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By 

Md Shahriar Shamim 

ABSTRACT 

The physical limitations in the area, power density, and yield restrict the scalability of the single-

chip multicore system to a relatively small number of cores. Instead of having a large chip, 

aggregating multiple smaller chips can overcome these physical limitations. Combining multiple 

dies can be done either by stacking vertically or by placing side-by-side on the same substrate 

within a single package. However, in order to be widely accepted, both multichip integration 

techniques need to overcome significant challenges.  

In the horizontally integrated multichip system, traditional inter-chip I/O does not scale 

well with technology scaling due to limitations of the pitch. Moreover, to transfer data between 

cores or memory components from one chip to another, state-of-the-art inter-chip communication 

over wireline channels require data signals to travel from internal nets to the peripheral I/O ports 

and then get routed over the inter-chip channels to the I/O port of the destination chip. Following 

this, the data is finally routed from the I/O to internal nets of the target chip over a wireline 

interconnect fabric. This multi-hop communication increases energy consumption while 

decreasing data bandwidth in a multichip system.  On the other hand, in vertically integrated 

multichip system, the high power density resulting from the placement of computational 

components on top of each other aggravates the thermal issues of the chip leading to degraded 

performance and reduced reliability. Liquid cooling through microfluidic channels can provide 
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cooling capabilities required for effective management of chip temperatures in vertical integration. 

However, to reduce the mechanical stresses and at the same time, to ensure temperature uniformity 

and adequate cooling competencies, the height and width of the microchannels need to be 

increased. This limits the area available to route Through-Silicon-Vias (TSVs) across the cooling 

layers and make the co-existence and co-design of TSVs and microchannels extreamly 

challenging.  

Research in recent years has demonstrated that on-chip and off-chip wireless interconnects 

are capable of establishing radio communications within as well as between multiple chips. The 

primary goal of this dissertation is to propose design principals targeting both horizontally and 

vertically integrated multichip system to provide high bandwidth, low latency, and energy efficient 

data communication by utilizing mm-wave wireless interconnects. The proposed solution has two 

parts: the first part proposes design methodology of a seamless hybrid wired and wireless 

interconnection network for the horizontally integrated multichip system to enable direct chip-to-

chip communication between internal cores. Whereas the second part proposes a Wireless 

Network-on-Chip (WiNoC) architecture for the vertically integrated multichip system to realize 

data communication across interlayer microfluidic coolers eliminating the need to place and route 

signal TSVs through the cooling layers. The integration of wireless interconnect will significantly 

reduce the complexity of the co-design of TSV based interconnects and microchannel based 

interlayer cooling. Finally, this dissertation presents a combined trade-off evaluation of such 

wireless integration system in both horizontal and vertical sense and provides future directions for 

the design of the multichip system. 
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Chapter 1  INTRODUCTION 

1.1 Multichip System 

Moore’s law, the primary guiding principle for the chip development, states that the numbers of 

transistors on a chip will roughly double in every technology generation. Because of this scaling, 

billions of transistors are now packed tightly into each microprocessor. Until recently, dynamic 

power was considered as the most significant source of power consumption with technology 

scaling, and Dennard’s scaling has helped to control it by reducing supply voltages. Since dynamic 

power is proportional to the square of the supply voltage, reducing the voltage decreases dynamic 

power consumption significantly. However, with technology scaling, sub-threshold leakage and 

gate-oxide leakage increase in an exponential manner which are the main sources of leakage 

current.  As a result, static power is now starting to dominate total power consumption. This 

upsurge in power consumption is not only increasing chip temperature and cooling cost but also 

decreases chip reliability and performance. The multicore system has appeared as a feasible 

solution to address the power and frequency limitations of the uniprocessor system. According to 

Flynn’s taxonomy of parallel computer classification, the multicore system is an example of 

Multiple Instruction Multiple Data (MIMD) computing organization where different cores execute 

different threads (Multiple Instructions), working on different parts of memory (Multiple Data) 

concurrently [1]. As a result, instead of running at the higher clock frequency, multicore system 

improve overall performance by running more tasks in parallel. This, in turn, helps to reduce the 

rapid growth of power consumption of uniprocessors. The Network-on-Chip (NoC) paradigm has 

emerged as an enabling methodology for interconnecting hundreds of cores on the same die by 

designing separate scalable interconnection fabrics to support high-speed communication between 
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cores [2] and has captured the attention of both the academia and the industry. Tilera’s 64-core 

TILE64 [3], Intel’s 80-core Polaris [4], 48-core Single-chip Cloud Computer [5] are some 

examples of such NoC based multicore chips.  

However, demand for performance improvement is still quite high, and according to the 

projection from International Technology Roadmap for Semiconductor (ITRS), it is expected to 

grow to 300x by 2022 [6]. This growth will result in an integration of 100x more cores than the 

current state of art multicore system. Designing such large multicore chip will not come without 

any price. Larger chip size usually results in lower yield. For example, let us consider two different 

die sizes, one with 20 mm × 20 mm and another with 10 mm × 10 mm. A round wafer with a 

diameter of 300 mm, it can pack 143 and 640 dies of those two sizes respectively. If we consider 

only 20 manufacturing defects due to process and fabrication variations (In reality, it can be more 

than that), larger die size results in 14% yield loss whereas in smaller die size, it is only 3.12%. 

Although, smaller die size improves yield and provides fine-grained granularity regarding binning, 

per die fixed costs i.e. packaging, assembly, and test can increase the total combined cost of 

 

Figure 1.1. A typical computing organization in HPC environments i.e. data center/servers 
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development [7]. It also provides less functionality as a relatively small number of cores can be 

packed into that small area. Aggregating multiple moderately smaller dies within a package can 

provide the functionality of a large chip and at the same time can provide significant advantages 

in terms of higher yield and better packing of rectangular die on a round wafer [8]. Moreover, the 

disintegration allows easier reuse by supporting different system sizes. Combining multiple chips 

in a single package can be done either by vertically stacking several chips with Through Silicon 

Vias (TSVs) i.e. 3D integration [9] or by placing them horizontally on the same substrate within 

the package i.e. multichip module [10][11]. Computing modules with the multichip system are all-

pervasive in hardware infrastructures from servers to data centers. A typical computing 

organization in High-Performance Computing (HPC) environment like data centers/clusters is 

shown in Figure 1.1. Due to scaling up of a number of individual computing nodes by several 

 

 

Figure 1.2. The range of different interconnection architectures. 
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orders of magnitude in the HPC systems, the interconnection between them has become 

increasingly sophisticated. For example, inter-chip interconnections vary from solder bumps or C4 

interconnects in the multichip module within a System-in-Package (SiP) spanning 10cm in range 

on one end to Ethernet used in data center warehouses spanning about a kilometer on the other as 

shown in Figure 1.2. While intra-chip communication infrastructure is seeing a paradigm shift 

from bus-based systems to NoC architectures [2], inter-chip communication also needs to evolve 

at a rapid pace to cater to increasing bandwidth demands within the strict power and thermal 

envelopes.  

1.2 Challenges of the Multichip System 

The multichip system presents new opportunities to overcome the floorplan restriction, yield, and 

scalability limitations of the traditional single-chip multicore system. However, to be widely 

accepted, the multichip system requires high bandwidth, low latency, and energy-efficient 

communication across the distinct chips and at the same time, needs to operate within a thermal 

budget while maintaining high performance. Depending on the integration methodology, the 

challenges of designing multichip system can be different. Volume production and commercial 

exploitation of multichip system will only be feasible after addressing these concerns. 

1.2.1 Horizontal Integration of the Multichip System  

In environments like data center or servers, the lower level cache is physically distributed between 

all cores. Hence, cache or memory access eventually requires communication between components 

in different chips. However, recent trends according to the ITRS predict that the pitch of the I/O 

interconnects in ICs is not scaling as fast as the gate lengths or pitch of on-chip interconnects [6] 
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as shown in Figure 1.3. This implies a gap in density and performance of traditional I/O systems 

relative to on-chip interconnections. The wiring complexity of both on-chip and off-chip 

interconnects exacerbates the problem by presenting design challenges, crosstalk and signal 

integrity issues [10]. Additionally, because of different interconnection frameworks for on-chip 

and off-chip communication, data from cores located within the chips need to travel to the I/O 

blocks, traverse the inter-chip link and then be routed to the final destination inside the target chip. 

Besides, switching between protocols is necessary if the off-chip communication protocol is 

different from the on-chip one. All these factors reduce the efficiency in terms of energy 

consumption as well as latency and bandwidth of the data transfer between cores in a multichip 

system. Integrated inter and intra-chip photonic interconnections [12] [13] is a promising solution 

to the off-chip interconnection challenges of traditional I/Os. However, the pitch of photonic 

interconnects do not scale well due to the limitations in size of silicon photonic devices. Also, the 

 

Figure 1.3. Scaling of I/O pitch and Minimum global interconnect pitch [6] 
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optical loss of silicon waveguides (typically 3.6 dB/cm) [14] makes routing long inter-chip optical 

channels impractical. Thus, to be widely accepted, the horizontally integrated multichip system 

requires high bandwidth, low latency, and energy efficient communication across the different 

chips. 

1.2.2 Vertical Integration of the Multichip System  

Vertically stacking several dies with TSVs i.e. 3D integration is another alternative way to 

overcome the physical limitations of single chip multiprocessor system [9]. However, utilizing the 

third dimension to provide additional device layers poses significant thermal challenges. Higher 

power density is already a major problem in single chip system, and stacking vertical layers 

increases the power dissipation density and the thermal footprint per unit area substantially. This 

fact augmented with the slow lateral diffusion of heat in silicon creates localized thermal hotspots. 

Also, conventional cooling techniques are limited in ability to extract heat only from the top or 

bottom layer of the entire 3D stack. Conventional thermal management techniques adopted in a 

single planar chip like Dynamic Voltage and Frequency Scaling (DVFS) or Clock/Power gating 

sacrifice performance to control the thermal behavior by slowing down or turning off the 

processors when a critical temperature threshold is exceeded. On the other hand, task scheduling 

or task reallocation based dynamic thermal management technique redistributes existing processes 

to available cores based on the current thermal profile of the chip. However, the effectiveness of 

such DTM technique depends on the availability of relatively cooler processors or cores, which 

might be difficult to find in 3D integration due to relatively high power density and shorter inter-

chip distance. Moreover, technology scaling is pushing the limits of affordable cooling, thereby 

requiring suitable design techniques to reduce peak temperatures [15]. The design of sophisticated 
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cooling mechanisms like liquid cooling through microfluidic channels can provide cooling 

capacities necessary for effective management of chip temperatures in 3D ICs [16][17][18][19]. 

In liquid cooling, embedded inter-layer microchannels or a cooling chip is inserted in between 

layers of the 3-D chip and a coolant fluid (i.e., water or other liquids) is pumped through the 

microchannels to extract the heat from the interlayer regions effectively.  However, pumping liquid 

through the microchannels can cause high-pressure drops compromising the mechanical integrity 

of the thin walls between TSVs and microchannels [20]. Lowering the coolant flow rate to reduce 

the pressure drop has another disadvantage of higher temperature non-uniformity in the silicon 

substrate along the flow length. Moreover, large thermal gradients along the fluid flow direction 

inside microchannels can affect the structural reliability of the TSVs by inducing temperature 

related expansion and contraction due to a mismatch in Coefficient of Thermal Expansion (CTE) 

between copper and silicon. To reduce the mechanical stresses and at the same time, to provide 

temperature uniformity and adequate cooling capabilities, the height and width of the 

microchannels need to be increased. Several dimensions of microchannels are suggested in 

literature ranging from 50 µm to 1000 µm in height and 100 µm to 1000 µm in width depending 

on desired pressure drop and cooling capabilities [21][22]. This, in turn, imposes significant 

restrictions on where and how many TSVs and microchannels can co-exist together. TSVs with 

Aspect Ratio (AR=Height/Diameter) greater than 10 are tough to manufacture at high yield due to 

challenges related to etching, sidewall passivation, and formation, insulation, and filling of vias  

[6] and co-dependency of the microchannels and electrical design makes the process even more 

complex. Wider microchannels occupy a significant portion of the floor area of the vertically 

integrated multichip system severely restricting the freedom of placement and routing of TSV 

based links. Moreover, increasing the microchannels height will eventually increase the die 
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thickness and consequently, the height of TSVs, which in turn will increase the diameter of the 

TSVs to maintain a fixed AR. Also, to reduce voltage drop, TSVs used for power delivery network 

require higher diameter and pitch than the signal TSVs. All these factors restrict the area available 

to route TSVs across the cooling layers and make the co-existence and co-design of TSVs and 

microchannels challenging especially when thousands of TSVs are required for interconnections 

in large chips with die areas higher than 100 mm2 [23]. Contactless interconnects in 3D ICs through 

inductive and capacitive coupling based vertical links have been proposed in recent years 

[24][25][26]. However, their feasibility across microchannel based cooling layers is unknown. 

Moreover, these inductive/capacitive coupling links have larger area overheads compared to TSVs 

[26]. In addition, energy per bit of such links increases significantly with the communication 

distance [26], making these contactless interconnects inefficient for communication across the 

microchannels with a height greater than 50 µm.    

1.3 Possible Solution: Wireless Interconnects 

Research in recent years has demonstrated that on-chip and off-chip wireless interconnects are 

capable of establishing radio communications within as well as between multiple chips. The 

absence of the need for physical layouts makes wireless interconnects stand out from other 

emerging interconnects. Wireless data communication links up to 10 m in length with multi-

GigaHertz bandwidths in millimeter wave (mm-wave) bands are fabricated and demonstrated in 

[27]. Using such on-chip antennas embedded in the chip Wireless Networks-on-Chip (WiNoC) 

architectures have been proposed [28][29]. These wireless NoCs are shown to improve energy 

efficiency and bandwidth of on-chip data communication in multicore chips [29][30]. On-chip 

antennas like Carbon Nanotube (CNT) or Graphene-based structures are predicted to provide high 
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bandwidth wireless communication channels [30][31]. However, integration of these antennas 

with standard CMOS processes needs to overcome significant challenges. Whereas mm-wave 

antennas fabricated using top layer metals are CMOS process compatible making them suitable 

for near-term solutions to the wired interconnect problem [29]. In mm-wave wireless 

interconnects, bandwidth is limited by the state-of-the-art transceiver design and on-chip antenna 

technology. To improve performance, multiple wireless transceivers need to access the wireless 

medium to communicate with other wireless transceivers without interference. Medium access 

mechanisms in WiNoCs using mm-wave transceivers range from simple token passing based 

protocol to more sophisticated Code Division Multiple Access (CDMA) based mechanisms 

[29][32][33][34]. The chosen on-chip antenna has to provide the best power gain for the smallest 

area overhead. A metal mm-wave zigzag antenna has been demonstrated to possess these 

characteristics as they are more compact compared to other antenna structures such as a patch 

antenna. Such mm-wave 60GHz antennas are shown to have a bandwidth of 16GHz for both intra-

chip and inter-chip [28][35] communications links. It has been noted in many earlier works that 

the mm-wave wireless antennas are not directional and hence can be used for broadcast type 

transmission over the shared wireless channel. This property gives an additional advantage as 

wireless interconnects can provide a broadcast-capable medium to distribute any kind of control 

messages faster efficiently.  

This work proposes to utilize mm-wave wireless interconnect to overcome the challenges 

of the multichip system. Few cores inside the chips will be equipped with wireless transceivers, 

which will be capable of establishing direct one-hop communication with other such cores in the 

same as well as other chips. Depending on the target integration technology, the dissertation 

proposes design principles and methodologies to use wireless interconnect for multichip based 



10 

 

system. The first part proposes the design methodologies to use wireless interconnect to provide 

high bandwidth, low latency, and energy efficient communication across the distinct chips for the 

horizontally integrated multichip system. Whereas the second part addresses the co-design 

challenges of TSVs and microchannels in vertically stacking multichip system by utilizing wireless 

interconnects for data communication across microchannels coolers eliminating the need to place 

and route signal TSVs through the cooling layer. In conclusion, this dissertation performs a 

comparative evaluation of horizontally and vertically integrated wireless multichip systems in 

terms of performance, energy-efficiency, and temperature and points towards various promising 

future directions initiating from this research work. The design scope of this dissertation is 

encircled in Figure 1.2.  

1.4 Summary of Research Objectives  

1. Design of a Wireless Interconnection Framework for Seamless Inter and Intra-chip 

Communication in Horizontally Integrated Multichip System  

This research objective proposes to use wireless interconnects to establish a seamless 

communication backbone which enables data exchange between cores in a single chip as well as 

between chips in a multichip system with dimensions spanning up to a few tens of centimeters. 

The same communication protocols used for on-chip data transfer in the intra-chip NoC will be 

utilized for off-chip data as well, eliminating the need for protocol transfer. By deploying the 

wireless transceivers in the internal nodes of the chips such that all cores are within a short distance 

from their nearest transceivers, energy-efficient inter and intra-chip communication can be 

achieved. The design methodologies for such multicore multichip systems will be developed, and 
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comparative system-level performance evaluation with traditional I/O based multichip system will 

be completed.  

2. Wireless Interconnect as an Enabler for Data Communication across 

Microchannel based Cooling Layer in Vertically Integrated Multichip System 

The objective of this research goal is to investigate design methodologies and suitable architecture 

for vertical integration to realize the data communication across the cooling layers with on-chip 

wireless interconnects depending upon the dimensions of the microchannels for best trade-offs in 

thermal and hydraulic performance.  Integration of wireless interconnects in 3D integration for 

data communication across microchannel-based interlayer will eliminate the need for 

accommodating signal TSVs through the cooling chip while providing energy efficient data 

communication. Therefore, the only TSV based links to be placed and routed across the cooling 

layers would be the power and clock delivery networks. This integration methodology will 

significantly reduce the complexity of the co-design challenge of TSV based interconnects and 

microchannels based interlayer cooling. 

3. Holistic Comparative Evaluation of the Horizontally Integrated Multichip System 

with Vertically Stacked Multichip System 

For first two research goals, depending on the target integration technology, the design 

methodologies and architectures will differ. However, both research activities propose to use 

wireless interconnect to overcome the limitations of horizontal and vertical integration of the 

multichip system. The final research goal aims to perform a holistic comparative evaluation of 

these two different integration approaches in terms of performance, energy-efficiency, and 

temperature and to provide future directions for design of the multichip system. 
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1.5 Contributions 

In this dissertation, we develop design principles and methodologies to utilize wireless 

interconnect for horizontally and vertically integrated the multichip system. The principal 

contribution of this dissertation can be summarized as below: 

1. Design of a Wireless Interconnection Framework for Seamless Inter and Intra-chip 

Communication in Horizontally Integrated Multichip Systems  

As part of this objective, this thesis explored the advantages possible if inter-chip communication 

in horizontally integrated multichip modules can be realized with state-of-the-art mm-wave 

wireless links operating in the 60GHz band. The specific contributions of this research goal are: 

o Proposed two different interconnect frameworks to utilize wireless interconnects 

for seamless inter and intra-chip communication. This proposed framework 

eventually extends the NoC spanning to multiple chips. 

o The design of suitable on-chip antennas to establish wireless interconnection in a 

multichip system.  

o Evaluated the performance of the wireless multichip system and compare it with 

several traditional I/O based multichip systems. 

o  Proposed a methodology to deploy wireless interconnects when system scales up. 

o  Comparative evaluation of emerging multichip integration technologies. 

2. Wireless Interconnect as an Enabler for Data Communication across 

Microchannel based Cooling Layer in Vertically Integrated Multichip System 

As part of this research goal, this dissertation accomplished the following tasks:  
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o The design of 3D wireless NoC architectures for 3D ICs with microchannel based 

cooling to eliminate the need for TSVs across the cooling layers. 

o The design of suitable on-chip antennas to establish wireless interconnection in 

vertical stacking multichip integration. 

o Evaluate the performance and thermal characteristics of 3D wireless NoCs 

equipped with microchannel cooling layers and compare with respect to traditional 

3D interconnection systems using TSVs. 

