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II. Abstract 

 Previous work in this field of research has proven that the intrinsic properties of native 

starch can be modified to have desirable traits.  For example there are two widely researched   

natural properties of native starch: physically brittle and hydrophilic. Researchers have been 

successful at mixing native starch with various polyols or water to yield a modified starch with 

viscoelastic behavior. Furthermore low miscibility of native starch with other polymers has made 

it the topic of polymer blend studies to help alleviate its hydrophilic nature. 

 For this study materials were selected based on both previous research and ability to 

create test samples from corn starch that behave in a viscoelastic and hydrophobic manner. 

Castor oil is chosen as the polyol because it is naturally abundant, hydrophobic and proven to be 

reactive with isocyanate. 4,4, methylene diphenyl diisoycanate is chosen on the basis of 

reactivity with castor oil and corn starch.  

 The aim of this study is develop and characterize foam materials derived from corn starch 

and a pre-polymer made from castor oil and 4,4, methylene diphenyl diisocyanate. Castor oil and 

4,4, methylene diphenyl diisocyanate polymerize to yield random urethane crosslink’s. When 

gelatinized starch and the pre-polymer are mixed, secondary interactions between these 2 

components are evident. The effect of chemical and physical foaming agents is analyzed, where 

chemical foaming agents behave both exothermic and endothermic, the physical foaming agent 

behaved endothermic. In addition the change in starch proportion is also investigated. Results 

show different mechanical behavior from what is found in literature and can be attributed to 

direct fraction of gelatinized starch and both type and dispersion of foaming agent. 

 

 

 

 

 



Mechanical and Physical Characterization of foams made of Gelatinized starch and pre-polymer polyurethane   

V 

 

Table of Contents 

I. Acknowledgements ............................................................................................................ III 

II. Abstract .............................................................................................................................. IV 

III. List of Figures ................................................................................................................... VII 

IV. List of Plots ...................................................................................................................... VIII 

V. List of Tables ..................................................................................................................... IX 

VI. Introduction .......................................................................................................................... 1 

VII. Literature review .......................................................................................................... 8 

1. Foaming agents .................................................................................................................... 8 

2. Materials ............................................................................................................................ 11 

3. Early work of Polyurethane and Starch ......................................................................... 15 

4. Fillers .................................................................................................................................. 18 

5. Water born polyurethane (WPU) .................................................................................... 21 

6. Blends and Interpenetrating networks............................................................................ 22 

7. Mechanical Analysis ......................................................................................................... 29 

VIII. Materials and Method ................................................................................................. 31 

8. Gelatinization of corn starch ............................................................................................ 31 

9. Pre-polymer synthesis ....................................................................................................... 32 

10. Blending Materials ............................................................................................................ 34 

11. Foaming Agents ................................................................................................................. 35 

IX. Characterization ................................................................................................................. 38 

12. Mechanical ......................................................................................................................... 38 

13. Physical .............................................................................................................................. 39 



Mechanical and Physical Characterization of foams made of Gelatinized starch and pre-polymer polyurethane   

VI 

 

14. Fourier Transform Infrared Spectroscopy (FTIR)........................................................ 40 

X. Results and Discussion ...................................................................................................... 42 

15. Density ................................................................................................................................ 42 

16. Cell Count .......................................................................................................................... 46 

17. Compression and Energy Absorption ............................................................................. 51 

18. Cushion curves .................................................................................................................. 58 

19. Fourier Transform Infrared Spectroscopy (FTIR)........................................................ 64 

XI. Conclusion ......................................................................................................................... 70 

XII. Appendices ................................................................................................................. 73 

XIII. References .................................................................................................................. 77 

 

  



Mechanical and Physical Characterization of foams made of Gelatinized starch and pre-polymer polyurethane   

VII 

 

III. List of Figures 

Figure 1- EPS Compression at 50% Strain ..................................................................................... 5 

Figure 2-Example dynamic Cushion Curves from BASF .............................................................. 6 

Figure 3-Urethane repeat unit ......................................................................................................... 7 

Figure 4-Foam agent mechanism .................................................................................................. 10 

Figure 5-MDI synthesis ................................................................................................................ 11 

Figure 6-Starch granule microstructure (Photo courtesy of Wang, S. and Copeland, L) ............. 13 

Figure 7-Corn starch molecule(s) ................................................................................................. 32 

Figure 8-MDI monomer ................................................................................................................ 32 

Figure 9-Castor Oil molecule........................................................................................................ 32 

Figure 10-Actual setup for synthesis of pre-polymer ................................................................... 33 

Figure 11- foam samples names left to right EXOCHEM10, ENDOCHEM10 and ENDOPHY10 

respectively ................................................................................................................................... 34 

Figure 12-Thermogravimetric analysis of foaming agents ........................................................... 36 

Figure 13-Compression test setup ................................................................................................. 38 

Figure 14-Density determination kit setup ................................................................................... 39 

Figure 15-Optical measuring instrument ...................................................................................... 40 

Figure 16-PerkinElmer Fourier transform Infrared Spectrometer with ATR accessory .............. 41 

Figure 17-Foam Density ............................................................................................................... 42 

Figure 18- ENDOPHY10 AND ENDOPHY 50 ........................................................................... 47 

Figure 19-ENDOCHEM10 AND ENDOCHEM50 ...................................................................... 47 

Figure20-EXOCHEM10 AND EXOCHEM50............................................................................. 47 

Figure 21-ENDOCHEM40 direction dependent properties at 50% strain ................................... 52 

Figure 22-Compression modulus results at 16% strain ................................................................ 53 

Figure 22-compression modulus at 68% Strain ............................................................................ 54 

Figure 23-ENDOPHY FTIR-ATR Spectra ................................................................................... 65 

Figure 24-FTIR-ATR ENDOCHEM samples .............................................................................. 67 

Figure 26-FTIR-ATR EXOCHEM samples ................................................................................. 69 

 



Mechanical and Physical Characterization of foams made of Gelatinized starch and pre-polymer polyurethane   

VIII 

 

IV.    List of Plots 

 

Plot 1-Density vs Gelatinized corn starch content ........................................................................ 43 

Plot 2 - Density vs. Gelatinized corn starch content with samples 30% and 40% removed ........ 44 

Plot 3 - Cell count vs. Gelatinized starch content ......................................................................... 48 

Plot 4-Cell cross sectional area versus Starch content .................................................................. 49 

Plot 5-Mean cell x-section vs starch content ................................................................................ 50 

Plot 6- Cell Size vs. Modulus at 68% strain ................................................................................. 55 

Plot 7- Effect of humidity on compression stress at 50% strain ................................................... 57 

Plot 8-12inch static cushion curves for 10% gelatinized starch samples...................................... 58 

Plot 9-12inch static cushion curves for 30% gelatinized starch samples...................................... 59 

Plot 10-12inch static cushion curves for 50% gelatinized starch samples .................................... 60 

Plot 11-12inch static cushion curve for EXOCHEM foam samples............................................. 61 

Plot 12-12 inch static cushion curve for ENDOCHEM foam samples. ........................................ 62 

Plot 13-12 inch static cushion curve for ENDOPHY foam samples ............................................ 63 

Plot 14- Static cushion curves for 20% (w/w) gelatinized starch samples ................................... 73 

Plot 15- Static cushion curves for 40% (w/w) gelatinized starch samples ................................... 73 

Plot 16-Static cushion curves for all ENDOCHEM samples........................................................ 74 

Plot 17-Static cushion curves for all EXOCHEM samples .......................................................... 74 

Plot 18-Static cushion curves for all ENDOPHY samples ........................................................... 75 

 
  



Mechanical and Physical Characterization of foams made of Gelatinized starch and pre-polymer polyurethane   

IX 

 

 

V. List of Tables  

Table 1-Pre-polymer synthesis equipment.................................................................................... 34 

Table 2-Foam Nomenclature ........................................................................................................ 37 

Table 3-literature review density .................................................................................................. 45 

Table 4 - Summary of Properties .................................................................................................. 72 

Table 5- Literature Review FTIR Spectrum ................................................................................. 76 



Mechanical and Physical Characterization of foams made of Gelatinized starch and pre-polymer polyurethane   

1 

 

VI. Introduction 

 Foams are integrated into the world around us and are utilized in a wide range of 

anthropogenic artifacts. To be more specific; foam can be defined as a solid or liquid matter 

containing an internal 3 dimensional structure of cells/voids and this internal structure can 

contain matter in the form of gas or liquid. Common examples of liquid foam are fire retardant 

and laundry detergent, solid matter foam is found in furniture cushions, headphone speaker 

covers, and consumer product packaging. Both liquid and solid foams are made from synthetic or 

naturally occurring polymeric material(s). However from here on only solid foams will be 

discussed. The viscoelastic characteristic of solid polymer foam has resulted in many practical 

solutions to consumer products as noted above and even more precisely product packaging. It is 

evident that short cradle to grave life of consumer product packaging has led to more research 

and development of less inert foam material but still deliver adequate performance? 

 With the above question in mind many terms or phrases have been associated with short 

life cycle products for example; bio based, green, biodegradable, compostable, renewable, 

sustainable etc. These terms have been under close watch; according to Scot Chase [1] of 

TerraChoice in 2010 there were as many as 500 different terms found on labels of products 

indicating some type of environment friendly aspect of their product and this is known as 

greenwashing. To avoid confusion in the following study a distinction between two types of 

foams will be made: first are naturally occurring foams known as natural resources. The second 

type of foam are man-made also known as synthetic foams and because the constituents of the 

main product  can be in very crude form and minor changes from the natural state, these 

materials are modified either chemically or mechanically and are thus not found naturally in that 

state. The second type of foam will be the topic of discussion.  

 Natural occurring polymeric foams such as, cork and the sea sponge are great examples 

of foams that have found their way into the household. The former of the two examples can also 

give an historical perspective to the importance of foams. It is harvested from the cork oak tree 

(Quercus suber L) and is native to the Mediterranean region notably Spain and Portugal. One of 

the first applications of cork as a modern packaging material was in Epernay, France where 

monk Don Pierre Perignon began to use cork as the stopper in wine bottles in 1680. Yet 

archeological evidence from Mediterranean sites suggest cork lids for urns maybe as old as 3000 
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years old [2]. The cork material is typically harvested from the outer layer of the tree known as 

phellogen (bark) and remarkably the tree is the only species worldwide that can survive having 

its entire outer bark structure removed. The cell structure of the outer bark is a closed cell and 

each individual cell is a polygon where the number of sides differ with respect to the direction of 

tree growth. From a microscopic perspective the cell wall consist of a very interesting layered 

composition of organic compounds (mass %):  suberin (58%), lignin (12%), cellulose (22%), 

cerin (2%), water (5%) and other (1%) and each composition is an approximation because of 

varying growth rate in each tree [2]. Interestingly the natural quality of cork to be chemical 

resistant and gas impermeable is because of the high suberin content. Even more so when cork is 

subjected to compression stress the material is able to sustain a strain rate as high as 80%.  A 

reliable figure of 374,000 tons of cork is harvested annually [3].  

On the other hand synthetic polymer foams are designed into many household products 

such as furniture or egg cartons as well as many high volume products. Example of high volume 

applications for synthetic foam are coffee cups made from Styro-foam™, loose fill foam in 

corrugated boxes as well as foam inserts found inside corrugated packages. In each of these 

applications the foam material differs according to the physical structure, which is dependent 

upon the design intent, i.e. thermal properties, fragility or compression and rebound behavior [4]. 

Synthetic foams dominate nearly the entire foam market in the US where it is estimated that the 

demand could reach 8.6 billion pounds by year 2017. By volume the packaging industry is 

expected to consume 30% of the overall demand and from another perspective one-third of the 

overall market demand will be polystyrene due to its wide array of properties i.e. thermal 

insulator, light weight [5].  

 Polymer foams are classified into two main categories: thermosets and thermoplastics.  

Thermosets are polymers which commonly involve mixing 2 counterparts that chemically react 

to form a network microstructure. Once solidified or “cured” the material cannot be re heated to 

be reshaped or formed because the bonds created within the network structure are chemical 

bonds, also known as crosslinks which form irreversible covalent bonds [6]. One of the most 

widely utilized polymers for thermoset foams is polyurethane (PU) and it should be noted that 

PU can be polymerized into both thermoset and thermoplastic. Thermosets are typically utilized 

in structurally demanding applications and are not discussed within this study.  
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 In contrast to the network structure, thermoplastics are long chains characterized by both 

molecular weight average (Mw) and number average molecular weight (Mn). Chain 

microstructure is commonly characterized as branched or linear. As mentioned above PU can 

also be polymerized into a thermoplastic, commonly referred to as thermoplastic urethanes 

(TPU)[8]. In contrast to creating crosslinks, physical bonds i.e. hydrogen bonds, are created 

between chains (intermolecular forces). Upon reaching a known temperature, affinity between 

these chains is temporarily lost allowing for transient chain movement and ultimately fluid like 

behavior. The nature of thermoplastic polymers allows them to be re-heated into a liquid state 

and then shaped multiple times. Polymers that are commonly converted into foam include 

polystyrene (PS), polyethylene (PE) and polypropylene (PP) [6]. 

 Processing of thermoplastic foams is performed on 2 different magnitudes; industrial and 

laboratory. Typical processes used to make foam include: extrusion, injection molding, 

compression molding and casting [6]. These processes are traditional and widely applied to foam 

and non-foamed polymers at both magnitudes. Unlike the above examples a truly unique process 

was developed for expanded polystyrene (EPS) and should be reviewed because of its extensive 

use in packaging. In the 1st step pellets are put into a chamber where both heat in the form of 

steam and pentane gas are introduced and cause the pellets to expand nearly 40 times the original 

size where each pellet develops a closed cell network. The pellets are then moved to a separate 

chamber to dimensionally stabilize for a specific time duration. Last, pellets are conveyed into a 

heated mold where both steam and vacuum cause the pellets to form into the shape of the mold 

[7].  

  The cellular network inside the foam can be one of two structures: open cell and closed 

cell. Open cell foams are typically permeable to gases and liquids in addition to having poor 

thermal conductivity. Closed cell foams have very low permeation rate and low thermal 

conductivity. Chemical foaming agents such as alkali carbonate, sodium bicarbonate and sodium 

borohydride are typically used to extrude closed cell foams. Introduced into the melt as a fine 

powder or granule, through thermal decomposition or chemical reaction the powder changes 

state into a gas, causing cells to initiate throughout the melt matrix. Open cell foams are typically 

manufactured with physical foaming agents like CO2, nitrogen and even liquids such as water. 

