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L(h, k) labeling of Cartesian products of complete graphs and paths

Abstract

In an L(h, k) labeling of a graph G we assign non-negative integers to the vertices of the graph such that

the labels of the vertices that are at a distance of one have a difference of at least h and the labels of the

vertices which are at a distance of two have a difference of at least k. The aim in general is to minimize the

L(h, k) span, where the L(h, k) span is the difference between highest and lowest label used. In this thesis

we analyze L(h, k) labelings of Cartesian products of complete graphs and path. For h ≥ k we establish

the minimum L(h, k) span of these graphs. For h < k we establish the minimum L(h, k) span in most

cases. We provide conjectures on the minimum L(h, k) spans for values of h and k for which we were not

able to establish the minimum L(h, k) span.
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L(h, k) labeling of Cartesian products of complete graphs and paths

1. Introduction and definitions

The L(h, k) problem has its origins in the frequency assignment problem. It is typically a problem

of optimization. Let us say that there are some radio transmitters for which we need to assign fre-

quencies with an aim of minimizing the highest frequency used. The requirements originate from

the fact that frequencies of transmitters which are close by can possibly interfere with each other.

Therefore the prime objective of this frequency assignment problem was to eliminate interference.

During the 1960’s the demand for usable spectrum increased exponentially. Simultaneously the

growth of the usable spectrum decreased. This led to development of a number of new models

for frequency assignment with an objective of minimizing the frequencies used and eliminating

interferences, if any. One such model was L(h, k) labeling [20].

There are two types of objective functions in frequency assignment problems. One is called the

minimum span problem (where span is the difference between highest frequency and lowest

frequency) [15]. The other is called the minimum order problem (where order is the number of

distinct frequencies used). Minimizing the order does not always minimize the highest frequency

used. While we can find the order using a computational method in polynomial time, it is not

always possible to find the minimum span in polynomial time. In both types of problems we have

frequency-distance constraints. That is, transmitters that are close by should not have interfering

frequencies [13].

Metzger [18] first established the fact that the frequency assignment problem can be solved using

graph theory. He developed two coloring procedures for the problem and talked about two

techniques to solve the problem. One technique is called the frequency exhaustive technique

and the other is called the uniform assignment technique. Thus a model was created which

considerably increased the spectrum savings.

Hale [13] also pointed out the connection between the frequency assignment problem and graph

theory and used well-known graph theory algorithms to solve the frequency assignment problem.

Later, a formal definition using graph theory terminologies was developed to analyze the frequency

assignment problem.

1.1 Overview

Section 1.3 contains basic definitions and notations used in the thesis. In the section we also define

Cartesian product of the graphs with examples. Also we introduced a new term called transition.
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L(h, k) labeling of Cartesian products of complete graphs and paths

In Section 2, we give a brief introduction to L(h, k) coloring and discuss the NP completeness of

the problem. We also provide some known results pertaining to L(h, k) labeling.

Section 3 contains main results of this thesis. Section 3.1 starts with the basic lemma required for

our results. We divide the problem into different cases depending on the values of h and k. As we

increase the value of k keeping h as constant the problem becomes more and more tedious owing

to fact that we need to analyze more layers of a complete graph.

Section 4 contains lower bounds for the span of other graphs. In Section 5 and 6 we discuss future

directions in which we can proceed.
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L(h, k) labeling of Cartesian products of complete graphs and paths

1.2 Definitions

A graph G is a set of vertices (nodes) V connected by edges (links) E. Thus G = (V, E). The vertex

set is denoted by V(G) and the edge set is denoted by E(G). An edge e is a link between two

vertices. Two vertices are said to be adjacent if they have an edge connecting them. The degree

of a vertex is the number of edges that are incident to the vertex and is denoted by deg(v). The

maximum degree of a graph G, denoted by ∆(G), is the maximum across the vertices of G of

the degrees of those vertices. A lea f of a graph is a vertex with degree one. Leaves may not

always be present in a graph. A graph H is called a subgraph of a graph G if V(H) ⊆ V(G) and

E(H) ⊆ E(G). Let G = (V, E) be any graph, and let S ⊆ V be any subset of vertices of G, then the

induced subgraph G[S] is the graph whose vertex set is S and whose edge set consists of all of the

edges in E that have both endpoints in S. The distance between two vertices u and v (represented

by d(u, v)) is the number of edges in the shortest path connecting them.

A complete graph on n vertices is a graph in which every pair of distinct vertices is adjacent. The

complete graph on n vertices is denoted by Kn. A graph is connected if there is a path between

every pair of vertices. A path is a connected graph in which there are two leaves and all other

vertices have degree two. A path on n vertices is denoted by Pn. To define the Cartesian product,

consider two graphs G and H. Suppose the vertices of graph G are v1, v2, . . . , vn and that of H are

u1, u2, . . . , um. The vertex set of the Cartesian product of the graph G and H is the set of vertices

VG ×VH . The vertex w1 = (ui, vj) is adjacent to w2 = (uk, vl) if either ui and uk are same and vj is

adjacent to vl , or vj and vl are same and ui is adjacent to uk. The Cartesian product of G and H

is defined by G�H. Consider the Cartesian product of Kn and Pm. By the above definition, the

Cartesian product contains m layers of Kn. Each vertex vi is adjacent to its corresponding image

in the next layer. Throughout this paper we use the following representation. By vi,j we mean

a vertex in the Cartesian product where j represents the layer to which the vertex belongs and i

represents the position of the vertex in that layer. For example, consider Figure 1 which is K5�P2.

We have two layers of K5. As we can see in Figure 1 any vertex in the first layer will be named vi,1

and any vertex in the second layer will be named vi,2. Now the graph K5�P2 will have an edge

between vertex v1,1 in the first layer and the vertex v1,2 in the second layer. Similarly there will be

an edge between the vertex v2,1 in the first layer and vertex v2,2 in the second layer. In general for

Kn�Pm (when m > 1), there will be an edge between the vertices vi,j and vi,j+1 for j < m.
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L(h, k) labeling of Cartesian products of complete graphs and paths

v1,1 v1,2

v2,1 v2,2

v3,1 v3,2v4,1 v4,2

v5,1 v5,2

Figure 1: K5�P2

v1,1 v1,2v2,1 v2,2

v3,1 v3,2v4,1 v4,2

v1,3v2,3

v3,3 v4,3

Figure 2: K4�P3

K4�P3 is given in Figure 2. Note that the vertex v1,1 is at a distance of two from the vertex v1,3.

Throughout the thesis for Cartesian product of Kn�Pm we draw layers side by side and do not

show the edges between adjacent layers. Also we do not show all the edges in Kn to avoid

congestion. For example the graph Kn�P3 is represented as shown in Figure 3.

v1,1

Layer 1

Kn

v1,2

Kn

Layer 2

v1,3

Layer 3

Kn

Figure 3: Kn�P3

Given two non negative integers h and k, an L(h, k) labeling of a graph G = (V, E) is a map from

V to a set of labels such that adjacent vertices receive labels at least h apart, while vertices at

distance two receive labels at least k apart. The L(h, k) span of a labeling is difference between the

highest label and the lowest label. In this thesis, we use 0 as the smallest label and hence the span

of an L(h, k) labeling is the highest label used.
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L(h, k) labeling of Cartesian products of complete graphs and paths

0 4 15

19

303445

49

Figure 4: L(4, 15) labeling of C8

An example of an L(4, 15) labeling is shown in Figure 4. The highest label is 49. Hence the span of

this labeling is 49. The L(h, k) span of a graph, denoted by, λh,k(G) is minimum span of all L(h, k)

labelings for a graph. When no confusion will result, we refer to λh,k(G) simply as λ(G). Figure 5

shows the L(h, k) span for C8. So we have λ4,15(C8) = 19.

0 4 15

19

0415

19

Figure 5: L(4, 15) labeling of C8

We introduce a new term called transition. A transition is defined for two adjacent layers of Kn�Pm.

Let f be an L(h, k) labeling of Kn�P2. Arrange the vertices in increasing order of their labels. Let

the order be v1, v2, . . . , v2n−1, v2n. That is f (v1) < f (v2) < f (v3) < . . . < f (v2n−1) < f (v2n). The

vertex vi can belong to either the first layer or the second. We say we have a transition if the

vertex vi belongs to one layer and the vertex vi+1 to the other layer. Depending on the number of

transitions it has an L(h, k) labeling can be either a one-transition or a two-transition or in general

an n-transition labeling. To illustrate the concept, consider an L(4, 15) labeling of K6�P2 as shown

in Figure 6.

0
4

8
12

16

20
35

39

43
47

51

55

Figure 6: L(4, 15) labeling for K6�P2

In this example when we arrange the vertices in the increasing order of their labels, the vertices

of the first layer come first followed by the vertices of second layer. Therefore we have only one
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L(h, k) labeling of Cartesian products of complete graphs and paths

transition. The transition occurs since label 20 is in the first layer and the next highest label 35 is

in the second layer.

Now consider Figure 7 which shows a two-transition L(4, 15) labeling of K6�P2.

0
58

54
50

46

42
4

15

19
23

27

31

Figure 7: L(4, 15) labeling for K6�P2

When we arrange the vertices in increasing order of their labels, we have 0 in the first layer, then

we have 4 in the second layer. Therefore we have one transition there. After label 31 which belongs

to the second layer we have label 42 in the first layer. Therefore we have another transition. Hence

this labeling has two transitions.

Figure 8 shows a three- transition L(4, 15) labeling of K6�P2:

0
30

34
38

42

46
4

15

61
65

69

73

Figure 8: L(4, 15) labeling for K6�P2

In this labeling we have 0 in the first layer and 4 in the second layer which is the first transition.

After the label 15 which is in second layer the next highest label 30 in first layer. Hence we have

the second transition. The label 46 is in first layer and 61 is in second layer which is the third

transition.

Let f be an L(h, k) labeling of Kn�P2. Let f (v1) < f (v2) < f (v3) < . . . < f (v2n−1) < f (v2n). Let

us say we have a transition at some vertex vi. Without loss of generality assume vi is in first layer

and vi+1 is in second layer. Suppose that vi−1(if it exists) is in first layer and that vi+2(if it exists)

is in second layer. Then it is called an isolated transition.

Suppose we have a set of vertices vi, vi+1, vi+2 such that vi is in first layer, vi+1 is in second layer

and vi+2 is in first layer. Suppose that vi−1 (if it exists) is in first layer and that vi+2 (if it exists) is

in second layer. Then it is called combined two transition system.
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In general if we have n consecutive transitions starting at vi1 then we say we have combined n

transition system.

Observation 1. Consider an L(h, k) labeling of a graph Kn. Since the smallest label in a layer cannot be

less than zero and also we have n vertices which are adjacent to each other, the highest label in the layer is at

least (n− 1)h. In fact, λh,k(Kn) = (n− 1)h.
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L(h, k) labeling of Cartesian products of complete graphs and paths

2. Background on L(h, k) labeling of various graphs

2.1 Introduction

The L(h, k) problem was first introduced by Griggs and Yeh [12]. The problem arises in multihop

radio networks for frequency assignment. Initially the problem was studied for only special case

where h = 2 and k = 1. Later on the L(h, k) labeling was formally defined and was used to

model many other problems. L(h, k) labelings are used in packet radio networks to avoid hidden

collisions. They are also used in optical cluster based networks [19].

There are many results pertaining to L(h, k) span of different graphs. The upper and lower bounds

were established in special cases where (h, k) = (1, 0), (2, 1) for any generalized graph. It was

proved that λ0,1(G) ≤ ∆2 − ∆, where ∆ is the maximum degree for any graph G [14].

In the case of L(2, 1) labeling of a graph we have the lower bound, λ2,1(G) ≥ ∆ + 1 [10]. Griggs

and Yeh gave an upper bound, which is λ2,1 ≤ ∆2 + 2∆ [12]. It is conjectured that λ2,1(G) ≤ ∆2

[12]. This still remains an open problem. For a complete list of results about L(h, k) labeling and

its history, see [3].

2.2 NP completeness of the problem

The L(h, k) labeling problem in general is NP hard and becomes computationally intractable. It

is conjectured that the problem of finding if the L(h, k) span is less than some number r is NP

complete. Bertossi and Bonuccelli showed that L(0, 1) labeling can be used to solve the problem

of avoiding hidden collisions in packet radio networks [2]. They also proved that the decision

version of L(0, 1) is NP complete. McCormick proved that the decision version of L(1, 1) labeling

for minimum span is equivalent to decision version of L(2, 1) labeling for minimum order [17].