3. Holistic Comparative Evaluation of the Horizontal and Vertical Integration of 

Multichip Integration with Wireless Interconnect 

As part of this research goal, this dissertation compared the horizontally integrated wireless 

multichip system with respect to the vertically stacked 3D wireless system in terms of interconnect 

performance, energy-efficiency, and temperature and provided future directions for the design of 

such multichip system. 

1.6 Dissertation Organization 

The dissertation is organized in five chapters. Chapter 1 introduces the complexity of the 

horizontal and vertical integration of the multichip system and an overview of the possible means 

of addressing those issues. Chapter 2 discusses the background and summarizes the current state 

of knowledge in this field. Chapter 3 presents design methodologies for a seamless, hybrid wired 

and wireless interconnection network for horizontally integrated multichip systems with 

dimensions spanning up to tens of centimeters with on-chip wireless transceivers. The same 

communication protocols used for on-chip data transfer in the intra-chip NoC will be utilized for 

off-chip data as well, eliminating the need for protocol transfer. Few cores inside the chips will be 
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equipped with wireless transceivers, which will be capable of establishing direct one-hop 

communication with other such cores in the same as well as other chips. By deploying the wireless 

transceivers in the internal nodes of the chips, such that all cores are within a short distance from 

their nearest transceivers, energy-efficient inter and intra-chip communication can be achieved. 

With system-level simulations, this chapter demonstrates that such a design increases the 

bandwidth and reduces the energy consumption in comparison to state-of-the-art wireline I/O 

based multichip communication. Chapter 4 proposes to realize the vertical interconnects for data 

communication across the cooling layers with on-chip wireless interconnects and presents energy-

efficient wireless 3D NoC architectures designed for optimal dimensions of microchannels for best 

thermal cooling capability and pressure drop characteristics. This chapter demonstrates that the 

proposed 3D wireless NoC is capable of establishing data communication across the cooling layers 

using wireless interconnects with lower energy consumption and reduces chip temperatures due to 

interlayer cooling channels. This chapter also presents holistic Comparison of the horizontally 

integrated wireless multichip system with respect to the vertically stacked 3D wireless system in 

terms of interconnect performance, energy-efficiency, and temperature. Finally, Chapter 5 

summarizes the important conclusions and points out the direction of future research. 
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Chapter 2  BACKGROUND AND STATE-OF-THE-ARTS 

The research activities proposed in this dissertation are inspired and founded upon the current state 

of knowledge in three main directions. Here we discuss the most recent activities in these 

directions. 

2.1 Intra and Inter-chip Interconnection for Horizontally Integrated 

Multichip System 

In the last few years, intra-chip communication infrastructure has seen a paradigm shift from bus-

based systems to Network-on-Chips (NoCs) architectures [2]. The NoC paradigm aims to mitigate 

global wire delays by designing separate scalable, plug-and-play interconnection fabrics to support 

high-speed communication between cores.  In this network-centric approach, packetized data is 

routed from source to destination through a series of switches and links. Commonly, wormhole 

switching is adopted for NoCs, where data packets are broken down into flow control units or flits. 

The first flit or the header flit contains routing information that helps to establish a path from the 

 

Figure 2.1. Conceptual diagram of a wireline Mesh based NoC and its multihop communication 

nature. 
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source to destination, and all the other payload or body flits follow that path [36]. Grid based Mesh 

topology shown in Figure 2.1 is most widely used NoC topology as it is relatively easy to design, 

manufacture, and test [3][4][5]. However, as can be seen from Figure 2.1, data transfer between 

two distant nodes happens in multi-hop fashion due to its regular structure. This can cause high 

latency and energy dissipation in metal wireline based traditional mesh architecture limiting the 

possible performance gain of NoCs. Insertion of long range links using conventional metal wires 

[37] or ultralow-latency and low-power express channels between communicating cores [38] have 

been proposed in the literature to alleviate this problem. However, with technology scaling, the 

gap between the global wire delays and gate delays increases significantly [6] and consequently, 

restricts the performance benefits from these approaches. Hence, to enhance the performance of 

metal wireline based NoC architectures, few radically different interconnection technologies such 

as photonic interconnects [39], multi-band RF transmission line interconnects [40], or wireless 

interconnects [29][30] are currently being explored. The on-chip photonic interconnects are 

implemented using on-chip optical waveguides, micro-ring resonators, and laser sources and are 

capable of achieving low latency and low power dissipation due to single hop communication 

between distant cores. However, the challenges regarding integration of photonic devices, precise 

thermal tuning of electro-optic modulators and demodulators, the signal noise due to coupling 

between waveguides, and manufacturing process involving a separate photonic plane [39] need to 

resolve for the photonic interconnects. While RF-interconnects (RF-I) [40] are compatible with 

CMOS technology, they require long on-chip transmission lines to enable data transmission which 

can lead to routing challenges and significant area overhead. On the other hand, on-chip wireless 

interconnects enable long distance, energy efficient, high bandwidth, and low-latency 

communication over long-range paths. Moreover, the absence of the need for physical 
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interconnection layouts makes wireless interconnects a promising alternative to the performance 

limitations seen by long-distance wired links. In addition, such mm-wave antennas fabricated 

using top layer metals are CMOS process compatible making them suitable for near-term solutions 

to the wired interconnect problem. More detailed literature survey on wireless interconnect is 

discussed in Section 2.3. 

In a parallel direction, conventionally C4 bumps coupled with in-package transmission 

lines are used to interconnect chips within a multichip system [41] as shown in Figure 2.2. 

However, signal quality deteriorations due to microwave effects, crosstalk coupling effects, signal 

reflections, and frequency-dependent lines losses in the transmission line limit the number of 

concurrent, high-density inter-chip I/O [10]. This, in turn, restricts the possible off-chip bandwidth. 

Moreover, the pitch of chip-to-chip I/O does not scale in the same proportion as on-chip global 

wires [6]. This creates a gap in performance of on-chip interconnections with respect to the off-

chip communication. Different interconnect technologies such as photonic interconnects [12][13], 

inductive or capacitive coupling based interconnects [24][25], and wireless interconnects [42] are 

being explored to mitigate the performance issues of conventional I/O based multichip systems. In 

[13], onboard integrated intra and inter-chip photonic network are proposed. In [43] transceivers 

 

Figure 2.2. Conceptual diagram of a multichip system interconnected with C4 bumps and in-

package transmission line. 
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for 60 GHz inter and intra-chip communications are designed. However, system-level performance 

gains are not evaluated in this work. In [44], wirelessly connected multichip modules are proposed 

for a High-Performance Computing (HPC) environment.  

2.2 Vertically Integrated Multichip System and Microchannel based Cooling 

Vertically stacked multichip integration or commonly known as 3D integration, provides 

promising solutions to the challenges of footprint, device density, and energy cost of the planar 

single-chip multicore system. The problem with metallic interconnect is not severe in 3D 

integration because of the smaller footprint. Through-Silicon-Vias (TSVs) are most often used to 

realize the interconnections between dies in the multichip system. TSV is a metallic interconnect 

that passed through silicon substrate to provide high bandwidth and energy efficient die-to-die 

interconnection due to its short length. However, One of the major issues in the implementation of 

3D integration is the excessive heat flux generated by stacking multiple chips, giving rise to an 

 

Figure 2.3. Vertically stacked dies with conventional air-cooled heat sink. 
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increase in the power generated per unit surface area as well as in the peak temperature [16][18]. 

Conventional cooling techniques are limited in ability to extract heat only from the top or bottom 

of the entire 3D stack as shown in Figure 2.3. Moreover, the conventional air-cooled heat sink 

requires heat flux from the vertically stacked dies to travel through a longer conductive path in 

order to dissipate through the heat sink, increasing the overall thermal resistance. For aggressive 

cooling of 3D ICs, interlayer liquid cooling methods have been investigated by several researchers. 

Tuckerman and Pease [17] first proposed the use of microchannels to cool ICs effectively. 

Tuckerman and Pease [17] were able to dissipate 790 W/cm2 with a thermal resistance of 0.09 

K/W by using microchannels with a height of 302 µm and a width of 50 µm. However, the flow 

rate required was 8.6 ml/s, which resulted in a pressure drop of 214 kPa. In [45], authors decreased 

the pressure drop from 25 to 1.01 kPa by increasing the microchannel height from 50 to 300 µm.  

They reported that it is possible to achieve low-pressure drops (< 10 kPa) and relatively low 

substrate temperatures by having flow rates between 2 and 5 ml/s in a 100 µm tall microchannel. 

In [46], authors noted that the fluid temperature increases significantly for microchannels widths 

beyond 300 µm under low flow rates. However, increasing the flow rate reduces the fluid 

temperature rise. Kandlikar [20] presented a review of the available cooling schemes for 3D IC 

stacks and identified that 3D IC cooling is suitable for hotspot management and proper thermal 

regulation of the chip components. Comprehensive thermal management techniques are developed 

in [47] where combined approach utilizing dynamic voltage frequency scaling (DVFS), 

temperature-aware task allocation and liquid cooling is proposed. In [48], authors analyzed the 

impact of the liquid cooling on a 3D multi-core processor compared to the conventional air cooling 

and showed that integrating interlayer cooling improves the lifetime reliability of a chip 

significantly by reducing the peak temperature. However, from a thermal viewpoint, to provide 
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adequate cooling capabilities at the low-pressure drop, microchannels are required to be wide and 

taller which in turn complicated the placement and routing of TSVs. Two different approaches 

exist in literature to address the co-design problem. In microchannels first approach, 

microchannels dimensions are optimized first to get the best cooling capabilities and then, TSVs 

are placed in the remaining area [21][22]. Whereas in TSV-constrained placement approaches, 

TSVs are placed first to reduce the average wire length and then, microchannels are employed in 

the remaining area [49]. However, in both methods, whatever is placed first occupy a significant 

silicon area leaving the lesser area for other and consequently, can result in either lower 

performance or cooling capabilities. 

Contactless wireless interconnects in 3D ICs through inductive and capacitive coupling 

based vertical links have been proposed in recent years [24][25][26]. In inductive coupling, a 

planar spiral transmitter and receiver inductor pairs are placed on the silicon dies and time-varying 

current is passed through the transmitter coil to generate magnetic flux as shown in Figure 2.4 (a). 

This coupled magnetic field, in turn, induces an Electromotive Force (EMF) in the receiving coil, 

and the receiver coil converts this EMF into an electrical signal. However, these inductive coupling 

 

                 (a)                                                                              (b)                                                                                                                                                      

Figure 2.4. (a) Inductive coupling (b) Capacitive coupling based interconnected for vertically 

stacked dies [50]. 
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links have larger area overheads compared to TSVs [26]. In addition, energy per bit of such links 

increases significantly with the communication distance [26]. On the other hand, in the case of 

capacitive coupling links, small metal plates are placed on two silicon dies which create parallel 

plate capacitance between them as shown in Figure 2.4 (b). However, these dies are required to be 

close to each other to create this electrical field. Due to this proximity requirements, the capacitive 

coupling based links require the dies to be face-to-face [50]. This limits the number to dies to be 

connected with capacitive coupling based interconnects.    

The idea of using wireless interconnects using mm-wave on-chip antennas in 3D NoC was 

explored in [51]. However, how it affects the design methodology in a 3D IC with liquid cooling 

was not discussed. Unlike capacitive/inductive coupling links, the energy consumption of mm-

wave wireless interconnects do not increase with the distance. This makes mm-wave wireless 

interconnect more viable solution for data communication across microchannels cooling layers 

with heights more than 50 µm. Enabling 3D NoC with wireless interconnects will eliminate the 

need for place and route of signal TSVs across the cooling layer for data transfer. This integration 

technique will ease the restrictions on the dimensions of the microchannels, reduce the 

complexities of co-design challenges of microchannels & TSVs, and make the fabrication of the 

cooling layer more flexible.  

2.3 Wireless Technology: A Promising Interconnect Paradigm 

On-chip wireless interconnect is a promising alternative to the performance limitations seen by 

long-distance wired links. The absence of the need for physical interconnection layouts makes 

wireless interconnects stand out from other emerging interconnects. Moreover, wireless 

interconnect are capable of enabling high bandwidth and low latency communication over long-
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range paths which is beneficial for the inter-chip communication. A comprehensive survey 

regarding various WiNoC architectures and their design principles is presented in [29]. Notable 

examples include the design of a WiNoC based on CMOS ultra-wideband (UWB) technology [32], 

hierarchical mm-wave WiNoC architecture [28], 2D concentrated mesh-based WCube architecture 

using sub-THz wireless links [52], and the inter-router wireless scalable express channel for NoC 

(iWISE) architecture [33]. In [44], on-chip wireless transceivers are used to facilitate quick pre-

bonding wafer testing enabled by direct accesses to components under test within the ICs. On-chip 

antennas from graphene or Carbon Nanotube (CNT) based structures are predicted to provide high 

bandwidth wireless communication channels [30][31]. However, integration of these antennas 

with standard CMOS processes needs to overcome significant challenges. On the other hand, mm-

wave CMOS transceivers operating in the sub-THz frequency ranges is a more near-term solution. 

However, the bandwidth of the mm-wave wireless channels is limited by the state-of-the-art in 

transceiver design. The design of multiple non-overlapping channels enabling Frequency Division 

Multiple Access (FDMA) is a non-trivial challenge from the perspective of transceiver design and 

is not easily scalable. Hence, to efficiently utilize the available bandwidth, several WIs need to 

share the wireless bandwidth for data communication. A synchronous and distributed medium 

access mechanism is proposed in [32] for the Ultra-Wide Band (UWB) wireless NoC. In [34], a 

Code Division Multiple Access (CDMA) based medium access scheme is proposed by utilizing 

orthogonal codewords to enable simultaneous wireless transmission through the wireless channel. 

In [30], a hybrid medium access scheme combining both Time Division Multiple Access (TDMA) 

and FDMA is proposed for WiNoCs based on CNT antennas. A distributed MAC protocol is 

proposed in [53]. The proposed mechanism uses simple orthogonally coded request packets, 

processing the request packets and granting permission to the channel by a priority based 
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mechanism. However, this mechanism has an overhead of maintaining the state of current 

transmission at each transceiver. In [54], authors discussed the performance of ALOHA and 

CSMA for graphene-based WiNoCs. A comparative performance evaluation of CSMA and Token-

based MAC is presented in [55]. For WiNoCs utilizing mm-wave transceivers, a token passing 

based medium access mechanism is used in [29][56].  
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Chapter 3  DESIGN OF A WIRELESS INTERCONNECTION 

FRAMEWORK FOR SEAMLESS INTER AND INTRA-CHIP 

COMMUNICATION IN HORIZONTALLY INTEGRATED 

MULTICHIP SYSTEMS 

In this chapter, we propose to use wireless interconnects to establish a seamless communication 

backbone which enables data exchange between cores in a single chip as well as between chips in 

a multichip system with dimensions spanning up to a few tens of centimeters. The same 

communication protocols used for on-chip data transfer in the intra-chip NoC will be used for off-

chip data as well, eliminating the need for protocol transfer. Few cores inside the chips will be 

equipped with wireless transceivers, which will be capable of establishing direct one-hop 

communication with other such cores in the same as well as other chips. By deploying the wireless 

transceivers in the internal nodes of the chips, such that all cores are within a short distance from 

their nearest transceivers, energy-efficient inter and intra-chip communication can be achieved. 

Here, we present the design methodologies for such multicore multichip systems and demonstrate 

that the proposed design out-performs traditional wired I/O based multichip systems through 

system-level simulations. The specific contributions of this chapter are: 

1. Proposed two different interconnect frameworks to utilize wireless interconnects for 

seamless inter and intra-chip communication. 

2. The design of suitable on-chip antennas to establish wireless interconnection in a multichip 

system.  



25 

 

3. Evaluated the performance of the wireless multichip system and compare it with traditional 

I/O based multichip system. 

4.  Proposed a methodology to deploy wireless interconnects when system scales up. 

5.  Comparative evaluation with respect to emerging multichip integration technologies. 

3.1 Wireless Interconnection Framework for Multichip Systems 

The interconnection fabric of the proposed multichip system with wireless interconnects is a hybrid 

network with both wired and wireless links. Each core in all the multicore chips is connected with 

a NoC switch. The switches within a single chip are interconnected in an intra-chip NoC 

architecture. Certain switches in the NoC are equipped with Wireless Interfaces (WIs) to realize 

the inter-chip communications. These switches can directly communicate with their counterparts 

in the other chips. Figure 3.1 shows the conceptual architecture of the multichip system 

interconnected with inter and intra-chip wireless network. 

3.1.1 Topology 

In the proposed wireless interconnection framework, cores within each chip are interconnected 

using an intra-chip NoC. We discuss the interconnection architectures for the multichip systems 

with two different intra-chip NoC topologies as case studies to exhibit their role in the overall 

system. The topology of the chosen two intra-chip NoCs is Mesh and a Small-World topology. 

The Mesh is selected as it is a conventional NoC topology used in several multicore-based products 

[4][5][3] and is relatively easy to design, verify, and manufacture. The Small-World topology is 

chosen, as it is suitable to design wireless NoCs as noted in [57] and is demonstrated to outperform 
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the Mesh-based NoC [37]. The multichip systems with the two chosen intra-chip NoCs are 

described below.  

A. Multichip System with Intra-chip Mesh 

In the first multichip interconnection framework the intra-chip interconnection topology is a 

traditional Mesh-based NoC. For inter-chip communication, traditional chip I/O is connected to 

the periphery of the chip in one of the corner switches. This requires inter-chip data between cores 

embedded inside the chips to travel to the periphery then be transferred to over the I/O resulting in 

high latency and high-energy consumption. To alleviate this problem, we equip NoC switches 

associated with cores embedded within the chip with WIs. To deploy the WIs each intra-chip mesh 

NoC in each chip is further subdivided into a certain number of logical subnets. The WIs are 

deployed in a switch at the center of the subnets as shown in Figure 3.1, to avoid long multi-hop 

paths from all cores in its subnet. This WI deployment strategy corresponds to the approach that 

achieves Minimum Average Distance (MAD) between all switches in an intra-chip NoC in [58]. 

This improves the connectivity of the entire multichip system by establishing direct wireless links 

between internal switches eliminating the need to travel to and from the periphery of the source 

and destination chips respectively to access the traditional I/O modules.  

B. Multichip System with Intra-chip Small-World 

Insertion of bypass paths or long-range shortcuts realized with metal interconnects is shown to 

improve the performance in a traditional Mesh-based NoC [37]. Small-World networks are a type 

of complex networks often found in nature that is characterized by both short-distance and long-

range links. This improves the efficiency of the network as they have a very low average number 

of hops between nodes even for very large network sizes. Hence, such network topologies are 
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suitable for designing scalable, hybrid intra and inter-chip interconnection networks using wireless 

links in [56][57]. 

To establish the wireline links within each intra-chip NoC while satisfying the properties 

of Small-World graphs, we generate the wireline topology according to the following inverse 

power law to minimize wiring costs [59] 

P(i, j) =
lij

−αfij

∑ ∑ lij
−αfij

n
j=1

n
i=1

 .       (3.1) 

Where, P(i,j) is the probability of establishing a link, between two switches i and j, lij is the 

Manhattan distance, fij is the frequency of communication between switch i and j and n is the total 

number of switches. As can be seen from (3.1), the probability of a link insertion between two 

switches i and j where lij separates them is proportional to the distance raised to a finite negative 

power. The value of α is chosen such that optimal wiring costs [59] are obtained. The distance is 

obtained by considering a tile-based floor plan of the cores on the die. The frequency of traffic 

 

Figure 3.1. Conceptual diagram of the wireless multichip system. 
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interaction between the cores, fij, is also factored into (3.1), so that more frequently communicating 

cores have a higher probability of having a direct link optimizing the topology for application-

specific traffic. This power-law based link distribution results in both short distance connections 

and long-range links due to the non-zero probability of links between far-away nodes. The total 

number of these wireline links is considered same as that in a mesh of the similar size to ensure no 

undue advantage is granted to the small-world architecture due to additional links. Also, an upper 

bound of 7 is imposed on the number of links attached to a particular switch so that no particular 

switch becomes unrealistically large [57]. The link setup method is repeated until no core or groups 

of cores are left unconnected. In this way, the intra-chip wireline small-world NoC topology is 

created. In addition to these wireline links, the wireless transceivers are deployed to form the WIs 

at the same switches as in the Mesh-based intra-chip NoC. This method is followed to form the 

same overlaid inter-chip wireless interconnect topology between the mesh and small-world based 

multichip systems. 

