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Abstract 
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High blood pressure blood pressure is an important risk factor for cardiovascular 

disease and affects almost one-third of the U.S. adult population. Historical cuff-less 

non-invasive techniques used to monitor blood pressure are not accurate and highlight 

the need for first principal models. The first model is a one-dimensional model for pulse 

wave velocity (PWV) propagation in compliant arteries that accounts for nonlinear fluids 

in a linear elastic thin walled vessel. The results indicate an inverse quadratic 

relationship (R2 = .99) between ejection time and PWV, with ejection time dominating 

the PWV shifts (12%). The second model predicts the general relationship between 

PWV and blood pressure with a rigorous account of nonlinearities in the fluid dynamics, 

blood vessel elasticity, and finite dynamic deformation of a membrane type thin 

anisotropic wall. The nonlinear model achieves the best match with the experimental 

data. To retrieve individual vascular information of a patient, the inverse problem of 

hemodynamics is presented, calculating local orthotropic hyperelastic properties of the 

arterial wall. The final model examines the impact of the thick arterial wall with different 

material properties in the radial direction. For a hypertensive subject the thick wall 

model provides improved accuracy up to 8.4% in PWV prediction over its thin wall 

counterpart. This translates to nearly 20% improvement in blood pressure prediction 

based on a PWV measure. The models highlight flow velocity is additive to the classic 

pressure wave, suggesting flow velocity correction may be important for cuff-less, non-

invasive blood pressure measures. Systolic flow correction of the measured PWV 

improves the R2 correlation to systolic blood pressure from 0.81 to 0.92 for the mongrel 

dog study, and 0.34 to 0.88 for the human subjects study. The algorithms and insight 

resulting from this work can enable the development of an integrated microsystem for 

cuff-less, non-invasive blood pressure monitoring. 
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Chapter 1: Introduction 

A wave may seem like a simple thing, but in fact it is the most complicated form in nature. - Susan Casey 
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1.1. Abstract 

This chapter motivates the importance of continuous noninvasive monitoring of 

blood pressure and arterial compliance. It reviews historical techniques used or 

attempted to date. The review highlights the need for first principle models to gain the 

insight required to improve continuous blood pressure monitoring. The goals of this 

work are to develop the models, understand the fundamental nature of pulse wave 

propagation in arteries, and enable the development of an integrated microsystem for 

continuous noninvasive blood pressure monitoring. 



 21 

1.2. Nomenclature 

cMK Moens-Korteweg speed of propagation (m/s) 

E Modulus of elasticity (Pa) 

h0, h Thickness of the wall in zero-stress and deformable conditions, respectively (m) 

H Ratio of the wall deflection to r0 

L 1D final length (m) 

r Radius (m) 

r0 Radii in a zero-stress condition (m) 

p Pressure (Pa) 

ρ Density of incompressible fluid (kg/m3) 

PTT Pulse transit time (s) 

PWV Pressure wave velocity (m/s) 

𝜈 Poisson’s coefficient 

Subscripts  

0 Initial 
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1.3. Introduction 

Hypertension, or high blood pressure, is an important risk factor for cardiovascular 

disease and affects almost one-third of the U.S. adult population [1]. In 2009-2010, 

nearly 82% of adults with hypertension were aware of their status, and nearly 76% were 

taking medication [2]. Despite considerable improvement in increasing the awareness, 

treatment, and control of hypertension, undiagnosed and uncontrolled hypertension 

among minority groups remains a challenge [3,4,5]. During 2011-2012, among adults 

with hypertension, 82.7% were aware of their hypertension, 75.6% reported currently 

taking prescribed medication to lower their blood pressure, and 51.8% had their blood 

pressure controlled. The prevalence of hypertension increased with age, from 7.3% 

among those aged 18-39, to 32.4% among those 40-59, to 65% among those 60 and 

over [6]. The ability to create a continuous noninvasive microsystem to improve 

awareness, treatment, and control of hypertension is the long-term goal of this work. 

Research conducted in 1955 by Thomas et al. [7], tried to use the arterial pulse 

wave to measure blood pressure. The pulse wave, generated by left ventricular ejection, 

propagates at a velocity that has been identified as an important marker of 

atherosclerosis and cardiovascular risk [8-16]. Cardiovascular disease affects 37% of 

the United States population and is the leading cause of death [8]. Increased pulse 

wave velocity (PWV) indicates an increased risk of stroke and coronary heart disease 

[9]. This velocity is considered a surrogate marker for arterial compliance [10], is highly 

reproducible [10], and is widely used to assess the elastic properties of the arterial tree 

[11]. Research shows that aortic compliance measurement using PWV could allow for 
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early identification of patients at risk for cardiovascular disease [8,10,14]. The ability to 

identify these patients would lead to better risk stratification and earlier, more cost-

effective preventative health intervention [12]. 

Pulse transit time or PWV has also been measured in various research studies as a 

method to continuously monitor blood pressure [21-23]. Hypertension is defined as a 

chronic condition in which blood pressure is above 140 mmHg/90 mmHg 

(systolic/diastolic) [13]. Hypertension increases the risk for stroke, coronary heart 

disease, congestive heart failure, and renal disease [11,17]. Blood pressure has been 

shown to vary up to 20% in a 24-hour period due to circadian rhythms [14]. It is also 

variable in the clinic where “white coat” and “masked” hypertension can lead to 

misdiagnosis of high blood pressure [15]. This variation highlights the need for 

continuous blood pressure monitoring, which is not achieved with occasional 

measurement that occurs with “at-home cuff”-based oscillometric monitors. If a 

continuous noninvasive blood pressure monitor were available, it would be possible to 

track long-term trends and allow for lifestyle and/or medication adjustments. 
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1.4. History of PWV used for Continuous Noninvasive Blood 
Pressure 

The Moens-Korteweg (cMK) equation (1.1) was derived in 1878 from the wave 

equation for the velocity of propagation in meters per second of a pressure impulse 

within a thin-walled, perfectly elastic (𝑣=0.5), cylindrical tube [27,28].  

𝑐 = 𝑐𝑀𝐾 = √
𝐸ℎ

2𝑟0𝜌
 

 (1.1) 

 

𝐸 is the elastic modulus for the wall, �̅� = 𝐸/(1 − 𝜈2), 𝑣 is Poisson’s coefficient, h is the 

constant thickness of the wall, and r0 is the cross-sectional radius of the unstressed 

cylindrical vessel at zero pressure (𝑝 = 0). Details of the derivation were reviewed by 

Hardung [16]. Young’s modulus in this equation is the static modulus of elasticity at zero 

pressure. Experimental research has proven that the modulus of elasticity does, in fact, 

change dynamically; therefore, Hughes et al. empirically modified the cMK equation to 

reflect this observation [21,28]. Hughes et al. [17] defined the dynamic Young’s modulus 

as: 

𝐸 = 𝐸𝑒𝛼𝑝 (1.2) 

where: α is a vessel coefficient, and p is pressure (Pa). The vessel coefficient was 

selected to match a specific canine’s excised aorta based on a single plot of static 

pressure versus Young’s modulus. Chen et al. [18] extended this work to derive an 

equation for pressure, as shown in equation (1.3). 



 25 

𝑝 =
1

∝
[𝑙𝑛 (

𝜌2𝑟𝐿2

ℎ𝐸0
) − 2𝑙𝑛𝑇𝑇] (1.3) 

where: ρ is the density of blood, r is the radius of the artery at a respective pressure, L 

is the length between the two pulse measurement points, and TT is the true transit time 

for the pulse to propagate between the two measurement points. While this provides 

more accurate results than using a static Young’s modulus, it is not derived from first 

principles, and it misses important variables that influence blood pressure. In addition, 

the parameters required (E0, h, r) are difficult to measure. 

Several studies have shown the influence of blood pressure [8,19,20,30] and left 

ventricular ejection time (LVET) [11, 19] on PWV. Nurnberger et al. [11] used 

myocardial stimulation to modulate ejection time and measure the associated change in 

PWV that was found to correlate only with LVET (R2 = 0.52, p = 0.0325). In their study, 

a change in ejection time of ~40 ms caused a change of PWV of ~1 m/s. Salvi et al. [19] 

performed a large population study to explore the link between PWV and LVET. An 

inverse association was found between PWV and LVET at all ages (<R2 = 0.43; 

p < 0.001). In both studies, it was not possible in vivo to control LVET, systemic 

vascular resistance (SVR), and ejection volume, which likely decreased their observed 

correlation. The clinical relationship between PWV and arterial stiffness is often based 

on classic linear models [32,33] or the combination of the linear models and measured 

results with an incorporated correction factor [21,28,35]. Whereas linear models predict 

PWV as a function only of the geometric and physical properties of the fluid and the 

wall, there is strong evidence that PWV is also correlated with pressure [19,20,30] and 

ejection time [14,19]. 
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1.5. Objectives and Goals of the Work 

While both pressure and LVET are clinically shown to affect PWV, a predictive 

model that provides mechanistic insight and incorporates peak pressure, ejection time, 

ejection volume, and modulus of elasticity has yet to be developed. The aim of this work 

is to develop and validate a model to provide this missing insight. The approach used is 

based on a one-dimensional nonlinear model for pressure wave propagation in a 

compliant tube with a linear elastic wall filled with an incompressible fluid. The model 

incorporates the classical solitary wave-based solution, connecting speed of 

propagation to the ejection time, ejection volume, and peak pressure, accounting for 

nonlinear wave propagation effects, elastic deformable vessels, and the inertia of the 

distensible vessel walls. The model is validated using a physiologically based 

electromechanical hemodynamic simulator. 

A number of researchers have used pulse arrival time (rPTT) or true transit time 

(TT) to try to estimate systolic blood pressure (SBP) and diastolic blood pressure (DBP). 

