
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

3-7-2017

Compassionately Conservative Normalized Cuts for Image Compassionately Conservative Normalized Cuts for Image

Segmentation Segmentation

Tyler L. Hayes
tlh6792@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Hayes, Tyler L., "Compassionately Conservative Normalized Cuts for Image Segmentation" (2017). Thesis.
Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9409?utm_source=repository.rit.edu%2Ftheses%2F9409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Compassionately Conservative
Normalized Cuts for Image

Segmentation

by

Tyler L. Hayes

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Applied and Computational Mathematics

School of Mathematical Sciences, College of Science

Rochester Institute of Technology

Rochester, NY

March 7, 2017

Committee Approval:

Nathan Cahill, D.Phil.

School of Mathematical Sciences

Thesis Advisor

Date

Elizabeth Cherry, Ph.D.

School of Mathematical Sciences

Committee Member

Date

John Hamilton Jr., Ph.D.

School of Mathematical Sciences

Committee Member

Date

Sogol Jahanbekam, Ph.D.

School of Mathematical Sciences

Committee Member

Date

Christopher Kanan, Ph.D.

Center for Imaging Science

Committee Member

Date

Matthew Hoffman, Ph.D.

School of Mathematical Sciences

Director of Graduate Programs

Date

Abstract

Image segmentation is a process used in computer vision to partition an image into regions with

similar characteristics. One category of image segmentation algorithms is graph-based, where pixels

in an image are represented by vertices in a graph and the similarity between pixels is represented by

weighted edges. A segmentation of the image can be found by cutting edges between dissimilar groups

of pixels in the graph, leaving different clusters or partitions of the data.

A popular graph-based method for segmenting images is the Normalized Cuts (NCuts) algorithm,

which quantifies the cost for graph partitioning in a way that biases clusters or segments that are

balanced towards having lower values than unbalanced partitionings. This bias is so strong, however,

that the NCuts algorithm avoids any singleton partitions, even when vertices are weakly connected to

the rest of the graph. For this reason, we propose the Compassionately Conservative Normalized Cut

(CCNCut) objective function, which strikes a better compromise between the desire to avoid too many

singleton partitions and the notion that all partitions should be balanced.

We demonstrate how CCNCut minimization can be relaxed into the problem of computing Piecewise

Flat Embeddings (PFE) and provide an overview of, as well as two efficiency improvements to,

the Splitting Orthogonality Constraint (SOC) algorithm previously used to approximate PFE. We

then present a new algorithm for computing PFE based on iteratively minimizing a sequence of

reweighted Rayleigh quotients (IRRQ) and run a series of experiments to compare CCNCut-based

image segmentation via SOC and IRRQ to NCut-based image segmentation on the BSDS500 dataset.

Our results indicate that CCNCut-based image segmentation yields more accurate results with respect

to ground truth than NCut-based segmentation, and IRRQ is less sensitive to initialization than SOC.

i

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Nathan

Cahill, for his continuous support of my Master’s study and research, his patience, wisdom,

motivation, and his utmost passion for research. He has helped not only guide me, but push

me in all aspects to grow as a researcher, and for this I am extremely grateful.

Moreover, I would like to thank my committee members, Dr. Elizabeth Cherry, Dr. John

Hamilton Jr., Dr. Sogol Jahanbekam, and Dr. Christopher Kanan for their immense knowledge,

time, helpful comments, and thought-provoking questions. Additionally, I would like to thank

Renee Meinhold for her theoretical and experimental contributions detailed in this thesis. I

would also like to thank the RIT School of Mathematical Sciences for allowing me to pursue

two degrees within their department and for providing me with the invaluable resources to

grow as a mathematician.

I must also express my profound gratitude to my family and friends for their unfailing love and

support. In particular, I must thank my mom for continually believing in me and encouraging

me to chase my passion. Finally, a special thanks to James Arnold whose unconditional

love, support, and patience have provided me with constant motivation and encouragement

throughout my college career.

ii

Contents

1 Introduction 1

2 Prior Work and Research Aims 3

2.1 Introduction to Image Segmentation Methods . 3

2.2 Prior Graph-Based Work . 4

2.3 Research Aims . 6

3 Compassionately Conservative Normalized Cuts (CCNCuts) 8

3.1 Definition of the CCNCut . 8

3.2 Relaxation of the CCNCut . 10

4 Two-Stage Numerical Approach to Solving the Piecewise Flat Embedding (PFE) Prob-

lem 12

4.1 Overview of the Two-Stage Numerical Approach 12

4.2 Efficient Computation of the PFE Problem . 14

4.3 Two-Stage Approach for Segmentation . 16

4.4 Performance Comparison Between Algorithms Against Ground-Truth 18

5 Piecewise Flat Embeddings (PFE) with Iteratively Reweighted Rayleigh Quotients

(IRRQ) 21

5.1 Iteratively Reweighted Rayleigh Quotients Minimization Algorithm 21

5.2 Solving Step (a) of the IRRQ Algorithm . 22

5.3 Choosing κ for Rapid Convergence . 24

6 Segmentation Experiments and Results 25

6.1 Segmentation Experiments . 25

6.2 State-of-the-Art on BSDS500 . 26

6.3 Results . 26

6.4 Comparison of Algorithms for CCNCut Minimization 30

7 Conclusions and Future Work 37

7.1 Conclusions . 37

7.2 Future Work . 38

8 Appendix 39

8.1 Proof of Lemma 5.1 . 39

8.2 Special Case of (3.9)–(5.1) Equivalence . 39

iii

8.3 Computing BTD−1/2LD−1/2Bx . 42

iv

List of Figures

1 An example of NCuts yielding a better partition of the data than the Minimum

Cut [20]. 6

2 (a) A graph we wish to partition into three subgraphs; all edges have unit weight

except for the two edges with weight α ∈ (0, 1). Partitioning solutions differ

based on whether α falls above or below a critical value α∗. (b) Minimizing the

3-way cut (Cut) yields configurations in which two single vertices are removed.

(c) Minimizing the 3-way Normalized Cut (NCut) avoids singleton subgraphs,

but forces cuts between strongly-connected vertices in order to yield “balanced”

solutions. (d) Minimizing the 3-way Compassionately Conservative Normalized Cut

(CCNCut) enables singleton partitions where vertices are weakly connected to

the rest of the graph, but retains balance between the remaining partitions. . . . 9

3 The two-stage approach using the SOC algorithm [13] paired with the Split

Bregman algorithm [11] to solve the `1-minimization problem in (3.9) subject to

an orthogonality constraint. The PFE is a result of the combination of stages 1

and 2. 14

4 The gPb signal and resulting affinity matrix from an image in the BSDS500

dataset at one-quarter the original resolution. The resized image resolution is

121× 81 pixels in this example. 17

5 Computation times for the efficient implementation of PFE based on the intensity

and gPb graph constructions. 20

6 BSDS500 test images and segmentation results with intensity graph construction:

(a) original, (b) NCut, (c) CCNCut by SOC initialized with Laplacian Eigenmaps,

(d) CCNCut by IRRQ, (e) CCNCut by SOC Initialized with Gaussian mixture

model, (f) CCNCut by IRRQ initialized with Gaussian mixture model. 32

7 BSDS500 test images and segmentation results with gPb graph construction: (a)

original, (b) NCut, (c) CCNCut by SOC initialized with Laplacian Eigenmaps, (d)

CCNCut by IRRQ, (e) CCNCut by SOC Initialized with Gaussian mixture model,

(f) CCNCut by IRRQ initialized with Gaussian mixture model. 33

8 BSDS500 test image with CCNCut-based segmentation using the IRRQ algorithm

with the gPb graph construction for various values of k. 34

9 Computation times for CCNCut-based segmentation of BSDS images for various

numbers of segments based on gPb graph construction. Algorithms are all

initialized with LE. 34

v

10 Covering, PRI, and VI between segmentations generated from GMM and LE

initializations of each CCNCut minimization method based on (a) intensity graph

construction and (b) gPb graph construction. 35

11 Minimization of the cost function for a particular image as a function of number

of iterations. 36

vi

List of Tables

1 Comparison of Yu et al. implementation of PFE (Yu-PFE) and our efficient

PFE method (Ours) on the BSDS5000 dataset using the intensity-based affinity

construction. All results were averaged across images and the best results for

each performance measure have been highlighted in bold. 19

2 Comparison of Yu et al. implementation of PFE (Yu-PFE) and our efficient PFE

method (Ours) on the BSDS5000 dataset using the gPb-based affinity construc-

tion [1]. All results were averaged across images and the best results for each

performance measure have been highlighted in bold. 19

3 Comparison of various segmentation methods on the BSDS500 dataset. ‘MCG’

denotes results produced by the Multiscale Combinatorial Grouping method

[2]. ‘PFE + mPb’ and ‘PFE + MCG’ denote results produced by the Piecewise

Flat Embedding technique using global contour information [27]. ‘SAA’ denotes

results produced by the Scale-Aware Alignment technique [7]. ‘FCNN’ and

‘FCNN + HED’ denote results produced by the FCNN strategy both without and

with the holistically-nested edge detection scheme respectively [24]. Best results

for each performance measure highlighted in bold. 27

4 Comparison of various segmentation methods on BSDS500 test set using intensity

graph construction, averaged across images. Best results for each performance

measure highlighted in bold. 28

5 Comparison of various segmentation methods on BSDS500 test set using gPb

graph construction, averaged across images. Best results for each performance

measure highlighted in bold. 28

6 p-values of two-sided Wilcoxon rank sum tests for the intensity graph construc-

tion at which we would reject the null hypothesis that performance measures

computed from methods i and j have the same medians. Methods are: (A) NCut,

(B) C-SOC-L, (C) C-SOC-G, (D) C-IRRQ, (E) C-IRRQ-G. p-values less than 0.05

are highlighted in bold. 29

7 p-values of two-sided Wilcoxon rank sum tests for the gPb graph construction at

which we would reject the null hypothesis that performance measures computed

from methods i and j have the same medians. Methods are: (A) NCut, (B)

C-SOC-L, (C) C-SOC-G, (D) C-IRRQ, (E) C-IRRQ-G. p-values less than 0.05 are

highlighted in bold. 29

vii

1 Introduction

In computer vision, image segmentation is the process by which a machine automatically

segments an image into regions with similar characteristics. These segmented images often have

diverse applications ranging from helping doctors identify tumors to serving as a pre-processing

step in most modern computer vision and machine learning algorithms. As a pre-processing

step, image segmentation is useful in providing initial estimates for tasks such as detection,

recognition, and tracking of objects in both images and videos. While automating the task of

image segmentation is known to be a challenging problem, automation can alleviate the need

for human analysts with the added benefit of improved segmentation accuracy.

Image segmentation algorithms fall into a wide variety of categories, but one of the most

popular is graph-based segmentation algorithms. A graph-based image segmentation algorithm

is one that treats an image as a graph with vertices representing pixels and weighted edges

representing the similarity between pixels. The algorithm then cuts edges between dissimilar

groups of pixels, leaving different segments or partitions of the original image. One such

algorithm is the Normalized Cuts (NCuts) algorithm [19, 20], which minimizes a normalized

sum of weighted edges removed between groups of pixels in a graph. By normalizing the cut

cost by the total degrees of each partition, the user eliminates trivial segmentations of the data,

where a partition consists of a single pixel.

We argue that in some cases the NCuts algorithm goes too far in keeping partitions balanced,

which often yields segments that look unnatural. In this thesis, we present a new cut cost

which strikes a compromise between the desire to avoid too many singleton partitions and

the notion that all partitions should be balanced. This new cut cost, coined Compassionately

Conservative Normalized Cuts (CCNcuts), normalizes the original cut cost by the square root of the

total degrees of each partition. The CCNCut is more conservative in its normalization scheme

than the original NCuts algorithm, which normalized by the total degrees of each partition.

