Model

At first, we decided to build a prediction model focused on a single city

and study if vacant lot conversions can be predicted within a single city.

For our experiments we created five prediction models each for the cities of

Baltimore and Philadelphia, with hyperparameters tuned to optimize results

on the training set for each city.

For our training set in building those classifiers, our training set was a

random sample of 60% of the primary dataset. The remaining 40% of the

datasets were used to evaluate the accuracy of our model, and ensure the

models provide valid and sane predictions. Furthermore, we built models

using both raw data points and normalized utility scores defined in 3.1 to

evaluate results from both sets of data and presented the most optimal re-

sults.

The classifiers were trained on the training set using a 5-fold cross vali-

dation to prevent the models from overfitting to the training data. The results

are discussed in detail in Chapter 4.
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3.4.2 Cross-City Prediction Model

After analyzing the prediction models for each city, we picked the best

classification algorithm and applied them for predictions across cities. We

trained our classifiers on Baltimore and tested it on Philadelphia, and vice

versa. However, the two test cities in our experiments have different classes

that vacant lots were converted to. For example, in Baltimore vacant lots

were converted to Qualified Community Managed Open Space (QCMOS),

urban farms or simply adopted to a community garden. But in Philadelphia

our dataset only consists of community garden conversions. As a result,

both dependent variables were changed to a binary class indicating whether

a vacant lot has been converted or not.

After the dataset has been updated, similar experiments as described in

the previous section was carried out. However, in this case we utilized Bal-

timore as our training set and validated the results with the datasets from

Philadelphia, and vice versa. We did not experiment with raw values for

our cross-city prediction model as the raw values will only be useful for

particular cities and not provide the best picture for cross-city evaluation.

Furthermore, we applied our cross-city prediction model on the City of

Rochester and analyzed qualitatively and visually what our models recom-

mend and analyze why they suggest these vacant lot conversions.
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Chapter 4

Results

This chapter discusses the results from the experiments described in the

Section 3.4. For each of the experiments we analyze the classifiers built

from the training set, and the discuss the results obtained from applying

them on the validation set.

4.1 Baltimore Dataset

The training set for Baltimore consisted of a random sample of 60% of the

data. The remaining 40% was used to validate our prediction model. The va-

cant lots in Baltimore had four available conversions. QCMOS represented

lots that were converted to qualified community open spaces, ADOPTED

represented lots that were converted to community gardens, URBAN FARM

represented lots that were converted to urban farms and AVAILABLE rep-

resented vacant lots that were not converted.

We started by creating three separate simplified Random Forest classi-

fiers for a subset of features to analyze how they interact with our target vari-

able. As can be seen in Table 4.1, public utility such as distance from library,

park etc. provides a strong indication of the vacant lot conversions, while
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Feature
ADOPTED Overall
Precision Recall F1 Accuracy

publicUtil:
libDist+parkDist+schoolDist 0.89 0.81 0.85 0.89

transitDist+category 0.66 0.62 0.64 0.75
vacantDensity+crimeDensity 0.80 0.75 0.77 0.84

Table 4.1: Performance of feature subsets for a Random Forest classifier on Baltimore

transit distance and zoning comparatively has weaker association. However,

their prediction accuracy is still significantly better than random, and hence

their contribution cannot be ignored.

mtry Accuracy Kappa AccuracySD KappaSD
2 0.81 0.68 0.01 0.02
8 0.83 0.72 0.01 0.02

14 0.83 0.72 0.02 0.03

Table 4.2: Hyperparameter tuning for Random Forest classifier on Baltimore

Actual Actual Actual Actual
Predictions ADOPTED AVAILABLE QCMOS URBAN FARM
ADOPTED 171 19 4 0

AVAILABLE 24 389 15 3
QCMOS 7 0 71 0

URBAN FARM 0 3 0 57

Table 4.3: Confusion matrix for the Baltimore dataset with Random Forest

4.1.1 Random Forest

The first experiment focused on using a Random Forest classifier to build

our prediction model. We tuned our classifier using the number of trees in

our Random Forest as a parameter mtry. As given in Table 4.2, the highest

accuracy was provided with 8 decision trees in our Random Forest.
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Precision Recall F1 Balanced Accuracy
Class: ADOPTED 0.88 0.85 0.86 0.90

Class: AVAILABLE 0.90 0.95 0.92 0.91
Class: QCMOS 0.91 0.79 0.85 0.89

Class: U 0.95 0.95 0.95 0.97

Table 4.4: Statistics of predictions by target variable class for Random Forest on Baltimore