The results have not met the accepted Association for the Advancement of Medical 

Instrumentation (AAMI) standards for accuracy using the standard cuff-based approach. 

These results have even caused some researchers to conclude that pulse transit time 

measured from the ECG is an unreliable marker of beat-to-beat blood pressure [20]. 

Existing systems fail to measure blood pressure accurately across population and 

activity level. The second aim of this work is to develop a model that predicts the 

general relationship between PWV and blood pressure (BP) with a rigorous account of 

nonlinearities in the fluid dynamics model, blood vessel elasticity, and finite dynamic 

deformation of a membrane-type thin anisotropic wall. Using this model, we aim to 
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develop a per patient calibration (4-point) using parametric optimization and Nelder-

Mead optimization. This model is validated using existing clinical studies. Finally, the 

model is used to predict SBP/DBP after an initial per patient calibration. 

This work focused on understanding the fundamental nature of pulse wave 

propagation in arteries that can be integrated into wearable microsystems technologies. 

PWV and ECG are two of the physiological signals required. While today’s wearables 

have integrated photoplethysmography as a way to measure heart rate, they have yet to 

extend and combine the necessary measures to extract PWV. Companies like AlivCor 

have created smartphone sensors that enable ECG measurement; however, the 

sensors are not yet in a wearable form. In addition to these measures, a measure of 

pre-ejection period and flow are required. Multiple approaches show promise, such as 

the ballistocardiogram (BCG), impedance plethysmography, inductive sensing, RF 

techniques such as dual-antenna nanosecond pulse near-field sensing (NPNS), and 

micro-ultrasound sensors [35]. As of this writing, none of these techniques has yielded a 

wearable technology and been validated across various physiological states against a 

gold standard (Doppler ultrasound). The combination of ECG, PWV, and flow measures 

is required in a wearable microsystem to allow for cuff-less, continuous non-invasive 

blood pressure monitoring.  
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1.6.  Thesis Organization  

This thesis is organized into the following chapters: 

Chapter 2 reviews the background of fluid dynamics as it relates to pulsatile 

pressure and flow in a cylindrical tube or artery. One-dimensional (1D) and two-

dimensional (2D) stress-strain relationships are considered. The basic stress-force 

relationships are covered without accounting for deformation. Building upon this 

information, the 2D linear vessel is reviewed. Special attention is given to define both 

the axial and longitudinal stress. The focus is then shifted to consider the effects of 

nonlinearity. Considering the effect of deformation, Cauchy-Euler, Piola-Lagrange, and 

Kirchoff stresses are defined and related. 

Chapter 3 begins with a background of fluid dynamics as it relates to pulsatile 

pressure and flow in a cylindrical tube or artery. Using that foundation, the effect of 

nonlinear fluids on a linear elastic thin-walled vessel is derived. This work creates a 

one-dimensional model for blood pressure wave propagation in compliant arteries that 

accounts for nonlinear fluids in a linear elastic thin-walled vessel. This model is then 

validated using an in-vitro simulator. The in-vitro physiological electromechanical 

cardiovascular simulator used for the validation is described in detail. There is a 

complete review of the theoretical and measured results. The chapter concludes with a 

description of the mechanisms causing the association between PWV and LVET. 

Specifically, it describes how the model incorporates the classical solitary wave-based 

solution, connecting speed of propagation to the ejection time, ejection volume, and 
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peak pressure, accounting for nonlinear wave propagation effects, elastic deformable 

vessels, and the inertia of the distensible vessel walls. 

Chapter 4 presents a novel approach to PWV prediction in compliant arteries. In 

this chapter, the nonlinear contributions of finite deformation, hyperelasticity, fluid 

convective phenomena, and longitudinal pre-stress are analyzed and used to extend 

the 1D model presented in Chapter 3. The model is then validated across available in-

vivo experimental data. Specifically, it is compared to Histand-Anliker and Muehlsteff-

Schett using a 4-point calibration technique. The impact of different nonlinearities on a 

quality of the best fit is analyzed. In addition, the topology of the Least Square as a 

function of material properties (c, a11, a12, a22) is presented. We specifically compare our 

model results for Histand-Anliker to Zhou-Fung’s five mongrel dogs. The chapter 

concludes with an explanation of steps necessary for a per person calibration to 

generate a predictive PWV versus pressure curve that can be used in non-invasive BP 

measurement. 

Chapter 5 extends the model further to consider the effect of a thick multilayered 

arterial vessel. The goal of this chapter is to re-examine the accuracy of PWV prediction 

based on traditional homogeneous structural models for thin-walled arterial segments. 

In reality, arterial walls are heterogeneous composite structures formed of three clearly 

defined layers. An essential ingredient is the notable dependence of results on 

nonlinear aspects of the model: convective fluid phenomena, hyperelastic constitutive 

relation of each layer, and finite deformation. The contribution of each of the 

nonlinearities is analyzed.  
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Chapter 6 uses the model developed in Chapter 5, in which a physics-based 

mathematical model of PWV that explains flow velocity is additive to the classic 

pressure wave as estimated by arterial material properties, suggesting that flow velocity 

correction may be important for cuff-less non-invasive blood pressure measurements. 

The developed model allows us to understand the impact of systolic flow correction of 

measured PWV on systolic blood pressure prediction accuracy using data from two 

published in vivo studies. Both studies examined the relationship between PWV and 

blood pressure under pharmacological manipulation, one in mongrel dogs and the other 

in healthy adult males. The results support the hypothesis that systolic flow correction is 

an essential element of non-invasive, cuff-less blood pressure estimation based on 

PWV measures. 

Chapter 7 summarizes the conclusions and describes opportunities for future 

work. 
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Chapter 2: Elements of Linear and  
Nonlinear Theory of Elasticity 

You must do things you think you cannot do. - Eleanor Roosevelt 
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2.1. Abstract 

This chapter reviews fluid dynamics as it relates to pulsatile pressure and flow in 

a cylindrical tube or artery. One-dimensional and two-dimensional stress-strain 

relationships are considered. The basic stress-force relationships are covered without 

accounting for deformation. Based on this information, the 2D linear vessel wall is 

reviewed. Special attention is given to define both the axial and longitudinal stress. The 

focus is then shifted to consider the effects of nonlinearity. Considering the effect of 

deformation, Cauchy-Euler, Piola-Lagrange, and Kirchoff stresses are defined and 

related. The background information is then expanded for the three different models 

described in Chapters 3-5. 
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2.2. Nomenclature 

E Modulus of elasticity (Pa) 

F Force (N) 

G Green strain (Pa) 

h0, h Thickness of the wall in zero-stress and deformable conditions, respectively (m) 

L 1D length (m) 

ΔL Elongation (m) 

p Transmural pressure (Pa) 

r Radius (m) 

S Kirchoff stress (Pa) 

T Piola-Lagrange stress (Pa) 

u Axial flow velocity (m/s) 

W Potential energy (J) 

ε Strain 

ρ Density of an incompressible fluid (kg/m3) 

η Circumferential wall strain 

𝜎  Cauchy stress (Pa) 

λ Stretch ratio 

ν Poisson’s coefficient 
Subscripts  

10,20,30 Initial coordinate independent measure; for Cartesian, it would be a measure in the 
x,y,z directions, respectively 

1,2,3 Final coordinate independent measure; for Cartesian, it would be a measure in the 
x,y,z directions, respectively 
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2.3. Introduction of Elements of Linear and Nonlinear Theory of 
Elasticity 

When inelasticity, anisotropy, and nonlinearity are coupled, the problem of how to 

describe the mechanical properties of arteries in a simple and accurate mathematical 

form becomes quite acute [1]. In this chapter, the 1D and 2D stress-strain relationships 

are defined. This information is extended to understand the stress-force relationship on 

a simple 3D object. In order to tie the information back to a simple artery, a 2D linear 

vessel is covered. The effect of axial and circumferential deformation is described as a 

way to introduce nonlinearity to the system. This information is used as the foundation 

for the one-dimensional models for blood pressure wave propagation in compliant 

arteries. 

2.3.1. Stress and Strain in 1D Linear Mechanics 

A one-dimensional object stretched in the x-direction (shown in Figure 2.1) has an 

original length L0, and a final length after force is applied in the x-direction of L. 

L0 ∆L

L

F1

 

Figure 2.1.  1D object with an initial length L0 and a final length of L after a forceF1 is applied. 

The stretch ratio and elongation are defined as  

λ =
𝐿

𝐿0
 

 

(2.1) 
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ΔL = L − 𝐿0 (2.2) 

The ratio of ΔL to L0 defines strain as a function λ according to 

𝜀 =
ΔL

𝐿0
=
𝐿 − 𝐿0
𝐿0

= 𝜆 − 1 (2.3) 

Hooke’s Law now relates stress to strain by the modulus of elasticity E. 

𝜎 = E𝜀 (2.4) 

Modulus of elasticity is a number that measures an object or substance's resistance to 

being deformed elastically (non-permanently) when a force is applied to it. The elastic 

modulus of an object could be interpreted as the slope of its stress-strain curve in the 

elastic deformation region [2].  

An alternative form in which to present constituent equations is based on defining 

potential energy of deformation as 

𝑊 =
1

2
𝜎𝜀 =

𝐸𝜀2

2
 (2.5) 

(Lagrange principle). Taking the partial derivative of strain energy with respect to strain, 

the constituent equation for stress-strain relationship is formed (Hooke’s Law). 

𝜎 =
𝜕𝑊

𝜕𝜀
= 𝐸𝜀 (2.6) 

This approach will be used to build the constituent equations in nonlinear mechanics in 

Chapter 4. 
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2.3.2. 2D Linear Stress and Strain 

A two-dimensional object stretched in x,y directions (shown in Figure 2.2) has an 

initial length L10, L20, in the x,y directions, respectively, and a final length after force is 

applied of L1, L2.  