Computing solutions that minimize these various cuts is NP-hard. For NCuts, one way

to efficiently approximate the solution is to relax the discrete minimization problem into a

continuous one; the relaxed problem can then be transformed into a generalized eigenvalue

problem. The relaxed problem is equivalent to the Laplacian Eigenmaps (LE) problem [4],

which is a well-known technique for computing representations of data on manifolds. We will

show in Chapter 3 that CCNCuts can be relaxed in a similar manner, yielding a continuous

relaxation that coincides with the Piecewise Flat Embedding (PFE) problem [27]. The PFE

problem is a weighted `1-minimization subject to a quadratic (orthogonality) constraint.

1

To compute an approximation to the PFE problem, Yu et al. [27] introduced an iterative

scheme based on the Splitting Orthogonality Constraint (SOC) algorithm [13]. While this

algorithm demonstrated promising results on the BSDS500 dataset [1], we found that it was not

computationally feasible for large images. However, we were able to propose two improvements

that are described in Chapter 4 [16]*. The first improvement involves reformulating the original

PFE problem to allow multiple linear algebra computations to be performed in parallel. The

second improvement utilizes the preconditioned conjugate gradient iterative linear solver to

quickly solve a succession of linear least-squares problems.

While the technique for solving PFE based on the SOC algorithm yielded promising results,

there are some limitations to this approach. First, the algorithm relies on nested iterations of two

algorithms that each have their own set of parameters that must be tuned. Second, due to the

nested iterations approach, the algorithm does not strictly enforce the orthogonality constraint

in the second loop, which means that the SOC algorithm is not actually approximating a

solution to the exact PFE problem. Finally, the SOC algorithm requires an initial estimate of the

embedding and can be highly sensitive to initialization.

Due to these limitations, in Chapter 5, we propose an alternative approach for solving the PFE

problem inspired by the Iteratively Reweighted Least Squares (IRLS) algorithms commonly used

to solve `1-minimization problems [9]. IRLS algorithms perform `1-minimization by iteratively

solving a succession of weighted least-sqaures (`2-minimization) problems, with the weights

updated at each iteration to reduce the impact of large residual errors. The advantage of IRLS

algorithms is that they do not require an initial estimate of the embedding, although they

can certainly be provided with one, and in specific cases [9], they have provable convergence

guarantees. We show that the solution to the PFE problem can be approximated by iteratively

solving a succession of weighted Rayleigh Quotient minimization problems, and thus we term

this new algorithm Iteratively Reweighted Rayleigh Quotient (IRRQ) minimization.

In Chapter 6, we demonstrate results of minimizing CCNCuts by solving the relaxed (PFE)

problem using the IRRQ algorithm on the BSDS500 dataset [1] in a series of experiments. We

then provide a detailed comparison of the original SOC algorithm to our proposed IRRQ

algorithm. Finally, in Chapter 7 we provide conclusions as well as a list of open questions

pertaining to the PFE problem.

*The proposed computational improvements to the SOC algorithm for computing PFE that are described in Chapter

4 of this thesis were done in collaboration with Renee Meinhold.

2

2 Prior Work and Research Aims

2.1 Introduction to Image Segmentation Methods

Although the main objective of image segmentation is to group pixels into regions with similar

characteristics, there are a wide variety of methods to choose from when performing segmen-

tation. At the highest level, these methods could be considered threshold-based, edge-based,

region-based, energy-based, or graph-based, with some algorithms combining several of these

techniques.

Threshold-based methods are most commonly used for binary or gray-scale image segmentation.

In these methods, a threshold is chosen based on some criteria, and pixels are assigned discrete

labels based on whether they fall above or below this value. Often, a histogram of pixel values

is generated, and large ‘peaks’ in the histogram counts distinguish the threshold values that

should be chosen. One of the most common thresholding algorithms for segmentation is k-

means clustering where initial cluster centers can be chosen based on thresholding a histogram

of intensity values.

Edge-based methods form segmentation boundaries based on local or global edge and contour

information in an image. Three of the most common contour or edge-based segmentation

methods are the watershed algorithm [22], snakes [12], and level set methods such as fast

marching methods [18]. These methods are useful in locating boundaries on images in an

iterative fashion and, as such, are often coined active contour algorithms [21]. In Chapter 4,

we introduce the global probability of boundary (gPb) method [1] which yields a probability

distribution of boundaries over an image.

Region merging techniques for segmentation fall into two main categories: region splitting

techniques and region merging techniques. Region splitting, or divisive clustering, techniques

treat the initial image as a single cluster, and use either thresholding or cost function optimiza-

tion to partition an image into smaller clusters. Region merging, or agglomerative clustering,

techniques initially treat each pixel as a single cluster, and iteratively merge pixels with similar

characteristics into larger clusters.

The similarity between each of these methods is in their ability to produce segmentations

with small intra-pixel variability among clusters. If we add the restriction that pixels must be

grouped together when they have small relative distances, then we have added a constraint to

the segmentation problem. This constraint allows the segmentation problem to be reformulated

as an energy function optimization problem, which can be formed using either a variational

3

formulation or a Markov random field (MRF). In the next section, we introduce the notion of

graph-based segmentation, where an image is represented as a graph, and a partitioning of the

data is found by optimizing a cost function involving the relationships between vertices in the

graph.

2.2 Prior Graph-Based Work

Graph-based image segmentation algorithms have been of interest to the computer vision

community due to their ability to model the relationship between pixels within a given

neighborhood of an image. In these algorithms, the original image is modeled as an undirected,

weighted graph with pixels represented by nodes and the similarity between pixels represented

by weighted edges.

Consider an undirected weighted graph G = (V, E) that we wish to partition into two disjoint

subgraphs, GA = (A, EA) and GB = (B, EB) where A
⋃

B = V. This partitioning can be achieved

by removing or cutting the edges connecting A and B. The associated cost of this partition

of G is known as the cut cost and is defined as the total weight of the edges that have been

removed:

Cut (A, B) = ∑
vi∈A,vj∈B

Wi,j , (2.1)

where V = {v1, v2, ..., vn} is the vertex set and W is the weighted adjacency matrix of the graph

G.

One method to find an optimal partitioning of G would be to minimize (2.1) to find the minimum

cut. The issue with the minimum cut, however, is that oftentimes the optimal partitioning leaves

one subgraph with a single vertex [23]. A demonstration of this can be observed in Figure

(1), in which the normalized cut, a cut that will be introduced in (2.3), yields a more desirable

partioning of the data than the minimum cut due to its ability to maintain balanced partitions.

To determine a more balanced partition, other cut costs have been proposed, including the

Ratio Cut (RCut) [6]

RCut (A, B) =
Cut (A, B)
(|A| · |B|) , (2.2)

and the Normalized Cut [19, 20]

NCut (A, B) =
Cut (A, B)

Assoc (A, V)
+

Cut (A, B)
Assoc (B, V)

, (2.3)

where

Assoc (S, V) = ∑
vi∈S,vj∈V

Wi,j (2.4)

is the total connection of all vertices in S to all vertices in G.

4

In [20], it is shown that minimizing (2.3) is equivalent to solving the discrete minimization

problem:

min
y

yT(D−W)y
yTDy

subject to yi ∈ {1,−b}, i = 1, 2, ..., n,

yTD1 = 0 ,

(2.5)

where D is the diagonal weighted degree matrix of the graph G defined componentwise by

di = Di,i = ∑j Wi,j, b = (∑xi>0 di)/(∑xi<0 di), and y = (1 + x)/2− b(1− x)/2, where x is an

n-dimensional indicator vector where xi = 1 if vertex vi is in A and xi = −1 otherwise. It

is then shown that if (2.5) is relaxed such that all components of y ∈ R, then the solution is

equivalent to the generalized eigenvector corresponding to the smallest nontrivial eigenvalue

of

(D−W)y = λDy . (2.6)

The components of the resulting eigenvector can then be clustered using an algorithm, such as

k-means, and then assigned a discrete label.

Note that this formulation of the relaxed minimization problem is mathematically equivalent

to that of Laplacian Eigenmaps (LE) [4], where it is assumed that the data being analyzed

lie on a manifold that is embedded in a high-dimensional space. LE attempts to reduce the

dimensionality of the data by seeking a mapping such that data points with similar attributes

in the original space retain small distances in the new feature space. If the new feature space

has dimension one, then LE can be expressed as the following constrained minimization

problem:

min
y ∑

i,j
Wi,j‖yi − yj‖2

2

subject to yTDy = I

yTD1 = 0 .

(2.7)

The orthogonality constraint yTDy = I ensures that the final data embedding is non-trivial,

and the balance constraint yTD1 = 0 is necessary to avoid the trivial eigenvalue and to ensure

that partitions in the final data embedding are balanced. A difficulty with using LE, however, is

that while pixels with small local distances in the original feature space retain this relationship

in the final embedding, pixels in the final data embedding may still be far enough apart that

assignment of discrete labels is often ambiguous.

An ideal embedding of data in a new feature space would distribute pixels of the same region

tightly around a single point, while pushing pixels of different classes apart to eliminate the

ambiguity of cluster boundaries in the new feature space. The Piecewise Flat Embedding (PFE)

[27] was proposed to achieve this goal and does so by modifying the LE objective function

5

Figure 1: An example of NCuts yielding a better partition of the data than the Minimum Cut

[20].

to use an `1-norm. The use of an `1-norm in minimization promotes sparse solutions to the

segmentation problem, which makes the assignment of discrete labels to pixels a trivial process

[27]. The PFE problem can be expressed as the constrained minimization problem:

min
y ∑

i,j
Wi,j‖yi − yj‖1

subject to yTDy = I .

(2.8)

Incorporating the `1-norm promotes sparse solutions such that pixels in the new feature space

that belong to the same class have distances close to zero, while pixels belonging to different

classes have much larger distances. This makes segmentation in the new feature space a

straightforward process.

In addition to their introduction of the PFE problem [27], Yu et al. also introduced a two-stage

numerical approach to solving (2.8), which we will further outline in Chapter 4. Although this

two-stage approach yielded promising results on a publicly available dataset, the method does

not scale well to large images, requires an initial estimate of the data embedding, and, due to its

two-stage nature, has two different sets of parameters that must be tuned at each stage.

2.3 Research Aims

The main goals of this thesis are (1) introducing a new cut cost that, when relaxed, yields the

PFE problem, (2) proposing computational improvements made to the two-stage numerical

approach introduced in [27], (3) introducing a new algorithm for computing the PFE, and (4)

illustrating how image segmentation performed with our new cut cost outperforms the SOC

algorithm proposed in [27].

In Chapter 3, we introduce our new cost that seeks to strike a balance between the minimum

6

cut [23] and the normalized cut [19, 20]. While our new cut cost allows for singleton partitions

as in [23], the new cut cost still maintains a notion of normalization, albeit to a lesser extent

than the original normalized cut, that significantly reduces the number of singleton partitions

in the final pixel labeling.

In Chapter 4, we demonstrate two computational improvements made to the algorithm in-

troduced in [27] to allow the method to scale to larger images. We use these computational

improvements to generate our own MATLAB implementation of the algorithm to reproduce

the results generated in [27] and to utilize in our own experiments.

In Chapter 5, we introduce our new algorithm for solving the PFE problem. The inspiration

for our algorithm came from the Iteratively Reweighted Least Squares (IRLS) algorithms typ-

ically used for `1-minimization. The advantages of the IRLS algorithms are that they do not

require an initial estimate of the data embedding and, in special cases [9], have provable linear

convergence guarantees. Our algorithm seeks to overcome the shortcomings of the two-stage

numerical approach presented in [27] by only requiring the tuning of a single hyperparameter

and ensuring convergence to the global minimum independent of embedding initialization.

