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Predicting Cholera Positive Cases in Haiti

by Jessica Young

While Western countries typically run census surveys frequently,
poorer countries such as Haiti do not have the money to do so; thus
research into how Haitians live is severely lacking. Furthermore,
studies that do exist tend to be not only old and outdated, but also
lacking in depth. Using new census data recently collected from
Haiti, I attempt to predict if certain behaviors and living situations
can be used as indicators for determining if someone has cholera.
Challenges for exploring this data center on getting the surveys into
a format suitable for analysis and the severe class imbalance between
the number of cholera positive people and cholera negative peo-
ple. Numerous solutions to this problem are attempted including
using different sampling techniques, using ensembles with models
like CART and SVM, and Bayesian model averaging. Better survey
designs and questions to add to future surveys are also discussed.
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Chapter 1

Introduction

Poorer countries tend to be the same countries that suffer from large
scale health problems. Understanding how and why these diseases
sprout up and spread so quickly in these countries is of utmost im-
portance in saving lives there. One of the ways to do this is to collect
socio-economic data on the citizens and attempt to create a model to
accurately predict who will get sick. While this thesis will be using
newly collected census data from Haiti, no attempt will be made to
extrapolate any predictive findings to the state of Haiti nor will the
data be used to answer any socio-economic questions. This data is
going to be used in the thesis because it is new and has not yet been
analyzed, thus there is not existing knowledge on how to handle the
data. This thesis only attempts to analyze the data in the capacity of
being able to find models that can accurately and precisely reflect the
data provided.

There are significant problems with the data that arose over the
course of this thesis. The first and most immediate problem was that
the survey from which the data came from was poorly created and
saved. This meant that a large portion of time had to be dedicated to
cleaning the data, properly extracting, and trying to make sense of it
all. Nearly all of the predictors recorded in the data were also cate-
gorical which required extra care when modeling was done. How-
ever the most significant problem overall was that the response vari-
able was severely imbalanced. The response takes on two values that
indicate whether or not the person has cholera; 94% are cholera nega-
tive and only 6% are cholera positive. This imbalance presents a large
challenge since traditional techniques fail to accurately predict the
minority class (Grzymala-Busse, Stefanowski, and Wilk 2005). Thus
the goals of this thesis are to use relational and socio-economic data
from Haiti to try to predict Cholera positive cases with traditional
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and new methods as well as explore approaches to dealing with im-
balance in the data.

Preprocessing will be used since the survey data is not fully filled
out. Imputation will be used to fill missing values in when necessary.
Some questions are numerical (ie age and number of children) which
will initially be left out to make the first pass at the analysis focused
on only binary variables. Some of the questions are unstructured
questions (fill in the blank) which will be left out. This is due to the
nature of the answers which vary greatly and need to be put into
categories. For example, some answers could say ’back’ and others
’back pain’ which should be the recognized as the same, but without
text mining to create categories for the data, could not be viewed as
the same in a prediction model.

Methods that will be attempted will focus on trying to properly
predict cholera positive cases more so than predicting cholera nega-
tive cases since only about 6% of the data is cholera positive. These
methods can be broken down into two categories: sampling tech-
niques and model modifications. Sampling techniques include over-
sampling, under-sampling, synthetic minority over-sampling tech-
nique (SMOTE), borderline-SMOTE, and adaptive synthetic sampling
(ADASYN). Together with these five sampling techniques, models
will be created with a baseline version of the data set to show the im-
provement these techniques make as well as an augmented version
of the data set.

Since survey sections mostly include categorical or binary data,
methods like trees and SVM are obvious techniques to with which to
start. SVM is tested with two different kernels: the Gaussian kernel
and the Laplace kernel which is thought to be better for binary data.
A novelty detection method is also used (one-class SVM) with two
different kernels: the Gaussian kernel and the Laplace kernel. Bag-
ging, boosting, and random subspace learning is also implemented
with a mixture of the aforementioned methods to try to increase
the predictive rates. Bayesian model averaging (BMA) on trees, aka
Bayesian Aggregate Regression Trees (BART), is compared to non-
Bayesian model averaged trees (random forest). The results of this
comparison suggested random forest had potential to be even bet-
ter and thus weighted random forest, balanced random forest, and
weighted & balanced random forest are also run.
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Overall there are 246 different models created (five basic models:
trees, SVM, novelty detection, model averaging, and random forest;
four ensemble augmentations: bagging, boosting, random subspace
learning, and none; and six sampling techniques: over-sampling,
under-sampling, SMOTE, borderline-SMOTE, ADASYN, and none).
The results from these models suggest that the classification prob-
lem for this data set is very difficult. This could suggest that the data
is poor and little to no signal can be determined from it or that the
problem has a naturally high Bayes’ risk.

This thesis intends to explore a novel data set from Haiti and
methods that can be employed to properly predict the minority class
when the data is severely imbalanced.
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Chapter 2

Literature Review

2.1 Dealing With Imbalanced Data

In general, imbalanced data can be described a few ways: intrinsic
imbalance, extrinsic imbalance, relative imbalance, or absolute rar-
ity. Intrinsically imbalanced data is data that has class imbalance
due to the nature of the data. On the other hand, extrinsically imbal-
anced data is data that is not actually imbalanced but appears to be
so because where/when the data was gathered makes the data im-
balanced. Relative imbalances mean that even if more data is added,
the proportional imbalance remains the same. Similarly, absolute rar-
ity occurs when the minority class is limited and/or rare to actually
occur. In these cases, where the minority class is truly rare and hard
to record, subconcepts of the minority class become much harder to
capture which results in making classification that much harder. Sub-
concepts exist when a class can be broken down into smaller more
distinct sections which are called subconcepts. If these subconcepts
actually exist within the minority class, then another type of imbal-
ance called within-class imbalance is present. This is commonly cre-
ated by noise which makes determining these subconcepts difficult
to do. Furthermore, things like data complexity and small sample
sizes makes each type of imbalance that much harder to predict (He
and Garcia 2009).

For heavily imbalanced data, there are two general methods for
dealing with the imbalance. The cost sensitive learning approach
deals with giving a high cost to misclassifying the minority class that
you’re trying to predict. In this way, the goal becomes minimizing
the overall cost by minimizing the cost of misclassifying the minority
class. The other approach is to use a sampling technique (Chen,
Liaw, and Breiman 2004).
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Sampling methods require that you modify the data in order to
created a balanced distribution before modeling. This is typically
done when modeling with the imbalance is difficult, which may not
always be true. The most common methods are to either down-
sample the majority class (use fewer observations from the major-
ity class to make the size of the class smaller) or to over-sample the
minority class (reuse the same observations from the minority class
to make the class size larger). By increasing the class size of the
minority class, you increase their weight but do not increase infor-
mation about the class. Thus while random oversampling appends
more data to the original dataset and can lead to overfitting, ran-
dom under sampling removes data and thus removes information.
A third sampling technique called SMOTE, synthetic minority over-
sampling technique, combines over-sampling and down-sampling
but instead of bootstrapping, creates synthetic examples of the mi-
nority class. In general, prior research has shown that for trees, co-
ercing the data to have equal class priors is effective and that over-
sampling does worse than under-sampling. In both cases, the test-
ing error tends to be far worse than the training error (He and Gar-
cia 2009) (Chen, Liaw, and Breiman 2004). Empirically, both under-
sampling and over-sampling have shown to improve the accuracy
of the minority class (Hernandez, Carrasco-Ochoa, and Martínez-
Trinidad 2013).

Under-sampling can be modified to help prediction power and to
avoid losing information. One example of this is called EasyEnsem-
ble which is a supervised learning approach to under-sampling. In
this case, multiple subsets of the majority class are taken and ran-
domly combined with the minority class and fit with classifiers. Bal-
anceCascade is another supervised learning algorithm but created
an ensemble of classifiers to determine which majority class exam-
ples to undersample. For our purposes, simple under sampling will
be used for a better comparison against simple over sampling. There
is also a multitude of KNN under sampling methods (NearMiss-1,
NearMiss-2, NearMiss-3, and the most distant method) which work
fairly well but are computationally expensive and therefore will not
be considered (He and Garcia 2009).

Synthetic sampling is also commonly used to combat imbalance
in data. The most common is called SMOTE which creates artificial
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data from the existing data based on the similarities between minor-
ity class observations. Although SMOTE is powerful, it tends to over
generalize and create large variance. Part of this problem is due to
SMOTE creating new synthetic points without consideration to over-
lapping between the classes. Thus the lines that separate one class
from another become blurred and hard to pinpoint (He and Gar-
cia 2009). SMOTE has some very nice theoretical properties when
dealing with high dimensional data. While SMOTE adds data to
the minority class, the overall expected value of the minority class
is not changed and the variability is reduced. Furthermore, there is
no correlation introduced between variables, however some is intro-
duced between observations. Since SMOTE modifies the Euclidean
distance between test samples and the minority class, the test sam-
ples tend to be more similar to the SMOTE samples. Lusa concludes
that SMOTE reduces bias towards the majority class in KNN, SVM,
CART, and random forest (Lusa and Blagus 2013).

Borderline-SMOTE works like SMOTE, except that it determines
‘danger’ points which are points on the borders that can be easily
misclassified. The algorithm takes these points and creates synthetic
observations for the minority class to clean up the border. Empir-
ically, borderline-SMOTE tends to produce high true positive rates
and F-values (Han, Wang, and Mao 2005). On the other hand, ADASYN
(adaptive synthetic) uses a density distribution and changes the weight
of different minority examples to make up for the imbalance (He and
Garcia 2009). Empirically, ADASYN improves the accuracy of both
the minority and the majority classes without a preference for either
one (He et al. 2008).

Data cleaning techniques can also be used help clean up the im-
balance. One method called Tomek links helps to get rid of any
overlapping between the majority and minority classes. It find the
smallest distance between two neighbors of opposite classes and if
they are closest to each other and no other point (from either class)
is closer to either one then the pair of points is considered to be ei-
ther noise or near a border. Either way all Tomek links are removed
until all nearest neighbors are of the same class. For the sake of this
research, Tomek links will not be considered because removing so
much data can lead to a serious loss of information (He and Garcia
2009).
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While resampling at the data level is popular, this often comes
with numerous problems. These techniques try to make each class
have equal prior probabilities even though the optimal distribution is
not actually known. Furthermore, if the resampling is ineffective or
not done properly, then information about the majority class can be
lost and the minority class being resampled so often could produce
overfitting. There is an extra learning cost associated with processing
the data for resampling that is usually unavoidable (Sun et al. 2007).

Regular classifiers tend to do poorly on imbalanced data because
they focus on minimizing the overall error which neglects the mi-
nority class that one is trying to properly predict. Thus when these
methods are used, the accuracy may be high, but the minority class
tends to be misclassified more than the majority class. When con-
sidering disease diagnostic data in particular, the preferred classi-
fication gives more weight to properly predicting the disease than
not (Sun et al. 2007).

Other methods for dealing with imbalanced data are numerous.
Cost-sensitive decision trees that are not pruned can be used to easily
see what would determine a class. On the other hand, cost-sensitive
neural networks have also been used when the problem is too com-
plex for other methods. However neural networks are very com-
plex and computationally expensive, thus they will not be consid-
ered. Kernel-based methods are also numerous for dealing with im-
balanced data such as kernel SVM. Additional methods include one-
class SVM and novelty detection which both focus on learning the
minority class instead of trying to learn both classes at once (He and
Garcia 2009).

In Chen, Liaw, and Breiman 2004, sampling techniques are com-
pared with balanced random forest and weighted random forest.
For balanced random forest, down-sampling is combined with the
CART algorithm to create a tree based on a bootstrapped sample of
the minority class and the same size sample of the majority class.
Each tree creates splits that search through a pre-specified number of
variables. After all the trees are created, the predictions are then ag-
gregated together. By using the down-sampling technique, the ma-
jority class losses some information. However this is rectified by
creating a multitude of trees from different samples of the major-
ity class. On the other hand, weighted random forest does not up
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nor down-sample the data at any point. Instead the minority class
is given a much higher weight than the majority class at the begin-
ning. The weights are used when finding splits for the tree; the Gini
criterion is weighted by the specified class weights. Further more,
each terminal node gives a prediction based on the specified class
weights. When aggregating the trees together, the final class predic-
tion is given based combining the weighted votes of each tree per
class. For the data sets in the paper, weighted random forest and
balanced random forest seem to perform better than the other sam-
pling techniques and methods tested and the two seem to do equally
well (Chen, Liaw, and Breiman 2004).

In Wang and Japkowicz 2010, Wang and Japkowicz chose to
explore using SVM on imbalanced data sets. They decide to not
use AUC or ROC as measurements of goodness for their models
since they are explicitly interested in determining if the minor class is
properly predicted. Instead they use the geometric mean, true nega-
tive rate, and true positive rate as measures of fit. As they state, pre-
vious papers using SVM on imbalanced data overfit the data. The
authors attempt to mitigate the overfitting by modifying the distri-
bution used in SVM to make a more balanced distribution. To do
this they considered different classifier combinations methods: bag-
ging, boosting, and stacking. Bagging requires weak unstable learn-
ers to work properly, which meant that small changes in the training
set would largely affect the classifier produced which is not reliable.
On the other hand, stacking does not usually combine models of the
same type and thus had to be ignored. This left boosting which could
combine models of the same type and did not require unstable weak
learners.