L20

L10

L1

L2

 

Figure 2.2.  2D object with an initial length of (L10,L20) and final length after a force is applied of (L1, L2). 

The subscripts (1,2) are used to represent general notation, valid for Cartesian, cylindrical or spherical 

coordinates [1].  

The stretch ratios are defined as 

𝜆1 =
𝐿1
𝐿10
,    𝜆2 =

𝐿2
𝐿20

 (2.7) 

where subscripts 1, 2 are in the x,y direction, respectively. Similar to stretch, the 

components of strain are defined as the ratio of change in length to original length. 

𝜀1 =
𝐿1 − 𝐿10
𝐿10

=
𝛥𝐿1
𝐿10
  (2.8) 

𝜀2 =
𝐿2 − 𝐿20
𝐿20

=
𝛥𝐿2
𝐿20
  

(2.9) 

 

 

𝜀1 = 𝜆1 − 1, 𝜀2 = 𝜆2 − 1 (2.10) 

Strain is also related to the stretch ratio minus one. Hooke’s Law generalized to its 2D 

counterpart now relates stress by introducing Poisson’s coefficient. 
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𝜀1 =
1

𝐸
(𝜎1 − 𝜈𝜎2) (2.11) 

𝜀2 =
1

𝐸
(𝜎2 − 𝜈𝜎1) 

(2.12) 

𝜎1 =
𝐸

1 − 𝜈2
(𝜀1 + 𝜈𝜀2) 

(2.13) 

𝜎2 =
𝐸

1 − 𝜈2
(𝜀2 + 𝜈𝜀1) 

(2.14) 

When a 2D material is stretched in one direction, it usually tends to compress in the 

other direction perpendicular to the direction of extension. This phenomenon is called 

the Poisson effect. Poisson's coefficient 𝜈 is a measure of this effect.  

 Extending Hooke’s law, it is then possible to define strain energy.  

σ2

σ2

σ1σ1

 

Figure 2.3.  2D strain energy under extension in both directions. 

The alternative way to build 2D constituent equations is based on defining potential 

energy of deformation in the 2D case as 

𝑊 =
1

2
(𝜎1𝜀1 + 𝜎2𝜀2) =

𝐸

2(1−𝜈2)
(𝜀1
2 + 2𝜈𝜀1𝜀2 + 𝜀2

2) (2.15) 

(Lagrange approach). By taking the partial derivative of strain energy with respect to 

strain, the 2D form of Hooke’s Law results. 
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𝜎1 =
𝜕𝑊

𝜕𝜀1
=

𝐸

(1 − 𝜈2)
(𝜀1 + 𝜈𝜀2) (2.16) 

𝜎2 =
𝜕𝑊

𝜕𝜀2
=

𝐸

(1 − 𝜈2)
(𝜀2 + 𝜈𝜀1) 

(2.17) 

2.3.3. Stress-Force Relationship in Linear Mechanics 

To understand the stress-force relationship, consider a simple 3D object as shown 

in Figure 2.4. 

L10

L20

h0

F2

F2

F1F1

 

Figure 2.4.  Stress-force relationship on a simple 3D object, where F1,F2 represent force in the x,y 

direction, respectively. L10,L20 represent the initial unstressed length in the x,y direction, and h0 represents 

the initial unstressed thickness.  

𝜎1 =
𝐹1
𝐿20ℎ0

 (2.18) 

𝜎2 =
𝐹2
𝐿10ℎ0

 (2.19) 

Defining stress components in linear mechanics, the change of geometry during 

deformation is neglected. In Figure 2.4, a 3D object is shown with a thin third dimension, 

which is the thickness of the shell. Stresses in the direction of thickness are neglected, 

but the change in thickness can be predicted from an incompressibility condition. 

Stresses in one and two directions are statically determinate (i.e., can be 

calculated explicitly based on statics). Because 𝜎3 is neglected, our physical shell model 
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is two-dimensional, although the third dimension is used to specify the thickness. The 

information described in this section is used as the foundation to develop the second 

and third models for pulse wave velocity prediction in nonlinear thin- and thick-walled 

elastic arterial segments in Chapters 4 and 5. 

2.3.4. 2D Linear Vessel 

The stress-force relationship is now extended to gain understanding of a simple 2D 

linear vessel wall [3,4]. 

p

p

σθ σθ

p

r

 

Figure 2.5.  2D linear circumferential stress on a vessel in equilibrium. The lower right image highlights 

the direction of the circumferential stress with the applied transmural pressure. The thickness (h) is a 

constant in a linear model in which deformation is not taken into account. 

Static equilibrium conditions, as shown in Figure 2.5, result in 

2𝜎𝜃ℎ = 𝑝2𝑟 (2.20) 

𝜎𝜃 =
𝑝𝑟

ℎ
 (2.21) 

where σθ is circumferential stress. In addition to circumferential stress, a vessel under 

pressure experiences axial or longitudinal stress (σz), calculated from static equilibrium 

in the axial direction as shown in Figure 2.6.  
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p

σz

σz  

Figure 2.6.  2D linear axial stress on a vessel in equilibrium. The thickness (h) is a constant in a linear 

model in which deformation is not taken into account. 

𝜎𝑧2𝜋𝑟ℎ = 𝜋𝑟
2𝑝 (2.22) 

𝜎𝑧 =
𝑝𝑟

2ℎ
=
𝜎𝜃
2

 (2.23) 

For both circumferential and axial stress, the effect of deformation is not required by the 

linear model. The information described in this section is used as the foundation to 

develop the first model for Pulse Wave Velocity Prediction and Compliance Assessment 

in Linear Elastic Arterial Segments in Chapter 3. 

2.3.5. Nonlinear Elasticity, Finite Deformation 

In the linear case, deformation was not considered. However, the first step in 

accounting for nonlinearity is to take the effect of deformation into account. Analyzing 

uniform stretch for the block along the block sides L10, L20, h0, the stretch ratio is now 

defined as (L1, L2, ℎ - the block sides after deformation)  

𝜆1 =
L1
L10

;    𝜆2 =
L2
L20

; 𝜆3 =
h

h0
  (2.24) 

for all three directions [1]. If the material is incompressible, then 

𝐿1𝐿2h = 𝐿10𝐿20ℎ0;      𝜆1𝜆2𝜆3 = 1  (2.25) 

which means that the initial volume of the arterial wall must be equal to the final volume. 

It also sets the product of all stretch ratios equal to one. Figure 2.7 illustrates an 

infinitesimally small object before and after deformation. 



 45 

dy

dx

dX

dY

dL0 dL

 

Figure 2.7.  Illustration of an infinitesimally small element before (left) and after (right) deformation. 

Analyzing deformation for the non-uniform point-dependent stretch, L10, L20 are 

substituted with 𝑑𝑥, 𝑑𝑦, and 𝐿1,𝐿2 𝑤𝑖𝑡ℎ 𝑑𝑋, 𝑑𝑌.  As a result,  

𝜆𝑥 =
𝑑𝑋

𝑑𝑥
;     𝜆𝑦 =

𝑑𝑌

𝑑𝑦
  (2.26) 

where capital (X,Y) are the Lagrangian coordinates associated with deformed particles, 

and the lowercase coordinates (x,y) relate to the strain-free case. By using the 

Pythagorean Theorem   

𝑑𝐿0 = √𝑑𝑥2 + 𝑑𝑦2;      𝑑𝐿 = √𝑑𝑋2 + 𝑑𝑌2  (2.27) 

dL0, dL can be calculated. The Green strain is defined as 

𝐺 =
𝑑𝐿2 − 𝑑𝐿0

2

2𝑑𝐿0
2   (2.28) 

By combining equations (2.26), (2.27), and (2.28), in terms of dx,dy, equation (2.29) 

results.  

𝐺 =
𝜆𝑥
2𝑑𝑥2 + 𝜆𝑦

2𝑑𝑦2 − (𝑑𝑥2 + 𝑑𝑦2)

2(𝑑𝑥2 + 𝑑𝑦2)
;      

(𝜆𝑥
2 − 1)𝑑𝑥2 + (𝜆𝑦

2 − 1)𝑑𝑦2

2(𝑑𝑥2 + 𝑑𝑦2)
  (2.29) 

Setting deformation in the y-direction to zero (dy=0) results in a one-dimensional x-

component of Green strain. 
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𝐺𝑥 =
𝜆𝑥
2 − 1

2
;  (2.30) 

Setting deformation in the x-direction to zero (dx=0) results in a one-dimensional y-

component of Green strain. 

𝐺𝑦 =
𝜆𝑦
2 − 1

2
;   (2.31) 

For small deformation, where  (∆𝐿1 ≪ 𝐿10) 

𝜆𝑥 =
𝐿1
𝐿10

=
𝐿10 + 𝛥𝐿1
𝐿10

;  (∆𝐿1 ≪ 𝐿10)  (2.32) 

𝐺𝑥 =
1

2
((
𝐿10 + ∆𝐿1
𝐿10

)
2

− 1) =
1

2
(
𝐿10
2 + 2𝐿10𝛥𝐿1 + 𝛥𝐿1

2 − 𝐿10
2

𝐿10
2 )     

(2.33) 

𝐺𝑥 ≅
∆𝐿1
𝐿10

= 𝜀𝑥;      𝐺𝑦 ≅
∆𝐿2
𝐿20

= 𝜀𝑦  
(2.34) 

Green strain components are identical to deformation introduced in a linear theory of 

elasticity. 

 Cauchy-Euler stress takes into account the change in geometry during 

deformation, defined as the ratio of force to the real area. 

𝜎1 =
𝐹1
𝐿2ℎ

;     𝜎2 =
𝐹2
𝐿1ℎ

  (2.35) 

Piola-Lagrange stress uses the initial state of the area. 