Introduction of physical foaming agents into the extruder usually occurs in the metering section 

before the die. At elevated temperatures liquid evaporates into a gas and because of low melt 
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viscosity cell growth creates a tortuous structure inside the polymer melt. In special cases both 

physical and chemical foaming agents have been used together [9]. 

 Foams found in the packaging field meet a diverse array of design requirements such as 

thermal conductivity, energy absorption, liquid absorption and even anti-static properties. Cold 

chain distribution requires low thermal conductivity to minimize temperature fluctuation during 

shipping where typical products inside could be foods or medical supplies. Thermal conductivity 

can be described as the flow rate of heat through an object. The following are examples 

coefficients for relevant solids; PU=0.030 W/moC, EPS=0.046 W/moC. and, Glass 0.78 W/moC 

[10]. Conductivity changes with temperature such that a lower temperature is directly related to 

lower conductivity.  

 Energy absorption is a very common application for foams in packaging and two 

different methods are used to understand how foam materials can absorb a mechanical force. The 

first method of measuring energy absorption is the compression test. Below in figure. 1 is an 

ideal compression curve for expanded polystyrene (EPS) where a sample was compressed in a 

cyclic method. When the sample is placed between two platens and force is applied two different 

curves can be measured; the upper curve is the foam being compressed and the bottom curve is 

the reaction force of the foam as the platen is traveling in the reverse direction (the form is 

pushing back on the platen). The change between the upper and lower curves can be quantitively 

characterized as hysteresis; how much energy the foam absorbs during the initial compression. If 

a cyclic compression method is carried out as in figure 1 multiple upper and lower curves are 

generated and the change in slope is due to the viscoelastic nature of polymer foams. However 

complete recovery from deformation is possible.  
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Figure 1- EPS Compression at 50% Strain 
 

 The second method is known as cushion testing where cushion curves are generated. 

These curves are specific to testing packaging foam for the ability reduce or avoid product 

damage. A general description of the test is as follows: a sample of simple geometry is placed 

atop a stationary platen. Above the sample is a guided platen in which mass is added or removed. 

The sample then remains static and the guide platen is raised to a predetermined height and 

released into a free fall and impacts the foam. Combinations of added mass and varying height 

are measured for samples of the same geometry. 

 A plot as seen in figure 2 is constructed. In an ideal scenario the foam sample will 

dampen impact which is evident by a parabolic curve. The most practical information that can be 

extracted from the graph is where the foam can keep the product from being damaged. From left 

to right the plot is initially a negative slope followed by a   region of zero slope and finally a 

transition into positive slope. The static stress found in the middle region of zero slope can be 

used to determine the foam sample surface area needed to avoid product damage of a specific 

mass and drop height. At zero slope the foam has completely absorbed impact energy from the 

fall and the transition to a positive slope indicates the foam has experienced permanent 

deformation thus exceed energy absorption capacity [11]. 
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Figure 2-Example dynamic Cushion Curves from BASF 
       

The two other design requirements that were mentioned, liquid absorption and anti-static, 

will be discussed briefly due to their relevance. Liquid absorption of foam changes with both  

type of material, olefins such as polyethylene (PE), polypropylene(PP), or polystyrene(PS) are 

not greatly affected by water absorption where as foam made from starch can become weak, if 

not disintegrate when subjected to high humidity. Simultaneously mechanical properties will also 

diminish. This behavior is called hydrophilic in contrast to foams that do not absorb moisture are 

termed hydrophobic. Secondly, electrostatic discharge (ESD) or electro conductive foams are 

specialty materials that are utilized in very special circumstances because of their high cost. 

Currently there are two types of ESD foams which involve a conductive material and matrix 

material: carbon filler based and doped. Carbon based foams are simple and require traditional 

equipment. Doping polymers requires equipment with high temperature capability in addition to 

a halogen such as Br2.  Overall ESD foams are used to dissipate static charge to avoid having a 

short in micro circuits and thus reduce faulty products.  

 Concluding remarks are on different foams which are available in today’s market among 

which have already been discussed. Currently there are foams made from the byproducts of 

harvesting natural resources such Evocative © foams derived from solid biomass waste and 

mycelium. The biomass is described as agricultural waste but not specifically identified [12]. 
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The internal cell structure is anisotropic, where mycelium creates flexible domains and the 

agriculture waste is rigid. Another type of foam is manufactured by Green Cell Foam™ from 

KTM industries, which is entirely made from non-genetically modified corn starch. Together 

these companies are primarily targeting the distribution and shipping markets with more 

sustainable packaging solutions [13]. The types of materials mentioned above can be 

distinguished as being derived from renewable resources in contrast to non-renewable which are 

resources that cannot be replenished in anywhere near the same time as renewable resources but 

can be recyclable [14, 15]. Furthermore it should be noted that these two different types of 

resources are described for the purpose of research and to avoid green washing.  

 Previous work in this field of research has proven that the intrinsic properties of native 

starch can be modified to have desirable traits.  For example there are two widely researched   

natural properties of native starch: physically brittle and hydrophilic. Researchers have been 

successful at mixing native starch with various polyols or water to yield a modified starch with 

viscoelastic behavior. Furthermore low miscibility of native starch with other polymers has made 

it the topic of polymer blend studies to help alleviate its hydrophilic nature. 

 One area of research that is successful at modifying the intrinsic properties of native 

starch is deriving a blend of polyurethane and native starch. Polyurethanes are commonly made 

by reacting isocyanate (-N-C-O-) with a monomer or low Mw fluid (< 5000 g/mol) containing 

hydroxyl groups (-OH-), i.e. starch, polyethylene glycol, glycerol and castor oil. The product of 

the reaction is a macro molecule containing urethane linkage as seen in figure 3.  

 
Figure 3-Urethane repeat unit 

  

 For this study materials were selected based on both previous research and ability to 

create test samples from corn starch that behave in a viscoelastic and hydrophobic manner. 

Castor oil is chosen as the polyol because it is naturally abundant, hydrophobic and proven to be 

reactive with isocyanate. 4,4, methylene diphenyl diisoycanate is chosen on the basis of 

reactivity with castor oil and corn starch. The physical function of each component in the blend 
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is castor oil will be the soft segment, corn starch is the hard segment and 4,4, methylene diphenyl 

diisoycanate will create miscibility between the former two components.   

 The aim of this study is develop and characterize foam materials derived from corn starch 

and a pre-polymer made from castor oil and 4,4, methylene diphenyl diisocyanate. Castor oil and 

4,4, methylene diphenyl diisocyanate polymerize to yield random urethane crosslink’s. When 

gelatinized starch and the pre-polymer are mixed, secondary interactions between these two 

components are evident. The effect of chemical and physical foaming agents is analyzed, where 

chemical foaming agents behave both exothermic and endothermic, the physical foaming agent 

behaved endothermic. In addition the change in starch proportion is also investigated. Results 

show different mechanical behavior from what is found in literature and can be attributed to 

direct fraction of gelatinized starch and both type and dispersion of foaming agent. 

  

VII. Literature review 

 Polymer foams have been derived from renewable and non-renewable resources. The 

focus of the literature review will be on foam or polymer alike derived entirely or partly from 

similar materials as used in the proceeding study. Articles that are discussed will be in context to 

the introduction and perhaps with more emphasis on materials, methods, and results. 

Historically, researchers began to study synthesis of these foams in the early half of the 20th 

century and commercialized in the second half [16].  

1. Foaming agents 

A reprint from the encyclopedia of polymer science and technology of the late 1950’s 

gives a great understanding of the science behind blowing/foaming agents [17].  They 

particularly focus on physical foaming agents because at the time industry heavily used and 

understood these materials. Jumping ahead the immediate differences in chemical and physical 

foaming agents are how they thermodynamically behave. Physical foaming agents are liquids 

that have a wide range of boiling points that are similar to a polymer melt temperature. Through 

vaporization of the physical foaming agent the melted polymer matrix forms a cellular structure 

and once rapidly cooled the structure is retained. Physical foaming agents change their state of 

matter but do not necessarily change their chemical structure, usually in an endothermic fashion. 

These should also be non-harmful to humans and non-damaging to processing equipment, i.e. 
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corrosive.  Chemical foaming agents on the other hand thermally decay and products of their 

decomposition form gases which expand to create a cellular structure. This process of 

decomposition is typically irreversible and exothermic but not strictly so (e.g. bicarbonates). 

Physical and chemical foaming agents can be mixed to achieve different foaming results, but 

neither one should act as a solute or solvent in regards to the polymer matrix.  

 An endothermic chemical foaming agent Sodium bicarbonate is and has been one of the 

most widely used foaming agents in recent times. Typically around 120-267mL of gas per gram 

of Sodium bicarbonate is yielded in the following reaction: 

 

2 NaHCO3(S)  Na2CO3 (S) + CO2 (g) + H2O (g) 

 

Alongside sodium bicarbonate, stearic acid can be incorporated as an activator to help increase 

gas yields. It is estimated that in the reaction above there should be twice as much CO2 gas 

available with addition of stearic acid. Critic acid can also be incorporated for the same purpose 

as stearic acid of to increase decomposition temperature of the foaming agents. Another foaming 

agent of important commercial success is benzenesulfonyl hydrazide (BSH). At thermal 

decomposition 115-130 mL/g of nitrogen are produced and 195mL/g of steam (per gram of 

BSH).  Further chemical tailoring of the BSH structure can create a substantially higher 

decomposition temperature. Typical decomposition of an asymmetrical BSH molecule is seen 

below. 

NH2NH - SO2 - C6H6 (s)  S-C6H6-S (s) + N2 (g) + H2O (g) 

 

 Dr. Mergenhagen [18] has been working in the foaming agent industry for some time and 

his proceedings after the conference were published giving an introduction to chemical foaming 

agents. In regards to the previous article from the early 1950’s Dr. Mergenhagan considers 

Sodium Bicarbonate and critic acid to be economically the most important endothermic chemical 

foaming agent. Furthermore the European Union (EU) only allows endothermic chemical 

foaming agents for food contact applications. Exothermic chemical foaming agents he notes are 

auto-catalytic because once the reaction begins temperature increase from decomposition 

increases the rate of the reaction, BSH is an example of these types of foaming agents.                                  
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 A 5 step process on chemical foaming process for thermoplastics is discussed, where 1st 

the polymer and foaming agent are mixed, 2nd the polymer melt and foaming agent interfaces are 

evening distributed, 3rd nucleation site form, high pressure will increase the sites at which cells 

will form, 4th is where the polymer –gas byproduct moves into the nucleation sites and cell 

growth is apparent. And last the polymer melt is cooled and cell growth is stabilized.  

                                 
Figure 4-Foam agent mechanism 

    

Stabilization of the cells is important; if the cell walls become too thin they can coalescence. If 

viscosity is too high then cell size will decrease. For physical foaming agents the process is 

similar minus the first step. Addition of the foaming agent into the processing machine often 

requires special equipment. For thermosets the foaming process consist mainly of two steps.  

First, the foaming agent and polymer are mixed below the decomposition temperature. Then the 

crosslinking agent is mixed in and the whole batch is mixed to the curing temperature. Unlike 

thermoplastic foaming agents which are in liquid or powdered form. Thermoset foaming agents 

are mostly in particle form with no nucleation step.  
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2. Materials 

 4, 4’ Diphenyl methane Diisocyanate (MDI) according to Wittcoff, H. A., Reuben, B. G., 

& Plotkin, J. S. [19], is the most important raw material in polyurethane production. In 2008 

98,000 tons of MDI were produced in the United States of America alone. It is made through a 2 

step reaction. First Aniline hydrochloride and formaldehyde are reacted to form 4, 4’ 

Diaminodiphenylmethane. Treatment with Phosgene yields MDI. The entire reaction is seen 

below in Fig 3.  

  

 
 

 
Figure 5-MDI synthesis 
 

 Unfortunately phosgene is a very toxic substance and alternate methods of making MDI 

are being researched but no methods have been commercialized.  In 2008 53% of USA MDI 

production went to the rigid foams market. Another 9% went to flexible foam market.       

A review [20] on the castor oil plant (Ricinus communis) brings to light various aspects 

on agriculture/horticulture, economic importance, industrial application and safety concerns. 

Castor oil is extracted from the seed of castor bean plants. Typical processes include solvent 

extraction, hot pressing and cold pressing, where combinations of the three methods can also be 

applied. Further refinement of the oil is done chemically remove phospholipids and heavy metals 

when water and acid are introduced. Second, a physical absorption process is carried out to 

remove pigments, traces of soap and odor causing compounds. The remaining biomass of the 

castor bean such as the husk are unsafe to both human and animal. It is mentioned that 4 castor 

beans are toxic to a 160lb human. Toxicity of the residual waste is from high ricin and ricinine 

content, one of nature’s most poisonous substances. Remaining biomass can be detoxified 

through steam, boiling, autoclaving and heat treatment. When put into solution with NaOH, 
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NaCI and tannic acid to name a few, detoxification also takes place. It should be noted that 

harvesting of castor beans for their oil exposes workers to these toxins. 

  Thailand, Brazil, China and India are four major exporters of castor oil. In 2007 India 

alone exported over 800,000 tonnes of castor oil or 70% of the market share. The largest 

importers of oil are USA, Russia, and Japan. These countries find use for castor oil as medicine, 

pre-cursor and monomer of many. Furthermore, sources suggest that castor oil has been in use 

since ancient Egypt and the Persian Empire. Specific modern industrial applications include 

BASF’s polyamide (PA) 6, 10 where sebacic acid is derived from castor oil or 100% castor oil 

based PA 11. Dehydrated castor oil is found in varnishes, resin systems and adhesives. Wide 

array of applications has caused high demand for castor oil and need for acceptable substitutes 

and genetically modified plants with less side effects from toxic side effects. Genetic engineering 

and traditional cross pollination have created plants with 99.9% reduction in ricin content. Plants 

such as the Wrightia tinctoria and Lesquerella fendleri are being analyzed for comparison to 

ricinoleic acid, the key molecule found in castor.  