3.1.2 Physical Layer 

The main enabling technology for such inter and intra-chip wireless interconnection is the physical 

layer design comprising of the transceiver circuits and antennas. We envision the multichip system 

where wireless interconnects will enable seamless intra and inter-chip communications. On-chip 

communication will happen over the hybrid wireline and wireless NoC. Wireline links are realized 

with traditional global-wire based interconnects depending on the specific topology adopted.  

Several alternative technologies exist for realizing on-chip and off-chip wireless 

interconnections [29] [30][31][32][35]. We envision the use on-chip embedded miniature antennas 

operating in the 60 GHz mm-wave band that can be fabricated within the chip to establish direct 
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communication channels between internal switches of the chips. To realize such wireless channels, 

we choose on-chip metal zig-zag antennas which have been shown to be effective in establishing 

both on-chip and off-chip communication [27]. The chosen on-chip antenna has to provide the best 

power gain for the smallest area overhead. Several on-chip antenna designs in the mm-wave bands 

have been investigated [29][30][31][32][35]. A linear dipole occupies a large area proportional to 

the wavelength of the carrier frequency. A patch antenna is directional mostly radiating 

perpendicular to its plane. A log-periodic antenna is highly directional [60][61]. We intend the 

chosen antenna to be compact as well as not directional. This is because we want to communicate 

 

Figure 3.2. Specific dimensions of the antenna and feed structure. 
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between antennas, which are located in different chips and potentially at different angles with 

respect to each other’s axes. A metal mm-wave zigzag antenna has been demonstrated to possess 

these characteristics as they are more compact compared to a linear dipole due to the zig-zag 

folding of the arms. Also, such mm-wave antennas fabricated using top layer metals are CMOS 

process compatible making them suitable for near-term solutions to the wired interconnect 

problem [29]. Such mm-wave 60GHz antennas are shown to have a bandwidth of 16GHz for both 

intra-chip [28] and inter-chip [35] communications links. We have designed mm-wave zig-zag on-

chip antennas to resonate in the 60GHz frequency and studied its characteristics in terms of return 

loss and path loss in a multichip system. A coplanar feed structure is chosen for the antenna as it 

has low losses compared to other feed structures such as microstrips. These antennas are also 

shown not to be directional. This enables the WIs to communicate with any other WI in the system 

making the wireless medium a shared channel. Figure 3.2 shows the specific dimensions of the 

antenna and its coplanar feed structure. A trace width of 5um is used for all arms of the antenna. 

The WI transceiver circuitry has to provide a very wide bandwidth as well as low power 

consumption to ensure high throughput and energy efficiency. Hence, we adopt the transceiver 

design from [28] where low power design considerations are taken into account at the architecture 

level. Non-coherent On-Off Keying (OOK) modulation is chosen, as it allows relatively simple 

and low-power circuit implementation. 

3.1.3 Flow Control and Routing 

The routing protocol for the proposed multichip system is a seamless intra and inter-chip data 

communication mechanism. We adopt wormhole switching for both inter and intra-chip data 

where data packets are broken down into flow control units or flits [36]. Wormhole switching is 
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known to reduce the buffering requirements at the switches as unlike packet switching; whole 

packets are not stored and forwarded. This makes the on-chip NoC switches consume low power 

and occupies lesser area. All switches have bidirectional ports for all links attached to it. All cores 

in the system have unique addresses. As the overall system is not a regular network, we adopt the 

shortest path routing to optimize network performance. For the wireless links, we adopt the same 

wormhole switching with simple modifications to enable the energy-efficient token-based 

sleep/awake transceiver modes of operation as discussed in the next subsection. 

We use a forwarding table based routing over pre-computed shortest paths determined by 

Dijkstra’s algorithm. Dijkstra’s algorithm extracts a minimum spanning tree, which provides the 

shortest path between any pair of nodes in a graph. The exact minimum spanning tree depends on 

the chosen start node for the algorithm but the length of paths between any particular pair, along 

the tree does not rely on the start node. Hence, it is chosen randomly from among all the switches 

in the system. However, for a specific start node, the shortest path along the extracted tree is always 

unique as the minimum spanning tree eliminates loops inherently. Consequently, deadlock is 

avoided by transferring flits along the shortest path routing tree extracted by Dijkstra’s algorithm, 

as it is inherently free of cyclic dependencies. As a result of using shortest path routing, the wireless 

links can also be used for intra-chip communication if they reduce the path lengths compared to a 

complete wireline path. Each switch only forwards the header flits to the next switch in the path 

to the final destination. The body flits simply follow the path laid out by the header according to 

the adopted wormhole switching protocol. Hence, each switch only has local forwarding 

information eliminating the need for maintaining non-scalable global routing information. 



32 

 

3.1.4 Wireless Communication Protocol 

In mm-wave interconnects, wireless bandwidth is limited by the state-of-the-art transceiver design 

and on-chip antenna technology. To improve performance, multiple wireless transceivers need to 

access the wireless medium to communicate via the energy-efficient wireless interconnects. 

Consequently, multiple transceivers share a single wireless frequency channel. Therefore, an 

efficient and collision-free Medium Access Control (MAC) mechanism is needed.  

A. Wireless Medium Access Control (MAC) Scheme 

Several MAC protocols have been investigated in the context of wireless NoCs. To enable 

Frequency Division Multiple Access (FDMA) using mm-wave bands transceivers tuned to 

multiple carrier frequencies need to be designed. Power efficient design of such transceivers is a 

non-trivial challenge. The system-level performance of Code Division Multiple Access (CDMA) 

based on-chip and off-chip wireless interconnection architectures have been evaluated in [34][42]. 

However, such CDMA schemes require precise synchronization between the transceivers to avoid 

inter-channel interference by preserving the orthogonality of the code channels. Such a 

synchronization is difficult to achieve in transceivers distributed across multiple chips. Similarly, 

synchronized classical Time Division Multiple Access (TDMA) is difficult to adopt in a multichip 

system for the same reason. Therefore, Asynchronous TDMA (A-TDMA) based on token passing 

[29] or Carrier Sense Multiple Access/Collision Detection (CSMA/CD) [62] are proposed. 

However, CSMA-based A-TDMA does not perform well in the presence of the high traffic density 

due to exponential back-off [63][64]. A token-based medium access mechanism is proposed in 

[29] for WiNoCs to access the wireless channel in a distributed fashion while avoiding a collision. 

Hence, in this work, we adopt a similar token-based medium access mechanism for the multichip 
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systems using wireless interconnection. In a token-based medium access mechanism, the access 

to the wireless medium is granted by the possession of a token. Only the WI possessing the token 

can transmit via the wireless medium. No separate request mechanism or priority is considered as 

a part of the token passing scheme to avoid the need for a central grant or arbitration unit enabling 

a distributed access mechanism.  

To enable autonomous token passing among the WIs with fairness in accessing the wireless 

medium, the WIs are numbered sequentially in a virtual token ring. The token circulates 

autonomously between the WIs as a wireless flit in a round robin fashion. Each WI holds the token 

for a variable number of time slots (i.e. token possession period) where the one-time slot is same 

as the system clock cycle. The WI currently possessing the token passes it to the WI next in the 

virtual token ring when it does not have any more packets to send or the maximum token 

possession period expires. The maximum token possession period is given by 

𝑇𝑚𝑎𝑥 = (𝑛 × 𝜂𝑓𝑙𝑖𝑡 + 1)𝑡𝑓𝑙𝑖𝑡.                                              (3.2) 

Where η_flit is the number of flits in a packet (packet size), t_flit is the time (number of cycles) 

required to transmit a single flit over the wireless medium and n is the number of Virtual Channels 

(VCs) in the wireless port of the WI. This method allows the adoption of wormhole switching in 

the wireless links. The buffer depth of the VCs in the wireless ports need to same as that of the 

maximum packet size (in the case of variable packet size) to hold entire packets before they can 

be transmitted via the wireless channel to adopt the modified wormhole switching in the wireless 

links for a seamless communication. This also helps in increasing the energy-efficiency by using 

power gating of the wireless transceivers as discussed in the next subsection. From (3.2), the 

maximum token possession period is the time required to send all the packets in n VCs in the WI 
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as well as the token as a wireless flit. The architecture of the WI to enable the token-based medium 

access is shown in Figure 3.3. The Token Unit is the main logical unit responsible for managing 

the token passing mechanism. The Token Unit contains three registers, IDself, IDnext, and 

HasToken. The IDself and IDnext stores the address of the WI itself and the address of the next WI 

in the round robin circulation of the token. The HasToken indicates the presence of the token in 

the WI. The Token Unit also contains a token possession period counter. When a token flit with a 

destination address set to IDself is received at a WI, the Token Unit sets the HasToken and triggers 

the token possession period counter. On the other hand, when the token possession period counter 

expires indicating the end of the token possession period, a token flit containing the fields TokenID, 

NextWI, and PrevWI is constructed. The WI currently possessing the token then transmits it over 

the wireless medium. The field TokenID is an identifier to differentiate the token flit from data flit. 

The IDnext and IDself are used to set the field, NextWI, and PrevWI respectively. Although the token 

is circulated among the WIs in a round robin fashion, all these fields are necessary for the token to 

 

Figure 3.3. Block diagram of mm-wave token-based wireless interface. 
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enable a distributed token passing mechanism without relying on synchronization between the WIs 

distributed in different chips. 

B. Improving Energy-Efficiency of the Wireless Interconnect Using MAC 

The energy efficiency of the wireless interconnects can be further increased by using sleep 

transistor based power-gated transceivers instead of keeping them always awake. In [65][66] such 

a sleepy transceiver is implemented where control signals to turn them on/off are sent over 

specialized low-latency wired global line wires. However, in a multichip environment where WIs 

are distributed across different chips communicating the sleep/awake control signals using wired 

lines is challenging as it will require an additional pin and I/O overhead. Therefore, to enable a 

power-efficient sleep mode in the transceivers when they are not used we modify the wireless 

communication protocol. Each header flit to be sent across the wireless medium from a 

transmitting WI contains the number of flits in the packet and the address of the destination WI. 

All other WIs, which are not the destination of that particular header, will receive the header due 

to the broadcast nature of the non-directional antennas. On decoding the number of flits contained 

in that packet, all WIs except the source and destination WIs will go to sleep for the duration of 

the packet transmission. It will wake up after this duration to receive the next header (if there are 

other packets to send from other VCs) or token (if the token is being passed) and react accordingly. 

The flit type field in the header, body or token flits will enable this feature. As the VCs contain 

entire packets as noted in the previous subsection, only full packets will be transmitted together 

over the wireless medium. Therefore, a new header or a token flit is transmitted and received by 

all WIs when they wake up. In this mechanism, wormhole switching is modified as flits of a packet 
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are not transmitted over the wireless channel unless the whole packet is available for continuous 

transmission in the VCs.  

3.2 Experimental Results 

In this section, we evaluate the performance and energy efficiency of the wireless multichip 

systems. We compare the wireless interconnect based multichip system with both conventional 

I/O and alternative emerging interconnection based multichip system. The chip-to-chip I/O is 

adopted from [67] and is shown to have a bandwidth of 15 Gbps and an energy consumption of 5 

pJ/bit. On the other hand, the delay and energy dissipation on the intra-chip wireline link is 

obtained through Cadence simulations taking into account the specific lengths of each link based 

on the established topology in the 20 mm x 20 mm dies. The wireless transceiver adopted from 

[28][65] is designed and simulated using the TSMC 65-nm CMOS process and is shown to 

dissipate 2.31 pJ/bit sustaining a data rate of 16 Gbps with a Bit-Error Rate (BER) of less than    

10-15 while occupying an area of 0.3 mm2. The network switches and the Token Unit are 

synthesized from an RTL level design using 65-nm standard cell libraries from CMP [68], using 

Synopsys. 

3.2.1 Simulation Platform  

The delay and power dissipation including both dynamic and static power consumption of the 

digital components are incorporated in an in-house cycle accurate simulator to evaluate the 

performance and energy efficiency of different multichip systems. This cycle-accurate simulator 

is written in MATLAB. This simulator takes network topology, flit injection rates, traffic 

information, the number of switches, simulation cycles, and message length as input, processes 
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the messages at flit level, implements routing policies and flow control, and outputs performance 

metrics i.e. peak bandwidth, packet energy, and latency. The simulator characterizes the multichip 

architecture and models the progress of the flits over the switches and links per cycle accounting 

for those flits that reach the destination as well as those that are stalled. Each core is considered to 

be connected to a three-stage pipeline network switch [69]. The three stages correspond to input 

buffering, routing/arbitration, and output buffering operations, respectively. Each switch can have 

a number of VCs, which can be set by the user. The user can also configure the buffer depth of 

each VC (in terms of number of flits it can store). In our experiments, ten thousand iterations were 

performed eliminating transients in the first thousand iterations. The switches are connected to 

other switches according to the topology. The conventional I/O is modeled as a high-speed serial 

I/O port [67]. Similarly, the WI is also modeled as a port connected to the network switches where 

they are deployed. We consider each input and output port of a switch to have 4 VCs with a buffer 

depth of 2 flits for all the architectures considered in this paper. To avoid an excessive number of 

packets being stalled while waiting for the token, the ports associated to the WIs have an increased 

buffer depth of 8 flits. We consider a representative packet size of 64 flits with a flit size of 32 bits 

in our experiments unless otherwise mentioned. All the digital components are driven by a 2.5 

GHz clock and 1V power supply, which are the nominal frequency and voltage for the 65nm 

technology node. In the Mesh-based NoCs, all wired links a considered being single-cycle links 

whereas the long intra-chip wireline links in the Small-World architectures are pipelined by 

insertion of FIFO buffers such that between any two stages it is possible to transfer an entire flit 

in 1 clock cycle. 



38 

 

3.2.2 Wireless Channel Characteristics and Wireless Link Budget Analysis 

In this subsection, we present a link budget analysis to determine the transmitted power that is 

required to achieve an acceptable BER on the intra and inter-chip wireless links. Figure 3.4 shows 

the 4-chip system that we have used to design the on-chip antennas required for inter and intra-

 

(a) 

 

(b) 

Figure 3.4. (a) Top view of the model (b) Side view of the model 
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chip communication. As seen in Figure 3.4 (a) the individual chips are 20 mm X 20 mm and are 

separated from each other by 10 mm. Figure 3.4 (b) shows the side-view of the multichip system 

with various layers and materials considered in our evaluation model. We have considered the 

chips to be housed on a substrate of FR4 Epoxy material, which typically is the material for Printed 

Circuit Boards (PCBs) [70]. The individual chips are considered to be packaged in a dielectric 

material called RXP4 [71], which allows electromagnetic wave propagation to enable the inter- 

chip wireless communication. The antennas are considered to be embedded in a 2 um layer of 

silicon dioxide (silica) over a 633 um thick substrate of silicon of the chips. 

The transmitted power, Pt in dBm on the wireless channels is given by the following 

equation: 

              𝑃𝑡 = 𝑆𝑁𝑅 + 𝑃𝐿 + 𝑁𝑓.                                           (3.3)                                 

Where SNR is the signal to noise ratio at the receiver in dB, PL is the path loss in dB and Nf is the 

receiver noise floor in dBm. The relationship between Signal-to-Noise Ratio (SNR) and BER for 

non-coherent OOK modulation [72] is given by: 

BER =
1

2
(1 − 𝑄 (√2𝑆𝑁𝑅,√2 +

𝑆𝑁𝑅

2
) + exp⁡(−

(2+
𝑆𝑁𝑅

2
)

2
)).                         (3.4) 

Where Q(.) is the Marcum-Q function. An SNR of 15 dB results in a BER of less than 10-15 for the 

OOK modulation scheme adopted here. A BER of 10-15 is comparable to wireline data transfer in 

current technologies. Hence, we consider a required SNR of 15 dB in our link-budget analysis. 

Figure 3.5 (a), (b), and (c) show the radiation pattern, return loss, and worst-case path loss 

respectively of the designed mm-wave antennas in a 4-chip system, which we use for system level 
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analysis in this work. The characteristics of the antennas are simulated using HFSS [73]. The 

 

(a) 

 

(b) 

 

(c) 

Figure 3.5. (a) Radiation Pattern, (b) return loss, and (c) worst case path loss for wireless multichip 

system 
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insertion loss shows that the antennas are tuned to resonate at 60 GHz. The antennas are designed 

and tuned by Rounak Singh Narde under the supervision of Dr. Jayanti Venkatarman [74].  

The worst-case path loss, PL between two antennas, which are farthest apart in the 4-chip 

system as illustrated in figure 3.4 (a), is 34.9 dB. The noise floor of the receiver is -59 dBm [75]. 

Consequently, the output power of the transmitter is -19.43 dBm in the worst case. The power 

consumption of the transceivers, which is capable of generating this transmitted power as shown 

in [28], is considered in the following sections for system-level performance evaluation. We have 

observed that the return loss of the antennas is 0 dB at low frequencies between 0 to 10 GHz. This 

eliminates the possibility of interference with digital signals in the ICs due to their non-overlapping 

operational bands. 

3.2.3  Comparative Performance Evaluation 

We evaluate the wireless multichip systems in terms of bandwidth per core and energy efficiency 

and compare with several wireline I/O based multichip systems. The bandwidth per core is 

measured as the peak sustainable data rate in number of bits successfully routed per core per second 

at network saturation. The energy efficiency is measured as the packet energy, defined as the 

average energy (i.e. both switch and link energy) required to route an entire packet from source to 

destination successfully. It is measured by the sum of the energy dissipation of all the components 

in the multichip systems such as switches and links divided by the total number of successfully 

routed packets. For the multichip systems with wireline I/O whenever a flit traverses an inter-chip 

link, the energy dissipated by the I/O is added to the total sum. Conversely, in the wireless 

multichip systems, the wireless transceivers are always active, and hence their energy dissipation 

is added to the total energy dissipation.  



42 

 

In the following subsections, we demonstrate the performance of different multichip systems in 

terms of the available bandwidth per core and packet energy dissipation. 

A. Architectures for Comparison 

We consider six multichip systems with different inter-chip connection configurations for a 

comparative performance evaluation. These configurations are shown in Table 3.1. Among these 

six configurations, four configurations use I/O based wireline chip-to-chip interconnection, and 

two configurations use wireless interconnection for chip-to-chip communication. In these 

arrangements, each multicore chip is considered to have 64 cores where each core is connected to 

a network switch. We also consider two different intra-chip topologies, Mesh and Small-World to 

evaluate the effect of the intra-chip network on the performance of the multichip system. The 

number of chips in the system is varied from one to four interconnected together yielding different 

system sizes of 64, 128, 192 and 256 cores collectively.  

 

Figure 3.6. Conceptual view of (a) Bus I/O and (b) Network I/O based wireline configuration 
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Among the six configurations, four configurations use I/O based wireline chip-to-chip 

interconnection, and two configurations use wireless interconnection for chip-to-chip 

communication. Due to the large pitch of substrate-to-board pins [41], the number of pins 

dedicated for I/O operations is limited. Moreover, crosstalk between parallel inter-chip 

interconnects which can be several tens of millimeters long severely limits signal integrity. As 

shown in [76], signal integrity can be maintained in high-speed I/O based inter-chip 

communication only in the total absence of crosstalk. Therefore, to eliminate crosstalk, only a 

single inter-chip interconnect line is considered to exist between a pair of chips. To achieve this, 

only one switch along one edge of each chip (except the corner) is connected to the I/O module in 

the Bus I/O based wireline configurations. One of the middle switches is chosen as it is connected 

to three neighbors in the mesh based intra-chip NoC as shown in Figure 3.6 (a). For the small-

world based configurations, the same switches are chosen for the I/O modules to implement the 

same inter-chip architecture.  