𝑇1 =
𝐹1
𝐿20ℎ0

;      𝑇2 =
𝐹2
𝐿10ℎ0

  (2.36) 

The two different types of stress (35,36) are related by 

𝜎1
𝑇1
=

𝐿20
𝐿20ℎ0

=
1

𝜆2𝜆3
= 𝜆1 (2.37) 

𝜎1 = 𝑇1𝜆1;   𝜎2 = 𝑇2𝜆2 (2.38) 

the stretch ratio. 
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Kirchhoff’s stress components (𝑆1, 𝑆2) are related to the corresponding Cauchy and 

Lagrange components as the following: 

𝑆1 =
𝜎1

𝜆1
2 =

𝑇1
𝜆1
;      𝑆2 =

𝜎2

𝜆2
2 =

𝑇2
𝜆2
  (2.39) 

Kirchhoff’s stress components can be expressed as a partial derivative of strain energy 

by relating Green’s strain components 

𝑆1 =
𝜕𝑊

𝜕𝐸1
;      𝑆2 =

𝜕𝑊

𝜕𝐸2
  (2.40) 

The information described in this section is used as the foundation to develop the 

second and third models for pulse wave velocity prediction in nonlinear thin- and thick- 

walled elastic arterial segments in Chapters 4 and 5. 
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2.4. Conclusion 

  In this chapter, 1D and 2D stress strain relationships were reviewed. The basic 

stress-force relationships were covered without accounting for deformation. 

Incorporating this information, the 2D linear vessel was reviewed. Special attention was 

given to define both the longitudinal and circumferential stress. The effects of 

nonlinearity were then considered. Considering the effect of deformation, Cauchy-Euler, 

Piola-Lagrange, and Kirchoff stresses were defined and related. The foundation of 

nonlinear mechanics of material presented in this chapter will be used for the models 

that are described in Chapters 3-5. 
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Chapter 3: Pulse Wave Velocity Prediction  
and Compliance Assessment in Linear Elastic 

Arterial Segments 

…when you can measure what you are speaking about, and express it in numbers, you know something 

about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a 

meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your 

thoughts, advanced to the state of Science whatever the matter may be. - Lord Kelvin 
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3.1. Abstract 

Pressure wave velocity (PWV) is commonly used as a clinical marker of vascular 

elasticity [1-9]. Recent studies have increased clinical interest in also analyzing the 

impact of heart rate (HR), blood pressure, and left ventricular ejection time (LVET) on 

PWV. In this chapter, the focus is on the development of a theoretical one-dimensional 

model and validation via direct measurement of the impact of ejection time and peak 

pressure on PWV using an in vitro hemodynamic simulator. A simple nonlinear traveling 

wave model was developed for a compliant thin-walled elastic tube filled with an 

incompressible fluid. This model accounts for the convective fluid phenomena, elastic 

vessel deformation, radial motion, and inertia of the wall. An exact analytical solution for 

PWV is presented that incorporates peak pressure, ejection time, ejection volume, and 

modulus of elasticity. To assess arterial compliance, the solution is introduced in an 

alternative form, explicitly determining compliance of the wall as a function of the other 

variables. The model predicts PWV in good agreement with the measured values, with 

a maximum difference of 3.0%. The results indicate an inverse quadratic relationship 

(R2 = .99) between ejection time and PWV, with ejection time dominating the PWV 

shifts (12%) over those observed with changes in peak pressure (2%). Our modeling 

and validation results both explain and support the emerging evidence that, in both 

clinical practice and clinical research, variables related to cardiac systolic function 

should be regularly taken into account when interpreting arterial function indices, 

namely PWV.  
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3.2. Nomenclature 

A Cross-sectional area (m2) 

c Velocity of a traveling wave (m/s) 

𝑐𝑀𝐾  Moens-Korteweg speed of propagation (m/s) 

E Modulus of elasticity (Pa) 

F Force (N) 

h0, h Thickness of the wall in zero-stress and deformable conditions, respectively (m) 

L0 1D initial length (m) 

L 1D final length (m) 

ΔL Elongation (m) 

ν Poisson’s coefficient 

p Transmural pressure (Pa) 

ρ Density of an incompressible fluid (kg/m3) 

ρw Density of the cylindrical wall (kg/m3) 

PTT Pulse transit time (s) 

PWV Pressure wave velocity (m/s) 

r Radius (m) 

u Axial flow velocity (m/s) 

η Circumferential wall strain 
Subscripts  

(t,z) Derivatives by time and axial coordinates 
Superscripts  

‘ Derivative 
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3.3. Introduction 

The pulse wave, generated by left ventricular ejection, propagates at a velocity 

that has been identified as an important marker of atherosclerosis and cardiovascular 

risk [1-9]. Increased pulse wave velocity indicates an increased risk of stroke and 

coronary heart disease [1]. This velocity is considered a surrogate marker for arterial 

compliance [2], is highly reproducible [2], and is widely used to assess the elastic 

properties of the arterial tree [3]. Research shows that aortic compliance measurement 

using pulse wave velocity could allow for early identification of patients at risk for 

cardiovascular disease [1,3,7]. The ability to identify these patients would lead to better 

risk stratification and earlier, more cost-effective preventative therapy [4]. Several 

studies have shown the influence of blood pressure [1,11-13] and LVET [3, 5] on pulse 

wave velocity.  

Over the past several decades, there has been ongoing research focused on 

improving the theoretical prediction of PWV. The clinical relationship between PWV and 

arterial stiffness is often based on classic linear models [8,15] or on the combination of 

the linear models and measured results with an incorporated correction factor [16-18]. 

Whereas linear models predict PWV as a function of only geometric and physical 

properties of the fluid and the wall, there is strong evidence that PWV is also correlated 

with pressure [11-13] and ejection time [3, 5] 

While both pressure and LVET are shown clinically to affect pulse wave velocity, 

a predictive model that provides mechanistic insight and incorporates peak pressure, 

ejection time, ejection volume, and modulus of elasticity has yet to be developed. The 
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aim of this study is to develop and validate a model to provide this missing insight. The 

approach used is based on a one-dimensional nonlinear model for pressure wave 

propagation in a compliant tube with a linear elastic wall filled with an incompressible 

fluid. The model incorporates the classical solitary wave-based solution, connecting 

speed of propagation to the ejection time, ejection volume, and peak pressure. It 

accounts for nonlinear wave propagation effects, elastic deformable vessels, and the 

inertia of the distensible vessel walls. The model is validated using a physiologically 

based electromechanical hemodynamic simulator.  

To assess the impact of arterial stiffness, the theoretical solution is introduced in 

an alternative form, to enable explicit determination of the vascular wall’s elasticity (or 

compliance) as a function of PWV, peak pressure, ejection volume, and ejection time. 

This solution is a natural generalization of Bramwell–Hill theory [6] that directly relates 

compliance to PWV only, independent of the other factors.  
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3.4. Theory 

3.4.1. Nonlinear Model for Pressure Wave Propagation 

A nonlinear one-dimensional model for blood pressure wave propagation in 

compliant arteries was created. As shown Figure 3.1, this model assumes a compliant 

tube with a linear elastic wall filled with an incompressible inviscid fluid.  

 

  

Figure 3.1.  Longitudinal cross section of the arterial wall being modelled in the r, z plane, where r, z are 

the radial and axial coordinates, respectively. The cylinder is represented at two specific times in the 

cardiac cycle: diastolic pressure (shown at foot red circle, lowest pressure) and systolic pressure (shown 

by blue square, peak pressure). The wall thickness h, initial inner diameter 𝑟0, and wall displacement ∆𝑟 

are exaggerated for the purpose of illustration. 

At each spatial location z and at each time t, the average cross-sectional axial 

flow velocity u=u(z,t), static pressure p=p(z,t), cross-sectional area A=A(z,t), and 

membrane circumferential strain (ratio of the normal displacement to the radius) η=η(z,t) 

are calculated. Application of the laws of conservation of mass and conservation of 

momentum results in the following set of 1D equations [20,21], correspondingly:  
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𝐴𝑡 + (𝑢𝐴)𝑧 = 0 (3.1) 
 

𝑢𝑡 + (
𝑢2

2
+
𝑝

𝜌
)𝑧 = 0 (3.2) 

where: ρ is the density of the fluid, assumed to be constant. Subscripts indicate 

partial derivative by the corresponding space and time variables (z, t), respectively. 

Equilibrium conditions maintain the following relationship between pressure, 

circumferential stress, and inertia of the moving wall: 

𝑝 =
�̅�ℎ

𝑟0
𝜂 + 𝜌𝑤ℎ𝑟0𝜂𝑡𝑡 (3.3) 

where: 𝐸 is the elastic modulus for the wall, ν is Poisson’s coefficient; and �̅� =

𝐸/(1 − 𝜈2); h is the constant thickness of the wall, r0 is the cross-sectional radius of the 

unstressed cylindrical vessel (𝑝 = 0), ρw is the density of the cylindrical wall, and η is 

circumferential wall strain. Noting that 𝐴 = 𝜋𝑟0
2(1 + 𝜂)2, the total system of equations 

can be presented in the following non-conservative form: 

𝜂𝑡 + 𝑢𝜂𝑧 +
1 + 𝜂

2
𝑢𝑧 = 0 (3.4) 

𝑢𝑡 + 𝑢𝑢𝑧 +
1

𝜌
𝑝𝑧 = 0 (3.5) 

𝑝 =
�̅�ℎ

𝑟0
𝜂 + 𝜌𝑤ℎ𝑟0𝜂𝑡𝑡 (3.6) 

Following [22], we are looking for the solitary traveling wave solution in a form 