 In regards to use for PU materials the authors’ devote an entire section. Castor oil is able 

to be blended with various polyols to achieve ductile behavior i.e. 410% at break where an 

isocyanate is typically incorporated as a crosslinking agent. One of the major governing 

parameters is the stoichiometric ratio of NCO/OH groups. A ratio of 1 yields a ductile product 

where as a ratio of 2 yields a more brittle product. Of more importance is their discussion of 

interpenetrating polymer networks also known as blended polymers. In agreement with the 

above statement when the NCO/OH ratio increases for a castor oil/ PET blend elongation 

decreases and tensile strength increases. Another interesting project found that polymerization of 

polyacrylonitrile (PAN) and castor oil resulted in creation of a porous hydrogel structure with a 

50 fold improvement in mechanical properties of PAN [20]. 

A second review on castor oil written by [21] points out more details on castor oil. Each 

castor bean contains approximately 46-55% CO.  As noted above it is grown in tropical and sub-

tropical climates. One of the major aspects of CO is the fact that it is not edible or readily used in 

the preparation of human foods and conflict between managing feedstock for food or industrial 

processes favors the latter. In addition to the above applications CO is specifically used as a 

lubricant for high performance auto-mobile and jet engines. 
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Starch is a complex natural resource which has found itself as a topic in many different 

fields. As stable carbohydrate in many diets, food scientist Wang, S. and Copeland, L. [22] 

provide great insight into the molecular disassembly of starch. Divided into 4 subtopics; 

Introduction on importance of starch, 2nd; the granular structure of starch, 3rd gelatinization of 

starch and 4th retrogradation of starch.  A more scientific name of starch is polysaccharide as 

seen in its natural state. However most starches whether for food or material use are 

hydrothermally treated. In general hydrothermal treatment involves a fluid, heat, and pressure or 

shear forces. The change in macromolecule structure that occurs during and after hydrothermal 

treatment has been under investigation since the early 70’s. 

 There are two theoretical models for the structure of a starch granule as seen below in 

figure 6 the size of starch granules varies with the type of starch i.e. corn, potato, etc. and ranges 

in size from 1- 100 µm. It is agreed on that there is alternating patterns of amylose (linear) and 

amylopectin (branched) regions. Crystalline regions form lamella. Furthermore each section of 

the pattern contains both amylose and amylopectin structures. However each section is mainly 

composed of one type of structure. Granule b is structure that resembles growth rings in a tree 

trunk. Structure C is a relatively new type of structure analogous to a spider web.  Both models 

agree that amylose is centered and is known as a hilum.  

 

Figure 6-Starch granule microstructure (Photo courtesy of Wang, S. and Copeland, L) 
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 Gelatinization of starch in research literature often involves reaction with polyols; 

however these authors simply discuss gelatinization of starch in water. The word gelatinization 

implies that the initial structure seen above has been disrupted and irreversibly altered. It is 

thought that amylose chains absorb moisture initially and swell creating pressure, causing 

amylopectin chains to slowly unfold. Once chains unfold evidence suggest that inter molecular 

forces form single and double helixes.  Overall gelatinization requires proper amounts of water 

and heat 65-96.7% and 50-80oC respectively. These percentages are not absolute and depend 

upon the type of plant that starch is harvested from.  

 Finally retrogradation of starch occurs after starch has been gelatinized and cooled down, 

often in storage. Visually it is notice by change in gel viscosity, opacity and phase separation. 

Retrogradation is effectively changing from a complete random structure to a discernible 

structure hence the change in opacity. Amylose chains retrograde hours after gelatinization, 

whereas amylopectin can take days; both are temperature dependent. If gelatinization involves a 

polyol a network like structure of single helix amylose may form. In absence of a polyol a 

aggregated mass may form.  

 Zia, F. et. al. [23] published a review on starch and urethane blends where sample 

preparation of film was common but foam samples are discussed. Literature finds starch to be a 

high molecular weight polymer: amylose typically has a Mw of 1 – 1.5 x106(g/mol) and 

amylopectin has Mw of 50 – 500 x 106(g/mol). Amylose is considered to be a branching unit and 

thus an amorphous bulk structure where as amylopectin is considered to be a linear crystalline in 

structure. They further define the plasticization and gelatinization of starch with regards to the 

two structures above. Where starch is inherently a brittle substance with the addition of water or 

polyol the amylopectin become de-structured and once this occurs thermoplastic or gelatinized 

starch is formed. The European Union paper and corrugated industries have the largest market 

share at 30% in native starch. Niche applications include food, sanitary products, and lubricant 

thickener these current applications making it hard to justify immediate new uses of starch. 

 One finding that appears to be consistent among published research is the stoichiometric 

ratio between NCO/OH groups is usually 2.0 or less. In a blend of starch and PU mechanical 

properties reciprocate approximately at 20% starch however additional materials or processes 

can be implemented to achieve an interpenetrating polymer network (IPN) for optimum material 

properties.  One such way is to react starch and another organic substance such as: vinyl-
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trimethoxysilane, glycerol, water or even acetylation. A second method is to create a graft 

polymer of starch and another polymer. The copolymer is then reacted with isocyanate. They 

found great reduction in moisture absorption. Further techniques to creating a more optimal 

blend of starch and PU is to add nano-composites and nano-fillers. One of the more promising 

nano-fillers in starch and PU blends are starch nano crystals. An investigation on synergistic 

behavior between water borne PU and starch nano crystals and additional cellulose whiskers at 

0.4 w/w% found an increased in tensile strength of up to 252% for water borne polyurethane. 

Strong hydrogen interacts at the interface were detected. Another investigation on incorporating 

only starch nano-crystals found massive increases in tensile strength and modulus (6720%) 

suggesting the samples were quite rigid.  

 A second review of castor oil brings to light important details on the wide applications of 

castor oil based polyurethane and concerns of material safety. Shirke, A., Dholakiya, B.[24] and 

Kuperkar, K. write that castor oil has good shelf life with the exception when exposed to high 

heat. The reaction between castor oil and various isocyanates occurs in the range of 60-75oC and 

is considered to be exothermic. Further contents of the review include Hybrid materials, 

interpenetrating polymer networks, foams, coatings and adhesives. 

 They classify foams into 3 groups; flexible, semi-flexible and rigid and castor oil based 

PU can be made into any of the 3 groups. Other researchers have produced flame retardant foam 

where the addition of castor oil increased thermal stability and compression strength. Others 

found that semi-flexible foam is possible when reacting only castor oil and isocyanate. In other 

applications castor oil PU has been successfully applied to anti-corrosion coating and super 

adhesive for other polymers and metals. They also mention that a stoichiometric ratio greater 

than 2 is very harmful and could cause acute poisoning.  

3. Early work of Polyurethane and Starch 

 

 In 1957 Dosman & Steel [25] filed for a patent titled “Flexible shocking-absorbing 

polyurethane foam containing starch and method of preparing same”.  Their invention is 

described as 2 basic components; organic polyisocyanate and poly-functional or polyester 

material and in contrast to other synthetic foams they incorporated corn starch into the PU 

matrix. Their new foams are described as spongy, flexible and an increased modulus per unit 

density, in other words the foam is able to withstand more stress at similar densities. Method of 
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foam preparation is most simplistic: a pre-polymer is created by making an aqueous solution of 

the two basic components mention above in the absence of water vapor. Second, water and 

starch are mixed into a second homogenous emulsion. Additional constituents which tailor the 

foam to specific requirements include: urea for urethane for linkages and catalyst. The catalyst is 

added when in contrast to a polyol, a polyester is reacted with the polyisocyanate. Furthermore 

polyethers and polyamides are other substitutes. A specific ratio of reactive hydrogen atoms in 

the prepolymer is stated as 1.0-1.25 (isocyanate/ polyester or the like).  The ratio for mixing the 

aqueous solution to the homogenous emulsion varies from 0-100 parts where the sum of each 

part is equal 100. Once the reaction has initiated CO2  gas is a byproduct of the reaction and thus 

a cellular network is formed.  

 Following the work of the two previous authors another research team was able to 

develop rigid polyurethane foam by incorporating a chain extender additive and ultimately 

various flame retardant compositions (Bennett, Otey, & Mehltretter [26]. Their study utilized 

polymethylene polyphenylisocyanate (PAPI) and Tetrakis (2-hydroxypropyl) ethylenediamine 

(Quadrol) in the prepolymer. Corn starch and dextrin, a modified type of starch, were added into 

the solution. Furthermore a foaming agent known as trichlorofluromethane was also added, 

however the boiling point is near room temperature making preparation more tedious.  Starch 

preparation was unique in comparison to other researchers in that these authors used a hammer 

mill to pulverize starch and then further size exclude via different sieves. Nearly 60% of the 

starch passed through a #230 sieve. To differentiate between blends they developed a 

characterization method based on the ratio of isocyanate groups (NCO) to hydroxyl groups (OH) 

ranging from 62 to 113. Their experiment achieved foam with 10, 20, 30 and 40 (%w/w) starch. 

Following the change in ratio, the study examined viscosity, density, compression strength, 

flammability, water absorption, fungi resistance and closed cell composition. For each increase 

in starch content compressive strength decreases by a factor of 0.7. Other significant findings 

include reduced flammability with increase loading and overall starch PU foam yielded favorable 

results over dextrin in all areas besides fungi resistance.  

 Two years later another article was published from Otey and colleagues [27] on PU 

derived from diphenylmethane diisocyanate (MDI), castor oil reacted with glycol glycosides and 

milled corn starch. Glycol glycoside is formed from alcoholysis of castor oil and glycol (polyol). 

The reaction of these 3 materials took place inside a 250 cc flask under vacuum and nitrogen 
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atmosphere. It should be mentioned that neither temperature nor viscosity are mentioned when 

these 3 materials are mixed together. It is mentioned that an exothermic reaction should initiate 

before pouring contents into a mold. The concentrations of each material varied and the effect on 

physical properties was quantified using a 2nd degree multiple regression. Variables of the 

regression include starch concentration (0-60%Wt), molar ratio of isocyanate groups to hydroxyl 

groups (1.0, 1.1, 1.5 and 2.0) and last the polyol content by equivalent hydroxyl weight.  

They find a correlation between high polyol concentration and increased sample strength 

as a result of crosslinking where as lower concentrations of polyol result in a high probability of 

crosslinks between isocyanate groups, polyol and starch but show minimal increase in strength. 

On the other hand in figure 3 starch concentration appears to have a major influence on 

elongations of the blends. A polyurethane sample with 60% starch did not exceed 10% 

elongation regardless of the NCO/OH ratio. With 0% starch, elongation measured was between 

50% and 97%, in addition to these results their regression had an 85.9 % correlation. Tensile 

strength had 89.5% correlation, flexural strength 75.2% correlation, defection had an 83.5 

correlation and shore D hardness had the highest correlation of 91.0%. In conclusion the authors 

suggest that a NCO/OH ratio should be greater than 1.5 to achieve desirable properties at 

relatively low cost.  

 In 1972 Otey and co-workers [28] publish another article on the reactivity of modified 

starch and isocyanate that yielded 14 polymers with characteristics of both thermoset and a 

thermoplastic. Their experiment involved various forms ester starch, a catalyst 

triethylenediamine and toluene diisocyanate or phenyl isocyanate, at this state it is intuitively a 

pre-polymer. Castor oil was then added to a stoichiometric ratio of NCO to OH equaled 2 and the 

viscous mixture was poured into a mold heated at 140oC for 15min under 500 p.s.i. The amount 

of starch added was 20% equivalent weight to the resin mixture. Results from the experiment 

contrast the fact that native starch is only soluble in water or dimethylsulfoxide (DMSO), 

however the derived polymers are insoluble in water, acetone, ethyl ether, or ethanol. And yet 

more interesting, four of the polymers show melting behavior in the range from 178oC to 248oC 

whereas others only softened or showed no changes. In regards to tensile results polymers that 

show inert thermal characteristics achieved tensile stress of 3100 p.s.i whereas polymers with 

appreciable thermal behavior yielded have a tensile stress of up to 7100 p.s.i. They suggest the 

change in tensile stress is caused from a decrease chain length of C18 to C8. Overall their 
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concluding remarks make clear that these results are not optimum, but are informative 

preliminary findings.  

 Integrating starch into polymers on the commercial scale was envisioned quite some time 

ago by Otey [29]. As a contributing author in the above articles, Otey presented a review on the 

current and potential commercial uses of starch and polymers. In section II 3 major polyols are 

discussed in the manufacture of PU foams containing starch; sorbitol, methyl glucoside and 

glycol glycosides. Where sorbitol was currently being used in commercial PU, methyl glucoside 

had some commercial scale success and glycol glycosides had been evaluated at the pilot scale 

and found to be feasible. However the author identifies the reason for limited or no commercial 

success of the above polyols to be rapid fluctuations in market prices; $0.185/lb to $0.420 in a 

duration of 3 years. In the long run they were unable to remain cost competitive. Furthermore it 

is noted that the market price of starch had only fluctuated $0.04 per lb in the past 2 decades. 

Pilot studies on commercial scale plants from 7 different companies yield feasible results 

however in addition to unstable prices of the polymer constituents the end product, PU was 

determined to have an unstable demand, making any product unworthy of investment.  

 In section III Otey describes the use of starch as filler in plastics, and mentions a major 

demand for disposable packages in municipal and alike applications can be expected. Matrix 

plastics discussed are polyethylene (PE) and polyvinyl chloride (PVC). Studies on these blended 

plastics and their biodegradable behavior were measured through mold propagation. Further on, 

starch as a reactive filler with isocyanates is discussed in short detail. Isocyanate is blended with 

another liquid containing hydroxyl groups. At this step a pre-polymer has been created and 

isocyanate should be in excess to allow for further bonding with starch. Finally starch is added to 

the mixture ranging from 10% to 60% by mass. The addition of starch was reported to increase 

solvent resistance, decrease chemical costs and chemical bonds were formed between the pre-

polymer and starch.  