Other methods of modifying SVM to deal with imbalanced data
included using kernel transformations and biased penalties. The ker-
nel transformation method requires using the kernel on the spatial
distribution instead of the input space with an RBF distance. While
the kernel transformation method is highly effective, it is also very
complex and hard to use correctly. On the other hand the biased
penalty method adjusts the cost factor of false positives and false
negatives directly in SVM. While this method does well at controlling
the true positive rate, it cannot control the true negative rate. Instead
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a combination of methods was created to boost SVM while also us-
ing an asymmetric misclassification cost in an attempt to control both
the true negative and true positive rates. This algorithm is similar to
the regular SVM algorithm with the exception that each SVM cre-
ated is boosted according to a predetermined weight that varies by
class. Each SVM model is only used in the final aggregation if it’s ge-
ometric mean is better than 0. Overall, the boosted SVM classifier
outperforms numerous other methods including boosted SMOTE,
weighted random forest, and other versions of SVM by a landslide.
In fact, this method is always better than SVMs with an asymmetric
cost and L1 norm considered (Wang and Japkowicz 2010).

Using boosting for imbalanced data comes with quite a few ben-
efits. Not only can it be used with most classification methods, but it
automatically eliminates the extra learning cost that other methods
induce like needing to learn what the border points are between two
classes and synthetically creating more when using SMOTE. Boost-
ing can also be implemented with sampling techniques to further
combat the imbalance. SMOTEBoost creates artificial samples after
each boosting iteration so that the minority class is focused on even
more. Whereas DataBoost-IM also creates artificial samples, it does
so based on the observations that are difficult to classify. However
both of these methods are computationally expensive and complex
so they are not often used. A less computationally expensive algo-
rithm that still uses boosting is JOUS-Boost, which jitters the over-
sampled data so that the replicates created are not exactly the same.
JOUS-Boost was shown to provide efficient results with its smaller
runtime. While up-sampling and down-sampling can lead to over-
fitting and loss of information respectively, AdaBoost does not have
these problems. Furthermore, AdaBoost can also potentially reduce
the bias of some classification methods. However, without modi-
fying AdaBoost improved prediction performance of the minority
class is not guaranteed since AdaBoost is accuracy-oriented. A mod-
ified version of Adaboost that is auc-oriented is used in this thesis
instead of JOUS-Boost and SMOTEBoost (He and Garcia 2009) (Sun
et al. 2007).

One can introduce cost items into the AdaBoost algorithm in or-
der to modify it to predict the minority class better. This paper cre-
ates 3 different ways of updating the algorithm which are referred to
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as AdaC1, AdaC2, and AdaC3. Another variation of the AdaBoost
method is AdaCost which is also a variation of AdaC1 but requires
a more ad hoc way of selecting the cost adjustments. RareBoost is
another example of a variation of Boosting being modified by a cost
item. However RareBoost is not used when focusing on the minor-
ity class because it requires that the true positive rate is larger than
the false positive rate which is the problem the minority class faces
in imbalanced data. Besides AdaC1, AdaC2, AdaC3, and AdaCost,
CSB2 is another boosting method that can be used that follows a sim-
ilar cost scheme. All 5 variations of AdaBoost increase the weights of
false negatives more than false positives in order to favor the minor-
ity class, however each scheme differently weights true positive and
true negative predictions. With the exception of AdaC1, all of these
methods can achieve a higher recall value than precision value. Both
AdaC2 and AdaC3 are sensitive to their cost setups where making
the cost of the minority class smaller makes the recall dramatically
worse. On the other hand, AdaC1 and AdaCost are insensitive to the
cost setups, but AdaCost has higher values of recall in most cases.
Overall though, AdaC2 produces better results than the other meth-
ods considered. These versions of Adaboost are ignored for this the-
sis though since the focus is on comparing different methods instead
of numerous similar methods (Sun et al. 2007).

Besides not being able to use most of the same classification tech-
niques as non-imbalanced data, imbalanced data also needs to be
evaluated differently. Some regular model evaluation methods like
accuracy and overall error favor the majority class since they are con-
sidered with getting the highest overall prediction rate which tends
to rely on the majority class. One can instead use the F-measure to
determine if the classification method used is properly predicting the
minority class which takes into account recall and precision equally.
Alternatively, one can use the geometric mean (G-mean) which gives
the average between the true positive rate and the true negative rate
in cases when predicting both classes properly in a concern. On the
other hand, the ROC curve can also be used to show how well the
classifier does. In this case, a pictorial representation gives a bet-
ter idea of how the classification method does compared to random
guessing and one can use it to easily compare multiple methods.
The ROC curve does not allow for a single overall winner unless the
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curve is clearly dominating over the other curves at every aspect of
the graph (Sun et al. 2007).

2.2 Model Averaging

Model averaging is a method designed to use multiple models when
predicting. It works using a set of weights such that every model
is assigned a specific weight where the sum of all weights consid-
ered must be 1. When predicting, average across all weighted model
predictions to determine a single prediction.

m∑
i=1

wm = 1

m∑
i=1

wmfm(x)

Model weights can be determined in numerous ways, but Bayesian
Model Averaging(BMA) is the most common (Hansen 2007). BMA is
used when there are numerous models that are reasonable, but there
is no one clear winner among them. Similar to how lasso drives some
variables to 0 so that the more relevant variables have a larger im-
pact on the prediction, BMA drives some variable’s weights closer to
0 through model weights(Amini and Parmeter 2011).

Using BMA, one can avoid the unnecessary risk of selecting a sin-
gle model by using multiple models. In general, a posterior distribu-
tion for data is generically give as:

posterior =
prior× likelihood

evidence

pr(Mk|D) =
pr(Mk)pr(D|Mk)

pr(D)

=
pr(Mk)pr(D|Mk)∑K
l=1 pr(D|Ml)pr(Ml)

=
pr(Mk)

∫
pr(D|θk,Mk)pr(θk|Mk)dθk∑K
l=1 pr(D|Ml)pr(Ml)

Averaging over all of the models available will on average give a bet-
ter prediction than using any single model available. While Bayesian



2.3. Survey Design 13

model averaging seems useful because of this, there are a few set-
backs for it that make it difficult to implement in most cases. Deter-
mining which class of models to average over, integrals implicit in
the posterior, determining how many models to average over, and
specifying the prior distribution of models are all ways in which
BMA is difficult (Clyde 2003) (Hoeting et al. 1999).

Determining which class of models over which to average over is
up to the researcher who can average all models available for use or
a subset using Occam’s window. Using Occam’s window (and Oc-
cam’s razor) to determine which models to use works fairly well in
making sure there are not too many models to average over. The in-
tegrals in the posterior can be simplified using methods like Markov
chain Monte Carlo method, MLE approximation, or even simpler the
BIC approximation. Using MLE approximation would mean that the
posterior no longer relies on the prior. Using the BIC tends to work
well in most cases and is an easy way to approximate the posterior
of each model. The prior distribution of models can be determined
using a uniform distribution on the model space that gets updated
with imaginary data from the domain expert (Clyde 2003) (Hoeting
et al. 1999)(Wasserman 2000).

The weights in BMA can be determined with the BIC as:

wm =
exp(−.5BICm)∑M
j=1 exp(−.5BICj)

where BICm is the BIC of model m. It is possible to use the AIC
instead of the BIC if getting an estimator with low loss is impor-
tant(Hansen 2007).

2.3 Survey Design

When designing a survey, determining the method for collecting in-
formation is one of the crucial initial steps to undergo. This should
be decided based on the type of information being sought as well
as the people being surveyed. In general, some survey formats are
mail questionnaires (which are cheap and easy but have a low re-
sponse rate) or interviewing (which takes a long time to do and de-
pends on the skill of the interviewer). Developing countries tend
to use interview surveys because a majority of the population could
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be illiterate and numerical questions may confuse the interviewees.
For interviews, one could write up a standard set of questions to be
asked at each house, or write out a list of information needed at each
house but leave the exact wording of the question to the interviewer.
On the one hand, using all of the same exact questions is reliable in
that everyone will know the same information when asked, but may
not produce valid results if anyone is confused on what the question
means. On the other hand, if you allow the interviewer to phrase the
questions as they like then the interviewer could phrase the ques-
tions differently so that each person fully understands what is being
asked, however by doing this responses are no longer comparable.
More often than not, a combination of the two is used (Raj 1971).

A clean and nice looking form should always be used when it is
given to the respondent. Questions should be simple and clear and
be kept to a minimum. When the form is not given to the respondent
then attractiveness is no longer a concern, instead the form should be
easy to fill out and obvious if/when different parts need to be filled
out by different people. In general, forms can usually be divided
into three parts: respondent identification questions, classification
questions, and the survey topics to be answered. The order questions
are asked is also very important and should be logical so as to not
confuse the respondent. Questions should begin interesting so that
the respondent is more likely to continue answering and they should
make the respondent feel comfortable so that they are more inclined
to answer more intimate questions (Raj 1971).

When creating the question content, it is important to make sure
that respondents could accurately answer them without bias or guess-
ing on their part and to make sure that they are willing to answer
them. It is also imperative that questions are not biased in one di-
rection. Furthermore, it is important to make sure the wording of
each question is clear and that respondents will know each word of
the question. Good question wording will use the simplest words to
show the exact what you want to ask. Two different questions types
to consider for surveys are closed questions (ie multiple choice) or
open questions (ie short/long answer). In the case of closed ques-
tions, analysis is easy since everything is coded already, but people
may be forced into a category that they do not belong. more often
than not, when given a range of options, people tend to choose the
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middle road option even if it is not true. Open questions allow the
respondent to answer exactly how they want to, but coding the an-
swers becomes tricky (Raj 1971).

Sensitive questions should generally be placed last in a survey
since respondents make react negatively and stop answering the sur-
vey. This way, if they do quit the survey, there is still enough in-
formation gathered that it could be considered completed. Further-
more, a rapport could be built between the interviewer and the re-
spondent by this point in the survey so the respondent could be
more comfortable and answer the question. Unlike sensitive ques-
tions, related questions should not be placed last unless it makes
sense. These questions should always follow the question they re-
late to and should make clear that they are related to the previous
question so that respondents do not get confused. It is important
that these questions follow a logical sequence to ‘evoke reflexive re-
sponses’ (Rea and Parker 1992).

Some questions could be considered screening questions mean-
ing that they are placed in the survey to determine if the respondent
is qualified to answer the following questions. Thus if they are not,
then one can clearly mark the question telling them to skip whatever
follow up questions are stated. When a question is truly important
or sensitive, a reliability check may be needed in the survey to de-
termine consistency. In these cases, a second question is asked later
in the survey that aims to measure the same response as an initial
question. Both questions ask the same thing but in different ways
(ie two different multiple choice questions where the answers could
be a range of likeliness for one question and a range of emotions for
another). The reliability check would be if the respondent answered
each question in a specific way then you can assume they pass the
check. In general, there should not be many open ended questions
and they should be placed late in the survey. Sometimes a survey
can end in an open-ended venting question to ascertain how the re-
spondent feels overall about specific subject matters or the survey in
general. Surveys should try to stay short and include questions that
only gleam the necessary information the researcher needs. Extra-
neous questions can distract from the primary focus of the survey
goals. More importantly, as more questions are added and as ques-
tions become more complex, the survey can be seen as even longer
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and prevent many from completing it (Rea and Parker 1992).
Survey nonresponse can often occur when collecting data for a

variety of reasons. The problem with survey nonresponse is that it
could be entirely random or there could be a systematic reason for
the nonresponse. While it is entirely possible that nonresponse could
be random, it is rare for it to be so. Nonrespondents tend to differ
systematically from respondents thus imputing on these instances is
highly desirable for pattern recognition (Rubin 1987).

Single imputation is the most common method for dealing with
missing values. This would fill in a single value for each missing
value. By using single imputation, complete-data methods can then
be used to analyze the data, such as SVM. Furthermore, if using sin-
gle imputation then the data collector could fill in the missing val-
ues themselves if they knew what the values should be (ex the data
collector could be a member of a small town and know the ages of
townsfolk that had not filled out their age). Single imputation how-
ever comes with the downside of assuming that the single answer
you fill in correctly represents that observation when in reality, it
could be entirely off (Rubin 1987).

Multiple imputation comes with all the advantages of single im-
putation but also has the advantage of reflecting sampling variabil-
ity. Instead of replacing the missing values with only one value, m
multiple values are imputed where m is usually between 2 and 10.
Multiple imputation is designed for when there is a modest amount
missing values, but not an overall large amount. The disadvantage
to multiple imputation is that it requires more storage space, more
work in imputing, and is also more difficult to analyze. This extra
work and storage can be modest if the amount missing is also mod-
est (around 20%) and reaps benefits such as sensitivity to models and
valid inferences for models (Rubin 1987).
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Chapter 3

Data Description

3.1 Survey Design

The Haiti census survey was created in Haitian Creole so that natives
could fully understand the questions. The survey was created and
collected in Microsoft Word and implemented in different villages
on different days throughout 2015. In general, sections are broken
down into the developments, and then areas. Surveys in the same
development were completed within a week of one another whereas
sections were completed weeks apart. After each development com-
pleted the survey, they were all saved in the same Microsoft Word
file with the name of the section and the date it was completed as the
title; for developments that needed more than one day to complete
the survey, the surveys are stored in different files based on the day
they were completed . Surveys in different areas and sections, how-
ever, were not all saved together. In total the survey consists of six
distinct sections. To see a blank survey that excludes the name ques-
tions, see A. The survey responses analyzed in this thesis come from
the following sections and developments:

TABLE 3.1: Survey Sections and Developments

Section Development Number of Files
Boukan Michel Basen Kayiman 1
Boukan Michel Chapel 3
Chanpay Marikongo 2
Chanpay Savi/Sent Mari 2
Chanpay Vedrin 1
Mago Bado 2
Mago Dolan 1
Mago Fon Milo 2
Mago Ibo 2
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The first section consists of fourteen unstructured fill in the blank
style questions that help determine what the respondent’s household
looks like for family members and where it is located. The date and
survey code are first recorded, followed by the section, area, and de-
velopment they live in. The number of yards that their house has
is also recorded. This section also asks how many homes they own,
and how many significant others, boys/men, girls/ladies, total peo-
ple, adults/elders, and children live with the respondent. The sec-
tion ends by asking for any additional information the respondent
wants to share at this point.