Griggs and Yeh proved that the decision version of the L(2, 1) labeling problem is NP complete [12].

2.3 Upper and lower bounds

For any positive integers h and k we have λh,k(G) ≥ h + (∆ + 1)k, where ∆ is maximum vertex

degree [4].

When k = 1, λh,1(G) ≤ ∆2 + (h− 1)∆ [10]. Later it was proved that λh,1(G) ≤ ∆2 + (h− 1)∆− 2,

8



L(h, k) labeling of Cartesian products of complete graphs and paths

when ∆ ≥ 3 [10]. Also it was observed that limh→∞
λh,1(G)

λh+1,1(G)
= 1 [4].

2.4 Known results

Theorem 2.1. [16] λ0,1(Pn) = 1.

In Figure 9 an optimal L(0, 1) labeling of P6 is shown.

0 0 1 1 0 0

Figure 9: Optimal L(0, 1) labeling of P6

Theorem 2.2. [1] λ1,1(P2) = 1 and λ1,1(Pn) = 2 for n > 2.

Figure 10 shows an optimal L(h, k) labeling.

0 1 2 0 1 2 0

Figure 10: Optimal L(1, 1) labeling of P7

Theorem 2.3. [11] For any h and k we have.

λh,k(Pn) =



0, for n = 1

h, for n = 2

h + k, for 3 ≤ n ≤ 4

h + 2k, for n ≥ 5 and h ≥ 2k

2h, for n ≥ 5 and h < 2k

Theorem 2.4. [7] In case of a cycle we have:

λ0,1(Cn) =

1, if n ≡ 0 (mod 4)

2, otherwise

Figures 11 and 12 show the L(h, k) labeling of cycles.

9



L(h, k) labeling of Cartesian products of complete graphs and paths

0 0 1 1 0

0

11001

1

Figure 11: L(0, 1) labeling of C12

0 0 1 1

0

0112

2

Figure 12: L(0, 1) labeling of C10

Theorem 2.5. [7] For any h and k we have .

λh,k(Cn) =



2h
if n = odd , n ≥ 3 and h ≤ 2k or

if n ≡ 0 (mod 3) and h ≥ 2k

h+2k
if n ≡ 0 (mod 4) and h ≥ 2k or

if n 6≡ 0 (mod 3), n 6= 5 and h ≤ 2k

2h, if n ≡ 2 (mod 4) and h ≤ 3k

h + 3k, if n ≡ 2 (mod 4) and h ≥ 3k

2h, if n ≥ 5 and h ≤ 2k

4k, if n = 5

Theorem 2.6. [8, 9] Consider the graph G ≡ Kn�Km. When 2 ≤ m < n, we have the following result.

λh,k(G) =



(m− 1)h + (n− 1)k, for h
k > n

(mn− 1)k, for h
k ≥ n

(n− 1)h + (2n− 1)k, for h
k > (n− 1)

(n2 − 1)h, for h
k < (n− 1)

In 2003, Erwin et al. gave the L(h, k) labeling for the Cartesian product of complete graphs

[6].

Theorem 2.7. [6] Consider the graph G =
n

∏
i=1

Kti which is the Cartesian product of n complete graphs .

10



L(h, k) labeling of Cartesian products of complete graphs and paths

When n > 3 and all the ti’s are relatively prime when 2 ≤ t1 < t2 < t3 < . . . < tn we have,

λh,k(G) =

(tntn−1 − 1)k, for h
k ≤ tn−1

(tn − 1)h + (tn−1 − 1)k, for h
k > tn−1

In 2009, Huang et al [5], gave a potential labeling for the graph G =
n

∏
i=1

Kni , where there is no

restriction on ni which provides an upper bound, where the notation
n

∏
i=1

Gni represents Cartesian

product of the graphs.

Theorem 2.8. [2] Bertossi et al. proved that L(0, 1) labeling for binary trees requires only 3 colors.

Theorem 2.9. [2] λ1,1(B) = ∆, where B is a binary tree

A Tree is an undirected graph in which any two vertices are connected by exactly one path.

Theorem 2.10. [12] (∆ + 1) ≤ λ2,1(T) ≤ (∆ + 2), where T is a tree.

Later on, Chang and Kuo gave a polynomial time algorithm based on dynamic programming to

find the span .
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3. L(h, k) labeling of Kn�Pm

We start by proving the following lemma.

Lemma 3.1. Let H be an induced subgraph of G. Then λ(h,k)(H) ≤ λ(h,k)(G).

Proof. Let f be an optimal L(h, k) labeling of G. Consider two vertices u and v such that u, v ∈

V(H). If dH(u, v) = 1 then dG(u, v) = 1. Therefore we have | f (u)− f (v)| ≥ h. If dH(u, v) = 2,

then dG(u, v) = 2 (since H is an induced subgraph of G). Therefore | f (u)− f (v)| ≥ k. Therefore

f restricted to H is an L(h, k) labeling for H. Hence we have λh,k(H) ≤ λh,k(G).

Remark 1. The proof does not work if H is not an induced subgraph of G. For example consider

the graphs K4 and its subgraph C4.

0 2

46

Figure 13: L(2, 6) labeling of K4

0 2

68

Figure 14: L(2, 6) labeling of C4

From Figures 13 and 14, we have λ2,6(K4) < λ2,6(C4).

Remark 2. If h ≥ k, and if H is a subgraph of G, then λh,k(H) ≤ λh,k(G).

3.1 h ≥ 2k

Theorem 3.1. λh,k(Kn�Pm) = (n− 1)h + k, when h ≥ 2k.

Proof. Consider the graph H which is Kn�P2. Let f be an optimal L(h, k) labeling of H with the

highest label less than or equal to (n− 1)h + k− 1. Without loss of generality let the highest label

be f (vx,1). Any vertex vj,2 in the second layer will be either at a distance of one or two from vx,1.

Consider the vertex vx,2 in the second layer which is at a distance of one from vx,1, therefore:

f (vx,2) ≤ (n− 1)h + k− 1− h

= (n− 2)h + k− 1

< (n− 1)h

12



L(h, k) labeling of Cartesian products of complete graphs and paths

Consider any vertex vj,2 in the second layer which is at a distance of two from vx,1, then

f (vj,2) ≤ (n− 1)h + k− 1− k

= (n− 1)h− 1

< (n− 1)h

which is a contradiction to Observation 1.

Hence we have λ(H) ≥ (n− 1)h + k. Since the graph H is an induced subgraph of the graph

Kn�Pm, we have, λ(Kn�Pm) ≥ (n− 1)h + k. Also we have a labeling which uses (n− 1)h + k

labels. The labeling is as follows.

In the jth layer, when j is odd, any vertex vi,j will have label (i− 1− j−1
2 )h (mod nh) for 0 ≤ i ≤

n− 1.

In the jth layer, when j is even, any vertex vi,j will have label (i + 1 − j
2 )h + k (mod nh) for

0 ≤ i ≤ n− 1 respectively.

Now we give the proof that this an L(h, k) labeling

Case 1. In the jth layer, when j is odd, we have f (vi,j) = (i− 1− j−1
2 )h (mod nh).

If we take two vertices in the same layer then

| f (vi1,j)− f (vi2,j)| = |(i1 − 1− j−1
2 )h− (i2 − 1− j−1

2 )h (mod nh)|

= |(i1 − i2)h|

≥ h

If we take a vertex from (j + 1)st layer then | f (vi1,j)− f (vi2,j+1)| = |(i1 − 1− j−1
2 )h− (i2 + 1−

j+1
2 )h− k (mod nh)|. If i1 = i2, then

| f (vi1,j)− f (vi2,j+1)| = | − h + k (mod nh)|

> h

If i1 6= i2 then

| f (vi1,j)− f (vi2,j+1)| = |(i1 − i2 − 1)h− k (mod nh)|

≥ |k (mod nh)|

If we take a vertex from (j + 2)nd layer only vi,j+2 will be at a distance of two. So

| f (vi,j)− f (vi,j+2)| = |(i1 − 1− j−1
2 )h− (i1 − 1− j+1

2 )h (mod nh)|

= |h (mod nh)|

> k.

13



L(h, k) labeling of Cartesian products of complete graphs and paths

Case 2. In the jth layer, when j is even, we have f (vi,j) = (i + 1− j
2 )h + k (mod nh).

If we take two vertices in the same layer then

| f (vi1,j)− f (vi2,j)| = |(i1 + 1− j
2 )h + k− (i2 + 1− j

2 )h− k (mod nh)|

= |(i1 − i2)h|

≥ h

If we take a vertex from (j + 1)th layer then | f (vi1,j)− f (vi2,j+1)| = |(i1 + 1− j
2 )h + k− (i2 − 1− j

2 )h

(mod nh)|. If i1 = i2, then

| f (vi1,j)− f (vi2,j+1)| = |2h + k (mod nh)|

> h

If i1 6= i2 then

| f (vi1,j)− f (vi2,j+1)| = |(i1 − i2 + 2)h + k| (mod nh)

≥ k( since k < h)

If we take a vertex from (j + 2)nd layer only vi,j+2 will be at a distance of two. So

| f (vi,j)− f (vi,j+2)| = |(i + 1− j
2 )h + k− (i + 1− j+2

2 )h− k (mod nh)|

= | − h (mod nh)|

= (n− 1)h

> k.

We show an L(5, 2) labeling for K6�P4 in Figure 15.
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27

Figure 15: L(5, 2) labeling of K6�P4

Remark 3. The labeling does not work when h < 2k. For example if h = 5 and k = 3 when we

label the graph K6�P2 using the above mentioned labeling as shown in Figure 16, we have a

conflict since the vertex which has label 8 is at a distance of two from the vertex which has label

10 and k = 3. Hence the distance two criteria is not satisfied.
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Figure 16: Labeling in Theorem 3.1 fails for L(5, 3)

3.2 2k > h ≥ k

Theorem 3.2. If 2k ≥ h ≥ k, then λ(Kn�Pm) = (2n− 1)k.

Proof. Consider the graph H which is Kn�P2. Let f be an optimal L(h, k) labeling of H. In the

graph H each vertex is either at a distance of one or two from every other vertex. Since h > k, we

have the highest label required is at least (2n− 1)k. Therefore λ(H) ≥ (2n− 1)k.

Since H is an induced subgraph of Kn�Pm we have λ(Kn�Pm) ≥ (2n− 1)k.

Also we have an L(h, k) labeling of the graph H with (2n− 1)k as the highest label. We use the

labeling which was explained in the proof of Theorem 3.1 with h = 2k.

We show L(6, 4) labeling of K6�P4 in Figure 17.
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Figure 17: L(6, 4) labeling for K6�P4

Remark 4. Using a brute force program we checked that although the labeling works when h < k

it is no longer an optimal L(h, k) labeling. Consider two L(4, 8) labelings of the graph K6�P4

shown in Figures 18 and 19.

15



L(h, k) labeling of Cartesian products of complete graphs and paths
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Figure 18: L(4, 8) labeling for K6�P4 using the above mentioned labeling
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Figure 19: L(4, 8) labeling for K6�P4 found using the brute force program

From Figures 18 and 19 we can say that labeling fails when h < k

3.3 h < k ≤ bn
2 ch

Theorem 3.3. If h < k ≤ nh
2 and m, n ≥ 3, then λ(Kn�Pm) = 2(n− 1)h + k.

Proof. Consider the graph H = Kn�P3. Let f be an optimal L(h, k) labeling of H. Assume that

the highest label is less than or equal to 2(n− 1)h + k − 1. Now consider the first two layers.

There are 2n vertices. Let us arrange the vertices in the increasing order of their labeling. That

is f (v1) < f (v2) < f (v3) < . . . < f (vn−1) < f (vn) < . . . < f (v2n−1) < f (v2n). The vertex vi can

either belong to the first layer or the second. Let xi be the difference between f (vi) and f (vi+1).

Since each vertex is either at a distance of one or two from any other vertex we have xi ≥ h.

Claim: x1 + x2 + x3 + . . . + x2n−1 ≤ 2(n− 1)h + k− 1.