In Chapter 6, we illustrate the use of CCNCuts for image segmentation on a publicly available

database of images. We then compare the results from the SOC algorithm to our proposed

algorithm and discuss the benefits and limitations of each algorithm.

7

3 Compassionately Conservative Normalized Cuts (CCNCuts)

In this Chapter, we introduce the Compassionately Conservative Normalized Cut (CCNCut),

which provides an alternative normalization to NCut. When minimized, CCNCut yields graph

partitions in such a way that few singleton partitions are permitted, but the notion of balanced

partitions still exists. Consider the example presented in Figure (2), where we wish to partition

the toy graph into three subgraphs. This toy graph (2a) contains 15 vertices and 19 edges; all

but two of the edges have unit weight, and the two indicated edges have weight α ∈ (0, 1). For

each cost function, the three-way partitioning of minimum cost depends on whether α falls

above or below some critical value α∗. As expected, when the three-way Cut cost is minimized,

the resulting partitions are heavily unbalanced, as shown in (2b).

While the three-way NCut cost (the k-way NCut cost is defined in [25]) yields more balanced

partitions shown in (2c), the Cut costs of these partitionings are relatively high and these

partitions do not necessarily look “natural” from a gestalt sense. We argue that the partitions

demonstrated in (2d) have a more “natural” look than those in (2b), striking a compromise

between the partitionings resulting from the Minimum Cut (2b) and the Normalized Cut (2c).

The partition depicted in (2d) is our proposed Compassionately Conservative Normalized

Cut, which differs from NCuts in its normalization by the square root of the total degrees of

each partition. This normalization is more conservative than the original NCuts formulation,

allowing us the flexibility to obtain singleton partitions, while also maintaining a notion of

balanced partitions. For natural imagery, this flexibility allows more realistic partitions of the

data to be obtained.

3.1 Definition of the CCNCut

Consider an undirected weighted graph G = (V, E) that we we wish to partition into k disjoint

subgraphs, Gi = (Vi, Ei), i = 1, 2, . . . , k, where
⋃k

i=1 Vi = V. G can be partitioned by removing

edges connecting each of the subgraphs to every other subgraph. To find an optimal partitioning

of G, we must define and optimize a partitioning cost. A standard partitioning cost that is

analogous to the minimum cut cost is the multiway cut cost, defined as the total weight of the

edges that have been removed:

Cut(V1, . . . , Vk) =
1
2

k

∑
`=1

Cut(V`, V\V`) , (3.1)

8

�

0 � � � 1

(a) Toy Graph

� � �

∗

�

∗

� � �

∗

1

0

(b) arg min Cut (c) arg min NCut (d) arg min CCN-

Cut

Figure 2: (a) A graph we wish to partition into three subgraphs; all edges have unit weight

except for the two edges with weight α ∈ (0, 1). Partitioning solutions differ based on whether α

falls above or below a critical value α∗. (b) Minimizing the 3-way cut (Cut) yields configurations

in which two single vertices are removed. (c) Minimizing the 3-way Normalized Cut (NCut)

avoids singleton subgraphs, but forces cuts between strongly-connected vertices in order to

yield “balanced” solutions. (d) Minimizing the 3-way Compassionately Conservative Normalized

Cut (CCNCut) enables singleton partitions where vertices are weakly connected to the rest of

the graph, but retains balance between the remaining partitions.

where the pairwise cut cost is defined by:

Cut(A, B) = ∑
vi∈A,vj∈B

wi,j , (3.2)

the vertex set V = {v1, v2, · · · , vn}, and W is the weighted adjacency matrix (or affinity matrix)

of G containing only positive weights. Since the graph G is undirected, W will be symmetric.

Minimizing this Cut cost is undesirable, however, as it can yield partitionings in which one

or more of the subgraphs contain a single vertex [23]. More balanced partitions emerge if the

pairwise cut costs are normalized by the total degrees (volumes) of the subgraphs. Yu and Shi

[25] define a multiway generalization of the NCut cost [19, 20] by:

NCut(V1, . . . , Vk) =
1
2

k

∑
`=1

Cut(V`, V\V`)

Vol(V`)
, (3.3)

where Vol(V`) = ∑vj∈V`
dj, and dj = ∑m wj,m is the degree of vertex vj.

Instead of normalizing the pairwise cut costs by the volumes of each subgraph, we propose

normalizing by the square roots of the volumes:

CCNCut(V1, . . . , Vk) =
1
2

k

∑
`=1

Cut(V`, V\V`)√
Vol(V`)

. (3.4)

9

In simple terms, minimizing the CCNCut cost (3.4) should still yield partitions that are more

balanced than when minimizing (3.1), while better preserving strongly-connected subgraphs

than when minimizing (3.3).

By defining an n× k indicator matrix X such that Xi,j = 1 if vi ∈ Vj and Xi,j = 0 otherwise, it

is straightforward to see how (3.3)–(3.4) can be reformulated. If xi is the ith column of X, then

Vol(Vi) can be written in terms of the degree matrix D = diag(d) as xT
i Dxi, and the pairwise

cut cost between Vi and V\Vi can be written as Cut(Vi, V\Vi) = xT
i W (1− xi) = xT

i d− xT
i Wxi =

xT
i Dxi − xT

i Wxi = xT
i Lxi, where L = D−W is the graph Laplacian matrix. This allows us to

express (3.3)–(3.4) as:

NCut(V1, . . . , Vk) =
1
2

k

∑
`=1

xT
` (D−W) x`

xT
` Dx`

, (3.5)

CCNCut(V1, . . . , Vk) =
1
2

k

∑
`=1

xT
` (D−W) x`√

xT
` Dx`

. (3.6)

Minimizing (3.3)–(3.4) is equivalent to minimizing (3.5)–(3.6) subject to the constraint that XTX

is positive diagonal, which ensures that none of the Vi’s will collapse to the empty set.

3.2 Relaxation of the CCNCut

Minimizing (3.6) is NP-hard, as is minimizing (3.5). However, relaxing (3.6) yields a problem

whose solution can be efficiently approximated. To relax the CCNCut, we use an argument

similar to Yu and Shi [25] in their relaxation of the NCut. From [25], we see that if Y =

X
(
XTDX

)−1/2, then YTDY = I and (3.5) is equivalent to tr
(
YTLY

)
. Hence, the solution to

minimizing a relaxed version of (3.5) is Ỹ = UQ, where U is the n×k matrix whose columns are

the orthonormal eigenvectors u2, . . ., uk+1 corresponding to the smallest nontrivial eigenvalues

of D−1/2LD−1/2, and Q is an arbitrary k× k orthogonal matrix. The optimal solution X̃ to

(3.5) can then be approximated by k-means clustering [17], nonmaximal suppression [25] or

Procrustean rounding [28] on Ỹ.

Now define ŷi to be the ith row of Y. We then have that the minimization of the relaxed version

of (3.5) is equivalent to solving the constrained minimization problem:

min
Y∈Rn×k

J2(Y) :=
n

∑
i=1

n

∑
j=1

wi,j
∥∥ŷi − ŷj

∥∥2
2 (3.7)

subject to: YTDY = I , YTD1 = 0 ,

which is identical to the Laplacian Eigenmaps (LE) problem [4] for computing embeddings

of data that are assumed to lie on a manifold. Recall that the balance constraint YTD1 = 0 is

10

necessary to avoid eigenvectors of D−1/2LD−1/2 corresponding to the trivial eigenvalue.

Turning our attention now to (3.6), if we define α` =
(

∑i dix2
i,`

)−1/2
for ` = 1, . . . , k, and we

note that
(
XTDX

)−1/2
= diag(α), we can write:

CCNCut(V1, . . . , Vk) =
k

∑
`=1

∑i,j wi,j

(
xi,` − xj,`

)2

(
∑i dix2

i,`

)1/2

=
k

∑
`=1

α` ∑
i,j

wi,j

∣∣∣xi,` − xj,`

∣∣∣
= ∑

i,j
wi,j

∥∥∥∥(XTDX
)−1/2(

x̂i − x̂j
)∥∥∥∥

1

= ∑
i,j

wi,j
∥∥ŷi − ŷj

∥∥
1 . (3.8)

Hence, the relaxation of (3.6) is obtained by dropping the condition that Y = X
(
XTDX

)−1/2

and solving the constrained minimization problem:

min
Y∈Rn×k

J1(Y) :=
n

∑
i=1

n

∑
j=1

wi,j
∥∥ŷi − ŷj

∥∥
1 (3.9)

subject to: YTDY = I .

Interestingly enough, (3.9) is exactly the Piecewise Flat Embedding problem [27], which, in

contrast with Laplacian Eigenmaps, yields embeddings in which the data are naturally clustered

since it promotes sparsity in the differences between rows of Y.

11

4 Two-Stage Numerical Approach to Solving the Piecewise

Flat Embedding (PFE) Problem

In this Chapter, we present the two-stage numerical approach outlined in [27] for approximating

a solution to the PFE problem. We then explore the limitations of this two-stage approach and

present two improvements to allow the method to be more computationally feasible on larger

images*.

4.1 Overview of the Two-Stage Numerical Approach

Recall the PFE problem outlined in (3.9) where, provided n data points X = {x1, . . . , xn}

in Rd, we wish to transform the data to a new k-dimensional space where Y is our new

n× k dimensional embedding representing the transformed data. Minimizing (3.9) is more

difficult than minimizing (3.7) since (3.9) includes both an orthogonality constraint, as well as

the minimization of a term involving the `1-norm. Due to the orthogonality constraint, (3.9)

cannot be solved analytically; hence, Yu et al. [27] introduce a method that utilizes two nested

algorithms to effectively minimize (3.9) subject to an orthogonality constraint. Since (3.9) is

convex, they apply the Splitting Orthogonality Constraint (SOC) algorithm proposed in [13] to

handle the orthogonality constraint, while also applying the Split Bregman algorithm proposed

in [11] to handle the `1 minimization.

To handle the orthogonality constraint, the SOC algorithm defines P = D1/2Y and rewrites (3.9)

as

min
Y∈Rn×k

J1(Y) :=
n

∑
i=1

n

∑
j=1

wi,j
∥∥ŷi − ŷj

∥∥
1 (4.1)

subject to: D1/2Y = P , PTP = I .

The SOC algorithm (Algorithm (1)) then approximates a solution to (4.1) by using a succession

of Bregman iterations [5].

While the update to P(m+1) in step (b) of the SOC algorithm has a closed form solution described

in [27], we note that the update to Y(m+1) in step (a) still includes a term involving the `1-

norm. To obtain a solution to this `1-norm minimization problem, Yu et al. [27] utilize the

Split Bregman algorithm [11] to transform the original problem into a series of differentiable

unconstrained convex optimization problems.

To update Y(m+1) using the Split Bregman algorithm, Yu. et al. [27] concatenate the columns of
*The computational improvements described in this chapter were published in [16].

