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Abstract

Timing synchronization plays an important role in recovering the original transmitted
signal in telecommunication systems. In order to have a communication system that operates at the
correct time and in the correct order, it is necessary to synchronize to the transmitter’s symbol
timing. Synchronization can be accomplished when the receiver clock tracks the periodic timing
information in a transmitted signal to reproduce the original signal.

In this thesis work, we report the design, implementation and evaluation of a timing
synchronization algorithm based on the technique first proposed by Gardner [1], applied to
wireless communication using the Alamouti space-time code [2] under QPSK modulation with
half-sine pulses. To achieve this, a mathematical model is introduced which includes software
design of communication algorithms. In this modeling, we simulate the Gardner algorithm in
MATLAB. Then, five techniques are introduced to improve the performance of the loop filter in
the digital receiver, and they are successfully implemented and evaluated in Matlab. These five
techniques prove that there is an improvement in digital receiver performance in terms of the
convergence speed and the communication system complexity.

On the other hand, the optimum decoding of the Alamouti space-time code, as initially
proposed, makes the non-trivial assumption that the communication system is perfectly
synchronized. Realistic wireless environments contain additive white Gaussian noise (AWGN),
multipath fading, and it is not perfectly synchronized. In this thesis, the Alamouti space-time code
technique is written for QPSK modulation scheme to work in realistic environment that involves a
timing synchronization technique. We compare the bit error rate (BER) of the Alamouti decoder

when synchronized using the proposed algorithms with the ideal results found in the literature, and



we find them to be similar, proving that the synchronization algorithm is in fact achieving
optimum synchronization.

This thesis presents synchronization algorithms that are necessary for a complete working
wireless-Alamouti technique. Also, this thesis improves the communication system performance
in terms of the convergence speed with reducing the computational complexity of the

communication system design.
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Chapter 1

Introduction

1.1 Background

Synchronization is the process of technical coordination between transmitters and receivers
in digital communication systems. Kihara, Ono, and Eskelinen [3] show that synchronization is
required for fast and reliable data transfer from transmitters to receivers, and to enable every
individual component to be synchronized wherever the component is placed in digital
communication system. Transmitters and receivers must be mutually coordinated to transfer data
successfully. The receiver accepts data as true information only when the receiver knows the
digital clock of the transmitter, or when the receiver has the ability to regenerate the digital clock.
So, it is impossible to have a communication system that properly works without using
synchronization in communication devices [3].

According to the synchronization level, there are two types of digital communication
systems: asynchronous and synchronous systems. In asynchronous systems, local clock
synchronization is established; whereas, all clocks are completely bound together in synchronous
systems. Kihara, Ono, and Eskelinen [3] state that, “Asynchronous clocks are assumed to be
independent and no effort is made to force them to synchronism. Of course, here the clocks are
synchronized in practice to some extent.”

In general, both the synchronous and asynchronous systems are used in the current digital
communication systems. Figure (1.1) shows the block diagram of the digital receiver that contains

two low pass filters, and a one matched filter. In addition, it involves a carrier synchronization,



symbol synchronization, and frame synchronization. The focus of this thesis is on the symbol
synchronization. The term of symbol synchronization or the timing recovery has the same meaning

in digital communication systems.

Si(t) /T-szs \
Data — De-multip-
Matched N Frame
D. R. > —>
LPF filter sync. lexed data
Carrier y(r)
sync.
(fc) | | Symbol
sync.
-90 o /
J, Focus of Thesis

Figure 1.1: Receiver block diagram

1.2 Review of past studies and their limitations

In digital receivers, the timing recovery leads to obtain symbol synchronization. Floyd
Gardner [1] states that timing adjustment can be achieved by interpolation if the sampling is not
synchronized to the data symbols. Some of proposed solutions are to use synchronous Double
Side Band systems. Costas [4] shows that Double Side Band has power advantage over Single
Side Band when all factors, such as system complexity and susceptibility to jamming, are taken
into account. Franks [5] illustrates that Maximum-likelihood estimation theory is another solution
for the timing recovery which depends on root mean square jitter of the timing parameters as an

approach to the evaluation of timing recovery circuit performance.

C. R. Johnson, Jr. and W. A. Sethares [6] demonstrate that the problem of clock recovery

can be described by finding a timing offset. When a timing offset is accurately detected, the energy



of the received signal can be maximized. This problem can be solved by a linear optimization
technique such as gradient descent, which leads to a standard algorithm for timing recovery.

The previous studies focus on the synchronization techniques, but these studies ignored
other important factors in designs of digital communication systems. In other words, these studies
depend in their working on adding new components to the basic communication system. These
components are added to detect the error in the synchronization process, such as error detection
components, to manipulate the multipath fading, and to remove the noise that comes from external
environment, such as filters. As a result, adding these components to the communication system
leads to increase its complexities. These complexities can be described by the delay and the
computational complexity that are produced by each additional component in wireless
communication systems.

In terms of the delay, each component needs a time to conduct its required functions which
is called the processing time. As a result, these additional components cause a delay for the
wireless communication system. This delay has negative effects on the spectrum efficiency in term
of the Bandwidth (BW). Also, this delay leads to decrease the speed of the convergence for the
wireless communication system.

1.3 Purpose statement

The purpose of this thesis is to generate new algorithms that simplify the communication
system complexities and improve the performance of digital communication systems. This can be
accomplished by using a modulation scheme which is called Quadrature Pulse Shift Keying

(QPSK) with two transmitters and a one receiver (the Alamouti technique). Goldsmith [7] states
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that the QPSK modulation scheme has the ability to encode two bits per symbol which increases
data rates and improves the spectrum efficiency.

In addition, the Alamouti technique [2] can be used to reduce the bit error rate by
depending on the diversity improvements. The diversity technique has positive effects on the
reception quality by reducing the fading effects. As a result, the Alamouti technique is used to
reduce the required components to recover the original signal. Consequently, using QPSK
modulation scheme with the Alamouti technique contribute in improving the performance of the

digital communication system.
1.4 Hypotheses

This study aims to generate new algorithms and investigate if the new algorithms improve
the digital communication system performance in term of the convergence speed with reducing the
complexities of the communication system design.

H1: The new algorithms improve the digital communication system performance in term of
the convergence speed with reducing the complexities of the communication system design.

H2: The new algorithms improve the digital communication system performance in term of
the convergence speed without reducing the complexities of the communication system design

H3: The new algorithms improve the digital communication system performance by
reducing the complexities of the communication system design without any improvement in the
convergence speed.

H4: The new algorithms do not improve the digital communication system performance in

term of the convergence speed and the complexities of the communication system design.
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Chapter 2

Literature Review

This literature review introduces information about the QPSK modulation scheme, the
symbol synchronization, timing recovery techniques, the Gardner technique, and the Alamouti
space-time code technique.

2.1 Quadrature Phase Shift Keying (QPSK)

QPSK is a digital modulation technique that sends two bits per symbol, and each symbol
carries one of the four possible bit combinations (00, 01, 10, or 11). The phase of the carrier
varies according to the symbol, and there are four phase shifts. The receiver needs to recover the
original information from the modulated signal. QPSK is a bandwidth efficient because it sends
two bits per symbol. That can be shown by comparison between QPSK and the Binary Phase Shift
Keying (BPSK).

BPSK sends one bit per symbol because it uses two possible phase shifts. So, the
baseband signal has a certain frequency that can be used to send one bit per each symbol period. In
the QPSK case, the baseband signal, that has the same frequency above, can be used to send two
bits per each symbol period. As a result the bandwidth efficiency of QPSK is higher by a factor of
two [8]. In other words, the frequency spectrum that is needed to transmit data by using QPSK
modulation scheme is the half of that required to transmit the same amount of data by using BPSK
modulation scheme. The transmitted symbols are represented by complex numbers, so the first bit

is the real part and the second bit is the imaginary part. The following table demonstrates the
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encoding rules that are used to represent the four possible phase shifts for QPSK modulation

scheme.
The phase options The complex numbers
00 -1-1j
01 -1+1j
10 1-1j
11 1+1j

Table 2.1: This table shows the encoding rules to represent the four phase options as complex

numbers.
2.2 Symbol synchronization

The digital received signal passes through several components in the digital receiver which
contribute to the recovery of the original transmitted signals [7]. One of these components is the
digital demodulator, which is responsible for the acquisition of accurate symbol timing. Timing
information that is obtained from synchronization is useful to delineate the digital received signal
that is associated with a given symbol. Sampling techniques depend upon the timing information
for amplitude, phase, and frequency demodulation [7].

The principle of timing synchronization depends on estimation of the timing offset 7 of the
signal in AWGN channels. Digital wireless receivers face difficulties in estimating the value of T
due to the time-varying multipath in addition to the noise. Strode and Groves [9] state that T can

be distorted by the time-varying multipath and the noise. Goldsmith [7, p. 161] mentions that, “In
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most performance analysis of wireless communication systems it is assumed that the receiver
synchronizes to the multipath component with delay equal to the average delay spread”. After this,
the channel will be considered as AWGN to estimate the symbol timing.

In the symbol synchronization, the synchronizer takes samples for the received signal. As a
result, these samples will be used to acquire symbols. Mueller and Muller [10] suggest timing
algorithms that depend on just one sample per symbol and require directed-decision operations. In
carrier system, correct decisions depend on carrier phase that should be known previously. As a
result, this carrier phase will indicate the value of symbol timing which will result in increasing
the system complexities.

Suzuki et al. [11] propose a different scheme which is called Wave Difference Method
(WDM). This method “finds the average location of zero-slope of the received signal filtered
signal pulses” [11]. Actually, this method requires numerous samples per symbol which may
result in increasing the processing time. Therefore, this method increases the demand on the
bandwidth (BW) which means decreasing the spectrum efficiency. Agazzi et al. [12] suggest using
the previous method which is the Wave Difference Method with only two samples per symbol.
This method works only with baseband signals which represent the demodulator output.

2.2.1 The problem of Timing Recovery

The problem of timing recovery is the difficulty finding the optimal time for sampling [6].
This problem can be mathematically explained by finding the timing offset T which the parameter
that maximizes or minimizes some function of 7 such as the output power or the cluster variance.

When samples are taken, the T parameter will be detected. Consequently, the output of the sampler
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will be a function of the t parameter [6]. This can be showed by the following formula which

states the baseband waveform at the input of the sampler:

o0

x@®= 2 s[i]d(t-iT) ¥gT @) *¥c@®) ¥ gRY) +w(®) ¥ gR).

where s/ i/ represents the transmitted data, gt (?) is the pulse shaping filter, c(?) is the
impulse response of the channel, g&(?) is the receiver filter, and w(z) is the noise. The three linear
filters can be combined:
h@®=gt() * c() * gR®).
At (kT/M + tau) where M is the oversampling factor and T represents the interval between

symbols, the sampled output can be written as:

[ee]

X(kT/M + taw)= Y, s[iJh@-iT)+w@®)*grt) ]

j=—00 =kT/M “+tau
When the noise is supposed to have the same distribution whenever the samples are taken,

the variance of the noise at the sampling time can be found without depending on the value of tau:

vik=w® % gry 11 .

t=kT/M +tau
By maximizing and minimizing some of the function of the samples, the value of tau can

be found:

o]

x(k) =x (kT/M +tau) = Y, s[i] h(KT/M + tau - i T) + v(k).

Figure 2.1 shows algorithms of the timing recovery that can be implemented by three
ways. C. R. Johnson, Jr. and W. A. Sethares [6] state that the first way can be done by using a

digital post processor that indicates where the samples should be taken. The second way can be
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achieved by using an analog processor which determines when to sample. The third way can be

accomplished by using a free running clock that chooses the sampling instants.

(3) —————

Sampler

/

ASP

¥

DSP

B

Sampler

() —————tf

(=3 —

DSP

ASP o
Samplar
ASP /. -

DSP

Figure 2.1: Three common structures for timing recovery. (a) Shows an

>

analog processor. (b)

States a digital post processor. (¢) Use a free running clock and a digital post processor [6].

2.3 Timing Recovery Techniques

The signal is sent from the transmitter through the channel to the receiver, and the signal

suffers due to the channel conditions. These conditions include many things such as noise, fading,

and attenuation. The received signal is a complicated continuous waveform that needs to be treated

before the sampling process. The sampling process is important to recover the transmitted signal

which requires that samples should be taken at the optimal time [6, Ch. 12, p. 226]. The best time

to take the samples is at the peak of the signal where the eye is opened widest.
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The problem of timing recovery is to find the features of performance functions at the
optimal time. These performance functions are employed to indicate the adaptive elements which
are responsible about estimation the sampling times [6, Ch. 12, pp. 226]. If the sampling times are
incorrectly taken away from the optimal time, this will result in an error which is called the source
recovery error. This source recovery error represents the error between the transmitted data and the
received data. C. R. Johnson, Jr. and W. A. Sethares [6] state that the source recovery error can be
calculated only when there is a training sequence or when the transmitted data are known.