To investigate the effect of increased bandwidth of the inter-chip wired links, we 

investigate the Network I/O configuration where we equip multiple switches in each chip with the 

I/O modules. However, between a particular pair of chips, there is only a single inter-chip link thus 

eliminating signal crosstalk. The chips are in turn connected in a mesh configuration among 

themselves via switches along the edges, using the I/O based inter-chip interconnects as shown in 

Figure 3.6 (b). 

In Bus I/O based wireline configuration, inter-chip communication happens through a 

shared bus. For bus access, we have adopted an independent, guaranteed bandwidth arbitration 

appropriate for high-speed I/O buses, which combines a distributed Time Division Multiple Access 
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(TDMA) approach with round robin access [77]. Simple slotted TDMA scheme is not realistic in 

a multichip system because it is impossible to achieve precise synchronization between multiple 

chips in current and future technologies. Therefore, an asynchronous and distributed access 

mechanism is necessary. However, a traditional request/grant based asynchronous centralized 

arbitration common in on-chip SoC busses is impractical as it needs additional control lines to the 

arbiter in addition to the data lines. In high-speed I/O as discussed before, implementing additional 

control (request/grant) lines would need additional I/O ports and pins and exacerbate the crosstalk 

noise causing severe signal integrity issues. Therefore, we enabled the distributed TDMA with a 

control flit broadcast to all the chips on the bus that passes the access to the next chip at the end of 

the transmission from the current chip. Each chip can access the bus for a maximum duration as 

given by (3.2) similar to the WIs to avoid bandwidth starvation. Also, the VC configurations of 

the switches attached to the bus are the same as in the WIs. 

TABLE 3.1. MULTICHIP SYSTEMS WITH DIFFERENT INTER-CHIP INTERCONNECTION CONSIDERED 

IN THIS PAPER 

 

Architecture Intra-chip configuration Inter-chip configuration 

Mesh+I/O(Bus) Conventional grid based Mesh NoC Bus-based I/O 

Mesh+I/O (Network) Conventional grid based Mesh NoC Switching-based I/O 

Small-World+I/O(Bus) Small-world wireline NoC Bus-based I/O 

Small-World+I/O (Network) Small-world wireline NoC Switching-based I/O 

Mesh+Token Conventional grid based Mesh NoC Token-based Wireless Links 

Small-World+  Token Small-world wireline NoC Token-based Wireless Links 
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Unlike the Bus I/O based configuration, a wormhole based switching is adopted for the 

inter-chip communication in the Network I/O configuration. On the other hand, for both the 

wireless configurations, we have considered 4 WIs per chip located at the center of the subnets 

within the chips as discussed in the design methodology earlier. 

B. Achievable Performance 

In this subsection, we evaluate the performance of the multichip systems with wireless 

interconnections. First, we evaluate the peak achievable bandwidth per core of different multichip 

systems at network saturation using uniform random traffic. The peak achievable bandwidth per 

core of these multichip systems is shown in Figure 3.7. It can be observed that the systems with 

wireless interconnections have higher bandwidth compared to all the wireline I/O interconnection 

for all system sizes. This is because the wireless nodes connect switches inside the chips directly 

 

Figure 3.7. Peak achievable Bandwidth per core with varying system size for different configurations 

with uniform traffic. 
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over single-hop links for both intra as well as inter-chip data transfer. Therefore, even for a single-

chip case, even when there is no inter-chip traffic the configurations with wireless interconnects 

have higher bandwidth compared to the complete wireline intra-chip NoCs. This is in agreement 

with several mm-wave wireless intra-chip NoC papers. On the other hand, for all the wireline I/O 

based systems the data packets need to [29][30][33] travel from internal cores to the peripheral I/O 

module and then, get routed over the inter-chip link and again travel to internal nodes at the 

destination chip. Among the wireline configurations, the Bus based multichip systems have the 

lowest performance and are not scalable due to the non-scalable bus-based interconnection. The 

Network I/O based wireline configuration has higher performance than the Bus. This is because 

the Network configuration allows concurrent communication between the adjacent chips. It can be 

observed that the wireless multichip system can sustain a bandwidth per core higher than 10 Gbps 

even for a 4-chip system. The degradation also seems to be asymptotic at 10 Gbps. However, with 

 

Figure 3.8. Average packet latency of various multichip systems. 
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the conventional I/O the bandwidth is more than 10× lower. This demonstrates the significantly 

higher bandwidth provided by the direct chip-to-chip wireless links. 

Figure 3.8 shows the average packet latency for the various multichip systems with four 

chips with uniform random traffic. Due to different average distances between cores in the 

different multichip interconnection architectures, the latency characteristics are different. This is 

demonstrated by the average latencies at low injections loads. It can be observed that the wireless 

multichip has the lowest latency compared to the systems with inter-chip wireline 

interconnections. This is because of the shorter average path lengths due to WIs located inside the 

chips providing single hop links between cores located inside distant chips. 

The performance of the Small-World NoC is higher than the Mesh-based NoC for both 

wired and wireless systems. This is due to direct one-hop connections between distant nodes on 

the chip. However, this gain is the most apparent in the single chip system. This is because, with 

an increase in the number of chips, the impact of the local NoC in each chip decreases on the 

overall system performance. We believe this trend to continue and hence, the importance of intra-

chip NoC architecture to diminish compared to the inter-chip interconnection as the system size 

scales up. 

C. Packet Energy 

In this section, we compare the packet energy dissipation of different multichip systems 

interconnected with I/O based wireline interconnects and wireless interconnects. Figure 3.9 shows 

the packet energy dissipation of different multichip systems investigated in this paper. The packet 

energy dissipation for all system sizes is lower for the wireless multichip systems compared to all 

the I/O based multichip systems. The difference in packet energy between these wireline and 
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wireless multichip systems becomes more evident with an increase in system size as the packet 

energy dissipation for the I/O based multichip systems increase significantly with an increase in 

the number of chips. Alternatively, the packet energy in the wirelessly connected system does not 

increase as drastically. This is due to the direct energy-efficient wireless links between cores 

embedded in the multicore chips. Due to spatially uniform traffic, as the number of chips increase, 

the inter-chip traffic also increases in proportion from zero percentage in the single-chip scenario 

to 75% in the 4-chip case. This implies that 75% of the total number of packets generated uses the 

wireline I/O in case of the wired inter-chip interconnection systems. Because of this, a large 

proportion of traffic travels to and from the I/O modules using multi-hop wired paths over the 

intra-chip NoCs. This multi-hop path is reduced by use of the WIs deployed inside the chips. This 

is the main factor behind the gains in energy savings for the wireless multichip systems.  

Among all the I/O based configurations, the configuration of network-based interconnect 

has lower packet energy dissipation. This is because, in the networked interconnection based 

 

Figure 3.9. Packet energy with varying system size for different configurations with uniform traffic. 
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multichip systems, the I/O buffers are less congested compared to Bus configurations resulting in 

faster movement of data packets occupying buffers and interconnection resources for shorter 

durations. As both the performance and the energy efficiency of the network or switching based 

configuration is better than other I/O based configurations discussed in this paper, we consider this 

configuration as a baseline I/O based configuration for comparison in the following sections.  

On the other hand, the Small-World NoC based wireless interconnection has lower packet 

energy compared to the Mesh NoC based wireless interconnection. This is because the Small-

World nature of the topology reduces the average hop-count of the network by establishing long-

range single-hop direct links. This effect is also demonstrated in recent literature [57][78][79]. 

Hence, in next sections, we consider the Small-World+Token architecture to evaluate the 

performance of the wireless multichip system. 

D. Effect of Flit Width on Overall System Performance 

In this section, we analyze the effect of increasing flit width for Small-World+Token based 

wireless multichip system with uniform random traffic pattern and compare it with the Small-

World+I/O (Network) architecture. A 2-chip system is considered in this subsection. For this 

experiment, we used four different flit sizes of 32, 64, 128, and 256 bits. This is because as noted 

in [80], higher flit widths beyond 128 are shown to provide marginal gains in performance of a 

NoC based system.  

In the case of wireline intra-chip interconnections, widening physical channel width to 

accommodate larger flit width will increase the data rate on the wireline links. In the case of the 

conventional, I/O based inter-chip interconnect, the increase in flit-width translates into increasing 

the bandwidth of the interconnection by using multiple channels per link. However, signal 
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deterioration due to crosstalk coupling effects, microwave effects, and frequency-dependent losses 

in the transmission lines limits the number of parallel lines in the I/O modules. Here we only 

analyze the system-level performance metrics such as bandwidth per core and packet energy for 

these systems.  

On the other hand, the data rate of the wireless links is governed by the speed of the 

transceiver and bandwidth of the antennas, which does not change with flit size.  Hence, while the 

wireline communication becomes faster with an increase in flit size, the wireless communication 

speed remains constant. This results in a reduction in relative gains for the wireless multichip 

communication architecture with respect to the conventional I/O based system as shown in Figure 

3.10. However, even with a flit width of 256 bits (8 parallel I/O channels per link), we see a relative 

improvement of 4.6x in data bandwidth and 3.1x in packet energy for a 2-chip system. In addition, 

we note that the reduction in relative gains for both bandwidth and packet energy display an 

 

Figure 3.10. Relative gain in bandwidth and packet energy with different flit width for 2-chip system. 
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asymptotic behavior. This means that although the gains of using wireless interconnections 

decrease with increase in flit size the gain will stabilize beyond a point as the performance of the 

wireline interconnection does not continue to improve with flit size beyond 128 or 256 bits.  

3.2.4 Deployment of the Wireless Interconnection with Scaling of System Size 

In this section, we discuss the deployment methodology of the wireless interconnection for 

multichip systems when the system scales up. In our earlier experiments, we keep the number of 

WIs per chip constant and scale up the system i.e. increase the number of chips per system. 

However, in this approach, the total number of WIs keep increasing which will negatively affect 

the performance beyond a point as it will take increasingly longer time for each WI to possess the 

token and gain access to the medium. Hence, we have considered another alternative approach to 

deploying the WIs when system scales up. In this second method, we keep the total number of WIs 

per system constant and distribute the WIs among the chips. For the first approach, we consider 

 

Figure 3.11. Bandwidth per core and Average packet energy for 1, 2, 4-chip systems for two different 

deployment approaches of WIs. 
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4WIs per chip and increase the system size whereas, in the second method, the same number of 

WIs is distributed among the chips of the system. In both cases, we evaluate the performance in 

terms of bandwidth per core and packet energy. However, in the second approach, we are 

distributing 4WIs among the chips that result in 1 WI per chip for a 4-chip system significantly 

degrading the performance. Hence, to study the deployment methodology more comprehensively, 

we consider another configuration with 16 WIs for the whole system and evaluate its performance.  

The bandwidth per core and packet energy for 1, 2, and 4 chip systems for two different 

wireless interconnection deployment methodologies are shown in Figure 3.11. For this study, the 

Small-World+Token architecture is considered in all the cases. The peak bandwidth per core is 

higher for the system with a constant number of WIs per chip than that of the alternative approach. 

This is because in the first approach with increasing system size number of WIs also increases. It 

is true that increasing the number of WIs increase the token return period; it also helps to distribute 

the inter-chip traffic among the WIs. On the other hand, for the second approach with 4WIs for 

 

Figure 3.12. Relative gain in bandwidth and average packet energy with different system sizes. 
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the whole system, with increasing system size the volume of inter-chip communication increases 

whereas the number of WIs per chip decreases. This increases congestion at the wireless interfaces 

and adversely affects the bandwidth. This also causes a relative increase in the packet energy. To 

study the impact of the second methodology with a higher number of WIs, we deploy 16 WIs in 

the whole system. However, even in this case, the peak bandwidth per core is lower than that of 

the system with a constant number of WIs per chip. In the single-chip case, the performance with 

16 WIs is lower than that with 4 WIs as each WI has to wait much longer for accessing the wireless 

channel. These two approaches are equal in peak bandwidth per core and packet energy in the 4-

chip case because the two systems are identical. Hence, for the system sizes considered in this 

experiment, having a constant number of WIs per chip is a better deployment approach for the 

wireless multichip system. 

To investigate the effect of this deployment policy on the scaling of system size and 

dimensions further, we evaluate a multichip system with 9 chips. Each chip is considered to be   

20 mm x 20 mm, and a space of 10 mm is assumed between the edges of the chips as well as the 

edge of the substrate board. Thus, the overall dimensions of the board are 10 cm x 10 cm. Figure 

3.12 shows the relative gains in bandwidth and average packet energy of the small-world based 

wireless multichip system with respect to small world based wireline (Network) multichip system 

for various system sizes. With the increase in number of chips and consequent increase in the 

number of WIs, the token-based wireless interconnection suffer a degradation in performance. 

However, it can be seen that the relative gains do not decrease significantly with increase in size 

because the performance of the wireline multichip systems also decreases with increase in size. 
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3.2.5 Performance Evaluation with Non-uniform Traffic Patterns 

In this section, we analyze the bandwidth and packet energy in the Small-World+Token based 

multichip system with non-uniform traffic patterns and compare it with the Small-World+I/O 

(Network). We use the small-world based configurations in this section as they outperform the 

Mesh-based ones as demonstrated in the previous section. First, we use hotspot and transpose 

synthetic traffic pattern to evaluate these multichip systems. In the hotspot, 5% of all traffic 

generated from all cores has the same destination, which is the hotspot core. A single core was 

chosen randomly from the system as the hotspot. All other packets are destined to other cores 

following a uniform random distribution. This type of traffic pattern is fairly common for 

directory-based cache-coherent shared memory multiprocessor system where communication 

among the on-chip core and memory subsystem is more frequent [81]. Each core generates packet 

only destined to cores that are diametrically opposite to it in the whole system to generate the 

transpose traffic pattern. For example, the ith core will only send data packets to the (N-i+1)th core, 

where, N is the total number of cores in the entire system.  

  

  (a)                                                                                                         (b) 

Figure 3.13. (a) Bandwidth per core and (b) Packet energy with non-uniform traffic for I/O based and 

wireless multichip systems.  
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The bandwidth per core and packet energy for the small-world NoC based multichip system for 

the one and two-chip cases are shown in Figure 3.13 (a) and (b) at network saturation respectively. 

As can be seen from results the wireless small-world system outperforms the I/O based multichip 

system for all the non-uniform traffic patterns. In the 2-chip system with both hotspot and transpose 

traffic patterns a significant portion of the traffic accesses the inter-chip communication medium. 

Hence, the distributed wireless interconnects improve the bandwidth and packet energy in both 

cases compared to the wireline inter-chip communication. In transpose traffic pattern, all data 

packets from all cores travel across the inter-chip communication medium. Hence, the relative 

gains of the wireless inter-chip interconnection are the most evident with this traffic pattern. 

Our observations with the uniform and non-uniform traffic patterns indicate a strong 

correlation between the overall performance of the multichip system with that of the proportion of 

inter-chip traffic. However, it is hard to estimate or predict the proportion of inter-chip vs. intra-

chip traffic in the set of applications suitable for modern and future multichip systems. Hence, we 

 

Figure 3.14. Bandwidth per core and Packet Energy for 2-chip I/O based and wireless multichip 

systems with varying localization 
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study the change in performance by varying the degree of localization in the traffic as a direct 

parameter. We define the localization parameter as the percentage of data packets from each core 

that has a destination randomly chosen from among the cores within the same chip. Figure 3.14 

shows the bandwidth per core and packet energy respectively, as the localization parameter is 

varied from 25% to 100% for a 2-chip system with each chip having 64 cores interconnected with 

the small-world architecture. This captures the possible spectrum of traffic patterns while 

demonstrating how the performance depends on it. As the localization parameter increases, the 

performance of the multichip systems increases and the packet energy consumption decreases for 

both wireless as well as conventional I/O based systems due to lower dependence on the inter-chip 

communication fabric. More importantly, for low localization and increased inter-chip traffic, the 

role of the inter-chip interconnections become significant as one would expect and the gains of the 

wireless chip-to-chip links increases compared to the wired I/O system. 

3.2.6 Comparative Evaluation with Respect to Emerging Multichip Integration 

Technologies 

In our prior sections, we considered simple token passing mechanism based wireless multichip 

system that outperforms wireline I/O based configurations. However, in token passing based 

wireless medium access mechanism, only a single transmitter can access the wireless channel at 

any given instant of time although multiple transceivers are deployed over the entire system. This 

limits the potential performance benefits of wireless architecture. Enabling simultaneous 

communication channels without any interference can ensure better utilization of the available 

bandwidth. This can be achieved by either designing a MAC protocol like Direct Sequence Spread 

Spectrum (DSSS) based CDMA channel access mechanism [34][42], or FDMA using novel 
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antenna technology like Carbon Nanotube (CNT) based nano-antennas operating in THz frequency 

bands [30]. To study the potential performance improvement with these advanced techniques, we 

evaluate the same interconnection framework just replacing the token-based wireless transceivers 

with CDMA-based and CNT antenna based ones. In the CDMA-based medium access 

mechanisms, Walsh codes are used to create orthogonal code channels for multiple access. Due to 

this orthogonality between the code channels bits in one code channel are not affected by other 

channels. Transmitted bits are first encoded using the codeword, and at the receiving WI, the 

received bit is XORed with the code words to extract the transmitted data. We adopt the 

performance and power characteristics of the CDMA transceiver operating at 6 Gbps from [34] to 

estimate the performance of the system.   For the CNT antenna technology, we consider Multi-

Walled Carbon Nano Tube (MWCNT) antennas as they are shown to be in excellent quantitative 

agreement with traditional radio antenna theory [82]. These CNT antennas are excited using laser 

sources of different frequencies, which results in concurrent frequency channels supporting a data 

rate of 10 Gbps/channel [30]. 

  Figure 3.15 shows the peak bandwidth per core and packet energy for the multichip systems 

with these different wireless interconnect technologies. For a fair comparison, we considered same 

TABLE 3.2. ENERGY PER BIT AND AGGREGATE BANDWIDTH FOR DIFFERENT INTERCONNECT TECHNOLOGIES 

 

 Token-based 

Wireless 

interconnect 

CDMA-based 

Wireless 

interconnect 

CNT-based 

Wireless 

Interconnect 

Inter-chip-photonic 

interconnect 

Energy (pJ/bit) 2.3 3.43 0.48 0.43 

Aggregate physical 

bandwidth (Gbps) 

16 6 160 160 
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intra-chip architecture i.e. Small-World (SW) with same system size (4-chip) and the same number 

of WIs per chip (4 WIs). The raw energy/bit of the wireless technology and aggregate physical 

bandwidth provided by each of these technologies are summarized in Table 3.2. From Figure 3.15 

it can be seen that SW+Token based system has the lowest bandwidth per core and highest packet 

energy among all the wireless configurations considered here. This is because only a single 

transmitter can access the wireless channel at any given instant of time. This increases the queuing 

delay for the packets yielding a lower bandwidth and higher packet energy. Designing complex 

MAC schemes like CDMA or using a novel antenna technology can improve this bandwidth to an 

extent due to concurrent communication among the WIs. However, in the CDMA-based system, 

these simultaneous communications happen to utilize the orthogonal Walsh code channels 

resulting in lower bandwidth per channel due to spectrum spreading effect of DSSS. Consequently, 

SW+CDMA provides lower bandwidth and consumes higher packet energy compared to 

SW+CNT based system. However, the improvement of the performance by implementing 

complex MAC or utilizing novel antenna technology does not come without a price. The 

 

Figure 3.15. Bandwidth per core and average packet energy for different interconnect technologies for 

4-chip system 
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transmitters are required to be synchronized to maintain the orthogonality among different code 

channels in CDMA-based MAC. This synchronization is difficult to achieve in a multichip 

environment as the WIs are distributed across different chips. Alternatively, integration of these 

CNT antennas with standard CMOS fabrication processes needs to overcome significant 

challenges [30]. Addressing these limitations by improving technology and designing efficient 

wireless medium access channel mechanism can exploit the full potential of the direct chip-to-chip 

wireless interconnects in future.    