12

Algorithm 1 SOC Algorithm for Approximating (4.1)

procedure SOC(W, Y(0))

D := diag(W1), m := 0, P(0) := D1/2Y(0), B(0) := 0n×k

repeat

(a) Y(m+1) := arg min
Y

(
∑i,j wi,j

∥∥ŷi − ŷj
∥∥

1 +
r
2

∥∥∥D1/2Y− P(m) + B(m)
∥∥∥2

2

)
(b) P(m+1) := arg min

P

∥∥∥P−
(

D1/2Y(m+1) + B(m)
)∥∥∥2

2
s.t. PTP = I

(c) B(m+1) := B(m) + D1/2Y(m+1) − P(m+1)

(d) m← m + 1

until convergence

return Y(m)

end procedure

the matrices Y(m), P(m), and B(m) into the vectors Y(m)
v , P(m)

v , and B(m)
v respectively. They next

define M =
{

Mi,j
}

to be an n(n− 1)/2× n dimensional sparse matrix with Mm,i = wi,j and

Mm,j = −wi,j for two points xi and xj which form the m-th pair. Finally, a (kn(n− 1)/2)× (kn)

matrix L and a (kn)× (kn) matrix D̃ are defined as follows:

L := Ik×k ⊗M , (4.2)

D̃ := Ik×k ⊗D , (4.3)

where ⊗ denotes the Kronecker product. Using these new definitions, step (a) of the SOC

algorithm is rewritten as

Y(m+1)
v := arg min

Yv
‖LYv‖1 +

r
2

∥∥∥D̃1/2Yv − P(m)
v + B(m)

v

∥∥∥2

2
, (4.4)

which can be solved using the Split Bregman algorithm [11] outlined in Algorithm (2). Note

that a least-squares problem is formulated in step (a) of Algorithm (2), which we will minimize

using its normal equations.

As in [27], we propose to perform these two algorithms in a two-stage approach. In the first

stage, we implement the full numerical solution by using nested Bregman iterations and the SOC

algorithm. This solves the `1-minimization problem while strictly enforcing the orthogonality

constraint in the outer loop. In the second stage, we relax the orthogonality constraint and only

execute the Bregman iterations to minimize the objective function involving the term with the

`1-norm. This stage utilizes the Split Bregman algorithm and allows the `1-term to reach lower

energy levels. A flowchart outlining this two-stage approach is presented in Figure (3).

13

Algorithm 2 Split Bregman Algorithm for Approximating (4.4)

procedure SplitBregman(M, D, P(m), B(m))

Construct L and D̃ from (4.2)–(4.3).

` := 0, b` := 0(kn(n−1)/2)×1, d` := 0(kn(n−1)/2)×1

while
∥∥∥Y(m,`+1)

v − Y(m,`)
v

∥∥∥ ≤ ε do

(a) Y(m,`+1)
v := arg min

Yv

(
λ
2

∥∥∥LYv + b` − d`
∥∥∥2

2
+ r

2

∥∥∥D̃1/2Yv − P(m)
v + B(m)

v

∥∥∥2

2

)
(b) d`+1 := Shrink

(
LY(m,`+1)

v + b`, 1/λ
)

(c) b`+1 := b` + LY(m,`+1)
v − d`+1

(d) `← `+ 1

end while

return Y(m,`)

end procedure

procedure Shrink(y, δ)

zi = sign (yi) ·max (|yi| − δ, 0) , i = 1, . . . , numel (z)

return z

end procedure

Input Image
Initialization

of

Embedding

Stage 1:
Full

Numerical

Solution

Stage 2:
Relaxed

Orthogonality

Constraint

k-means

Clustering

Output

Image

Figure 3: The two-stage approach using the SOC algorithm [13] paired with the Split Breg-

man algorithm [11] to solve the `1-minimization problem in (3.9) subject to an orthogonality

constraint. The PFE is a result of the combination of stages 1 and 2.

4.2 Efficient Computation of the PFE Problem

Consider a 400× 600 pixel image that we wish to partition into 20 clusters using the two-stage

approach outlined in [27]. We construct a graph of the image with each node correspond-

ing to a single pixel and use the 4-nearest neighbors algorithm to assign weights to edges

between nodes that are within the 4-pixel neighborhood of one another. Based on this graph

construction and the use of double-precision floating-point values for our computations, our

sparse weighted adjacency matrix W and our data embedding Y would require approximately

7.7MB and 38.4MB of storage respectively. To apply the Split Bregman algorithm, we must

compute the sparse matrices M, L, and D̃, where M will be ((400 · 600) (400 · 600− 1) /2)×

(400 · 600) = 28, 799, 880, 000 × 240, 000 with 1, 920, 000 non-zero entries (15.36MB), L will

14

be (20 · (400 · 600) (400 · 600− 1) /2)× (20 · (400 · 600)) = 575, 997, 600, 000× 4, 800, 000 with

38, 400, 000 non-zero entries (307.2MB), and D̃ will be (20 · (400 · 600))× (20 · (400 · 600)) =

4, 800, 000× 4, 800, 000 with 4, 800, 000 non-zero entries located on the main diagonal (38.4MB).

While the image in our example is relatively small and we use a modest neighborhood structure

to construct our graph, the storage space required for these matrices is still quite large. As such,

the task of multiplying L by Yv in step (a) of the Split Bregman algorithm will be computation-

ally intensive for solving the PFE problem. Recall that the solution to step (a) of Algorithm (2)

requires the solution to the following normal equations:[
λ
2 LTL + r

2 D̃
]

Y(m,`+1) = λ
2 LTq1 +

r
2 D̃1/2q2 , (4.5)

where q1 = d` − b` and q2 = B(m)
v − P(m)

v . Solving (4.5) by inverting λ
2 LTL + r

2 D̃ would be

unwise as it would require the formation of a large, dense matrix (4, 800, 000× 4, 800, 000 matrix

(184.32TB) in our example). Attempting to use a direct solver for (4.5) would be infeasible due

to the large amount of memory required since λ
2 LTL + r

2 D̃ is sparse and banded, but its bands

are far from the main diagonal.

While downsampling the image would preserve storage space, we would sacrifice clarity in

the image, possibly resulting in a poor partitioning of the data. Thus, we present the following

modifications to the two-stage approach outlined in [27] for approximating a solution to the

PFE problem.

First, we define the function vec: Rs×t → Rst that “unwraps” a matrix Z = {z1, . . . , zt} into

the vector vec(Z) =
[
zT

1 , . . . , zT
t
]T. This allows us to write Y(m)

v =vec

(
Y(m)

)
, P(m)

v =vec

(
P(m)

)
,

and B(m)
v =vec

(
B(m)

)
and thus we have:

LYv = vec (MY) , (4.6)

D̃1/2Yv = vec

(
D1/2Y

)
. (4.7)

By using the vec notation, equation (4.6) allows us to rewrite steps (b)–(c) of the Split Bregman

algorithm as:

d`+1 = Shrink
(
vec

(
MY(m,`+1)

)
+ b`, 1/λ

)
, (4.8)

where Shrink is as defined in Algorithm (2)

b`+1 = b` + vec

(
MY(m,`+1)

)
− d`+1 , (4.9)

which reduces the computation time for steps (b)–(c) by a factor of k. Moreover, we can

write:

LTLYv = vec

(
MTMY

)
, (4.10)

15

D̃Yv = vec (DY) , (4.11)

and thus, we rewrite (4.5) as:[
λ
2 MTM + r

2 D
]

Y(m,`+1) = λ
2 MTQ1 +

r
2 D1/2Q2 , (4.12)

where vec(Q1) = d` − b` and Q2 = B(m) − P(m). By replacing steps (a), (b), and (c) in the Split

Bregman algorithm with (4.12), (4.8), and (4.9) respectively, we arrive at our first computational

efficiency improvement to the two-stage approach outlined in [27]. We now simultaneously solve

the k different n× n systems of equations in (4.12) instead of solving the single (kn)× (kn)

system of equations in (4.5), which eliminates the necessity of computing the large matrices L

and D̃.

Although the formulation in (4.12) preserves memory by a factor of k when compared to (4.5),

we found experimentally that (4.12) is still infeasible to solve by matrix inversion or by a direct

solver. Thus, our second computational improvement utilizes the preconditioned conjugate

gradient (PCG) method [3] with an incomplete Cholesky preconditioner to approximate a

solution to (4.12). This solution completes the approximation to step (a) of the Split Bregman

algorithm.

4.3 Two-Stage Approach for Segmentation

To investigate the consistency of our efficient PFE implementation on an image segmentation

task, we replicate two of the experiments in [27] that utilize the 200 test images in the BSDS500

dataset [1], each of which has a variety of manually-labeled segmentations with different

numbers of segments that can be used as ground truth. We follow the two-stage approach

outlined in [27]. A first stage is run with ten outer iterations, five inner iterations, and

hyperparameters λ = 10000 and r = 100, and a second stage with a maximum of 100 iterations,

λ = 10000, and r = 10, where λ and r are used in Algorithms (1) and (2). (These are the same

parameter choices as in [27]). To approximate the PFE, we use a Gaussian Mixture Model

(GMM) initialization and k-means clustering on the final embedding described in [27].

We test our efficient PFE implementation using two different methods of graph construction

as in [27]. The first is based on the nearest-neighbor construction proposed in [4]. Given two

pixels, xi and xj, that are within the 4-nearest neighbors of one another, we place an edge

between them with a weight defined by the heat kernel:

wi,j = exp

(
−
‖xi − xj‖2

σ

)
, (4.13)

16

(a) Original Image

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) gPb Signal

1000 2000 3000 4000 5000 6000 7000 8000 9000

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

0.05

0.1

0.15

0.2

0.25

(c) Affinity Matrix

Figure 4: The gPb signal and resulting affinity matrix from an image in the BSDS500 dataset

at one-quarter the original resolution. The resized image resolution is 121× 81 pixels in this

example.

where σ is a user-defined parameter. If xi and xj are far from one another, the exponential

function will be raised to a large, negative value, forcing the weight to be small. If xi and xj are

close to one another, the exponential function will be raised to a small, negative value, forcing

the weight to be large. We refer to this graph construction as the “intensity graph construction”

for the remainder of this thesis, since the weights between neighboring pixels are based on their

differences in pixel intensity.

The second graph construction is based on the globalized probability of boundary (gPb) [1].

The gPb measures the differences in features between two halves of a disc that is divided at a

specific angle. These measured differences allow us to predict the posterior probability of a

boundary at every pixel in an image. To compute the gPb graph construction, we utilize the

code provided with the BSDS500 dataset [1]. The code first places a vertex at each pixel in the

original image and then computes the gPb at each pixel. The maximum gPb at eight different

angles is determined and an edge is placed between pixel xi and xj with weight

wi,j = exp

−max
{

gPb
(

pi,j

)}
ρ

 , (4.14)

when ‖pi,j‖ ≤ r and wi,j = 0 otherwise, where pi,j is the line segment connecting pixel xi to

xj, ρ is a constant and r is a user-defined threshold. We refer to this graph construction as the

“gPb graph construction” for the remainder of this thesis. Figure (4) demonstrates an example

of the gPb signal from an image and the resulting affinity matrix.

17

4.4 Performance Comparison Between Algorithms Against Ground-Truth

To quantitatively compare the PFE implementations, we evaluate the segmentations with respect

to ground-truth using the three criteria described in [1] and used in [27]: Segmentation covering,

Probabilistic Rand Index (PRI), and Variation of Information (VI). Segmentation covering is the

measure of overlap between two regions, PRI compares the compatibility of two regions, and

VI measures the distance between two regions based on their average conditional entropy [1].

That is, for a ground truth image S′, the covering by a machine segmentation S is defined in [1]

as:

C
(
S′ → S

)
= 1

N ∑
R∈S
|R| ·max

R′∈S′
O
(

R, R′
)

, (4.15)

where N is the total number of pixels in the image and the overlap between regions R and R′ is

defined as

O
(

R, R′
)
=
|R ∩ R′|
|R ∪ R′| . (4.16)

The Probabilistic Rand Index for a set {Gi} of ground truth segmentations is defined in [1]

as

PRI(S, {Gi}) = 1
T ∑

i<j

[
cij pij +

(
1− cij

) (
1− pij

)]
, (4.17)

where T is the total number of pixel pairs in the image, cij is the event that pixel i and pixel j

have the same label, and pij is the corresponding probability for cij. Variation of Information is

defined in [1] as:

VI
(
S, S′

)
= H(S) + H

(
S′
)
− 2I

(
S, S′

)
, (4.18)

where H and I represent the entropies and mutual information between two segementations

respectively. As a segmentation becomes closer to ground-truth, covering and PRI will increase,

while VI will decrease.