After the first section concludes, the respondent then gives in-
formation about family members (including themselves) in the next
three table sections. The first table section asks for information on
any family member that is currently living with the respondent. The
basic name, age, and sex questions are asked first followed by asking
what the highest grade level completed by the person was and what
their current job is. From there, ten health and behavioral questions
are asked that require yes or no answers. These questions ask if the
person has had/currently has cholera, if they drink coffee, if they
drink hard water, if they drink alcohol, if they smoke, if they chew
tobacco, if they’ve had an operation, if they have dizziness, if they
have headaches, and if they have hypertension. A follow-up ques-
tion asking the respondent to detail any other diseases their family
members have is asked and then the section ends with by asking if
each family member goes to the hospital.

The second and third table sections ask the same questions as the
first, but each asks less questions than the section before it. The sec-
ond table section asks about family members that live elsewhere in
Haiti whereas the the third table section asks about family members
that are currently living abroad. The second table section asks the
age, sex, and highest grade level completed of the family member
as well as where they are currently living and what their current job
is. The health/behavioral questions asked include: if the person has
had/currently has cholera, if they drink coffee, if they drink alcohol,
if they smoke, if they chew tobacco, if they’ve had an operation, if
they have headaches, and if they have hypertension, other diseases
they have, and if they go to a hospital. The third table section asks for
the name, age, sex, highest grade level completed, how long they’ve
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been out of the country, and where they are currently. The only
health/behavioral questions this section asks about are whether or
not the person has cholera, if they drink coffee, if they drink alco-
hol, if they smoke, what other diseases they have, and if they go to a
hospital.

The fourth table section is the shortest and asks the respondent
about recently deceased (within the past 5 years) family members.
The only information recorded for these family members is age, sex,
where they lived when alive, previous illnesses, what they died of,
and where they died.

The final section of the survey consists of eighteen questions that
are a mix of fill in the blanks and categorical questions. The aim
of this sections was to determine the living situation of the respon-
dent. Questions start by asking about the type of house, type of roof,
and type of flooring in the house and then move into sanitary mea-
sures. These measures include asking if water is treated (yes or no),
what type of treatment is used (categorical), if there is a bathroom at
the house (yes or no), and what how they go to the bathroom (cat-
egorical question about if they dig a hole, have a toilet, etc.). After
the sanitary questions, the survey moves on to asking general house-
hold questions: if the house cuts trees for firewood (yes or no), where
they breed animals (fill in the blank), if there’s a garden (yes or no),
what the land is used for (categorical), if they have specific animals
(a list of fourteen common farm animals and common pets is given),
if there are any pregnant women in the household (yes or no), their
ages (space is alloted for up to six answers), whether these women
will go to a hospital (yes or no), and how sicknesses/illnesses are
handled in the house (categorical). The survey ends by asking the
respondent to list three development issues they’d like worked on,
if they have any advice for A.S.B (the creators of the survey), and if
there’s anything else they have to add to the investigation.

3.2 Data Transcription

Extracting the data from the survey proved fairly difficult since the
data was saved in numerous tables and paragraphs in multiple Mi-
crosoft Word documents. Initial attempts to extract the data included
converting the Word documents to plain text files and attempting to
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read in different sections separately with preexisting Word to CSV
functions in R. The method that worked the best was eventually
found to be the following: first copy the entire file over without any
images (there’s a header image that was not needed for the extrac-
tion) into another Word file, next save the file as HTML, and lastly
using the XML library in R to read and parse the HTML file with the
htmlTreeParse function. From there, the surveys can be separated by
section easily by using regular expressions (regex) methods. For the
first and last section, all answers can also be easily found by using
regex to search for the question.

For the four table sections, extracting the information was not as
straightforward. As with the first and last section, the sections were
found using regex to pull the information between section headers.
After pulling the information, it was necessary to determine how
many rows in the table were actually filled in. To do this, it was deter-
mined that if there was no capital letter followed by at least one lower
case letter (accented letters were included for both searches since ev-
erything was recorded in Creole), then the row must be blank. This
was determined optimal because if the name columns had been filled
in then there should be at least one lower case letter, whereas if they
were left blank then the row would only read ’MF’ and ’WN’ repeat-
edly. Any rows that were not filled in were automatically ignored
from the rest of the process. From there each row became a string
in a list. Each string was constantly trimmed and regex was used to
help extract the responses to each question. The trimming was neces-
sary because there was a collection of yes (W) no (N) questions that
made it difficult to pull the answers from normally if any of them
had been skipped or filled in incorrectly.

There were numerous problems when trying to extract the in-
formation for analysis that stemmed from the format of the survey.
Since Microsoft Word had been used, the tables that were created
gave unusual spacing between columns. Sometimes answers in columns
next to each other would appear right next to each other and other
times there would be as many as twenty-five spaces between the an-
swers. This was caused from the way the answers were recorded.
For the yes/no and gender questions, instead of filling in one an-
swer per question, these columns were further broken down into two
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more columns each contained one possible answer pre-filled in. Re-
spondents needed to thus erase/delete the answer that they did not
select. This meant that if the respondent skipped the question then
both answers would remain filled in which made determining which
question was not filled in properly difficult. Eventually it was dis-
covered that if a question was not properly filled in, then there would
be eight or less spaces between the two possible answers whereas if
two columns were properly filled in then their answers would have
anywhere from eleven to twenty-five spaces between them. Further-
more, the third table section included an excess two columns in the
middle of the table which just created even more spaces between an-
swers.

Any question that allowed respondents to write in their own an-
swers also had numerous problems. These answers are particularly
difficult to analyze because there’s a multitude of ways each per-
son wrote their responses. For example, some people would write
’Doule’ others wrote ’doule’ and others wrote ’douel’ when asked
what other diseases family members had. This is made even more
difficult since sometimes people would add on to their answers fur-
ther. While some people would give one worded answers, others
would give phrases, but most just did not answer these questions.
While these answers could be coerced into categories, it requires an
intimate knowledge of both written Creole and Creole shorthand to
do so. Shorthand can be seen in the school level and age questions.
When answering the ages of family members, ages under one years
old were given in shorthand to reflect either months (written with
an m next to a number), days (written with a j next to a number), or
even hours (written with an e next to a number). The shorthand for
days and months was similar to French and could be easily verified
but uncovering that ’e’ meant hours was not nearly so easy to con-
firm since hours is not a common way to report age. When asked
for the highest level of education, every answer was given in short-
hand. While some could be deciphered as being in primary school or
high school (answers ending in ’eAf’) others were impossible to de-
termine even after extensive research into Haiti’s school system (like
answers ending in ’es’ or just ’e’).

Other problems with the data revolved around question clarity.
For example, the first three table sections all asked if the person had
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any other diseases yet most people left this question blank. It is un-
known whether the blanks mean that they had no other diseases or if
they did not want to answer the question. This is further confounded
by the fact that sometimes people would write ’Anyen’ meaning
’nothing’, thus it is unclear whether the survey creators intended for
people to write down ’Anyen’ if there were no other diseases to re-
port or not. Another clarity issue comes from not clearly marking fol-
low up questions in the survey. The last section asks whether or not
there are any pregnant women in the household and then has two
follow up questions asking for their ages and whether they would
go to a hospital for the delivery. These were not clearly marked as
follow-up questions though as evidenced since most people that said
there were no pregnant women in their household still answered if
they would go to a hospital.

Further confusion arose on the side of data analysis when trying
to determine what each question was asking. Each table section had
only key words written as column headers for the questions which
required translating and some detective work to clarify. There was
one question that no amount of translating or detective work could
solve though: ’Li gen Larouli’. It translates directly to ’It(he/she) has
Larouli’ which would imply that Larouli is some type of disease, but
in reality it does not exist at all. What the survey creators probably
meant was ’lawouli’ which means dizziness. Since Creole is origi-
nally a spoken language and not a written one, ’larouli’ could very
well be how most people pronounce the word, but without speaking
to the survey creators it is unclear if the mistake is a spelling error,
if the creators wrote down how one would pronounce the word to
make it more obvious, or if "Lawouli" means something else entirely
different.
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Chapter 4

Methodology

Data analysis will be broken into two parts: baseline and augmented.
The baseline data refers to all the predictors in 4.1 and the cholera re-
sponse whereas the augmented data refers to all the predictors in 4.1
and 4.2 with cholera as the response. There are a few reasons to use
two different versions of the data. For the sake of the analysis, start-
ing with a data set that is made up of variables of the same type make
analysis more straightforward since they can all be treated the same
way. Furthermore, by comparing a baseline data set that consists of
questions from only the first table to an augmented data set that con-
sists of questions from each section, a comparison can be made that
determines if more variables is necessarily better.

While logistic regression is possible for this problem type, it is not
included in the scope of this thesis because there were sampling er-
rors that occurred when using sampling techniques and ensembles.
Resampling sometimes yielded training sets where only one level of
a multi level predictor appeared which made the logistic regression
model inestimable. Although there was a lot of time dedicated to fix-
ing this problem, with the limited time available logistic regression
was not considered. There had however been results from logistic
regression with no sampling technique done that mirrored results
given by CART.

* While the survey claims this predictor is ’Larouli’, further re-
search into the translation provides that the word could be misspelled
and instead might be ’Lawouli’ which means dizziness.

Before trying to classify the data, five sampling techniques will be
used: over-sampling, under-sampling, SMOTE, borderline SMOTE,
and ADASYN. Another pre-processing technique that is employed
as well is imputation which cleans up the missingness in the data so
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TABLE 4.1: Predictors in Baseline Data

Predictor Variable Type Defined
Coffee Binary Do they drink coffee?
HardWater Binary Do they use hard water?
Alcohol Binary Do they drink alcohol?
Smoke Binary Do they smoke?
ChewTobacco Binary Do they chew tobacco?
Operation Binary Have they had an operation?
Larouli* Binary Do they get nauseous?
Migraines Binary Do they get migraines?
HyperTension Binary Do they have hyper tension?
Hospital Binary Have they been hospitalized?

TABLE 4.2: Additional Predictors in Augmented Data

Predictor Variable Type Defined
Age Numeric Age of person
Gender Binary Gender of person
Schooling Categorical Highest level of schooling attained
HaveFamilyElsewhere Binary Do they have family members
InHaitiWithCholera elsewhere in Haiti with cholera?

HaveFamilyAbroad Binary Do they have family members
WithCholera abroad with cholera?

HaveFamilyThat Binary Do they have family members
DiedofCholera that died of cholera?

No.HomesOwned Numeric How many homes do they own?
No.PeopleInHouse Numeric How many people live in their house?
TreatWater Binary Do they treat/clean their water?
WaterTreatmentUsed Categorical What sort of treatment do they use?
Bathroom Binary Do they have a bathroom in their house?
BathroomMaterials Categorical What type of bathroom is it?
LandUse Categorical What is their land used for?
Firewood Binary Do they use firewood?
Garden Binary Do they have a garden?

that SVM can be used. To keep things simple, imputation on any bi-
nary predictors just uses the median. Cross validation is used to help
train and optimize models. All models were tuned with 50 repeti-
tions of cross validation. The following models are then created with
training sets of the data: trees, SVM, and novelty detection. Each of
these methods will also be modified in different ways. Trees will be
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run as trees, bagged trees, boosted trees, and random subspace learn-
ing trees. SVM and novelty detection is run as SVM/novelty detec-
tion, bagged SVM/novelty detection, and random subspace learn-
ing SVM/novelty detection. SVM and novelty detection will also
explore two different kernels: the Gaussian Radial Basis Function
kernel and the Laplace kernel. Ensemble methods to be used include
random forest and Bayesian additive regression trees. Random forest
is also modified to show balanced random forest, weighted random
forest, and balanced and weighted random forest. Each method will
be compared using the F-measure, the G-mean, AUC, the sensitivity,
and the specificity.
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4.0.1 Cross-Validation

Cross validation is used when creating a model to ensure that a model
is created that is accurate without over-fitting. To begin with, a data
set will be defined as:

D = {(xi, yi)
iid∼ PXY (x, y), i = 1, . . . , n}

≡ Given data set

≡ L ∪ V ∪ T

≡ T c ∪ T

L ≡ Training set

used for learning (fitting) a model

V ≡ Validation set

used for tuning hyperparameters withing training set

T ≡ Test set

used for proxy to prediction/generalization

TABLE 4.3: Cross Validation visual

T c

v1 v2 v3 . . . vm

T

v1 v2 v3 . . . vm

v1 v2 v3 . . . vm
...

v1 v2 v3 . . . vm

You can visualize cross
validation as cutting up the
data set into your training
and test set by making them
two separate sections of the
data. To start cross val-
idation, you split up the
training set into m different
chunks. decide on m, the
number of chunks you want
to split the training set into.
This should split it up evenly
so that each chunk has the same number of observations. Starting at
the first chunk, v1, and continuing to the last chunk,vm, you would
disregard one block at a time and train the model with the rest of the
chunks in the training set. For each model created, you would then
calculate the CV error of each model. The optimal model is then cho-
sen based on the smallest cross validation error. Before going into
details, here are some need-to-know calculations necessary for cross
validation.
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For `1, `2, . . . , `|L| ∈ L
Training Error

err(f ;L) =
1

|L|

|L|∑
i=1

`
(
Y`i , f(x`i)

)
Validation Error

err(f ;V) =
1

|V|

|V|∑
i=1

`
(
Yvi , f(xvi)

)
Test Error

err(f ; T ) =
1

|T |

|T |∑
i=1

`
(
Yti , f(xti)

)
Step-By-Step Cross Validation

for (r in 1:m)

1. leave out rth chunk (vr)

2. train the function f on T c without vr and form f̂(·, T c\vr, α) ≡
f̂ (−r)(·) ≡ estimator built without rth chunk

3. err(f̂ (−r), vr) = 1
|vr| Σ

(xi,yi)∈vr
`(yi, f̂

(−r)(xi))

4. cv(α) = 1
m

∑m
r=1 err(f̂

(−r), vr,m)

When you need to tune for hyperparamteters, you would simply
put the above loop inside another loop that would run through a
sequence for the hyperparameter. You would then choose the setting
of the hyperparameter such that

αopt ≡ argmin
α∈set

{cv(α)}

4.1 Sampling Techniques

4.1.1 Over-Sampling

Randomly over-sampling the minority class consists of just two steps:
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1. Determine the difference in size between the majority class,
Smaj and the minority class, Smin

d = |Smaj| − |Smin|

2. Bootstrap a sample of size d, with replacement, from the mi-
nority class. This sample is then added to the minority class
to increase the size of the class to be equal to the size of the
majority class.