Another way to estimate the error between the transmitted data and the received data is by
using the cluster variance. The cluster variance suggests taking the square between the nearest
element of the source alphabet and values of the received data [6]. The measurement of the power
of the T-spaced output of the matched filter is another approach to estimate the error. The
estimation can be done by maximizing this output power which results in defining the adaptive

element that is necessary to find the optimal time [6].

h{t)=ga()* (1) *gr ()

o i — _“_\____'-—-_
grlt) c(l) gr() Sampler
s{i] 1 x(t) X(KT /M)
____|Transmit Receive e
Filter Channel ]_O'i' Filler
wil)

Figure 2.2: The effects of the transmitter pulse shaping g, the channel ¢, and the receive
filter gr can be represented by the transfer function 4 [6].

The various performance functions can be understood by drawing the error surfaces. In
many situations, when the error surface for the output power is maximum, the error surface for the

cluster variance is minimum. In these situations, methods of timing recovery can use either output
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power method or the cluster variance method as a basis to find the optimal time [6]. The quality of
the timing offset T can be measured by using the cluster variance which is explained in the

following section.

2.3.1 Cluster Variance

The decision device Q(x/k]) quantizes the binary data to the number that is closed to it [6].
In other words, the decision device converts any negative value to -1, and any positive value to +1.
In the case of the timing offset is larger than -T/2 and smaller than T/2, the eye is open, and the
O(x[k]) =S[k-1] for all k, and the source recovery error can be represented by:

e[k]=s[k-1] —x[k]= O(x[k])- x[k].

If the timing offset is smaller than -T/2 or larger than T/2, the Q(x/k]) will not be equal to

s/k-1]. The Cluster Variance can be written as:
CV= avg{e’[k]}= avg{(Q(x[k]) — x[k])’}.

The Cluster Variance is a function of 7 and the following figure shows the periodic nature
of the function. C. R. Johnson, Jr. and W. A. Sethares [6] state that the problem of the timing
recovery can be represented by a one dimensional search for the timing offset that minimizes the

cluster variance.
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Figure 2.3: Cluster variance as a function of timing offset 7 [6].

C. R. Johnson, Jr. and W. A. Sethares [6] state that the previous measure is applied in the
simple case. The simple case includes a channel without noise, the pulse shape 4(?) is a triangle
pulse, the transmission is binary data, and there is no inter symbol interference ISI. In this ideal
situation, the timing offset 7 can be indicated either by maximizing the output power or by
minimizing the cluster variance [6]. There are two methods that can be used to design adaptive

elements that are responsible about the maximization or the minimization.

2.3.2 Timing Recovery via Decision-Directed Methods

The value of the waveform can be the same as the value of the transmitted data when the
samples are taken at the optimal times correctly, and the pulse shape, the channel, and the matched
filter are working properly. The best performance can be obtained by finding the sampling times
that make the source recovery error as small as possible. The source recovery error is measured by
finding the difference between the received data and the transmitted data when there is a training

sequence.
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It is not possible to calculate the source recovery error in the normal situation when there
is no a training sequence. So, the timing recovery algorithm for the simple case cannot be applied
in the normal situation. To solve this problem, C. R. Johnson, Jr. and W. A. Sethares [6] derived
an algorithm to find the optimal value:

tfk+1]= z[k] + u(Ox[k]) — x[k]) [x(KT/M + z[k] + 6) — x(kT/M + z[k] —9)].

where the u is the step size. The step size can be reduced, or the numbers of the average
values can be increased to eliminate the effect of the noise on the value of /k/. It is true that these
two ways can reduce the influence of the noise, but they will slow the convergence of the
algorithm. The algorithm above requires three samples for each symbol from the waveform, but it
can be implemented easily. This can be done by taking samples three times straightforwardly [6].
The sampling is a hardware intensive solution because it involves hardware to achieve the
sampling process.

The sampling theory states that any signal can be correctly reconstructed if it is sampled
faster than twice the frequency. As a result, the value of the signal at x(k7/M + 7 ) can be used to
interpolate and find the value of the signal at x(kT/M + z[k] + o) and at x(kT/M + z/k] — o) [6].
As a result, this section introduces a mathematical model to find the timing offset z that minimize
the cluster variance. The following figure states how the samples are taken which can be achieved

by hardware.
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Figure 2.4: The adaptive element involves three interpolators. After the convergence of z/k/, the

x/[k] has the samples taken at times that minimize the cluster variance [6].
2.3.3 Timing Recovery via Output Power Maximization

The goal of timing recovery algorithm is to find the optimal time for sampling. This
sampling can be done by maximizing the average of the received power (avg{x’[k]}). This
approach gives the same result that can be achieved by minimizing the cluster variance. This
approach introduces an element that adapts z to find the optimal time that maximizes the output
power. C. R. Johnson, Jr. and W. A. Sethares [6] derived an algorithm to find the optimal value:

fk+1]= t[k] + u x[k]) [x(kKT/M + 7[k] + ) — x(kT/M + 7[k] — 9)].

The u is the step size. If the u is decreased, this can reduce the effect of the noise. Also,
the effect of the noise can be eliminated by reducing the number of element that is used to find the
average. However, this leads to reduce the speed of the convergent plot. This algorithm is a

software intensive solution, and it can be showed by the next figure.
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Figure 2.5: The adaptive element involves three interpolators. After the convergence of z/k/, the
x[k] has the samples taken at times that maximize the output power [6].

The value of x(?) can be reconstructed at (x(k7/M + z/k] + 0)]) and at x(kT/M + z[k] — )]
from x[k]. This timing recovery algorithm can be implemented in digital, hybrid, and analog form
[6].

As a result, these algorithms present solutions for the timing recovery which result from
the mismatching between the receiver and transmitter clock. In addition to the timing recovery
algorithms explained above that are suggested by C. R. Johnson, Jr. and W. A. Sethares [6], there
are other techniques that are usually used for timing recovery. These techniques are the Mueller
and Muller technique, the early-late technique, band-edge timing synchronization technique, and
the Gardner technique.

2.3.4 Gardner technique

Gardner [1] proposes algorithms for timing error detector for limited band Binary Phase
Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK) data stream with 40-100 percent
of excess Bandwidth. This author suggests using two samples per symbol, and one of the two
samples is used for the symbol decision. This author also uses the Wave Difference Method, but

the only difference is that this author’s approach does not require interpolation. Yazgan and Cavdar
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[13] demonstrate that this in turn increases the Bit Error Rate (BER) and decrease the Signal to

Noise Ratio (SNR).

The following figure shows the block diagram of the receiving modem that is proposed by

Gardner [1]. The received data is divided into two streams which are the In-phase stream and the

Quadrature stream. Then, the two streams are demodulated to convert the passband data to

baseband data by two of quadrature-driven mixers. The carrier recovery branch is omitted from the

block diagram because it is not related to the timing recovery algorithm. After the mixers, two data

filters are used to avoid unwanted mixers products, remove the noise, and to shape the received

data.
Input \7/
Signal 0°
—_—

90°

Data Filter

H
Local
Carrier

Matched

Decision

Data Filter

Filter

Rule

b

Timing Error
Detector

]

Loop Filter

i)

Timing
Error
Corrector

Symbol Synchronization Block

Figure 2.6: Typical modem (block diagram of Gardner) [1]

To Frame

— Synch.

Block

The output of the data filters consists of two real sequences {yi( ) } and {yQ( ) }. Each

symbol in these two sequences have two samples, and their timing information is used by the

timing error detector. Gardner [1] states that, “One of the two samples occurs at the data strobe
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time, and the other one occurs midway between the data strobe times”. Also, samples in these two
sequences are transmitted, spaced by time interval 7. The following error detector algorithm that is
introduced by Gardner [1] can be showed by:

Ut(r)=y1(r-72) [yi(r)-yi(r-1)] + yQ(r-72)[yQ(r)-yQ(r-1)].

where 7 is the index that is used to designate the symbol number. The algorithm contains
two parts, In-phase and Quadrature. In the In-phase part, the yi(7-/5) is midway sample between
the yi(r) sample and yi(r-1) sample. In the Quadrature part, the yQ(r-72) is midway sample between
the yQ(r) sample and yQ(r-1) sample. The detector depends on the samples to find one error
sample Ut(r) for each symbol. The loop filter is used to smooth the error sequence, and then this
error sequence is used to adjust a time error corrector.

Gardner’s paper [1] concerns about the error detector, and it does not treat the loop filter or
the error corrector. Gardner [1] proves that his algorithm (the Gardner algorithm) is independent
of carrier phase. If Binary Phase Shift Keying (BPSK) modulation scheme is used in the
communication system and in / channel, then the first part {y1( ) } of the above formula will be
used to find the timing information. Of course, the {yQ( ) } will produce noise without any timing
information. On the other hand, if Quadrature Phase Shift Keying (QPSK) modulation scheme is
used in the communication system, then the both parts {yi( ) } and {yQ( ) } will be employed to
find the timing information.

The Gardner algorithm [1] can be explained by finding the strobe samples on the both
sides of the midway and in both the 7 and Q channels. The algorithm supposes that there is timing
information when there is a transition between symbols, and the average midway sample should be

zero when there is no timing error. When there is a timing error, the average of the midway sample
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gives nonzero magnitude, and the magnitude of this midway sample depends on the timing error
value [1]. When there is no transition, the values of the strobe samples should be the same, and
the difference between them gives zero. This means that there is no timing-error information when
there is no transition, and in this case the value of the midway sample rejects.

Gardner [1] suggests using just the sign of the strobe samples to recover the symbols
instead of the actual values. This, in Gardner’s opinion, eliminates the noise effect if the data is
filtering before taking the strobe samples. In this case, the signs of strobe samples are the
optimum hard decision way to find symbols, and this makes the algorithm as a decision directed
algorithm. This decision directed algorithm is similar to the digital transition tracking loop of
Lindsey and Simon [14]. This thesis treats the loop filter and introduces five techniques to
improve the communication system performance with taking into consideration the effect of the

actual values of strobe samples.
2.4 Alamouti space-time code technique

The next generation systems require improving the quality of services such as quality of
the voice or video. This improving increases the burden on the bandwidth and increase the Bit
Error Rate (BER). In wireless telecommunication, radio signals reach to the receive antennas by
two or more paths due to reflections and refractions from objects in the path of the signal. As
mentioned by Alamouti [2, p1], multipath causes a destructive interference which results in fading
called Rayleigh fading. In multipath fading environment, improving the BER from (10"-2) to
(10”-3) requires improving the Signal to Noise Ratio by (10 dB). This improvement in SNR can
be accomplished by reducing effects of Rayleigh fading without need to increase the power or to

increase the burden on the bandwidth [2].
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Alamouti [2, p.7] suggests using a technique to improve the diversity at all receivers in
wireless systems. This can be achieved by using two transmitters and M receivers which will
result in providing a diversity order of 2M. Consequently, this diversity improvement will
positively affect Rayleigh fading. This technique does not require any feedback from the received
antennas to transmitted antennas which is important for other techniques. Alamouti [2] shows
that,”The scheme requires no bandwidth expansion, as redundancy is applied in space across
multiple antennas, not in time or frequency.”

Also, Alamouti [2] proved that the assumed diversity scheme reduces the error rates, and
increases the capacity of wireless communication systems. The Alamouti technique can be used by
all applications that are limited by the Rayleigh fading. The diversity is usually improved by using
a one transmitter and M receivers which result in providing a diversity order of M, and this is

called receive diversity. However, the Alamouti provides transmit diversity by using two
transmitter and M receivers which result in providing a diversity order of 2M.

Normally in wireless networks, there are a one base station and multiple receive antennas.
This states that the cost of transmit diversity is less than the cost of receive diversity because the
first diversity requires just a one more transmit antenna instead of duplicating the number of all
receive antennas. As a result, the Alamouti space-time code technique introduces low-cost
solutions. Therefore, this technique meets the demand of markets by avoiding a complete redesign
of exist systems and by improving quality and efficiency of wireless systems. Thus, the Alamouti
technique is an appropriate choice for next-generation wireless systems because it reduces fading

at receive antennas by using multiple transmit antennas at the base station.

26



In this thesis, a flat fading Rayleigh multipath channel is applied. Quadrature Phase Shift
Keying (QPSK) modulation scheme is used with two transmitted antennas and a one received
antenna. This diversity scheme is called the Alamouti Space Time Block Coding (STBC), and it
can be explained as follow:

1- Assume that the transmitted sequence is { X, , X, , X5, ..., X, }

2- The transmitted sequence groups into two groups.

3- In the first time slot, X| and X, are transmitted from the first and second antenna. In

the second time slot, — X3 and X7 are transmitted from the first and second antenna. In the

third time slot, X; and X, are transmitted from the first and second antenna. In the fourth

time slot, — X} and X7 are transmitted from the first and second antenna and so on.

T~
Tl hi \
RX
T~

Figure 2.7: Alamouti scheme with two transmitted antenna and a one received antenna.

4- Each channel has different conditions. In other words, the Rayleigh fading in the first
channel between the first transmitted antenna and the received antenna is different from the
Rayleigh fading in the second channel between the second transmitted antenna and the

received antenna. This means that each symbol is multiplied by /4; which is a complex

number that is assigned randomly.
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Time ¢ Time ¢+ T

Antenna #1 x1 - x2%

Antenna #2 x2 xI*

Table 2.2: The encoding and transmission sequence for the two branch transmit diversity scheme.
5- Although each channel is randomly varying, it is proposed that each channel remain
constant over two time slots.