Following the strategy outlined in [27], we report results for both a fixed scheme, where we run

the algorithm repeatedly with k corresponding to each number of segments in the ground-truth

and average the performance across multiple runs, and a dynamic scheme, where we choose the

value of k from k = 5, 10, 15, 20, 25 that yields the best performance for a particular image. The

results pertaining to both of these schemes using the intensity graph construction are presented

in Table (1) and the results using the gPb graph construction are presented in Table (2).

From these tables, we observe that our efficient implementation of PFE yields similar covering

and PRI values when compared to the implementation in Yu et al. [27] for both methods

of graph construction. We note, however, that for both methods of graph construction, our

VI measures were slightly higher than those reported in [27]. If we consider only the gPb

graph construction, we found the standard deviation in VI values to be approximately 0.44

18

Method
Covering PRI VI

fixed dynamic fixed dynamic fixed dynamic

Yu-PFE 0.46 0.52 0.77 0.79 2.21 1.91

Ours 0.42 0.52 0.75 0.79 2.59 2.20

Table 1: Comparison of Yu et al. implementation of PFE (Yu-PFE) and our efficient PFE method

(Ours) on the BSDS5000 dataset using the intensity-based affinity construction. All results

were averaged across images and the best results for each performance measure have been

highlighted in bold.

Method
Covering PRI VI

fixed dynamic fixed dynamic fixed dynamic

Yu-PFE 0.45 0.56 0.78 0.81 2.26 1.77

Ours 0.43 0.51 0.74 0.78 2.30 2.04

Table 2: Comparison of Yu et al. implementation of PFE (Yu-PFE) and our efficient PFE method

(Ours) on the BSDS5000 dataset using the gPb-based affinity construction [1]. All results

were averaged across images and the best results for each performance measure have been

highlighted in bold.

for both the fixed and dynamic schemes, with similar high deviation values for the intensity

graph construction as well. If the implementation in Yu et al. [27] had high standard deviation

values as well (which were not reported in their paper), it is likely that the difference in VI

values between methods is not statistically significant. We will further explore the statistical

significance of each of the three quantitative measures outlined here in Chapter 6.

In Figure (5), we show a plot of the computation time (in seconds), as a function of cluster

number, required to compute the PFE for the 200 test images. From this figure we can see that

using the intensity-based graph construction, our implementation takes anywhere between 10

seconds and 15 minutes to compute the PFE, while the gPb-based graph construction takes

anywhere between 1.5 and 110 minutes to compute the PFE, depending on how many clusters

are desired. The large amount of time required for the gPb-based graph construction could

possibly be a result of the structure of the adjacency matrix, and could be investigated in future

work. While Yu et al. [27] report that their implementation requires approximately 15 minutes

to compute the PFE per image, they have not yet released code, prohibiting us from performing

a direct comparison.

In this Chapter, we presented the two-stage approach outlined in [27] for approximating a

solution to the PFE problem. We then outlined the computational improvements that we made

to the approach and demonstrated the results of our efficient implementation based on two

experiments evaluated on the BSDS500 dataset [1]. We note that at this time, code for the Yu et

19

0 10 20 30 40 50 60 70 80 90 100
Number of segments

101

102

103

104

C
om

pu
tin

g
T

im
e

(s
ec

)

Intensity gPb

Figure 5: Computation times for the efficient implementation of PFE based on the intensity and

gPb graph constructions.

al. [27] implementation of PFE has not yet been publicly released. For this reason, our efficient

implementation of PFE will be used for all experiments pertaining to the SOC algorithm for

PFE approximation for the remainder of this thesis.

20

5 Piecewise Flat Embeddings (PFE) with Iteratively Reweighted

Rayleigh Quotients (IRRQ)

In this Chapter, we present an alternative algorithm for solving the PFE problem motivated

by the Iteratively Reweighted Least Squares (IRLS) algorithms commonly used to solve `1-

minimization problems [9]. In IRLS, `1-minimization is performed by iteratively solving a

succession of weighted least-squares (`2-minimization) problems, with weights updated at each

iteration to decrease the impact of large residual errors. Our new algorithm is termed Iteratively

Reweighted Rayleigh Quotients (IRRQ), and, in contrast with the two-stage approach outlined

in [27], it does not require an initial estimate of the data embedding, only requires the tuning of

a single hyperparameter, and does not rely on a nested iterative structure.

5.1 Iteratively Reweighted Rayleigh Quotients Minimization Algorithm

To solve (3.9) subject to an orthogonality constraint, we will show that the final data embedding

can be computed by iteratively solving a series of constrained weighted `2-minimization

problems, with weights updated similarly to IRLS. Each constrained weighted `2-minimization

problem has the form

min
Y∈Rn×k

J Γ
2 (Y) :=

n

∑
i=1

n

∑
j=1

wi,jγi,j
∥∥ŷi − ŷj

∥∥2
2 (5.1)

subject to: YTDY = I , YTD1 = 0 ,

where Γ is the n× n matrix of weights (with entries γi,j) that is updated at each iteration.

To establish a connection between (3.9) and (5.1), we must first eliminate the balance constraint

from (5.1) using the result of the following Lemma, which is proved in Appendix 8.1.

Lemma 5.1. Suppose Y = D−1/2BG, where B ∈ Rn×(n−1) and G ∈ R(n−1)×k, with B = C
(
CTC

)−1/2,

and where CT ∈ R(n−1)×n projects vectors onto the subspace orthogonal to q = D1/21/
∥∥∥D1/21

∥∥∥. Then

YTD1 = 0 and YTDY = GTG.

By using this Lemma, we can solve (5.1) by first solving:

Ĝ := arg min
GTG=I

J Γ
2

(
D−1/2BG

)
, (5.2)

and then computing Y = D−1/2BĜ.

If we assume the restrictive assumption that our embedding must be one-dimensional and

that none of the differences in embedding components vanish, then we can show that the

21

solution to (5.1) coincides with the solution to (3.9) when we choose weights according to

γi,j =
∣∣∣y∗i − y∗j

∣∣∣−1
for i 6= j. This proof is shown in Appendix 8.2. In practice, however, many of

the component-wise differences will vanish and hence we regularize the weights as in [9]:

γi,j :=
[
wi,j
∥∥ŷi − ŷj

∥∥2
2 + ε2

]−1/2
, (5.3)

and we update ε according to the schedule prescribed by [9], which suggests:

ε← min
(

ε, n−1r(Y)κ+1

)
, (5.4)

where r(Y)κ is the κth largest element of
{

wi,j
∥∥ŷi − ŷj

∥∥
2 , ∀i, j = 1, . . . , n

}
.

Combining the steps of solving (5.1) and updating (5.3)–(5.4) into a sequence of iterations yields

Algorithm (3) for computing the PFE. Note that (5.2) can be transformed into an unconstrained

minimization of the following Rayleigh quotient:

Ĝ := arg min tr
(

GTBTD
−1/2

L̂D−1/2BG

·
(

GTG
)−1

)
, (5.5)

where L̂ is the Laplacian of the graph having weight matrix W�Γ and � denotes Hadamard

product. Since (5.1) is equivalent to (5.2) and (5.2) can be transformed into an unconstrained

minimization of a Rayleigh Quotient, we term this algorithm Iteratively Reweighted Rayleigh

Quotient (IRRQ) Minimization.

In contrast with the SOC algorithm, IRRQ requires the tuning of only a single hyperparamter,

κ, and it guarantees a solution in which the orthogonality constraint is strictly enforced.

Furthermore, IRRQ does not require an initial estimate of the final data embedding. With

an initial set of unit weights, IRRQ can be thought of as being implicitly initialized with the

solution to the relaxed NCut problem, since J 11T

2 (Y) is equivalent to the LE objective function

J2(Y) in (3.7). If different initializations are desired, for instance, by computing an initial

embedding Y(0) using a Gaussian Mixture Model as in [27], these can be incorporated by setting

the initial weights γ
(0)
i,j =

∥∥∥ŷ(0)
i − ŷ(0)

j

∥∥∥−1

2
or γ

(0)
i,j =

[
wi,j

∥∥∥ŷ(0)
i − ŷ(0)

j

∥∥∥2

2
+ ε2

0

]−1/2
.

5.2 Solving Step (a) of the IRRQ Algorithm

The computation to be done in step (a) of Algorithm (3) is non-trivial. From the relationship

between (5.1)–(5.2), we can see that computing Y(m+1) is equivalent to solving

Ĝ(m+1) := arg min
GTG=I

J Γ(m)

2

(
D−1/2BG

)
(5.6)

22

Algorithm 3 IRRQ Minimization Algorithm for PFE

procedure IRRQ(W, k, κ)

γ
(0)
i,j := 1, ε0 := 1, m := 0, n := size(W, 1)

while εm > 0 do

(a) Y(m+1) := arg min
YTDY=I
YTD1=0
Y∈Rn×k

J Γ(m)

2 (Y)

(b) εm+1 := min
(

εm, n−1r
(

Y(m+1)
)

κ+1

)
(c) γ

(m+1)
i,j :=

[
wi,j
∥∥ŷi − ŷj

∥∥2
2 + ε2

m+1

]−1/2

end while

return Y(m)

end procedure

and then computing Y(m+1) = D−1/2BĜ(m+1)
. The problem posed in (5.6) can be expressed as

the following Rayleigh quotient minimization:

Ĝ(m+1) := arg min tr
(

GTBTD
−1/2

L̂(m)D−1/2BG

·
(

GTG
)−1

)
, (5.7)

where L̂(m) is the Laplacian of the graph having weight matrix W�Γ(m) and � denotes

Hadamard product. The solution to (5.7) is given by Ĝ(m+1) = UH, where U ∈ R(n−1)×k is

the matrix whose columns are the orthonormal eigenvectors u1, . . ., uk corresponding to the

smallest eigenvalues of BTD−1/2L̂(m)D−1/2B, and H ∈ Rk×k is an arbitrary orthogonal matrix.

(Note that by eliminating the balance constraint, we also eliminate the possibility of a trivial

eigenvalue of BTD−1/2L̂(m)D−1/2B. Such an eigenvalue would have eigenvector p for which

Bp is in the direction of q; however, this is contradicted by the fact that range(B) = range
(
CT).)

In order for this solution to scale to large n, we must consider the structure of C, and whether

or not the matrix B must explicitly be constructed. Since we have the ability to choose any C

such that CT projects vectors onto the subspace orthogonal to q, we choose CT = [q̂ | − q1In−1],

where q̂ = [q2, q3, . . . , qn]
T and In−1 is the (n− 1)×(n− 1) identity matrix. This particular

choice of C is sparse, and therefore, as shown in Appendix 8.3, the multiplication of an arbitrary

vector by BTD−1/2L̂(m)D−1/2B can be performed efficiently without explicitly constructing B.

Finally, we note that the solution to step (a) is not unique: postmultiplying Y(m+1) by HT, where

H is orthogonal, still produces a valid solution. This does not pose a problem for steps (b)

and (c) of Algorithm (3) since r and γi,j are invariant to such transformations of Y(m+1). As a

23

consequence, IRRQ minimization could yield an entire family of solutions to the PFE problem,

which could be problematic since the `1-norm is not invariant under orthogonal transformations.