𝜂(𝑧, 𝑡) = 𝜂(𝑍), 𝑢(𝑧, 𝑡) = 𝑢(𝑍), where 𝑍 = 𝑧 − 𝑐𝑡 and c represents the velocity of the 

traveling wave. The functions 𝜂(𝑍), 𝑢(𝑍), 𝑝(𝑍) are assumed to be smooth, and 

decaying monotonically as 𝑍 → ±∞.  
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Substituting 𝜂(𝑍), 𝑢(𝑍) into equations (3.4-3.6), we obtain the following system of 

ordinary differential equations where prime indicates the derivative with respect to Z: 

(−𝑐 + 𝑢)𝜂′ +
1

2
(𝜂 + 𝑟0)𝑢

′ = 0 

−𝑐𝑢′ + 𝑢𝑢′ +
𝐸ℎ

𝜌𝑟0
2 𝜂

′ +
𝜌𝑤ℎ

𝜌
𝑐2𝜂′′′ = 0 

 

(3.7) 

(3.8) 

By neglecting the nonlinear terms in equations (3.7) and (3.8) and the wall inertia terms 

in (3.8), the linearized hyperbolic system of equations can be presented as: 

−𝑐𝜂′ +
1

2
𝑢′ = 0 (3.9) 

𝐸ℎ

𝜌𝑟0
𝜂′ − 𝑐𝑢′ = 0 (3.10) 

A non-trivial solution exists only if ‖
−𝑐

1

2
�̅�ℎ

𝑟0
−𝑐
‖ is presented in matrix form, where 

𝑐 = 𝑐𝑀𝐾 = √
𝐸ℎ

2𝑟0𝜌
 

(3.11) 

is the Moens-Korteweg speed of propagation, which is a function of the mechanical 

properties of the system only. For the general case, the total nonlinear dispersive wave 

model in equations (3.7) and (3.8) must be considered. Separating variables in equation 

(3.7), 2𝜂′ (1 + 𝜂) = 𝑢′ (𝑐 − 𝑢)⁄⁄ , integrating, and noting 𝑢(𝜂 = 0) = 𝑢0 which represents 

the average flow velocity, the following relationship can be obtained: 

𝑢 = 𝑐 −
𝑐 − 𝑢0
(1 + 𝜂)2

 (3.12) 

Integrating equation (3.8) results in 

−𝑐(𝑢 − 𝑢0) + (
𝑢2

2
−
𝑢0
2

2
) +

𝐸ℎ

𝜌𝑟0
𝜂 +

𝜌𝑤ℎ𝑟0
𝜌

𝑐2𝜂′′ = 0 (3.13) 
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A nonlinear momentum equation is obtained by multiplying equation (3.13) by 𝑑𝜂 and 
integrating to yield: 

−𝑐∫(𝑢 − 𝑢0)𝑑𝜂 +
1

2
∫ (𝑢2 − 𝑢0

2)𝑑𝜂 +
𝐸ℎ

2𝜌𝑟0
𝜂2

𝜂

0

+
𝜌𝑤ℎ𝑟0
2𝜌

𝑐2(𝜂′)2 = 0

𝜂

0

 (3.14) 

Equation (3.14) can be reduced to an algebraic form by analysis of the peak value of 

the wave profile, 𝜂′ = 0. Calculating integrals of equation (3.14) based on equation 

(3.12), and setting equation (3.14) at peak pressure, one can reduce the momentum 

equation to the following form: 

𝑃𝑊𝑉 = 𝑐 = 𝑢0 ± 𝑐𝑀𝐾
𝐴𝜂

√Γ(𝐴𝜂)
 (3.15) 

where 𝛤(𝜂) =
𝜂

2
−
1

6
(1 −

1

(1+𝜂)3
), and 𝐴𝜂 = 𝑚𝑎𝑥(𝜂(𝑍)) is the peak circumferential strain. 

Equation (3.15) presents PWV of the forward and backward solitary wave propagation. 

Based on asymptotic expansion 
𝐴𝜂

√𝛤(𝐴𝜂)
= 1 +

5

6
𝐴𝜂 + 𝑂(𝐴𝜂

2), where O is the order of 

accuracy, equation (3.15) reduces to a simplified form using the second order of 

accuracy: 

𝑐 = 𝑢0 + 𝑐𝑀𝐾(1 +
5

6
𝐴𝜂) 

(3.16) 

indicating a correction to the classical Moens-Korteweg model, introduced by the 

present theory. The peak of flow velocity 𝐴𝑢, volume flow rate 𝐴𝑄, and pressure 𝐴𝑝 are 

dependent on c as follows from equations (3.6), (3.12), (3.13), and (3.15): 

𝐴𝑢 = 𝑐 −
𝑐 − 𝑢0
(1 + 𝐴𝜂)2

 (3.17) 

𝐴𝑄 𝜋𝑟0
2⁄ = 𝐴𝑢 × (1 + 𝐴𝜂)

2 (3.18) 

𝐴𝑝 𝜌⁄ = 𝑐(𝐴𝑢 − 𝑢0) − (
𝐴𝑢
2

2
−
𝑢0
2

2
) 

(3.19) 
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According to the traveling wave model, pressure, flow, and wall displacement 

propagate with the same speed of propagation, c. The linear model predicts that all 

waves travel with the Moens-Korteweg speed (𝑐𝑀𝐾), but accounting for nonlinearities 

predicts a speed of propagation that exceeds 𝑐𝑀𝐾. As expected for soliton nonlinear 

waves, the higher peak pressure wave travels with a higher speed [7]. This trend is 

similar to the results derived differently in [7], and it is consistent with the clinical data 

obtained in [8]. As ejection time decreases, the average flow velocity u0 increases, 

thereby increasing PWV as seen in equation (3.16).  

3.4.2. Assessment of Arterial Compliance 

Quantification of pulse wave velocity is typically considered the ‘‘gold standard’’ 

method to assess arterial compliance [9]. The nonlinear model can be extended to 

estimate aortic compliance as a function of PWV, peak pressure, ejection time, and 

ejection volume. The classic definition of compliance (C) is C = ΔV/ΔP, where (ΔV) is 

the change in arterial blood volume for the defined arterial segment and (ΔP) is the 

associated change in arterial blood pressure. Using the pressure/displacement and 

volume/displacement relationships (𝐴𝑠 is the surface area, and V is the internal volume 

of the arterial segment): 

∆𝑃 =
�̅�ℎ

𝑟0
𝜂 = 2𝜌𝜂𝑐𝑀𝐾

2  (3.20) 

∆𝑉 = 𝐴𝑠𝑟0𝜂 = 2𝑉𝜂 (3.21) 

the Bramwell-Hill compliance (CBH) can be determined as: 

∆𝑉

∆𝑃
= 𝐶𝐵𝐻 =

𝑉

𝜌𝑐𝑀𝐾
2  (3.22) 
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In practice, the volumetric compliance is calculated based on the measured pressure 

wave velocity [9]: 

𝐶 =
𝑉

𝜌𝑃𝑊𝑉2
 (3.23) 

To estimate the error introduced by equation (3.23), we transform it using equation 

(3.15), and we form the expression that explicitly estimates its proximity to the exact 

value: 

𝐶 =
𝑉

𝜌𝑐𝑀𝐾
2 (

𝑢0

𝑐𝑀𝐾
+

𝐴𝜂

√Γ(𝐴𝜂)
)2
= 𝐶𝐵𝐻[1 −

5

3
𝐴𝜂 − 2

𝑢0
𝑐𝑀𝐾

+ 𝑂(𝐴𝜂
2) + 𝑂(

𝑢0
𝑐𝑀𝐾

)2] (3.24) 

Neglecting the quadratic terms, we introduce a corrected coefficient for elastance, 

defined as a ratio of compliance (C) to the Bramwell-Hill compliance (CBH) 

𝐶 𝐶𝐵𝐻 = (1 −
5

3
 𝐴𝜂 − 2

𝑢0
𝑐𝑀𝐾

)⁄  (3.25) 

This coefficient could be useful to decrease the error associated with equation (3.23). 
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3.5. Materials and Methods 

3.5.1. Hemodynamic Simulator 

A physiologically based electromechanical cardiovascular simulator was 

developed, which is a modified version of that described in [10]. The simulator is 

capable of producing arterial hemodynamic flows and pressures associated with the 

circulatory system. As shown in Figure 3.2, a linear actuator (THK linear actuator, VLA-

ST-60-12-0250), driven by a servomotor (Yaskawa Sigma-V) is used to produce 

repeatable fluid flow by displacement of a given fluid volume creating a repeatable 

pressure in the compression chamber. LabVIEW is used to control the servomotor for 

accurate control of the fluid ejection time. LabVIEW was also used to record the 

measurements from the pressure and flow sensors used in the simulator. 

The pressure sensors (P1, P2, venous pressure) and flow sensors (F1, F2) are 

located as shown in Figure 3.2. Sensors are placed at a location representing the 

proximal aorta (P1, F1) and distal aorta (P2, F2). The venous pressure sensor is located 

distal to the resistive element. Systemic vascular resistance (SVR) is controlled by the 

Windkessel resistive elements (E1, E2). Mean aortic flow was determined from 

measurements obtained using the distal flow sensor (F2). The mean was calculated 

in MATLAB for each sixty-second dataset. SVR and ejection volume were calculated as 

described in [11], 𝑆𝑉𝑅 = (𝑀𝐴𝑃𝑎 −𝑀𝐴𝑃𝑣) 𝐹𝑎⁄ , where 𝑀𝐴𝑃𝑎 is mean aortic pressure; 𝑀𝐴𝑃𝑣 

is mean venous pressure; 𝐹𝑎 is mean aortic flow; and the units of SVR, mean aortic 

flow, and aortic and venous MAP are 𝑚𝑚𝐻𝑔 ∙ 𝑚𝑖𝑛 𝐿⁄ , 𝐿 𝑚𝑖𝑛⁄ , and mmHg, respectively. 