In recent literature, off-chip photonic interconnects has emerged as another enabling 

technology for chip-to-chip communication [12][13][83][84]. Next, we compare the wireless 

interconnection architecture with a photonic multichip system. For a fair comparison, we simulate 

the same 4-chip system. In this system as well, intra-chip architecture is same i.e. small-world. 

The only difference is in the inter-chip communication. In the photonic multichip system, the inter-

chip communication happens through high bandwidth photonic interfaces. To connect these 

interface switches through a single waveguide, we consider these switches to be located at one 

edge of the chip. For our experiment, we consider four photonic interfaces per chip and one 

waveguide with 16-way Wavelength Division Multiplexing (WDM) channels having a bandwidth 

of 10 Gbps per channel [85]. The peak bandwidth per core and packet energy for the photonic 

system is shown in Figure 3.15. The power consumption of the laser sources is factored in the 

energy consumption per bit along with electro-optic conversions for both the photonic and the 

CNT-based multichip systems as shown in Table 3.2. The SW+Photonic outperforms both the 

token and CDMA-based wireless multichip system due to the presence of high bandwidth 

concurrent links. However, the performance of the photonic multichip system is lower than that of 

the CNT-based wireless system. As noted in Table 3.2 the physical bandwidth of both CNT-based 
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wireless multichip interconnection is considered to be the same as that of the photonic inter-chip 

waveguide. The energy per bit is also comparable. The gains in system bandwidth and packet 

energy comes from the fact that data packets can get routed from internal switches using the CNT-

based wireless links. Whereas in the case of the photonic system, the data packets will have to 

reach the photonic interfaces of the chip in its periphery thereby affecting system level 

performance and packet energy negatively. Moreover, in the CNT-based wireless multichip 

system, intra-chip communication is also possible using the wireless channels without requiring 

any additional overheads. It is worth noting that the aggregate physical bandwidth of both the 

CNT-based wireless and the photonic interconnection framework can be increased by deploying 

more CNT-based antennas and using denser WDM respectively. This will improve the 

performance of both systems. 

It is possible to improve the performance of the photonic multichip system by integrating 

the inter-chip waveguide with an intra-chip photonic NoC [13]. However, the challenges regarding 

integration of photonic devices, precise thermal tuning of electro-optic modulators and 

demodulators and a manufacturing process involving 3D technology for a separate photonic plane 

[39] need to be overcome. 

Undoubtedly, the wireless multichip system with token-based MAC offers lower 

bandwidth compared to the other systems considered in this section. However, due to fabrication 

challenges and reliability concerns, implementing complex MAC or emerging novel interconnect 

technologies require further investigation. On the other hand, the token-based wireless system 

utilizing metal-zigzag antennas are CMOS compatible and outperforms conventional wireline I/O 

based inter-chip communication systems which make it a nearer term solution as the 
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communication backbone for designing such multichip systems providing significant gains in 

system performance. 

3.2.7 Area Overheads 

In this section, we estimate the corresponding area overheads of the various architectures studied 

in this paper. The number of wired intra-chip links in all configurations are same as that of a 

conventional Mesh NoCs i.e. number of intra-chip links in the small-world based architecture is 

constrained to be the same as that of the conventional Mesh. The only difference is the I/O 

modules, wireless transceivers and the area of ports associated with them. Figure 3.16 shows the 

total area overhead of the various interconnection architectures for different multichip 

configuration considered in this paper for a 4-chip system. In the case of token-based architectures, 

each transceiver occupies an area of 0.3 mm2 [28] whereas in I/O based architectures, each 

transceiver has an area of 0.088 mm2 [67]. For the wireless multichip systems of the largest 

 

Figure 3.16. Area overheads of different wireline and wireless architecture considered in this paper 
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configuration, the total area of the interconnection network is 1.92% of the entire system while the 

wireless overhead is only 0.46% assuming each chip is 20 mm × 20 mm. The proportion of the 

various area overheads remains similar for other system sizes using the wireless interconnections, 

as the number of WIs per chip remains the same. 

3.3 Summary 

High-performance computing environments and data centers employ modules with multiple 

multicore chips in a package or on board. The density and bandwidth of high-speed I/O for inter-

chip interconnections are becoming the power-performance bottleneck for such multichip systems. 

In this work, we explore the advantages possible if inter-chip communication in multichip modules 

can be realized with state-of-the-art mm-wave wireless links operating in the 60GHz band. While 

the physical bandwidth of such wireless links is not necessarily higher compared to the high-speed 

serial I/O links, the wireless links are capable of establishing direct communication channels 

between cores in different chips via on-chip embedded antennas. Moreover, the wireless links can 

be used for a seamless data transfer between cores in the same chip as well to augment the 

traditional NoC backbone for intra-chip communications. These factors result in significant gains 

in performance and energy efficiency in both intra and inter-chip data communications. The 

energy-efficiency of the wireless interconnects have been improved by careful wireless data 

transfer protocol design to put unused WIs to sleep using power-gated transceivers. It can be 

further enhanced by using variable levels of power amplifications [86] depending upon the length 

of the wireless interconnects and associated path losses in the future. 

  



63 

 

Chapter 4  WIRELESS INTERCONNECT AS AN ENABLER 

FOR DATA COMMUNICATION ACROSS MICROCHANNEL 

BASED COOLING LAYER IN VERTICALLY INTEGRATED 

MULTICHIP SYSTEM 

Vertically integrated multichip system i.e. Three-dimensional Integrated Circuits (3D-ICs) have 

emerged as another feasible solution to overcome the performance limitation of 2D planar ICs [9]. 

Vertical interconnects realized using Through-Silicon-Vias (TSVs) provide high density, high 

bandwidth communication paths between the active layers of the 3D ICs greatly mitigating the 

global interconnect problems faced by planar ICs. However, utilizing the third dimension to 

provide additional device layers poses thermal challenges as stacking vertical layers increases the 

power dissipation density significantly, and the thermal footprint per unit area TSVs are used for 

both data as well as critical signals like clock and power delivery across the layers in a 3D ICs 

[16]. Conventional cooling techniques are limited in ability to extract heat only from the top or 

bottom of the entire 3D stack. Consequently, the design of aggressive and sophisticated cooling 

mechanisms are envisioned to alleviate the thermal issues in 3D ICs. 

One such solution is where embedded inter-layer cooling microchannels or a cooling chip 

is inserted in between layers of the vertically stacked multichip system. Tuckerman and Pease [17] 

first proposed the use of microchannels to cool IC chips effectively. Introducing microchannels 

between the active layers of the 3D ICs and circulating cooled liquid through these channels can 

extract the heat from the interlayer regions and cool the 3D ICs more efficiently as compared to 

conventional cooling techniques. However, to increase the cooling capability of the microchannels 
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their effective thermal conductivity should be high, or conversely, they should have low thermal 

resistance. Short microchannel heights reduce their convective thermal resistance. However, short 

microchannels increase the pressure drop between the entry and exit points of the liquid causing 

thermal stresses [20]. These high stresses may compromise the mechanical integrity of the thin 

walls between TSVs and microchannels. Lowering the coolant flow rate to reduce the pressure 

drop has another disadvantage of higher temperature non-uniformity in the silicon substrate along 

the flow length. Moreover, large thermal gradients along the fluid flow direction inside 

microchannels can affect the structural reliability of the TSVs by inducing temperature related 

expansion and contraction due to a mismatch in coefficient of thermal expansion (CTE) between 

copper and silicon. To reduce the mechanical stresses and at the same time, to provide temperature 

uniformity and adequate cooling capabilities, the height and width of the microchannels need to 

be increased. Several dimensions of microchannels are suggested in literature ranging from 50 µm 

to 1000 µm in height and 100 µm to 1000 µm in width depending on desired pressure drop and 

cooling capabilities [21][22]. This, in turn, imposes significant restrictions on where and how 

many TSVs and microchannels can co-exist together. TSVs with Aspect Ratio 

(AR=Height/Diameter) greater than 10 are tough to manufacture at high yield due to challenges 

related to etching, sidewall passivation, and formation, insulation, and filling of Vias [6] and co-

dependency of the microchannels and electrical design makes the process even more complex. 

Wider microchannels occupy a significant portion of the floor area of the 3D IC severely restricting 

the freedom of placement and routing of TSV based links in 3D ICs. Moreover, increasing the 

microchannels height will eventually increase the die thickness and consequently, the height of 

TSVs that in turn will increase the diameter of the TSVs to maintain a fixed AR. Also, to reduce 

IR and Ldi/dt drop, TSVs used for power delivery network require higher diameter and pitch than 
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the signal TSVs. All these factors restrict the area available to route TSVs across the cooling layers 

and make the co-existence and co-design of TSVs and microchannels challenging especially when 

thousands of TSVs are required for interconnections in large chips with die areas higher than 

100mm2 [23]. 

In recent years on-chip wireless interconnects in the millimeter-wave frequency bands are 

demonstrated to be more energy-efficient compared to conventional wireline interconnect fabrics 

[28][29][30][31][33][34]. Moreover, wireless interconnects do not require physical layout of links 

and provide direct single-hop links between transceivers distributed across the chips. Based on 

these recent studies, we propose a wireless 3D NoC architecture to enable energy-efficient 

communication utilizing wireless links across interlayer microfluidic coolers. This will reduce the 

number of TSV based links across the microchannel layers as data transfer across the cooling layer 

 

Figure 4.1. Side view of proposed 3D wireless NoC architecture with the interlayer cooling layer. 
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will only be achieved through wireless links. This will eliminate the need to place and route signal 

TSVs across the cooling layers. Therefore, the only TSV based links to be placed and routed across 

the cooling layers would be the power and clock delivery networks. This will significantly reduce 

the complexity of the co-design of TSV based interconnects and microchannel based interlayer 

cooling. Figure 4.1 shows the side view of the proposed wireless 3D NoC. 

In this chapter, we first determine the dimensions of the microchannel for optimal thermal 

and hydraulic characteristics considering current trends in power consumption densities of 3D 

multicore ICs. Next, we design the wireless physical layer suitable for communication across the 

designed microchannel based coolers. Lastly, we evaluate the performance of a 3D wireless NoC 

designed with the above physical layer. 

The specific contributions of this chapter are listed below: 

1. Determining optimal dimensions of microchannel based interlayer coolers for 3D 

multicore ICs. 

2. The design of on-chip antennas for the physical layer of the 3D wireless NoC 

suitable for communication across the above designed cooling layers. 

3. The design of 3D Wireless NoC architectures for 3D multicore ICs with 

microchannel based cooling to reduce the number of TSVs across the cooling 

layers. 

4. Evaluate the performance, energy consumption and thermal characteristics of 3D 

wireless NoCs equipped with microchannel cooling layers. 

5. Comparison of the proposed 3D Wireless NoCs with respect to traditional 3D 

interconnection systems using TSVs. 



67 

 

6. Holistic comparative evaluation with the horizontally integrated wireless multichip 

module. 

7. Present a discussion on the various trade-offs available for the proposed design. 

4.1 Integrated Design Methodology for Wireless 3D NoC with Microchannel 

based Liquid Cooling  

In this research work, we propose to realize data communication links across the micro-channel 

cooling layer in the 3D NoC with the wireless interconnects. The design of the NoC architecture 

and the antennas will depend on the dimensions and characteristics of the cooling layers such that 

a reasonable trade-off between the cooling capacity and pressure drop is obtained. Based on those 

design specifications the methodology for designing the 3D Wireless NoC architecture and 

antennas will be discussed next. 

4.1.1 Design of Microchannel Cooling Layer 

To enable efficient and powerful cooling in 3D IC systems, microchannel based liquid cooling 

needs to be employed between active layers of the 3D IC. The modular interlayer cooling chip 

needs to meet several design constraints. (i) The thermal performance should be high enough to 

dissipate heat fluxes of 100 to 500 W/cm2, which are expected from 3D multicore processors in 

the near future [20]. (ii) provide temperature uniformity along the flow length, and (iii) have low 

pressure drops across the channel to reduce the power required for pumping the fluid and reduce 

structural strain on the IC. Need to provide temperature uniformity along the flow length, and (iv) 

have high hydraulic performance, which corresponds to low pressure drops across the channel to 

reduce the power required for pumping the fluid and reduce structural strain on the IC. The number 
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of cooling layers, and how many active layers can be sandwiched between two cooling layers 

depends on the number of active layers, their heat flux and cooling capability of the micro-

channels. 

The thermal and hydraulic performance are two important factors in 3D IC cooling as they 

determine the cooling capability and the mechanical stress on the IC package. The geometry of the 

microchannels governs both the thermal and hydraulic performance. Finding a trade-off between 

the cooling performance and reliability is not trivial because of the interdependence of the thermal 

and hydraulic performance and the microchannel geometry. Here we discuss the interdependence, 

which will guide the design of the microchannel geometry. 

The thermal performance depends on the thermal resistance of the designed microchannels. 

The thermal resistance Rth is the ratio of the increment of the average surface temperature above 

the input temperature of the fluid to the total heat dissipated. For a fully developed flow under a 

constant heat flux and considering fluid flow to the parallel to the x-axis, the 1-D thermal resistance 

can be defined as: 

𝑅𝑡ℎ =
𝛥𝑇𝑚𝑎𝑥

𝑞”𝐴𝑠
=

𝑇𝑠,𝑎𝑣𝑔−𝑇𝑓,𝑖𝑛

𝑞”𝐴𝑠
 .                                                                       (4.1) 

Where 𝛥𝑇𝑚𝑎𝑥 = 𝑇𝑠,𝑎𝑣𝑔 − 𝑇𝑓,𝑖𝑛⁡  is the maximum temperature rise in the microchannels i.e. the 

temperature difference between the peak temperature in the heat sink at the surface(𝑇𝑠,𝑎𝑣𝑔) and the 

fluid inlet temperature 𝑇𝑓,𝑖𝑛, 𝐴𝑠 is the surface area, and 𝑞” is the heat flux at the channel wall. Fluid 

inlet temperature is used in eqn. 4.1 to incorporate the impact of mass flow rate.  Hence, the 

convective resistance (𝑅𝑐𝑜𝑛𝑣) and the effective resistance due to temperature rise of the liquid 

(𝑅ℎ𝑒𝑎𝑡) are both included in the analysis. Low values of the thermal resistance are desired for 
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micro-channels in order to achieve lower temperatures in the surfaces where heat must be 

dissipated.  

On the other hand, as liquid flows through the microchannels, the pressure decreases from 

the inlet section to the outlet section due to frictional losses. This pressure drop needs to be 

overcome by an external pump circulating the liquid coolant. Thus, the hydraulic performance is 

quantified by the pumping power i.e. the power required to drive the coolant through the flow 

passages to achieve the desired flow rate required for cooling. The pumping power, W to overcome 

the flow resistance can be defined as:  

W = ∆p ∙ V.̇                                                             (4.2)   

Where ∆𝑝  is the difference between the pressure at the inlet and the pressure at the outlet of the 

microchannels,⁡ V̇ is the volumetric flow rate.  

From these equations, we can see that a higher flow rate will reduce the temperature rise 

for a given heat input and hence, results in lower thermal resistance. This will improve the thermal 

performance. However, increasing the flow rate will increase the pressure drop and hence, 

pumping power. As a result, it can cause structural strain on the IC. Moreover, the pressure drop 

across the microchannel and thermal resistance depend on the geometry of the microchannel. All 

these factors complicate the overall design of the microchannel. In later sections, we perform 

numerical simulations to evaluate the thermal and hydraulic performance of the modular 

microchannel cooling chip to determine the optimal design. For the numerical analysis, the 

geometric parameters that were varied are the height of the microchannel, b, and the width of the 

microchannel, w. The width of fin between the micro-channels is wf, and the microchannel pitch, 
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p is defined to be (w+wf)/2. Detailed results are presented in section 4.2.1. The results obtained 

from these experiments will be used to guide the architecture design methodology as discussed 

next. 

4.1.2 Proposed Topology of the 3D Wireless NoC Architecture 

We propose to realize links across the microchannel cooling layer in the 3D IC with the wireless 

interconnects. The cores in the 3D multicore system will be interconnected using a NoC fabric 

through switches and links. In our proposed architecture, each core is connected to a NoC switch. 

Switches within a single layer are connected in a mesh topology with conventional copper wire 

based NoC links. To enable interlayer communication between layers that are not separated by a 

cooling layer, all the switches are equipped with TSV based links to switches vertically above or 

below itself. 

 

Figure 4.2. Top view of one active layer. 

 



71 

 

Communication channels across the cooling layer are realized through wireless links. For this 

purpose, each layer is logically divided into subnetworks or subnets, such that a particular switch 

in each subnet is equipped with a Wireless Interface (WI). The WIs are deployed in a switch at the 

center of the subnets to avoid long multi-hop paths from all cores in its subnet, assuming any core 

can transmit inter-chip data at some point during the operation of the system. This WI deployment 

strategy has been shown to provide the Minimum Average Distance (MAD) between all switches 

in an intra-chip NoC in [58]. All cores that need to send data across the cooling layer access the 

wireless channel through the WI in its subnet. The WIs are connected in an all-to-all fashion using 

the shared wireless band. The data is transferred to the WI in the subnet of the destination core 

from where it is routed to the final destination. To improve performance, data transfer within the 

same layer or in adjacent layers not separated by a cooling layer can also use the WIs depending 

on the adopted routing policy as discussed in section 4.1.4. In this way, a hybrid hierarchical 3D 

wireless, wireline and TSV based NoC architecture (3D-HiWiNoC) is formed. Figure 4.2 shows 

the top view of one active layer (vertical TSVs are not shown). 

4.1.3 Physical Layer 

Several alternative technologies exist for realizing on-chip and off-chip wireless interconnections 

[29][30][31][32][35]. We envision the use on-chip embedded miniature antennas that can be 

fabricated with-in the chip to establish direct communication channels between internal switches 

of the chips. To realize such wireless channels, we choose on-chip metal zig-zag antennas which 

have been shown to be effective in establishing on-chip communication [27]. The chosen on-chip 

antenna has to provide the best power gain for the smallest area overhead. A linear dipole occupies 

a large area proportional to the wavelength of the carrier frequency. A patch antenna is directional 
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mostly radiating perpendicular to its plane. A log-periodic antenna can have higher power gains 

but is highly directional. We intend the chosen antenna to be compact as well as not directional. 

This is because we want to communicate between antennas that are located in different layers of 

the 3D IC and potentially at different angles with respect to each other’s axes. A metal mm-wave 

zigzag antenna has been demonstrated to possess these characteristics as they are more compact 

compared to a linear dipole due to the zig-zag folding of the arms. In addition, such mm-wave 

antennas fabricated using top layer metals are CMOS process compatible making them suitable 

for near-term solutions to the wired interconnect problem [27]. Therefore, to realize such wireless 

channels, we choose on-chip metal zig-zag antennas which have been shown to be effective in 

establishing on-chip communication [29][32][33]. This antenna also has the negligible effect of 

rotation (relative angle between transmitting and receiving antennas) on received signal strength, 

making it most suitable for on-chip wireless interconnects, as each antenna has to communicate 

with other WIs in multiple directions. Such mm-wave 60GHz antennas are shown to have a 

bandwidth of 16GHz for on-chip communications links. The antennas are placed at the center of 

each subnet being fed from the WIs of its respective subnet in each layer. Consequently, the 

antennas need to be tuned best radiation characteristics in this 3D system with the microchannel 

based cooling layers separating active layers. The specific details of the designed antenna, and 

radiation characteristics depend on the dimensions of the cooling layers and are shown in section 

4.2 under experimental results. The antennas are tuned to work in the mm-wave band with a carrier 

frequency of 60GHz.  
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4.1.4 Seamless Flow Control and Routing 

The routing protocol for the proposed 3D wireless system with microchannel based cooling is a 

seamless intra and inter-chip data communication mechanism. We adopt wormhole switching for 

wireline links in the proposed system where data packets are broken down into flow control units 

or flits [36]. All switches have bidirectional ports for all links attached to it. The WIs have an 

additional port equipped with the wireless transceivers to access the wireless physical channel. For 

the wireless links, we adopt the same wormhole switching with a slight modification as explained 

in the next subsection. 