In practice, however, we have found that the `1-norm is minimized for the choice H = I and, as

such, we suggest this choice. Proof that this is the best choice remains an open problem.

5.3 Choosing κ for Rapid Convergence

Linear convergence in IRLS algorithms for `1-minimization can typically be achieved if κ is

chosen large enough so that if the solution is θ-sparse, then κ > θ. We note that there are

more sophisticated convergence results provided in [9], but this is a good rule-of-thumb. While

proving convergence results for the IRRQ algorithm remains an open problem, we use a similar

strategy to [9] in choosing κ. In practice, the main difficulty in choosing κ is that θ is not known

exactly until the problem is solved. To approximate θ, we use an estimate θ̂ equal to twice the

number of graph edges that connect different clusters from a k-means clustering performed on

the initial embedding Y(0).

To provide “scale-free” behavior, we introduce the hyperparameter κ̃ that can be selected in

(0, 1). κ̃ can then be mapped to κ by κ = θ̂ + κ̃
(
2 |E| − θ̂

)
, where |E| is the total number of

edges in the graph.

24

6 Segmentation Experiments and Results

In this Chapter, we provide an overview of the experiments we conducted to test the relative

performance of both CCNCut and NCut minimization and to compare the SOC and IRRQ

algorithms on the task of image segmentation. We then provide results from these experiments

and explore the benefits and limitations of the two algorithms.

6.1 Segmentation Experiments

To compare the performance of CCNCut and NCut minimization, as well as to compare the

relative performance of the SOC and IRRQ algorithms for CCNCut minimization, we use these

algorithms to segment the 200 test images in the BSDS500 dataset [1]. This dataset contains a

variety of manually-labeled segmentations with varying numbers of segments that can be used

as ground truth. Similar to the experiments we conducted in Chapter 4, we construct two types

of graphs for each image. We first downsample the image by a factor of four and then compute

either the intensity differences across pixels within a four-pixel neighborhood of one another

based on the 4-nearest neighbor algorithm, or compute the globalized probability of boundary

(gPb) at each pixel using the code provided with the BSDS500 dataset.

For each of the algorithms, we segment each image multiple times, once for each k (number

of segments) value reflected in the ground truth and once for each k = 5, 10, 15, 20, and 25 not

reflected in the ground truth. Each segmentation algorithm proceeds by computing the desired

data embedding (LE or PFE) and then performing k-means clustering on the final embedding

to assign discrete labels to each pixel.

For CCNCut minimization using the SOC algorithm, we test segmentation performance based

on two different initializations. The first is based on the Laplacian Eigenmaps (LE) algorithm and

the second is based on the Gaussian Mixture Model (GMM) as in [27]. These two initialization

schemes are labeled as C-SOC-L and C-SOC-G respectively in our experimental results. For

both initialization methods, we perform the two-stage approach outlined in [27]. Unless

otherwise stated, in stage one, we set the maximum number of outer iterations to 10 and the

maximum number of inner iterations to 5 with hyperparameters λ = 10, 000 and r = 100.

Unless otherwise stated, in stage two, we set the maximum number of inner iterations to 100

with hyperparameters λ = 10, 000 and r = 10. All of these parameter choices are the same as in

[27].

For CCNCut minimization using the IRRQ algorithm, we again test segmentation performance

25

based on two different weight initialization schemes. The first is our default scheme where

all weights are initialized to unity (implicit LE initialization of PFE) and the second is a

scheme where weights are initialized according to embeddings formed from a GMM. These two

initialization schemes are labeled as C-IRRQ and C-IRRQ-G respectively in our experimental

results. In both initialization schemes, unless otherwise stated, the maximum number of

iterations is 20, and the hyperparameter κ̃ is set to 0.02. The seed for the random number

generator is reset before every initialization, ensuring that the same GMM’s are used to initialize

the C-SOC-G and C-IRRQ-G algorithms.

6.2 State-of-the-Art on BSDS500

Although Yu et al. [27] held state-of-the-art results on the BSDS500 dataset at the time of their

publication in 2015, we must note a few key points. First, the state-of-the-art results published

in [27] were based on the contour-driven hierarchical segmentation schemes presented in [1]

and [2]. While the hierarchical schemes were not used in this thesis for discrete labeling, we

believe these clustering strategies would be interesting to explore in future work for both the

SOC and IRRQ algorithms. Second, in 2016, [7] developed a scheme to better align hierarchical

data partitions based on depth and scale that produced comparable results to those presented

in [27].

In 2016, Zhao and Griffin [29] utilized multi-level cues and semantic predictions from a Fully

Convolutional Neural Network (FCNN) [14] to build an image segmentation scheme based

on a bottom-up approach. At the time of writing this thesis, the results presented in [29] hold

state-of-the-art on the BSDS500 dataset. Table (3) shows the results from [7, 27, 29] to give

the reader an understanding of current state-of-the-art segmentation covering, PRI, and VI

values on the BSDS500 dataset. In the table, there are two results reported for each quantitative

measure: Optimal Dataset Scale (ODS) and Optimal Image Scale (OIS) [1]. ODS and OIS

provide two different approaches for generating a single segmentation of an image, based on

the use of hierarchical clustering techniques.

6.3 Results

Figures (6) and (7) demonstrate segmentation results for various images from the BSDS500

dataset, each chosen for specific values of k based on the gestalt sense of the image provided

by the segmentation. Figure (8) demonstrates C-IRRQ segmentation results for varying cluster

numbers k.

26

Method
Covering PRI VI

ODS OIS ODS OIS ODS OIS

MCG [2] 0.61 0.66 0.83 0.86 1.57 1.39

PFE + mPb [27] 0.62 0.67 0.84 0.86 1.61 1.43

PFE + MCG [27] 0.62 0.68 0.84 0.87 1.56 1.36

SAA [7] 0.63 0.68 0.83 0.86 1.53 1.38

FCNN [29] 0.64 0.70 0.84 0.88 1.42 1.23

FCNN + HED [29] 0.66 0.71 0.86 0.88 1.36 1.20

Table 3: Comparison of various segmentation methods on the BSDS500 dataset. ‘MCG’ denotes

results produced by the Multiscale Combinatorial Grouping method [2]. ‘PFE + mPb’ and ‘PFE +

MCG’ denote results produced by the Piecewise Flat Embedding technique using global contour

information [27]. ‘SAA’ denotes results produced by the Scale-Aware Alignment technique

[7]. ‘FCNN’ and ‘FCNN + HED’ denote results produced by the FCNN strategy both without

and with the holistically-nested edge detection scheme respectively [24]. Best results for each

performance measure highlighted in bold.

Although the results presented in Figures (6), (7), and (8) provide qualitative segmentation

results for comparison of the NCut and CCNCut minimization algorithms, we use the three

quantitative measures outlined in [1] to determine which algorithm yields the best segmentation

results. These are the same three quantitative measures we used in Chapter 4, and include

segmentation covering, Probabilistic Rand Index (PRI), and Variation of Information (VI). Seg-

mentation covering and PRI will increase as a segmentation becomes closer to ground truth,

while VI will decrease.

As in [27] and in Chapter 4, we report results using both a fixed and a dynamic scheme. In the

fixed scheme, we run the algorithm once for each k value reflected in the ground truth and

average the segmentation results. In the dynamic scheme, we run the algorithm once for each

k = 5, 10, 15, 20, and 25 and choose the segmentation corresponding to the k value that yielded

the best performance with respect to the three quantitative performance measures.

Tables (4) and (5) demonstrate the performance results of each algorithm based on the intensity

and gPb graph constructions respectively. From these tables, we might infer the following:

CCNCut-based segmentation performs better than NCut-based segmentation in general, CCN-

Cut minimization performed by the SOC algorithm performs better than CCNCut minimization

performed by IRRQ, the SOC algorithm performs better when initialized with the GMM over

LE, and IRRQ minimization yields equivalent results independent of initialization. We note

that results from the two different methods of graph construction yield nearly identical results,

with the exception of the SOC algorithm initialized by LE and the majority of the VI measures.

In the case of C-SOC-L, the gPb construction yields slightly better results.

27

Method
Covering PRI VI

fixed dynamic fixed dynamic fixed dynamic

NCut 0.27 0.38 0.74 0.75 3.04 2.56

C-SOC-L 0.30 0.40 0.74 0.76 2.87 2.43

C-SOC-G 0.42 0.52 0.75 0.79 2.59 2.20

C-IRRQ 0.31 0.41 0.73 0.75 2.90 2.42

C-IRRQ-G 0.31 0.43 0.71 0.75 2.86 2.35

Table 4: Comparison of various segmentation methods on BSDS500 test set using intensity graph

construction, averaged across images. Best results for each performance measure highlighted in

bold.

Method
Covering PRI VI

fixed dynamic fixed dynamic fixed dynamic

NCut 0.27 0.39 0.74 0.75 3.04 2.50

C-SOC-L 0.39 0.47 0.75 0.78 2.40 2.13

C-SOC-G 0.43 0.51 0.74 0.78 2.30 2.04

C-IRRQ 0.29 0.42 0.73 0.76 2.95 2.37

C-IRRQ-G 0.30 0.42 0.73 0.76 2.95 2.37

Table 5: Comparison of various segmentation methods on BSDS500 test set using gPb graph

construction, averaged across images. Best results for each performance measure highlighted in

bold.

Although Tables (4) and (5) provide us with some notable inferences about NCut and CCNCut

minimization, we further provide the results from a Wilcoxon rank sum test to determine

the statistical significance of the Covering, PRI, and VI measures we obtained numerically.

The Wilcoxon rank sum test tests the null hypothesis that two sets of performance results are

from continuous distributions with equal medians. Tables (6) and (7) report the p-values for

which we would reject the null hypothesis based on the intensity and gPb graph constructions

respectively.

From Table (6), we can infer that most of the Covering results are statistically significantly

different from one another with the exception of C-SOC-L from C-IRRQ, and C-IRRQ from

C-IRRQ-G. We note that almost all of the PRI values from Table (6) are not significantly

different from one another, indicating that the PRI metric may not be discriminative in assessing

differences between different algorithms. For the VI metric, Table (6) indicates that there is no

statistical significance between C-SOC-L and C-IRRQ or C-IRRQ-G, or between C-IRRQ and

C-IRRQ-G. It is interesting to note that in all three metrics, C-SOC-L and C-IRRQ, and C-IRRQ

and C-IRRQ-G do not yield significantly different results.

Similarly, Table (7) demonstrates that all methods yield significantly different Covering results

28

B C D E B C D E

A 2e-05 2e-46 3e-05 7e-07 3e-03 1e-33 2e-04 1e-09

B 4e-34 9e-01 3e-01 9e-25 3e-01 1e-03

C 2e-29 3e-25 7e-21 7e-15

D Fixed: Covering 4e-01 Dynamic: Covering 3e-02

A 8e-01 4e-01 3e-01 2e-02 4e-01 3e-04 9e-01 1e-00

B 6e-01 2e-01 1e-02 6e-03 5e-01 4e-01

C 5e-02 7e-04 5e-04 1e-04

D Fixed: PRI 2e-01 Dynamic: PRI 8e-01

A 6e-05 2e-15 4e-03 4e-04 4e-05 6e-13 3e-05 4e-08

B 8e-07 3e-01 8e-01 1e-06 9e-01 8e-02

C 3e-08 3e-06 2e-06 7e-04

D Fixed: VI 4e-01 Dynamic: VI 9e-02

Table 6: p-values of two-sided Wilcoxon rank sum tests for the intensity graph construction at

which we would reject the null hypothesis that performance measures computed from methods

i and j have the same medians. Methods are: (A) NCut, (B) C-SOC-L, (C) C-SOC-G, (D) C-IRRQ,

(E) C-IRRQ-G. p-values less than 0.05 are highlighted in bold.