6- The noise on the received antenna in Gaussian distribution.

7- At the receive antenna, the channel 4; is assumed to be known.

8- The received signal at the first time slot is:

yi=hy x;thyx,+ ny .
And in the second time slot is:

Vo=—h, x§+ hy x’1‘+ n, .

where

v, and y, are the received symbols on the first and second time slot,

x, and Xx, are the transmitted symbols,

h, is the channel from first transmit antenna to receive antenna,

h, 1s the channel from second transmit antenna to receive antenna and
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n, and n, are the noise in the first and second time slots respectively.

9- Then the above two signals go to the combiner that builds the following two signals

G =hiy Thy;.

S=my -hy.

10- The above two signals are sent to the Maximum likelihood detector to find the final

signal which compares with the original signal to find the Bit Error Rate (BER).

2.5 Gaps in the Literature

In the past studies, the researchers add new components to improve the quality of
communication systems, but they ignored that these additional components increase the processing
time in wireless communication systems. Also, the researchers use techniques that consume a part
of the bandwidth as a feedback to synchronize between transmitters and receivers. Moreover, some
researchers state that the bandwidth can be sacrificed or the power can be increased to manipulate
the Rayleigh fading. Gardner [1] suggests using two samples per symbol for the timing recovery,
but his technique consumes put burden on the bandwidth.

On the other hand, there are several techniques, such as the Alamouti technique, that can be
used to eliminate from Rayleigh fading. However, the Alamouti technique requires working with
receivers that are perfectly synchronized. Practically, it is hard to have receivers that are perfectly
synchronized and do not use feedback data to estimate the channel condition in terms of the fading

and the noise.
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2.6 Theoretical perspective

This thesis depends on the estimation theory which provides the theoretical framework for
studying the symbol timing problem. Also, this thesis presents ideas to improve the loop filter in
the phase locked techniques depending on the Gardner technique. The Alamouti technique, in turn,
improves the diversity order which reduces impacts of Rayleigh fading and increases the range of
the coverage area. The previous studies state that the QPSK modulation scheme can be used to
transmit high data rates. So, QPSK modulation scheme presents good solutions for increasing the
demand on the bandwidth. As a result, this study will take advantage by using the Alamouti
technique with timing synchronization technique that involves a new loop filter for QPSK

modulation scheme.
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Chapter 3

Methodology

3.1 Research Design

This research is a quantitative research because it involves an experimental design that can
be accomplished by generating new algorithms by using Matlab. The results will state which one
of the hypotheses will be realized. These results will also show conditions and requirements of
wireless communication system. In other words, the simulation will present perspectives about the
behavior of digital receivers with the new techniques in the wireless communication systems.
Moreover, the techniques can be practically implemented in the future to demonstrate their
limitations in wireless communication systems. Furthermore, the techniques, which are introduced
to improve the performance of phase locked loops, take into consideration reducing the receiver
complexities.

3.2 Elements of the experiment

Data streams, which are modulated by QPSK modulation scheme, will be used as input
data for the wireless communication system. The procedure is a quasi-experiment because
participants which are the data amount are not randomly assigned. In other words, there are several
modulation schemes that can be used in this study such as Amplitude Modulation (AM),
Frequency Modulation (FM), and Quadrature Amplitude Modulation (QAM), but only QPSK

modulation scheme is used in this work.
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3.3 Variables

3.3.1 Dependent Variables

The results of MATLAB are the dependent variables because these results depend on
algorithms of symbol synchronization techniques. These results are represented by the Bit Error

Rates (BER), the Signal to Noise Ratio (SNR), and convergence plots.

3.3.2 Independent Variable

The algorithms of symbol synchronization techniques are the independent variables
because these algorithms affect the results of MATLAB. In other words, when these algorithms

change, this means that the results also change.
3.4 Instrumentation and Materials

This thesis is a quantitative research that involves an experimental design. The instruments
and materials that will be used in this study include:
e Synchronization algorithms.
e MATLAB program.
e Lab computer.
e Windows Operating System.

e Linux Operating System.
3.5 Procedure

Timing recovery algorithms are generated. These algorithms are simulated in MATLAB

for symbol synchronization techniques. These algorithms represent a complete wireless
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communication system that involves a transmitter, an AWGN channel including Rayleigh fading,
and a receiver. The number of filters and feedback loops in the wireless system are reduced as
much as possible to decrease the processing time and reduce the complexities of the
communication system. The modulation scheme is Quadrature Phase Shift Keying (QPSK), and
the Alamouti technique is used as a diversity technique to eliminate the Rayleigh fading. Then,
MATLAB program is run, and the results are appeared in plots. This allows assuring that symbol

synchronization algorithms work properly and logically.
3.6 New techniques to improve the timing recovery in wireless receivers

In this section, five techniques are introduced to improve the timing recovery in wireless
receivers. The main part in the wireless receiver is the Phase Locked Loop (PLL) which consists
of three parts: the error detector, the loop filter, and the error corrector. The five techniques
improve the performance of the timing recovery by depending on developing new algorithms for
the loop filter. The error detector of the Gardner technique is used for the five techniques. The
modulation schemes that are used are Binary Phase Shift Keying (BPSK) and Quadrature Phase
Shift Keying (QPSK).

The baseline code of the Gardner technique is represented by a Matlab code, and
convergence plots and plot SNR vs. BER are included. Each step of the baseline code is clarified,
and characteristics of convergence plots are illustrated. Then, each technique that is used to
improve the timing recovery performance is explained, and the results of each technique are
compared to the baseline results. Then, the positive and negative characteristics are stated for each

technique. These characteristics include the speed of the convergence, the Mean Squared Error
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(MSE), SNR vs. BER behavior, and the level of complexities of the wireless receiver design that

can result from each technique for both modulation schemes BPSK and QPSK.

3.7 Baseline Matlab code of the Gardner technique with BPSK

The first two sections in the code are the data generation and the pulse shape. The

following code shows how the data amount is modulated:

Baseline GardnerBPSK.m: Data generation and the pulse shape.

%% Data generation
N = 3*1076;

ip = rand(1,N)>0.5;

data = 2*ip-1;
Tsym = 100;
MSE = zeros(1l,5);

BER sim = zeros(1l,5);

%% Pulse shape

p = sin(2*pi* (0:Tsym-1)/ (2*Tsym)) ;
data up = zeros(l,length(data) *Tsym)

data up(l:Tsym:end)

w = conv (data up,p);

00 0° o° o° o° oo

o 00 o° o°

Number of bits

Generating 0,1

BPSK modulation

No. of samples per symbol

A memory for the MSE

A memory for the simulated BER

Sinusoidal wave

Creation a memory of zeros
Interpolation the data

The convolution operation

The BPSK modulation scheme is used to transmit 3 x 10° symbols. Tsym states that one

hundred samples per symbol are used in this code to simulate the impact of the interpolator. Then,

pulse shape is applied on the signal. Each symbol is represented by the half of a sinusoidal cycle

(this pulse shape is usually called a “half-sine”) that has one hundred samples.

After the pulse shape is done, the noise is added to the transmitted signal. The noise power

is calculated so that the signal to noise ratio (SNR) varies from 2 dB to 10 dB. Then, the SNR

values are converted into linear values. After that, a loop is created, and it is repeated for each

SNR value to find values of noise that are added to the transmitted signal. After adding the noise,
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the detection and correction process starts at the receiver. This section starts with giving
information about initial values.

According to the Gardner technique, the optimal value for midway samples should be at (n
x100), where n is the sequence of symbol in data. The first midway sample (called center in
the code) is assumed to be received at 60. In addition to midway sample, the Gardner algorithm
involves finding the “early sample” and the “late sample”. The early and late samples can be
calculated by finding the value of samples at (center+delta) and (center—-delta). The value
of delta is equal to the half symbol period which is equal to (T sym/2=50).

After applying the Gardner algorithm, the shift value, that is used to correct the sampling
operation, depends on the finding the average of a few iterations of the algorithm. In this code, the
number of iterations is assumed to be equal to six (called avgsamples in the code). The Gardner
technique supposes that the correction depends on the sign of the average result more than the
value itself [1], so the step size is assumed to be equal to 1. Actually, this section of code is
the focus of this thesis, so the development and the improvement are applied on it. After the initial
values are given, another inside loop is created to conduct the error detection, loop filter, and the
correction operations.

Next, the code creates a loop that depends on total number of samples in the received
signal. The loop variable 1i represents the index of the midway samples. The index must start
after delta value to allow finding the first early sample. In the same meaning, the index must
end before the last sample in the received signal by delta value to allow finding the last late

sample. Then, the midway, late, and early samples are calculated. Either early samples or late
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samples can be used to recover the symbols of data. In this Matlab code, early samples are used to
recover symbols of received signal. When the end of the received signal is reached, the loop ends.

Error detection is simulated by applying the subtraction process and the Gardner algorithm.
Then, the loop filter is simulated by finding the mean of several instantaneous timing estimates. If
the sign of the mean is positive, the tau value is equal to -1. Otherwise, the tau value is equal
to 1. Next, the rest of the Matlab codes are completed. The remind step is used to state how fast
the convergence happens. When the convergence happens, this means that samples are taken close
or at the optimal value. In other words, the samples at these optimal times are less affected by the
noise; consequently, there are fewer errors in the symbols’ detection process.

In order to use the original convergence plots in the comparison with convergence plots of
the five techniques, the Mean Squared Error can be used in this comparison. According to [15],

the Mean Squared Error (MSE) can be calculated by applying the following formula:
MSE=L% (¥, - Y))°.
=1

where n: the number of iterations.
Y, : the estimated tau.
Y, : the optimal tau.
Then to find the MSE, values of tau are saved in a vector. Next for the correction, the
value of tau is added to the current center plus the 100 that is necessary to move to the next

symbol. The following code demonstrates the above sections:

Baseline GardnerBPSK.m: Noise addition,detection and correction.

%% Noise addition

SNRdAB=2:2:10;

SNR=10." (SNRdAB/10) ;

for cv=1l:1length (SNR)
noise=sqgrt (1/ (2*SNR(cv))

Signal to Noise Ratio

The linear values for the noise
Generate a loop
*randn (1, length (w)) ;

Noise generation

o° o o©

%
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received=w+noise;

O

% Received signal with noise

%% Detection and Correction

tau=0;
delta=Tsym/2;

center=60;
a=zeros(1,N-1);
cenpoint=zeros (1,N-1);

remind=zeros (1,N-1);
avgsamples=6;

stepsize=1;

rit=0;

GA=zeros (1,avgsamples) ;
tauvector=zeros (1,1900);

uor=0;

for ii= (Tsym/2)+1:Tsym:
rit=rit+1;

%Initial value for tau
%$The shifting value before
%after the midway sample
$The assumed place for the
tmidway sample

%A memory of zeros
%earlier samples
%A memory of zeros
fmidway samples

%A memory of zeros for the remind
%51ix values of Gardner algorithm
%are used to find the average
%3Correction step size

%Iteration counter

%A memory of zeros

%A memory of zeros for tau
Svector (2000-100=1900)

%A counter for the tau vector

and
first
the

for

for the

length (received) - (Tsym/2)
%A counter

midsample=received (center) ;

%The midway sample

latesample=received (center+delta¥(fhe late sample
earlysample=received (center-delta);$The early sample

a(rit)=earlysample;
Error detection
sub=latesample-earlysample;

[N}
i)

sSave samples

%Subtraction process

GA (mod (rit, avgsamples) +1)=sub*midsample;

%% Loop filter

if mean(GA) > 0
tau = -stepsize;
else
tau = stepsize;
end

I}
©°0

Safe remind values
cenpoint (rit)=center;

remind(rit)=rem( (center-Tsym/2),

% tau vector
if rit>=100 && rit<2000

o\°

%$Gardner Algorithm

sShift by decreasing

%$Shift by increasing

%$Save positions of

fmidway samples

Tsym) ;

%$Save remind values to find
% convergence plots

%$tau vector from 100 to
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%2000 where the convergence
uor=uor+1l; $happens
tauvector (uor)= (remind(rit) - (Tsym/2))."2;
$Difference between the
%estimated tau & the

end optimal tau
%% Correction
center=center+Tsym+tau; %$Adding the tau value
if center>=length (received) - (Tsym/2)-1
break; %Break the loop when

%the midway sample reaches
$to 51 samples before
%the last sample
end
end

Now, it is necessary to state that the value of tau depends on error information which can
be obtained when there is a transition between symbols. The next four scenarios shows how the
tau value is taken.

Scenario #1
The first scenario supposes that there is a BPSK signal that contains just two bits [1, -1].

The following figure shows where the early, midway, and late samples are taken:

BPSK signal [1 ,-1]
T T

Magnitude

nz2k

n4k

06

a8l

| 1 | | | |
-1
a 20 40 60 80 100 120 140 160 180 200

Time period
Figure 3.1: shows the early, midway, and late samples of the first scenario

By using the Gardner algorithm, the result will be as below:
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GA=M % (L-E)
=05%(-05-0.5= -05
where GA is the Gardner algorithm.
M is the midway sample.
L is the late sample.
E is the early sample.