Proof of the claim: We know that x1 = f (v2)− f (v1), x2 = f (v3)− f (v2). Similarly, xl = f (vl+1)−

f (vl), for any l such that 1 ≤ l ≤ 2n− 1 So when we add all xi’s we have their sum equal to

f (v2n) − f (v1). We know that f (v1) ≥ 0 and f (v2n) ≤ 2(n − 1)h + k − 1. Hence we have

x1 + x2 + x3 + . . . + x2n−1 ≤ 2(n− 1)h + k− 1. �

Claim: xi ≤ k− 1, for 1 ≤ i ≤ 2n− 1

Proof of the claim: Assume for some j, we have xj ≥ k. We still have (2n− 2) other xi’s and each

xi ≥ h. Their sum x1 + x2 + x3 + . . . + xj−1 + xj+1 + . . . + x2n−1 ≥ (2n− 2)h, adding xj to the sum

16
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we have

x1 + x2 + x3 + . . . + xj−1 + xj + xj+1 + . . . + x2n−1 ≥ (2n− 2)h + k

= 2(n− 1)h + k

> 2(n− 1)h + k− 1

which is a contradiction. Therefore h ≤ xi ≤ k− 1. �

Now consider the first and second layers, there has to be at least one transition between the layers.

Let us assume that there is a transition at vertex vi. That is the vertex vi will belong to one layer

and vi+1 will belong to the layer adjacent to it. There are two cases that we need to consider. We

first prove a claim

Claim: If h < k ≤ nh
2 and n > 3, then we have λ(Kn�P2) ≥ (2n− 3)h + k

Proof of the claim: If we have a combined 2-transition between the layers then we come across

set of vertices vl , vl+1, vl+2 such that vl and vl+2 belong to one layer and v′l+1 belongs to

an other layer. Without loss of generality assume that the vertices vl and vl+2 are in second

layer and vl+1 is in first layer. Now the vertex vl+1 cannot be adjacent to both vl and vl+2,

hence either d(vl , vl+1) = 2 or d(vl+2, vl+1) = 2. Therefore either xl ≥ k or xl+1 ≥ k, which

is a contradiction to the above mentioned claim. So only isolated transitions exist. Consider

an isolated transition at some vertex vj. Assume that the vertex vj is in second layer and

vj+1 is in first layer. We know that either vj−1 or vj+2 exist. So either xj−1 + xj ≥ k (since

d(vj−1, vj+1) = 2) or xj + xj+1 ≥ k (since d(vj, vj+2) = 2). Also we know that xi ≥ h for any i,

therefore x1 + x2 + x3 + . . . + xj + xj+1 + xj+2 + . . . + x2n−2 + x2n−1 ≥ (2n− 3)h + k �

Case 1. Let us assume that in the second layer we come across a vertex vi+1 such that f (vi+1) = y

and in the first layer we have the vertex vi such that f (vi) = y− xi.

Since xi ≤ k− 1, the distance between both the vertices should be one. That is d(vi, vi+1) = 1. The

vertices are shown in Figure 20.

vi

Layer 1

vi+1

Layer 2 Layer 3

Figure 20: Kn�P3
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Now consider the second and third layers. We again have 2n vertices with the same restrictions.

When we arrange the vertices in the increasing order of their labels and take the differences we

have an another set of x′1, x′2, x′3 . . . x′2n−1. The vertex vi+1 is in the second layer. So now consider

the vertex which comes before the vertex vi+1 after arranging the vertices in the increasing order.

Let that vertex be v′i. Therefore we have f (v′i) = y− x′l .

If the vertex v′i is in the second layer, then we have d(vi, v′i) = 2 as shown in Figure 21.

vi

Layer 1

vi+1

v′i

Layer 2 Layer 3

Figure 21: Kn�P3

If we calculate the difference between their labels we have | f (vi)− f (v′i)| = |xi − x′l | < (k− 1) < k.

If the vertex v′i is in the third layer and if d(vi+1, v′i) = 2 as shown in Figure 22,then we have

| f (vi+1)− f (v′i)| = |x′i | ≤ (k− 1) < k, a contradiction.

vi

Layer 1

vi+1

Layer 2

v′i

Layer 3

Figure 22: Kn�P3

If d(vi+1, v′i) = 1 as shown in Figure 23, then We have d(vi, v′i) = 2. Therefore | f (vi)− f (v′i)| ≥ k,

but if we calculate the difference between their labels we have | f (vi) − f (v′i)| = |xi − x′i | <

(k− 1) < k.

18
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vi

Layer 1

vi+1

Layer 2

v′i

Layer 3

Figure 23: Kn�P3

Now if vi+1 is the vertex with lowest label in second and third layers, since f (vi) < f (vi+1), we

have f (vi+1) ≥ h. By the above claim we can say that the difference between highest and lowest

labels in the second and third layers should be greater than or equal to (2n− 3)h + k. Now if v′2n

is the vertex with highest label in second and third layers then f (v′2n) ≥ (2n− 3)h + k + f (vi+1).

Therefore f (v′2n) ≥ (2n− 2)h + k.

Case 2. Now we assume that we come across a vertex vi in the second layer and the vertex vi+1 is

in the first layer with f (vi) = y and f (vi+1) = y + xi .

Since xi ≤ k− 1, we have d(vi, vi+1) = 1 as shown in Figure 24.

vi+1

Layer 1

vi

Layer 2 Layer 3

Figure 24: Kn�P3

Now consider the second and third layers. We again have 2n vertices with same restrictions.

When we arrange the vertices in increasing order of their labels and take their differences we have

x′1, x′2, x′3, . . . , x′2n−1. Consider the vertex v′i+1 which comes immediately after the vertex vi when

arranged in the increasing order. The vertex will have the label y + x′i .

If the vertex v′i+1 is in the second layer as shown in Figure 25, then d(vi+1, v′i+1) = 2, but if we

calculate the difference between the labels we have | f (vi+1)− f (v′i+1)| = |xi − x′l | < (k− 1) < k.
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vi+1

Layer 1

vi

v′i+1

Layer 2 Layer 3

Figure 25: Kn�P3

If the vertex v′i+1 is in the third layer and if d(vi, v′i+1) = 2 as shown in Figure 26, then we have

| f (v′i+1)− f (vi)| = |x′i | ≤ (k− 1) < k.

vi+1

Layer 1

vi

Layer 2

v′i+1

Layer 3

Figure 26: Kn�P3

If d(v′i+1, vi) = 1, as shown in Figure 27, then we have d(vi+1, v′i+1) = 2, which again gives us

| f (vi+1)− f (v′i)| = |xi − x′i | ≤ (k− 1) < k.

vi

Layer 1

vi+1

Layer 2

v′i

Layer 3

Figure 27: Kn�P3

If vi is vertex with highest label in second and third layers then v′i+1 does not exist. Since vi

is the vertex with highest label we have f (vi) ≥ (2n − 3)h + k from Claim 3. So f (vi+1) ≥
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(2n− 3)h + k + h

f (vi+1) ≥ (2n− 3)h + k + h

= (2n− 2)h + k

= 2(n− 1)h + k

Hence f cannot be an L(h, k) labeling of the graph.

Therefore, λ(Kn�P3) ≥ 2(n− 1)h + k. Since H is an induced subgraph of Kn�Pm for m ≥ 3 we

have λ(Kn�Pm) ≥ 2(n− 1)h + k. We now describe the labeling with highest label as 2(n− 1)h + k.

The labeling.

For the jth layer:

when j ≡ 1 (mod 4), for any vertex vi,j, we have f (vi,j) ≡ (i− 1)h (mod nh), for 1 ≤ i ≤ n.

when j ≡ 2 (mod 4), for any vertex vi,j, we have f (vi,j) ≡ (i− 1)h (mod nh) + (n− 1)h + k, for

1 ≤ i ≤ n.

when j ≡ 3 (mod 4), for any vertex vi,j, we have f (vi,j) ≡ (b n
2 c+ i− 1)h (mod nh), for 1 ≤ i ≤ n.

when j ≡ 0 (mod 4), for any vertex vi,j, we have f (vi,j) ≡ (b n
2 c+ i− 1)h (mod nh) + (n− 1)h + k,

for 1 ≤ i ≤ n.

Now we give the proof of labeling.

Case 1. In jth layer when j ≡ 1 (mod 4) we have f (vi,j) ≡ (i− 1)h (mod nh).

If we take two vertices in the same layer then

| f (vi1,j)− f (vi2,j)| = |(i1 − 1)h− (i2 − 1)h (mod nh)|

= |(i1 − i2)h|

≥ h

If we take a vertex from (j+ 1)th layer then | f (vi1,j)− f (vi2,j+1)| = |(i1− 1)h− (i2− 1)h (mod nh)−

(n− 1)h + k|. If i1 = i2, then

| f (vi1,j)− f (vi2,j+1)| = |0 (mod nh) + (n− 1)h + k|

> h

If i1 6= i2 then

| f (vi1,j)− f (vi2,j+1)| = |(i1 − i2)h (mod nh)− ((n− 1)h + k)|

≥ k(since (i1 − i2)h (mod nh) ≤ ((n− 1)h)
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If we take a vertex from (j + 2)th layer only vi,j+2 will be at a distance of two. So

| f (vi,j)− f (vi,j+2)| = |(i− 1)h− (b n
2 c+ i− 1))h (mod nh)|

= | − b n
2 ch (mod nh)|

= b n
2 ch

≥ k (since k ≤ b n
2 ch).

Case 2. In jth layer when j ≡ 2 (mod 4) we have f (vi,j) ≡ (i− 1)h (mod nh) + (n− 1)h + k.

If we take two vertices in the same layer then

| f (vi1,j)− f (vi2,j)| = |(i1 − 1)h− (i2 − 1)h (mod nh) + (n− 1)h + k− ((n− 1)h + k)|

= |(i1 − i2)h|

≥ h

If we take a vertex from (j + 1)th layer then | f (vi1,j)− f (vi2,j+1) = (i1 − 1)h− (b n
2 c+ i2 − 1)h

(mod nh) + (n− 1)h + k|. If i1 = i2, then

| f (vi1,j)− f (vi2,j+1)| = | − b n
2 ch (mod nh) + (n− 1)h + k|

= b n
2 ch + (n− 1)h + k

> h.

If i1 6= i2 then

| f (vi1,j)− f (vi2,j+1)| = (−b n
2 c+ i1 − i2)h (mod nh) + ((n− 1)h + k)|

≥ k (since (i1 − i2)h (mod nh)− b n
2 c ≤ ((n− 1)h)

If we take a vertex from (j + 2)th layer only vi,j+2 will be at a distance of two. So

| f (vi,j)− f (vi,j+2)| = |(i− 1− b n
2 c − i + 1))h (mod nh) + (n− 1)h + k|

= | − b n
2 ch (mod nh) + (n− 1)h + k|

= b n
2 ch + (n− 1)h + k

≥ k.

Case 3. In jth layer when j ≡ 3 (mod 4) we have f (vi,j) ≡ (b n
2 c+ i− 1)h (mod nh).

If we take two vertices in the same layer then

| f (vi1,j)− f (vi2,j)| = |(b n
2 c+ i1 − 1)h− (b n

2 c+ i2 − 1)h (mod nh)|

= |(i1 − i2)h|

≥ h

If we take a vertex from (j + 1)th layer then | f (vi1,j)− f (vi2,j+1)| = |(b n
2 c+ i1 − 1)h− (b n

2 c+ i2 −

1)h (mod nh)− (n− 1)h + k|. If i1 = i2, then

| f (vi1,j)− f (vi2,j+1)| = |0 (mod nh)− (n− 1)h + k|

> h
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If i1 6= i2 then

| f (vi1,j)− f (vi2,j+1)| = |(i1 − i2)h (mod nh)− ((n− 1)h + k)|

≥ k

If we take a vertex from (j + 2)th layer only vi,j+2 will be at a distance of two. So

| f (vi,j)− f (vi,j+2)| = |(b n
2 c+ i− 1− i + 1)h (mod nh)|

= |b n
2 ch (mod nh)|

= |b n
2 ch|

≥ k (since k ≤ b n
2 ch).

Case 4. In jth layer when j ≡ 0 (mod 4) we have f (vi,j) ≡ (b n
2 c+ i− 1)h (mod nh)+(n-1)h+k.

If we take two vertices in the same layer then

| f (vi1,j)− f (vi2,j)| = |(b n
2 c+ i1 − 1)h− (b n

2 c+ i2 − 1)h (mod nh) + (n− 1)h + k− ((n− 1)h + k)|

= |(i1 − i2)h|

≥ h

If we take a vertex from (j + 1)th layer then | f (vi1,j)− f (vi2,j+1)| = |(b n
2 c+ i1 − 1)h− (b n

2 c+ (i2 −

1)h (mod nh) + (n− 1)h + k|. If i1 = i2, then

| f (vi1,j)− f (vi2,j+1)| = |(b n
2 c+ i− 1− i + 1) (mod nh) + (n− 1)h + k|

> h

If i1 6= i2 then

| f (vi1,j)− f (vi2,j+1)| = |(i1 − i2)h (mod nh) + ((n− 1)h + k)|

≥ k

If we take a vertex from (j + 2)th layer only vi,j+2 will be at a distance of two. So

| f (vi,j)− f (vi,j+2)| = |(b n
2 c+ i− 1− i + 1)h (mod nh)|

= |b n
2 ch (mod nh)|

= b n
2 ch

≥ k (since k ≤ b n
2 ch).