 

4. Fillers 

 Chen, Y., Zhang, L., Deng, R., and Liang, H. [30] prepared 12 different blends of soy 

dreg, castor oil (CO) and toluene diisoycanate (TDI). Each component differed in weight content 

and the ratio between NCO groups to OH groups (TDI to CO).  Ratio of soy dreg incorporated 

was 50%, 60%, and 70% and the TDI and CO masses were based off the ratios 2.00, 1.67 and 
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1.33. The scope of the study was to compatibilize castor oil with soy dreg using toluene 

isocyanate. After preconditioning the materials a single screw extruder was used to melt blend 

each combination and in sequence were molded for 7 min then fan cooled. Using Attenuated 

Total Reflection (ATR) technique spectrum were collected and observations of isocyanate 

groups and hydroxyl groups are discussed. Their first observation indicates that there were no 

unreacted -NCO- groups because of an absence of a peak at 2272 cm-1.  Evidence that the TDI is 

compatiblizing CO and SD was determined when a peak at 1651 cm-1 became broader and more 

intense peaks were measured at 1724-1732 cm-1 indicating the increase of carbonyl groups (-

C=O). Stronger evidence is observed at 3374 cm-1 which are characteristic of –N-H, -O-H and –

N-H2 segments. These segments can be attributed to castor oil or soy dreg molecules. 

  Differential scanning calorimetry (DSC) results further support the ATR findings. The 

glass temperature ranged from -24 to 22oC and can be interpreted through the amount of soy dreg 

and molar ratio of isocyanate to castor oil. Soy dreg is composed of soy protein and cellulose 

segments that have no quantitative glass transition (Tg) temperature from their DSC method. 

However sample blends show a measureable Tg such that as soy dreg proportion increased the 

glass transition temperature increases for samples with a molar ratio of 2 Tg is equal to22oC. 

Samples with a molar ratio of 1 exhibit maximum a Tg equal to -24oC at 50 %w/w soy dreg.  As 

the TDI proportion increases interaction with CO and soy dreg also increase causing Tg to shift 

to more positive values at 50 (%w/w) soy dreg. In contrast to TDI proportion as soy dreg 

proportion increases to 60 and 70 (%w/w) the Tg incrementally decreases. Thus maximum 

interactions are observed at 50 (%w/w) soy dreg. 

 Jute fiber, derived from plant species Corchorus capsularis & C. olitorius [31] was an 

interesting component in a polymer matrix [32]. Commonly observed in burlap bags, jute fiber is 

a relic of bulk packaging. Their sample films were prepped 2 different ways; first, castor oil, 

maleic anhydride (3:1 molarity), Tung oil 20(%w/w), initiator(20%w/w), jute fiber 60 (%w/w) 

and catalyst cobalt naphthenate (20%w/w). The second method decreased weight proportions of 

castor oil, initiator (2%w/w) and jute fiber 60 (%w/w) along with a catalyst cobalt naphthenate 

(2%w/w). The second method did not incorporate Tung oil.  Each sample was compression 

molded at 130oC.  Relevant results include thermodynamic behavior of the reaction, FTIR 

spectra and contrasting mechanical properties. Using the DSC they found the curing temperature 

to occur between 130-160oC without adding jute fiber. When more catalyst was added curing 
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temperature reduced to 40-125 oC. For both scenarios an exothermic peak was observed around 

220oC and was attributed to maleic anhydride modified castor oil molecules forming 

intermolecular bonds. Both FTIR and 1H NMR results did not investigate this scenario. However 

FTIR spectroscopy was able to determine that a reaction occurred. At 3450 cm-1 a peak for -OH- 

absorption was found in neat castor oil, after the reaction this peak decreased and a peak at  1640  

cm-1 increased indicating the formation of –C=C bonds in the modified castor oil. No peaks at 

1779cm-1 and 1849 cm-1 were detected which is an indication that nearly all the maleic anhydride 

molecules had reacted. The addition of maleic anhydride caused the polymer to behave more 

ridged. Impact resistance increased 42% compared to unmodified castor oil samples. In contrast 

the strain at break increased by a factor of 2 for unmodified castor oil samples.  

Found in the paper and pulp industry as a byproduct, cellulose was further refined to a 

nano-scale filler [33]. Starch based foams were then prepared with nano fibrillated cellulose 

(CNF) into a starch water matrix. CNF is just one unit the makes up a complete cellulose 

molecule which is perhaps one of the world’s most abundant macromolecules. CNF can be 

derived chemically or mechanically. The content of both starch and CNF remained in single digit 

percentages. The CNF, starch and water suspension is put into a high shear mixer for 20mm at 

1700 RPM. Samples are poured into trays and freeze dried for 250min. Sample characterization 

methods consist of SEM images, density and relative density, porosity, volume fractions, flexural 

testing, TGA, thermal conductivity and compression testing. 

 As solids content increases density, compression strength and modulus of elasticity 

increase proportionately. Flexural strength vs.  density was plotted to find a curvilinear plot. On 

the other hand porosity increased with less solid content and is thought to be the result of CNF 

interacting with starch.  Authors note that compression results to be similar with Styrofoam™ 

packaging and packaging foam in general. Thermal conductivity was also examined for 

insulation applications.  

 As previously mentioned cross link density is one factor that can control how rigid a PU 

foam will behave. Another method is discussed by [34] where they modified castor oil to 

increase -OH- concentration and added pine wood fiber for rigidity. The hydroxyl count of 

modified CO is 449 mg KOH/g versus 392 KOH/g for a commercial polyol. The ratio of 

NCO/OH groups ranged from 1.00 to 1.25. The foaming agent used was a 

hydrochloroflurocarbon at 10 (%w/w). Polyol, surfactant and catalyst are mixed inside a reactor 
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and then last MDI is introduced. Sample formation is simple: the mixture is poured into a cup to 

cure under ambient conditions with no post curing operation. Among data collection 

compression and density are of most interest. However the physical- chemical techniques used 

find the wood flour to be a reactive filler with the PU matrix, they add wood flour in at 0% 10% 

and 15% (%w/w).  

 For the commercial polyol derived PU, addition of 15% wood flour caused density to 

decrease from 37 kg/m3 to 36 kg/m3.  However contrasting results are found with PU derived 

from modified castor oil. With the addition of 15% wood flour density increased from 37.0 

kg/m3 to 38.0 kg/m3. Even more interesting, the less dense commercial polyol derived PU yields 

higher compression modulus and yields stress, 4.2MPa and 146.0 kPa for 15% wood flour 

addition as compared to modified castor derived PU with 15% wood flour (2.1 MPa and 116.8 

kPa respectively). An explanation with respect to PU without wood flour is deduced from cell 

structure observations: when wood flour is introduced into the mixture MDI interacts with both 

the polyol and wood flour causing cell walls to be more fragile due to decrease in cell size and 

poor dispersion. Micro-cracks are also initiated at the interface of wood flour and PU.   

 

5. Water born polyurethane (WPU) 

 

Water born polyurethane (WPU) is achieved when the reaction to create polyurethane takes 

place within a water medium. Furthermore water is reactive and is the final step of the 

polyurethane polymerization. Gao, Z., et. al.[35] produce WPU films from castor oil, 

polyethylene glycol (PEG), and isophorone diisocyanate and cellulose nanocrystals derived from 

eucalyptus lignin. Samples were simply prepared by pouring the emulsion into a petri dish and 

placed under vacuum and dried for 1 week with cellulose concentrations of 0, 0.2, 0.5,1,2,3,4 

and 5 (%w/w).   

 Their films were characterized via FTIR, atomic microscopy, TGA, DSC, and tensile 

testing. For tensile testing five samples were tested at strain rate of 100 mm/min in ambient 

conditions.  The effect of adding cellulose crystals can be considered a two way interaction. 

From 0%-1% tensile strength at break increases by a factor of two, the change in elongation is 

negligible and the only significant change in modulus is from 0% to 0.2%. When cellulose levels 

reach above 1.0% the effects are reversed: elongation and rupture stress decrease significantly 
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and modulus increases. Their explanation for tensile behavior is supported via FTIR when blends 

contain 0% - 1.0%, the cellulose creates hydrogen bonds with the polyurethane interface. Beyond 

these concentrations the cellulose self-agglomerates. 

 Water borne polyurethanes made from starch plasticized with glycerol, castor oil and 

isophorone diisocyanate (IPDI) are examine by French researchers Lu, Y., Tighzert, L., Dole, P. 

and Erre, D.[36]. Sample preparation consists of mixing castor oil and IPDI inside a 4 necked 

flask under nitrogen atmosphere for 4 hours at 95oC. The polymer was then cooled to 40oC and 

diluted with acetone to reduce viscosity and mixed with distilled water to create waterborne PU. 

Starch preparation included plasticizing starch (70%w/w) with glycerol (30%w/w) and water 

(10%w/w) at 140oC. The mixture was feed into a single screw extruder set to approximately 

120oC processing temperature and 40 RPM to create thermoplastic starch (TPS). The last step 

was mixing TPS and waterborne PU inside the same extruder and machine parameters. PU 

content were as follows; 0, 4, 10, 15, 20, 30 (%w/w) in TPS.  

 Sample characterization includes FT-IR, DSC, DMA, morphology, tensile strength, water 

contact angle and water absorption.  DSC and DMA examined the blends for miscibility. A 

single glass transition is observed in blends with less than 20% PU suggesting that there are 

secondary interactions between the two materials. Contradicting results are found with DMA, the 

mechanical loss factor (Tan δ) reveals different peaks which are associated with two phase 

system. In agreement with DSC results, elongation at break and tensile strength show an 

increasing trend (176% and 5.1 MPa) to 15% PU content and a decline after 15% PU. Measuring 

the area under the curve the authors are able to determine toughness of the material. 10% PU 

blend was able to sub stain up to 8.8 MPa making it the toughest sample. It should be noted that 

the units for toughness are incorrect; toughness should be reported in Joules. 

 

6. Blends and Interpenetrating networks 

Kumar and Kaur [37] developed rigid urethane foams based off of MDI, castor oil with 10% 

glycerol and cobalt octoate catalyst. A physical foaming agent (n-pentane) was used. Their 

materials were first mixed inside a 4 necked flask and nitrogen atmosphere. MDI to castor oil 

ratios were 1:1, 2:1 and 3:1. An increase in MDI was reported to create a more rigid sample. 

Foam samples were created by pouring the mixture into a closed mold for duration of 24hrs. 
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Their samples were characterized through tensile, compression, water absorption test and 

morphology.  

 Interestingly, tensile results increased with addition of MDI and compression values 

show marginal increase. A suggestion is made that high NCO/OH ratio creates lower molecular 

weight chains and lesser degree of crosslinking. Furthermore, in the discussion on compression 

results they suggest that load bearing capacity increases with NCO/OH ratio. Under the 

discussion on morphology, a general observation is made in that both cell size and density 

decrease with the increase in NCO/OH ratio. Water absorption results show that the lowest 

NCO/ OH ratio (1:1) absorbed the most water with a 38.99% increase over initial mass.  Water 

absorption for samples made with a NCO/OH ratio of three absorbed the least amount (22.75%).  

 A copolymer of castor oil, maleic anhydride and diluent styrene monomer is made into 

foam by Wang, J, H. et.al. [38] where their characterization consists of GPC, H1NMR, FTIR, 

density, compression, SEM and soil degradation tests. Foamed samples were made first by 

reacting Maleic anhydride and castor oil inside a 250mL 4 necked flask. After a range of 0.5 to 9 

hours styrene monomer was added and mixed for only seven minutes. Viscosity increases when 

4 phr of water is added. Foaming agent NaHCO3 (sodium bicarbonate) at 1.5 to 3.75 phr was 

also mixed in. Density was inversely affected by foaming agent concentration; at 1.5 phr 

concentration density measured was 0.35 g/cm3 and at 3.75 phr density measured 0.12 g/cm3.  

 Their compression data was collected at 2 mm/min and 10% strain. Five samples were 

tested with the mean and standard deviation reported. Two general conclusions can be observed. 

With the addition of styrene monomer increases modulus and compression strength also 

increase. However as styrene monomer content decreases density appears to increase along with 

sample flexibility. Furthermore they attribute differences in compression values to both cell size 

and curing time. In other words smaller cells resulted from curing at 65oC which produced 

smaller cells and lower compression stress. And vice versa for foams cured in ambient 

conditions. To determine which factor; styrene concentration or density was more influential on 

mechanical properties a power-law regression was used. As a result the inherent properties of the 

styrene monomer are more influential.  

The miscibility of starch and castor oil blends is studied by Cao, X, Wang, Y. and Zhang, 

Y.[39]. Their blends incorporate  4, 4’-diphenymethane diisocyanate (MDI), modified corn 

starch and castor oil. The modification of starch was chemically intensive due to the reactions 
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that took place at 3 different stages. First starch and sodium chloride and sodium hydroxide were 

reacted to obtain ethyl starch (ES). A second starch labeled benzyl starch (BS) was also 

produced. The second stage is creating a pre-polymer by mixing MDI and castor oil. And finally, 

pre-polymer and modified starches are mixed and poured onto a glass plate and formed into a 

film where modified starch concentrations were 10, 20, 30 and 40 (%w/w). 

 Miscibility of the samples was analyzed through FTIR, elemental analysis, GPC, intrinsic 

viscosity, DSC, DMA, optical transmittance and tensile properties. The authors find all pre-

polymer-starch blends miscible besides ES-40. In each of the different characterization 

techniques results indicate that phase mixing and secondary interactions are far greater for BS 

blends than ES blends. Such that water absorption maximum for ES film is 12% whereas BS 

films absorb a maximum of 3.2%. A similar situation is observed with elongation: maximum 

elongation for ES films is 16% whereas BS reached elongation of 157%. 

 One of the most influential research publications in this review is the work performed by 

Wu, Q. et. al. [40] on starch and polyurethane. The aim of their study is to create a tough starch 

which is also thermoplastic. Materials consist of 4, 4’ MDI, corn starch and castor oil. A pre-

polymer of castor oil and MDI was created inside a 500 mL 3 necked flask under 2 mmHg. A 

stoichiometric ratio of two isocyanate groups to one hydroxyl group was maintained. Modified 

starch was created simply by placing starch powder, water, and pre-polymer into the intensive 

mixer at 95oC 100 RPM for 25 minutes. Sample preparation was simply done by placing the 

modified starch into a compression molder to create a film for five minutes at 100oC. 

 Samples were analyzed for moisture absorption, tensile properties, FTIR, DMA, 

viscosity, SEM WAX and TGA. A clever technique is used to determine how much isocyanate 

has reacted. Authors submerged samples into toluene to remove any unreacted urethane groups. 