The optimal midway samples should be taken at (nx 100) where n is the sequence of the
symbol. The midway sample in figure 3.1 is before the optimal value, so it should be shifted
forward by the step size. The Gardner [1] uses the sign of the mean of several instantaneous
timing estimates and ignores the actual value of the mean in the correction operation. As a result,
when the sign is minus, the tau should be 1.

Scenario #2

The second scenario supposes that there is a BPSK signal that also contains just two bits

[1, -1]. The following figure shows where the early, midway, and late samples are taken:

BPSK signal [1 ,-1]
T

Magnitude

N2k

N4

06

nsl

1 | 1 1 | | |
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Time period

=
%)
0
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Figure 3.2: shows the early, midway, and late samples of the second scenario

By using the Gardner algorithm, the result will be as below:
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GA=-05%(-05-0.5)= 0.5
The optimal midway samples should be taken at (nx 100). The midway sample in figure
3.2 is after the optimal value, so it should be shifted backward by the step size. As a result,
when the sign is positive, the tau should be -1.
Scenario #3
The third scenario supposes that there is a BPSK signal. This signal contains just two bits
[-1, 1]. By using the Gardner algorithm on the samples of figure 3.3, the result will be as below:
GA=-05%(0.5-(-0.5)= =05
The optimal midway samples should be taken at (nx 100). The midway sample in figure
3.3 is before the optimal value, so it should be shifted forward by the step size. As a result,

when the sign is negative, the tau should be 1.

BPSK signal [-1, 1]
T I I

Magnitude

| | | | |
a0 100 120 140 160 180 200

Time period

Figure 3.3: shows the early, midway, and late samples of the third scenario
Scenario #4
The fourth scenario supposes that there is a BPSK signal that also contains just two bits

[-1, 1]. The following figure shows where the early, midway, and late samples are taken:
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BPSK signal [-1, 1]
T T
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Figure 3.4: shows the early, midway, and late samples of the fourth scenario
By using the Gardner algorithm, the result will be as below:
GA=0.5%(0.5-(-0.5)= 0.5

The optimal midway samples should be taken at (nx 100). The midway sample in figure
3.4 is after the optimal value, so it should be shifted backward by the step size. As a result,
when the sign is positive, the tau should be -1.

The above four scenarios states that tau should be 1 when the sign of the mean of several
instantaneous timing estimates is minus. However, the tau should be -1 when the sign of the
mean of several instantaneous timing estimates is positive.

After this, the mean is taken to find the value of MSE for the tau vector after the end of the
loop of a certain SNR. Next, the remind values are plotted to show the convergence plots. The next
section in the Matlab code is the Bit Error Rates (BER) calculation. First, the total error is
computed as it is stated in the following code. When the data is equal to 1 and the received sample
is less than zero, this considers as an error. Similarly, when the data is equal to -1 and the received
sample is more than zero, this also consider as an error. Second, the BER is calculated by dividing

the total computed error over the all data amount. The loop of the SNR values ends after
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computing the BER. The following code demonstrates MSE, convergence plot, and the BER

calculation sections:

Baseline GardnerBPSK.m: MSE, convergence plot, and the BER calculation.

%% Mean Squared Error (MSE)

MSE (cv) =mean (tauvector) ; %$Finding the Mean Squared Error
%% convergence plot
figure

symbols = 200;

subplot(2,1,1);

plot (remind (1l:symbols), "*=");

hold on

1liml=40*ones (1, symbols) ;
1lim2=60*ones (1, symbols) ;

plot (liml) ;

hold on

plot (1im2) ;

title('Convergence plot for BPSK-Gardner');
ylabel ('tau axis'), xlabel('iterations')
legend( ['SNRdB=' int2str (SNRdB(cv))]);
axis ([l symbols O Tsym]);
subplot(2,1,2);

symbols = 2000;

plot (remind (1l:symbols), "*=");

hold on

plot (liml) ;

hold on

plot (1im2) ;

title('Convergence plot for BPSK-Gardner');
ylabel ('tau axis'), xlabel('iterations')
legend ( ['SNRdAB=' int2str (SNRdAB(cv))]);
axis ([l symbols O Tsym]);

%% Calculating the simulated BER

Error=0; %$Set the initial value for Error
for k=1:N-1 %Error calculation
if ((a(k)>0 && data(k)==-1)1](a(k)< 0 && data(k)==1))
Error=Error+1;
end
end
BER sim(cv)=Error/ (N-1); %Calculate error/bit

end
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Finally, the theoretical BER is calculated as it is illustrated in the next code. Then, the

SNR vs. BER figure is plotted as it is showed in the following code:

Baseline GardnerBPSK.m: SNR vs BER plot.

%% Plot SNR Vs BER
BER th=(1/2)*erfc (sqrt (2*SNR) /sqrt (2)); %$Calculate The
%theoretical BER

figure

semilogy (SNRdB, BER th, 'k-', "LineWidth',2); %$Plot theoretical BER
hold on

semilogy (SNRdB, BER sim, 'r-', 'LineWidth',2); %$Plot simulated BER

title ('SNR Vs. BER for BPSK-Gardner technique');
legend ('Theoretical', 'Simulation');

ylabel ('"log BER'");

xlabel ('"SNR in dB'");

The above Matlab codes represent the baseline codes of the Gardner algorithm. Note that
the initial value for the midway sample is taken at 60, so the first early sample is taken at:
First early sample = Initial value of the midway sample - delta= 60 - 50 = 10.The goal of the
above codes is to take the midway samples at or close to (nx 100). This means that the early
samples, which are used to recover the data, are taken at or close to (n % 50). The following figures

states the original convergence plots for BPSK-Gardner technique with BER plot.
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Figure 3.5: BPSK-Gardner technique, SNR=2 dB
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Figure 3.6: BPSK-Gardner technique, SNR=4 dB
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Figure 3.7: BPSK-Gardner technique, SNR= 6 dB
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Figure 3.8: BPSK-Gardner technique, SNR= 8 dB
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Finally, the convergence plots can be used in the comparison operation with convergence
plots of the five techniques. The following table states the values of MSE that are corresponding

to the SNR values for the original convergence plots.

SNR 2dB 4 dB 6 dB 8 dB 10 dB

MSE 36.9274 28.8579 23.5400 18.2811 13.9632

Table 3.1: states SNR values with MSE value- Gardner technique
3.8 The first technique to improve the timing recovery

This technique works on the error detection code and on the loop filter code. Otherwise, all
other sections of the baseline Matlab code are used in this technique. This technique introduces a
factor equal to -20 that can be multiplied by the result of error samples for the Gardner algorithm
to give a faster correction operation. As it is mentioned before, this thesis assumes that there are
one hundred samples per each symbol to simulate the effect of the interpolator. This means that
there are one hundred magnitudes in each symbol. The maximum magnitude for the BPSK symbol
is equal to 1 in the positive part, and the magnitude is equal to -1 in the negative part. In other
words, the peak to peak magnitude for each symbol is equal to 2. As a result, there are one
hundred different magnitudes in this range from 1 to -1. So, the difference in the magnitude

between a one sample and the next sample is equal to 0.02. The following equation states that:

_V-py _ 2 _
D= Tsym 100 =0.02

where
D: is the difference in the magnitude between one sample and the next sample.

V{p - p} :is the magnitude from peak to peak which is equal to (2).
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Tsym: is the number of samples per symbol.

One of things in this technique that should be understood is that the value of D changes
when the number of samples per symbol changes. To understand this technique, the following
scenario introduces a good explanation that starts from the end to find the factor. This scenario
supposes that the transmitted data are [1, 0], so this means that the BPSK is [1, -1]. After the

pulse shape, the output is a sine wave signal. The following figure represents these two bits:

Modulated BPSK signal [1, -1]
T T T

n2-

Magnitude

04k

06

N8k

o 20 40 1) 80 100 120 140
Time period

Figure 3.11: BPSK signal represents [1, -1]

At optimal time, the first midway sample should be received at sample#100, and its
magnitude should be equal to zero when there is no noise. The earlier sample should be equal to
(1) at sample#50, and the late sample should be equal to (-1) at Sample# 150.

The following scenario#l supposes that the first midway sample is received at 101.
Theoretically, this means that the midway sample is one step away from the optimal position and
in the negative part, and its magnitude is

Midway sample = Nux D .

=1x0.02= —0.02.

(The minus sign is added because the sample is received in negative part)
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where

Nu: is the number of steps that is supposed to be taken for the correction operation. The following

figure shows that:

Modulated BPSK signal [1, -1]
T I I

Magnitude

140 160 180 200

-1
40 B0 a0 100 120

Time period

Figure 3.12: BPSK signal represents [1, -1]

The earlier sample is also one step away from the maximum magnitude which is (1), so the

magnitude of the earlier samples should be:

Earlier sample=1 — (Nux D).
=1-(0.02)=0.98
Similarly, the late sample is also one step away from the minimum magnitude which is

(-1), so the magnitude of the late samples should be:

Earlier sample == 1+ (Nu x D).

= —=1+(0.02)= —0.98

By applying the Gardner algorithm (GA) which is:

GA= (late sample — earlier sample) < midway sample

GA=(—0.98=0.98)x 0.02 =0.0392
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The value (0.0392) should be used in the loop filter to make a one backward step. The

logic way to understand that (0.0392) is equal to one backward step is by taking the round after
multiplying it by the factor ( — 20):
tau = round (GA x —20).
= round (0.0392 x —=20)

=round (—0.784)= — 1

The value of this factor (-20) changes when the value of D changes. As mentioned
previously, D changes when the number of samples per symbol changes. The following formula
gives the right factor depending on the number of samples per symbol:

Vpmp)  —Toml _ 5 —(Toom)’
Tsym 10 10 ’

Factor=

When V(p-p)=2 (peak to peak BPSK magnitude) and Tsym=100 (The number of
samples per symbol), the factor is:

2 - (100> _

Factor= 755 % T =-20

When V(p-p)=2 (peak to peak BPSK magnitude) and Tsym=1000 (The number of

samples per symbol), the factor becomes:

2
2, 2000?54

Factor= T000 T0

Now, what if the midway sample is received in a different position? Does the proposed
technique have the ability to conduct the correction operation? The questions can be answered by

the following scenario#2 which supposes that the first midway sample is received at 103. This
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means that the midway sample is 3 steps away from the optimal position and in the negative part,
and its magnitude is
Midway sample = Nux D
=3x0.02= —0.06

(The minus sign is added because the sample is received in negative part)

Modulated BPSK signal [1, -1]
T T T

n2k

Magnitude

N4

N6

N8l

a0 100 120 140 160 160 200
Time period

Figure 3.13: BPSK signal represents [1, -1]
The earlier sample is also 3 steps away from the maximum magnitude which is (1), so the
magnitude of the earlier samples should be:
Earlier sample=1 — (Nux D)
=1-(0.06)=0.94
Similarly, the late sample is also 3 steps away from the minimum magnitude which is (-1),
so the magnitude of the late samples should be:
Earlier sample=— 1+ (Nux D)= —11(0.06) = —0.94
By applying the Gardner algorithm (GA) which is:
GA= (late sample — earlier sample) < midway sample

GA=(—0.94-0.94)x 0.06=0.1128
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The value (0.01128) should be used in the loop filter to make 3 backward step. By using

the same factor which is (-20), tau will be:
tau = round (GA x —=20)=round (0.1128 x —=20)=round (—2.256)= =2

Now, the two backward steps make the next midway sample happens at 201, and this can

be shown by:
New midway sample = previous midway sample + Tsym + tau
=103 + 100 + (-2) =201

At 201, the magnitude of the midway sample has exactly the same magnitude at the 101
when there is no noise. So, by applying the scenario#1, this make the next tau equal to (-1). As a
result, the tau becomes equal to (-3) after the loop run twice, and this tau results from combining
the two scenarios. In other words, tau = -2 when the midway sample is taken at 103, and tau = -1
when the midway tau is taken at 201. In addition to that, a weighted filter is used in this technique.

The next Matlab code illustrates using the factor and the weighted filter:

first_technique.m: Error detection and loop filter.

%$% Error detection

sub=latesample-earlysample; %$Subtraction process

GA=sub*midsample; %Gardner Algorithm

%% Loop filter

tau=round (GA*-20) ; %Using the factor (-20)

if tau>4 %tau= 4 when tau is larger than (4)
tau=4;

elseif tau<-4 %$tau= -4 when tau is smaller than -4

tau=-4;
end

The convergence plots and SNR vs. BER plot of the first technique are shown below:
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Figure 3.14: BPSK-first technique, SNR=2 dB
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Figure 3.15: BPSK-first technique, SNR=4 dB
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Figure 3.16: BPSK-first technique, SNR=6 dB
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Figure 3.17: BPSK-first technique, SNR=8 dB
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The next table reveals the MSE values that are corresponding to the SNR values for the

first technique.