In Figure 28 we show L(5, 9) labeling of K6�P4.
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Figure 28: L(5, 9) labeling for K6�P4

Remark 5. The labeling does not work when k > b n
2 ch. Using a brute force algorithm we checked

that to get a general expression for the optimal L(h, k) labeling, we need to analyze five layers of

the complete graph.

3.4 bn
2 ch < k ≤ (n− 1)h

Lemma 3.4. Let f be an optimal L(h, k) labeling of the graph Kn�P2 with nh
2 < k ≤ (n− 1)h, where n

is an even number greater than 4 and the vertex with zero label is in the first layer. If the highest label in the

first layer is less than ( n
2 − 1)h + k then every vertex in the second layer must have label greater than or

equal to (n− 2)h + k.

Proof. Consider the graph Kn�P2 and arrange the vertices of the first layer in the increasing order

of their labeling. That is, f (v1,1) < f (v2,1) < f (v3,1) < . . . < f (vi,1) < f (vi+1,1) < . . . < f (vn,1).

Now let us suppose we can use some value between f (vi,1) and f (vi+1,1) to label some vertex vj,2

in the second layer, so we have f (vi,1) < f (vj,2) < f (vi+1,1), where vi,1 is the ith highest labeled

vertex in the first layer. Now if vj,2 is adjacent to vi,1 then f (vj,2) ≥ f (vi,1) + h, and vj,2 is at a

distance of two from vi+1,1. So

f (vi+1,1) ≥ f (vj,2) + k

≥ f (vi,1) + h + k

Similarly if vj,2 is adjacent to vi+1,1 then f (vj,2) ≤ f (vi+1,1)− h and the vertex vj,2 will be at a

distance of two from vi,1, therefore

f (vi,1) ≤ f (vj,2)− k

≤ f (vi+1,1)− h− k.

If vj,2 is not adjacent to either vi,1 or vi+1,1 then f (vj,2) ≥ f (vi,1) + k and f (vi+1,1) ≥ f (vj,2) + k.

Thus f (vi+1,1) ≥ f (vi,1) + k + k.

Therefore in any case we have f (vi+1,1)− f (vi,1) ≥ h + k. Now in the first layer we have f (vi,1) ≥
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(i− 1)h. Therefore f (vi+1,1) ≥ (i− 1)h + h + k.

We still have n− (i + 1) vertices in the first layer with labels greater than f (vi+1,1). Therefore

f (vn,1) ≥ ih + k + (n− i− 1− 1)h = (n− 2)h + k > ( n
2 − 1)h + k for n > 2. But the highest label

in the first layer is less than ( n
2 − 1)h + k. Therefore we cannot use any value between 0 and f (vn,1)

for any vertex in the second layer.

Now, we know that f (vn,1 ≥ (n− 1)h. Let the lowest labeled vertex in the second layer be v1,2. If

v1,2 is at a distance of two from vn,1 then f (v1,2) ≥ (n− 1)h + k. If v1,2 is adjacent to vn,1, then it

will be at a distance of two from the vn−1,1. Therefore

f (v1,2) ≥ f (vn−1,1) + k

≥ (n− 2)h + k.

Lemma 3.5. Let f be an optimal L(h, k) labeling of Kn�P3, where nh
2 ≤ k ≤ (n− 1)h and n is an even

number greater than 4. If the highest label used in the first layer is less than ( n
2 − 1)h + k then we have

highest label in third layer greater than or equal to ( n
2 )h + k and second highest label greater than or equal

to ( n
2 − 1)h + k.

Proof. Let us arrange the vertices of the first layer in increasing order of their labeling, so

f (v1,1) < f (v2,1) < f (v3,1) < . . . < f (vn−1,1) < f (vn,1). Consider the vertex v n
2 +1,1, we know

that f (v n
2 +1,1) ≥ ( n

2 )h. If f (v n
2 ,1) ≥ k, then we will have f (vn,1) ≥ k + ( n

2 − 1)h, which is a

contradiction. Therefore f (v n
2 +1,1) < k. In the third layer let the vertex which is at a distance of

two from v n
2 +1,1 be v n

2 +1,3. We know that | f (v n
2 +1,3)− f (v n

2 +1,1)| ≥ k. Since f (v n
2 +1,1) < k, we

have f (v n
2 +1,3) ≥ f (v n

2 +1,1) + k. Therefore f (v n
2 +1,3) ≥ ( n

2 )h + k.

Similarly f (v n
2 ,1) ≥ ( n

2 − 1)h, so f (v n
2 ,3) ≥ f (v n

2 ,1) + k ≥ ( n
2 − 1)h + k.

Lemma 3.6. Let f be an L(h, k) labeling of Kn�P3, where nh
2 ≤ k ≤ (n− 1)h, n is an even number

greater than 4 and there is only one transition between any two adjacent layers. If the lowest label in the

first layer is less than the lowest label in the second layer which is less than the lowest label in the third

layer, then we have highest label under f is greater than or equal to (n− 2)h + 3k.

Proof. Consider the three layers as shown in Figure 29.
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v1,1

vi,1

vn,1

Layer 1

v1,2

vj,2vn,2

Layer 2

v1,3

vn,3

Layer 3

Figure 29: Kn�P3

Let v1,1, v1,2, v1,3 be the vertices with the lowest label in the first layer, second layer and the third

layer respectively. By assumption we know that f (v1,1) < f (v1,2). Now suppose there are vertices

vi,1 and vj,2 such that f (vi,1) > f (vj,2). Then will have at least two transitions between layers one

and two, since we have f (v1,1) < f (v2,1) < f (vj,2) < f (vi,1) violating our assumption. Therefore

no vertex in the first layer has label greater than f (v1,2). Similarly no vertex in the second layer

has a label greater than v1,3.

Let vn,1 be the vertex with highest label in the first layer. Then we have f (vn,1) ≥ (n − 1)h.

There are at least n − 1 vertices in the second layer that are at a distance of two from vn,1.

Therefore if vy,2 is the vertex with the highest label in the second layer, we have f (vy,2) ≥

(n − 1)h + k + (n − 2)h. There are n − 1 vertices in the third layer that are at a distance of

two from vy,2. Therefore if vn,3 is the vertex with the highest label in the third layer, we have

f (vn,3) ≥ (n− 1)h + k + (n− 2)h + k + (n− 2)h ≥ 3k + (n− 2)h.

Lemma 3.7. Let f be an L(h, k) labeling of Kn�P2, where nh
2 < k ≤ (n− 1)h, where n is an even number

greater than 4 and there are two transition between the layers. Assume that the vertex with the smallest

label is in the second layer and let that vertex be v1,2. Let v1,1 be the vertex with the smallest label in the

first layer. Let vn,1 be the vertex with highest label in the first layer. Suppose there are x vertices in the

second layer that are at a distance of two from v1,1 and that have label lower than f (v1,1) and there are y

vertices in the second layer that are at a distance of two from vn,1 and that have label higher than f (vn,1).

Then we have x + y ≥ n− 2.

Proof. Since we have only two transitions between the layers any vertex in the second layer will

have label either less than f (v1,1) or greater than f (vn,1). Let v1,2 be the vertex in the second layer

adjacent to v1,1 and let vn,2 be the vertex in the second layer adjacent to vn,1. If f (v1,2) < f (v1,1)

and f (vn,2) > f (vn,1), then we have x + y = n − 2. In any other case we have x + y > n − 2.

Therefore we have x + y ≥ n− 2.
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Lemma 3.8. Let f be an L(h, k) labeling of Kn�P2, where nh
2 < k ≤ (n− 1)h, n is an even number

greater than 4 and there are two transition between the layers. Then the highest label is greater than or equal

to 2k + (n− 2)h + (n− 3)h.

Proof. Consider Figure 30.

v1,1

vn,1

Layer 1

v1,2

vn,2

Layer 2

Figure 30: Kn�P3

Let us assume that the vertex with the smallest label is in the second layer and let that vertex

be v1,2. Let v1,1 be the vertex with the smallest label in the first layer. Let vn,1 be the vertex with

highest label in the first layer.

Let there be x vertices in the second layer that are at a distance of two from v1,1 and have label

lower than f (v1,1).

Let there be y vertices in the second layer that are at a distance of two from vn,1 and have label

higher than f (vn,1). From Lemma 3.7 we know that x + y ≥ n + 2

Let us first assume that x ≥ 1 and y ≥ 1. We have f (v1,1) ≥ (x − 1)h + k. It follows that

f (vn,1) ≥ (x− 1)h + k + (n− 1)h.

Let vn,2 be the vertex with highest label in the second layer. Now since there are y vertices in the

second layer that are at a distance of two from vn,1 and have labels greater than f (vn,1), we have

f (vn,2) ≥ (x− 1)h + k + (n− 1)h + k + (y− 1)h

= k + (n− 1)h + k + (x + y− 1)h

≥ 2k + (n− 1)h + (n− 3)h

Now when x is zero we have y ≥ n − 2. Since the vertex with smallest label v1,2, is in the

second layer, We have (n− 1) vertices that are at a distance of two from v1,2. Therefore f (vn,1) ≥

(n− 2)h + k. Therefore

f (vn,2) ≥ (n− 2)h + k + k + (y− 1)h

≥ 2k + (n− 2)h + (n− 3)h.
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When y is zero, we have x ≥ n − 2 and f (v1,1) ≥ (x − 1)h + k. Hence we have f (vn,1) ≥

(x− 1)h + k + (n− 1)h. Since y = 0, we have d(vn,1, vn,2) = 1. Let vn−1,1 be the vertex with second

highest label in the first layer. We have f (vn−1,1) ≥ (x− 1)h + k + (n− 2)h. Also we know that

d(vn−1,1, vn,2) = 2. Hence we have

f (vn,2) ≥ (x− 1)h + k + (n− 2)h + k

≥ 2k + (n− 2)h + (n− 3)h.

Lemma 3.9. Let f be an L(h, k) labeling of Kn�P2 where nh
2 < k ≤ (n− 1)h and n is an even number

greater than 4. Let us arrange all 2n vertices in increasing order of their label. So f (v1) < f (v2) <

f (v3) < . . . < f (vn−1) < f (vn) < . . . < f (v2n−1) < f (v2n). Let xi = f (vi+1)− f (vi). If there exist

xj and xl such that xj ≥ k and xl ≥ k then have f (v2n) ≥ 3k + (n− 2)h.

Proof. We have 2n− 1 xi’s. Since we know that any two vertices will be either at a distance of one

or at a distance of two, we have xi ≥ h for each i. So we have

x1 + x2 + x3 + . . . + xj + . . . + xl + . . . + x2n−1 ≥ (2n− 3)h + 2k

≥ 3k + (n− 2)h( since k ≤ (n− 1)h)

Lemma 3.10. Let f be an L(h, k) labeling of Kn�P2 where nh
2 < k ≤ (n− 1)h and n is an even number

greater than 4. Let us arrange all 2n vertices in increasing order of their label. So f (v1) < f (v2) <

f (v3) < . . . < f (vn−1) < f (vn) < . . . < f (v2n−1) < f (v2n). Let xi = f (vi+1)− f (vi). If there exist

xj, xl , xm such that xj + xj+1 ≥ k, xl + xl+1 ≥ k and xm + xm+1 ≥ k, then f (v2n) ≥ 3k + (n− 2)h.

Proof. We have 2n− 1 xi’s. Since we know that any two vertices are either at a distance of one

or two, we have xi ≥ h for each i. So we have x1 + x2 + x3 + . . . + xj + . . . + xl + . . . + x2n−1 ≥

3k + (2n− 7)h ≥ 3k + (n− 5)h + (n− 2)h ≥ 3k + (n− 2)h for n ≥ 5.