The difference in initial and final mass was put into proportion to find how much isocyanate 

reacted to form urethane links. Authors’ observation of SEM pictures show micro phase 

separation and unequal dispersion of pre-polymer/polyurethane. Further examination of 

miscibility is demonstrated by placing a sample in toluene a second time for 24hrs. Toluene is 

known to cause polyurethane to swell [41], hence disrupting the micro-phase. More SEM images 

show little to no disruption of the micro phase after the second trial of submerging indicating 

miscibility.  Furthermore solubility of starch is tested when samples are submerged into water. 
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SEM images appear to show little or no deterioration of the micro phase. In both scenarios it is 

believed that urethane linkages are foamed between castor oil and starch via MDI. 

 Tensile data shows similar trends for both elongation and stress at break. Native starch is 

interpreted as brittle and urethane is interpreted as ductile. They compare plain modified corn 

starch with starch and PU blends. Where elongation increased more than a factor of 2 due to 

urethane linkages formed between starch and polyurethane increased elongation. A final 

comment from the authors’ are that samples are able to undergo secondary processing, in other 

words thermoplastic behavior was observed.   

 Starch in modified formation was examined by Skočilas, J.,  Žitný, R and Šesták, J. 

(2010) [42]. Their study seeks thermodynamic constraints behind closed mold foaming of potato 

starch. Material description is vague, however they begin with a potato starch that has been 

gelatinized with water. The gelatinized starch is then placed into a heated rectangular mold. 

Mold temperature ranged from 120 – 140oC. The mold is fitted with five thermal couples and 

one pressure transducer to study the effects of starch foam expansion. Their results reveal a 

direct relation between sample thickness and peak mold pressure. For instance, for a maximum 

expansion height of 2 mm maximum pressure is found at roughly 20sec. When sample height 

increases by a factor of 2 the time also increases by a factor of 2. Furthermore they examine 

porosity of each sample and find their maximum porosity occurs simultaneously as maximum 

pressure. A final observation finds little variance in porosity longitudinal but changes in the 

transversal direction. 

 Tan, L., Su, Q., Zhang, S. and Huang H.[43] utilized a commercially available 

thermoplastic polyurethane to blend with TPS and compatibilizer. Utechllan UE-95A TPU 

(extrusion grade), TPS, polyolefin elastomer (POE) and Nitrile butadiene rubber (NBR) were 

blended together at different ratios using a twin screw extruder. Samples were made into sheets 

with a compression molder as well as injection molded tensile and impact samples. 

Characterization of samples was carried out through FT-IR, DSC, SEM, tensile, impact and 

folding endurance, DMA, surface energy and water absorption with deionized water.  

 FT-IR results indicate that NBR reduces miscibility between TPU and TPS however POE 

works well as a compatibilizer due to the a decrease of –NH- and -OH- groups and an increase in 

inter and intramolecular hydrogen bonds. Blending TPU and TPS together without POE is also 

successful. At 1702 cm-1 peak intensity is greater for TPU/20TPS (%w/w) than for neat TPU, 
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indicating hydrogen bonds. SEM images show mixing techniques worked thoroughly. Dispersion 

of each constituent in the blend is continuous and free of cracks. DSC also shows signs of 

miscibility between the TPU and TPS. Change in the glass transition temperature (Tg) is 

observed where neat TPU is -33.6oC and neat TPS is 82.2 oC. As the blend ratio changes towards 

a more even proportion Tg  moves closer to the median value. The addition NBR caused the 

materials to remain immiscible.  

 In regards to sample vigor all three mechanical test (tensile, impact and folding 

endurance) give evidence of this. For example specimens made of 80TPU/20TPS/10 POE 

(%w/w), have almost identical mechanical properties as neat TPU. Neat thermoplastic starch was 

not tested, however the samples prepared with plain corn starch were made and exhibit 

significantly lower mechanical properties. Furthermore evidence of secondary interactions is 

observed with water absorption percentages.  First, with the addition of TPS, -OH- groups found 

in starch and glycerol increase the water uptake by factor of 20X over neat TPU. The addition of 

POE absorption decreases by a factor of 12.  In other words there are less polar –OH- groups in 

TPS.  

 Valero, F, M. et. al.[44] reacted yucca starch with polyethylene glycol and catalyst 

sulfuric acid.  The reaction is known as a glycosylation reaction, where a hydroxyl group is 

replaced with different molecule. The same process was carried out with yucca starch and 

glycerol. Over 2 types of modified starch were created; polyethylene glycoside (PEG) and 

polyol-glycerol glycoside (PGG) respectively.  Castor oil (CO) is then reacted with PEG and 

PGG via transesterification to increase the hydroxyl from initial count of 160mg KOH/g to 186 

mg KOH/g and 223 mg KOH/g, unmodified castor oil is also used. Isophorone diisocyanate 

(IPDI) is then mixed with the above three variations of castor oil. Finally the modified starch, 

castor oil and IPDI are poured into a 1L flask and mixed together. NCO/OH molar ratio is 0.7 

and 0.9. Samples were made into sheets by placing the mixture into a hermetic mold at 90oC for 

12 hours. Sample analysis includes physical, mechanical, solvent, and physical-chemical 

techniques. Physical and mechanical techniques are of most interest here.  

 All samples had a specific gravity of 1.00 or greater, where the lowest specific gravity is 

associated to the lowest loading of polyol at 5% of PEG. In regards to tensile performance 

increasing PEG or PGG content also increased tensile strength and modulus, hence elongation 

decreased proportionally. Unmodified CO yielded the greatest elongation of 250% where as 10% 
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PEG and PGG saw 200% and 50% respectively. Based on their physical-chemical evidence they 

believe that PGG to have the highest hydroxyl value leading to the greatest crosslink density and 

thus the most rigid structure as observed in a stress vs. strain plot where yielding stress is 25 

MPa. In agreement with mechanical properties are solvent tests high crosslinking led to lower 

swelling capacity in CCI4, toluene, and gasoline.  

 Three different blends are created by Xiong, Z. and associates [45] that contain poly 

lactic acid (PLA), corn starch, castor oil, and diphenylmethane diisocyanate (HDI). To help 

understand how each of the blend constituents can affect macro scale properties the three blends 

consist of: PLA/starch, PLA/CO/starch and PLA/CO/HDI grafted to starch. Grafting the HDI to 

starch takes place inside a 3 necked flask with a solution of 200mL of toluene, 100g of starch 

and non-specified amount of HDI at 60oC for 5 hours and continuously mixing. The new grafted 

polymer is washed with acetone. Samples for characterization are simply melt blended inside a 

twin screw extruder pelletized and “oar shape” tests bars are created inside a lab scale injection 

molder.  

 Analyses of SEM images reveal poor adhesion between PLA/starch blends because voids 

are seen between both interfaces. Furthermore when castor oil is introduced the same voids 

between starch and PLA are noticed.  However when HDI-g-starch is added into the blend the 

interface between starch and PLA appears to have fewer voids between starch granules. They 

also note finer dispersion of castor oil within the PLA matrix. Tensile and impact results seem to 

be analogous to SEM images. Where tensile and impact properties were decreased in PLA/starch 

blends. Addition of CO created comparable decreases in mechanical properties. On the other 

hand addition of HDI-g-starch increased impact strength from 18 kJ/m2 for neat PLA to 41 

kJ/m2. Both modulus and tensile properties significantly decreased, but elongation at break 

increased from 5% to 68% for HDI-g-starch blends! They proposed 2 causes for aforementioned 

behavior either the HDI is behaving as a compatibilizer or essentially creating a 2 phase network 

between PLA and HDI-g-starch/CO.  

 Polyurethane foams are even being sought after for biomedical applications, Wang, C. et. 

al. [46] evaluated PU foams made from CO, polyethylene glycol (PEG) and MDI with 50/50 2,4, 

and 4,4, isomers. Foaming agents incorporated were dichloromethane Cl2CH2 and distilled water 

H2O, MD, PEG and castor oil were mixed inside a 250mL reaction vessel for 3 hours at 70oC. 

According to the author CO is the cross linking agent, PEG soft segment and MDI rigid segment. 
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The molar ratio of NCO/OH ranged from 2.78 to 1.36. Separately other materials were mixed 

together; silicone oil, (surfactant) triethylene diamine, (catalyst) stannous octoate (catalyst), 

Cl2CH2 and H2O (foaming agents). Both mixtures were then mixed together, poured into a mold 

and allowed to free rise in ambient conditions.  

 By simply changing castor oil percentage from 40-60w% extensive changes in properties 

were yielded in compression and tensile. By increasing CO weight 20% both compression 

strength increased by a factor of more than 2, at rough 60% strain. Furthermore, compression 

resilience is 99%. Density increases with further addition of CO, where at 40% CO ρ =102.2 

kg/m3 and at 60% ρ=219.74 kg/m3.  

The effect of castor oil on foam stability and properties when transitioning from 

polypropylene glycol (PPG) is analyzed by Sharma, F. et. al. [47]. Their foam materials include 

PPG, 4,4, diphenyl methane diisocyanate (MDI), CO, bis(2-methylaminoethyl)ether, diethanol 

amine and a mixture of triethylene diamine and dipropylene glycol and distilled water as 

foaming agent. Mixing took place inside a paper cup in ambient conditions. Compression 

samples were made by pouring the mixture into a closed mold for 5 min.  

 According to SEM images the cell structure is open and packaging density of the cells 

increases with CO percentages. CO has a lower viscosity and more plentiful than the foaming 

agent thus, CO allows the foaming agent to volumetrically expand before the polymerization has 

finished. Ultimately they also associate bubble coalescence and rupture on the CO viscosity in 

addition to a decrease in cell count. Their load bearing capacity analysis is brief but indicates a 

39% reduction in load bearing capacity for any sample subjected to an indentation force at their 

specific magnitude. Overall one of the biggest changes in samples is the change in NCO/OH 

ratio. Due to hydroxyl count increase with the increase in C.O. gelling strength is lost and so is 

foaming stability. In other words increasing CO also increases more un-bonded molecule ends. 

Polyurethane foam is prepared and mechanically characterized by Kim, D. et. al. [48]. 

The foams were formed from the reaction of 2, 4, toluene diisocyanate (TDI) corn starch, 

polyethylene glycol, glycerol and foaming agent. Stoichiometric ratios of NCO/OH are 1.1, 0.9, 

0.7& 0.5. Starch content also varied from 30, 40 and 50 (%w/w), making a total of 12 different 

samples. Three samples did not foam due to collapse of the foam. They attribute low NCO/OH 

ratio and low starch content for loss of the cellular structure during molding. Their reaction is 

accidently labeled to be addition polymerization but actually is a condensation reaction because 



Mechanical and Physical Characterization of foams made of Gelatinized starch and pre-polymer polyurethane   

29 

 

first it is exothermic and second CO2 gas is a byproduct as well as a foaming agent. Densities 

ranges from 0.35-0.65 g/cm3 where both increasing starch content and NCO/OH ratios correlate 

to higher densities. A unique pattern occurs for the 50% starch samples where samples with a 

NCO/ON ratio of 0.7 and 0.9 show a decreasing density compared to the two other ratios and is 

attributed to mold shrinkage.  

 Impact resistance of samples show the same trends as density, with increasing starch 

content impact energy also increases. Increasing the NCO/OH ratio also increases impact 

resistance but to less extent. They simply label the starch as a hard segment. Compression test 

almost follow the same trend as impact and density results. From a sample stress vs. strain plot 

samples with 50% starch appear to be rigid PU foam, failing at 6% strain and permeant 

deformation at 2.5% strain and 225 kPa. Lowering to 40% starch strain of 18.27% was achieved 

the molar ratio is attributed to differences in compression stresses.  

7. Mechanical Analysis 

 Characterization of foam that is directed towards its application is most practical, Goods, 

H. S., Neuschwanger, L. C., Henderson, C. and Skala, M. D [49]. developed a new foam system 

to replace toluene diisocyanate (TDI) which is known to be carcinogenic. Their new system will 

replace TDI with methylene diisocyanate (MDI). The reasoning for the switch to MDI is that it 

has a lower vapor pressure by a 1000 fold lower than TDI it making safer to handle and work 

with although it is also known to be carcinogenic. Furthermore their foam application was 

directly targeted towards the encapsulation of electronic components in a weapon system 

application. Mechanical analysis includes tensile, compression and impact properties. Their new 

foam system is called CRETE and it is a five component system based off commercially 

available materials. Voranol 490 is a polyether polyol, DC193 silicone glycol copolymer 

surfactant, Polycat 17 tertiary amine catalyst, distilled water in different percentages as a 

chemical blowing agent, and Isonate 143L a modified form of MDI. Materials were mixed at 

1500 rpm for 60 seconds and poured into cylindrical molds. Post curing took place inside an 

oven at 66oC for 8 hours. Only core samples were used for data collection. 

 Compression results show a linear relationship between density increase and energy 

density (J/cm3) increase. Furthermore a comparison of tensile, compression and impact test 

results demonstrate how behavior differs between each test. Tensile plots appear to endure less 

than half the strain that samples in compression can endure, due to failure.  The major limiting 
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factor between compression and impact test is the magnitude of stress. Samples are subjected to 

much higher levels of stress in the impact test and ultimately reveal intrinsic compression 

behavior. In figure 14 of their report a comparison of all 3 testing techniques is shown. Typical 

stress in compression ranges from 1 MPa to 16 MPa & dependent on density. Whereas impact 

test ranges from 2 MPa to 22 MPa. Failure threshold in impact tests were considered at 60% of 

peak load.  When looking at figure 13 60% of peak loading occurs at the intersection of 

compression and impact plots. Another difference between compression and impact tests is their 

relationship with density. As mentioned earlier compression exhibits a positive linear 

relationship with density where impact tests show an optimal foam density that will absorb the 

highest energy. Any more increase in foam density and energy absorption decreases, per figure 

15. Their discussion ends on finding the theoretical modulus for closed and open cell foams 

dependent on Euler buckling formulations.   

 Research published from Ge & Huang [50] on packaging cushion performance of corner 

versus flat foam brings about the application based information on foams. Their sample tests 

included static compression testing, dynamic shock tests and digital image correlation (DIC). 