The experimental pulse rate was kept at a constant 60 beats per minute (BPM) with 
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ejection volume (EV) calculated as EV = 𝐹𝑎 PR ⁄ , where PR is pulse rate and the units of 

ejection volume, mean aortic flow, and pulse rate are L, 𝐿 𝑚𝑖𝑛⁄ , and 𝑏𝑒𝑎𝑡𝑠 𝑚𝑖𝑛⁄ .  

The simulator contains both an arterial afterload and a venous preload 

compliance chamber with air volumes of 0.72 L and 3.83 L, respectively. A 

sphygmomanometer bulb controls chamber pressures with manual pressure readout via 

an associated mechanical pressure gauge. Prior to starting an experiment, both 

chambers were pressurized to ~5 mmHg. This resulted in a dynamic MAP of 85 mmHg 

during experiments. 

 

Figure 3.2.  Illustration of the cardiovascular hemodynamic simulator with a total volume of 5.75 L. P1, P2 

are the proximal and distal aortic pressure sensors. F1, F2 are the proximal and distal aortic flow sensors. 

The Windkessel resistive elements are used to model SVR as in [12]. An adjustable-rate servomotor was 

used to control ejection time. In the right part of the figure is an expanded view showing the addition of 

the high-speed camera setup used to measure wall displacement.  
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3.5.1.1. Pressure and Flow Sensors 

Pressure was measured using factory calibrated (±1 mmHg), catheter-based, 

solid-state pressure transducers (Millar Instruments, Mikro-Cath 3.5F pressure catheter, 

sterile, disposable, 120 cm). Flow was measured using precision tubing transit time flow 

sensors (Transonic Systems Inc., ME-PXL-Series) calibrated to achieve a flow 

measurement accuracy of ±2%. Transonic Systems, Inc. calibrated the flow sensors 

with the tubing used for all experiments. 

3.5.1.2. Aortic Tubing 

Tubing was selected with compliance values to approximate the elasticity of the 

aorta. Papageorgiou and Jones [13] studied Tygon, Silastic, PVC, and Latex tubing and 

determined that Latex tubing was most suitable for arterial simulation because the 

incremental modulus of elasticity was close to that of major arteries. In this study 

(McMaster-CARR, 5234K631), (ID = 19.05 mm, OD = 22.22 mm, wall thickness = 

1.59 mm), Latex rubber was selected. Static pressurization tests were performed on the 

selected tubing to empirically measure the tubing compliance. The tubing was 

pressurized in 12 equal steps [0-200 mmHg] while monitoring the internal pressure with 

a catheter pressure transducer (Validyne P855). The outer diameter of the compliant 

tubing was imaged using a digital camera (IDT Motion Pro X3, 1280x1024 pixels, 500 

frames per second). The images were post-processed to determine the outer diameter 

of the tubing at each pressure level. There was an approximately linear (R2 = 0.99) 

relationship between the expansion of the compliant tubing and the increasing static 

pressures within the tested operating pressure range, with a slope of 0.15 mm/mmHg 

and an intercept of 22.22 mm. The linear relationship indicates that the tubing remains 

within the linear elastic range, which is consistent with the results obtained by [26,27]. 



 64 

Based on the referenced studies and the measured results, this tubing was then used 

for all experiments. 

3.5.1.3. Systemic Vascular Resistance  

A physical Windkessel resistance was constructed to serve as a laminar flow 

control element and was attached 20 cm distal from sensors (P2, F2), to provide 

realistic outflow impedances, as shown in Figure 3.2. The construction methods used in 

this work were adapted from Taylor and Kung [12]. The resistance modules were 

connected to PVC tubing at each end. To avoid turbulence and maintain laminar flow, 

care was taken to minimize abrupt diameter changes at the connection junction.  

3.5.2. Hemodynamic Simulation Experiment  

Hemodynamic parameters were directly measured and PWV was determined 

while varying ejection time, at a fixed ejection volume, SVR, mean aortic flow, and HR 

of 60 BPM for a duration of 60 seconds. All signals were low pass filtered (Butterworth 

filter, eight pole zero phase) with a corner frequency set at 20 Hz [14]. Automated 

MATLAB algorithms were used to extract the foot-to-foot delta time for the proximal and 

distal pressure. The percent height method was implemented to find the diastolic foot 

[15, 16]. The associated PWV was calculated by dividing the distance between the 

sensors, shown in Figure 3.2, by the extracted foot-to-foot delta time. Extracted results 

were averaged, and the standard deviation was calculated across a 60-second interval 

for each ejection time. GraphPad Prism 5 statistical analysis software was used to 

determine the correlation between PWV and ejection time. Simple Pearson linear 

regression analysis was applied to detect and describe the strength and sign of 

correlation of PWV with respect to LVET. 
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3.6. Results and Discussion  

3.6.1. Comparison of the Model to the Hemodynamic Simulator Data 

Figure 3.3 compares theoretical simulated prediction of PWV as a function of a 

average flow velocity and peak pressure to the measured values using the 

hemodynamic simulator. 

 

Figure 3.3.  Dashed lines present prediction from the theoretical model for five different average flow 

velocities 𝑢0 and peak pressure controlled by ejection time at a fixed SVR. Data points allow comparison 

of predicted (circle) and measured (square) PWV. To move left to right along arrow (A), peak pressure 

increases while average flow velocity remains constant. Movement vertically along arrow (B) occurs if 

average flow velocity increases while peak pressure remains constant. Finally, to move upward along the 

quadratic arrow as in the measured data points (C), both peak pressure and average flow velocity 

increase as demonstrated by data obtained from the set of experiments and those calculated from the 1D 

nonlinear traveling wave model. 

Dashed lines present predictions based on equation (3.16) for the five different average 

flow velocities 𝑢0 and peak pressure controlled by ejection time at a fixed SVR. The 
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maximum difference between theoretically simulated and measured results is 3.0%. 

Flow velocity and peak pressure changes controlled by ejection time result in the 

quadratic PWV curve observed in Figure 3.3 (arrow C). 

The coefficient of determination and p-value were calculated to be R2 = 0.99 and 

p = 0.0001, respectively, demonstrating a strong correlation between PWV and ejection 

time. PWV is substantially affected by average flow velocity (~10%) and peak pressure 

(~2%) changes controlled by ejection time (12% over the analyzed range, arrow C), as 

seen in the measured and simulated results. However, for a fixed ejection time, 

changes in PWV due to shifts in peak pressure alone are relatively small (2%). 

 Table 3.1 lists the calculated values of ejection volume and SVR with respect to 

ejection time. As shown in the table, ejection volume, SVR, MAP, and aortic flow rate do 

not change with varying ejection time in the hemodynamic simulator. The small changes 

in calculated ejection volume were caused by small mean aortic flow variations. 

Table 3.1.  Hemodynamic measured values are maintained within the clinical range. 

Ejection 
Time 
[ms] 

Ejection 
Volume* 

[ml] 
SVR* 

[mmHg ·min/L] 
SBP/DBP/MAP 

[mmHg] 

Venous 
MAP 

[mmHg] 

Mean Aortic 
Flow 
[LPM] 

434 66.1 15.4 117/60/82  22 3.9 

382 67.8 15.7 131/56/86 23 4.0 

326 66.1 15.9 136/53/85 23 3.9 

297 66.9 15.4 139/51/85 24 3.9 

252 66.8 15.5 142/49/85 24 3.9 

*Calculated Value 
Values maintained within a clinical range using the cardiovascular hemodynamic simulator. Changes in 
ejection volume were caused by aortic flow variation. Clinical range for LVET (150-450) [17]; Ejection 
Volume (55-100 ml) [17]; SVR (9-20 mmHg ·min/L) [18]; SBP (90-180) [17]; DBP (40-110) [17]; Mean 
Aortic Flow (4-7) [17]. Values are expressed as means over each 60-second interval. For all measures of 
ejection time, pressure, and flow, the standard deviations were below 1.3 ms, 0.1 mmHg, 0.02 LPM 
respectively. 
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For a constant MAP, the associated PWV varied by up to 12% (182 ms) over the 

range of measured ejection time (252-434 ms). The mean and standard deviation for 

both MAP and SVR are 84.1, ±1.4 mmHg and 15.4, ±0.25 𝑚𝑚𝐻𝑔 ∙ 𝑚𝑖𝑛 𝐿⁄  respectively, 

which confirms that both remained nearly constant across the range of ejection times 

tested. The MAP remained approximately constant. However, the SBP increased by 25 

mmHg, and the DBP decreased by approximately 11 mmHg as a function of LVET 

decreasing.  

As can be seen across the range of ejection times in Table 3.1, the associated 

DBP changed from approximately 60-49 mmHg, for a nearly constant SVR and MAP. In 

our experiment, no adjustments were made across the five steps of decreasing ejection 

time. Since the ejection time decreased while heart rate and ejection volume remained 

constant, the time spent in diastole increased and thus resulted in a decreasing DBP. 

The opposite effect is observed for SBP, which increased from 117-142mmHg as 

ejection time decreased. The observed changes for both SBP and DBP are consistent 

with those observed clinically with changes in ejection time [17], but are on the low side 

of clinical relevance. Increases in flow rate would have further increased the effect on 

PWV, as can be seen by equation (3.16).   

The contour plot Figure 3.4(a) enables visualization of the effect of ejection time 

and peak pressure on PWV. Ejection time decreasing at a fixed peak pressure affects 

PWV to a greater extent than increases to peak pressure at a fixed ejection time, as 

seen in Figure 3.3 and Figure 3.4. Referencing equation (3.16) and Figure 3.4(b) gives 

insight into the effects of average flow velocity (~10%) and wall strain (~2%) on PWV. 
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Figure 3.4.  (a) PWV (m/s) contour plot that illustrates a greater change in PWV caused by ejection time 

when compared with a change in peak pressure alone. The simplified linear result (𝑐𝑀𝐾 = ~9.8 m/s) 

occurs as peak pressure approaches zero and ejection time approaches infinity. (b) PWV (m/s) contour 

plot that illustrates the effect of both average flow velocity and wall strain as seen in equation (3.16). In 

each plot, the vertical gray rectangle encloses the range of our measured data using the hemodynamic 

simulator. 