4.1.2 Under-Sampling

Randomly under-sampling the majority class is just as straightfor-
ward as over-sampling.

1. Determine the difference in size between the majority class,
Smaj and the minority class, Smin

d = |Smaj| − |Smin|

2. Randomly select d observations in the majority class and re-
move them. This way the size of the majority class is reduced
to be equal to the size of the minority class.

4.1.3 SMOTE

Synthetic minority oversampling technique (SMOTE) increases the
size of the minority class by creating synthetic samples. For non-
continuous variables, this is done by taking the majority vote of the
observation vector being considered and its k nearest neighbors. This
majority vote is the value given to the new synthetic sample created
for the minority class. For continuous variables the difference be-
tween the observation being considered and its k nearest neighbor
is found and then randomly multiplied by a number between 0 and
1. This product is then added to the original observation’s variable
amount to produce the new synthetic amount.

xnew = xi + (xKNNi − xi)× δ, δ ∈ [0, 1]
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One of the major advantages to using SMOTE is that the synthetic
minority observations created cover a region that the data does not
normally reflect. By creating these new minority observations, clas-
sifiers are better able to predict when observations belong in the mi-
nority class (Chawla et al. 2003)(He and Garcia 2009).

KNN

In KNN, classes are assigned to points based on what their nearest
neighbors classes are. KNN is flexible in that you can choose what
distance measure to use and different distance measures can pro-
duce different predictive results. KNN can be modified with weights
when dealing with class imbalance. In this way, observations from
the minority class are weighted more heavily than those from the
majority class in an attempt to more correctly predict when an obser-
vation is from the minority class. The general algorithm is:

• given data D = {(x1, Y1), . . . , (xn, Yn)} where xi ∈ X p, Yi ∈
{1, . . . , c}

• First decide on a distance measure to use and k, the number of
neighbors to consider

• For point x∗, compute the distance between it and each point

• Rank all the distances in increasing order

• Determine x∗’s class via the most frequent label in x∗s k nearest
neighbors

4.1.4 Borderline SMOTE

Borderline SMOTE is an extension of SMOTE that focuses on creating
synthetic points that are considered to be in the ’danger’ set. For the
most part, the algorithm follows SMOTE.

1. Determine the set of k nearest neighbors, SNN , for each obser-
vation in the minority class, xi ∈ Smin

2. For each xi considered, determine the number of nearest neigh-
bors that belong to the majority class, |SNN ∩ Smaj|
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3. Select observations such that:

m

2
≤ |SNN ∩ Smaj| < m

These observations are considered to be in the danger set since
the observation, xi, is in the minority class but has more near-
est neighbors in the majority class than minority class neigh-
bors and are thus more likely to be misclassified. However if
all of the nearest neighbors are from the majority class, then
the observation is considered noise and not to create synthetic
observations.

4. These observations are then put through the normal SMOTE
algorithm to create synthetic points that exist only along the
border of the minority and majority classes.

(He and Garcia 2009)

4.1.5 ADASYN

ADASYN (adaptive synthetic sampling) takes a similar approach to
borderline SMOTE in that it attempts to determine which observa-
tions need help in being predicted properly.

1. First ADASYN determines how many observations need to syn-
thetically created by multiplying some number from 0 to 1 (this
is a parameter that can be adjusted in cross validation) by the
difference between the size of the majority class and the minor-
ity class.

G = (|Smaj| − |Smin|)× β, β ∈ [0, 1]

2. Next, the k nearest neighbors of every single observation(xi) in
the minority class are found and the ratio τi is calculated by
dividing the number of k nearest neighbors(δi) that belong to
the majority class by the number of neighbors considered (K)
and then by diving that quotient by Z which is a normalizing
constant. The normalizing constant ensures that

∑
τi = 1 and

is therefore a distribution function.

τi =
δi/K

Z
, i = 1, . . . , |Smin|
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3. Now the number of synthetic samples that need to be created
for each minority class observation is determined by finding
the product of G and τi

gi = G× τi

4. Finally, gi synthetic observations are created via regular SMOTE
for each xi ∈ Smin.

(He and Garcia 2009)

4.2 Models

4.2.1 Trees

Decision trees partition the input space into q disjoint regions such
that:

X = Ri ∪R2 ∪ · · · ∪Rq (4.1)

=

q⋃
l=1

Rl (4.2)

The prediction in each region in Rl consists of a single constant,
f(x), which makes trees a piecewise constant function estimator.

This partitioning is created using the response variable and a cri-
terion. At each split, variables are scanned and one is chosen to create
a rule. A threshold is created with this variable and the splitting con-
tinues until reaching a stopping condition which determines a node
to be a leaf. At each node, the label is determined by majority rule.

For binary classification, the most common criterion are:

Misclassification :1−max(p, 1− p)

Gini :2p(1− p)

Entropy/Likelihood :− plog(p)− (1− p)log(1− p)

4.2.2 SVM

SVM uses symmetrical margins around a decision boundary to de-
termine which points are closer to the decision boundary. In general,
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the margin should be as large as possible so that the separation is as
clean as possible. One disadvantage of using SVM is that there can be
no missingness in the data, thus imputation is sometimes necessary.
The decision boundary is determined as follows:

SVM

h(x) = sign

(
n∑
i=1

αiyix
T
i x+ b

)

We want to maximize the margin such that:

Margin =
2

||w||

where w is the p-dimensional vector of the coefficients of the vari-
ables.

Thus we want to maximize the margin subject the the w that al-
lows most all observations to be classified correctly. Using the ker-
nel trick, SVM can make non-linear boundaries by projecting into a
higher dimension. Kernel SVM also allows us to avoid directly com-
puting the inner product xTx by instead having us compute φ(x)Tφ(x)

as a kernel (similarity measure). In these cases, SVM is solved via
quadratic programming (Seung-Seok, Sung-Hyuk, and Tappert 2010).

Kernel SVM

h(x) = sign

(
n∑
i=1

αiyiφ(xi)
Tφ(x) + b

)

h(x) = sign

(
n∑
i=1

αiyiK(xi, x) + b

)

There are numerous kernels that can be used for classification.
Two kernels that will be used are the Gaussian Radial Basis Function
(RBF or RBFdot) and the Laplace kernel.
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RBF

K(xi, xj) = exp(−δ||xi − xj||22)

δ ≡ bandwidth

Laplace

K(xi, xj) = exp(−δ||xi − xj||1)

δ ≡ (usually) inverse of the number of predictors

4.2.3 Novelty Detection

In novelty detection, the objective is to properly recognize when some
data is different from the rest of the data. Typically, this method is
used when one class has overwhelmingly more observations than
another class, thus making it the majority class. The training set data
only comes from the reference class, which should just be the ma-
jority class. The test data is then a mixture of both the minority and
majority class. We assume that the minority class is in low density
regions and since everything in the minority class is considered an
outlier, both x̄ = (x̄1, . . . , x̄p)

T (the vector of sample means of each
predictor) and s = 1

n−1
∑n

i=1(xi − x̄)(xi − x̄)T (the vector of sample
standard deviations of each predictor) are heavily influenced. Part of
novelty detection involves density estimation of the one class which
is normally difficult to do because covariance must be estimated and
if the covariance is non-homogeneous then this estimation becomes
very complicated. The basic steps of density estimation are:

• for x1, x2, . . . , xn
iid∼ fx(x, θ)

• Estimate the density function fx(x; θ) using f̂x(x; θ)

• Get the contours,ĥ(x), of fx(x; θ)

• Set τ , the threshold of wrong predictions of the rare class

• Define reference, boundary, and novelty observations as the
following

– reference= C(τ) = {x ∈ X , ĥ(x) < τ}

– boundary= B(τ) = {x ∈ X , ĥ(x) = τ}
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– novelty= N(τ) = {x ∈ X , ĥ(x) > τ}

By using φ(xi) instead (where φ : X → F brings values of X
into some higher dimension F) in the density, more complicated se-
tups where the boundary is not spherical can be handled. Instead of
estimating a covariance, kernels could be used instead which would
make the algorithm essentially like one-class SVM. In one-class SVM,
the model is trained only on the minority class and then tested on
both the minority and majority class. By training only on the minor-
ity class, the algorithm aims to learn only the minority class so that
when it is given both the majority and minority classes from the test
set it can more accurately find minority class observations(Pimentel
et al. 2014).

4.3 Ensemble Methods

4.3.1 Random Forest

In random forests, numerous trees are created and then aggregates
across all the trees created to determine the classification of each ob-
servation.

f̂
(B)
RF (xnew)

argmax
y ∈ Y

{ 1

B
{I(f̂ (b)(xnew) = y)}

}
For random forest, the general algorithm consists of creating each

tree and storing them for aggregation when predicting:
for (b = 1 to B)

• Draw a bootstrap sample from the data

• Build the bth tree, f̂ (b)(·)

– at each node, only q variables are considered (where there
are a total of p variables and q ≪ p and q was selected a
priori)

– Select the best split (xjk, τk), k = 1, . . . , q out of the q se-
lected variables

– Do not prune the tree

– Store f̂ (b)(·)
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• Aggregate predictions of the ensemble to make the final pre-
diction of each observation in the test set

Balanced Random Forest

To accomplish balanced random forest, the class priors of the train-
ing set are st to be equal either through over-sampling or under-
sampling. Since under-sampling does better with trees, that is how
random forest will be run to achieve equal class class priors. Bal-
anced random forest runs similarly to random forest but with one
twist at the beginning of each iteration:

for (b = 1 to B)

• Draw a bootstrap sample from the minority class with replace-
ment and randomly draw the same amount from the majority
class

• Build the bth tree, f̂ (b)(·)

– at each node, only q variables are considered (where there
are a total of p variables and q ≪ p and q was selected a
priori)

– Select the best split (xjk, τk), k = 1, . . . , q out of the q se-
lected variables

– Do not prune the tree

– Store f̂ (b)(·)

• Aggregate predictions of the ensemble to make the final pre-
diction of each observation in the test set

(Chen, Liaw, and Breiman 2004)

Weighted Random Forest

In weighted random forest, the goal is to place weights on the class
priors of the response in the training set such that these class weights
penalize misclassifying the minority class more than the majority
class. This is accomplished by placing class weights in two places
in the random forest algorithm: at each terminal node and at the
final class prediction. Thus at each terminal node, predictions are
made by weighted majority vote. The final class prediction is then
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made by aggregating these weighted votes in each individual tree.
The individual trees are weighted by the average weight of all their
terminal nodes(Chen, Liaw, and Breiman 2004).

4.3.2 Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) takes the idea of Bayesian
model averaging and applies it directly to the CART algorithm to
produce a sum-of-trees models. Similar to random forest, BART
sums up the predictions of each tree it creates to help determine test
predictions. The only difference is that instead of averaging the sum
of the predictions like random forest, BART imposes a prior on each
tree to make the predictions small. This way, each prediction is con-
strained to be a small piece of the total prediction (similar to how
weighted random forest gets its final prediction) such that when all
of these pieces are added up the sum represents the final prediction.

f̂BART (xnew) =
B∑
b=1

f̂ (b)(xnew)

Similar to gradient boosting, BART creates priors based on the
strength of predictions from each tree. This is accomplished using
iterative MCMC (1200 loops are used for this Haiti data set) where
the residuals from each model tell the strength of the tree and thus
determine the weight of the tree(Chipman, George, and McCulloch
2010).

4.3.3 Boosting

Boosting essentially searches and obtains different learners for dif-
ferent portions of the data with each new learner leading to an ag-
gregate performing better than the previous. Adaboost is a version
of boosting which is fairly robust to overfitting. Adaboosting’s algo-
rithm is as follows:

• Set T, the total number of base learners

• Choose a base learner (ie tree or SVM)
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• Given the dataD = {(xi, yi), i = 1, . . . , n, y ∈ {−1,+1}, xi ∈ X},
initialize w atw(1) = w

(1)
1 , w

(1)
2 , . . . , w

(1)
n wherew(1)

i = 1
n
≡weight

of observation i

• For t=1 to T

– train base learner, ht

– calculate the error,εt, of ht by determining the AUC of ht

– determine if ht passes pre-specified criteria to be a good
enough base learner

– compute strength of ht; this determines the weight of model
ht

αt =
1

2
log(

1− εt
εt

)

– update the weights of all the observations i = 1, . . . , n

∗ w̃t+1
i = w

(t)
i exp{−αtyiht(xi)}

∗ wt+1
i =

w̃t+1
i∑T

t=1 w̃
t+1
i

Thus, f̂boost(x) = sign
(∑T

t=1 αtht(x)
)

(Buhlmann and Hothorn
2005)

4.3.4 Bagging

Bagging is an ensemble method that is actually bootstrap aggregat-
ing. Bootstrapping refers to the method of resampling the data with
replacement. Bagging is implemented to help reduce the variability
of models that may be unstable(like classification trees). However if
the model is stable, then bagging has been shown to slightly degrade
the performance of the model(Breiman 1996). Lee also states that the
jth element in a bagged predictor is defined as:

1

M

M∑
m=1

G(X,w(m))j

wherew(m) represents the weight of bootstrapm andG() is the func-
tion that gives the predictions(Lee and Clyde 2004).