The most relevant information is the analysis of static compression data. Data from static 

compression data is used to develop theoretical compression curves that are typically derived 

from cushion or shock testers specifically designed for foam packaging. Starting with static 

compression tests the following values are recorded: Maximum compression stress (σm), 

hysteresis (energy absorption), and sample dimensions (L x W x D). The following equation was 

derived in their work to determine deceleration value (G):  

Equation 3-Theoretical deceleration                      G = σm
E

+ H
T

 

Variable H is the height from which the sample will be theoretically dropped from in a cushion 

test and T is the sample thickness from static compression testing. Energy density (E) is found 

first by integrating the loading and unloading curves of a stress versus strain plot. The 

differences between both products is known as energy absorption.  Variable E is found by 

dividing energy absorption by sample volume. Variable G is found for multiple compression 

strains until a complete compression curve can be plotted.  

 Samples used in their experiment are low density polyethylene (LDPE) foam made via 

extrusion. Their results conclude that corner foam pieces absorb more energy than flat foam 
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pieces and  at lower strain rates there is about a 23% difference in material stress were higher 

strain rates can create as much as 30% difference in material stress.  The difference in flat and 

corner foam stress is import for design because product damage is possible if the protective 

packaging inadequate. Over designing protective packaging would be using more materials than 

what is required thus wasting packing materials.  

VIII. Materials and Method 

 Preparation of foam specimens was performed using a three step process. The order of 

preparation is as follows: gelatinize corn starch, second create a polyurethane pre-polymer and 

mix gelatinized starch with pre-polymer and foaming agent. And third allow materials to cure 

inside a radiant heat oven. For each of the 15 foam samples a strict process for preparation was 

followed to help alleviate any affects from sample preparation. All materials used to make foam 

were of analytical grade. 

8. Gelatinization of corn starch  

 Gelatinizing was performed using corn starch from MP chemical (CAT# 902956) where 

the composition is approximately 75% amylose and 25% amylopectin.  It can be visually 

characterized as a fine white powder. Beforehand starch powder is placed inside a radiant oven 

and dried for at least 24 hours at 85°C. The second component to gelatinizing corn starch is 

distilled water. Distilled water is prepared in house using a Pure-Hit Still model “Basic/PH4”. 

The condensate is estimated to have a pH range of 5.5-6.0. 150 mL of distilled water is added to 

a 250 mL glass beaker and heated to 81°C. Once heated, 36g of starch is added to the beaker. 

The mixture is agitated with an overhead Talboys model # 409 mixer at a constant temperature 

and RPM of 450. A pivoting blade impeller is used. After 1.5 hours of mixing the mixture has a 

gelatin like consistency, the gelatinized starch is sealed and stored at 11.2°C and 48% R.H. until 

further use. As discussed in the literature review the prepared starch retrodegraded based on 

visual inspection. As a result gelatinized starch was stored in the above conditions for 24 hours 

before use. Also it should be noted that the above process caused growth of mold on one sample, 

which then was not used for sample preparation.  Below in figure 7 [51] are the corn starch 

molecule structures, the end hydroxyl groups are responsible for hydrophilic behavior. The 

abundance of hydroxyl groups contributes to gelatinization phenomena.   
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Figure 7-Corn starch molecule(s) 

9. Pre-polymer synthesis 

 Creating the pre-polymer was a much more detailed process with greater attention needed 

in apparatus setup and reaction atmosphere. The process combines 2 materials to create a pre-

polymer of polyurethane; Castor oil and 4, 4’ methylene diphenyl-diisocyanate (MDI). As seen 

below in Figure 8 is the repeat unit for MDI.   -N=C=O-  functional groups are known as 

isocyanate. Urethane linkages are foamed when the double bonds are replaced by single bonds 

and 2 new bonds are formed at each middle carbon atom. Where as the phenyl groups find new 

confirmations. MDI was purchased from Acros organics with formula weight (Fw) of 250.26 and 

melting point of 41-44oC. 

 
Figure 8-MDI monomer  

 

  Castor oil was purchased from Alfa Aesar with a density of 0.95 g/cm³ and Fw of 298.46 

g/mol. Castor oil is triglyceride as shown below in Figure 9. Approximately 87.7 to 90.4% of 

castor oil is made up of these molecules. The remaining ~10% is low molecular weight fatty 

acids [52]. Furthermore as a raw material the molecular composition is very consistent regardless 

of the region of growth. The three hydroxyl groups found and are able to react with isocyanate or 

MDI in this case.  

  
Figure 9-Castor Oil molecule. 
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Figure 9 is an image of the actual setup used to synthesize the pre-polymer of castor oil 

and MDI and Table 1 below provides the name of each component. All fittings and joints had 

vacuum grease applied. The procedure is as follows: 81g of castor oil is poured into the flask. To 

remove any residual moisture in the castor oil it was stirred for 70min at 90oC , under 2.5“Hg 

and 350 rpm. Under vacuum and nitrogen atmosphere the flask was allowed to cool down to 

40oC. In the meantime MDI was pulverized from flakes into a fine powder using a mortar and 

pestle. Using a funnel the 61g of MDI was added to the castor oil and mixed for 40mins and 

reheated to 46oC before mixing was completely stopped.  A molar ratio of isocyanate groups to 

hydroxyl groups in castor oil is 2:1 respectively for all samples. The remaining isocyanate 

groups are anticipated to react with hydroxyl groups in gelatinized corn starch. 

 

Figure 10-Actual setup for synthesis of pre-polymer 
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Table 1-Pre-polymer synthesis equipment 

10. Blending Materials 

Foams are typically made two different ways: continuous or batch. Continuous processes involve 

common equipment i.e. extruders. Batch processes involve mixing/blending materials in a pot to 

cure. For this work a batch process is followed. The appropriate amount of gelatinized starch is 

added to a Waring LB10 variable speed blender, due to retrogradation the gelatinized starch 

changed from a paste to a gelatin like material. The pre-polymer is added into the blender and 

both components are blended for 5 min while foaming agents are added, foaming agents were 

pre-weighted on a Ohaus Scout Pro analytical scale to 1% of the total weight of  pre-polymer and 

gelatinized starch blend. It is observed that the viscosity greatly increases during this process. 

RPM is unknown however the variable speed knob is ¾ of blender’s capacity. The blend is then 

poured into 150 x 15 culture disks and place inside a Thelco-Precision Scientific radiant oven. 

Oven residence time was kept to 1 hr with a target temperature of 140°C. After 1 hr the oven was 

shut down and allowed to cool to 55 ± 3 °C before samples were removed from the oven and 

stored in ambient conditions. Figure 11 shows samples with 10(%w/w) gelatinized starch and  

 

Component 
Number Component 

1 250mL 3 Necked Flask  
2 150 x 75 Crystallization dish with mineral oil bath  
3 Henery Troemner Dyla Dual Hot plate stirrer 
4 Talboys 409 mechanical mixer 50-500 RPM 
5 Pivoting blade impeller 
6 Marathon Electric Vacuum MOD # 5KH33DN16X 
6 Wilmad 90o Bend Glass with PTFE Stopcock  
7 Pure compressed nitrogen gas 
8 Mortar pastel  
9 Ohaus Scout Pro 200g scale  

Figure 11- foam samples names left to right EXOCHEM10, ENDOCHEM10 and ENDOPHY10 respectively 
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different foaming agents. Each petri dish was pre-lined with tin foil for ease of sample removal 

and reuse. The left and middle samples have had squares removed for testing but originally were 

circular.  

 

11. Foaming Agents 

  Foaming agents are characterized into 2 different categories: thermal degradation and 

change in chemical structure.  Two chemical agents and one physical foaming agent were 

incorporated into the foam. The physical foaming agent used was distilled water than had been 

used to gelatinize corn starch. Water is characterized as endothermic due to heat absorption and 

eventual water molecules volatizing into gases. The 2 different chemical foaming agents display 

both endothermic and exothermic behavior. Benzenesulfonyl hydrazide (BSH) is an exothermic 

foaming agent that thermally degrades into nitrogen gas (N2 ). BSH was in the form of a powder.  

It was purchased from Sigma Aldrich with an Fw of 172.2 g/mol and density of 1.36 g/cm3.  The 

second chemical foaming agent is comprised of 3 different constituents’ sodium bicarbonate, 

Citric acid, and stearic acid. Stearic acid is a lubricant when the former are used in extrusion 

equipment. Sodium bicarbonate and Critic acid are endothermic and break down into gases CO2 

and H2O.  Both constituents are introduced in powder form.  Sodium bicarbonate used was 

purchased from BHD with a Fw of 84.01g/mol and melting point of 50° C and is in powder form. 

Citric acid was purchased from EMD with an Fw of 210.14 g/mol and melting point of 135°C, in 

the form of a powder.  
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 Figure 12- overlays all 3 different foaming agents and thermal degradation behavior. The 

oven temperature of 140oC was based off of thermogravimetric analysis (TGA) seen in figure 12.  

TGA method is as follows: heating at 25oC/min to 140oC. Then an isotherm for 60 minutes. 

Nitrogen flow rate was set to 30 mL/min. Sample masses were 11.2 ± 0.2 mg. Afterwards the 

pan is cleaned by heating the oven to 950oC. During the isotherm all materials exhibit thermal 

decomposition. Stearic acid is negligible. The addition of stearic acid is very common with 

sodium bicarbonate; its role is to act as a surfactant. Interestingly the chemical endothermic 

foaming agents are most stable at 140oC. BSH and distilled water almost completely degrade. 

Distilled water appears to immediately thermally degrade after heating initiates. Most likely the 

high flow rate of purge gas causes water to evaporate.   

  

Figure 12-Thermogravimetric analysis of foaming agents 
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 Table #2 below lists all foams made and specific name for each combination of materials. 

For pre-polymer constituents, castor oil and MDI amounts did not vary. The amount of starch 

was increased to produce a different blend. Foaming agent concentration remained at 1% for 

both Sodium Bicarbonate/Citric acid and BSH. Sample nomenclature is found in the last column, 

where ENDO is abbreviated for endothermic, EXO is exothermic, CHEM is chemical and of 

course PHY is physical. These are common types of foaming agents used industry. The final 2 

numbers indicate the proportion of gelatinized starch based on weight percent.  

 

Pre-
polymer % 

Gelatinized Starch 
% 

Foaming                  
Agent 

Final 
Foam 

NCO/OH 
Sample Name 

90 10 none 1.0 ENDOPHY10 

80 20 none 0.6 ENDOPHY20 

70 30 none 0.4 ENDOPHY30 

60 40 none 0.3 ENDOPHY40 

50 50 none 0.2 ENDOPHY50 

90 10 
Sodium BiCarb., Citric 

acid, Stearic acid 
0.9 ENDOCHEM10 

80 20 
Sodium BiCarb., Critic 

acid, Stearic acid 
0.6 ENDOCHEM20 

70 30 
Sodium BiCarb., Citric 

acid, Stearic acid 
0.4 ENDOCHEM30 

60 40 
Sodium BiCarb., Critic 

acid, Stearic acid 
0.3 ENDOCHEM40 

50 50 
Sodium BiCarb., Citric 

acid, Stearic acid 
0.2 ENDOCHEM50 

90 10 Benzenesulfonly 
Hydrazide 1.0 EXOCHEM10 

80 20 Benzenesulfonly 
Hydrazide 0.6 EXOCHEM20 

70 30 Benzenesulfonly 
Hydrazide 0.4 EXOCHEM30 

60 40 Benzenesulfonly 
Hydrazide 0.3 EXOCHEM40 

50 50 Benzenesulfonly 
Hydrazide 0.2 EXOCHEM50 

NOTE: Sodium BiCarb. is NaHCO3  
Table 2-Foam Nomenclature 
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IX. Characterization  

12. Mechanical  

 Analysis of foam was simply achieved by addressing mechanical and physical 

properties of the foam. Mechanical properties include energy absorption, compressive 

stress, modulus and theoretical static shock cushioning. Physical properties include 

density, cell size and cell count. Data for mechanical analysis was collected on an Instron 

universal testing frame model 5567. The test frame was fitted with a 5kN load cell and # 

T489-74 compression platens rated for 100kN as seen below in figure-13 

 

Figure 13-Compression test setup 

 The test frame is controlled with BlueHill™ 2 software. Compression data was 

collected in accordance to ASTM D3574. 13797 Standard test method for Flexi able 

Cellular Materials-Slab, Bonded Urethane Foams. Samples were compressed 16%, 32%, 

48% and 68% of initial height at 100 mm/min. Samples were cut into cubes with 

dimensions 12.7 mm x 12.7 mm x 12.7mm ± 0.5 mm for all dimensions. For each type of 

foam 5 samples were tested. Data points collected include stress at each of the different 

strains loading and unloading energies, hysteresis, and compression modulus. Hysteresis 

was calculated by integrating top and bottom curves and taking the difference of the 

products. Samples were tested at ambient conditions in addition to 90% R.H. Samples 
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were conditioned in a Thermotron model SM-4-8200 environmental chamber at 23oC and 

90%R.H. for 24hrs.  Compression in 2 different orientations perpendicular and parallel to 

the mold surface was completed for sample ENDOCHEM 40 to have an understanding 

on the effect of cell orientation and applied stress.  

13. Physical  

 Density of foam was measured using on Ohaus Scout Pro SPE2001 analytical 

balance and Ohaus scale density determination kit and distilled water as the auxiliary  

liquid. The kit is designed around Archimedes principle of displacement seen in figure 

14. A unique attribute of the apparatus is that it can measure the density of sample that 

typically floats in water or other liquid medium such as acetone. Archimedes principle 

states that the buoyant force of an object is equal to the weight of displaced fluid from the 

object Archimedes principle is found in equation 4. Here ρ is equal to sample density, A 

is equal to the sample weight in normal atmospheric conditions, b is equal to sample 

weight in liquid medium, distilled water in this case. ρo is equal to the density of water 

and ρL is the density of air.  

 Equation 4- Archimedes principle      ρ = 𝐴
𝐴−𝑏

(𝜌0−𝜌𝐿)  +  𝜌𝐿 

Figure 14-Density determination kit setup 

Foam 
Sample 
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Samples were cut into squares for each test and tested consisted of 10 samples for each 

different foam. 

 

 Cell size and cell count was measured using Metcal VPI-1000 Optical inspection 

system seen below in Figure-15. Pictures were taken at 35X magnification.  