3.6.2. Mechanisms Causing the Association between PWV and LVET 

The main novel contribution of the present study is the creation and validation of 

an analytical model that explains the mechanism for the observed inverse association 

between PWV and LVET. We used the nonlinear traveling wave model to investigate 

mechanisms underlying the effects of pressure, ejection time, ejection volume, 

geometric properties, and physical properties on PWV. The model is based on mass 

and momentum conservation applied to the incompressible fluid propagating in a thin-

walled compliant elastic tube. The presented nonlinear traveling wave model accounts 

for the convective fluid phenomena, elastic vessel deformation, and inertia of the wall. 

Data analysis results in an analytical expression, generalizing the classical Moens-

Korteweg speed of propagation to include the effect of peak pressure and ejection time 

on PWV, as shown in equation (3.16).  

(a) (b) 
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For very small changes in transmural pressure approaching ~0 mmHg, results 

simplify to those obtained from the linear Moens-Korteweg model (cMK), as shown in 

equation (3.11). However, for clinically relevant changes in transmural pressure 

(SBP/DBP), our nonlinear model shows that as ejection time decreases, the average 

flow velocity (u0), pressure (p), and wall strain (η) increase. Since PWV is a function of 

the average flow velocity (u0) and the Moens-Korteweg velocity cMK scaled by the wall 

strain as seen in equation (3.16), this results in an increase in PWV with reductions in 

ejection time. Accounting for these nonlinearities predicts a speed of propagation that 

exceeds cMK by 12% across the physiological range of transmural pressures and 

ejection times examined in this work. 

Physiologic states involve a complex interaction of multiple variables. The three 

arrows in Figure 3.3 provide insight into these complex relationships. It is possible to 

suggest clinical scenarios for the changes in PWV as shown in Figure 3.3. In moving left 

to right along arrow (A), SVR changes while ejection time and stroke volume remain 

constant, which can occur in hypertension [19]. During digestion, SVR decreases while 

ejection volume increases [20], which will approximately follow arrow (B). Finally, in 

moving along the quadratic arrow, as in our measured data points (C), ejection time 

changes while stroke volume and SVR remain constant (this work), which can occur 

during sleep [21].  

The presented model and validation results both show an inverse quadratic 

relationship between LVET and PWV that has been previously observed. Nurnberger et 

al. [11] used myocardial stimulation to modulate ejection time and measure the 

associated change in PWV that was found to correlate only with LVET (R2 = 0.52, 
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p = 0.0325). In their study, a change in ejection time of ~40 ms caused a change in 

PWV of ~1 m/s. Salvi et al. [14] performed a large population study to explore the link 

between PWV and LVET. An inverse association was found between PWV and LVET at 

all ages (<R2 = 0.43; p < 0.001). In both studies, it was not possible in vivo to control 

LVET, SVR, and ejection volume, which likely decreased their observed correlation. We 

recognize that our PWV was higher than those measured by Nurnberger. This was 

likely caused by the higher modulus of elasticity of our tube when compared with that of 

the healthy human aorta. However, our PWV was within the range of that measured in 

an older-age population (>45 years of age) [5]. A lower modulus of elasticity would have 

shifted cMK as shown in equation (3.11) and resulted in a lower PWV range, as shown 

by equation (3.16).  

An analytical solution was obtained in equation (3.16) that presents PWV in an 

explicit form as a nonlinear function of the average flow velocity and the peak pressure 

of the wave. Measured and theoretical values agreed to within 3%. Our model showed 

the impact of the nonlinear effects of ejection time on PWV, which varied by up to 12% 

over a clinical range of ejection time. PWV is substantially affected by average flow 

velocity (~10%) and peak pressure (~2%) changes controlled within the physiological 

range of LVET, and it is affected to a lesser extent by peak pressure changes alone 

(~2%). These results are consistent with the conclusions supported by clinical studies of 

Nurenberg et al. [3] and Salvi et al. [5], regarding LVET as an important predictor of 

PWV. 

We recognize that further work is necessary to incorporate the viscoelastic model 

of an arterial wall and to solve for PWV at both SBP and DBP. In addition, we recognize 
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that a set of clinical studies is required to validate this model. To investigate whether our 

model could be extended for use in vivo, we extracted the intra-arterial data from Chen 

et al. [22] and compared it against our model. Since our model was derived for a linear 

elastic tube, we use the nonlinear elastic modulus approximation presented by Hughes 

et al. [23] (𝐸 = 𝐸0𝑒
𝑎𝑃, where E is the elastic modulus adjusted for pressure, E0 is the 

elastic modulus at zero pressure, ‘a’ is the per-patient constant, and P is pressure) to 

calculate a pressure-dependent cMK for equation (3.16).  

To compare the model to the extracted clinical data (19-year-old female, Figure 

3.5 (a); and 58-year-old female, Figure 3.5 (b)), cMK was estimated from the zero 

crossing of an extension of the fitting curve presented in [34]; cMK was ~4.8 m/s and 

~5.2 m/s for Figure 3.5 (a) and (b), respectively. 

 

Figure 3.5.  Extracted clinical data (squares) [34] of PWV vs intra-arterial blood pressure for a 19-year-old 

female (a) and a 58-year-old female (b) obtained during surgery. Sweeping the model across the range of 

possible ejection times and volumes (Table 3.1 footnote) results in the gray region. The solid line 

represents the best-fit pressure PWV curve for each patient.   

The radii for the 19-year-old and 58-year-old patient were selected based on age as 

12.2 mm and 15 mm, respectively [8]. The wall thickness and blood density were kept 

constant at 2.0 mm and 1025 kg/m3, respectively [8]. Using these values, we calculated 
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the resulting E0 using equation (3.11). The per-patient constant ‘a’ (left to right a=0.01, 

0.009 respectively) was adjusted to closely fit the individual’s PWV versus pressure 

response, which is likely dominated by the dynamic elasticity of the aorta. In both cases, 

the altered variables were maintained within the clinical range [17,18].  Since ejection 

volume and time were not measured in the referenced study, the PWV versus pressure 

relationship was estimated based on the ranges identified in the footnote of Table 3.1.  

Differences in flow velocity (as determined from ejection time and volume) potentially 

account for the measured scatter in the PWV versus pressure data points. The model 

demonstrates the correct curvature, and the expected range (shown in gray) based on 

flow velocity encompasses most of the measured data points. Data points outside of the 

expected range could be due to surgically induced changes in ejection time and volume 

beyond the range assumed for healthy individuals. 

By adjusting the per-patient constant ‘a’, the model compares closely with the 

extracted intra-arterial data, as seen in Figure 3.5. Using the best-fit line to the 

measured data over the range of ejection times and volumes, we calculated an R2 value 

between our model and the extracted data Figure 3.5 (a) and (b) of 0.87 and 0.85, 

respectively. In addition, we generated a histogram and Gaussian fit to the residuals. 

For both datasets, the residuals fit a Gaussian distribution. This indicates that the delta 

from the model is likely due to random error, with calculated variance in Figure 3.5 (a) 

and (b) of +/-1.04 and +/-0.90, respectively.  

 The finding of a relationship between LVET and PWV may be of clinical 

importance [3]. Results from Nurenberg et al. [3], Salvi et al. [5], and this study indicate 

that LVET affects PWV. Large studies of PWV have shown an intra-individual variability 
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of approximately 10% [1]. Correcting for LVET may allow for a decrease in the 

measured intra-individual variability and more accurate comparisons between studies. 

To correct for ejection time, both average flow velocity and wall strain need to be 

measured and applied to equation (3.16). Average flow velocity can be measured using 

Doppler ultrasound, and circumferential aortic wall strain can be measured using two- 

dimensional ultrasound. We recognize that the circumferential wall strain measurement 

gives a localized measure of arterial stiffness, while the goal of the PWV measurement 

is a global measure. This global measure typically incorporates multiple bifurcations 

which are more prone to atheroscerosis. We also recognize that the circumferential wall 

strain measure is ideally repeated before the start of each PWV measurement. Wall 

strain is affected by vascular state, which is known to change due to various 

physiological states and can be influenced by medications. 

3.6.3. Non-Invasive Measurements of Elastance 

To assess arterial stiffness, the theoretical solution was introduced in an 

alternative form, explicitly determining arterial compliance as a function of PWV, peak 

pressure, ejection volume, and ejection time. To determine elastic modulus using the 

contour plot generated by the theoretical model equation (3.25), shown in supplemental 

material Figure 3.6, we simply need to know the previously stated measured inputs of 

the corresponding waveform. 



 74 

 

Figure 3.6. Elastance contour plot for fixed ejection volume (66 ml) and peak pressure (140 mmHg). The 

model calculated a 1.04 MPa elastic modulus based on the measured peak pressure, ejection time, and 

PWV. The three annotated red diamonds are the model results using measurements taken at ejection 

times (252, 297, 326). Each of these ejection times had a measured peak pressure of ~140 mmHg. 

 

We used the hemodynamic simulators measured data for ejection times (252, 297, 326 

ms) from Table 3.1. The output of the theoretical model was then compared against the 

measured static elastance for the latex tube. The model calculated an elastance of 

~1.04 MPa, with a worst-case percent difference of 2% when compared against the 

static elastance for the three selected points. The result highlights the point that global 

compliance was found with a PWV measure using our model. 