Figure 4.1 displays the ROC curves for our predictions for our validation

set for Baltimore. Three of the classes (AVAILABLE, ADOPTED, QC-

MOS) have decent ratio of true positive rate to false positive rates. In the

case of URBAN FARMS, our model performs exceptionally well on the

validation set. A possible reason for this could be that urban farms have

a more sophisticated plan in their development and much stronger zoning

restrictions than the other classes of conversions. As shown in Table 4.3,

the confusion matrix given also indicates similar results. Table 4.4 indi-

cates good precision and recall for our system, and the balanced accuracy is

approximately 90% for our classes.

size Accuracy Kappa AccuracySD KappaSD
3 0.59 0.29 0.04 0.04
5 0.63 0.40 0.04 0.06
8 0.66 0.42 0.03 0.04

10 0.69 0.47 0.01 0.02

Table 4.5: Hyperparameter tuning for MLP classifier on Baltimore

ADOPTED AVAILABLE QCMOS URBAN FARM
ADOPTED 148 72 22 0

AVAILABLE 42 315 28 1
QCMOS 11 13 40 0

URBAN FARM 1 11 0 59

Table 4.6: Confusion matrix for the Baltimore dataset with MLP
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(a) Class: ADOPTED (b) Class: AVAILABLE

(c) Class: URBAN FARM (d) Class: QCMOS

Figure 4.1: ROC Curve for Random Forest classifier on the Baltimore dataset

Precision Recall F1 Balanced Accuracy
Class: ADOPTED 0.61 0.73 0.67 0.78

Class: AVAILABLE 0.82 0.77 0.79 0.78
Class: QCMOS 0.62 0.44 0.52 0.70

Class: URBAN FARM 0.83 0.98 0.90 0.98

Table 4.7: Statistics of predictions by target variable class for MLP on Baltimore

4.1.2 MLP

The second experiment focused on the use of a Multilayer Perceptron (MLP)

to build our prediction model. After performing hyperparameter tuning, the

best results were obtained using an MLP with 10 hidden nodes as indicated

by the variable size in Table 4.5.

Table 4.6 gives us the confusion matrix for the classifier, while Table 4.7
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gives us a class wise indication of the precision and recall of our predic-

tion model. In terms of performance, MLP does not perform as well as a

Random Forest. Its performance in classifying QCMOS is particularly in-

accurate, and again URBAN FARM has a better classification accuracy than

the other classes.

4.1.3 Naive Bayes

ADOPTED AVAILABLE QCMOS URBAN FARM
ADOPTED 102 5 5 0

AVAILABLE 97 399 49 3
QCMOS 3 0 36 0

URBAN FARM 0 7 0 57

Table 4.8: Confusion matrix for the Baltimore dataset with Naive Bayes

Precision Recall F1 Balanced Accuracy
Class: ADOPTED 0.91 0.50 0.65 0.74

Class: AVAILABLE 0.73 0.97 0.83 0.77
Class: QCMOS 0.92 0.40 0.56 0.70

Class: URBAN FARM 0.89 0.95 0.92 0.97

Table 4.9: Statistics of predictions by target variable class for Naive Bayes on Baltimore

The third experiment focused on the use of a Naive Bayes classifier to

build our prediction model. Table 4.8 gives us the confusion matrix for the

classifier, while Table 4.9 gives us a class wise indication of the precision

and recall of our prediction model. In terms of performance, Naive Bayes

performs slightly better than MLP, but does not perform as well as a Random

Forest. Its performance in classifying QCMOS is particularly inaccurate,

and again URBAN FARM has a better classification accuracy than the other
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classes.

4.1.4 k-NN

ADOPTED AVAILABLE QCMOS URBAN FARM
ADOPTED 178 17 4 0

AVAILABLE 17 390 10 1
QCMOS 7 3 76 0

URBAN FARM 0 1 0 59

Table 4.10: Confusion matrix for the Baltimore dataset with k-NN

Precision Recall F1 Balanced Accuracy
Class: ADOPTED 0.89 0.88 0.89 0.92

Class: AVAILABLE 0.93 0.95 0.94 0.93
Class: QCMOS 0.88 0.84 0.86 0.91

Class: URBAN FARM 0.98 0.98 0.98 0.99

Table 4.11: Statistics of predictions by target variable class for k-NN on Baltimore

The fourth experiment focused on the use of a k-Nearest Neighbor clas-

sifier to build our prediction model. The hyperparameter tuned for this par-

ticular classifier was the number of neighbors to consider for similarity of a

vacant lot. The most optimal result was obtained for k = 1.