 

Figure 15-Optical measuring instrument 

The software allows the user to trace the parameter edge of the cell, once tracing 

is complete cell area is automatically measured. Before testing a calibration of 1mm was 

made. Before placing samples under the microscope the surface of interest was colored 

black with a maker to make cells more apparent. 5 samples of each type of foam were 

measured. Data collection includes measurement of cell cross sectional area and number 

of cells in the overall cross section. A visual analysis of cell structure was performed as 

well.  Samples view area was 11.2 mm x 8.4 mm.  

14. Fourier Transform Infrared Spectroscopy (FTIR)  

 A spectrum of foam samples was collected to help understand discrepancies seen 

in mechanical properties or sample preparation. A PerkinElmer model Frontier FTIR 

spectrometer with the universal ATR accessory was used to collect sample spectra, seen 

figure 16. The instrument is equipped with Spectrum software. Each sample was scanned 
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5 times and peak detection was set to 0.30% transmission. Before sample testing samples 

were conditioned inside a convection oven at 70oC for 24 hours to mitigate any effects of 

atmospheric moisture. Samples consisted of random section cuts from the overall foam.  

 

 

Figure 16-PerkinElmer Fourier transform Infrared Spectrometer with ATR accessory 
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X. Results and Discussion 

15. Density 

 Foam density appears to be proportional with the amount of starch incorporated as 

seen in Figure 17 where the percentages indicate starch content.  However there is non-

consistent data for EXOCHEM samples at 20-30(%w/w) gelatinized corn starch. The 

densities seem to decrease from 20% to 30%.  To try and understand any discrepancies 

another batch of samples were prepared and re-tested. The new EXOCHEM20 mean 

density decreased by 0.08 g/cm3. However the standard deviation in density between new 

EXOCHEM20 samples is 0.06. Thus the difference between the old and new 

EXOCHEM20 samples is insignificant.  And data most likely reflects an accurate trend in 

foam density.  Furthermore, error bars indicate EXOCHEM20 samples can be created 

with a lower density than EXOCHEM30. Sodium bicarbonate, citric acid and stearic acid 

are the foaming agents used in EXOCHEM samples. Two plausible reasons for the 

discrepancy are: first, method of mixing the pre-polymer and gelatinized corn starch 

creates low dispersion and second, unknown chemical interaction occurs between the 

foaming agents and the blend constituents. Hence a cumulative effect may occur.  

 
Figure 17-Foam Density 
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 Plot #1 gives more insight into the relation of density and gelatinized corn starch content. 

It appears to be two different functions that govern the density of the foams. Each chemical 

foaming agent best follows a polynomial function. On the other hand the physical foaming agent 

closely resembles a linear relationship. Furthermore it is unclear which foaming agent may 

increase or decrease density of the final foam material in general.   

 

 

  Plot 1-Density vs Gelatinized corn starch content 
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 In Plot 2 both 20% and 40% gelatinized starch blends are removed. As seen below the 

effect of each foaming agent is evident. Since foaming agent concentration remained at 1(% 

w/w) for each blend, quantitative characterization is difficult and a qualitative approach is used. 

As mentioned earlier ENDOPHY samples follow a linear model and have a greater density than 

either chemical foaming agent. Once 30 (%w/w) gelatinized starch is exceeded EXOCHEM 

samples become denser and at 40(%w/w) both chemical samples show higher density than the 

physical foaming agents. After 20(%w/w) gelatinized starch content EXOCHEM samples appear 

to have a higher density than ENDOCHEM samples.  

 Over all removing 20 and 40 (%w/w) blends from the plot yielded a coefficient of 

determination of 1 for both chemical foaming agents and 0.99 for the physical foaming agent 

increasing model accuracy. Due to the difference in plots 1 and 2 an initial assumption is that the 

blending process appears to have a low shear rate and thus poor dispersion between the pre-

polymer and gelatinized starch. Differentiating between blends with 10% change in gelatinized 

corn starch as seen in plot 1 can be misleading.  

 

 
Plot 2 - Density vs. Gelatinized corn starch content with samples 30% and 40% removed 
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 In published literature other researchers have measured similar densities. As seen 

in Table 3 examples 2-4 coincide with the above results. The densities within this 

research range from 0.25 to 0.55 g/cm3.  

 

  

  Author Density          
(g/cm3) Material 

1 by Mosiewicki, A. 
M., et. al. (2009) 0.037-0.038 Foam 

2 

Wang, J, H., Rong, 
Z, M., Zhang, Q, 
M., Hu, J., Chen, 
W, H., and 
Czigany, T. 
(2007).  

0.12-0.35 Foam 

3 

 
Wang, C., Zheng, 
Y., Xie, Y., Qiao, 
K., Sun, Y. and 
Yue, L. (2015). 

.102-.219 Foam 

4 C. and Skala, M. 
D.(1997).  0.1-0.4 Foam 

Table 3-literature review density 
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16. Cell Count 

 When examining the effect that gelatinized starch content has on foaming agent 

performance, cell count and cell cross sectional area are able to provide insight. 

Immediate differences in cell count and mean size are noticed between both chemical and 

physical foaming agents. For ENDOPHY foam samples a polynomial function is able to 

be found describing the relationship between cell count and gelatinized starch content as 

seen in plot 3. As gelatinized starch content increases the number of cells also increases. 

Seen below in Figure 18 are ENDOPHY10 on the left and ENDOPHY50 on the right, 

each surface was colored with black ink to help differentiate between the surface and cell. 

Mean cell counts are 25 and 37 respectively. Mean cross sectional cell areas are 1.8 and 

0.9 mm2 respectively. 

  Cell geometry indicates coalescence and open cell structure. Where the larger 

cells are circular in shape and the smaller cells appear to be elongated voids. On the other 

hand ENDOCHEM and EXOCHEM foams show a slight relationship between cell count 

and content of gelatinzed starch. As gelatinized starch content increases the cell count 

decreases for both EXOCHEM and ENDOCHEM samples. For ENDOPHY samples cell 

content increases, presumably because there is more gelatinized starch content and thus 

water content to create a increased foaming affect.  
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Figure 19-ENDOCHEM10 AND ENDOCHEM50         

 
Figure20-EXOCHEM10 AND EXOCHEM50 

 

Figure 18- ENDOPHY10 AND ENDOPHY 50 
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 Cell count and gelatinized starch content appear to be associated as seen in plot 3 below. 

Both chemical foaming agents show a peak cell count of 50 cells at around 20 (%w/w) 

gelatinized corn starch whereas a physical foaming agent yields a high cell count of 35 cells at 

50 (%w/w) gelatinized cornstarch. Least cell counts for each chemical foaming agent differ. 

EXOCHEM30 samples have the least count of cells at 19 cells and ENDOCHEM40 samples had 

the least number of cells at 24.  

 

 
Plot 3 - Cell count vs. Gelatinized starch content 
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 A neat pattern is observed with mean cross-sectional area in plot 4. Each foam 

sample has a peak mean cell size of  > 2.0 mm2 but at different gelatinized starch 

concentrations; ENDOCHEM cell cross sectional area peaks at close to 40(%w/w), 

EXOCHEM  at 30(%w/w) and ENDOPHY at 20(%w/w)  gelatinized starch. After each 

of the different foams reach the peak a continous drop in cell-cross sectional area occurs, 

most notably with the ENDOPHY samples. Furthermore a comparison of plots 4 and 5 

indicates that as cell size increases, the number of cells decreases, in other words 

reciprocal relationship typically noticed in foamed materials. In comparison to figure 16 

as gelatinized starch content increases density simultaneously increases regardless of the  

foaming agents used. 

                     
Plot 4-Cell cross sectional area versus Starch content 
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 Plot 5 below shows the relationship between cross sectional cell area and number 

of cells. For each foam the cell count ranges from 19 to 50 cells.  The cross sectional area 

ranges from 0.2 mm2  to 2.0 mm2.  Cell coalescence is more likely to appear at lower 

starch concentations than at high concentrations. This is evident by changes in viscosity 

when mixing gelatinized starch and prepolymer. At low concentrations of gelatinized 

starch viscosity is low and coalescence more likely to occur. Whereas when viscosity 

increases cell shape is retained but also more likley to collapse. The assumpation also 

follows along with why samples with higher gelatinized starch content have lower cell 

cross sectional area because the pressure exerted from the foaming agent on the blended 

materials is constricted by blend viscosity. 

 

 
Plot 5-Mean cell x-section vs starch content 
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17. Compression and Energy Absorption  

 Compression results are interesting and do not show a clear trend in regards to 

gelatinized starch content. Mechanical properties measured: stress at maximum strain, 

hysteresis, modulus and theoretical static cushion curves were derived. Samples were 

tested at 4 different strains, high humidity and ambient atmospheric conditions. After 

testing the samples were observed to make nearly a full recovery to initial dimensions, 

but as strain increased time to recovery greatly increased. Furthermore the maximum 

strain of 68% is approaching threshold for permanent deformation.  

 Per figure 20 perpendicular refers to foam being compressed perpendicular to 

direction of rise and parallel refers to the compression force being uniaxial with direction 

of rise. In other words compression platens are parallel with the natural surface of the 

foam. It appears that foams show isotropic behavior at 50% strain. It should be noted that 

the variation in compression properties due to direction of the foam is not taken into 

consideration in proceeding tests. The reason being that the method used for mixing 

gelatinized starch and pre-polymer creates poor dispersion or unknown interactions of 

materials and is thought to be the main cause for variation in results. As seen below the 

standard deviation for each sample overlaps one another. During compression tests 

similar behavior was observed with all samples; with respect to either perpendicular or 

parallel direction stress measured can be randomly high or low within that given range.  
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Figure 21-ENDOCHEM40 direction dependent properties at 50% strain  

 

 

 

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

Compressive stress at 50%
Strain

Hysteresis (Energy
Absorption)

Modulus (Automatic)

M
Pa

 
Perpendicular to mold

Parallel to mold



Mechanical and Physical Characterization of foams made of Gelatinized starch and pre-polymer polyurethane   

53 

 

 Figure 21 shows the compression modulus at 16% strain for all samples. At first look 

results appear to have an erratic trend, but both ENDOCHEM and ENDOPHY have a peak stress 

of 22 and 24 MPa respectively at 40(%w/w) gelatinized starch. At 40(%w/w) gelatinized starch 

there could be a critical point for the interactions between gelatinized starch and pre polymer. 

Densities measured would suggest the densest samples would yield the highest modulus, 

however weak interactions within the macromolecule structure could cause sample failure before 

the full strain is reached. It should also be noted that samples did not become fragmented after 

compression. Overall the moduli can vary by a factor of 10, dependent on gelatinized starch 

content or foaming agent. 

 In comparison to figure 22 the moduli increase substantially due to higher strains but 

overall the trend is similar. The error bars represent the standard deviation between samples that 

were prepared completely at random orientation with regards to figure20. It may indicate poor 

dispersion as noted earlier.  

 

Figure 22-Compression modulus results at 16% strain 
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 The compression modulus of each material at 68% strain is found in Figure 22. Set of 

samples for each different type of foaming agent show different trends. In general however 

increase in gelatinized starch content causes modulus to increase.  

 For ENDOCHEM samples 10-30 (%w/w) show little change in modulus even with 

changes noted above in cell structure. The change from 30(%w/w) to 40(%w/w) appears to 

increase by a factor of 2 or more. For EXOCHEM samples the moduli change by a factor of 7. 

EXOCHEM20-40 have similar moduli ranging from 34 to 38 MPa. And EXOCHEM50 has a 

maximum modulus of 75 MPa. Finally ENDOPHY samples have the most discernable trend; as 

gelatinized corn starch content increases modulus proportionally. Contrasting ENDOCHEM and 

EXOCHEM with ENDOPHY samples suggest that foaming agents affect foams modulus but in 

contrast to 16% strain it is believed that gelatinized starch is a major factor for 50% samples 

below in Figure 22.   

 

Figure 22-compression modulus at 68% Strain 
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 To help determine how foaming agents may affect modulus plot 6 below shows the 

relationship between cell size vs compression modulus. These findings agree in 2 ways with plot 

4; cross-sectional area vs gelatinized starch content. First, cross sectional area decreases when 

both gelatinized starch content and modulus increase for ENDOPHY samples. Second, both 

foam samples made with chemical agents show opposite trends than the single physical foaming 

agent.  

 

 

 

Plot 6- Cell Size vs. Modulus at 68% strain 
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In literature review starch based materials are noted extensively for their hydrophilic 

behavior. Samples were conditioned in both ambient conditions and at 90% R.H. and 23oC and 

then compression tested. Results in plot 7 show 3 logical trends. First; each set of samples 

ranging from 10-20(%w/w) appear to measure the same stress at 50% strain regardless of 

previous conditioning. Second, from 20-40 (%w/w) ambient conditioned samples measured 

higher static stress and third samples with 40 to 50 (% w/w) gelatinized starch conditioned at 

90% R.H see a greater increase is stress.  This switch in behavior indicates that not only does the 

foam become stronger but there are interactions between the foamed materials and a humid 

environment.  

 Furthermore significant changes in compression stress are observed at 50 (% w/w) 

gelatinized starch for all samples. EXOCHEM50 samples show the greatest increase in 

compression stress; from 6 MPa for ambient conditioned samples to 12 MPa for 90% R.H. 

conditioning, increasing by a factor of 2 may indicate changes in the chemical structure or 

secondary interactions with the environment.  ENDOCHEM50 samples show a 60% 

compression stress increase and ENDOPHY50 sample have 50% compression stress increase.  

According to Table 4 -OH-   molarities are 0.51 for EXOCHEM10 and EHNDOPHY10 samples 

and 0.54 ENDOCHEM10 samples.  The molarity for NCO used to prepare samples is 0.52. Thus 

samples with approxiamately10 (%w/w) gelatinized corn starch have the highest probability of 

optimal interactions within the blend itself and outside factors such as high humidity should have 

little to no effect on blends. Once the moles -OH-surpass 0.52 interactions with a humid 

environmental evident by changes in plot 7.  
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Plot 7- Effect of humidity on compression stress at 50% strain 
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18. Cushion curves 

 Developing cushion curves for foam is a preliminary task to developing through-mail 

packages or for a dynamic environment. Creating cushions curves for these foams can help 

differentiate between which foams can be useful or further optimized via equation 3. Actual 

testing requires large square samples of roughly 200 mm2 and thus requires different sample 

preparation equipment which is unavailable. Calculated static cushion curves cover a wide range 

of product frigidly numbers at only 12 in drop height and appears to have no consistent trend 

between each different foaming agent. Validation of these cushions curves may result in a static 

cushion curve factor so that predicted values better match actual results (50).  Gelatinized corn 

starch content on the other hand appears to cause a shift for each different foaming agent. To 

present a clear interpretation 20 and 40 (%w/w) gelatinized starch samples are removed from the 

plots below. Plots with all samples are in the appendix. 