SNR 2dB 4 dB 6 dB 8 dB 10 dB

MSE 54.3821 49.5479 31.5684 24.3621 16.7868
Table 3.2: states MSE values with SNR values- first technique

3.8.1 Evaluation of the first technique

To evaluate the first technique, it is important to compare the results of this technique with
the results of the Gardner technique. In term of the convergence plot, the first technique has a
faster convergence comparing to the Gardner technique. In term of the SNR vs. BER plot, both the
first technique and the Gardner technique have the same SNR vs. BER behavior (see figures 3.10
and 3.19). Although the first technique has higher values of MSE (see table 3.2), the BER results
of the first technique still have the same BER results of the Gardner technique. In term of the
complexity, the first technique eliminates the average filter that is used by the Gardner technique,
so the first technique reduces the complexity of the digital receiver structure, and reduces the
processing time; as a result, the first technique improves the performance of the communication

system.

3.9 The second technique to improve the timing recovery

This technique has the same baseline code except the loop filter code. In the baseline code
of the Gardner algorithm, error time information depends on the sign of the mean of the Gardner
algorithm. In this technique, the actual value of the mean is used to indicate how many step sizes
should be taken to conduct the correction operation. To do that, a weighted filter should be used as

it is demonstrated in the following Matlab code:
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second_technique.m: Loop filter.

%% Loop filter
if mean (GA)>0 && mean (GA)<0.3

tau=-1; FShift
elseif mean (GA)>0.3 && mean (GA)<0.6

tau=-2; %$Shift
elseif mean (GA)>0.6

tau=-3; Shift
elseif mean (GA)<0 && mean (GA)>-0.3

tau=1; $Shift
elseif mean(GA)<-0.3 && mean (GA)>-0.6

tau=2; %$Shift
elseif mean (GA)<-0.6

tau=3; %$Shift
else

tau=0; %There

end

is

is

is

is

is

is

is

decreasing
decreasing
decreasing
increasing
increasing
increasing

no shift

by
by
by

by

by

As it is shown in the above code, a weighted filter is used to find the value of the mean of

the Gardner algorithm that gives seven possibilities for the step size which (1,2,3,-1,-2,-3, & 0)

instead of two possibilities as it is used in the baseline code which are (1,-1). The value of the

mean of the Gardner algorithm is high when the samples are taken far away from the optimal time.

So, it is logically to take more than one step when the magnitude is high. The new loop filter

should increase the convergence fast. The following figures demonstrate the convergence plots and

the SNR vs. BER plot.
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Figure 3.20: BPSK-second technique, SNR=2 dB
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Figure 3.21: BPSK-second technique, SNR=4 dB
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Figure 3.22: BPSK-second technique, SNR=6 dB
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Figure 3.23: BPSK-second technique, SNR=8 dB
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Figure 3.25: BPSK-second technique, SNR vs. BER plot
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The next table reveals the MSE values that are corresponding to the SNR values for the

second technique.

SNR 2dB 4 dB 6 dB 8 dB 10 dB

MSE 71.8016 56.4763 32.2742 23.6247 19.0516
Table 3.3: states MSE values with SNR values- second technique

3.9.1 Evaluation of the second technique

This section discusses the comparison between the results of the second technique and the
original results of the Gardner technique. The comparison is done by depending on four factors
which are: the speed of the convergence plots, SNR vs. BER plots, the Mean Squared Error
(MSE), and the complexities of the digital receiver design.

In term of the convergence speed, this technique increases the speed of the convergence. In
term of the Bits Error Rate (BER), figure 3.25 states that the SNR vs. BER plot of the second
technique has the same SNR vs. BER plot of the Gardner technique shown in figure 3.10. In term
of MSE, the values of MSE of the second technique are worse than the MSE values of the original
Gardner technique. Although the MSE values of the second technique are worse, the BER results
are the same as the BER results of the Gardner technique. In terms of the design complexity, the
second technique uses an additional filter which is the weighted filter. Practically, any additional
component may increase the processing time in the communication system. The impact of the

noise can be noticed as an oscillation in convergence plots.
3.10 The third technique to improve the timing recovery (part #1)

This code that is used in this technique is the same code that is used in the Gardner
technique. The difference is the average filter, which is used by the Gardner technique, is not used

in the third technique. In other words, the result of Gardener’s algorithm is directly used in the
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loop filter without taking the mean of several instantaneous timing estimates. Also, the step size
that is used in the third technique (part #1) is equal to 2. The only reason for doing this is to
increase the convergence speed. It is true that this technique may not be able to sample at the
optimal value all the time, but the third technique (part #1) can sample close to the optimal value.
When samples are taken at or close to the optimal value, they are less affected by the noise. So,
even if samples are taken close to the optimal value, these samples still have the ability to

represent the actual data. The following code shows that:

third technique.m: Error detection and loop filter.

%% Error detection
sub=latesample-earlysample; %Subtraction process
GA=sub*midsample;
%$Gardner Algorithm
%% Loop filter
if mean(GA) > 0

tau = -stepsize; sShift by decreasing
else

tau = stepsize; %$Shift by increasing
end

The following plots demonstrate the convergence plots and the SNR vs. BER plot:
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Figure 3.26: BPSK- third technique (part #1), SNR=2 dB
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Figure 3.27: BPSK- third technique (part #1), SNR=4 dB
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Figure 3.28: BPSK- third technique (part #1), SNR=6 dB
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Figure 3.29: BPSK- third technique (part #1), SNR=8 dB
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Figure 3.31: BPSK- third technique (part #1), SNR vs. BER plot
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The next table reveals the MSE values that are corresponding to the SNR values for the

third technique.
SNR 2dB 4 dB 6 dB 8 dB 10 dB
MSE 46.9853 44.1305 33.9242 21.5200 20.0042

Table 3.4: states MSE values with SNR values- third technique (part #1)
3.10.1 Evaluation of the third technique (part #1)

The results of the third technique are compared with results of the Gardner technique to
evaluate the performance of the third technique. The convergence takes shorter to happen than the
convergence of the baseline technique. The convergence happens faster in the third technique
because step size is equal to 2. Generally, the SNR vs. BER plot of the third technique has the
same performance of SNR vs. BER plot of the Gardner technique (see figures 3.10 and 3.31). In
term of MSE, the values of the MSE of the third technique are less than the values of the MSE of
the Gardner technique (see table 3.4). In term of the complexity, the third technique does not
require the average filter which reduces the processing time. As a result, reducing additional filters

reduces the complexity and improves the performance of the digital receiver.

3.11 The third technique to improve the timing recovery (part #2)

The code that is used in technique is exactly the same technique that is used in the third
technique (part #1). The only difference in this technique is the step size is equal to 1. This
difference in the current technique influences its results. The following figures states the

convergence plots and the SNR vs. BER plot of the third technique (part #2):
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Figure 3.32: BPSK- third technique (part #2), SNR=2 dB
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Figure 3.33: BPSK- third technique (part #2), SNR=4 dB
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Figure 3.35: BPSK- third technique (part #2), SNR=8 dB
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Figure 3.37: BPSK- third technique (part #2), SNR vs. BER plot

69



The next table reveals the MSE values that are corresponding to the SNR values for the

third technique.
SNR 2dB 4 dB 6 dB 8 dB 10 dB
MSE 23.5547 20.3295 15.5358 13.1800 12.3379

Table 3.5: states MSE values with SNR values- third technique (part #2)
3.11.1 Evaluation of the third technique (part #2)

The results of the third technique (part #2) are compared with results of the Gardner
technique to evaluate the performance of the third technique. The convergence takes longer than the
convergence of the baseline technique. The convergence happens late in the third technique (part
#1) because the step size is equal to 1. Generally, the SNR vs. BER plot of this technique has the
same performance of SNR vs. BER plot of the Gardner technique (see figures 3.10 and 3.37). In
term of MSE, the values of the MSE of the third technique (part #2) are less than the values of the
MSE of the Gardner technique (see table 3.5). In term of the complexity, this technique does not
require the average filter which reduces the processing time. As a result, reducing additional filters
reduces the complexity and improves the performance of the digital receiver.

It is important to demonstrate that each part of the third technique has different features in
terms of the convergence plots and MSE values. The first part of the third technique has a faster
convergence than those of the Gardner technique, but it has worse MSE values. The second part of
the third technique has slow convergence compared to the Gardner technique. However, it has low
MSE values. As a result, it kind of trade off, and it depends on the requirements and
circumstances of wireless communication systems.

For example, when the sinc wave is used in the pulse shape code, this wave is more

affected by MSE values which may negatively reflect on BER performance. So, it is better to

70



choose the second part of the third technique. However, the pulse shape that is used in the codes of
this thesis is the half sine wave which is less affected by MSE values. In other words, the range of
MSE values for the third technique does not have disadvantage on the BER performance of this
technique. Therefore in this thesis, the first part of the third technique which has fast convergence
is used further with QPSK - third technique and with QPSK - Alamouti - Gardner (QAG) third
technique.
3.12 The fourth technique to improve the timing recovery

The fourth technique uses the same code that is used by the Gardner technique. In this
technique, the average filter is not used in the decision operation. So basically, it is looks like the
third technique, but this technique uses another filter which is the weighted filter. In other words,
there are 11 values of tau (-1,-3,-5,-7,-9,1,3,5,7,9,& 0) that depends on the value of the Gardner

algorithm. This way of using different step sizes makes the convergence happens faster. The

following code shows that:

fourth _technique.m: Error detection and loop filter.

%% Error detection
sub=latesample-earlysample; %$Subtraction process
GA=sub*midsample; $Gardner Algorithm
%% Loop filter
if GA>0 && GA<O0.5
tau=-1;
elseif GA>0.5 && GA<]1
tau=-3;
elseif GA>1 && GA<1.5
tau=-5;
elseif GA>1.5 && GA<L2
tau=-7;
elseif GA>2
tau=-9;
elseif GA<O0 && GA>-0.5
tau=1;
elseif GA<-0.5 && GA>-1
tau=3;
elseif GA<-1 && GA>-1.5
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tau=5;
elseif GA<-1.5 && GA>-2
tau=7;
elseif GA<-2
tau=9;
else
tau=0;
end

The following plots are the convergence plots and SNR vs. BER plot of the fourth

technique:
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Figure 3.38: BPSK- fourth technique, SNR=2 dB
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Figure 3.39: BPSK- fourth technique, SNR=4 dB
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Figure 3.40: BPSK- fourth technique, SNR=6 dB
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Figure 3.41: BPSK- fourth technique, SNR=8 dB
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Figure 3.42: BPSK- fourth technique, SNR=10 dB
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SNR Vs. BER for BPSK-Fourth Technique
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Figure 3.43: BPSK- fourth technique, SNR vs. BER plot

The next table reveals the MSE values that are corresponding to the SNR values for the

fourth technique.
SNR 2dB 4 dB 6 dB 8 dB 10 dB
MSE 67.7147 33.7611 23.8284 15.1547 11.3926

Table 3.6: states MSE values with SNR values- fourth technique
3.12.1 Evaluation of the fourth technique
In the light of the results, the convergence plots of the fourth technique have a faster
convergence, and this is consistent with the work of the weighted filter. In other words, using
different value for the tau increases the speed of the convergence. Also, the SNR vs. BER of the
fourth technique has the same behavior of the SNR vs. BER of the Gardner technique (see figure
3.10 and 3.43). In term of the MSE, the fourth technique has higher MSE values than the Gardner

technique, especially when the SNR is low or when the noise is high.
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Although the MSE values of the fourth technique are high, the BER results still the same
as the BER results of the Gardner technique. In term of the complexity, the fourth technique
removes the average filter and uses the weighted filter. It is supposed that the complexity which
results from using the weighted filter is less than the complexity of using average filter. However,

the practical implementation can show which technique is less complexity.

3.13 The fifth technique to improve the timing recovery

The fifth technique uses the code of the Gardner technique with some changes in using the
average filter. This technique removes the normal average filter that is used to find the mean of
several instantaneous timing estimates. However, this technique uses a new average filter to find
the mean for midway samples. Also, the fifth technique involves the weighted filter to indicate the
value of tau. This weighted filter provides nine values which are (1,3,5,7,-1,-3,-5,-7,& 0) that can
be used depending on the value of the Gardner algorithm. The following Matlab code illustrates

that:

fifth technique.m: Error detection and loop filter.

midsample=mean (received (center-1l:center+1l));%The midway sample

latesample=received (center+delta); $The late sample
earlysample=received (center-delta); %$The early sample
a(rit)=earlysample; %$Save samples

%% Error detection

sub=latesample-earlysample; $Subtraction process
GA=sub*midsample; %$Gardner Algorithm

%% Loop filter
if GA<=0.2 && GA>=0

tau=-1;

elseif GA<=0.5 && GA>0.2
tau=-3;

elseif GA<=1l && GA>0.5
tau=-5;

elseif GA>1
tau=-7;

76



elseif GA>=-0.2 && GA<O
tau=1;

elseif GA>=-0.5 && GA<-0.2
tau=3;

elseif GA>=-1 && GA<-0.5
tau=5;

elseif GA <-1
tau=7;

else
tau=0;

end

The following plots show the convergence plots and SNR vs. BER plot of the fifth technique:
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Figure 3.44: BPSK- fifth technique, SNR=2 dB
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Figure 3.45: BPSK- fifth technique, SNR=4 dB
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Figure 3.46: BPSK- fifth technique, SNR=6 dB

78



tau axis

tau axis

tau axis

tau axis

100

100

100

100

Convergence plot for BPSK-Fifth Technique

| ——sNRdB=8]

20

40 a0 80 100 120 140 160 180 200
iterations

Convergence plot for BPSK-Fifth Technique

| —#— SNRdB=8|

200

400 600 800 1000 1200 1400 1600 1800 2000
iterations

Figure 3.47: BPSK- fifth technique, SNR=8 dB
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Figure 3.48: BPSK- fifth technique, SNR=10 dB
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The next table reveals the MSE values that are corresponding to the SNR values for the

fifth technique.
SNR 2dB 4 dB 6 dB 8 dB 10 dB
MSE 33.6558 21.4411 17.4874 14.127 13.6579

Table 3.7: states MSE values with SNR values- fifth technique

3.13.1 Evaluation of the fifth technique

This technique can be evaluated by comparing its results with the Gardner technique

results. In term of convergence plots, the fifth technique has a faster convergence than the Gardner

technique.