Table 4.10 gives us the confusion matrix for the classifier, while Table

4.11 gives us a class wise indication of the precision and recall of our pre-

diction model. k-NN outperforms Random Forest for the Baltimore dataset

in terms of precision, recall and accuracy. Due to the use of similarity be-

tween vacant lots k-NN does mimic the process an urban planner might take

in choosing to convert a vacant lot, and as a result is better able to capture

the pattern.
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4.1.5 SVM

ADOPTED AVAILABLE QCMOS URBAN FARM
ADOPTED 106 33 20 0

AVAILABLE 86 364 31 1
QCMOS 9 5 39 0

URBAN FARM 1 9 0 59

Table 4.12: Confusion matrix for the Baltimore dataset with SVM

Precision Recall F1 Balanced Accuracy
Class: ADOPTED 0.67 0.52 0.59 0.72

Class: AVAILABLE 0.76 0.89 0.82 0.78
Class: QCMOS 0.74 0.43 0.55 0.71

Class: URBAN FARM 0.86 0.98 0.91 0.98

Table 4.13: Statistics of predictions by target variable class for SVM on Baltimore

The fifth experiment focused on the use of an SVM classifier to build our

prediction model. Table 4.12 gives us the confusion matrix for the classifier,

while Table 4.13 gives us a class wise indication of the precision and recall

of our prediction model. In terms of performance, SVM performs similar to

MLP, but does not perform as well as a Random Forest and k-NN. Similar

to other classifiers, it has a high accuracy for URBAN FARMS but suffers

in terms of prediction accuracies for other classes.

The final results from our experiments are given in Table 4.14. As can

be seen from the table, k-NN and Random Forest provides the best overall

accuracy. Naive Bayes performs well only for specific classes but lacks in

other areas. MLP and SVM only perform well for the URBAN FARM class

prediction. In general, all classifiers have a significant accuracy when it

comes to predicting URBAN FARMS, due to the systematic nature of such
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Classifier
ADOPTED AVAILABLE QCMOS URBAN FARM Overall
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Accuracy

Random Forest 0.88 0.85 0.86 0.90 0.95 0.92 0.91 0.79 0.85 0.95 0.95 0.95 0.90
k-NN 0.89 0.88 0.89 0.93 0.95 0.94 0.88 0.84 0.86 0.98 0.98 0.98 0.92
SVM 0.67 0.52 0.59 0.76 0.89 0.82 0.74 0.43 0.55 0.86 0.98 0.91 0.74
MLP 0.61 0.73 0.67 0.82 0.77 0.79 0.62 0.44 0.52 0.83 0.98 0.90 0.74
Naive Bayes 0.91 0.50 0.65 0.73 0.97 0.83 0.92 0.40 0.56 0.89 0.95 0.92 0.78

Table 4.14: Summary of results for the Baltimore dataset

a conversion.

4.2 Philadelphia Dataset

Classifier
ADOPTED Overall
Precision Recall F1 Accuracy

Random Forest 0.90 0.93 0.92 0.90
k-NN 0.85 0.84 0.84 0.84
SVM 0.67 0.72 0.69 0.68
MLP 0.63 0.79 0.70 0.66
Naive Bayes 0.76 0.72 0.74 0.74

Table 4.15: Summary of results for the Philadelphia dataset

The dataset for Philadelphia was also split into a training & testing set

consisting of a random sample of 60% of the data, while the remaining

40% were left for validation purposes. Each of the experiments that were

performed on Baltimore dataset was performed again on the Philadelphia

dataset.

The overall results are given in Table 4.15. For the Philadelphia dataset,

there were only two classes as either vacant lots were AVAILABLE or they

were ADOPTED. Similar to the results in Baltimore, Random Forest and

k-NN performs the best in predicting the vacant lot conversions. This could

be due to our use of categorical variables in normalization, as we convert all
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Classifier
ADOPTED Overall
Precision Recall F1 Accuracy

Random Forest 0.58 0.19 0.28 0.48
k-NN 0.55 0.40 0.46 0.49

Table 4.16: Prediction statistics with Baltimore as training set

Classifier
ADOPTED Overall
Precision Recall F1 Accuracy

Random Forest 0.44 0.53 0.48 0.47
k-NN 0.46 0.51 0.48 0.50

Table 4.17: Prediction statistics with Philadelphia as training set

the data into categories based on the pre-defined utility scores.