 For all samples containing 10 (% w/w) gelatinized starch plot 8 shows predicted cushion 

curves. Both ENDOPHY and EXOCHEM have limiting G-values at 50% strain around 2 MPa. 

ENDOCHEM samples in comparison are limited at 50% strain but at a lower G-value. Overall 

the different foams can be utilized from 10 to 65 G-force and 0 to 2 MPa of stress.  

 
Plot 8-12inch static cushion curves for 10% gelatinized starch samples 
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 As seen in plot 9 30 (%w/w) gelatinized corn starch product fragility increases to a range 

of 14 to 75 G’s and a static stress range of 1.3 to 5 MPa. The increase over 10 (%w/w) 

gelatinized corn starch samples is most likely in agreement with preceding results.  Gelatinized 

starch content increases foam modulus and thus energy density for shock absorption behavior. 

However shape or shift in curves between 10 and 30 (%w/w) gelatinized starch foams is 

peculiar.  ENDOCHEM curves for both 10% and 30% are very similar in shape and coordinates. 

EXOCHEM and ENDOPHY samples at 10% actually behave better in terms of deceleration 

below 10 G’s and  sustain higher static stress than samples at 30%. 

 

 
Plot 9-12inch static cushion curves for 30% gelatinized starch samples 
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 For 50 (%w/w) gelatinized starch samples seen in plot 10 the limiting fragility values 

range from 14 to 75 G’s. In contrast to the 30 (%w/w) samples there is little variance in 

deceleration. However the static stress values have an increase in range from around 2 to 18 

MPa.  

 

 
Plot 10-12inch static cushion curves for 50% gelatinized starch samples 
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 Plot 11 plots the same foaming agent with different amounts of gelatinized starch. Shifts 

in the cushion curves are observed in contrast to previous plots that were based on different 

foaming agents. These plots clearly show the effect of gelatinized starch content on cushion 

performance. Each plot below excludes 30 and 40 (%w/w) gelatinized starch foams in an effort 

to more clearly understand results. The appendix has plots with cushion curves with all foam 

samples made.  

 EXOCHEM samples below in plot 11show a shift in static stress of about 1 MPa as the 

gelatinized starch content increases from 10 to 30 (%w/w) and finally 50(%w/w). Deceleration 

remains constant between samples with a threshold just above 10 G’s at minimum. 

 

 

Plot 11-12inch static cushion curve for EXOCHEM foam samples 
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 ENDOCHEM samples in plot 12 show a slight shift of 1 MPa in static stress after 10 (% 

w/w) gelatinized starches. However ENDOCHEM30 and ENDOCHEM 50 are fairly similar in 

behavior. Only differing by gelatinized starch content and ENDOPHY samples exhibit 20 G’s 

deceleration at the same stress. ENDOCHEM 50 also has 54% more energy absorption at lower 

the deceleration threshold. The similarity between 30 and 50% gelatinized starch suggest that the 

materials dispersion may be interfering with material performance and in this case hindering 

them.  With respect to plot 11 and 13, EXOCHEM and ENDOPHY samples show a clear shift 

with increased gelatinized starch content. For plot 12 the only difference would be the type of 

foaming agent incorporated. In addition to previous characterization methods plot 12 also 

suggest dispersion between materials in reference to samples ENDOCHEM30 and 

ENDOCHEM50.  

 

 

Plot 12-12 inch static cushion curve for ENDOCHEM foam samples. 
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 For ENDOPHY samples in plot 13 much like EXOCHEM samples a shift is noticed. As 

gelatinized starch content increases a higher stress at nearly the same deceleration is found. And 

overall having a greater stress range than the 2 previous samples at 50 (%w/w) gelatinized starch.  

Each of the ENDOPHY samples reaches minimum deceleration of 13-14 G’.  In contrast to 

ENDOCHEM there appears to be a strong influence of gelatinized starch content which also 

brings to light possible interactions between chemical foaming agents and the material blend.  

 

 

Plot 13-12 inch static cushion curve for ENDOPHY foam samples 
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19. Fourier Transform Infrared Spectroscopy (FTIR) 

 

 ENDOPHY samples seen in figure 23 appear to have immediate change in spectrum 

intensity from ENDOPHY10 to all foam samples with higher percent gelatinized corn starch. 

The ENDOPHY10 spectrum wave number 1715-1717 cm-1 and 1509 to 1519 cm-1 is suspected 

to be a -N-H- that has hydrogen bonded with -OH- groups of both castor oil and gelatinized 

starch. With the incorporation of additional isocyanate segments potential interactions between 

the prepolymer and gelatinized corn starch is anticipated. Furthermore evidence of free or non-

reacted isocyanate segments would show a peak in the range of 2200-2400 cm-1. The decrease in 

intensity in the remaining four samples is most likely caused by the increase in gelatinized starch 

content. Castor oil is identified at 2925-2854 cm-1 where -C-H- segments are stretch and 

bending.  Furthermore the cis isomer in castor oil is identified at 722 cm-1.                 

 From an overall perspective there is no indication of starch in native form as would be indicated 

by a peak in the range of  3000-3500 cm-1, where CH2 shows bending absorption. ENDOPHY10 

spectrum has peak at 3337 cm-1 with low intensity which suggests inconsistency in the 

gelatinization process. Furthermore a characteristic peak is missing in samples ENDOPHY20 

and ENDOPHY50; 1045 and 1017 cm-1. These peaks are in the fingerprint region and perhaps 

explain why mechanical properties have an erratic trend. 
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Figure 23-ENDOPHY FTIR-ATR Spectra 
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 ENDOCHEM samples in figure 24 below have no immediate shifts in spectra, but subtle 

shifts are noticed in the range of 2922 to 2924 cm-1. As mentioned previously these shifts can be 

associated with C-H in castor oil and CH2 in corn starch. Evidence of native starch is indicated 

roughly in the range of 3000-3500 cm-1, the stretching of hydroxyl groups. Broad peaks are 

noticed roughly at 3300 cm-1 with minimum intensity. Thus the wave numbers 2922-2924 cm-1 

are designated as castor oil. As seen with ENDOPHY samples 2 peaks; 1715- 1717 cm-1 and 

1509-1515 cm-1 show isocyanate interactions with both castor oil and starch respectively.  

Residual sodium bicarbonate is observed at roughly 1307-1308 cm-1 and from 1211-1213 cm-1 is 

residual citric acid (53).                               

  To help describe the erratic trend in figures 21 and 22 peaks found in the range of 1713 

to 1715 cm-1 could be the result of free and bonded urethane groups. From literature review a 

decrease in wave number correlates to hydrogen bonded urethane groups whereas a higher 

number is the result of free urethane groups. Thus in figure 22 ENDOCHEM 40 exhibits a 

maximum modulus due to increased intermolecular interactions.   
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Figure 24-FTIR-ATR ENDOCHEM samples 
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 The low intensity humps found in figure 26 between 3500-3000 cm-1 are evidence of 

native starch but not in its native form All EXOCHEM samples have the designated castor oil 

peaks at 2924-2925 cm-1 and 2854 cm-1. Evidence of interactions between gelatinized corn 

starch, castor oil and urethane linkages is found at 1709 -1730 cm-1 and 1510-1511 cm-1 which is 

the formation of a saturated carbon atom a when a urethane linkage is created. 

  In regards to figure 22 (68% strain modulus bar graph) EXOCHEM20 has the highest 

modulus (40MPa)  among  samples EXOCHEM30 and EXOCHEM40. The spectra from 

EXOCHEM20 indicate poor blending/dispersion with a broad hump at 3333 cm-1 and free 

isocyanate segments at 2295 cm-l. Furthermore the peak at 1720 cm-1 is the least intense among 

all 3 samples suggesting that the reaction  preference was for castor oil over gelatinized corn 

starch. It is suspected that mixing of gelatinized corn starch and prepolymer was more thorough 

for EXOCHEM30 and EXOCHEM40 based on peak intensity at 1730 and 1718 cm-1 respectivly 

(increase in viscosity was observed). The intermittent double peak at 1017cm-1 and 1045 cm-1 are 

evidence of an aromatic ring and C-O-C segment respectively.  
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Figure 26-FTIR-ATR EXOCHEM samples 
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XI. Conclusion 

 Evidence from the above methods of characterization supports the initial aim of the study 

to investigate differences in gelatinized corn starch proportion and different foaming agents 

based on thermodynamic behavior in a blended foam material. From an overall perspective there 

are three main conclusions: first: foaming agent has an effect on mechanical and physical 

properties of the overall blend, second: the effect of gelatinized starch content is  independent 

from foaming agent but still affects  mechanical and physical properties of the blend and third: 

blends of gelatinized corn starch and pre-polymer made from castor oil and 4,4, methylene 

diphenyl diisocyanate were successfully prepared with viscoelastic and hydrophobic properties. 

 Findings that support the effect of foaming agent on foam blends are in cell structure 

measurements. The maximum cross sectional area for each foam blend occurs at different 

gelatinized corn starch proportions: ENDOPHY20, EXOCHEM30 and ENDOCHEM40, per plot 

4. As for mechanical properties; modulus increases with cell cross sectional area for chemical 

foaming agents, in contrast modulus decreases with cross sectional area for a physical foaming 

agent, per plot 6.  

 Gelatinized corn starch proportion has an independent effect on physical properties of the 

blend as seen in figure16 and plot 2. In regards to plot 4 it is known that a maximum peak in cell 

cross sectional for ENDOCHEM samples occurs at 40(%w/w) gelatinized starch proportion but 

figure 16 shows ENDOCHEM40 to be comparatively the most dense, hence the effect if high 

Mw corn starch. Plot 2 provides evidence that density of foams increases with the increase in 

proportion of gelatinized starch most notably for ENDOPHY samples. Mechanical properties of 

foam samples suggest that gelatinized starch has greater influence than foaming agents based on 

plot 7, plots 11-13 and figure 22. Static cushion curves not only provided information on foam 

performance but also a practical understanding of compression properties measured. Such that 

plots 11-13 show a clear trend between samples differing in gelatinized starch content and shifts 

in deceleration values and static stress.  On the other hand plots 8 -10 show the effect of foaming 

agents is unreliable. Plot 7 is very important because it indicates a response in the microstructure 

from the outside environment such that as samples exceed 20% gelatinized starch content effects 

of moisture are measureable due to additional free –OH- segments in gelatinized starch. Further 

support of gelatinized content on mechanical properties is seen in figure 22 where compression 

modulus at 68% stain shows the impact of increasing the hard segments in the overall blend.  
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 As a final point, sample preparation was successful at creating hydrophobic samples 

based on results in plot 7 there is no effect of high humidity conditioning on all samples with 10 

and 20 (% w/w) gelatinized starch. Once 20(%w/w) gelatinized starch content is exceeded a 

plasticizing effect of moisture is evident and logical. Viscoelastic nature of these samples is 

simply evident by the fact that cushion curves are able to be predicted. More supportive evidence 

is found within the FTIR spectra for all samples where urethane linkages with castor oil and 

gelatinized starch are detected.  

 Final comments on this should be made about the possibilities of future investigation. 

The shear rate of the blending procedure was observed to be low and perhaps not vigorous 

enough because the viscosity greatly increases during blending and overcame the torque of the 

mixing motor twice. These two factors together could produce interesting results. Another area 

of study would be validation of cushion performance and development of cushion factors (50). 

The fact that the foam is a blend could have unforeseen advantages over a homogenous foamed 

material. Furthermore there were some general observations made; over a period of months 

multiplied samples appeared to have growth of bacteria as seen by discoloration. Amds last; out 

of curiosity a 40 (%w/w) sample was left in a beaker of water and remained a float for a period 

of weeks.  
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Table 4 - Summary of Properties 
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XII. Appendices 

 
Plot 14- Static cushion curves for 20% (w/w) gelatinized starch samples 

 
Plot 15- Static cushion curves for 40% (w/w) gelatinized starch samples 
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Plot 16-Static cushion curves for all ENDOCHEM samples 

 

 
Plot 17-Static cushion curves for all EXOCHEM samples 
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Plot 18-Static cushion curves for all ENDOPHY samples 
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Table 5- Literature Review FTIR Spectrum 

 

 

 

 

    

Authors Wave Number  
(cm-1)

Chain Segment Behavior Material

3600-3100 N-H Stretching PU
1600-1760 C=0 Stretching PU or CO

3450  -OH- absop CO
1635 c=c CO

 3300 (natural 
starch)

O-H
Stretching 
vibration

Starch

2976 C-H stretching ethyl starch
1727 C=O Free PU
1708 C=O hydrogen Bonded PU
1643 C-H2 Bending starch
1744 C=O stretching CO
1726 urethane groups Free PU

1729 and 1512 urethane groups
Bonded to CO and 

Starch
PU

1703-1744 urethane linakge NCO2

1704
hydrogen bonded 

urethane
PU H-BOND

3334 N-H
intramoleculer 

hydrogen bonds
PU

1732 C=O Free PU
1700 C=O hydrogen Bonded PU
1645 O-H CS or TPS

2927 CH2
asymetric 
stretching

CS

722 C-H Cis out of plane CO

2925, 2855,1463 C-H
stretch and 

bending
CO

1164-1101 C-O stretching CO

3388 and 3450 N-H Stretching PU H-BOND & 
1743 and 1720 C=O Stretching PU H-BOND & 

1529                                   
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(2005).

Gao, Z., Peng, J., 
Zhong, T., Sun, Jin., 
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Wang, J, H., Rong, Z, 

M., Zhang, Q, M., 
Hu, J., Chen, W, H., 

Cao, X., Wang, Y. 
and Zhang, Y. (2005)

Wu, Q., Wu, Z., Tian, 
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Tan, L., Su, Q., 
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H. (2015)
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