In general, bagging consists of three basic steps:

1.) Draw a bootstrap sample from the data
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2.) Train a model based on the bootstrap sample and store in the
bag of models

3.) After created all the models wanted, average the predicted val-
ues of all bootstrap models in bag of models on the test set

Random Subspace Learning

Random subspace learning is just like bagging, with one exception:
instead of using all of the predictors, random subspace learning uses
only some. One heuristic to determine the number of predictors used
is to round

√
p, where p is the number of predictors, to the nearest

integer.
Similar to bagging, random subspace learning follows a few basic

steps: In general, bagging consists of three basic steps:

1.) Randomly select d ≈ √p variables to use

2.) Draw a bootstrap sample of the d variables from the data

3.) Train a model based on the bootstrap sample and store in the
bag of models

4.) After created all the models wanted, average the predicted val-
ues of all bootstrap models in bag of models on the test set

(Skurichina and Duin 2002)

4.4 Performance Metrics

All models created will be compared using a few different perfor-
mance metrics since there is no one metric that is necessarily better
than the rest. All of the metrics used will be derived from the confu-
sion matrix found in 4.4.

TABLE 4.4: Confusion Matrix

Predicted Values
Negative Positive

True Values Negative TN FP
Positive FN TP
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TN = True Negative, observations that were properly predicted as negative

TP = True Positive, observations that were properly predicted as positive

FN = False Negative, observations that were improperly predicted as negative

FP = False Positive, observations that were improperly predicted as positive

TPR =
TP

TP + FN
≡ True Negative Rate

FPR =
FP

FP + TN
≡ False Positive Rate

4.4.1 AUC

AUC refers to the Area Under the ROC Curve. The ROC curve is
formed by plotting the true positive rate versus the false positive rate
(as the y and x values respectively) and is often used to determine
how well a model does at prediction compared to random guessing.
The AUC is thus the area underneath this curve which can be found
by calculating the integral of the ROC curve. However, as He and
Garcia 2009 mentions, optimizing AUC does not mean that sensi-
tivity and precision will also be optimized. In this case, optimizing
sensitivity is a priority so AUC will only be used as an additional
metric for comparison between models. AUC determines the proba-
bility that the model will rank a cholera positive instance higher than
a cholera negative instance.

4.4.2 Sensitivity

Also known as recall, this refers to a model’s ability to properly de-
termine when observations are positive for a disease (in this case,
when they do have cholera).

=
TP

TP + FN

4.4.3 Specificity

This refers to a models ability to properly determine when observa-
tions are negative for a disease (in this case, when they do not have
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cholera).

=
TN

TN + FP

4.4.4 F-Measure

The F-measure gives the harmonic mean of sensitivity and precision
to show how well the model is doing at accurately predicting cholera
positive cases.

F −measure =
2× TP

TP+FN
× TP

TP+FP
TP

TP+FN
+ TP

TP+FP

=
2× Sensitivity × Precision
Sensitivity + Precision

4.4.5 Geometric Mean

The geometric mean (gmean) gives a geometric average of sensitivity
and specificity to show how well the model is doing at predicting
both classes overall.

G−mean =

√
TP

TP + FN
× TN

TN + FP

=
√
Sensitivity × Specificity
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Chapter 5

Analysis

Since there was so many models created, to make things easier the
chapter will first be split into two separate sections: the first deals
with the baseline data and the second deals with the augmented
data. Within these sections, models will be compared based on their
base method (trees, SVM, novelty detection, model averaging, and
random forest) and a single "best" model will be chosen from each
of these sections to then be compared to each of the other method’s
"best" model in the conclusion. To determine the "best" model for
each of the following sections, the F-measure, G-mean, and AUC will
be used to pick winners. If there is not clear cut winner from these
three methods then sensitivity will be used to determine the winner.
There are instances for both the F-measure and the G-mean where
’NA’ is reported, however this does not mean that models were not
created. Instead ’NA’ is reported whenever the measure could not
be calculated (for example, the F-measure cannot be calculated when
sensitivity is 0). When comparing tables, it should be noted that there
are occasions when the mean of sensitivity is 0, yet the mean of the
F-measure and G-mean does not reflect it. This is because NAs are
ignored when creating these overall measures (since NA cannot be
treated as a number) and thus the final average and standard devia-
tion only reflect when they could be calculated.

5.1 Baseline Data

5.1.1 Trees

When creating trees, four different methods were explored: regular
trees, bagged trees, boosted trees, and random sub space learning
trees. When the data is left alone and no sampling techniques are
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applied, both the F-measure and G-mean of all but the boosted trees
are incalculable. This is because the sensitivity is always 0. Since
no sampling technique is applied, the severe imbalance prevents the
model from being able to learn anything about the minority class.
This means that every single prediction comes out as being in the
majority class, which gives these models 100% specificity, but 0%
sensitivity. This is, however, flipped for boosted trees where the
sensitivity is 96% but the specificity is only 2%. Sticking strictly to
the best F-measure, G-mean, and AUC, over sampled bagged trees
and SMOTE bagged trees are tied for top spot. Based on sensitivity,
over sampled bagged trees appears to be marginally better than the
SMOTE bagged trees. Although this method is chosen as the best of
the other tree models, it is actually a poor model since the F-measure
and G-mean are so close to 0. It appears that since SMOTE and over
sampling are nearly indistinguishable that the SMOTE algorithm is
optimized in this case when the sizes of the minority and majority
classed are equal. This also tells us that since none of the sampling
techniques with synthetic examples are significantly better that the
synthetic examples created either could not help the minority class
or they were created poorly. In particular, borderline-SMOTE tends
to do poorly in comparison to SMOTE and ADASYN with both low
averages and fairly high variances.

TABLE 5.1: Under-Sampled Trees on Baseline Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .17 .23 .61 .54 .68
SD .01 .01 .02 .04 .01

5.1.2 SVM

SVM was run in two different conditions, one used the Gaussian ker-
nel and the other used the Laplace kernel, and three different model
types, SVM, bagged SVM, and RSSL SVM. Boosted SVM was not
run because continued iterations had difficulty bootstrapping sam-
ples that consisted of at least one of each class in the predictors. This
meant that for each new model created, the training set was ran-
domly pulled from the data and would more often than not give
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predictors that did not represent all possible values of the predic-
tors. Numerous methods were employed to try to combat this prob-
lem, but with the large computing time SVM called for, only a cer-
tain number of attempts could be tried before time constraints deter-
mined the algorithm too difficult to fix.

Although the kernels are different, the results are nearly indistin-
guishable. The Laplace kernel appears to do marginally better than
the Gaussian, but the benefit is so marginal that it does not appear to
matter. Similar to trees, any model run with the baseline data with
no sampling techniques does very poorly. The average F-measure
and G-mean of these models either could not be calculated since ev-
ery model had a sensitivity of 0 or was .02 which is so close to 0
that the ensemble techniques do not seem to help much. Again, this
is because the data has such a severe imbalance problem that it is
near impossible to run a model that ever predicts anything in the
minority class correctly. Besides the no-sampling-technique (origi-
nal/regular) data, borderline-SMOTE once again does very poorly
in comparison to the other sampling techniques used (fairly small
average and fairly large standard deviation). Both under-sampled
RSSL SVM and ADASYN RSSL appear equal for the Gaussian ker-
nel whereas under-sampled bagged SVM is the best for the Laplace
kernel, but again the results are all so close that the methods shown
to be "the best" are only marginally so. While both under-sampled
RSSL SVM and ADASYN RSSL have sensitivities with fairly large
standard deviations, it is the former that has both a higher average
and lower variance.

TABLE 5.2: Under-Sampled RSSL SVM Gaussian Ker-
nel on Baseline Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .17 .22 .60 .48 .73
SD .01 .02 .02 .07 .05

TABLE 5.3: Under-Sampled Bagged SVM Laplace Ker-
nel on Baseline Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .17 .23 .61 .53 .68
SD .01 .02 .02 .07 .04
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5.1.3 Novelty Detection

The novelty detection method used was one-class SVM, thus it suf-
fered the same boosting problems as SVM and could not be used.
However, the two different kernels, Gaussian and Laplace, were still
used in conjunction with novelty detection, bagged novelty detec-
tion, and RSSL novelty detection. Since one-class SVM is only trained
on the minority class, sampling techniques cannot be used to allevi-
ate the imbalanced classes. To clarify this further, only the positive
class is taken and then is split up into training and test sets. For sam-
pling techniques to work, they can only be done on the training set
and thus in this case would only be able to be used on a training set
that has one response level.

The two kernels produce similar F-measure, G-mean, and AUC
results however the Gaussian kernel has clearly higher sensitivity
values. For one-class SVM, bagged SVM actually does the poorest,
with an average sensitivity of 0. Overall novelty detection and RSSL
novelty detection tend to be on par with each other regardless of
the kernel. The non-ensemble version just barely surpasses the RSSL
version in terms of sensitivity though. Both results show some of the
overall highest sensitivity scores of all methods done on the baseline
data set (the only model to surpass these two in terms of sensitivity
is boosted trees on the baseline data set).

TABLE 5.4: ND Gaussian Kernel on Baseline Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .03 .11 .54 .74 .19
SD 0 .01 .02 .05 .02

TABLE 5.5: ND Laplace Kernel on Baseline Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .04 .11 .54 .69 .25
SD 0 .01 .02 .09 .13

5.1.4 Model Averaging

Unsurprisingly for model averaging, the Bayesian method (BART)
does (marginally) better than it’s non-Bayesian twin random forest.



5.1. Baseline Data 45

Under-sampling just barely surpasses the other sampling techniques.
Again the outliers here are the original data and the borderline-SMOTE
models. The original data does so poorly that sensitivity is always
0 and specificity is always 1 (the models always predicts data as be-
longing to the cholera negative class) whereas the borderline-SMOTE
models have have much lower average sensitivity scores (.35) and
highly variable sensitivity scores (standard deviation .12).

TABLE 5.6: Under-Sampled BART on Baseline Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .17 .24 .61 .55 .70
SD .01 .02 .02 .05 .02

5.1.5 Random Forest

By far the most successful models come from the modified random
forest set. Here the lowest F-measure is .67 and the lowest G-mean
is .70 (both belong to weighted and balanced random forest on the
original data). All of the other models tend to be equally good.
The top two models based on F-measure, G-mean and AUC are bal-
anced random forest on the original data and balanced random for-
est with ADASYN. Again the synthetic examples created for SMOTE,
borderline-SMOTE, and ADAYN seem to make no discernible differ-
ence. While SMOTE and the original data are very close for the first
three measures, sensitivity scores show the original balanced ran-
dom forest as the better method with a sensitivity score .03 better
than SMOTE balanced random forest.

Interestingly, while weighted and balanced random forest on the
original data has the worst F-measure, G-mean, and AUC, it also has
the highest sensitivity (.96). However, there is a trade-off with the
specificity (where the average is .06) that shows the model is sim-
ply predicting all the observations as belonging to the minority class
which is simply the opposite of our original problem. Synthetic sam-
pling techniques also had a problem with sensitivity; while they have
the highest averages of the group (.51 to .59), they also have very
large standard deviations (.13 to.18) which renders the high average
useless since models can be so variable.
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TABLE 5.7: Balanced Random Forest on Baseline Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .84 .84 .62 .55 .68
SD 0 0 .02 .04 .01

5.2 Augmented Data

5.2.1 Trees

As with the baseline data set, the models created with the origi-
nal data had 0% sensitivity for every iteration which made the F-
measure and G-mean incalculable. Boosted trees have significantly
lower average F-measure scores than bagged, RSSL, and regular trees,
yet their G-mean scores are in line with the other models. While
the synthetic methods give slightly larger F-measures, over-sampled
RSSL trees actually beats out all of the methods with a slightly larger
AUC and F-measure.

TABLE 5.8: Over-Sampled RSSL Trees on Augmented
Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .18 .23 .61 .47 .75
SD .02 .02 .02 .06 .04

5.2.2 SVM

Again the kernels seem to make nearly no difference to how SVM
does with the data set. The only noticeable difference this time is
that the Gaussian kernel tends to have a slightly higher F-measure
than the Laplace kernel. For both kernels, most of the models were
very close in the performance metrics. RSSL seemed to do the best re-
gardless of the kernel though, with over-sampling just barely beating
SMOTE for the Gaussian kernel and under-sampling barely beating
both ADASYN and over-sampling for the Laplace kernel.
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TABLE 5.9: Over-Sampled RSSL SVM Gaussian Kernel
on Augmented Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .18 .22 .61 .46 .75
SD .01 .02 .02 .05 .04

TABLE 5.10: Under-Sampled RSSL SVM Laplace Ker-
nel on Augmented Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .17 .23 .61 .52 .70
SD .01 .02 .02 .06 .05

5.2.3 Novelty Detection

Not only do the kernels seem to have no effect on the models, but
the ensembles seem to also not matter for the augmented data set.
Both kernels have nearly identical results with only slight changes to
provide a "winner".