Lemma 3.11. Let f be an L(h, k) labeling of Kn�P2 where nh
2 < k ≤ (n− 1)h and n is an even number

greater than 4. Let us arrange all 2n vertices in increasing order of their labels. So f (v1) < f (v2) <

f (v3) < . . . < f (vn−1) < f (vn) < . . . < f (v2n−1) < f (v2n). Let xi = f (vi+1)− f (vi). If there exist

xj, xl , xm such that xj ≥ k , xl + xl+1 ≥ k and xm + xm+1 ≥ k, then f (v2n) ≥ 3k + (n− 2)h.
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Proof. We have 2n− 1 xi’s and since we know that any two vertices are either at a distance of one

or two, we have xi ≥ h for each i. So we have

x1 + x2 + x3 + . . . + xj + . . . + xl + . . . + x2n−1 ≥ 3k + (2n− 6)h

≥ 3k + (n− 4)h + (n− 2)h

≥ 3k + (n− 2)h

Lemma 3.12. Let f be an L(h, k) labeling of Kn�P2 where nh
2 < k ≤ (n− 1)h and n is an even number

greater than 4. Let us arrange all 2n vertices in increasing order of their labels. So f (v1) < f (v2) <

f (v3) < . . . < f (vn−1) < f (vn) < . . . < f (v2n−1) < f (v2n). Let xi = f (vi+1)− f (vi). If we have a

combined two transition under f , then there exists an xj such that xj ≥ k.

Proof. Since we have a combined two transition there exists a set of vertices vi, vi+1, vi+2 such that

vi is in first layer (since we just have two layers we can start with any layer), vi+1 is in second layer

and vi+2 is in first layer. Now the vertex vi+1 can either be adjacent to vi or vi+2 but not both. So

either d(vi, vi+1) = 2 or d(vi+2, vi+1) = 2. Therefore either xi ≥ k or xi+1 ≥ k.

Lemma 3.13. Let f be an L(h, k) labeling of Kn�P2 where nh
2 < k ≤ (n− 1)h and n is an even number

greater than 4. Let us arrange all the 2n vertices in the increasing order of their label. So f (v1) < f (v2) <

f (v3) < . . . < f (vn−1) < f (vn) < . . . < f (v2n−1) < f (v2n). Let xi = f (vi+1)− f (vi). If we have a

combined three transition under f then there exist xj and xm such that xj ≥ k and xm + xm+1 ≥ k.

Proof. Since we have a combined three transition there exist a set of vertices vi, vi+1, vi+2, vi+3

such that vi is in first layer (since we just have two layers we can start with any layer), vi+1 is in

second layer, vi+2 is in first layer and vi+3 is in second layer. The vertex vi+1 can either be adjacent

to vi or vi+2 but not both. Hence either d(vi, vi+1) = 2 or d(vi+2, vi+1) = 2. Therefore either xi ≥ k

or xi+1 ≥ k.

If xi ≥ k, then consider the system of vertices vi+1, vi+2, vi+3 we have a combined two transition.

By Lemma 3.12 there exists an xj such that xj ≥ k. Hence xj + xj+1 ≥ k

When xi+1 ≥ k, if vi−1 exists it will be in first layer since we just have combined three transition

therefore we will have d(vi−1, vi+1) = 2 hence xi−1 + xi ≥ k. If vi+4 exists it will be in second

layer since we just have combined three transition therefore we will have d(vi+4, vi+2) = 2. Hence

xi+2 + xi+3 ≥ k. Since n ≥ 6 either vi−1 or vi+4 should exist.

Lemma 3.14. Let f be an L(h, k) labeling of Kn, where nh
2 < k ≤ (n− 1)h, n is an even number greater

than 4, and the highest label is less than ( n
2 − 1)h + k. When the vertices of the graph are arranged
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in increasing order of their labeling, that is f (v1) < f (v2) < f (v3) < . . . < f (vn−1) < f (vn), then

f (vi+1 − f (vi) < k− ( n
2 − 1)h

Proof. Consider some vertex vi such that | f (vi+1)− f (vi)| ≥ k− ( n
2 − 1)h. We know that f (vi) ≥

(i− 1)h. So f (vi+1) ≥ (i− 1)h + k− ( n
2 − 1)h. Therefore f (vn) ≥ (i− 1)h + k− ( n

2 − 1)h + (n−

i− 1)h ≥ ( n
2 − 1)h + k which is a contradiction.

Lemma 3.15. Let f be an L(h, k) labeling of Kn�P3, where nh
2 ≤ k ≤ (n− 1)h, n is an even number

greater than 4, and zero is in first layer. If the difference between highest and lowest labels in both first

and third layers is less than ( n
2 − 1)h + k then in third layer lowest label is greater than or equal to k and

highest label is greater than or equal to (n− 1)h + k.

Proof. Let us arrange the vertices of the first layer in increasing order of their labeling, that is,

f (v1,1) < f (v2,1) < f (v3,1) < . . . < f (vn−1,1) < f (vn,1). Assume that there exists a vertex vi,1

such that f (vi,3) ≥ f (vi,1) + k (we will surely have a vertex like this since zero is in first layer)

and f (vi+1,3) ≤ f (vi+1,1) − k, where d(vi,1, vi,3) = 2 and d(vi+1,1, vi+1,3) = 2. Now | f (vi,3) −

f (vi+1,3)| ≥ |2k− ( f (vi+1,1)− f (vi,1))|. From Lemma 3.14, we know that ( f (vi+1,1)− f (vi,1)) ≤

k− ( n
2 − 1)h. Hence we have | f (vi,3)− f (vi+1,3)| ≥ 2k− (k− ( n

2 − 1)h ≥ ( n
2 − 1)h + k, which is a

contradiction. Therefore for every vertex vi,1 in the first layer we have f (vi,3) ≥ f (vi,1) + k. Since

f (v1,1) ≥ 0, we have f (v1,3) ≥ k and since f (vn,1) ≥ (n− 1)h, f (vn,3) ≥ (n− 1)h + k.

Lemma 3.16. If nh
2 < k ≤ (n− 1)h and n is even, then λ(Kn�P2) ≥ (n− 1)h + (n− 2) + k.

Proof. Let f be an optimal L(h, k) labeling of Kn�P2. Now let us arrange all the 2n vertices of

the graph in increasing order of their labels, that is, f (v1) < f (v2) < f (v3) < . . . < f (v2n−2) <

f (v2n−1) < f (v2n). Let xi = f (vi+1)− f (vi). There should be at least one transition in the graph

so there exists xl such that xl + xl+1 ≥ k. Hence

x1 + x2 + x3 + . . . + xj + . . . + xl + . . . + x2n−1 ≥ k + (2n− 3)h

≥ (n− 1)h + (n− 2)h + k

Lemma 3.17. Let f be an L(h, k) labeling of Kn�P3, where nh
2 ≤ k ≤ (n− 1)h and n is even. If the

difference between highest and lowest labels in both first and third layers is less than ( n
2 − 1)h + k, then we

have highest label greater than or equal to (n− 2)h + 3k.
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Proof. Assume that zero is in first layer and since the difference between highest and lowest label

in the first layer is less than ( n
2 − 1)h + k, by Lemma 3.4 lowest label in second layer is greater than

or equal to (n− 2)h + k and by Lemma 3.15 the lowest label in the third layer is greater than or

equal to k. So every vertex in the second and third layers has label greater than k and by Lemma

3.16 we know that the difference between highest and lowest labels in second and third layers

should be greater than (n− 1)h + k + (n− 2)h. Therefore the highest label for the graph is greater

than or equal to (n− 1)h + k + (n− 2)h + k ≥ (n− 2)h + 3k (since k ≤ (n− 1)h).

If zero is in second layer, we can only have either one transition or two transitions between first

and second layers(since we cannot use any label between vi,1 and vi+1,1 for the second layer by

Lemma 3.4). If there is only one transition between first and second layers we have highest label

in first layer greater than or equal to (n− 1)h + k + (n− 2)h. Therefore by Lemma 3.15 highest

label in the third layer greater than or equal to (n− 1)h + k + (n− 2)h + k ≥ (n− 2)h + 3k (since

k ≤ (n− 1)h).

If there are two transitions between first and second layers, by Lemma 3.8 we have the highest

label in first layer greater than or equal to (n− 2)h + k and highest label in second layer is greater

than or equal to 2k + (n − 2)h + (n − 3)h. If there is only one transition between second and

third layers and since zero is in second layer the highest label in third layer is greater than or

equal to 2k + (n− 1)h + (n− 3)h + k + (n− 2)h > 3k + (n− 2)h. Now if there are two transitions

between second and third layers we have the highest label in second layer greater than or equal to

2k + (n− 1)h + k + (n− 3)h + (n− 2)h ≥ 3k + (n− 2)h.

Lemma 3.18. Let f be an L(h, k) labeling of Kn�P2 where nh
2 < k ≤ (n− 1)h and n is an even number

greater than 4. If there are more than three transitions under f , then we have highest label greater than or

equal to 3k + (n− 2)h.

Proof. Let us arrange the 2n vertices in increasing order of their labels. So we have f (v1) <

f (v2) < f (v3) < . . . < f (vn−1) < f (vn) < . . . < f (v2n−1) < f (v2n). Let xi = f (vi)− f (vi+1).

Therefore we have 2n− 1 xi’s. The different possible ways in which we can have four transitions

are:

• Four isolated transitions.

• Two combined two transitions.

• One combined two transition and two isolated transitions.
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• One combined three transition and one isolated transition.

• One combined four transition.

Case 1. Four isolated transitions:

Let us say we have four isolated transitions at following vertices vi, vj, vl , vm. Therefore we will

have xi + xi+1 ≥ k, xj + xj+1 ≥ k, xl + xl+1 ≥ k, xm + xm+1 ≥ k. Hence by lemma 3.10 the highest

label is greater than or equal to 3k + (n− 2)h.

Case 2. Two combined two transitions.

In a combined two transition we have an xj such that xj ≥ k. Since we have two combined two

transitions, we have xj ≥ k and xl ≥ k. Hence by lemma 3.9 we have the highest label greater than

3k + (n− 2)h.

Case 3. One combined two transition and two isolated transitions.

In a combined two transition system we have an xj such that xj ≥ k. In two isolated transitions we

have xl and xm such that xl + xl+1 ≥ k and xm + xm+1 ≥ k. Hence by lemma 3.11 we have highest

label greater than 3k + (n− 2)h.

Case 4. One combined three transition and one isolated transition.

In a combined three transition system we have xl and xm such that xl ≥ k and xm + xm+1 ≥ k

and in an isolated transition we have xn such that xn + xn+1 ≥ k. Hence by lemma 3.11 we have

highest label greater than 3k + (n− 2)h.

Case 5. One combined four transition.

Since we have four transitions we have a set of vertices vi, vi+1, vi+2, vi+3 such that vi, vi+2, vi+4

are in first layer. vi+1 and vi+3 are in second layer. Now either d(vi, vi+1) = 2 or d(vi+1, vi+2) = 2.

Similarly either d(vi+2, vi+3) = 2 or d(vi+4, vi+4) = 2. So we have at least have two xi such that

xi ≥ k. Therefore by Lemma 3.9 we have highest label greater than 3k + (n− 2)h.

Hence by the above five cases we can say that highest label will be greater than or equal to

3k + (n− 2)h. Also if we have more than four transitions then the highest label will be greater

than 3k + (n− 2)h.
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Lemma 3.19. Let f be an L(h, k) labeling of Kn�P3 where nh
2 < k ≤ (n− 1)h and n is even. If there are

three transitions under f , then the highest label is greater than or equal to 3k + (n− 2)h.

Proof. Let us arrange the 2n vertices in increasing order of their labels. So we have f (v1) <

f (v2) < f (v3) < . . . < f (vn−1) < f (vn) < . . . < f (v2n−1) < f (v2n). Let xi = f (vi)− f (vi+1).

Therefore we have 2n− 1 xi’s. The different possible ways in which we can have the transitions

are:

• Three isolated transitions.

• One combined three transition.

• One combined two transition and one isolated transitions.

Case 1. Three isolated transitions:

Let us say we have isolated transitions at vertices vi, vj, vl . Therefore we have xi + xi+1 ≥ k,

xj + xj+1 ≥ k, xl + xl+1 ≥ k. Hence by Lemma 3.10 we have highest label greater than or equal to

3k + (n− 2)h.

Case 2. One combined three transition:

In a combined three transition we have a set of vertices vi, vi+1, vi+2, vi+3 such that vi is in first

layer, vi+1 is in second layer,vi+2 is in first layer,vi+3 is in second layer.

If d(vi+1, vi+2) = 1 then d(vi, vi+1) = 2 and d(vi+2, vi+3) = 2. Therefore xi ≥ k and xi+2 ≥ k, so

by Lemma 3.9 we highest label greater than or equal to 3k + (n− 2)h.