The convergence happens faster because the weighted filter is used which gives

different values of tau with larger step sizes. Additionally, the SNR vs. BER plot of the fifth

technique seems to be the same as the SNR vs. BER plot of the Gardner technique. In term of the
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MSE, the fifth technique has less MSE values than the Gardner technique. In the light of the
complexity, the fifth technique eliminates the normal average filter that is used in the Gardner
technique. On the other hand, this technique uses a new average filter to find the mean for midway
samples. In addition to that, a weighted filter is used in this technique. As a result, it is expected
that the complexity of the digital receiver structure increases in the fifth technique.
3.14 Summary and comparison of the five techniques-BPSK

It is worthwhile to summarize the five techniques - BPSK that are introduced in the
Thesis. Moreover, the summary gives a clear picture about the benefits and features each
technique. In order to facilitate the process of comparison, the convergence plots when SNR is

equal to (10 dB) are be included. Furthermore, the tables of Mean Squared Error (MSE) are stated

for each technique.
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Figure 3.50: BPSK- Baseline technique and first technique, SNR=10 dB
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Figure 3.51: BPSK- second technique and third technique, SNR=10 dB
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Figure 3.52: BPSK- fourth technique and fifth technique, SNR=10 dB
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SNR 2dB 4dB 6 dB 8 dB 10 dB
MSE_Gardner 36.9274 28.8579 23.5400 18.2811 13.9632
technique
MSE first 54.3821 49.5479 31.5684 24.3621 16.7868
technique
MSE second 71.8016 56.4763 32.2742 23.6247 19.0516
technique
MSE _third 46.9853 44.1305 33.9242 21.5200 20.0042
technique
MSE fourth 67.7147 33.7611 23.8284 15.1547 11.3926
technique
MSE fifth 33.6558 21.4411 17.4874 14.127 13.6579
technique

Table 3.8: Summary of MSE of all techniques for BPSK-Gardner technique
3.15 Baseline Matlab code of Gardner technique with QPSK

The QPSK modulation scheme is used to transmit the data amount which is (15 x 10°).

This amount of data represents the number of samples. It is given that each sample has two bits,

so the total number of bits is (3 x 10°) which is the same number of bits that are used in BPSK

- Gardner technique. The following code shows the data generation and pulse shape:

Baseline GardnerQPSK.m: Data generation and the pulse shape.

%% Data generation

N=15*10"5;

Qpsk=[1+1i 1-11 -1+1i -1-1i];
data= Qpsk(randi(4,1,N));

Tsym=100;

o° o°

oe

The data

o\

Amount of data
Four possible complex No. for QPSK

No.of samples per symbol

noise=(randn(l, length (data) *Tsym)+li*randn (1, length (data) *Tsym)) ;
%Generating random numbers for nl

%% pulse shape

p = sin(2*pi* (0:Tsym-1)/ (2*Tsym)) ;%Sinusoidal wave
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data up = zeros(l,length(data)*Tsym);%Creation a memory of zeros

data up(l:Tsym:end) = data; $Interpolation the data
S11 = conv(data up,p); %The convolution operation
S1=S511(l:end-99); %Remove last 99 bits that are

%$added due to the convolution

After the pulse shape is done, the noise is added to the transmitted signal. The noise is
represented by the Signal to Noise Ratio (SNR). The formula that is used by Gardner to detect the
error, involves using both the In-phase and Quadrature channels. As a result, the QPSK-Gardner
technique is less affected by the noise. Consequently, the range of the SNR values, which is used
in this technique, is from 2 dB to the 10 dB. Then, the SNR values are converted into linear
values. After that, a loop is created, and it is repeated for each SNR value to find values of noise
that are added to the transmitted signal. After adding the noise, the QPSK bits are converted from
complex numbers to normal numbers to conduct the error detection process on them.

Then, the transmitted signal is received at the receiver, and the detection and correction
process starts. This section starts with giving information about initial values. According to the
Gardner technique, the optimal value for midway samples should be at n*100, where n is the
sequence of symbol in data. The first midway sample (called center in the code) is assumed to
be received at 60. In addition to midway sample, the Gardner algorithm involves to find the early
sample and the late sample. The early and late samples can be calculated by finding the value of
samples at (center+delta) and (center-delta) respectively. The value of delta is equal to
the half symbol period which is equal to (Tsym/2=50).

After applying the Gardner algorithm, the shift value, that is used to correct the sampling
operation, depends on the finding the mean of several instantaneous timing estimates. In this code,

the number of the value, that is taken to find the average, is assumed to be equal to six (called
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avgsamples in the code). The Gardner technique supposes that the correction depends on the
sign of the mean more than the value itself [1], so the step size is assumed to be equal to 1.
When the initial values are given, another inside loop is created to conduct the sampling
operation, the error detection, loop filter, and the correction operations. Next, center (remind)
values are saved to be used in the convergence plots. The following code demonstrates the noise

addition, error detection, correction:

Baseline GardnerQPSK.m: Noise addition, error detection and correction.

%% Noise addition
SNRdAB=2:2:10; % Signal to Noise Ratio
SNR=10." (SNRAB/10) ; % The linear values for the noise
for cv=1:1length (SNRAB) %
(

nl=sigma*noise; $Noise generation
S=S1+nl; %

%% Conversion complex No. to normal No.

Sreal= real (S) ; %$Create a vector for real No. of S
Simag= imag(Ss) ; $Create a vector for imaginary No. of S

%% Detection and correction

tau=0; $Initial value for tau

delta=Tsym/2; %The shifting value before and after the
tmidway sample

center=60; %The assumed place for the first
gmidway sample

al=zeros(1l,N-1) ; %A memory of zeros

a2=zeros (1,N-1) ; %A memory of zeros

cenpoint=zeros(1l,N-1); %A memory of zeros for the midway
¥samples

remind=zeros (1,N-1) ; %A memory of zeros for the remind

avgsamples=6; %31ix values of Gardner algorithm are
%used to find the average

stepsize=1; %$Correction step size

rit=0; %Iteration counter

GA=zeros (1,avgsamples); SA memory of zeros

tauvector=zeros(1,1900) ;3A memory of zeros for tau vector

%$(2000-100)

Q
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uor=0; %A counter for the tau vector
a=zeros (1l,N-1) ; %A memory of zeros

for ii= (Tsym/2)+1:Tsym:N*Tsym- (Tsym/2)

rit=rit+1; %A counter

%% Sampling the real part

midsamplel=Sreal (center) ; $The midway sample
latesamplel=Sreal (center+delta); %$The late sample
earlysamplel=Sreal (center-delta); %The early sample
al(rit)=earlysamplel; %Save samples

%% Sampling the imaginary part

midsample2=Simag (center) ; $The midway sample
latesample2=Simag (center+delta); %The late sample
earlysample2=Simag (center-delta); %The early sample
a2 (rit)=earlysample2; %Save samples

%% Error detection
subl=latesamplel-earlysamplel;
sub2=1latesample2-earlysample2;
GA (mod (rit,avgsamples) +1) =subl*midsamplel+sub2*midsample?2;
%$Gardner Algorithm
%% Loop filter
if mean(GA) > 0
tau = -stepsize;
elseif mean(GA)< O
tau = stepsize;
else
tau=0;
end

%% Safe remind values

cenpoint (rit) =center; $Save positions of midway
¥samples

remind (rit)=rem( (center-Tsym/2) ,Tsym) ;
¥Save remind values to find
Fconvergence plots

%% tau vector

if rit>=100 && rit<2000 %tau vector from 100 to 2000
uor=uor+1; swhere the convergence happens
tauvector (uor)= (remind(rit)- (Tsym/2))."2;%Difference

end ¥between remind and Tsym

%% Correction
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center=center+Tsym+tau; %Adding the tau value

if center>=N*Tgym- (Tsym/2) -1 % Break the loop when the
break; tmidway sample reach to 51
end $samples before the last
end $sample

Then, the tau vector is created to be used later to find the values of Mean Squared Error
(MSE), and the values of samples are combined to reform the data. After the combining, the
convergence behavior is plotted for each SNR value. When the convergence behavior is plotted,
the BER value is calculated for each SNR. First, the total error is computed as it is stated in the
following code. When the data is equal to 1 and the received sample is less than zero, this
considers as an error. Similarly, when the data is equal to -1 and the received sample is more than
zero, this also consider as an error. Second, the BER is calculated by dividing the total computed
error over the all data amount. The loop of the SNR values ends after computing the BER. Finally,

the theoretical BER is calculated, and the SNR vs. BER figure is plotted as it is showed in the

following code:

Baseline GardnerQPSK.m: MSE, convergence plot, and BER plot.

%% Mean Squared Error (MSE)
MSE (cv) =mean (tauvector) ; $Finding the Mean Squared Error

%% Combining the all bits
for df=1:(N-1)

a(df)=[al(df)+a2(df) *1i]; %$Combine the bits to create
end Fcomplex Numbers

%% convergence plot

figure

symbols = 200;
subplot(2,1,1);

plot (remind (1:symbolg), '*-");
hold on
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liml=40*ones (1, symbols) ;

lim2=60*ones (1, symbols) ;

plot (liml, 'r');

hold on

plot (lim2, 'r');

title('Convergence plot for QPSK-Gardner technique');
ylabel ('tau axis'), xlabel('iterations')

legend( ['SNRdB=' int2str (SNRdAB(cv))]1);

axis ([l symbols 0 Tsym]);

subplot(2,1,2);

symbols = 2000;

plot (remind (1:symbols), "*-");

hold on

liml=40*ones (1, symbols) ;
lim2=60*ones (1, symbols) ;

plot (1iml, 'r');

hold on

plot (lim2, 'r');

title ('Convergence plot for QPSK-Gardner technique');
ylabel ('tau axis'), xlabel('iterations')
legend( ['SNRdB=' int2str (SNRdAB(cv))]1);
axis ([l symbols 0 Tsym]);

%% Calculating the simulated BER

Error=0; %$Set the initial value for Error
for k=1:N-1 $Hard decision is taken
if (real(a(k))> 0 && real(data(k))==-1)]]...
(real(a(k))< 0 && real (data(k))==1)
Error=Error+1;
end
if (imag(a(k))> 0 && imag(data(k))==-1)]].
(imag(a(k))< 0 && imag(data(k))==1 )
Error=Error+1;
end
end
BER sim(cv)=Error/ (2* (N-1));%Calculate error/bit
end
%% Plot BER Vs SNR
BER th=gfunc (sgrt (2*SNR) ) ; %Calculate The theoretical BER
figure

semilogy (SNRdAB,BER th, 'b-','LineWidth',2); %Plot theoretical BER
hold on
semilogy (SNRAB,BER_sim, 'r—', '"LineWidth',2);%Plot theoretical BER
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title ('SNR Vs. BER for QPSK- Gardner technique');
legend ('Theoretical', 'Simulation');

ylabel ("log BER'");

xlabel ("SNR in dB'");

The above Matlab codes represent the baseline codes of the Gardner algorithm for QPSK.
The following figures states the original convergence plots for QPSK-Gardner technique with SNR

vs. BER plot:
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Figure 3.53: QPSK- Gardner technique, SNR=2 dB
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Figure 3.54: QPSK- Gardner technique, SNR=4 dB
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Figure 3.55: QPSK- Gardner technique, SNR=6 dB
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Figure 3.56: QPSK- Gardner technique, SNR=8 dB
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Figure 3.57: QPSK- Gardner technique, SNR=10 dB
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Figure 3.58: QPSK- Gardner technique, SNR vs. BER plot
Finally, the following table states the values of MSE that are corresponding to the SNR

values for the original convergence plots.