TABLE 5.11: ND Gaussian Kernel on Augmented Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .04 .11 .52 .76 .24
SD 0 .01 .01 .05 .02

TABLE 5.12: RSSL ND Laplace Kernel on Augmented
Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .04 .12 .52 .64 .36
SD 0 .01 .01 .09 .08

5.2.4 Model Averaging

Overall, BART tends to do better than non-Bayesian random forest
for each of the three performance metrics. For everything recorded
except sensitivity for BART, all of the synthetic methods have the
exact same results (the exception being that SMOTE has a standard
deviation .01 less than the others in sensitivity). It appears that either
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all synthetic observations created are nearly identical or the synthetic
observations created do absolutely no better regardless of how they
are created.

TABLE 5.13: Under-Sampled BART on Augmented
Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .16 .23 .61 .58 .64
SD .01 .01 .02 .04 .02

5.2.5 Random Forest

Although under-sampling had been doing very well in the other five
sections, it does the worst as far as F-measure, G-mean, and AUC are
concerned. It’s important to remember though that the worst here
means leagues better than the best of any of model type tested (ie
for the F-measure the worst here is an average of .79 with a standard
deviation of .01). Under-sampling also has the highest sensitivity
scores in this section (average .66). In comparison, balanced random
forest on the original data has an F-measure of .97 but a sensitivity
of .02. Over-sampling, borderline-SMOTE, and weighted random
forest for the original data are all guilty of having high F-measure
and G-mean scores and abysmal sensitivity scores. Since the goal
is to correctly identify cholera positive cases, these models cannot
be selected since they clearly fail to achieve this. In fact, none of
the synthetic sampling techniques could be selected since the highest
sensitivity rating they got was .14. In this case, we can be pickier with
the models since the performance metrics are much better overall.
Instead of choosing based on the best F-measure and G-mean, we’ll
pick the "best" model based on the highest sensitivity. In this case it
happens to be under-sampled weighted random forest.

TABLE 5.14: Under-Sampled Weighted Random For-
est on Augmented Data

F-Measure G-Mean AUC Sensitivity Specificity

Mean .79 .85 .60 .66 .54
SD .02 .02 .02 .02 .07
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Chapter 6

Suggestions for Survey Design

6.1 Structure

The survey has a huge fundamental flaw with how it was distributed:
one family member (presumably the head of the household) was
given the survey to fill out on behalf of their family. This meant that
one person had to answer questions about their entire household,
all family members elsewhere in Haiti, all family members abroad,
and all family members that recently died. These questions ranged
from fairly straightforward and simple (gender, age, etc.) to some
very personal and potentially embarrassing questions (do they have
cholera, what medical problems they have, etc.). There’s a number of
reasons that respondents would be inclined to not respond to ques-
tions asked in the survey since they are all fairly personal, but with
this method of distributing the survey non-response bias could be
introduced simply because people do not know these intimate de-
tails about others’ lives. To avoid this problem, surveys could be
distributed to every household and encompass only those currently
living there (and those that recently died that lived in the household),
however this would cost a lot more time and money than what is
currently spent. There is a clear tradeoff between the accuracy of the
data and the time and money spent on the survey process.

Another problem this method of survey distribution introduces
is that people could potentially be double counted. For example, the
head of a household in Chapel could answer questions for a family
member in Sent Mari who is also claimed by another family member
in Marikongo. However since the survey was designed for this dis-
tribution method, the only way to be sure to avoid double counting
individuals would be to check that every name only shows up once
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and that those that do show up more than once are not the same per-
son. This would be very costly in terms of time and money though
since creating a program to check would take a long time and a com-
puter scientist would have to be paid. Overall, this problem does not
affect the analysis done in this thesis, but could affect future analy-
ses if one is interested in estimating the number or percent of people
given a certain attribute.

Another structural problem lies in how the questions are pre-
sented in the survey. The first few questions ask how many people
are living in the household with the respondent, but then instantly
start asking about sensitive information (a lot of medical questions).
These questions could make the respondent want to stop the survey,
lie, or skip the question. The response bias formed from these ques-
tions include: social desirability (from not wanting to break the social
norm, ie saying they do not chew tobacco or smoke), prestige (from
wanting to look good to the interviewer, ie saying they do not drink
or have any diseases), threat (from being anxious about answering
questions, ie becoming anxious when stating medical problems or
how family members died), and hostility (from being angry at being
asked certain questions, ie when asked about education level and
employment). These questions are all very sensitive, but necessary
to ask for the purpose of the survey, however they should be asked
later in the survey so that the respondent has time to build a rap-
port with the interviewer and thus feels more comfortable answer-
ing such questions. To fix this problem, the last section which asks
questions about the respondents living space could be placed at the
beginning of the survey instead.

6.2 Formatting

While Microsoft Word is a powerful tool for writing, it should not
be the tool of choice for creating surveys nor for recording results.
Instead, the surveys should be created with a dedicated survey for-
matter so that the form is as attractive, clean, and organized as pos-
sible. Furthermore, the results for this survey were not stored in any
spreadsheet. Instead, the completed surveys of the same develop-
ment were all saved in the same Microsoft Word file and concate-
nated one after another. This presents multiple problems: first, it
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becomes much more difficult to keep track of all developments that
have completed the survey since they are not all saved together; sec-
ond, saving the survey results as filled in surveys makes it much
more difficult to extract the responses; third, converting the Word
documents into any other form to extract the responses ruins the for-
matting; and fourth, it is not easy to add in more rows for the tables
that the respondents had to fill out.

One of the major problems that was presented when attempting
to extract the data is that by using tables within a Word document,
the spacing between columns is variable. Take for example the first
table in the survey. There are numerous columns side by side that
are dichotomous questions whose responses are recoded with ’W’
or ’N’ in the appropriate column. When extracting responses, these
responses were separated by eight to twenty-five spaces. The spacial
length between columns relied on if the response was recorded with
a space (ie ’W ’ instead of just ’W’), if columns were left blank, if
columns were left all filled in, etc. The space between columns was so
variable and dependent on respondents only filling in one choice that
the extraction progress was hindered by having to create functions to
properly extract and store data.

The survey has numerous formatting problems that greatly hin-
dered the analysis process since more time had to be dedicated to
extracting all the information from the survey properly. The first is-
sue that is most notable is how the dichotomous questions had their
responses recorded. While all other questions were limited to one
column per response, these questions split up their one column in
two (one for each choice). Thus, instead of recording answers simply
as ’W’ (Wi, Yes) or ’N’ (Non, No), responses have to be have an ’W’ or
’N’ in the proper columns. This is made further convoluted because
all of the columns are pre-filled in, thus a blank survey comes with all
’W’ and ’N’ columns filled (or in the case of the question on gender,
’M’ and ’F’). These questions could be made easier to understand by
including written directions for how to handle them. Other solutions
include combining the separated columns into one such that respon-
dents write in the answer and starting the columns as blank (nothing
pre-filled).

Another issue with the formatting was that the third table in the
survey included an excess two columns. These columns did not have
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any questions attached to them, yet they were left in the final version
in the middle of the table. This made extracting the data harder be-
cause it added a variable amount of space between the columns that
were filled in. This problem is easily fixed by just getting rid of the
blank columns which should have been done before the survey was
given out.

Since the survey took place in Haiti, the survey was written in
Haitian Creole so that all residents could understand what was being
asked of them. This presents a problem when translating the survey
if one is not fluent in Haitian Creole. While close to French, there
are numerous differences between the two languages that can cause
confusion which is not easily clarified. Microsoft Word, for example,
does not recognized Haitian Creole as a language and thus when
viewing the surveys in Word, French is as the recognized language
which prevents someone from telling if a word is actually misspelled
or not. An exact translation of the survey would be very useful to
determine exactly what questions are asking and how they should
be answered without spending hours translating them. It would also
be very useful because the survey questions tend to be written with
very little to no spaces used between words. While French can be
used to make educated guesses on where words should end, it can
only help so much when both grammar and spelling are misused.

One of the largest problems this led to was misunderstanding
what one of the questions was asking. The question asked ’Li gen
Larouli’, which when translated roughly gives ’he/she has Larouli’.
Countless hours were spent scouring the internet for Creole dictio-
naries to translate ’Larouli’, but nothing turned up. Originally it had
been assumed to be a specific disease that was rare or had another
name. It wasn’t until a few months after starting to work with the
data that a written response in one of the surveys gave a hint to
what ’Larouli’ could be. A respondent had filled in the question on
any other diseases/illnesses by saying that they had/got ’lawouli’,
which when translated meant that they had dizziness. Whether the
survey creators meant ’lawouli’ or ’Larouli’ is unknown, but it is
more likely that ’lawouli’ was intended since it can be translated and
makes sense with the other questions being asked.

The lack of written instructions makes analyzing the data harder
as well since it is unknown how certain questions were intended to
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be answered or treated. The question asking respondents to list other
illnesses/diseases brings the biggest issue since it is an unstructured
(fill in the blank style) question. Respondents were free to answer
the question however they like. This meant that some answered in
single words, some in phrases, and the majority answered by not
filling in the question at all. Ignoring how difficult it is to analyze
such questions for the time being, one of the problems this ques-
tion presented was that it was unclear what the nonresponse meant.
Some respondents had even filled in answers stating that they were
fine or that they had no diseases/illnesses. Were respondents told
to leave the question blank if they had nothing to add or did they
not want to answer because they felt embarrassed/threatened? It
is unclear since there are no directions to refer back to, and with a
nonresponse rate of over 50% the data extracted for the question is
nearly useless. Another example of directions being needed for an-
swering questions comes in when the survey asks if there were any
pregnant women living with the respondent and then gives two fol-
low up questions asking for their ages and if they would be brought
to a hospital. There was a clear lack of understanding that the ques-
tions were follow up questions because several people that answered
yes did not fill in the ages of the pregnant women and most people
that answered no still answered if the pregnant women would be
brought to the hospital. This problem could be avoided by having
directions and by clearly marking questions as follow ups.

Overall, the next iteration of this survey should include the fol-
lowing changes:

1. Clear written directions on how to answer every question

2. Clearly marked follow up questions

3. Blank surveys should be entirely blank, no answers pre-filled
in

4. One column per question, dichotomous questions are answered
by writing either response possible
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6.3 Questions

For the most part, the survey asks structured (closed-ended) ques-
tions that are fairly straightforward and easy to analyze. There are
a few unstructured questions asked throughout the survey however.
Most of these questions were left out of the analysis because of the
difficulty they presented when trying to coerce them into a categor-
ical form. Since there were thousands of observations recorded, it
becomes very difficult to coerce these type of answers into some-
thing easy to analyze because there are so many different answers.
While text mining can be used to make this easier, an intimate knowl-
edge of Haitian Creole is needed since many people write the same
thing numerous different ways (ie ’Douel’, ’Doule’, ’douel’, ’Doule
do’, ’Doule nan’, ’Dole nan’, etc. are all answers given when asked
about other illnesses and diseases that probably should mean the
same thing). These numerous different ways of writing similar an-
swers makes text mining even harder to accomplish since it is diffi-
cult to determine exactly what each person means and how similar
their answer is to someone else’s.

Another problem with the unstructured questions is the use of
shorthand. Both questions on how old the people are and how much
education they have are answered in shorthand. The education level
answers are all answered in one of the following patterns (note that
\\d means some digit from 0 to 9):

• Pres

• Seg

• Filo

• Reto

• Iniv

• \\deAf

• \\deS

• \\de

These are all shorthand for different grade levels in different schools
(primary, secondary, university) as well as different education titles.
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However there is nothing to indicate what each answer stands for
and thus without a native speaker it is impossible to be able to dif-
ferentiate when someone says ’3rd grade primary school’ and ’3rd
year of high school’.

The age question had a similar problem. While most people just
wrote numbers, implying years old, some would write numbers with
a single letter next to them. This signified months (’m’), weeks (’s’),
and days (’d’). This was easy enough to figure out since French uses
a similar scheme for time, but when someone had written a number
with an e next to it, more research was required to know how to
treat the answer. After hours looking, it was finally discovered that
the ’e’ meant hours; someone had recently given birth and then took
the survey. While confusing, these questions were still easier to deal
with than the disease question which had to be left out due to the
large non-response and varied answers. These questions could be
made easier by explicitly stating the scale or coding one should use.
For example, education could be written in years total in school or
an inclusive list of mutually exclusive items could be given in which
people select one answer.
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Chapter 7

Conclusion

Overall,the modified random forests outperform other algorithms
for both versions of the data. As seen in 7.1 and 7.2 the model cho-
sen from the augmented random forest algorithms has clearly supe-
rior G-mean and F-measure values. However, there does not seem
to be much gain in AUC for these models, and furthermore, they
do not have the largest sensitivity measures. The Gaussian kernel
novelty detection models give the highest sensitivity values. Sur-
prisingly this and specificity are where the kernels appear to have
different strengths. The Gaussian kernel gives a higher sensitivity,
but a lower specificity. While it’s important to be able to correctly
predict minority cases, all of the novelty detection methods seem to
suffer from over predicting observations as belonging to the minor-
ity class, which results in extremely low specificities. Between the
two data sets though there appears to be a difference in how precise
the models can get. The baseline data set tends to produce models
that normally have outliers (this can be seen for each of the perfor-
mance metrics), yet the augmented data set produces models with
much less outliers (ie the sensitivity metric shows no outliers). At
the same time, the augmented data shows that models have slightly
larger standard deviations. This illustrates that while the extra data
added fills in some information, it also introduces more variability.