B C D E B C D E

A 2e-41 2e-49 3e-03 1e-03 4e-18 3e-27 1e-04 3e-04

B 8e-05 3e-31 3e-30 2e-03 9e-08 5e-08

C 3e-40 3e-39 3e-15 2e-15

D Fixed: Covering 8e-01 Dynamic: Covering 8e-01

A 3e-01 8e-01 7e-01 8e-01 3e-02 3e-02 9e-01 9e-01

B 4e-01 2e-01 2e-01 9e-01 4e-01 3e-01

C 6e-01 6e-01 4e-01 4e-01

D Fixed: PRI 9e-01 Dynamic: PRI 9e-01

A 1e-34 1e-38 9e-02 6e-02 5e-20 3e-24 3e-04 1e-04

B 4e-02 2e-27 5e-27 6e-02 3e-10 6e-10

C 5e-32 2e-31 3e-14 6e-14

D Fixed: VI 8e-01 Dynamic: VI 8e-01

Table 7: p-values of two-sided Wilcoxon rank sum tests for the gPb graph construction at which

we would reject the null hypothesis that performance measures computed from methods i and

j have the same medians. Methods are: (A) NCut, (B) C-SOC-L, (C) C-SOC-G, (D) C-IRRQ, (E)

C-IRRQ-G. p-values less than 0.05 are highlighted in bold.

29

with the exception of C-IRRQ and C-IRRQ-G. Again, for the PRI metric in Table (7), almost none

of the methods yield significantly different results, indicating that PRI may not be discriminative

in assessing differences between methods. For VI in Table (7), depending on whether the fixed

or dynamic scheme is chosen, there may or may not be significant differences between the

NCut and C-IRRQ methods, and between C-SOC-L and C-SOC-G. For all three metrics, and for

both types of graph construction, however, C-IRRQ and C-IRRQ-G do not yield significantly

different results.

6.4 Comparison of Algorithms for CCNCut Minimization

It may be tempting to infer that SOC-based CCNCut minimization is preferable to the IRRQ

algorithm based solely on segmentation performance measures. However, it is evident that the

SOC-based methods do not yield similar results provided different initializations, at least when

they are restricted to the maximum ten outer loop iterations suggested in [27].

To determine whether this result is a consequence of early stopping in the first stage of the

SOC method, we re-ran the SOC-based segmentation algorithm with a maximum of 200 outer

loop iterations. For the gPb graph construction, this increase in maximum iterations yielded

performance measures that were not significantly different when SOC was intialized with LE

versus GMM. However, for the intensity graph construction, increasing the maximum number

of outer iterations did not significantly change the performance metrics, which still remained in

favor of GMM initialization.

While increasing the maximum number of iterations yielded more consistent SOC-based seg-

mentation results for the gPb graph construction, we now turn our concern towards computation

time. Figure (9) demonstrates the computation time needed to compute the PFE (for each value

of k) via IRRQ, SOC with 10 outer loop iterations, and SOC with 200 outer loop iterations,

all initialized with LE and based on gPb graph construction. (Timing for GMM-initialized

methods is similar.) As we can see, SOC with 200 outer iterations requires nearly two orders of

magnitude more computation time than IRRQ.

In Figure (10), we compare segmentation results from different initializations of the same

algorithms based on both the intensity and gPb graph constructions. We see that, based on

both graph constructions, the Covering and PRI measures between segmentations from IRRQ

initialized with LE versus GMM are higher, and VI lower, than between segmentations from

SOC using both initializations.

These results are a strong indication that the IRRQ minimization algorithm provides more

30

consistent segmentation results, with more efficient computation times. Recall, that in order

to reach lower cut costs, the SOC algorithm relaxes the orthogonality constraint in its second

stage. Figure (11) demonstrates the cut cost of segmentation using SOC versus IRRQ when

initialized from LE and GMM on a particular image from the BSDS500 dataset [1]. While the

SOC method attains a much lower cost than IRRQ after just 10 iterations, this lower energy

comes with the penalty of disobeying the orthogonality constraint. Due to its consistency,

efficient computation time, and strict enforcement of the orthogonality constraint, we have

ample evidence to suggest that IRRQ is a more suitable algorithm for approximate CCNCut

minimization than SOC.

31

(a) original (b) NCut (c) C-SOC-L (d) C-IRRQ (e) C-SOC-G (f) C-IRRQ-G

Figure 6: BSDS500 test images and segmentation results with intensity graph construction: (a)

original, (b) NCut, (c) CCNCut by SOC initialized with Laplacian Eigenmaps, (d) CCNCut

by IRRQ, (e) CCNCut by SOC Initialized with Gaussian mixture model, (f) CCNCut by IRRQ

initialized with Gaussian mixture model.

32

(a) original (b) NCut (c) C-SOC-L (d) C-IRRQ (e) C-SOC-G (f) C-IRRQ-G

Figure 7: BSDS500 test images and segmentation results with gPb graph construction: (a)

original, (b) NCut, (c) CCNCut by SOC initialized with Laplacian Eigenmaps, (d) CCNCut

by IRRQ, (e) CCNCut by SOC Initialized with Gaussian mixture model, (f) CCNCut by IRRQ

initialized with Gaussian mixture model.

33

Figure 8: BSDS500 test image with CCNCut-based segmentation using the IRRQ algorithm

with the gPb graph construction for various values of k.

0 10 20 30 40 50 60 70 80 90 100

Number of segments

101

102

103

104

105

C
om

pu
tin

g
T

im
e

(s
ec

)

IRRQ SOC (10) SOC (200)

Figure 9: Computation times for CCNCut-based segmentation of BSDS images for various

numbers of segments based on gPb graph construction. Algorithms are all initialized with LE.

34

0 20 40 60 80 100
0

0.5

1

C
ov

er
in

g

0 20 40 60 80 100
0

0.5

1

P
R

I

IRRQ
SOC (10)
SOC (200)

0 20 40 60 80 100

Number of segments

-2

0

2

4

6

V
I

(a) Intensity Graph Construction

0 20 40 60 80 100
0

0.5

1

C
ov

er
in

g

0 20 40 60 80 100
0

0.5

1

P
R

I

IRRQ
SOC (10)
SOC (200)

0 20 40 60 80 100

Number of segments

0

1

2

3

4

V
I

(b) gPb Graph Construction

Figure 10: Covering, PRI, and VI between segmentations generated from GMM and LE

initializations of each CCNCut minimization method based on (a) intensity graph construction

and (b) gPb graph construction.

35

0 5 10 15 20

Number of Iterations

101

102

103

104

C
os

t

C-SOC-L
C-SOC-G
C-IRRQ
C-IRRQ-G

Figure 11: Minimization of the cost function for a particular image as a function of number of

iterations.

36

7 Conclusions and Future Work

7.1 Conclusions

Graph-based partitioning algorithms have proven useful in their ability to help automate

the task of image segmentation in the computer vision and machine learning communities.

By defining a new cut cost for partitioning, with a more modest normalization scheme than

previous methods, we showed that minimization of the CCNCut is advantageous in avoiding too

many singleton partitions while also maintaining a notion of balanced partitions. Experiments

on a publicly available dataset demonstrated that CCNCut-based image segmentation, with

simple clustering on the final data embedding, provides more accurate results with respect to

ground truth than NCut-based image segmentation.

In Chapter 3, we defined the CCNCut cost, which is NP-hard to minimize. To approximate

a solution to the CCNCut minimization problem, we demonstrated how a relaxation of the

CCNCut could be obtained that is mathematically equivalent to the PFE introduced in [27].

In Chapter 4, we outlined the two-stage numerical approach for approximating a solution to the

PFE problem introduced in [27]. To allow the algorithm to be more computationally efficient on

larger images, we proposed two improvements to the two-stage approach. These improvements

included reformulating the original PFE problem to allow multiple linear algebra computations

to be performed in parallel and utilizing an iterative linear solver to quickly solve a succession

of least-squares problems.

In Chapter 5, we highlighted the limitations of the two-stage approach from [27] including

the requirement of an initial estimate of the data embedding , the use of nested iterations of

two separate algorithms, each with their own set of tunable hyperparameters, and the loose

enforcement of the orthogonality constraint. Due to these limitations, we introduced a new

algorithm for approximating a solution to the PFE problem, inspired by the well-known IRLS

algorithms for `1-minimization. We demonstrated how our new algorithm, IRRQ, involves the

minimization of a Rayleigh quotient and provided helpful implementation details pertaining to

the algorithm.

Finally, in Chapter 6, we provided a comparison of NCut-based image segmentation with

CCNCut-based image segmentation on the BSDS500 dataset [1]. We showed that the IRRQ

algorithm is less sensitive to initialization than the SOC algorithm for PFE approximation,

and CCNCut-based image segmentation is more accurate with respect to ground truth than

NCut-based image segmentation.

37

7.2 Future Work

There are a few immediate possibilities for future work. The first opportunity involves testing

CCNCut-based image segmentation on more publicly available RGB-image datasets. Similarly,

we would like to test CCNCut-based clustering on other image modalities, such as hyperspectral

image data, as well as other clustering datasets that may not necessarily contain images.

A more interesting extension of this work involves the use of semi-supervised segmentation. The

formulations of NCuts and CCNCuts presented in this thesis are both forms of unsupervised

segmentation schemes in that they do not require any labeled training data for segmentation.

Over the years, the incorporation of expert a priori knowledge about how pixels or regions

should be grouped together has improved segmentation results of the NCuts algorithm and

has resulted in a semi-supervised segmentation approach.

This a priori information can be provided to graph-based segmentation algorithms in the form

of must-link or cannot-link constraints. These constraints specify groups of two or more pixels

that must be grouped in the same or different partitions respectively. Formulations of NCuts

that incorporate must-link and/or cannot-link constraints were introduced in [8, 10, 15, 26] and

resulted in more accurate segmentation results. Based on these improved results, we would be

interested in exploring the use of constraints in a semi-supervised segmentation approach to

PFE.

38

8 Appendix

8.1 Proof of Lemma 5.1

First, note that:

YTD1 = GTBTD
1/2

1

= GT
(

CTC
)−1/2

CTD
1/2

1 , (8.1)

which vanishes because CT annihilates vectors in the direction of q. Secondly, note that:

YTDY = GTBTBG

= GT
(

CTC
)−1/2

CTC
(

CTC
)−1/2

G

= GTG . (8.2)

8.2 Special Case of (3.9)–(5.1) Equivalence

In this section, we prove the following lemma:

Lemma 8.1. Suppose g∗ ∈ Rn−1 such that y∗ = D−1/2Bg∗ solves (3.9), y∗ satisfies y∗i 6= y∗j for all

i 6= j, and γi,j =
∣∣∣y∗i − y∗j

∣∣∣−1
for i 6= j. Then the solution to (5.1) coincides with y∗.

To prove Lemma 8.1, we first introduce and prove this lemma:

Lemma 8.2. Let g be a unit vector in Rn−1, and let y = D−1/2Bg. Then g solves (5.2) if and only if∣∣∣∣∣∣ ∑
yi 6=yj

wi,jsi,j
(
ξi − ξ j

)
−J1(y) ·

(
gTη

)∣∣∣∣∣∣
≤ ∑

yi=yj

wi,j
∣∣ξi − ξ j

∣∣ , (8.3)

where ξ = D−1/2Bη, for all η ∈ Rn−1 such that g + 2η is a unit vector.

The proofs of these lemmas use the simplified notation J1′(z) := J1

(
D−1/2Bz

)
and J Γ

2′ (z) :=

J Γ
2

(
D−1/2Bz

)
.