SNR 2dB 4 dB 6 dB 8 dB 10 dB

MSE 22.1758 21.9947 15.6789 12.7358 12.5737

Table 3.9: states SNR values with MSE value for QPSK-Gardner technique
Now, it is important to mention about the five techniques that are included in the following
sections. Actually, the five techniques, which are used to improve timing recovery for
BPSK-Gardner technique, are also used to improve the timing recovery for QPSK-Gardner
technique. The results of the five techniques for QPSK state that they have the same features that
are mentioned when the five techniques are used for BPSK. These features are in terms of

convergence plots, SNR vs. BER plots, MSE tables, and the level of complexities of wireless
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communication systems. As a result, the explanation and the evaluation of each technique are not
repeated again. So for more information, the five techniques that are used for BPSK modulation
scheme can be reviewed again.
3.16 Summary and comparison of the five techniques - QPSK

It is worthwhile to summarize the five techniques that are introduced to work with QPSK
modulation scheme. Moreover, the summary gives a clear picture about the benefits and features
each technique. In order to facilitate the process of comparison, the convergence plots when SNR
is equal to (10 dB) are be included. Furthermore, the tables of Mean Squared Error (MSE) are

stated for each technique.
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Figure 3.59: QPSK- Baseline technique and first technique, SNR=10 dB
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Figure 3.60: QPSK- second technique and third technique, SNR=10 dB
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Figure 3.61: QPSK- fourth technique and fifth technique, SNR=10 dB
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SNR 2dB 4dB 6 dB 8dB 10 dB
MSE_Gardner 22.1758 21.9947 15.8474 12.7358 12.5737
technique
MSE first 58.5205 43.2153 29.9405 24.8537 17.6574
technique
MSE second 61.3295 44.8932 33.0179 19.9195 18.0674
technique
MSE _third 27.3726 22.2947 20.9895 16.3242 13.5200
technique
MSE fourth 55.3126 35.4495 22.5968 15.4326 9.7863
technique
MSE fifth 34.9042 23.1337 16.7316 12.6284 8.5189
technique

Table 3.10: Summary of MSE of all techniques for QPSK-Gardner technique
3.17 Alamouti technique with and without Gardner technique

In this section, the baseline Matlab code for the Alamouti technique is presented. Alamouti
scheme includes two transmitters and a one receiver. In addition, the new Matlab code that allows
for the Alamouti technique to work with the Gardner technique is introduced. As mention
previously in the introduction, Alamouti [2] assumes that his technique works with digital
receivers that are perfectly synchronized. In this thesis, The Alamouti technique is adapted with
the Gardner technique to make the Alamouti technique works with digital receivers that are not
perfectly synchronized. Consequently, this achieves a completely wireless system that works in
realistic environment which has the Rayleigh fading and noise. In other words, this new technique

reduces the effects of the Rayleigh fading by using the Alamouti technique; in addition, the new
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technique improves the timing recovery by implementing the five techniques that depend on the
Gardner technique.

The QPSK data is generated, and it then splits into two streams. Then, the initial values for
the Alamouti technique with the Gardner technique are provided. The (h11 and h22) are generated
to be used as a channel gain. Then, the (h1 and h2) represent the effect of a slow fading which
change every symbol in the data. Also, the noise is produced, and the noise changes every sample
per symbol. Next, the pulse shape is applied on the each stream of the data. Next, the initial values
that are used by the baseline code of the Alamouti technique is provided. The initial values include
the channel gain (hpl and hp2). The noise is also generated to be used in the Alamouti algorithm.
The following code demonstrates how to generate these initial values. The next Matlab code

includes the data generation, initial values, and the pulse shape:

QPSKAlamouti Gardner.m: Data generation, initial values, and the pulse shape.

%% Data generation

N=15*10"5; ¥Amount of data

Qpsk=[1+1i 1-11 -1+1i -1-1i]; $Four possibilities for QPSK
data= Qpsk(randi(4,1,N))./sgrt(2); %The data

Tsym=100; No.of samples per symbol
xhl=data(l:2:end) ; %$The first stream
xh2=data(2:2:end) ; $The second stream

%% Initial Parameter for Alamouti technique with Gardner technique
hll=(randn(1,N/2)+1li*randn(1,N/2))./sqgrt(2);

%Generating random numbers for hl
h22=(randn(1,N/2)+1li*randn(1,N/2)) ./sqgrt(2) ;

%$Generating random numbers for h2

hl=kron (hll, ones(1,Tsym)) ; %$The first channel gain
h2=kron (h22, ones(1l,Tsym)) ; %$The second channel gain

noisel=(randn(1l,N*Tsym/2)+1li*randn(1,N*Tsym/2) ./sqrt(2)) ;
%Generating random numbers for nl

noise2=(randn(1l,N*Tsym/2)+1li*randn(1,N*Tsym/2) ./sqrt(2)) ;
%Generating random numbers for n2
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%% pulse shape

p = sin(2*pi* (0:Tsym-1)/(2*Tsym)); %Sinusoidal wave

data up =zeros(1l,length(xhl) *Tsym) ; A memory of zeros

data up(1l:Tsym:end) = xhl; %$Interpolation the data

S11 = conv(data up,p); %$The convolution operation
S1=S11(l:end-99) ; $Remove last 99 bits that are

%added due to the convolution
%% pulse shape

p = sin(2*pi* (0:Tsym-1)/(2*Tsym)); %Sinusoidal wave

data up = zeros(1l,length(xh2)*Tsym) ;%A memory of zeros

data up(1l:Tsym:end) = xh2; %$Interpolation the data

S22 = conv(data_up,p); %$The convolution operation
S2=822(1l:end-99) ; %Remove last 99 bits that are

%added due to the convolution
%% Initial Parameter for baseline Alamouti technique
hpl=(randn(1,N/2)+1li*randn(1,N/2))./sqrt(2);

%$The first channel gain
hp2=(randn(1,N/2)+1li*randn(1,N/2))./sqgrt (2) ;

$The second channel gain
noisepl=(randn(1,N/2)+1li*randn(1,N/2)./sqgrt(2));

%$Generating random numbers
noisep2=(randn(1l,N/2)+1li*randn(1,N/2)./sqrt(2)) ;

%Generating random numbers

After providing the initial values, the Signal to Noise (SNR) values are included, and the
range of SNR is from (5 to 25 dB). The sigma value is found to be used in generating the noise
(npl and np2) and to apply the Alamouti algorithm. Then, the noise is added to find the two
received streams at the receiver (rr1 and rr2). After that, the two combined streams are found
(S1 _est and S2 est) by using the two received streams.

After that, the two combined streams are recombined to create a one stream data
(xenlast). Then, the simulated Bit Error Rate (BER) is calculated by comparing the real and
imaginary parts of the combined stream with the real and imaginary parts of the original data
respectively. The following Matlab code demonstrates the baseline Alamouti technique (part #1)

and BER calculation:
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QPSKAlamouti_Gardner.m: Baseline Alamouti technique and BER calculation.

SNRAB=5:5:25; $Signal to Noise Ratio
SNR=10." (SNRAB/10) ; $The linear values of noise
for cv=1:1length (SNRAB) %Generate a loop
%% Alamouti technique with perfect synchronization (part #1)
sigma=sqrt (1) /sgrt (2*SNR (cVv) ) ; $¥Sigma generation
npl=sigma*noisepl; %Generate the part#l of noise
np2=sigma*noisep?2; %Generate the part#2 of noise

rrl = xhl.*hpl + xh2.*hp2 + npl; %The received signal at (t)

rr2=-conj (xh2) . *hpl+conj (xhl) . *hp2+np2;

%$The received signal at (t+T)

S1 est=conj (hpl) .*rrl+hp2.*conj (rr2) ;

$Stream#l of combined signals

S2 est=conj (hp2) .*rrl-hpl.*conj (rr2) ;

$Stream#2 of combined signals
xenlast=zeros (1,N) ; %A memory for preallocating

Q

% Combining the two streams
for m=1:N/2

xenlast (2*m-1)=S1 est (m) ; $#1 stream in odd order
xenlast (2*m) =82 est (m) ; $#2 stream in even order

end

%% Calculating the simulated BER for part #1

Error PS=0; $Initial error for part #1
for k=1:N $Hard decision is used
if (real(xenlast(k))> 0 && real (data(k)) ———l/sqrt )] ...
(real (xenlast (k))< 0 && real (data (k) 1/sqrt 2))
Error PS=Error PS+1;
end
if (imag(xenlast(k))> 0 && imag(data (k)) ==—l/sqrt )] ..
(imag (xenlast (k) )< 0 && imag(data(k l/sqrt 2))
Error PS=Error PS+1;
end
end
BERps_sim(cv)=Error_ PS/ (N) ; %Calculate errors/bits
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The next step is how to find the BER in realistic environment that involves a digital
receiver that is not perfectly synchronized. This step is the main contribution of this thesis. This
code (part #2) starts with using values of noise (nl and n2) to find the two received streams
(rl and r2). Then, the two received streams are used to find the two combined streams
(S1g_est and S2g est). When the two combined streams are produced, they are fed to the
Gardner technique. Each combined stream is represented by complex numbers, so each stream has
real part and imaginary part. Consequently, there are four streams of bits that can be used in the
timing error detection. After producing the four streams of bits, the initial values for the operation
of error detection and correction are introduced. The following code connects the Alamouti

technique with the Gardner technique and sets the initial values:

QPSKAlamouti Gardner.m: Baseline Alamouti technique and BER calculation.

%% Alamouti technique with Gardner technique (part #2)

nl=sigma*noisel; $Generate the first part of noise
nZ2=sigma*noise?2; $Generate the second part of noise

rl = S1.*hl + S2.*h2 + nl; %The received signal at (t)
r2=-conj (S2) .*hl + conj(Sl).*h2 + n2;

%$The received signal at (t+T)
Slg est=conj (hl).*rl + h2.*conj(r2);

$Stream#l of combined signals
S2g_est=conj (h2) .*rl - hl.*conj(r2);

$Stream#2 of combined signals

% Clock recovery Gardner technique

 Feed the first stream of bits to Gardner technique

S1 real=zeros(l, N*Tsym/2); %A memory for preallocaing

S1 imag=zeros(l, N*Tsym/2); S$A memory for preallocaing

for tr=1:N*Tsym/2

S1 real(tr)= [real(Slg est(tr))];%Real bits(In-phase channel)

S1 imag(tr)= [imag(Slg est(tr))];%Imaginary bits (Quadrature
%channel)

O o

end
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% Feed the second stream of bits to Gardner technique

S2 real=zeros(l, N*Tsym/2); %A memory for preallocaing
S2 imag=zeros(l, N*Tsym/2); %A memory for preallocaing

for tr=1:N*Tsym/2
S2 real(tr)= [real(S2g est(tr))];%Real bits(In-phase channel)
S2 imag(tr)= [imag(S2g est(tr))];%Imaginary bits (Quadrature

%channel)
end
%% Detection and correction
tau=0; %Initial value for tau
delta=Tsym/2; %$The shifting value before and after
tthe midway sample
center=60; %The assumed order for the first

o)

midway sample

memory for preallocaing

memory for preallocaing

memory for preallocaing

memory for preallocaing

memory for preallocaing

Six values of Gardner algorithm are
sused to

al=zeros (1,N/2-1);
a2=zeros (1,N/2-1);
( )
)

>

4

a3=zeros(1,N/2-1
ad=zeros (1,N/2-1
remind=zeros (1,N-1);
avgsamples=6;

4

>

o 00 o° o0© o° o° 0O o
e

%find the average

stepsize = 1; % Correction step size

rit=0; % Iteration counter

GApl = zeros (l,avgsamples) ;%A memory for preallocaing
GAp2 = zeros(l,avgsamples) ;%A memory for preallocaing
apl=zeros (1,N/2-1); %A memory for preallocaing
ap2=zeros (1,N/2-1); %A memory for preallocaing
tauvector=zeros(1,1900); %A memory for preallocaing
uor=0; %A counter for the tau vector

After producing the initial values, a loop is created for sampling operation. This includes
four main sections (two sections for each combined streams), and each combined stream is used to
find error samples (GAp1l and GAp2) which are used to find the average of the Gardner algorithm
(gardaverage). Then, the loop filter is used to shift the samples depending on the value of tau.

In addition to the loop filter, the next Matlab code shows how to save “remind’ values which are
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necessary to plot the convergence behavior. The code also illustrates how to find the tau vector that
is important to find the Mean Squared Error (MSE). Moreover, the next code demonstrates how to

achieve the correction operation.