A better comparison of the augmented and baseline data set can
be seen in 7.3 which showcases the difference between balanced ran-
dom forest for the baseline data set (chosen as the "best" model for
the baseline models) and under-sampled weighted random forest
for the augmented data set (chosen as the "best" model for the aug-
mented models). The increase in variance becomes clear here as the
augmented data produces larger boxplots for each performance met-
ric. With this increase in variance though comes a decrease in bias for
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FIGURE 7.1: Comparison of all selected models for the
baseline data

determining the minority class correctly as shown in the sensitivity
boxplots. Here the augmented data is superior in correctly predicting
the minority class. Both models are clearly the best of their respec-
tive data sets, yet there is not a clear winner between them. If pre-
dicting the minority class is more important than anything else, then
the augmented data would have to be used. However if misclassify-
ing cholera negative cases is also important then an argument for the
baseline data can be made.

The difficulty in picking a clear "best" model extends from the
worst models types to the best model types. Each model has it’s
strengths and weaknesses, but no one outshines the others. The
modified random forest is a clear winner in that it gives much higher
F-measure and G-means. As compared to the random forest in the
model averaging section that do not balance classes or give classes
different weights, it is obvious that these modifications are exactly
what produced the better results. Using sampling techniques to bal-
ance the class priors before models was not enough to combat the
imbalance problem since trees and random forest are creating with
subsets of the data at each node which is not guaranteed to maintain
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FIGURE 7.2: Comparison of all selected models for the
augmented data

the equal class priors.
Furthermore, SVM seemed to fail the data in both kernel types

which tells us that either the data requires another kernel, not yet in-
vestigated, or a boundary between classes for this data does not ex-
ist. To explore this idea further, other kernels could be tested in the
future to see if any significant improvements can be made in the pre-
dictions. Properly learning the minority class is rare due to cholera
positive cases being truly rare thus making the imbalance due to ab-
solute rarity (once you have it, you have less than a day to get it
treated before you die) but could be made even more complicated if
subconcepts do exist in the minority class which would also intro-
duce a within-class imbalance. This combination makes learning the
minority highly difficult.

An alternative reason for why models fair so poorly could be sim-
ply because the data itself is of poor measurement quality. It is pos-
sible that predictors could be cleaned up better to give more quality
data. The education levels could be grouped such that all levels in
primary school are in one category, all levels in secondary school are
together, graduate school, etc. The disease question could also be



60 Chapter 7. Conclusion

FIGURE 7.3: Comparison of selected random forests
models

added in and coerced to be categorical using text mining methods
such as grabbing key words to create categories (ie back pain, head
pain, fatigue, etc.). Data collection could also be improved so that
answers are directly related to immediate family or one person at a
time instead of a family and their extended family which they may
not know intimately. More questions revolving around how peo-
ple access, use, and clean water as well as how they deal with their
wastes could also help to provide clues on who is more inclined to-
wards getting sick.

More research into different model types could also be done in
the future to try a wider selection. This could include methods like
SMOTE-boost and modified KNN methods that require much longer
computing time. Since priors and Bayesian attributes seem to do
better in learning and predicting the data, it is important that fu-
ture methods have a solid Bayesian foundation. Bayesian networks,
which is a probabilistic model that tries to determine what predictors
are conditional on each other and which are independent, is worth
investigating.



61

Appendix A

Survey Materials
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Appendix B

Data Tables

B.1 Baseline Data

TABLE B.1: F-measure

Original Over Under
Mean SD Mean SD Mean SD

Trees NA NA .17 .01 .17 .01
Bagged Trees NA NA .17 .01 .17 .01
Boosted Trees .11 0 .08 .01 .07 .01
RSSL Trees NA NA .17 .01 .18 .02
SVM-RBF .02 0 .16 .01 .16 .01
Bagged SVM-RBF .02 0 .16 .01 .16 .01
RSSL SVM-RBF NA NA .17 .02 .17 .01
SVM-Laplace .02 0 .17 .01 .16 .01
Bagged SVM-Laplace .02 0 .17 .01 .17 .01
RSSL SVM-Laplace NA NA .17 .01 .17 .01
ND-RBF .03 0
Bagged ND-RBF .03 0
RSSL ND-RBF .03 .01
ND-Laplace .04 0
Bagged ND-Laplace .03 0
RSSL ND-Laplace .03 .01
BART NA NA .17 .01 .17 .01
RF NA NA .17 .01 .17 .01
Balanced RF .84 0 .84 .01 .84 .01
Weighted RF .84 .02 .84 .01 .84 .02
W&B RF .67 .02 .84 .01 .83 .01
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TABLE B.2: F-measure Cont.

SMOTE BL-SMOTE ADASYN
Mean SD Mean SD Mean SD

Trees .16 .01 .12 .06 .16 .01
Bagged Trees .17 .01 .11 .04 .17 .01
Boosted Trees .08 .01 .10 .01 .08 .01
RSSL Trees .17 .01 .08 .04 .18 .01
SVM-RBF .16 .01 .11 .03 .16 .01
Bagged SVM-RBF .16 .01 .11 .03 .16 .01
RSSL SVM-RBF .17 .02 .04 .04 .17 .01
SVM-Laplace .17 .01 .10 .04 .16 .01
Bagged SVM-Laplace .17 .01 .10 .04 .16 .01
RSSL SVM-Laplace .18 .01 .05 .05 .18 .01
ND-RBF
Bagged ND-RBF
RSSL ND-RBF
ND-Laplace
Bagged ND-Laplace
RSSL ND-Laplace
BART .17 .01 .12 .03 .17 .01
RF .17 .01 .12 .02 .17 .01
Balanced RF .84 .01 .84 .05 .84 .01
Weighted RF .84 .03 .80 .06 .84 .02
W&B RF .84 .02 .80 .06 .84 .01
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TABLE B.3: G-mean

Original Over Under
Mean SD Mean SD Mean SD

Trees NA NA .22 .01 .22 .02
Bagged Trees NA NA .23 .01 .23 .02
Boosted Trees .24 0 .15 .01 .12 .04
RSSL Trees NA NA .22 .02 .22 .02
SVM-RBF .04 .03 .22 .02 .22 .02
Bagged SVM-RBF .04 .04 .22 .02 .22 .02
RSSL SVM-RBF NA NA .22 .02 .22 .02
SVM-Laplace .01 .03 .22 .02 .23 .02
Bagged SVM-Laplace .02 .03 .22 .02 .23 .02
RSSL SVM-Laplace NA NA .22 .02 .22 .02
ND-RBF .11 .01
Bagged ND-RBF .11 .01
RSSL ND-RBF .10 .02
ND-Laplace .11 .01
Bagged ND-Laplace .11 .01
RSSL ND-Laplace .08 .03
BART NA NA .23 .02 .24 .02
RF NA NA .23 .02 .23 .02
Balanced RF .84 0 .84 .01 .84 .01
Weighted RF .84 .01 .84 .01 .84 .02
W&B RF .70 .02 .84 .01 .84 .01
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TABLE B.4: G-mean Cont.

SMOTE BL-SMOTE ADASYN
Mean SD Mean SD Mean SD

Trees .22 .02 .12 .06 .22 .02
Bagged Trees .23 .01 .11 .05 .23 .01
Boosted Trees .15 .01 .21 .02 .14 .01
RSSL Trees .22 .02 .09 .04 .22 .02
SVM-RBF .21 .02 .11 .03 .21 .02
Bagged SVM-RBF .21 .02 .11 .03 .21 .02
RSSL SVM-RBF .22 .03 .08 .04 .22 .02
SVM-Laplace .22 .02 .10 .03 .22 .02
Bagged SVM-Laplace .22 .02 .10 .03 .22 .02
RSSL SVM-Laplace .23 .02 .08 .05 .22 .02
ND-RBF
Bagged ND-RBF
RSSL ND-RBF
ND-Laplace
Bagged ND-Laplace
RSSL ND-Laplace
BART .23 .02 .16 .03 .23 .02
RF .22 .02 .16 .03 .23 .02
Balanced RF .85 0 .85 .05 .85 .01
Weighted RF .85 .02 .81 .06 .85 .02
W&B RF .85 .02 .81 .06 .84 .01
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TABLE B.5: AUC

Original Over Under
Mean SD Mean SD Mean SD

Trees .50 0 .60 .02 .60 .02
Bagged Trees .50 0 .61 .02 .61 .02
Boosted Trees .51 .01 .61 .02 .60 .03
RSSL Trees .50 0 .60 .02 .61 .02
SVM-RBF .50 0 .59 .02 .60 .02
Bagged SVM-RBF .50 0 .59 .02 .60 .02
RSSL SVM-RBF .50 0 .60 .02 .60 .02
SVM-Laplace .50 0 .60 .02 .61 .02
Bagged SVM-Laplace .50 0 .60 .02 .61 .02
RSSL SVM-Laplace .50 0 .61 .02 .60 .02
ND-RBF .54 .02
Bagged ND-RBF .54 .02
RSSL ND-RBF .53 .03
ND-Laplace .54 .02
Bagged ND-Laplace .54 .02
RSSL ND-Laplace .54 .03
BART .50 0 .61 .02 .61 .02
RF .50 0 .61 .02 .61 .02
Balanced RF .62 .02 .61 .02 .61 .02
Weighted RF .61 .02 .61 .02 .61 .02
W&B RF .51 .01 .61 .02 .61 .02
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TABLE B.6: AUC Cont.

SMOTE BL-SMOTE ADASYN
Mean SD Mean SD Mean SD

Trees .60 .02 .53 .03 .60 .02
Bagged Trees .61 .02 .52 .02 .61 .02
Boosted Trees .60 .02 .55 .03 .61 .02
RSSL Trees .60 .02 .51 .01 .61 .02
SVM-RBF .59 .02 .53 .02 .59 .02
Bagged SVM-RBF .59 .02 .53 .02 .59 .02
RSSL SVM-RBF .60 .03 .50 .01 .60 .02
SVM-Laplace .60 .02 .52 .02 .60 .02
Bagged SVM-Laplace .60 .02 .52 .02 .60 .02
RSSL SVM-Laplace .61 .02 .51 .01 .61 .02
ND-RBF
Bagged ND-RBF
RSSL ND-RBF
ND-Laplace
Bagged ND-Laplace
RSSL ND-Laplace
BART .60 .02 .54 .03 .60 .02
RF .60 .02 .54 .03 .60 .02
Balanced RF .61 .02 .54 .03 .61 .02
Weighted RF .60 .02 .58 .02 .61 .02
W&B RF .61 .02 .58 .02 .61 .02
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TABLE B.7: Sensitivity

Original Over Under
Mean SD Mean SD Mean SD

Trees 0 0 .5 .04 .51 .07
Bagged Trees 0 0 .54 .04 .54 .05
Boosted Trees .96 0.02 .48 .04 .38 .14
RSSL Trees 0 0 .47 .09 .47 .09
SVM-RBF 0 0 .49 .05 .53 .07
Bagged SVM-RBF 0 0 .49 .05 .52 .06
RSSL SVM-RBF 0 0 .47 .09 .48 .07
SVM-Laplace 0 0 .50 .04 .54 .06
Bagged SVM-Laplace 0 0 .50 .04 .53 .07
RSSL SVM-Laplace 0 0 .48 .09 .46 .11
ND-RBF .74 .05
Bagged ND-RBF 0 0
RSSL ND-RBF .62 .23
ND-Laplace .69 .09
Bagged ND-Laplace 0 0
RSSL ND-Laplace .46 .29
BART 0 0 .53 .04 .55 .05
RF 0 0 .52 .05 .54 .05
Balanced RF .55 .04 .53 .05 .54 .05
Weighted RF .53 .06 .53 .06 .54 .08
W&B RF .96 .07 .53 .04 .55 .05
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TABLE B.8: Sensitivity Cont.

SMOTE BL-SMOTE ADASYN
Mean SD Mean SD Mean SD

Trees .50 .04 .12 .10 .50 .06
Bagged Trees .53 .04 .09 .08 .53 .04
Boosted Trees .48 .04 .81 .09 .48 .04
RSSL Trees .45 .09 .02 .03 .46 .09
SVM-RBF .48 .05 .11 .05 .48 .05
Bagged SVM-RBF .48 .05 .11 .05 .48 .05
RSSL SVM-RBF .46 .10 .01 .03 .47 .09
SVM-Laplace .49 .04 .10 .05 .48 .06
Bagged SVM-Laplace .49 .04 .10 .05 .49 .06
RSSL SVM-Laplace .47 .09 .01 .03 .46 .09
ND-RBF
Bagged ND-RBF
RSSL ND-RBF
ND-Laplace
Bagged ND-Laplace
RSSL ND-Laplace
BART .52 .05 .35 .12 .52 .05
RF .51 .05 .35 .12 .51 .05
Balanced RF .52 .05 .37 .08 .52 .06
Weighted RF .51 .13 .59 .18 .51 .18
W&B RF .51 .05 .57 .06 .52 .05
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TABLE B.9: Specificity

Original Over Under
Mean SD Mean SD Mean SD

Trees 1.00 0 .70 .02 .69 .05
Bagged Trees 1.00 0 .68 .01 .68 .02
Boosted Trees .02 .01 .31 .02 .42 .19
RSSL Trees 1.00 0 .74 .07 .74 .07
SVM-RBF 1.00 0 .70 .02 .68 .04
Bagged SVM-RBF 1.00 0 .70 .02 .67 .04
RSSL SVM-RBF 1.00 0 .73 .06 .73 .05
SVM-Laplace 1.00 0 .71 .02 .67 .04
Bagged SVM-Laplace 1.00 0 .70 .02 .68 .04
RSSL SVM-Laplace 1.00 0 .74 .06 .74 .08
ND-RBF .19 .02
Bagged ND-RBF .19 .02
RSSL ND-RBF .32 .21
ND-Laplace .25 .13
Bagged ND-Laplace .22 .05
RSSL ND-Laplace .47 .30
BART 1.00 0 .69 .02 .70 .02
RF 1.00 0 .69 .02 .70 .02
Balanced RF .68 .01 .69 .01 .68 .03
Weighted RF .68 .05 .69 .03 .68 .07
W&B RF .06 .09 .56 .02 .69 .05
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TABLE B.10: Specificity Cont.