If d(vi+1, vi+2) = 2 then we can have a scenario such that d(vi, vi+1) = 1 and d(vi+2, vi+3) = 1.

Therefore xi+1 ≥ k. The vertex vi−1 should be in first layer(since we just have combined three

transition system), also d(vi−1, vi+2) = 2, therefore xi + xi+1 ≥ k. The vertex vi+4 should be in

second layer(since we just have combined three transition system), also d(vi+2, vi+4) = 2, therefore

xi+2 + xi+3 ≥ k. If vi−1 does not exist we will have an isolated transition after vi+3 because each

layer has at least 6 vertices, similarly if vi+4 does not exist we will have an isolated transition

before vi. So we will have xj + xj+1 ≥ k for some j. Hence by Lemma 3.11 we have highest label

greater than or equal to 3k + (n− 2)h.

Case 3. One combined two transition and one isolated transition.

In a combined two transition system we have a set of vertices vi, vi+1 and vi+2 such that vi is in

first layer. vi+1 is in second and vi+2 is in first. Now either vi−1 or vi+3 should exits.
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If both exist, then we have a set of xj and xl such that xj ≥ k and xl + xl+1 ≥ k. Also we have an

isolated transition therefore we have xm such that xm + xm+1 ≥ k. Hence by Lemma 3.11 we have

the highest label greater than or equal to 3k + (n− 2)h.

If vi−1 does not exits and d(vi+1, vi+2) = 2. Then we just have xi+1 ≥ k. Since we also have an

isolated transition there exists an xm such that xm + xm+1 ≥ k. This corresponds to the following

special case:

The vertex v1 is in second layer. v2 is in first layer and v3 is in second layer, then vn+1 is in

second layer and from vn+2 to v2n all the vertices are in first layer. The d(v2, v3) = 2. Since

f (v2) ≥ h, we have f (v3) ≥ h + k. So f (vn+1) ≥ h + k + (n− 2)h, f (vn+2) ≥ (n− 2)h + 2k and

f (v2n ≥ (n− 2)h + 2k + (n− 2)h.

Since the third layer is adjacent to second layer. The vertex which is at a distance of two from vn+2

will have label (n− 2)h + 2k + k ≥ 3k + (n− 2)h.

Hence we have the highest label greater than or equal to 3k + (n− 2)h.

Lemma 3.20. Let f be an L(h, k) labeling of Kn�P4, Where nh
2 < k ≤ (n− 1)h and n is even.If f has two

transitions between two adjacent layers then there exists at least one vertex v such that f (v) ≥ (n− 2)h+ 3k

Proof. Let us consider the two adjacent layers that have two transitions. Figure31 shows the layers

that have two transitions between them.

v1,1

vn,1

Layer 1

v1,2

vn,2

Layer 2

Figure 31: Kn�P3

Without loss of generality assume that the vertex with the lowest label is in the second layer.

Now arrange the vertices of first layer in the increasing order of their labels. Let the order be

f (v1,1) < f (v2,1) < f (v3,1) < . . . < f (vn−1,1) < f (vn,1). Let there be x vertices in the second layer

that have their labels less than f (v1,1) and that are at a distance of two from v1,1 and let there be y
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vertices in the second layer that have their label greater than f (vn,1) and which are at a distance of

two from vn,1.

Case 1. When x ≥ 1 and y ≥ 1.

We have f (v1,1) ≥ (x− 1)h + k. We divide the problem into different sub cases depending on the

difference between highest and lowest label in the first layer.

In the first sub-case assume that the difference between the highest and lowest label in the first layer

is greater than or equal to ( n
2 − 1)h + k. Therefore we have f (vn,1) ≥ (x− 1)h + k + ( n

2 − 1)h + k.

We assumed that there are y vertices in the second layer which have labels greater than f (vn,1)

and which are at a distance of two from vn,1. If f (vn,2) is the vertex with the highest label in the

second layer then f (vn,2) ≥ f (vn,1) + k + (y− 1)h ≥ (x− 1)h + k + ( n
2 − 1)h + k + k + (y− 1)h =

3k + (x + y + n
2 − 3)h. But we know that x + y ≥ n− 2 (from Lemma 3.7). Therefore we have

f (vn,2) ≥ 3k + (n− 2)h + ( n
2 − 3)h ≥ 3k + (n− 2)h for n ≥ 6.

In the second sub-case assume that the difference between the highest and lowest label in the first

layer is less than ( n
2 − 1)h+ k. Therefore by Lemma 3.8 we have f (vn,2) ≥ 2k + (n− 2)h+ (n− 3)h.

Suppose there is a layer adjacent to the layer 2 as shown in Figure 32.

v1,1

vi,1

vn,1

Layer 1

v1,2

vj,2vn,2

Layer 2

v1,3

vn,3

Layer 3

Figure 32: Kn�P3

We know that there are two transitions between layers 1 and 2 and layer 3 is adjacent to layer 2.

From Lemma 3.17, if the difference between highest label in third layer is less than ( n
2 − 1)h + k

then the highest label is greater than or equal to 3k + (n− 2)h. Hence the between the highest

label and lowest label in third layer should be greater than or equal to ( n
2 − 1)h + k. If there are

two transitions between the second and third layers we have highest label greater than or equal to

3k + (n− 2)h, by the previous sub-case.

If there is a single transition between the second and third layers and if the vertex with the lowest

label is in the second layer, then f (vn,2) ≥ 2k + (n− 2)h + (n− 3)h. We have the highest label
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greater than or equal to 2k + (n− 2)h + (n− 3)h + (n− 2)h > 3k + (n− 2)h because there are

n− 1 vertices in the third layer that are at a distance of two from vn,2.

Suppose the vertex with the lowest label is in the third layer. We know that the highest label in the

third layer is greater than or equal to ( n
2 − 1)h + k. Therefore we have f (v1,2) ≥ ( n

2 )h + k, if it is at

a distance of one from vn,3. Now f (vn,2) ≥ 2k + (n− 2)h + (n− 3)h + (( n
2 )h + k) > 3k + (n− 2)h

Now if only layer one is adjacent to layer two as shown in Figure 33.

v1,4

vn,4

Layer 4

v1,3

vn,3

Layer 3

v1,1

vn,1

Layer 1

v1,2

vn,1

Layer 3

Figure 33: Kn�P4

If there are two transitions between Layer 3 and Layer 1 and if the vertex with smallest label is in

layer 3, then we consider system of layers 1, 3 and 4. If layers 1 and 3 have two transitions with

smallest labeled vertex in layer 3, since layer 4 is adjacent to layer three, then by previous sub-case

of this lemma we have highest label greater than or equal to 3k + (n− 2)h.

If there are two transitions between layer and layer 1 and if the vertex with smallest label is in

layer 1, then we consider system of layers 3, 1 and 2. If layers 1 and 3 have two transitions with

smallest labeled vertex in layer 1 and layer 2 is adjacent to layer 1, then by previous part of this

lemma we have highest label greater than or equal to 3k + (n− 2)h.

Now assume that there is only one transition between layer 3 and layer 1 and the vertex with

the smallest label is in layer 3. Therefore we will have f (v1,1) ≥ (n− 2)h + k. Hence we have

f (vn−1,1) ≥ (n− 2)h + k + (n− 2)h and f (vn,1) ≥ (n− 2)h + k(n− 1)h. Hence the vertex with

highest label in second layer will have label (n− 2)h + k(n− 1)h + k + (y− 1)h ≥ 3k + (n− 2)h

(since k ≤ (n− 1)h).

Now assume that the vertex having smallest label is in layer 1 and let that vertex be v1,1. We know

that f (v1,1) ≥ (x− 1)h + k. Therefore f (vn,1) ≥ (x− 1)h + k + (n− 1)h. There are (n− 1) vertices

in the third layer that are at a distance of two and whose labels are greater than f (vn,1). Therefore

we have highest label in the layer greater than or equal to (x− 1)h + k + (n− 1)h + k + (n− 2)h =

2k + (n− 2)h + (n− 1)h + (x− 1)h ≥ 3k + (n− 2)h for x ≥ 1 (since k ≤ (n− 1)h).
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Case 2. when x = 0.

Consider the first and the second layers. There are two transitions between them. If v2,1 is the

lowest labeled vertex, then we have d(v2,1, v1,1) = 1, since x = 0.

Since v2,1 is at a distance of two from v1,2 we have f (v2,1) ≥ k. Therefore f (vn,1) ≥ k + (n− 2)h.

If vn,2 is the vertex with highest label in the second layer then we have f (vn,2) ≥ k + (n −

2)h + k + (y − 1)h and also we know that y ≥ n − 2 from Lemma 3.7. Therefore we have

f (vn,2) ≥ k + (n− 2)h + k + (n− 3)h.

Suppose there is a layer adjacent to the second layer as shown in Figure 34.

v1,1

vn,1

Layer 1

v1,2

vn,2

Layer 2

v1,3

vn,3

Layer 3

Figure 34: Kn�P3

We know that there are two transitions between layers 1, 2 and layer 3 is adjacent to layer two.

From Lemma 3.17, if the difference between highest label and lowest label in third layer is less than

( n
2 − 1)h + k we have our highest label greater than or equal to 3k + (n− 2)h. Hence we should

have difference between the highest label in third layer greater than or equal to ( n
2 − 1)h + k. If

there are two transitions between the second and third layers we have highest label greater than or

equal to 3k + (n− 2)h, by the previous sub-case.

If there is a single transition between the second and third layers and if the vertex with the lowest

label is in the second layer, then f (vn,2) ≥ 2k + (n− 2)h + (n− 3)h. We have the highest label

greater than or equal to 2k + (n− 2)h + (n− 3)h + (n− 2)h > 3k + (n− 2)h because there are

n− 1 vertices in the third layer that are at a distance of two from vn,2.

Suppose the vertex with the lowest label is in the third layer. We know that the highest label in the

third layer is greater than or equal to ( n
2 − 1)h + k. Therefore we have f (v1,2) ≥ ( n

2 )h + k, if it is at

a distance of one from vn,3. Now f (vn,2) ≥ 2k + (n− 2)h + (n− 3)h + (( n
2 )h + k) > 3k + (n− 2)h.

Now if only layer 1 is adjacent to layer 2 as shown in Figure 35.
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Figure 35: Kn�P4

If there are two transitions between layer 3 and layer 1 and if the vertex with smallest label in

Layer 3, consider system of layers 1, 3, 4 . If layers 1 and 3 have two transitions with smallest

labeled vertex in layer 3 and and layer 4 is adjacent to layer 3, then by previous sub-case of this

lemma we have highest label greater than or equal to 3k + (n− 2)h.

If there are two transitions between layer three and layer one and if the vertex with smallest label

is in layer 1, then consider system of layers 3, 1 and 2. If layers 1 and 3 have two transitions with

smallest labeled vertex in layer 1 and layer two is adjacent to layer 1, then by previous part of this

lemma we have highest label greater than or equal to 3k + (n− 2)h.

Now assume that there is only one transition between layer 3 and layer 1 and the vertex with

the smallest label is in layer 3. Therefore we will have f (v1,1) ≥ (n− 2)h + k. Hence we have

f (vn−1,1) ≥ (n− 2)h + k + (n− 2)h and f (vn,1) ≥ (n− 2)h + k(n− 1)h. Hence the vertex with

highest label in second layer will have label (n− 2)h + k(n− 1)h + k + (y− 1)h ≥ 3k + (n− 2)h

(since k ≤ (n− 1)h).

Now assume that the vertex having smallest label is in layer 1 and let that vertex be v1,1. We know

that f (v1,1) ≥ (x− 1)h + k. Therefore f (vn,1) ≥ (x− 1)h + k + (n− 1)h. There are (n− 1) vertices

in the third layer that are at a distance of two and whose labels are greater than f (vn,1). Therefore

we have highest label in the layer greater than or equal to (x− 1)h + k + (n− 1)h + k + (n− 2)h =

2k + (n− 2)h + (n− 1)h + (x− 1)h ≥ 3k + (n− 2)h for x ≥ 1 (since k ≤ (n− 1)h).

Case 3. When y = 0. Consider the first and the second layers. There are two transitions between

these two layers. If v1,1 is the lowest labeled vertex in the first layer f (v1,1) ≥ (x − 1)h + k,

f (vn−1,1) ≥ (x− 1)h + k + (n− 2)h and f (vn−1,1) ≥ (x− 1)h + k + (n− 1)h. Therefore f (vn,2) ≥

(x− 1)h + k + (n− 2)h + k. This is same as result obtained in previous sub-case of this Lemma.