We use a forwarding table based routing algorithm over pre-computed shortest paths 

determined by Dijkstra’s algorithm for both inter-chip and intra-chip data. Dijkstra’s algorithm 

extracts a minimum spanning tree, which provides the shortest path between any pair of nodes in 

a graph. The exact minimum spanning tree depends on the chosen start node for the algorithm but 

the length of paths between any pair, along the tree does not rely on the start node. Hence, it is 

chosen randomly from among all the switches in the system. However, for a specific start node, 

the shortest path along the extracted tree is always unique as the minimum spanning tree eliminates 

loops inherently. Consequently, deadlock is avoided by transferring flits along the shortest path 

routing tree extracted by Dijkstra’s algorithm, as it is inherently free of cyclic dependencies. The 

route computation overheads are reduced significantly, as the routing decisions are made locally 

based on the forwarding table only for determining the next hop and is done only for the header 

flit. The tail flits simply follow the reserved path as per wormhole switching. 
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4.1.5 Wireless Communication Protocol and Transceiver 

In mm-wave interconnects wireless bandwidth is limited by the state-of-the-art transceiver design 

and on-chip antenna technology. Multiple wireless transceivers need to access the wireless 

medium to communicate via the energy-efficient wireless interconnects to improve connectivity 

and performance. Consequently, multiple transceivers share a single wireless frequency channel. 

Therefore, an efficient and collision-free Medium Access Control (MAC) mechanism is needed. 

The authors in [29] have proposed such a distributed and low-overhead token-based MAC 

mechanism for on-chip wireless interconnects. The token-based MAC grants access to the shared 

wireless medium to a single WI resulting in a contention free communication using the wireless 

channel. However, in such a MAC only whole packets are transmitted to other WIs, to maintain 

the integrity of the wormhole switching [87]. This increases the buffer requirement and hence 

static power consumption in the WIs. Therefore, we propose a MAC mechanism that allows partial 

packet transmission from a WI while maintaining the integrity of the wormhole switching.  

In the proposed MAC, instead of circulating a token at the end of each transmission, each 

WI broadcasts a control packet at the beginning of its transmission. The control packet consists of 

a header for identification and differentiation of data packets. In addition, to enable partial packet 

transmission and correct routing, the control packet has 3-tuples: (DestWI, PktID, NumFlits) for 

every partial packet that it will transmit. Each 3-tuple contains the information about the number 

of flits (i.e., NumFlits) to be transmitted from the WI to a particular destination (i.e., DestWI) 

along with the packet ID (i.e., PktID) of the packet, to which the flits belong. The PktID enables 

the destination WI to identify the VC number at the destination WI to put the flits, thus maintaining 

wormhole switching. In case the PktID does not exist at the destination WI, the WI reserves an 
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unoccupied VC. The number of output VC of the transmitting WI limits the number of 3-tuples in 

a control packet. The control packet is broadcast to all WIs. Therefore, the next WI in sequence 

computes the duration of the current transmission from the information in the control packet and 

transmits its control packet when the current transmission is completed. For this purpose, the WIs 

are numbered in a sequence. Thus, contention between WIs in accessing the channel is avoided. 

This control packet based MAC enables an energy-efficient operation of the WIs by using sleep 

transistors. We adopt the design of such sleepy transceivers from [65] to put particular receivers 

to sleep when the transmitted data is not intended for them based on the information in the control 

packets. This eliminates the overhead and layout complexity of the global signaling wires to carry 

the sleep/𝑤𝑎𝑘𝑒̅̅ ̅̅ ̅̅ ̅ signals as in [65].  

The WI transceiver circuitry has to provide a very wide bandwidth as well as low power 

consumption. The transceiver design is adopted from [28] where low power design considerations 

are taken into account at the architecture level. Non-coherent On-Off Keying (OOK) modulation 

is chosen, as it allows relatively simple and low-power circuit implementation. Next, we present 

the performance evaluations of the proposed wireless interconnection framework. 

4.2 Experimental Results 

In this section, we determine the dimensions of the cooling layer, demonstrate the design of the 

on-chip antennas with suitable communication properties, and estimate performance and 

temperature profile of a 3D multicore IC incorporating the cooling layers and interconnected by 

wireless links across them. 
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4.2.1 Dimensions of the Cooling Channels 

To capture the operating conditions in the microchannel cooling chip module, a heat flux, q”=100 

W/cm2 is imposed at the upper and lower walls each, of a single microchannel unit. A single 

passage is modeled by considering symmetry planes along the length of the microchannel passing 

at mid-planes of the fins to avoid simulating the whole module. The total width of the 

computational domain is the pitch, p between mid-planes along the fins and the total length is 10 

mm. Fully developed laminar flow at 303 K is considered at the inlet of the fluid passage, and the 

radiation effects are neglected in the entire computational domain. Deionized water is used as the 

cooling fluid flowing through the fluid passage, and the material of the microchannel is modeled 

as silicon. The dielectric property of deionized water enhances the radiation characteristics of 

wireless links making it a suitable choice. All properties for the materials are taken as constant and 

evaluated at 303 K, except the viscosity, μ (Pa.s) of the deionized water, which is curve fitted by 

following equation: 

µ = 2.414 × 10−5(10247.8/(𝑇[𝐾]−140)).                                                                    (4.3) 

The numerical models are simulated using the finite volume software Fluent 14.5 [88], 

which provide accurate temperatures in the solid; and pressure, velocity, and temperature fields in 

the fluid using the assumptions above, A structured mesh consisting only of hexahedral elements 

is used to split the computational domain into several control volumes. The mass, momentum, and 

energy conservation equations are solved for each control volume. Convergence is considered 

when the residuals for the governing equations are less than 10-6. These microchannels are modeled 

and simulated by Jose-Luis Gonzalez-Hernandez using ANSYS Fluent 14.5 [88] under the 

supervision from Dr. Satish G. Kandlikar [74].    
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A. Thermal Resistance 

For this experiment, we consider the inlet temperature and the heat supplied to the layers are 

constant. Therefore, low values of the thermal resistance are desired for microchannels in order to 

achieve lower temperatures in the surfaces where heat must be dissipated. The mass flow rate in 

the simulations is selected such that the lowest mass flow rate needed to achieve the 80 °C surface 

temperature at the outlet is employed. The thermal resistance for the microchannel heatsinks 

modeled in this study is shown in Figure 4.3 for different heights of the microchannels as a function 

of the pitch. As the microchannel height increases, the thermal resistance also increases, leading  

to a lower thermal performance when the height is higher than 200 μm. For heights of 10 and 100 

μm, thermal resistance values of 0.1 and 0.4 K/W, are obtained, respectively. It is observed that   

for a fixed microchannel height, the effect of the pitch on the thermal resistance becomes negligible 

when the pitch is greater than 2000 μm.  

 

Figure 4.3. Thermal resistance variation for the microchannels. 
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B. Pressure Drop and Pumping Power 

The pressure field is obtained from the simulations as explained in section 4.2.1. The pressure drop 

is computed as the difference between the pressure at the inlet and the pressure at the outlet of the 

channels.  In Figure 4.4, the pressure drop characteristics of the modeled microchannel heat sinks 

are shown. It is observed that the pressure drop decreases with increase in the height of the 

microchannel for all the pitches considered. The highest-pressure drops of the order of 1 MPa are 

observed for heights of 10 μm which is the typical interlayer thickness in monolithic 3D ICs [20]. 

Such high hydraulic stress severely impacts the reliability of the 3D ICs [20]. The high slopes 

between a height of 10 μm and 100 μm indicate that a dramatic change in hydraulic performance 

is achieved between these microchannel heights. Beyond a microchannel height of 100 μm the 

slope of the pressure drop plots become less steep and for a height higher than 200 μm the effect 

of the microchannel height is negligible. Under these geometric parameters very low values for 

the pressure drop are achieved (∆P < 10 kPa). 

 

Figure 4.4. Pressure drop variation for the microchannels. 
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Figure 4.5 shows the pumping power required to drive the fluid through the cooling layer. For 

microchannel heights lower than 100 µm, the pumping power is very high (> 2W), and it decreases 

almost exponentially as the value of b increases (taller microchannels). For a microchannel height 

of b = 100 µm, the values of W are low enough (< 400 mW) to be attractive. Higher microchannel 

heights lead to a very low pumping power; however, the thermal resistance is high, which indicates 

a poorer thermal performance. 

We observe that a height of 100 μm results in low thermal resistances and the pumping 

power remains low. Thus implementing b=100 μm offers the best overall performances, providing 

a thermal resistance of ~0.4 K/W. For a fixed microchannel height of 100 μm, the effect of varying  

the microchannel width on the thermal resistance is negligible for widths greater than 800 µm. 

Hence, a microchannel of 100 μm and pitch of 800 μm is recommended for high overall 

performances. While it is true that narrower channels result in higher heat transfer coefficients 

[46], these widths also result in higher pressure drops. Increasing the channel width while keeping 

 

Figure 4.5. Pumping power variation for the microchannels. 

 

b [ m]

W
[m

W
]

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

p = 400 m

p = 500 m

p = 667 m

p = 1000 m

p = 2000 m

p = 10000 m

















80 

 

the flow rate per unit width results in a lower pressure drop with the same temperature rise 

throughout the chip. The somewhat lower heat transfer coefficients are more than offset by having 

considerably lower pressure drops in the wider channels. For 3D IC applications, the pressure drop 

is desired to be very low; thus, we recommend a channel width of 800 µm for the subsequent 

analysis, we assume a height of 100 μm for the microchannels for wireless link design and a 

corresponding thermal resistance of 0.4 K/W in the cooling layers. 

Table 4.1 shows the comparison of the performance for different microchannel 

configurations reported in the literature with respect to our design. Among the works surveyed  

here, our design has the highest thermal resistance. However, this thermal resistance is capable of 

cooling a heat flux of 200 W/cm2, while maintaining a surface temperature of 80 °C. The trade-off 

with thermal resistance, however, enables us to reduce the pressure drop and flow rate compared  

to earlier work significantly. This leads to a lower power required to drive the flow through the 

TABLE 4.1. SUMMARY AND COMPARISON OF THE SINGLE-PHASE MICROCHANNEL GEOMETRIES IN THE LITERATURE 

Ref Thermal 

Resistance (K/W) 

Pressure Drop 

(kPa) 

Flow rate 

(ml/min) 

Microchannel Dimensions 

(µm) 

[17] 0.09 214 516 width=50 µm  

height=320 µm 

[45] 0.20 50 220 width=200 µm  

height=100  µm 

[46] 0.17 280 155 width= 50 µm  

height=100 µm 

[89] 0.32 70 96 width=200 µm  

height=2000 µm 

[90] 0.38 2.41 145 width= 560 µm  

height=200 µm 

This work 0.40 9 45 width=800 µm  

height =100 µm 
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channels. Therefore, we adopt the microchannel configurations with comparatively high widths 

and heights. However, this does not have any impact on TSV placement as we propose to establish 

communication across these microchannels using wireless interconnects. In the next subsections, 

we evaluate the impact of using wireless interconnects in the 3D NoC on its performance and 

energy efficiency.  

4.2.2 Evaluation of the Hybrid 3D NoC Architecture in the Presence of Microchannel based 

Liquid Cooling 

According to the projection from ITRS, 3D stacked ICs will have 4 high-performance layers by  

2020, where each layer is projected to dissipate more than 100 W/cm2 [6]. Hence, to evaluate 

performance and temperature characteristics of the proposed architecture, we consider a 64-core 

3D chip consisting of 4 layers each of 10 mm x 10 mm footprint. . For interlayer cooling, we have 

considered one cooling chip after every two active layers as our designed microfluidic cooling  

layer is capable of cooling a heat flux of 200 W/cm2. We also evaluate the impact of increasing 

the frequency of insertion of the cooling layers to increase the cooling capability in section 4.2.4. 

Each layer consists of 16 cores and switches. In the 3D-HiWiNoC architecture, each layer is 

divided into 4 subnets with 4 cores in each. Therefore, there are 16 WIs, one in each subnet 

connected to antennas located at the center of each subnet. The NoC architecture is characterized 

using a cycle accurate simulator that models the progress of the data flits accurately per clock cycle 

accounting for those flits that reach the destination as well as those that are stalled. For each NoC 

simulation, ten thousand iterations were performed eliminating transients in the first thousand  

iterations. The width of all wired links is considered to be same as the flit size, which is considered 

to be 32 and 256 bits in this paper. We have considered the lower and higher end of flit sizes found 
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in modern NoC designs. We consider a moderate packet size of 64 flits for all our experiments. 

The particular NoC switch architecture has three functional stages, namely, input arbitration, 

routing/switch traversal, and output arbitration [69]. Each switch port has four virtual channels 

each with a buffer depth of 2 flits. The wireless ports have an increased buffer depth of 8 flits to 

avoid excessive packet dropping while waiting for the token [28]. The delay and energy dissipation 

of network switches are obtained from the post-synthesis RTL models using 65nm standard cell 

libraries from CMP (http://cmp.imag.fr ) at 1V, using Synopsys. The NoC switches are driven by 

a clock of frequency 2.5 GHz. The delays and energy dissipation on the wired links were obtained 

through Cadence simulations taking into account the specific lengths of each link based on the 

established connections in the 10 mm x 10 mm layer following the topology of the NoCs.  Each 

 

(a) 

 
(b) 

Figure 4.6.  (a) Full side view (b) view inside the box 

 

http://cmp.imag.fr/
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device layer is considered to be 10 µm thick whereas the cooling layer is considered as 100 µm 

thick. The power dissipation and delay of the TSVs are adopted from [26]. The wireless transceiver 

adopted from [28] is shown to dissipate 36.7 mW sustaining a data rate of 16 Gbps while occupying 

an area of 0.3 mm2 using TSMC 65-nm CMOS process. 

A. Wireless Channel Modeling and Link Budget Analysis 

In this subsection, we discuss the radiation characteristics of the antennas that are designed to 

communicate across a cooling layer with microchannels of height 100 μm and width of 800 μm. 

These dimensions are chosen based on the results of the previous subsection. 

A.1 Characteristics of the Antennas 

The characteristics of the antennas are simulated using HFSS [73], which solves Maxwell's 

equation in the entire volume of the model by automatically dividing the volume into tetrahedral 

elements and hence, considers both near field and far field of the antennas. The antennas are 

designed and tuned by Rounak Singh Narde under the supervision of Dr. Jayanti Venkatarman 

[74]. The detailed design model of a 3D IC can be seen in Figure 4.6. From the figure, it can be 

seen that four layers of Silicon substrate are placed on top of each other with silicon dioxide (silica)  

layer sandwiched in between. Moreover, there is an extra 200 µm thick silicon layer in the midst 

of the IC consisting of cooling microchannels. The cooling layer is considered to be 200 µm thick 

with 100 µm tall microchannels embedded in them. The microchannels are considered 800 µm 

thick with the microchannels walls being 200 µm as widening the microchannels beyond 800 µm 

alters the thermal characteristics marginally as noted in the previous subsections.  
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 We evaluated the communication capability of these antennas deployed on all the layers of the 

3D IC both separated as well as not separated by the cooling layer. The antennas are placed 

assuming the wireless 3D NoC architecture as proposed in section 4.1.2 at the center of each subnet 

in each layer. Therefore, some pairs are separated only vertically while other pairs are separated 

both vertically as well as horizontally (in hubs that are not vertically aligned).  

The metal antennas are considered to be embedded in the midst of a 6 µm layer of silica. 

Figure 4.7 shows the specific dimensions of the antenna and its coplanar feed structure. A trace 

width of 5 µm and thickness of 2 µm is used for all arms of the antenna. All the antennas are tuned 

to resonate at 60 GHz with low return losses of at least -16 dB. Figure 4.8 shows the return loss 

 

Figure 4.7.  Dimensions of the designed zig-zag antenna. 
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for the proposed antenna system. We have observed that at low frequencies below 10 GHz there 

is no resonance in these antennas as the return loss is 0 dB. This demonstrates that there is no 

radiation from the antennas at those frequencies. This eliminates the possibility of interference 

with clock or other electrical signals in the IC mostly in those frequency bands lower than 10 GHz.  

As described in earlier sections, we have considered a 64 core system with 4 active layers 

and one cooling layer for our system level simulation where each active layer is divided into 4 

subnets resulting in total 16 WIs. The worst case path loss is seen for antennas those are placed in 

lower layer i.e. close to the metallic ground plane. Figure 4.9 shows insertion loss for one antenna 

placed in the lower layer. From the figure, it can be seen that the transmission for the antennas, 

which are in the near field i.e. placed vertically on top of each other, are better than other pairs. 

This effect is also demonstrated in [91] that transmission is much higher in near field than in the 

 

Figure 4.8.  Return losses of all 16 antennas. 
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far field. The worst case path loss is -48.6 dB between antennas that are deployed in the first layer 

(closest to the ground plane) and the third layer. The cooling layer separates these layers. Also, 

these antennas are in subnets that are diagonal across from each other along the planar dimension. 

In the next subsection, we estimate the reliability of wireless communication using this antenna 

system and existing on-chip mm-wave transceivers from literature [28]. 

A.2 Link Budget Analysis 

In this subsection, we present a link budget analysis to estimate the Bit Error Rate (BER) in the 

wireless communication channel in the 3D IC with cooling layers. The following equation gives 

the transmitted power, Pt in dBm on the wireless channels: 

𝑃𝑡 = 𝑆𝑁𝑅 + 𝑃𝐿 + 𝑁𝑓.                                                        (4.4) 

 

Figure 4.9.  The insertion loss of antenna 1 in layer1. 
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Where, SNR is the signal to noise ratio at the receiver in dB, PL is the path loss in dB and Nfloor is 

the receiver noise floor in dBm. The worst-case path loss, PL obtained from Figure 4.9 is -48.6 

dB. The noise floor of the receiver is given by, 

𝑁𝐹𝑙𝑜𝑜𝑟 = 10 log 𝑘𝑇𝐵 + 𝑁𝐹.                                                  (4.5)  

Where k is the Boltzmann constant, T is the temperature, B is the bandwidth of the receiver and 

NF is the noise figure of the receiver in dB. The noise figure of the adopted receiver is 13 dB [29]. 

This makes the receiver noise floor -62.68 dBm at 50 °C for a BW of 16 GHz. Using the power 

output of 0 dBm by the transmitter adopted from [28], the received SNR turns out to be 16.846 

dB. In the non-coherent OOK modulation scheme adopted in the transceiver, this achieves a BER 

of about 10-12, which is comparable to conventional interconnects in multicore SoCs. 

B. Temperature and Performance Characteristics of 3D Wireless NoC Architectures with 

Synthetic Workload 

In this section, we evaluate the temperature profiles and performance of 3D multicore chips 

interconnected with various NoC architectures and employing microchannel based cooling as well 

as conventional cooling with synthetic workloads and traffic scenarios. To capture the impact of 

the power dissipation of the cores on-chip temperatures, we use predictive power models proposed 

in [92] to estimate the power profile of the individual cores for synthetic workloads. According to 

[92], the chip power density in the 65nm technology node is 0.5 W/mm2. We consider a 64-core 

chip consisting of 4 layers each of 10 mm x 10 mm. Hence, based on the tile-based floorplan each 

core is estimated to dissipate 2.645 W. Using these power profiles of the cores and obtaining the 

power profile of the NoC with uniform random traffic, the network switches and links are arranged 

on a 10 mm x 10 mm layer. These floor plans, along with the power profiles, are used in a thermal 
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modeling tool, HotSpot3D [93] to obtain the thermal profiles. We use a sampling interval of 100k 

cycles, and all simulations are initialized with ambient temperature. Specifically, we consider the 

following configurations: 

1. 3D Mesh NoC with TSV with a conventional air-cooled heat sink (3D-MTSV) adopted from 

[94]. For this architecture, each switch is connected to its cardinal neighbors as well as its vertical 

neighbors above and below itself. 