Proof of Lemma 8.2. This proof follows similarly to the proof of Lemma 2.1 in [9]. Suppose g

solves (5.2). Then for all η ∈ Rn−1, we have:

J1′

(
g + tη
‖g + tη‖2

)
≥ J1′(g) (8.4)

39

for all t ∈ R except when tη = −g. Noting that J1′(βx) = |β| J1′(x) for all β ∈ R, and using

the relationship between J1′ and J1, we can write (8.4) as:

J1(y + tξ)
‖g + tη‖2

≥ J1(y) . (8.5)

Expanding both sides of (8.5) yields:

∑i,j wi,j
∣∣yi − yj + t

(
ξi − ξ j

)∣∣√
1 + 2tgTη+ t2ηT η

≥∑
i,j

wi,j
∣∣yi − yj

∣∣ . (8.6)

Taking t sufficiently small so that
(
yi − yj + t

(
ξi − ξ j

))
has the same sign as si,j := sign

(
yi − yj

)
for all (i, j) such that yi 6= yj, we can write (8.6) as:

∑
yi 6=yj

wi,jsi,j
(
yi − yj

)
+ t ∑

yi 6=yj

wi,jsi,j
(
ξi − ξ j

)
(8.7)

+ |t| ∑
yi=yj

wi,j
∣∣ξi − ξ j

∣∣
≥
(

1 + 2tgTη+ t2ηT η
)1/2

∑
yi 6=yj

wi,jsi,j
(
yi − yj

)
.

If we write (8.7) using the shorthand notation:

c1 + tc2 + |t| c3 ≥
(

1 + tc4 + t2c5

)1/2
c1 , (8.8)

we find after algebraic manipulation that the following inequality must hold:∣∣∣2c1c2 − c2
1c4 + tc2

2 + tc2
3 − tc2

1c5

∣∣∣ ≤ 2c1c3 + 2tc2c3 , (8.9)

whence (8.3) arises by considering the case t = 0, completing the proof of the forward direction.

To prove the backward direction, first note that if ‖g + 2η‖ = 1, then gTη = 2gTη+ ηT η, and so

(8.3) becomes:∣∣∣∣∣∣ ∑
yi 6=yj

wi,jsi,j
(
ξi − ξ j

)
−J1(y) ·

(
2gTη+ ηT η

)∣∣∣∣∣∣ ≤ ∑
yi=yj

wi,j
∣∣ξi − ξ j

∣∣ . (8.10)

40

Now, we have:

J1′

(
g + η

‖g + η‖2

)
=
J1(y + ξ)

‖g + η‖2
=

∑i,j wi,j
∣∣yi − yj + ξi − ξ j

∣∣
‖g + η‖2

≥
∑yi 6=yj

wi,jsi,j
(
yi − yj + ξi − ξ j

)
‖g + η‖2

+
∑yi=yj

wi,j
∣∣ξi − ξ j

∣∣
‖g + η‖2

≥
∑yi 6=yj

wi,jsi,j
(
yi − yj + ξi − ξ j

)
‖g + η‖2

+

∣∣∣∑yi 6=yj
wi,jsi,j

(
ξi − ξ j

)
−J1(y) ·

(
2gTη+ ηT η

)∣∣∣
‖g + η‖2

≥
∑yi 6=yj

wi,jsi,j
(
yi − yj + ξi − ξ j

)
‖g + η‖2

+
J1(y) ·

(
2gTη+ ηT η

)
−∑yi 6=yj

wi,jsi,j
(
ξi − ξ j

)
‖g + η‖2

=
J1(y) ·

(
2gTη+ ηT η

)
+ J1(y)

‖g + η‖2
= J1′(g) . (8.11)

Proof of Lemma 8.1. This proof follows similarly to the proof in the footnote of [9]. Suppose

y∗ ∈ Rn satisfies y∗Dy∗ = 1 and y∗D1∗ = 0. Then there exists a g∗ ∈ Rn−1 such that

y∗ = D−1/2Bg∗, and Lemma 5.1 ensures that g∗ is a unit vector. Now suppose that y∗ does not

solve (5.1). Then there exists a nontrivial vector η ∈ Rn−1 with ‖g∗ + 2η‖ = 1 such that

J Γ
2′

(
g∗ + η

‖g∗ + η‖2

)
< J Γ

2′ (g
∗) . (8.12)

Using the property that J Γ
2′ (βx) = β2J Γ

2′ (x), simplifying the norm of g∗ + η, and defining

ξ = D−1/2Bη allows us to write (8.12) as:

J Γ
2 (y

∗ + ξ)

1 + 2ηTg∗ + ηT η
< J Γ

2 (y
∗) . (8.13)

This inequality simplifies to:

2 ∑
i,j

wi,jsi,j
(
ξi − ξ j

)
+ J Γ

2′ (η)

<
(

2ηTg∗ + ηT η
)
· J1′(g

∗) , (8.14)

which, after noting that 2ηTg∗ + ηT η = ηTg∗ and employing Lemma 8.2, reduces to:

J Γ
2′

(
η

‖η‖

)
< 0 , (8.15)

a contradiction. Hence, y∗ solves (5.1).

41

8.3 Computing BTD−1/2LD−1/2Bx

Define the n× (n− 1) matrix:

C = [q̂ | − q1In−1]
T , (8.16)

where q ∈ Rn is the unit vector in the direction of D1/21, q̂ ∈ Rn−1 is defined by q̂ =

[q2, q3, . . . , qn]
T, and In−1 is the (n− 1)× (n− 1) identity matrix. We point out a few things

related to C. First, note that

CTC = q2
1In−1 + q̂q̂T , (8.17)

and so (
CTC

)1/2
= q1In−1 +

q̂q̂T

1 + q1
. (8.18)

Hence, by the Sherman-Morrison formula, we can write:(
CTC

)−1/2
= q−1

1 In−1 −
q̂q̂T

q1(1 + q1)
. (8.19)

Since we have now established by construction that
(
CTC

)−1/2 exists, we have that:(
CTC

)−1/2
CT =

[
q̂ | − In−1 + q̂q̂T/(1 + q1)

]
. (8.20)

Hence, z3 = BTD−1/2LD−1/2Bx can be computed without constructing any dense matrix by

performing the following steps:

1. z1 = q−1
1 z−

(
q̂Tz

q1 (1 + q1)

)
q̂

2. z2 = CT
(

D−1/2
(

L
(

D−1/2 (Cz1)
)))

3. z3 = q−1
1 z2 −

(
q̂Tz2

q1 (1 + q1)

)
q̂

42

References

[1] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image

segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence, 33(5):898–916, May

2011.

[2] P. Arbelaez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik. Multiscale combinatorial

grouping. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014.

[3] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. Van der Vorst. Templates for the solution of linear systems: building blocks

for iterative methods, volume 43. Siam, 1994.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data

representation. Neural computation, 15(6):1373–1396, 2003.

[5] L. M. Bregman. The relaxation method of finding the common point of convex sets and

its application to the solution of problems in convex programming. USSR computational

mathematics and mathematical physics, 7(3):200–217, 1967.

[6] P. K. Chan, M. D. F. Schlag, and J. Y. Zien. Spectral k-way ratio-cut partitioning and

clustering. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 13(9):1088–

1096, 1994.

[7] Y. Chen, D. Dai, J. Pont-Tuset, and L. Van Gool. Scale-aware alignment of hierarchical

image segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 364–372, 2016.

[8] S. E. Chew and N. D. Cahill. Semi-supervised normalized cuts for image segmentation. In

Proc. International Conference on Computer Vision, pages 1716–1723, December 2015.

[9] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk. Iteratively reweighted least

squares minimization for sparse recovery. Communications on Pure and Applied Mathematics,

63(1):1–38, 2010.

[10] A. Eriksson, C. Olsson, and F. Kahl. Normalized cuts revisited: A reformulation for

segmentation with linear grouping constraints. Journal of Mathematical Imaging and Vision,

39(1):45–61, 2011.

[11] T. Goldstein and S. Osher. The split bregman method for l1-regularized problems. SIAM

Journal on Imaging Sciences, 2(2):323–343, 2009.

[12] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International

journal of computer vision, 1(4):321–331, 1988.

43

[13] R. Lai and S. Osher. A splitting method for orthogonality constrained problems. Journal of

Scientific Computing, 58(2):431–449, 2014.

[14] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmenta-

tion. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3431–3440,

2015.

[15] S. Maji, N. K. Vishnoi, and J. Malik. Biased normalized cuts. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), CVPR, pages 2057–2064, 2011.

[16] R. Meinhold, T. Hayes, and N. Cahill. Efficiently computing piecewise flat embeddings

for data clustering and image segmentation. In Proc. IEEE MIT Undergraduate Research and

Technology Conference, pages 1–4, 2016.

[17] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm.

Advances in Neural Information Processing Systems, 2:849–856, 2002.

[18] J. A. Sethian. Level set methods and fast marching methods: evolving interfaces in computational

geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge

university press, 1999.

[19] J. Shi and J. Malik. Normalized cuts and image segmentation. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), CVPR, pages 731–737, Jun 1997.

[20] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern Analysis

and Machine Intelligence, 22(8):888–905, Aug 2000.

[21] R. Szeliski. Computer vision: algorithms and applications. Springer Science & Business Media,

2010.

[22] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based on

immersion simulations. IEEE Trans. Pattern Analysis and Machine Intelligence, 13(6):583–598,

1991.

[23] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: theory and

its application to image segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence,

15(11):1101–1113, Nov 1993.

[24] S. Xie and Z. Tu. Holistically-nested edge detection. In Proc. International Conference on

Computer Vision, pages 1395–1403, 2015.

[25] S. X. Yu and J. Shi. Multiclass spectral clustering. In Proc. International Conference on

Computer Vision, ICCV, pages 313–319. IEEE, 2003.

[26] S. X. Yu and J. Shi. Segmentation given partial grouping constraints. IEEE Trans. Pattern

Analysis and Machine Intelligence, 26(2):173–183, Feb 2004.

44

[27] Y. Yu, C. Fang, and Z. Liao. Piecewise flat embedding for image segmentation. In Proc.

International Conference on Computer Vision, pages 1368–1376, 2015.

[28] Z. Zhang and M. I. Jordan. Multiway spectral clustering: A margin-based perspective.

Statistical Science, 23(3):383–403, 2008.

[29] Q. Zhao and L. D. Griffin. Better image segmentation by exploiting dense semantic

predictions. arXiv preprint arXiv:1606.01481, 2016.

45

	Compassionately Conservative Normalized Cuts for Image Segmentation
	Recommended Citation

	Introduction
	Prior Work and Research Aims
	Introduction to Image Segmentation Methods
	Prior Graph-Based Work
	Research Aims

	Compassionately Conservative Normalized Cuts (CCNCuts)
	Definition of the CCNCut
	Relaxation of the CCNCut

	Two-Stage Numerical Approach to Solving the Piecewise Flat Embedding (PFE) Problem
	Overview of the Two-Stage Numerical Approach
	Efficient Computation of the PFE Problem
	Two-Stage Approach for Segmentation
	Performance Comparison Between Algorithms Against Ground-Truth

	Piecewise Flat Embeddings (PFE) with Iteratively Reweighted Rayleigh Quotients (IRRQ)
	Iteratively Reweighted Rayleigh Quotients Minimization Algorithm
	Solving Step (a) of the IRRQ Algorithm
	Choosing for Rapid Convergence

	Segmentation Experiments and Results
	Segmentation Experiments
	State-of-the-Art on BSDS500
	Results
	Comparison of Algorithms for CCNCut Minimization

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	Proof of Lemma 5.1
	Special Case of (3.9)–(5.1) Equivalence
	Computing BTD-1/2LD-1/2Bx