Hence same proof follows.
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Corollary 3.21. Let f be an L(h, k) labeling of Kn�Pm with following conditions:

• There two or more than two transitions in some adjacent layers.

• n is even, n ≥ 6 and m ≥ 5.

• nh
2 < k ≤ (n− 1)h.

Then λ(Kn�Pm) ≥ (n− 2)h + 3k.

Proof. By Lemma’s 3.18, 3.19, 3.20 we can say that if there are two or more than two transitions

then the highest label is greater than or equal to 3k + (n− 2)h.

Theorem 3.22. Let f be an L(h, k) labeling of Kn�Pm with following conditions:

• n is even and n ≥ 6, m ≥ 5.

• Zero is in the first layer.

• nh
2 < k ≤ (n− 1)h.

• The difference between the highest label and lowest label in first layer is less than ( n
2 − 1)h + k.

then λ(Kn�Pm) ≥ (n− 2)h + 3k.

Proof. From Corollary 3.4, if there are two are more transitions then the highest label is greater

than or equal to 3k + (n− 2)h. Let us consider the case when there is only one transition between

any two adjacent layers. Consider three layers of Kn as shown in Figure 36.

v1,1

vi,1

vn,1

Layer 1

v1,2

vj,2vn,2

Layer 2

v1,3

vn,3

Layer 3

Figure 36: Kn�P3

Let v1,i be vertex with lowest label in the ith layer. If f (v1,1) < f (v1,2) < f (v1,3). Then by Lemma

3.7, we have the highest label greater than (n− 2)h + 3k. Therefore if we take any three layers the

possible configurations are:
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f (v1,1) < f (v1,2) and f (v1,3) < f (v1,2)

or f (v1,1) > f (v1,2) and f (v1,3) > f (v1,2).

Since zero is in first layer the only possible configuration for the five layers is as follows.

f (v1,1) < f (v1,2), f (v1,3) < f (v1,2), f (v1,3) < f (v1,4), f (v1,5) < f (v1,4).

So f (vn,1) < f (vn,2), f (vn,3) < f (vn,2), f (vn,3) < f (vn,4) and f (vn,5) < f (vn,4).

The highest label in the first layer is less than ( n
2 − 1)h + k. By Lemma 3.17 the difference

between the highest and lowest label cannot be less than ( n
2 − 1)h + k. Also by Lemma 3.2,

f (vn−1,3) ≥ ( n
2 − 1)h + k and f (vn,3) ≥ ( n

2 )h + k.

Hence in second and fourth layers every vertex should have label greater than or equal to

( n
2 − 1)h + k + k and by Lemma 3.17 we know that in at least one layer we have the difference

between highest and lowest label greater than or equal to ( n
2 − 1)h + k. Let the vertex with highest

label be vn,4. So f (vn,4) ≥ ( n
2 − 1)h + k + k + ( n

2 − 1)h = 3k + (n− 2)h.

Theorem 3.23. Let f be an L(h, k) labeling of Kn�Pm with following conditions:

• n is even and n ≥ 6, m ≥ 5.

• Zero is in the first layer.

• nh
2 < k ≤ (n− 1)h.

• The difference between the highest label and lowest label in first layer is greater than or equal to

( n
2 − 1)h + k.

then λ(Kn�Pm) ≥ (n− 2)h + 3k for n > 3.

Proof. From Corollary 3.4, if there are two are more transitions then the highest label is greater

than or equal to 3k + (n− 2)h. Let us consider the case when there is only one transition between

any two adjacent layers. Consider three layers of Kn as shown in Figure 37.
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Figure 37: Kn�P3
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Let v1,i be vertex with lowest label in the ith layer. If f (v1,1) < f (v1,2) < f (v1,3). Then by Lemma

3.7, we have the highest label greater than (n− 2)h + 3k. Therefore if we take any three layers the

possible configurations are:

f (v1,1) < f (v1,2) and f (v1,3) < f (v1,2)

or f (v1,1) > f (v1,2) and f (v1,3) > f (v1,2).

Since zero is in first layer the only possible configuration for the five layers is as follows.

f (v1,1) < f (v1,2), f (v1,3) < f (v1,2), f (v1,3) < f (v1,4), f (v1,5) < f (v1,4).

So f (vn,1) < f (vn,2), f (vn,3) < f (vn,2), f (vn,3) < f (vn,4) and f (vn,5) < f (vn,4)

Now consider the third layer and let vn,3 be the vertex with highest label. If f (vn,3) < ( n
2 −

1)h + k. Then by Lemma 3.5, the highest label in first and fifth layers is greater than ( n
2 )h + k

and second highest label greater than ( n
2 − 1)h + k. Therefore in second and fourth layers we

have f (v1,2) ≥ ( n
2 − 1)h + k + k and f (v1,4) ≥ ( n

2 − 1)h + k + k. Also by lemma 3.17 either in

layer two and layer four the difference between highest and lowest label greater than or equal

to ( n
2 − 1)h + k. Therefore the highest label in at least one layer is greater than or equal to

( n
2 − 1)h + k + k + ( n

2 − 1)h + k = 3k + (n− 2)h.

Now consider the third layer and let vn,3 be the vertex with highest label. If f (vn,3) ≥ ( n
2 − 1)h + k.

Let vn−1,3 is the vertex with second highest label then we have f (vn−1,3) ≥ ( n
2 − 2)h + k.

Now consider the second and fourth layers. We know that f (v1,2) ≥ ( n
2 − 2)h + k + k and

f (v1,4) ≥ ( n
2 − 2)h + k + k. Now if f (v1,2) < ( n

2 − 1)h + k + k. We have | f (vn,3)− f (v1,2)| < k.

Therefore they should be at a distance of one.

Now in the fourth layer if f (v1,4) < ( n
2 − 1)h + k + k. Then v1,4 cannot be at a distance of two

from vn,3, because then we have | f (v1,4)− f (vn,3)| < k. If the vertex v1,4 is adjacent to vn,3, then

d(v1,4, v1,2) = 2 and | f (v1,4)− f (v1,2)| < k. Hence we cannot have f (v1,4) < ( n
2 − 1)h + k + k.

Therefore f (v1,4) ≥ ( n
2 − 1)h + k + k. If vn,4 is the vertex with highest label in the fourth layer then

we have f (vn,4) ≥ ( n
2 − 1)h + k + k + ( n

2 − 1)h + k = 3k + (n− 2)h.

Theorem 3.24. Let f be an L(h, k) labeling of Kn�Pm with following conditions:

• n is even and n ≥ 6, m ≥ 5.

• zero is in the second layer.

• nh
2 ≤ k ≤ (n− 1)h.

• The difference between the highest label and lowest label in second layer is less than ( n
2 − 1)h + k.

then λ(Kn�Pm) ≥ (n− 2)h + 3k for n > 3.
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Proof. From Corollary 3.4, if there are two are more transitions then the highest label is greater

than or equal to 3k + (n− 2)h. Let us consider the case when there is only one transition between

any two adjacent layers. Consider three layers of Kn as shown in Figure 38.

v1,1

vi,1

vn,1
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vj,2vn,2
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v1,3

vn,3
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Figure 38: Kn�P3

If f (v1,1) < f (v1,2) < f (v1,3). Then by Lemma 3.7, we have the highest label greater than

(n− 2)h + 3k. Therefore if we take any three layers the possible configurations are:

f (v1,1) < f (v1,2) and f (v1,3) < f (v1,2)

or f (v1,1) > f (v1,2) and f (v1,3) > f (v1,2).

Since zero is the second layer the only possible configuration of the five layers is:

f (v1,1) > f (v1,2), f (v1,3) > f (v1,2), f (v1,3) > f (v1,4) and f (v1,5) > f (v1,4).

The highest label in second layer is less than ( n
2 − 1)h + k. So if vn,4 and vn−1,4 are the highest

and second highest labeled vertices in the fourth layer respectively, by Lemma 3.5 we have

f (vn,4) ≥ ( n
2 )h + k and f (vn−1,4) ≥ ( n

2 − 1)h + k. In third and fifth layers at least in one layer

the difference between the highest and lowest labels greater than or equal to ( n
2 − 1)h + k by

Lemma 3.5, without loss of generality assume that this happens in fifth layer. If v1,5 is the vertex

with lowest label in the fifth layer and vn,5 is the vertex with highest label in the fifth layer then

f (v1,5) ≥ ( n
2 − 1)h + k + k and f (vn,5) ≥ ( n

2 − 1)h + k + k + ( n
2 − 1)h + k = 3k + (n− 2)h

Theorem 3.25. Let f be an L(h, k) labeling of Kn�Pm with the following conditions:

• n is even and n ≥ 6, m ≥ 5.

• zero is in the second layer.

• nh
2 ≤ k ≤ (n− 1)h.

• The difference between the highest label and lowest label in second layer is greater than or equal to

( n
2 − 1)h + k.
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then λ(Kn�Pm) ≥ (n− 2)h + 3k .

Proof. From Corollary 3.4, if there are two are more transitions then the highest label is greater

than or equal to 3k + (n− 2)h. Let us consider the case when there is only one transition between

any two adjacent layers. Consider three layers of Kn as shown in Figure 39.
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Figure 39: Kn�P3

If f (v1,1) < f (v1,2) < f (v1,3). Then by Lemma 3.7, we have the highest label greater than

(n− 2)h + 3k. Therefore if we take any three layers the possible configurations are:

f (v1,1) < f (v1,2) and f (v1,3) < f (v1,2)

or f (v1,1) > f (v1,2) and f (v1,3) > f (v1,2).

Since zero is the second layer the only possible configuration of the five layers is:

f (v1,1) > f (v1,2), f (v1,3) > f (v1,2), f (v1,3) > f (v1,4) and f (v1,5) > f (v1,4).

Consider fourth layer and let vn,4 be the vertex with the highest label. If f (vn,4) < ( n
2 − 1)h + k.

Then f (vn,2) ≥ ( n
2 )h + k and f (vn−1,2) ≥ ( n

2 − 1)h + k. In first and third layer at least in one layer

the difference between the highest and lowest labels is greater than or equal to ( n
2 − 1)h + k by

Lemma 3.17. Assume that we have the above criteria in the third layer, if v1,3 is the vertex with

lowest label in the third layer and vn,3 is the vertex with highest label in the third layer then

f (v1,3) ≥ ( n
2 − 1)h + k + k and f (vn,3) ≥ ( n

2 − 1)h + k + k + ( n
2 − 1)h + k = 3k + (n− 2)h.

If the difference between the highest and lowest labels in fourth layer is greater than or equal to

( n
2 − 1)h + k, then f (vn,4) ≥ ( n

2 − 1)h + k and f (vn−1,4) ≥ ( n
2 − 2)h + k.

If the difference between highest and lowest label in the third layer is less than ( n
2 − 1)h + k,

then in fifth layer | f (vn,5) − f (v1,5)| ≥ ( n
2 )h + k. Since f (v1,5) ≥ ( n

2 − 2)h + k + k we have

f (vn,5) ≥ ( n
2 − 2)h + k + k + ( n

2 )h + k = 3k + (n− 2)h.

If the difference between lowest and highest label in both third layer and fifth layers is greater
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than or equal to ( n
2 − 1)h + k then f (v1,3) ≥ ( n

2 − 2)h + k + k and f (v1,5) ≥ ( n
2 − 2)h + k + k. If

f (v1,3) < ( n
2 − 1)h + k + k then | f (vn,4)− f (v1,3)| < k, therefore they are at a distance of one.

If in fifth layer f (v1,5) < ( n
2 − 1)h + k + k, then v1,5 cannot be at a distance of two from vn,3,

since | f (v1,5) − f (vn,4)| < k. If the vertex v1,5 is adjacent to vn,3 then d(v1,5, v1,3) = 2 and

| f (v1,4)− f (v1,2)| < k. Hence f (v1,4) cannot be less than ( n
2 − 1)h + k + k. Therefore f (v1,4) ≥

( n
2 − 1)h + k + k and hence f (vn,4) ≥ ( n

2 − 1)h + k + k + ( n
2 − 1)h + k = 3k + (n− 2)h.

Theorem 3.26. Let f be an L(h, k) labeling of Kn�Pm with following conditions:

• n is even and n ≥ 6, m ≥ 5.

• zero is in the third layer.

• nh
2 < k ≤ (n− 1)h.

• The difference between the highest label and lowest label in the third layer is less than ( n
2 − 1)h + k.

then λ(Kn�Pm) ≥ (n− 2)h + 3k for n > 3.