2. Token-based 3D Hierarchical Wireless NoC with interlayer cooling (3D-THiWiNoC) as 

proposed here. 

B.1 Temperature Evaluation with Synthetic Workload 

The power dissipation of the cores, the power dissipation of the NoC switches, and interconnects, 

as well as the impacts of the cooling infrastructures, are considered for evaluation of the 

temperatures. The maximum chip temperature can be either the temperature of a core, link or 

switch. For interlayer cooling, we have considered one cooling chip after every two active layers. 

It is important to note that, we did not incorporate any dynamic thermal management technique 

for this experiment as our goal was to study the effectiveness of two cooling approaches  

(conventional forced air-cooling and inter-layer liquid cooling) considered in this subsection. 

Table 4.2 shows the maximum chip temperature for each of the architectures studied here for two 

different flit sizes. For interlayer coolers, we used a thermal resistance of 0.4 K/W. As noted in 

section 4.2.1, a thermal resistance of 0.4K/W is obtained by optimizing the width and height of the 

microchannels such that the pressure drop across them is not too high. From the table, it can be 

seen that for flit size of 32 bits, maximum steady state temperature of the 3D-MTSV reaches 

102.17ºC with forced-air cooling based conventional heat sink whereas, with interlayer layer 
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cooling, it decreases by 35.5% for 3D-HiWiNoC architecture. On the other hand, increasing flit 

size eventually will increase the power dissipated by interconnects (links and switches) as 

described in next section. Because of this, for flit size of 256 bits, maximum steady state 

temperature for 3D-MTSV reaches to 158.1ºC with conventional forced air-cooling based heat 

sinks. Whereas for the same flit sizes, the maximum steady state temperature remains below 68ºC. 

Again, no additional DTM/DPM mechanism was considered in these cases. The interlayer 

microfluidic cooling channels are more efficient in heat removal from the stacks of active layers. 

In contrast with conventional convection cooling heat is only removed from the top surface of the 

3D IC trapping the heat in internal layers making temperatures rise dramatically in response to 

similar power dissipation profiles 

B.2  Performance Evaluation with Synthetic Workload   

In this section, we evaluate the proposed token-based 3-D hierarchical WiNoC architecture for a 

system size of 64 cores with uniform random traffic distribution in terms of energy cost per bit and 

peak network bandwidth and compare it with 3D wireline mesh architecture for two different flit 

sizes of 32 bits and 256 bits respectively. Energy cost per bit is the energy dissipated in transferring 

TABLE 4.2. PEAK TEMPERATURE OF TWO ARCHITECTURES CONSIDERED HERE 

 Flit size (32 bits) Flit size (256 bits) 

3D-MTSV 3D-THiWiNoC 3D-MTSV 3D-THiWiNoC 

Thermal resistance (K/W) 1* 0.4 1* 0.4 

Peak chip temperature (°C) 102.7 65.12 158.1 67.81 

* Convectional cooling only 

 



90 

 

one bit completely from source to destination at network saturation. Peak bandwidth is the 

maximum achievable data rate for the NoC. The bandwidth is measured as the average number of 

bits successfully arriving per core per second. From the Figure 4.10, it can be seen that for 3D-

MTSV architecture yields maximum bandwidth for both flit sizes compared to wireless 

architecture with liquid cooling. This is because number of active links in wireless architecture is 

less than 3D-MTSV as this architecture eliminates the TSV based interconnects for data 

communication across the cooling layers. In the 64-core system divided into 4 layers with 16 cores 

each, there are cooling layers after every 2 layers. This implied that in the WiNoC architecture, 16 

TSV based links connecting the vertically adjacent switches across the cooling layer is eliminated. 

This results in a loss of an aggregate physical bandwidth of 1.2 Tbps for flit size of 32 bits (16 

links with 32 bits each @ 2.5 GHz). The additional wireless bandwidth of 16 Gbps helps to 

interconnect the two segments across the cooling layer. The removal of the interlayer TSV based 

connections across the cooling chip results in bandwidth degradation by approximately the same 

amount of the loss in the bisectional bandwidth of the removed TSV based links. On the other 

hand, for flit size of 256 bits, 3D-MTSV architecture shows nearly 7.6x improvement over flit 

sizes of 32 bits whereas, in 3D-THiWiNoC architecture, it is about 6.2x. This is because widening 

physical channel width to accommodate larger flit increases the data rate of the wireline links and 

TSVs. However, the data rate of the wireless links is governed by the speed of the transceiver and 

bandwidth of the antennas, which does not change with flit size.  Hence, while the wireline 

communication becomes faster with an increase in flit size, the wireless communication speed 

remains constant resulting in a lower relative improvement in bandwidth with an increase in flit 

size compared to a completely wired NoC. However, wider TSV based vertical links have a 

significant impact on the area required to route them and consequently, increase the challenges of 
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place and route of these communication channels across the cooling layers. The interlayer wireless 

links alleviate this problem significantly, as is discussed later in section 4.2.6. 

The WiNoCs, on the other hand, can reduce the energy cost per bit compared to the wireline 

TSV based 3D NoCs for both flit sizes. This is because long-range data transfer between different 

layers of the 3D NoC between switches, which are also separated by several millimeters in the 

planar dimension, can be accomplished in a single hop using the wireless links. In contrast, in the 

3D mesh architectures, data transfer over even short vertical distances happen over multi-hop paths 

over multiple switches resulting in higher energy dissipation compared to the 3D-THiWiNoCs for 

both flit sizes. In addition, the interlayer cooling chip reduces the temperature due to increased 

cooling capacity. Therefore, while the bandwidth of the WiNoCs is less than that of the 3D mesh, 

the packet energy, and peak temperatures are significantly reduced. 

 

Figure 4.10.  Peak bandwidth and energy cost per bit for different 3D NoC architectures. 
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4.2.3 Temperature and Performance Characteristics of 3D NoC Architectures with Real 

Application-based Workloads 

In this section, we evaluate the performance and thermal characteristics of 3D multicore ICs 

interconnected by the proposed token-based 3D-THiWiNoC and 3D-MTSV architectures in the 

presence of real application-based workloads mapped onto a 64 core chip mentioned architectures. 

We use GEM5 [95], a full system simulator to obtain detailed processor and network-level 

information on SPLASH-2 [96] and PARSEC [97] benchmarks and HotSpot3D [93] to obtain 

detailed thermal profiles. We consider a system of 64 alpha cores running Linux within the GEM5 

platform for all experiments. The memory system is MOESI_CMP_directory, setup with private 

64KB L1 instruction and data caches and a shared 64MB (1MB distributed per core) L2 cache. 

The processor-level utilization statistics generated by the GEM5 simulations are incorporated into 

McPAT simulator [98] to determine the processor-level power statistics. The traffic interaction 

patterns for each benchmark obtained from Gem5 are used in the NoC simulator to get the NoC 

 

Figure 4.11.  Normalized Peak bandwidth and energy cost per bit in the presence of real application 

traffic. 
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performance in terms of peak bandwidth, average network latency, and average energy cost per 

bit. Similar to previous experiments, we consider cooling chip after every two layers. 

Figure 4.11 and 4.12 show the normalized peak bandwidth & energy cost per bit and 

difference in peak chip temperature (ΔT) of two architectures considered here in the presence of 

different real application traffics. As number of vertical links is less in 3D-THiWiNoC architecture 

than that in the 3D-MTSV, peak bandwidth of the 3D-THiWiNoC is lower than that of 3D-Mesh-

TSV for all real life application traffics. However, the presence of single hop energy efficient 

wireless links reduces the energy cost per bit compared to the wireline TSV based 3D NoCs.  

Also, the presence of the interlayer cooling chip can reduce the peak temperature due to 

increased cooling capacity which can be seen from Figure 4.12. With cooling chip after every two 

layers, 3D-THiWiNoC architecture shows on average 13 degrees and a maximum of 18 degrees 

reduction in peak temperature compared to 3D-MTSV architecture with conventional fan based 

air-cooled heat sink. We observe that although the peak bandwidth in 3D-THiWiNoC is less than 

 

Figure 4.12. Peak chip temperature in presence of real application traffics. 
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that of wireline 3D-MTSV architecture, it achieves lower energy cost per bit and peak temperatures 

for all the application-specific workloads. 

4.2.4 Increasing Cooling Capacity of the Interlayer Coolers and its Impact on Performance 

of the 3D Wireless NoC 

In this section, we study the impact of various techniques for increasing the cooling capacity of 

the interlayer coolers in case the power consumption profiles of the 3D IC layers require. The 

cooling capability of the microchannels can be increased by increasing the flow rate of the coolant 

fluid through the microchannels. However, that results in an increase in pressure drop. However, 

the flow rate can only be increased such that the resultant pressure drop is within acceptable limits 

of hydraulic stress that the 3D IC can sustain. Otherwise, the microchannel heights will need to be 

increased requiring the antennas to be retuned for the altered dimensions. Hence, we study the 

increase in cooling capacity by increasing the frequency of insertion of the cooling layers in this 

section. 

 

Figure 4.13.  The impact of frequency of the cooling layers. 
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The frequency of insertion of the cooling layers signifies the number of active device layers 

between the cooling layers. The impact of varying the frequency of the cooling layers on 

performance, energy dissipation and maximum chip temperatures of token-based 3D-THiWiNoC 

architecture. We have considered uniform random traffic with maximum injection load for this 

experiment. Figure 4.13 shows the effect of varying the frequency of cooling layers from one after 

every active layer to one cooling layer after every 2 layers on maximum chip temperature, peak 

bandwidth, and energy cost per bit. From the figure, it can be seen that increasing the frequency 

of cooling layers reduce the maximum chip temperature to a great extent for both architectures 

considered for the experiment. With cooling chip after every 1 layer, with a thermal resistance of 

0.4W/K, maximum temperature reduces to 50.23ºC for token-based 3D-THiWiNoC from around 

65ºC for the same NoCs with one cooling layer after every two layers. However, increasing the 

frequency of cooling layer have a diminishing effect on performance for wireless 3D architecture. 

This is because in token-based 3D-THiWiNoC architecture with a cooling chip after every active 

layer, the number of active links is 33.33% less than 3D wireline mesh architecture, to 

accommodate microchannel liquid cooling chip, which in turn reduces performance. For cooling 

chip after every two active layers, due to augmentation of TSV based links, the performance of the 

Token-based 3D-THiWiNoC architecture increases. However, decreasing the frequency of 

cooling layers increases maximum chip temperature because of the increased stacking of layers. 

4.2.5 Comparison with Alternative Wireless Communication Mechanism 

In this section, we evaluate the performance of the proposed wireless multichip system coupled 

with an alternative wireless communication mechanism i.e. Direct Sequence Spread Spectrum 

(DSSS) based Code Division Multiple Access (CDMA) channel access mechanism and compared 
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the performance in terms of bandwidth and energy cost per bit with token-based 3D-TWiNoC 

architecture. 

In token passing based wireless medium access mechanism, only a single transmitter can 

access the wireless channel at any given instant of time. This limits the performance benefits of 

the wireless interconnection although multiple transceivers are deployed over the entire system. 

However, it is possible to design sophisticated MAC mechanisms which will enable multiple WIs 

to share this wireless channel without any interference and ensure optimal utilization of the 

available bandwidth. In order to enable multiple concurrent communication between the WIs,  

authors in [34] proposed a DSSS based CDMA channel access mechanism for a wireless NoC. In 

the CDMA-based medium access mechanisms, Walsh codes are used to create orthogonal code 

channels for multiple access. Due to this orthogonality between the code channels bits in one code 

channel is not affected by other channels. Transmitted bits are first encoded using the code-word, 

and at the receiving WI, the received bit is XORed with the code words to extract the transmitted 

 

Figure 4.14.  Peak bandwidth and energy cost per bit for different wireless communication 

mechanisms. 
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data. We adopt the performance and power characteristics of the CDMA transceiver from [34] to 

estimate the performance of the system. The raw energy/bit of the wireless technology for a single 

point-to-point link and aggregate physical bandwidth provided by each of these technologies are 

summarized in Table 4.3. 

Figure 4.14 shows the peak achievable bandwidth and energy cost per bit for token-based 

and CDMA-based 3D Wireless NoC (3D-CHiWiNoC) architecture. For a fair comparison, we 

considered same network topology and the same number of WIs per layer in both cases.  From the 

figure, it can be seen that the peak achievable bandwidth of the CDMA-based 3D-HiWiNoC is 

19.86% higher than the token-based counterparts. This is because in CDMA concurrent wireless 

communication is possible in different orthogonal code channels whereas in token passing only 

one wireless communication is possible at a time.  Similarly, the energy cost per bit of the CDMA-

based 3D-CHiWiNoC is also lower than the token-based 3D-THiWiNoC architecture. This is 

because, in the token-based system when the number of WIs is increased, token returning period 

to the WIs also increase. This result in higher energy cost per bit in the token-based system as 

TABLE 4.3. ENERGY PER BIT FOR A SINGLE POINT-TO-POINT LINK AND POSSIBLE AGGREGATE BANDWIDTH FOR 

DIFFERENT WIRELESS COMMUNICATION PROTOCOLS 

 Token-based wireless 

interconnect 

CDMA based wireless 

interconnect 

Energy (pJ/bit) 2.3  3.43  

Aggregate physical bandwidth (Gbps) 16  6  

Transceiver area (mm2) 0.3 0.4  
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packets has to wait longer in the wireless buffers before getting transmitted via the wireless 

interconnect.  

However, the improvement of the performance by implementing sophisticated MAC does 

not come without a price. Reliability can be an issue for the CDMA-based 3D-CHiWiNoC 

architecture, as CDMA requires the transmitters to be synchronized with each other so that the 

transmitted data is perfectly aligned with respect to other transmitters to maintain the orthogonality 

between the code words. Such synchronization is difficult to achieve in a 3D environment as the 

WIs are distributed across different layers and require further investigation. 

4.2.6 Area Overheads 

In this section, we estimate the comparative area overheads of the signal TSVs through 

microchannel based cooling layer. TSVs for power and clock networks are not considered here. 

We have considered a moderate size signal TSV with diameter 2 µm and pitch 4 µm to calculate 

TABLE 4.4. AREA OVERHEAD FOR THE SIGNAL TSVS THROUGH MICROCHANNEL COOLING LAYER. 

 Flit size of 32 bits Flit size of 256 bits 

3D-MTSV 3D-THiWiNoC 3D-MTSV 3D-THiWiNoC 

Required area for place and 

route of signal TSVs (mm2) 

2.016  

 

0 16.352 

 

0 

Available area for place and 

route of all the TSVs through 

microchannel walls (mm2) 

20 20 20 20 

Percentage of occupied area for 

place and route of signal TSVs 

through microchannel walls 

10.08% 0% 81.76% 0% 
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the area overhead. The optimal width of each microchannel is found to be 800 µm in section 4.2.1 

keeping 20 mm2 area available for place and route of all the TSVs through the interlayer cooler. 

Table 4.4 shows the area required for the signal TSVs to route through the microchannel walls.  

From the table, it can be seen that for flit size of 32 bits, 10.08% area is occupied by the signal 

TSVs for place and route through the interlayer cooling layer. As a result, 89.92% of area is 

available for power and clock delivery TSVs to place and route. Whereas, for flit size of 256 bits, 

the signal TSVs occupy an area of 16.352 mm2 out of 20 mm2 available area keeping only 18.24% 

area to properly route the power and clock TSVs which might not be sufficient. On the other hand, 

in the case of wireless 3D NoC architecture with interlayer cooling, we are eliminating the entire 

signal TSVs across the microchannels keeping the entire 2mm2 area for power and clock delivery 

TSVs. This, in turn, will reduce the complexity of the co-design of TSV based interconnects and 

microchannel based interlayer cooling significantly. 

4.2.7 Trade-off Analysis 

From all the results we can conclude that the 3D-THiWiNoC with 256 bits per flit and 

microchannel based interlayer coolers provides the best trade-offs in performance, energy 

consumption per bit and temperature. While the fully wired TSV based counterpart provides higher 

bandwidth, it imposes severe challenges to co-design and place and route of the TSV based links 

across the cooling layers, due to its high area requirements. The same fully wired architecture with 

32 bits per flit has lower area requirements for the vertical links but has lower bandwidth and 

higher energy consumption as well as worse temperature compared to the 3D-THiWiNoC with 

256 bits per flit. The 3D-THiWiNoC with 256 bits per flit enjoys the benefit of the wide TSV 

based vertical links among adjacent layers while enabling communication across the cooling layer 
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with the wireless links. Moreover, utilizing wireless interconnect for data communication across 

the cooling layer relaxes the height restrictions of the microchannels, and therefore, results in lower 

pressure drop across the cooling layer. This, in turn, leads to a lower power requirement to drive 

the flow through the channels and increases structural stability.  

Increasing the frequency of cooling layer have a diminishing effect on performance for 

wireless 3D architecture. This is because in token-based 3D-THiWiNoC architecture with a 

cooling chip after every active layer, to accommodate microchannel liquid cooling chip, the 

number of active links is reduced compared to 3D wireline mesh architecture. This, in turn, reduces 

the performance of the 3D wireless NoC. For cooling chip after every two active layers, due to 

augmentation of TSV based links, the performance of the Token-based 3D-THiWiNoC 

architecture increases. However, decreasing the frequency of cooling layers increases maximum 

chip temperature because of the increased stacking of layers. 

Compared to other contactless wireless interconnect such as capacitive/inductive coupling 

based links, the energ consumtion per bit for mm-wave wireless links do not increase with 

communication distance. This makes mm-wave wireless interconnect feasible solution for data 

communication across microchannels cooling layers with heights of 100 µm.  

In terms of the wireless communication protocol, in token passing based wireless medium 

access mechanism, only a single transmitter can access the wireless channel at any given instant 

of time. This limits the performance benefits of the wireless interconnection although multiple 

transceivers are deployed over the entire system. Complex MAC mechanism like CDMA can 

enable better performance compared to the token passing based method. However, the requirement 

of precise synchronization in CDMA links is difficult to achieve in a large 3D multicore chip. The 
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loss of synchronization will introduce inter-channel interference resulting in unreliable 

performance and require further investigation. 

4.2.8 Holistic Comparison of the Vertically Integrated Wireless System with Horizontally 

Integrated Wireless Multichip System 

In this section, we perform a holistic comparison of the wireless 3D system with respect to the 

wireless multichip system in terms of performance, energy efficiency, and temperature.  

Horizontal integration or Multi-Chip Module (MCM) is another way of integrating 

multiple chips where chips are placed horizontally on the same substrate or interposer within a 

package and are considered as a predecessor to monolithic 3D integration. Conventionally, MCM 

systems are interconnected by C4 bumps coupled with in-package transmission lines [41]. 

However, signal quality deteriorations due to microwave effects, crosstalk coupling effects, signal 

reflections, and frequency-dependent lines losses in the transmission line restrict the possible 

TABLE 4.5. PERFORMANCE COMPARISON WITH THE HORIZONTALLY INTEGRATED WIRELESS MULTICHIP MODULE. 

 Wireless MCM 

System  

3D-THiWiNoC 

(Cooling layer after 

2 active layers) 

3D-THiWiNoC 

(Cooling layer after 

2 active layers) 

Peak Bandwidth (Tbps) 1.737 2.491 1.738 

Energy Cost per Bit (nJ) 

 

0.64 0.55 0.64 

Temperature (°C) 71.31 65.84 50.23 
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performance benefits of the multichip system [10]. To improve performance and energy efficiency, 

[87] proposes to use wireless interconnects for data transfer between chips in an MCM system. 

Due to the analogous nature of the wirelessly connected MCM [87], and the 3D wireless NoC 

integrating multiple layers with the same mm-wave technology we compare the two systems in 

terms of their performance, energy-efficiency, and thermal profiles. 