4.3 Cross City Predictions

4.3.1 Baltimore and Philadelphia

For our cross city prediction model, we converted the dataset of Baltimore

to point towards a binary class, indicating whether a vacant lot has been con-

verted or not. The Philadelphia dataset already consists of binary classes,

and as a result we performed two experiments. In the first one, we trained

our model using data from Baltimore and performed predictions on Philadel-

phia. In the second one, we trained our model using data from Philadelphia

and performed predictions on Baltimore.

The results of the experiments are given in Table 4.16 and Table 4.17.

As can be seen, the precision, recall and accuracy are significantly low for

cross-city predictions i.e. they are no better than random. One possible

reason could be that each city has their own vacant lot programs and as a
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result patterns do not necessarily match up.

Another possible reason could be that the predictions made by our model

could indicate vacant lots that have the indications of being a beneficial

conversion, but simply has not been converted yet in another city. Further

evaluation by expert urban planners and decision makers for our predictions

would give a better indication.

4.3.2 Rochester

(a) Vacant Lot Predictions (b) Predictions with Features

Figure 4.2: Predictions by the Cross-City Classifiers

We utilized both Baltimore and Philadelphia dataset as our training sets,

to create a Random Forest classifier to predict vacant lot conversions. We

applied the classifier to vacant lot data for the City of Rochester. As can be

seen in Figure 4.2(a), predictions were made as to which vacant lots should

be converted. The green points indicate the lots that should be converted.

Due to the lack of evaluation data and ground truth for the city of Rochester,

we simply analyze why the predictions were made based on our feature set.
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In Figure 4.2(b), all the other features are displayed including crime den-

sity in the background as a semi-transparent heatmap. The converted vacant

lots are clustered towards higher crime rate zones, and follow along with the

transit path. Furthermore, a lot of the clusters for the vacant lots that should

be converted are farther rather than near to public utilities. This prediction

goes against our conjecture in Section 3.1 of increased utility indicating in-

creased likelihood of conversion. This result needs to be further evaluated

by expert urban planners and validated with ground truth for further under-

standing of why these vacant lots were picked.
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Chapter 5

Conclusions

5.1 Applications

The primary contribution of this work is to build and analyze a vacant lot

model that can be used to predict future vacant lot conversions based on his-

torical conversions of vacant lots. Our prediction models can be optimized

further and integrated as a part of a larger urban planning system. The goal

of our recommendation system is not to provide a complete solution but

to be a part of a larger tool that would help support decision making for

cities. Furthermore, our model can also be deployed as a part of a vacant

lot toolkit, that would recommend to members of the community on vacant

lots that may have a greater impact if they adopt or convert it.

5.2 Future Work

Our research can be further extended with the use of a greater number of

cities, as we limited the scope of our research to only two city datasets.

Furthermore, there is scope for improvement in our prediction model with
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the use of other non-stationary determinants such as satellite imagery, geo-

graphical weight etc. Our system can also be further evaluated by validating

predictions made by expert urban planners, who can assess which vacant

lots will have the most impact. In the future, it would also be an interesting

project to attempt to build a generalized prediction model, instead of models

specific to cities.

5.3 Conclusion

The objectives of this research were the development and design of a general

dataset defining a vacant lot model that can be used for building recommen-

dations or predictions for future vacant lot conversions, and development

and evaluation of such a prediction model on two example datasets. The va-

cant lot model we built consisted of determinants such as distance to nearest

public infrastructure, crime density, access through public transit, zoning

policies etc.

We built our model for two example datasets, for the cities of Baltimore

and Philadelphia, and built our prediction models for each of these cities on

a portion of the datasets. We validated them against the remaining dataset,

and found that our model captured vacant lot determinants and impact ex-

tensively well for cities with a more centralized approach to the vacant lot

problem, while the accuracy was less for cities with more decentralized ap-

proaches. We also discovered that Random Forest and k-NN classifiers per-

formed significantly better than other classifiers, due to their tendency to
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favor nominal variables.

Our prediction models displayed that it’s feasible to have automatic rec-

ommendations as a starting point for tackling the vacant lot problem. Com-

munity leaders can use our model to pick a vacant lot to convert, while

urban planners can use our system for a more macro level approach in terms

of targeting specific vacant lots. The contributions of this thesis can be sum-

marized as follows:

Vacant Lot Model We developed and designed a vacant lot model, that

consists of features that determine if a vacant lot is converted. This

model can be further extended with additional features of interest in

the future.

Vacant Lot Conversions We utilized multiple classification models in ex-

isting literature to model vacant lot conversions as a data problem. We

used the classification models to analyze if it’s feasible to use historical

vacant lot data, to recommend vacant lot conversions.
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