Proof. From Corollary 3.4, if there are two are more transitions then the highest label is greater

than or equal to 3k + (n− 2)h. Let us consider the case when there is only one transition between

any two adjacent layers. Consider three layers of Kn as shown in Figure 40.
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Figure 40: Kn�P3

Let v1,i be vertex with lowest label in the ith layer. If f (v1,1) < f (v1,2) < f (v1,3). Then by Lemma

3.7, we have the highest label greater than (n− 2)h + 3k. Therefore if we take any three layers the

possible configurations are:

f (v1,1) < f (v1,2) and f (v1,3) < f (v1,2)

or f (v1,1) > f (v1,2) and f (v1,3) > f (v1,2).

44



L(h, k) labeling of Cartesian products of complete graphs and paths

Since zero is in third layer the only possible configuration for the five layers is as follows.

f (v1,1) < f (v1,2), f (v1,3) < f (v1,2), f (v1,3) < f (v1,4), f (v1,5) < f (v1,4).

So f (vn,1) < f (vn,2), f (vn,3) < f (vn,2), f (vn,3) < f (vn,4) and f (vn,5) < f (vn,4)

Consider the third layer and let vn,3 be the vertex with highest label. We know that f (vn,3) <

( n
2 − 1)h + k. Therefore in first and fifth layers we have highest label greater than ( n

2 )h + k and

second highest label greater than ( n
2 − 1)h + k by Lemma 3.5. So f (v1,2) ≥ ( n

2 − 1)h + k + k and

f (v1,4) ≥ ( n
2 − 1)h + k + k. By Lemma 3.3 at least in one among layers two and four the difference

between highest and lowest label greater than or equal to ( n
2 − 1)h + k. Therefore the highest label

in at least one layer is greater than or equal to ( n
2 − 1)h + k + k + ( n

2 − 1)h + k = 3k + (n− 2)h.

Theorem 3.27. Let f be an L(h, k) labeling of Kn�P5 with following conditions:

• n is even and n ≥ 6, m ≥ 5.

• zero is in the third layer.

• nh
2 < k ≤ (n− 1)h.

• The difference between the highest label and lowest label in the third layer is greater than or equal to

( n
2 − 1)h + k.

then λ(Kn�P5) ≥ (n− 2)h + 3k.

Proof. From Corollary 3.4, if there are two are more transitions then the highest label is greater

than or equal to 3k + (n− 2)h. Let us consider the case when there is only one transition between

any two adjacent layers. Consider three layers of Kn as shown in Figure 41.
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Figure 41: Kn�P3

If f (v1,1) < f (v1,2) < f (v1,3). Then by Lemma 3.6, we have the highest label greater than
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(n− 2)h + 3k. Therefore if we take any three layers the possible configurations are:

f (v1,1) < f (v1,2) and f (v1,3) < f (v1,2)

or f (v1,1) > f (v1,2) and f (v1,3) > f (v1,2).

Since zero is the second layer the only possible configuration of the five layers is:

f (v1,1) > f (v1,2), f (v1,3) > f (v1,2), f (v1,3) > f (v1,4) and f (v1,5) > f (v1,4).

In third layer f (vn,3) ≥ ( n
2 − 1)h + k and f (vn−1,3) ≥ ( n

2 − 2)h + k.

We know that f (v1,2) ≥ ( n
2 − 2)h + k + k and f (v1,4) ≥ ( n

2 − 2)h + k + k. Now if f (v1,2) <

( n
2 − 1)h + k + k then | f (vn,3)− f (v1,2)| < k. Therefore they should be at a distance of one.

Now if f (v1,4) < ( n
2 − 1)h + k + k then v1,4 cannot be at a distance of two from vn,3, because then

| f (v1,4)− f (vn,3)| < k. If v1,4 is adjacent to vn,3, then d(v1,4, v1,2) = 2 and | f (v1,4)− f (v1,2)| < k.

Hence we cannot have f (v1,4) < ( n
2 − 1)h+ k+ k. So f (v1,4) ≥ ( n

2 − 1)h+ k+ k. If vn,4 is the vertex

with highest label in the fourth layer then we have f (vn,4) ≥ ( n
2 − 1)h + k + k + ( n

2 − 1)h + k =

3k + (n− 2)h.

Theorem 3.28. Let f be an L(h, k) labeling of Kn�Pm with the following conditions:

• n is even and n ≥ 6, m ≥ 5.

• nh
2 < k ≤ (n− 1)h. then λ(Kn�Pm) = (n− 2)h + 3k.

Proof. From Corollary 3.4, if there are two or more than two transitions between adjacent layers

then highest label is greater than or equal to 3k + (n− 2)h and from Theorems 3.22, 3.23, 3.24, 3.25,

3.26, 3.27 we can say that λKn�P5 ≥ 3k + (n− 2)h. Since Kn�P5 is an induced subgraph of Kn�Pm,

we have λ(Kn�Pm) ≥ (n− 2)h + k. Also we have a labeling with highest label as (n− 2)h + 3k.The

labeling is as follows

For the j layer:

when j ≡ 1 (mod 4),for any vertex vi,j, we have

f (vi,j) =

(i− 1)h, for 1 ≤ i ≤ n
2

(i− 1− n
2 )h + k, for n

2 < i ≤ n

when j ≡ 2 (mod 4),for any vertex vi,j, we have

f (vi,j) =

( n
2 − 1)h + 2k + (i− 1)h, for 1 ≤ i ≤ n

2

( n
2 − 1)h + 3k + (i− 1− n

2 )h, for n
2 < i ≤ n
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when j ≡ 3 (mod 4),for any vertex vi,j,

f (vi,j) =

(i− 1)h + k, for 1 ≤ i ≤ n
2

(i− 1− n
2 )h, for n

2 < i ≤ n

when j ≡ 0 (mod 4),for any vertex vi,j,

f (vi,j) =

( n
2 − 1)h + 3k + (i− 1)h, for 1 ≤ i ≤ n

2

( n
2 − 1)h + 2k + (i− 1− n

2 )h, for n
2 < i ≤ n

We now give the proof of labeling:

Case 1. If the distance between any two vertices is one.

Consider two vertices vi, vj in first layer.

If f (vi,1) = (i− 1)h and f (vj,1) = (j− 1)h. Then

| f (vi,1)− f (vj,1)| = |(i− j)h|

≥ h

If f (vi,1) = (i− 1)h and f (vj,1) = (j− 1− n
2 )h + k. Then

| f (vj,1)− f (vi,1)| = |(j− i− n
2 )h + k|

≥ h

If f (vi,1) = (i− 1− n
2 )h + k and f (vj,1) = (j− 1− n

2 )h + k. Then

| f (vi,1)− f (vj,1)| = |(i− j)h|

≥ h

. Consider one vertex in first layer and one vertex in second layer:

If f (vi,1) = (i− 1)h and f (vi,2) = ( n
2 − 1)h + 2k + (i− 1)h. Then

| f (vi,1)− f (vi,2)| = |( n
2 − 1)h + k + k|

> h.

The proof goes in similar fashion for other vertices which are at a distance of one.

Case 2. If the distance between any two vertices is two. Consider one vertex in first layer and one

vertex in second layer.

If f (vi1,1) = (i1 − 1)h and f (vi2,2) = ( n
2 − 1)h + 2k + (i2 − 1)h. Then

| f (vi2,2)− f (vi1,1)| = |( n
2 − 1)h + 2k + (i2 − i1)h|

> k. ( Since (i2 − i1)h < ( n
2 − 1)h + k)

47



L(h, k) labeling of Cartesian products of complete graphs and paths

If f (vi1,1) = (i1 − 1)h and f (vi2,2) = ( n
2 − 1)h + 3k + (i2 − 1− n

2 )h. Then

| f (vi2,2)− f (vi1,1)| = |( n
2 − 1)h + 3k + (i2 − i1)h|

> k ( Since (i2 − i1)h < ( n
2 − 1)h + k)

If f (vi1,1) = (i1 − 1− n
2 )h + k and f (vi2,2) = ( n

2 − 1)h + 2k + (i2 − 1)h. Then

| f (vi2,2)− f (vi1,1)| = |( n
2 − 1)h + 2k + (i2 − i1)h + ( n

2 )h− k|

= |(n− 1)h + k− (i1 − i2)h|

> k ( Since (i2 − i1)h < (n− 1)h

If f (vi1,1) = (i1 − 1− n
2 )h + k and f (vi2,2) = ( n

2 − 1)h + 3k + (i2 − 1− n
2 )h. Then

| f (vi2,2)− f (vi1,1)| = |2k + (i2 − i1)h|+ ( n
2 − 1)h

> k

If one vertex is in first layer and one vertex is in third layer.

If f (vi,1) = (i− 1)h and f (vi,3) = (i− 1)h + k. Then

| f (vi,3)− f (vi,1)| = |(i− 1)h + k− (i− 1)h|

> k

If f (vi,1) = (i− 1− n
2 )h + k and f (vi,3) = (i− 1− n

2 )h. Then

| f (vi,3)− f (vi,1)| = |(i− 1− n
2 )h + k− (i− 1− n

2 )h|

> k

The proof goes in similar fashion for other vertices which are at a distance of one.

In Figure 42 we show L(5, 21) labeling of K6�P5
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Figure 42: L(5, 21) labeling for K6�P5
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4. Lower bounds for other graphs

Since Kn�Pm−1 is an induced subgraph of Kn�Cm, from Lemma 3.1 we can get the lower bound

for Kn�Cm.

Corollary 4.1. If h ≥ 2k and m > 2 then λ(Kn�Cm) ≥ (n− 1)h + k.

Proof. From Theorem 3.1 we have λ(Kn�Pm−1) = (n− 1)h + k. Since Kn�Pm−1 is an induced

subgraph of Kn�Cm, we have λ(Kn�Cm) ≥ (n− 1)h + k.

Corollary 4.2. If 2k ≥ h ≥ k and m ≥ 3 then λ(Kn�Cm) ≥ (2n− 1)k.

Proof. From Theorem 3.2 we have λ(Kn�P2) = (2n− 1)k. Since Kn�P2 is an induced subgraph of

Kn�Cm, we have λ(Kn�Cm) ≥ (2n− 1)k.

Corollary 4.3. If h < k ≤ nh
2 then λ(Kn�Cm) ≥ 2(n− 1)h + k for n ≥ 3 and m ≥ 4.

Proof. From Theorem 3.3 we have λ(Kn�P3) = 2(n− 1)h+ k. Since Kn�P3 is an induced subgraph

of Kn�Cm, we have λ(Kn�Cm) ≥ 2(n− 1)h + k.

Corollary 4.4. Consider Kn�Cm with the following conditions:

• n is even and n ≥ 6 and m ≥ 6.

• nh
2 < k ≤ (n− 1)h.

then λ(Kn�Cm) ≥ (n− 2)h + 3k.

Proof. From Theorem 3.28 we have λ(Kn�Pm) = (n− 2)h + 3k. Since Kn�Pm−1 is an induced

subgraph of Kn�Cm, we have λ(Kn�Cm) ≥ (n− 2)h + 3k.
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5. Future work

In the thesis L(h, k) labeling is found when k ≤ (n − 1)h. We also determined the value of

λ(Kn�Pm), when k ≥ nh and when n is odd by checking λ values for various graphs. We proved

that when n is even and k ≥ ( n
2 )h the optimal L(h, k) labeling has only one transition between

two adjacent layers. Using MATLAB simulations we checked that this is true when k > (n− 1)h.

From the above results we can derive the following conjectures.

Conjecture 5.1. In the optimal L(h, k) labeling of Kn�Pm, there is only one transition between two

adjacent layers when k > h.

Conjecture 5.2. In the optimal L(h, k) labeling of Kn�Cm, there is only one transition between two

adjacent layers.

Conjecture 5.3. If (b n
2 c+ 1)h < k ≤ (n− 1)h where n is odd then λ(Kn�Pm) = (n− 1)h + 3k.

Conjecture 5.4. If k > (n− 1)h then λ(Kn�Pm) = (3n− 5)h + 2k.

6. Conclusion

In this thesis we completely solved the L(h, k) labeling problem for Kn�Pm when h ≥ k. The

problem when h < k is still a hypothetical concept for now. There are some papers which give

L(h, k) labelings for cases when h < k. Since it is a NP-hard problem, solving for cases when h < k

could give us important insights about the problem in general. If the Conjecture 5.1 is valid for

any Cartesian product graphs then we can find L(h, k) labeling of the graphs using polynomial

time algorithms which takes us one step closer to solving L(h, k) labeling problem for a general

graph.
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