QPSKAlamouti_Gardner.m: Sampling, error detection, loop filter, and correction.

for ii= (Tsym/2)+1:Tsym:length(S1 real)-(Tsym/2)+1
rit=rit+1; %A counter

o)

% Sampling the real part for stream#l

midsamplel=S1 real (center); %$The midway sample
latesamplel=S1 real (center+delta); %The late sample
earlysamplel=S1 real (center-delta); %The early sample
al(rit)=earlysamplel; $Save samples
subl=latesamplel-earlysamplel; %Subtraction operation

Q

% Sampling the imaginary part for stream#l

midsample2=S1 imag (center); %The midway sample
latesample2=S1 imag (center+delta); S%The late sample
earlysample2=S1 imag (center-delta); %The early sample

a2 (rit)=earlysample?2; %Save samples
sub2=latesample2-earlysample?; sSubtraction operation

¢}

% Error detection for streamil

GApl (mod (rit,avgsamples) +1)=subl*midsamplel+sub2*midsample?;
%Gardner Algorithm

% Sampling the real part for stream#?2

midsamplelp2=S2 real (center); 3The midway sample

latesamplelp2=S2 real (center+delta); %The late sample

earlysamplelp2=S2 real (center-delta);%The early sample

a3 (rit)=earlysamplelp?2; %Save samples

sublp2=latesamplelp2-earlysamplelp?2; %$Subtraction operation

% Sampling the imaginary part for stream#?2

midsample2p2=S2 imag (center); %The midway sample

latesample2p2=S2 imag(center+delta); %The late sample

earlysample2p2=S2 imag (center-delta);sThe early sample

ad (rit)=earlysample2p?2; %Save samples

sub2p2=latesamplel2p2-earlysample2p?2; S%$Subtraction operation

$ Error detection for stream#2

GAp2 (mod (rit,avgsamples)+1)=sublp2*midsamplelp2+. ..
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sub2p2*midsamplel2p?;
%$Gardner Algorithm
gardaverage=mean (GApl+GAp2) ; %Finding the mean

% Loop filter
if gardaverage> 0
tau = -stepsize; %$Shift by decreasing
else
tau = stepsize; %$Shift by increasing
end
% Safe remind values
remind (rit)=rem( (center-Tsym/2),Tsym);%Save remind values to
%find convergence plots
% tau vector
if rit>=100 && rit<2000 %tau vector from 100 to
%2000 where the convergence happens
uor=uor+l;
tauvector (uor)= (remind(rit)- (Tsym/2))."2;
end 3Difference between the
%estimated tau & the optimal tau
% Correction
center=center+Tsymt+tau; $Adding the tau value
if center>=length(S1 real)-(Tsym/2)+1 %Break the loop when
%the midway sample reaches to 51
$samples before the last sample
break;
end
end

Next, the Mean Squared Error (MSE) is computed. After computing the MSE, bits of the
first stream are combined, and the same thing happens to bits of the second stream. Then, the all
bits are combined to have the final received bits that are used in the BER calculation. After that,
the speed of convergence is plotted for each SNR value. Then, the simulated BER is calculated for
the part #2 which involves using the Alamouti technique with the Gardner technique. Finally, the
simulated BER baseline code (part #1) and the simulated BER of new Alamouti-Gardner

technique (part #2) are plotted by using the next code:
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QPSKAlamouti_Gardner.m: MSE, data combination, BER calculation (part #2), convergence plot,
and BER plot.

o)

% Mean Squared Error (MSE)
MSE (cv) =mean (tauvector) ; %Finding Mean Squared Error
% Combine bits of stream#l
for f=1:N/2-1
apl(f)=[(al(f))+ (a2 (f)*1i)];%Recombine complex numbers

end
% Combine bits of stream#2
for f=1:N/2-1
ap2(f)=[(a3(f))+(ad4 (f)*1i)],; %Recombine complex numbers

end
% Combine all bits
for f=1:N/2-1
a(2*f-1:2*f)=[apl(f) ap2(f)];%Recombine complex numbers of

end %all bits
%% convergence plot
figure

symbols = 200;

subplot(2,1,1);

plot (remind (1l:symbols), "*=");

hold on

1iml=40*ones (1, symbols) ;
1lim2=60*ones (1, symbols) ;

plot (1iml, 'r');

hold on

plot (1im2, 'r');

title('Convergence plot for QPSK-Alamouti-Gardner');
ylabel ('tau axis'), xlabel('iterations')
legend( ['SNRdAB=' int2str (SNRdAB(cv))]):;
axis ([l symbols 0O Tsym]);
subplot(2,1,2);

symbols = 2000;

plot (remind (1l:symbols), "*=");

hold on

1liml=40*ones (1, symbols) ;
1im2=60*ones (1, symbols) ;

plot (1iml, 'r');

hold on
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plot (1im2, 'r');

title ('Convergence plot for QPSK-Alamouti-Gardner');
ylabel ('tau axis'), xlabel('iterations')

legend( ['SNRdAB=' int2str (SNRdAB(cv))]):;

axis ([l symbols 0O Tsym]);

%% Calculating the simulated BER for part #2

Error=0; %Initial error
for k=1:N-2 $Hard decision is used
if (real(a(k))> 0 && real(data(k))==-1/sqgrt(2))|]|...
(real(a(k))< 0 && real (data(k))==1/sqgrt(2))
Error=Error+1;
end

)===1/sqgrt(2)) | 1]...

if (imag(a(k))> 0 && imag(data (k)
(k))==1/sgrt(2))

(imag(a(k))< 0 && imag(data
Error=Error+1;

end
end
BER sim(cv)=Error/ (N-4); %Calculate errors/bits
end

%% Plot BER Vs SNR

figure

semilogy (SNRAB, BERps sim, 'b-', 'LineWidth',2);%Plot SNR Vs. BER
(part #1)

hold on

semilogy (SNRdAB,BER sim, 'r—-', "LineWidth',2); %Plot SNR Vs. BER
(part #2)

title('SNR Vs. BER plot for QPSK-Alamouti-Gardner');
legend ('Baseline Alamouti', 'Alamouti-Gardner');
ylabel ('"log BER');

xlabel ("SNR in dB'");

The above Matlab codes represent the new baseline codes of the Alamouti technique and
the Gardner technique which work with each other for the first time. The following figures states

the convergence plots for QPSK- Alamouti - Gardner (QAG) technique with SNR vs. BER plot:
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Figure 3.62: QPSK- Alamouti-Gardner technique, SNR=5 dB
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Figure 3.63: QPSK- Alamouti-Gardner technique, SNR=10 dB
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Figure 3.64: QPSK- Alamouti-Gardner technique, SNR=15 dB
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Figure 3.65: QPSK- Alamouti-Gardner technique, SNR=20 dB
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Figure 3.66: QPSK- Alamouti-Gardner technique, SNR=25 dB
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Figure 3.67: QPSK- Alamouti-Gardner technique, SNR vs. BER plot
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The next table reveals the MSE values that are corresponding to the SNR values for the
new QPSK- Alamouti - Gardner (QAGQG) technique.

SNR 5dB 10 dB 15dB 20 dB 25dB

MSE 12.9716 7.7863 6.0137 5.1711 5.1016
Table 3.11: states MSE vs. SNR values for QPSK- Alamouti - Gardner (QAG) technique

The five techniques are used with QPSK - Alamouti - Gardner technique. The results
illustrate that features and characteristics of these five techniques are the same as those that are
mentioned in BPSK - Gardner technique. This thesis consider the QAG - third technique as the
best technique because its features. These features include a faster convergence and less
complexity in the design of wireless communication systems. The third technique also has the
same SNR vs. BER plot that results from the QPSK - Alamouti - Gardner (QAG) technique.
Additionally, the QAG - third technique has MSE values that are close to the MSE values of the
QAG technique (see table 3.13). The following section explains the QAG - third technique and

states its results.

3.18 The third technique to improve the QPSK-Alamouti- Gardner (QAG)
Technique

The third technique uses the Matlab code of QPSK-Alamouti- Gardner (QAG) technique
except the average filter code. This technique eliminates the average filter from the error detection
operation, so the value of the Gardner algorithm is directly used in the loop filter. Also, the step

size, which is used in this technique, is equal to 2. The following code demonstrates that:

QAG _thirdtechnique.m: Error detection and loop filter.

¢}

% Error detection for stream#l
GApl=subl*midsamplel + sub2*midsample?; %$Gardner Algorithm

[e)

% Error detection for stream#2
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GAp2=sublp2*midsamplelp?2 + sub2p2*midsamplel2p?; sGardner Algorithm
%"”"gardaverage” finding

gardaverage=GApl+GAp2;

% Loop filter
if gardaverage> 0

tau = -stepsize; sShift by decreasing
else

tau=stepsize; %$Shift by increasing

end
The convergence plots and SNR vs. BER plot are shown below:
S Convergence plot for QAG - Third Technique
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Figure 3.68: QAG - third technique, SNR=5 dB
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Figure 3.69: QAG - third technique, SNR=10 dB
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Figure 3.70: QAG - third technique, SNR=15 dB
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Figure 3.71: QAG - third technique, SNR=20 dB
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Figure 3.72: QAG - third technique, SNR=25 dB
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Figure 3.73: QAG - third technique, SNR vs. BER plot

The next table reveals the MSE values that are corresponding to the SNR values for the

QPSK- Alamouti - Gardner (QAG) - third technique.

SNR 5dB 10 dB 15 dB 20 dB 25dB

MSE 14.4800 9.4526 6.4126 5.0232 3.7600

Table 3.12: states MSE vs. SNR values for QPSK- Alamouti -Gardner (QAG)- third technique

3.19 Summary and comparison of the five techniques that work with QPSK-

Alamouti -Gardner (QAG) Technique

It is worthwhile to summarize the five techniques that are introduced to work with QPSK-

Alamouti -Gardner (QAG) technique. Moreover, the summary gives a clear picture about the
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benefits and features each technique. In order to facilitate the process of comparison, the
convergence plots, when SNR is equal to (25 dB), are included. Furthermore, the tables of Mean

Squared Error (MSE) are stated for each technique.

Convergence plot for QAG- Baseline Technique
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Figure 3.74: QAG -Baseline technique and first technique , SNR=25 dB
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Figure 3.75: QAG- second technique and third technique, SNR=25 dB
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Figure 3.76: QAG- fourth technique and fifth technique, SNR=25 dB
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SNR 5dB 10 dB 15dB 20 dB 25 dB
QAG 12.9716 7.7863 6.0137 5.1711 5.1016
technique
QAG first 21.0232 12.7121 7.7305 6.0637 4.2716
technique
QAG second 45.7153 36.9111 35.3679 34.0842 33.8011
technique
QAG third 14.4800 9.4526 6.4126 5.0232 3.7600
technique
QAG fourth 12.2179 5.6453 3.8116 2.7189 2.2516
technique
QAG fifth 7.2853 4.0642 3.7274 2.4884 2.0600
technique

Table 3.13: Summary of MSE of all techniques with QAG technique

The analysis of the above results states that all five techniques have a faster convergence.
Moreover, all the five techniques have the same SNR vs. BER plot, so they have the same BER
behavior. In term of the MSE values, each technique has different MSE values. However, behavior
of the BER proves that these MSE values do not affect the performance of the five techniques. In
term of the complexity of the wireless receiver design, each technique also has its own complexity
because it depends on the use of filters in the structure. Generally, the third technique presents
good solutions which include increasing in convergence speed, reducing the complexity of the
wireless receiver design with having the same BER behavior and reasonable MSE values.

Finally, analyzing the results state that the first hypothesis has been realized which states
that “the new algorithms improve the digital communication system performance in term of the

convergence speed with reducing the complexities of the communication system design”.
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3.20 Limitations

One of the important things that should be taken into consideration in wireless
communication system is data rates. When high data rates are used in a wireless communication
system, this allows for the researcher to get a clear picture and accurate results. However, the high
data rates require a high speed in the processing to avoid being late. As a result, to increase the
speed of processing, this requires a big memory and a high CPU speed in the lab computer. These
big memory and high CPU speed are usually expensive.

The other limitation is the noise that is produced from external and internal environment
which is not known. The external noise is the noise that comes from outside sources such as
atmospheric noise, extraterrestrial noise, and industrial noise. The internal noise is the noise that
is generated within communication systems such as thermal noise. Because these kinds of noise

are not known, it is hard to estimate their impacts in the proposed algorithms.

116



Chapter 4

Conclusion and Future Research

4.1 Conclusion

The importance Symbol synchronization techniques have increased due to the increased
demand on the bandwidth and the quality of services. Wireless communication systems face
difficulties due to the increased noise and Rayleigh fading. The additional components, which are
added to improve wireless systems, may increase the processing time and computational
complexities of wireless communication systems. In addition, using wireless networks are
growing rapidly which increases the problem of multipath fading.

The Alamouti technique is used to reduce the Rayleigh fading effects in the digital
communication systems. Moreover, this thesis uses Quadrature Phase Shift Keying (QPSK) which
has the ability to transmit high data rates. Furthermore, the Gardner technique is a symbol
synchronization technique that is improved by this thesis. This thesis introduces new techniques to
improve the performance of symbol synchronization by reducing complexities in wireless receiver
design and by increasing the convergence speed with having the same BER measurements and
reasonable Mean Squared Error (MSE) values.

In this thesis, the Alamouti space-time code technique is written for QPSK modulation
scheme to work in realistic environment that involves a timing synchronization technique. We
compare the bit error rate (BER) of the Alamouti decoder when synchronized using the proposed
algorithms with the ideal results found in the literature, and we find them to be similar, proving

that the synchronization algorithm is in fact achieving optimum synchronization.
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4.2 Future Research

The modulation schemes that are used in this thesis are BPSK and QPSK. So, it will be a
good idea to use different modulation schemes to evaluate the performance of the new five
techniques. In addition, the channel conditions that are involved in this thesis include Additive
white Gaussian noise (AWGN) and Rayleigh fading. Consequently, other types of fading can be
taken into the consideration to analysis the performance of the five techniques.

For the timing correction, this thesis assumes simulate the impact of the interpolator by
assuming that there are 100 samples per symbol. So, other interpolation techniques can be
implemented for the timing recovery. Another scenario of Alamouti technique can be implemented
by using two transmitters and two receivers. Furthermore, hardware implementation can be
accomplished to obtain results and verify them with the simulation results in terms of convergence
speeds, MSE values, BER measurements, and the level of complexities in wireless

communication systems.
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