SMOTE BL-SMOTE ADASYN
Mean SD Mean SD Mean SD

Trees .70 .02 .94 .06 .70 .04
Bagged Trees .69 .01 .95 .05 .69 .01
Boosted Trees .31 .02 .09 .05 .31 .02
RSSL Trees .75 .07 .99 .01 .75 .07
SVM-RBF .71 .02 .95 .03 .70 .02
Bagged SVM-RBF .71 .02 .95 .03 .70 .02
RSSL SVM-RBF .74 .06 1.00 .01 .74 .06
SVM-Laplace .71 .02 .95 .02 .71 .03
Bagged SVM-Laplace .71 .02 .95 .02 .71 .04
RSSL SVM-Laplace .74 .06 1.00 .01 .75 .06
ND-RBF
Bagged ND-RBF
RSSL ND-RBF
ND-Laplace
Bagged ND-Laplace
RSSL ND-Laplace
BART .69 .02 .70 .16 .69 .02
RF .70 .02 .70 .16 .70 .02
Balanced RF .70 .01 .69 .15 .70 .03
Weighted RF .70 .07 .54 .20 .70 .06
W&B RF .70 .05 .56 .19 .69 .03
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B.2 Augmented Data

TABLE B.11: F-measure

Original Over Under
Mean SD Mean SD Mean SD

Trees NA NA .15 .01 .14 .02
Bagged Trees NA NA .15 .01 .15 .01
Boosted Trees .11 0 .08 .01 .07 .01
RSSL Trees NA NA .18 .02 .17 .02
SVM-RBF NA NA .15 .01 .16 .01
Bagged SVM-RBF NA NA .15 .01 .16 .01
RSSL SVM-RBF NA NA .18 .01 .17 .01
SVM-Laplace NA NA .17 .02 .16 .01
Bagged SVM-Laplace NA NA .17 .02 .16 .01
RSSL SVM-Laplace NA NA .18 .01 .17 .01
ND-RBF .04 0
Bagged ND-RBF .04 0
RSSL ND-RBF .04 0
ND-Laplace .04 0
Bagged ND-Laplace .04 0
RSSL ND-Laplace .04 0
BART NA NA .17 .01 .16 .01
RF .02 .01 .08 .02 .15 .01
Balanced RF .86 .01 .96 0 .79 .01
Weighted RF .97 0 .95 0 .79 .02
W&B RF .83 .01 .95 0 .79 .02



76 Appendix B. Data Tables

TABLE B.12: F-measure Cont.

SMOTE BL-SMOTE ADASYN
Mean SD Mean SD Mean SD

Trees .16 .02 .15 .02 .15 .02
Bagged Trees .16 .02 .15 .02 .17 .02
Boosted Trees .09 .01 .09 .01 .09 .01
RSSL Trees .18 .03 .18 .02 .17 .03
SVM-RBF .16 .02 .14 .02 .16 .02
Bagged SVM-RBF .16 .02 .14 .02 .16 .02
RSSL SVM-RBF .18 .02 .17 .02 .17 .02
SVM-Laplace .17 .02 .14 .03 .17 .02
Bagged SVM-Laplace .17 .02 .14 .03 .17 .02
RSSL SVM-Laplace .17 .02 .16 .02 .18 .02
ND-RBF
Bagged ND-RBF
RSSL ND-RBF
ND-Laplace
Bagged ND-Laplace
RSSL ND-Laplace
BART .15 .02 .15 .02 .15 .02
RF .10 .02 .05 .02 .10 .02
Balanced RF .95 0 .96 0 .95 0
Weighted RF .94 0 .96 0 .94 0
W&B RF .94 .01 .96 0 .94 .01
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TABLE B.13: G-mean

Original Over Under
Mean SD Mean SD Mean SD

Trees NA NA .21 .02 .21 .02
Bagged Trees NA NA .21 .01 .22 .02
Boosted Trees .22 .01 .14 .03 .05 .03
RSSL Trees NA NA .23 .02 .23 .02
SVM-RBF NA NA .18 .01 .23 .01
Bagged SVM-RBF NA NA .18 .01 .23 .01
RSSL SVM-RBF NA NA .22 .02 .23 .02
SVM-Laplace NA NA .18 .02 .23 .02
Bagged SVM-Laplace NA NA .18 .02 .23 .02
RSSL SVM-Laplace NA NA .22 .02 .23 .02
ND-RBF .11 .01
Bagged ND-RBF .11 .01
RSSL ND-RBF .10 .02
ND-Laplace .12 .01
Bagged ND-Laplace .12 .01
RSSL ND-Laplace .12 .01
BART NA NA .20 .02 .23 .01
RF .05 .03 .09 .02 .23 .01
Balanced RF .85 0 .85 .05 .85 .01
Weighted RF .85 .02 .81 .06 .85 .02
W&B RF .85 .02 .81 .06 .84 .01
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TABLE B.14: G-mean Cont.

SMOTE BL-SMOTE ADASYN
Mean SD Mean SD Mean SD

Trees .19 .02 .18 .02 .19 .03
Bagged Trees .19 .02 .18 .02 .19 .02
Boosted Trees .17 .02 .17 .02 .18 .02
RSSL Trees .19 .03 .20 .03 .19 .03
SVM-RBF .18 .02 .14 .02 .18 .02
Bagged SVM-RBF .18 .02 .14 .02 .18 .02
RSSL SVM-RBF .20 .02 .19 .02 .19 .02
SVM-Laplace .18 .02 .14 .03 .18 .02
Bagged SVM-Laplace .18 .02 .15 .03 .18 .02
RSSL SVM-Laplace .18 .02 .17 .02 .19 .02
ND-RBF
Bagged ND-RBF
RSSL ND-RBF
ND-Laplace
Bagged ND-Laplace
RSSL ND-Laplace
BART .15 .02 .15 .02 .15 .02
RF .11 .02 .07 .03 .11 .02
Balanced RF .95 0 .96 0 .95 0
Weighted RF .94 0 .96 0 .94 0
W&B RF .94 .01 .96 0 .94 .01
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TABLE B.15: AUC

Original Over Under
Mean SD Mean SD Mean SD

Trees .50 0 .57 .02 .57 .03
Bagged Trees .50 0 .59 .02 .59 .02
Boosted Trees .54 .02 .57 .02 .54 .02
RSSL Trees .50 0 .61 .02 .61 .03
SVM-RBF .50 0 .57 .01 .60 .02
Bagged SVM-RBF .50 0 .57 .01 .60 .02
RSSL SVM-RBF .50 0 .61 .02 .60 .02
SVM-Laplace .50 0 .57 .01 .60 .02
Bagged SVM-Laplace .50 0 .57 .02 .60 .02
RSSL SVM-Laplace .50 0 .60 .02 .61 .02
ND-RBF .52 .01
Bagged ND-RBF .51 .01
RSSL ND-RBF .52 .01
ND-Laplace .51 .01
Bagged ND-Laplace .51 .01
RSSL ND-Laplace .52 .01
BART .50 0 .59 .02 .61 .02
RF .50 0 .52 .01 .59 .02
Balanced RF .60 .01 .52 .01 .59 .02
Weighted RF .51 0 .52 .01 .60 .02
W&B RF .60 .02 .52 .01 .60 .02
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TABLE B.16: AUC Cont.

SMOTE BL-SMOTE ADASYN
Mean SD Mean SD Mean SD

Trees .57 .02 .57 .02 .57 .02
Bagged Trees .58 .02 .57 .02 .58 .02
Boosted Trees .58 .02 .57 .02 .57 .02
RSSL Trees .58 .02 .58 .02 .57 .02
SVM-RBF .57 .02 .54 .01 .57 .02
Bagged SVM-RBF .57 .02 .54 .01 .57 .02
RSSL SVM-RBF .58 .02 .58 .02 .58 .02
SVM-Laplace .57 .02 .54 .01 .57 .02
Bagged SVM-Laplace .57 .02 .54 .01 .57 .02
RSSL SVM-Laplace .57 .02 .56 .02 .57 .02
ND-RBF
Bagged ND-RBF
RSSL ND-RBF
ND-Laplace
Bagged ND-Laplace
RSSL ND-Laplace
BART .55 .01 .55 .01 .55 .01
RF .52 .01 .51 .01 .52 .01
Balanced RF .53 .01 .51 .01 .53 .01
Weighted RF .54 .01 .52 .01 .54 .01
W&B RF .54 .01 .52 .01 .54 .01
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TABLE B.17: Sensitivity

Original Over Under
Mean SD Mean SD Mean SD

Trees 0 0 .51 .13 .57 .13
Bagged Trees 0 0 .50 .08 .58 .06
Boosted Trees .86 .04 .45 .14 .08 .06
RSSL Trees 0 0 .47 .06 .51 .07
SVM-RBF 0 0 .35 .03 .56 .05
Bagged SVM-RBF 0 0 .35 .03 .57 .05
RSSL SVM-RBF 0 0 .46 .05 .51 .07
SVM-Laplace 0 0 .26 .03 .56 .06
Bagged SVM-Laplace 0 0 .26 .03 .57 .05
RSSL SVM-Laplace 0 0 .43 .04 .52 .06
ND-RBF .76 .05
Bagged ND-RBF 0 0
RSSL ND-RBF .76 .06
ND-Laplace .76 .05
Bagged ND-Laplace 0 0
RSSL ND-Laplace .64 .09
BART 0 0 .38 .04 .58 .04
RF .01 0 .05 .02 .64 .05
Balanced RF .45 .03 .06 .01 .64 .04
Weighted RF .02 .02 .08 .02 .66 .02
W&B RF .54 .04 .08 .07 .66 .08
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TABLE B.18: Sensitivity Cont.

SMOTE BL-SMOTE ADASYN
Mean SD Mean SD Mean SD

Trees .34 .08 .35 .09 .36 .10
Bagged Trees .35 .05 .34 .06 .33 .04
Boosted Trees .61 .09 .59 .08 .64 .08
RSSL Trees .27 .05 .30 .05 .27 .06
SVM-RBF .26 .04 .16 .03 .26 .04
Bagged SVM-RBF .26 .04 .17 .03 .26 .04
RSSL SVM-RBF .30 .05 .30 .05 .30 .06
SVM-Laplace .25 .04 .14 .03 .25 .04
Bagged SVM-Laplace .25 .04 .14 .03 .25 .04
RSSL SVM-Laplace .23 .05 .21 .04 .25 .05
ND-RBF
Bagged ND-RBF
RSSL ND-RBF
ND-Laplace
Bagged ND-Laplace
RSSL ND-Laplace
BART .16 .03 .16 .02 .15 .02
RF .08 .02 .03 .01 .08 .02
Balanced RF .10 .02 .04 .02 .10 .02
Weighted RF .14 .03 .06 .02 .13 .02
W&B RF .14 .04 .06 .02 .14 .03
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TABLE B.19: Specificity

Original Over Under
Mean SD Mean SD Mean SD

Trees 1.00 0 .63 .14 .57 .15
Bagged Trees 1.00 0 .67 .08 .60 .04
Boosted Trees .07 .01 .41 .15 .84 .07
RSSL Trees 1.00 0 .75 .04 .70 .05
SVM-RBF 1.00 0 .78 .01 .63 .04
Bagged SVM-RBF 1.00 0 .78 .01 .62 .03
RSSL SVM-RBF 1.00 0 .75 .04 .70 .05
SVM-Laplace 1.00 0 .89 .01 .64 .04
Bagged SVM-Laplace 1.00 0 .89 .01 .64 .03
RSSL SVM-Laplace 1.00 0 .77 .03 .70 .05
ND-RBF .24 .02
Bagged ND-RBF .28 .01
RSSL ND-RBF .22 .05
ND-Laplace .25 .02
Bagged ND-Laplace .29 .02
RSSL ND-Laplace .36 .08
BART 1.00 0 .79 .01 .64 .02
RF 1.00 0 .98 0 .54 .03
Balanced RF .75 .01 .98 0 .54 .02
Weighted RF .99 0 .96 .01 .54 .07
W&B RF .66 .03 .96 .01 .54 .07
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TABLE B.20: Specificity Cont.

SMOTE BL-SMOTE ADASYN
Mean SD Mean SD Mean SD

Trees .80 .06 .78 .07 .79 .07
Bagged Trees .81 .03 .80 .04 .82 .03
Boosted Trees .23 .08 .26 .07 .21 .06
RSSL Trees .89 .02 .87 .03 .88 .03
SVM-RBF .87 .01 .93 .01 .87 .01
Bagged SVM-RBF .87 .01 .93 .01 .87 .01
RSSL SVM-RBF .86 .02 .86 .03 .86 .04
SVM-Laplace .89 .01 .95 .01 .88 .01
Bagged SVM-Laplace .89 .01 .95 .01 .89 .01
RSSL SVM-Laplace .90 .03 .90 .02 .89 .03
ND-RBF
Bagged ND-RBF
RSSL ND-RBF
ND-Laplace
Bagged ND-Laplace
RSSL ND-Laplace
BART .94 .01 .94 .01 .94 .01
RF .97 0 .99 0 .97 0
Balanced RF .96 0 .99 .01 .96 .01
Weighted RF .94 0 .98 .01 .94 .01
W&B RF .94 0 .98 .01 .93 .01
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