For a fair comparison, same number and location of wireless interconnect, and same token-

based wireless medium access mechanism is considered in both 3D and MCM systems. In 

addition, the intra-layer NoC architecture and intra-chip NoC architecture for the individual chips 

in the MCM are considered to be identical. The routing and switching protocol in the two systems 

are also same with same NoC switch design adopted in both. Table 4.5 shows the peak bandwidth, 

energy cost per bit, and temperature for 4-chip wireless MCM and the 3D-THiWiNoC 

architectures at network saturation using uniform random traffic. For 3D-THiWiNoC architecture, 

we have considered two different configurations: cooling layers after every active layer and 

cooling layer after every 2 active layers. It is important to note that inserting cooling chip after 

every active layer will eliminate all the data TSVs utilizing solely wireless interconnections for 

data communication across cooling layer and will result in identical topology for wireless MCM 

and 3D-THiWiNoC architecture. Consequently, these two systems are equal in peak bandwidth 

and energy cost per bit as can be seen from Table 4.5. However, the cooling layers after every 

active layer result in a much better thermal characteristic. The 3D-THiWiNoC with cooling chip 

after every two layers has higher bandwidth and lower energy cost per bit compared to other 

configurations, due to augmentation of TSVs for data communication between active layers, which 

are not separated by  a cooling layer. On the other hand, its thermal characteristics are worse than 

the 3D-THiWiNoC with cooling layers between every active layer. Both 3D-THiWiNoC 
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configurations have lower peak chip temperature compared to wireless MCM system due to the 

presence of microchannels that are more efficient in heat removal compared to traditional fan based  

air-cooled heat sinks. Therefore, it can be observed that the 3D-THiWiNoC can provide identical 

or better performance compared to a wireless MCM for better thermal characteristics.  

TABLE 4.6. HOLISTIC COMPARISON OF BOTH MULTICHIP INTEGRATION TECHNIQUES IN VARIOUS DOMAINS. 

 3D Wireless Multichip System 

with Microchannel Cooling 
Wireless MCM System 

Projected Performance 
Higher compared to wireless 

MCM systems 

Outperforms conventional 

wireline interchip communication 

systems 

Form Factor 
Smaller footprint due to the 

vertical stacking 

Larger footprint due to horizontal 

integration 

Design Flow Requires new EDA tools Can utilize existing EDA tools 

Manufacturing Challenging Contemporary 

Testing New methods Contemporary 

Device Impact Stress from TSV fabrication None 

Cost High (initially) 
High Volume Manufacturing 

(HVM) possible at low cost 
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While improvement in energy efficiency and temperature profile is possible in the 3D 

wireless NoC architecture with microchannel based liquid cooling, however, to take full 

advantages of 3D integration, more research is necessary to address various challenges in multiple 

areas including TSV fabrication, testing, and CAD tool development. Table 4.6 shows the holistic 

comparison of both multichip integration techniques. Fabrication of TSVs requires additional 

process steps, and these additional steps make TSV manufacture at high yield extremely difficult. 

In addition, to maintain good conductivity and minimize resistance, the TSVs between dies must 

be aligned precisely. Moreover, there are limited number of Electronic Design Automation (EDA) 

tools available to design and test 3D integrated ICs. On the other hand, a horizontally stacked 

wireless multichip system utilizing metal-zigzag antennas are CMOS compatible and do not 

require any additional fabrication steps. Moreover, the wireless planar multichip system 

outperforms conventional wireline interchip communication systems.  

4.3 Summary 

In this chapter, we present a wireless 3D NoC architecture that enables energy-efficient on-chip 

data transfer along with liquid cooling technology suitable for 3D multicore ICs. We designed the 

on-chip antennas to establish wireless communication across cooling layers depending upon the 

dimensions of the microchannels for best trade-offs in thermal and hydraulic performance. The 

hybrid wireless and wireline 3D NoC architecture was designed using these antennas. We 

demonstrate that with wireless 3D NoC coupled with a cooling layer with microchannels can 

improve the thermal characteristics of the 3D IC compared to 3D NoCs with TSVs and 

conventional cooling significantly while also reducing the energy cost per bit. This is due to a 

reduction in multi-hop communication in both planar and vertical directions in a wireless 3D NoC. 
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However, due to the removal of TSV based high bandwidth links across the cooling layer, the 

bandwidth of this wireless NoC is lower than the 3D Mesh.  
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Chapter 5  CONCLUSION AND FUTURE RESEARCH 

DIRECTIONS 

The aim of this work is to demonstrate the potential of mm-wave wireless interconnects to 

overcome the challenges of multichip integration. This chapter concludes the work accomplished 

in this dissertation by summarizing significant contributions. It also points towards various 

promising future directions originating from this research work. 

5.1 Conclusion 

The multichip system has emerged as a feasible solution to overcome the physical constraint of 

the area, yield, and scalability limitations of the single chip multiprocessor system. However, as a 

new technology, disintegrating multiple systems needs to overcome few key challenges to be 

widely accepted and depending on the integration approaches, these challenges are diverse in 

nature. In the case of the horizontal integration, the difficulties lie in the inter-chip communication 

whereas, in vertical integration, the challenge is to find an enabling technology to communicate 

across the cooling layer. Wireless interconnect can be a promising solution to deal with these 

challenges. This dissertation proposes the design methodologies to utilize wireless interconnects 

as the communication backbone for both horizontally and vertically integrated multichip system. 

For the horizontally integrated multichip system, this work explores the advantages 

possible if inter-chip communication in multichip modules can be realized with state-of-the-art 

mm-wave wireless links operating in the 60GHz band. The wireless links are capable of 

establishing direct communication channels between cores in different chips via on-chip embedded 
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antennas. Moreover, the wireless links can be used for a seamless data transfer between cores in 

the same chip as well to augment the traditional NoC backbone for intra-chip communications. 

These factors result in significant gains in performance and energy efficiency in both intra and 

inter-chip data communications. The energy-efficiency of the wireless interconnects have been 

improved by careful wireless data transfer protocol design to put unused WIs to sleep using power-

gated transceivers. It can be further enhanced by using variable levels of power amplifications [86] 

depending upon the length of the wireless interconnects and associated path losses in the future. 

As for vertical integration, this dissertation proposes to use wireless interconnect to enable 

energy-efficient on-chip data transfer across the cooling layers. We designed the on-chip antennas 

to establish wireless communication across cooling layers depending upon the dimensions of the 

microchannels for best trade-offs in thermal and hydraulic performance. Using these antennas, the 

hybrid wireless and wireline 3D NoC architecture are designed. From all the results we can 

conclude that the 3D-THiWiNoC with 256 bits per flit and microchannel based interlayer coolers 

provides the best trade-offs in performance, energy consumption per bit and temperature. While 

the fully wired TSV based counterpart provides higher bandwidth, it imposes severe challenges to 

co-design and place and route of the TSV based links across the cooling layers due to its high area 

requirements. The same fully wired architecture with 32 bits per flit has lower area requirements 

for the vertical links but has lower bandwidth and higher energy consumption as well as worse 

temperature compared to the 3D-THiWiNoC with 256 bits per flit. The 3D-THiWiNoC with 256 

bits per flit enjoys the benefit of the wide TSV based vertical links among adjacent layers while 

enabling communication across the cooling layer with the wireless links. Hence, this architecture 

is suitable for applications and environments that have strict constraints on energy consumption 

and temperature of the system and no not require extremely high bandwidths. This method of 
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reducing both energy and temperature of a 3D multicore IC is orthogonal and can co-exist with 

other dynamic thermal and power management mechanisms like DVFS which will provide further 

enhanced control and trade-offs in the power-performance-temperature spectrum of the chip. 

Moreover, dynamic control of the cooling capability of microchannels can be achieved by micro-

pumps, which can dynamically vary the flow rates in the channels. Such a mechanism together 

with DVFS can be designed for a more holistic dynamic thermal control of a 3D multi-core chip 

in the future. 

When compared to the planar multichip module as an alternative to monolithic 3D 

integration with interlayer coolers, we find out that the monolithic 3D-THiWiNoC (with cooling 

layer after 2 active layers) has better performance, energy per bit as well as temperature compared 

to the planar counterpart. This is because of the TSV based links that interconnect the active layers 

not separated by the cooling layer. The microchannel based coolers help in reducing the 

temperature in the 3D-THiWiNoC. While improvement in energy efficiency and temperature 

profile is possible in the 3D-THiWiNoC architecture, there have several other challenges. 

Fabrication of TSVs requires additional process steps, and these additional steps make TSV 

manufacture at high yield extremely difficult due to challenges related to etching, sidewall 

passivation, and formation, insulation, and filling of Vias. In addition, to maintain good 

conductivity and minimize resistance, the TSVs between dies must be aligned precisely. On the 

other hand, a horizontally stacked wireless multichip system utilizing metal-zigzag antennas are 

CMOS compatible and do not require any additional fabrication steps. Moreover, the wireless 

planar multichip system outperforms conventional wireline interchip communication systems. 

Hence, it is a nearer term alternative as the communication backbone for multichip systems 

providing significant gains in performance over conventional wireline system. On the other hand, 
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going forward with matured TSV fabrication process, 3D-HiWiNoC with microchannel cooling 

can be future alternative as it provides better performance, energy per bit as well as temperature 

compared to the planar counterpart. 

5.2 Future Research Directions 

The opportunities for progressing the research performed for this dissertation work will be 

discussed in the following sections.  

5.2.1 Energy-Efficient Multi-gigabit Transceiver Design for Intra and Inter-Chip Wireless 

Interconnects 

The main enabling technology for inter and intra-chip wireless interconnection proposed in this 

dissertation is the physical layer design comprising of the transceiver circuits and antennas. To 

compete with state-of-the-art technologies the power consumption of the transceiver circuits 

should be a minimum while providing the maximum possible data rates. Trends indicate a target 

link energy efficiency of <1 pJ/bit at data rates of >10 Gbps [43][99]. Consequently, mm-wave 

transceiver with non-coherent OOK modulation are suitable for such wireless communication 

technologies [29][99] due to its low complexity and power consumption. In [100] a 60-GHz 

transceiver system with 2.5 Gbps data rate is implemented in 90-nm CMOS process that has an 

energy efficiency of 114 pJ/bit. In [101] authors proposed the design of a transceiver with the bit-

energy efficiency of 6.26 pJ/bit, with a data rate of 10.7 Gb/s. However, it requires an onboard 

Yagi–Uda antenna on a non-silicon substrate, which can result in integration difficulties. 

Moreover, none of the transceiver implementation meets all the desirable specifications of the 

wireless interconnects i.e. high multi-gigabit data rate and high energy efficiency [43][99]. 
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Therefore, an energy-efficient mm-wave transceiver suitable for both intra and inter-chip 

application is yet to be demonstrated.  

5.2.2 Traffic-Aware Medium Access Mechanism for Multi-Chip System 

The MAC for intra-chip WiNoC has been identified by all research groups as one of the main 

challenges in the design particularly, dynamic mechanisms which are adaptive to changes in the 

system. Utilizing the full potential of the novel mm-wave interconnect technology in a multichip 

system requires overcoming two critical design challenges: i) design of efficient, simple and fair 

MAC mechanism, and ii) managing the wireless bandwidth effectively. Moreover, intra and inter-

chip traffic can have very different characteristics and requirements. Information exchange 

between components in such multichip environments can be either control information or data 

exchange. Control information required for tasks such as cache coherency protocol, 

synchronization, thread migrations typically require sporadic but low latency time sensitive 

communication. Whereas, read and writes between processing engines and memory elements and 

require a higher volume of data exchange. Consequently, the data exchange in the multichip 

system can vary from low load extremely sporadic yet latency sensitive data transfer to high load 

high throughput data exchange. 

Due to the distributed and low-overhead implementation, and fairness in channel access, a 

Token passing based Time Division Multiple Access (T-MAC) is used in many intra-chip 

architectures [29][32][33]. The MAC should also manage the sharing of the wireless 

communication medium depending on traffic variation in the intra and inter-chip communication 

to maximize performance. In a token-based MAC, a single WI possessing the token gains access 

to the wireless medium to transmit for a certain number of time slots. However, in the multichip 
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environment, the traffic demand through the switches vary both temporally and spatially 

depending on the application [102][103]. Therefore, the MAC for such multichip system should 

be able to allocate transmission slots dynamically to WIs in response to sudden and large variations 

in traffic. Hence, energy-efficient dynamic MAC mechanisms that can predict the traffic demand 

of the WIs and respond accordingly by adjusting transmission slots of the WIs need to be 

developed.  

5.2.3 A Wireless Interconnection Framework for Multichip System with In-Package 

Memory 

Multichip computing modules with several chips integrated with memory banks can be found in a 

wide range of platform based designs from servers to embedded systems. These chips can be 

processing chips such as multicore chips, CPUs or GPUs or a heterogeneous mix of such chips 

(For example AMD’s Fusion Accelerated Processor Units (APUs)) depending upon desired 

functionality. Due to scaling up of a number of individual computing nodes by several orders of 

magnitude in these systems, the interconnection between them has become increasingly complex. 

Moreover, to satisfy the memory bandwidth demands, integration of in-package memory has 

become a norm in these systems. Integrating memory within a single package can be done either 

by placing memory which itself will possibly be vertically stacked on top of a multicore die i.e. 

monolithic 3D integration [9] or placing them side-by-side on the same substrate or interposer i.e. 

2.5D integration [8]. However, in 3D stacked approach, the amount of memory that can be 

integrated into the package is limited by the size of multicore die (increasing the die size generally 

reduces yield, and hence, increases manufacturing cost). In addition, the multicore processing 

chips need to be thinned to accommodate TSVs through it, which can induce die-cracking and 
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structural yield issues. Moreover, as the integration of the memory will essentially block the path 

of heat flow of the multicore die, the average die temperature of such system can become 

prohibitively high [104]. As a result, this approach requires sophisticated thermal management 

techniques. On the other hand, in horizontal or 2.5D integration, the amount of memory that can 

be integrated is not bound by the size of the multicore die, rather limited by the size of substrate 

board or interposer. As a result, it can provide more memory capacity. Moreover, this integration 

technique will allow disintegration of a large multicore processing chip into several smaller 

processing chips. Consequently, for the same computational capabilities (i.e. same number of cores 

and memory sizes), this disintegration will lower the total manufacturing cost considering the fact 

that smaller die size will eventually result in higher yield and better packing of the rectangular die 

on a circular wafer [8]. It also enables an easy integration of heterogeneous chips and technologies 

on the same platform. All these benefits over 3D stacking make 2.5D integration a nearer term 

solution for a multichip system with in-package memory integration. 

Recent trends according to the ITRS (http://www.itrs2.net/ ) predict that the pitch of the 

I/O interconnects in ICs is not scaling as fast as the gate lengths or pitch of on-chip interconnects. 

This implies a gap in density and performance of traditional I/O systems relative to on-chip 

interconnections. The wiring complexity of both on-chip and off-chip interconnects exacerbates 

the problem by posing design challenges, crosstalk, and signal integrity issues. Moreover, in the 

case of disintegrated processing chips, cores that were previously on the same chip are now on 

different processing chips. Therefore, inter-chip communication becomes critical and a potential 

bottleneck. These factors reduce the efficiency in terms of energy consumption as well as latency 

and bandwidth of the data transfer between communicating components such as processing cores 

and memory blocks in a multichip system. Therefore, we need an energy efficient, seamless, 

http://www.itrs2.net/
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scalable interconnection network that spans across distances of a few millimeters (single chip) to 

several centimeters (on a multichip environment). Integrated inter and intra-chip photonic 

interconnections is a promising solution to the off-chip interconnection challenges of traditional 

I/O. However, the pitch of photonic interconnects does not scale well due to the limitations in size 

of silicon photonic devices. Moreover, this technology is challenging to integrate with standard 

CMOS processes typically requiring a separate photonic device layer with large footprints on the 

chip. Research in recent years has demonstrated that on-chip and off-chip wireless interconnects 

are capable of establishing radio communications within as well as between multiple chips. Using 

such on-chip antennas embedded in the chip, Wireless Network-on-Chip (NoC) architectures are 

shown to improve energy efficiency and bandwidth of on-chip data communication in multicore 

chips. As a future direction, we propose to use such wireless interconnects to establish a seamless 

communication backbone which enables data exchange between chips in a multichip system with 

in-package memory. The same communication protocols used for on-chip data transfer in the intra-

chip NoC will be used for off-chip data as well, eliminating the need for protocol transfer. Wireless 

transceivers will be deployed inside each chip and memory stack, which will be capable of 

establishing direct one-hop communication with other such transceivers in the system. Hence, the 

benefits of the design methodologies outlined in this dissertation can be further exploited for such 

multichip systems with several multicore processing chips and memory stacks. 

5.2.4 60 GHz mm-wave Wireless Interconnects to Enable Contactless Testing 

Aggregating multiple smaller chips can overcome the physical limitations in the area, power 

density, and yield of a single chip multiprocessor system. However, a major concern in multichip 

integration is the quality of the arriving dies and wafers before stacking. The yield and 
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consequently, the cost benefits of the multichip system largely depend on the availability of the 

known good dies. This is because the overall manufacturing yield of the multichip system is a 

function of the yields of the bare die being stacked. State-of-the-arts chip manufacturing process 

consists of numerous fabrication steps, and defects can induce in any of these steps. The lifecycle 

of a chip starts after getting the masks of the circuit design. These masked are then used to fabricate 

the circuits on a silicon wafer. After the fabrication, the circuits first go through the wafer testing 

to check functional defects by applying the special test vectors.  After wafer testing, the dies are 

then packaged individually after separating from the wafer using laser dicing. These packaged dies 

then undergo assembly or packaging test to check the package induced defects. Finally, the 

packaged dies that pass the packaging test are then assembled onto a substrate (preferably on a 

PCB board) to make the final product, and the product level testing is done to check the 

interconnections and the assembly process.  In each stage of the testing, the faulty ones are marked 

to thrown away. As a result, it is very important to catch these defects at the early stages of the life 

cycle of a chip to save cost and ensure quality. Detecting a defect late in the life cycle is not only 

decrease cost significantly but also, it hinders the overall reputation of the company, especially if 

the consumer notices it after delivery. Hence, the chip manufacturing company aims to reach the 

highest possible coverage in the wafer test in order to minimize the yield losses at the later stages. 

However, wafer testing in multichip integration needs to overcome several serious difficulties.  

In wafer testing, probing dies typically requires a contact to be made between the 

Automatic Test Equipment (ATE) and die, as the ATEs must be connected to the primary 

input/output of the Device-Under-Test (DUT) during the test. These connection are made through 

a set of mechanical probes or probe cards. However, the frequent physical contacts between the 

probe card and the wafer-under-test have several shortcomings. The probe needles and contact 
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points can suffer deformation, and debris accumulates on the probe card also affect test outcome. 

Abrasive cleaning can be used to remove the debris. However, this can damage the probe needles 

[105][106]. Moreover, stress applied by these probe needles can cause die cracks. In addition, the 

reduction in feature sizes and the increasing demand for parallel multisite testing limit the benefits 

of the probe cards [107]. Several wireless or contactless test methods are proposed in the recent 

literature to overcome the limitation of wafer testing [105][108][109]. However, these methods 

utilize the near field communication of the antennas and hence, need to be aligned preciously due 

to the proximity requirements. Mm-wave wireless interconnect realized by metallic zigzag 

antennas fabricated using top layer metals are CMOS process compatible making them suitable 

for wafer testing. Moreover, it has been noted in many earlier works that the mm-wave wireless 

antennas are not directional and hence can be used for broadcast type transmission over the shared 

wireless channel. This property gives an additional advantage as wireless interconnects can 

provide a broadcast-capable medium to distribute any kind of test contents faster and efficiently. 

In our proposed multichip integration methodology using wireless interconnects, the intra-chip 

interconnection is a hybrid one, consisting both wired and wireless links. For the wafer testing, we 

will equip the probe card with multiple wireless transceivers operating at 60 GHz carrier 

frequency. These wireless transceivers will be used to send the test vectors to the chips and to get 

the testing outcome. As we are envisioning a shared broadcast medium, the probe card can send 

the test vectors to multiple dies at the same time as all the transceiver will be tuned to work on the 

same frequency and can reduce the testing time significantly.      
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