Figure 3.7 presents contour lines for the correction coefficient C/CBH equation 

(3.25) for compliance. Setting for instance typical values, 𝐴𝜂 = 0.05,
𝑢0

𝑐𝑀𝐾
= 0.1, one can 

quantify an asymptotic error in the compliance calculation based on equation (3.23) as  

(𝐶 − 𝐶𝐵𝐻)/𝐶𝐵𝐻 = 0.25. This means that equation (3.23) overestimates compliance at 
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this point by ~25%. These new results suggest that Bramwell-Hill theory can 

overestimate compliance by ~25% within the realistic range of physiological parameters. 

 

Figure 3.7. Contour plot for the compliance correction coefficients C/CBH , calculated using the ratio of the 

average flow velocity to the Moens-Korteweg speed (𝒖𝟎/𝒄𝑴𝑲) equation (3.25). The lower lefthand corner 

of the plot represents 𝑪𝑩𝑯 ( C/CBH=1). 

. 

Knowledge of these properties is clinically important for diagnosis and medical 

treatment. A decrease in compliance is associated with increased central blood 

pressure, cardiac afterload, cardiac energy requirements, and decreased coronary 

perfusion (lower diastolic pressure) [6]. The inverse solution offers the possibility of 

improving the accuracy of compliance measurement by incorporating the effects of peak 

pressure and ejection time into the classical Bramwell-Hill compliance equation. The 

transit time, required for the determination of PWV, can be measured between two flow 

pulses simultaneously recorded by continuous Doppler probes or sequentially with ECG 

gating. Measurements are usually made at the root of the left subclavian artery (i.e., 

suprasternal notch on the skin) and near the bifurcation of the abdominal aorta (i.e., 

umbilicus level on the skin) [24]. Transit time can be automatically calculated following 

automatic recognition of the foot of the pulse. To correct for ejection time, both average 

flow velocity and wall strain must be measured and applied to equation (3.16). Average 
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flow velocity (u0) can be measured using Doppler ultrasound and peak circumferential 

aortic wall strain (Aη); associated volume (V) can be measured using two-dimensional 

ultrasound. These values can be used with the measured PWV in equation (3.16) to 

determine cMK, which can then be used in equations (3.22) and (3.25) to determine the 

aortic compliance.   

While initial results are compelling, a complete in-vitro analysis using a range of 

pressures and compliance is needed to validate this model. This work should also 

include analysis using a more complex viscoelastic model of an arterial wall that 

accounts for stress relaxation and possibly nonlinear behavior of the arterial wall.  
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3.7. Conclusion 

A traveling wave-based mathematical approach was applied to predict the 

dependence of PWV on the peak pressure wave and LVET. The presented model 

incorporates nonlinear convection effects and the inertia of the vibrating wall. The model 

showed that 12% of the observed change in PWV was caused by ejection time and that 

2% of the observed change was caused by peak pressure alone. This insight is 

important and explains why Nurenberg et al. [3] and Salvi et al. [5] observed that LVET 

was a predictor of PWV. Our modeling and validation results contribute to the emerging 

evidence that, both in clinical practice and in clinical research, cardiac systolic function- 

related variables should be regularly taken into account when interpreting arterial 

function indices, namely PWV. A predictive model that provides mechanistic insight into 

the nonlinear effects on PWV (average flow velocity and peak pressure) can be used for 

future research both in vivo and in vitro. This work is expanded on in Chapter 4, in 

which nonlinear, thin-walled elastic arterial segments are modelled. This work is also 

applied in Chapter 6 to improve blood pressure prediction using systolic flow correction 

of PWV. 
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Chapter 4: Pulse Wave Velocity Prediction in Nonlinear 
Thin-Wall Elastic Arterial Segments 

Science like life feeds on its own decay. New facts burn old rules; then newly developed concepts bind 

old and new together into a reconciling law. - William James 
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4.1. Abstract 

A new theoretical model for pulse wave propagation in a compliant arterial 

segment is presented within the framework of pseudoelastic deformation of biological 

tissue undergoing finite deformation. An essential ingredient is the dependence of 

results on nonlinear aspects of the model: convective fluid phenomena, hyperelastic 

constitutive relation, large deformation, and a longitudinal pre-stress load. An exact 

analytical solution for PWV is presented as a function of pressure, flow, and 

pseudoelastic orthotropic parameters. Results from the model are compared with 

published in-vivo PWV measurements under diverse physiological conditions. 

Contributions of each of the nonlinearities are analyzed. It was found that the 

completely nonlinear model achieves the best match with the experimental data. To 

retrieve individual vascular information of a patient, the inverse problem of 

hemodynamics is presented, calculating local, orthotropic, hyperelastic properties of the 

arterial wall. The proposed technique can be used for non-invasive assessment of 

arterial elastance, and of blood pressure using direct measurement of PWV. 
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4.2. Nomenclature 

E Modulus of elasticity (Pa) 
PWV Pulse wave velocity (m/s) 
FSI Fluid structure interaction 
BP Blood pressure 
A Cross-sectional area (m2) 
u Axial flow velocity (m/s) 
p Transmural pressure (Pa) 
ρ Density of incompressible fluid (kg/m3) 

R,r 
Internal wall radii at zero-stress and loaded conditions, respectively (m) 

η Ratio of the wall deflection to R 
𝑐𝑀𝐾  Moens-Korteweg speed of propagation (m/s) 
H, h Thickness of the wall at zero-stress and loaded conditions, respectively (m) 

F Axial pretension force (N) 
𝜎𝜃 , 𝜎𝑧 Circumferential and axial Cauchy stress components (Pa) 

𝐺𝜃 , 𝐺𝑧 Circumferential and axial Green-Lagrange strain components 

  [
𝑎11 𝑎12
𝑎12 𝑎22

]symmetric tensor of material constants (Pa) 

Subscripts  
(r,θ,z) Radial, circumferential, and axial components of a corresponding 3D vector 

A
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4.3. Introduction 

 Historically, PWV has conceptually been based on the Moens-Korteweg 

equation, which predicts PWV based on an acoustical approach applied to a fluid 

structure interaction (FSI) of blood flow with a linear elastic cylindrical artery [1]. A 

nonlinear traveling wave model was developed for a compliant thin-walled linear elastic 

tube filled with an incompressible fluid [2,3]. This model accounts for the convective 

ideal fluid flow interacting with a linearly elastic aortic vessel. However, assumptions 

regarding linear deformation of an arterial vessel are not precisely applicable to living 

blood vessels, as is proven in numerous related publications [1,4-14]. Nonlinearities in 

blood vessel elasticity and finite deformation are vitally important to match static testing 

results for an internal pressure load and an axial tension of a cylindrical artery under 

physiological conditions [4-7].  

The link between PWV or pulse transit time (PTT), and blood pressure (BP) has 

previously been investigated based on statistical regression models, or empirical 

representation of an incremental isotropic elastic modulus as a function of a transmural 

pressure [15-18]. The model proposed here is a physics-based mathematical model that 

predicts the general relationship between PWV and BP with a rigorous account of 

nonlinearities in the fluid dynamics model, blood vessel elasticity, finite deformation of a 

thin anisotropic wall, and a longitudinal pre-stress. The combined effect of BP and blood 

flow on PWV is derived and agrees with clinical evidence presented in [4,5]. 

Contributions of the nonlinearity effect, between the published experimental data and 

theoretical prediction, are analyzed. In order to retrieve the individual vascular 
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information of a patient, a PWV-based solution for the inverse problem of 

hemodynamics is used that calibrates the individual orthotropic hyperelastic arterial 

properties, based on typical diagnostic measurements and an optimization technique. 

For many materials, linear elastic models do not accurately describe the observed 

material behavior. The most common example of this kind of material is rubber, 

whose stress-strain relationship can be defined as nonlinearly 

elastic, isotropic, incompressible, and generally independent of strain rate. 

Hyperelasticity provides a means of modeling the stress-strain behavior of such 

materials. This study is a continuation of the previous work [2,3] in the context of in-vivo 

validation and application of the proposed methodology to continuous, noninvasive 

blood pressure measurements. The proposed technique can be used for non-invasive 

assessment of arterial elastance, directly related to the direct measurement of PWV, 

accounting for hyperelastic orthotropic properties of a biological vessel.   
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4.4. Theory 

 Dynamics of Incompressible Flow in a Compliant Vessel 

 One-dimensional models simulating blood flow in arteries effectively describe 

pulsatile flow in terms of averages across the section flow parameters (systolic flow 

velocity, diastolic flow velocity). The details of flow separation, recirculation, or shear 

stress analysis are not calculated in one-dimensional models, but should accurately 

represent the overall and average pulsatile flow characteristics (particularly PWV). 

Derivations of one-dimensional models can be found in a number of papers, for 

example [2,3,21], and are not repeated here. 

Conservation of mass and momentum results in the following system of one-

dimensional equations: 

The model described by equations (4.1) and (4.2) is applied exclusively to the large 

arteries, where viscosity is important only in the regions of a boundary layer and has no 

practical impact on PWV [22,23]. As it follows from monographs of Caro et al. [22] and 

Li et al. [24], the introduction of viscoelastic, rather than elastic, vessel wall properties 

results in a slight increase in wave speed, but noticeably affects the attenuation of a 

waveform. For an impermeable thin-walled membrane, neglecting inertia forces, the 

vessel pressure-strain relationship is maintained by equilibrium conditions as a function 

p=p(η), based on relevant constitutive relations. Noting that
 
𝐴 = 𝜋𝑅2(1 + 𝜂), and 

assuming that transmural pressure is a smooth function of a wall normal deflection 

𝜕𝐴

𝜕𝑡  
+
𝜕

𝜕𝑧
(𝑢𝐴) = 0 

             

(4.1) 

𝜕𝑢

𝜕𝑡  
+
𝜕

𝜕𝑧
(
𝑢2

2
+
𝑝

𝜌
)
 

= 0 
(4.2) 
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(derivative 𝑝𝜂 = 𝜕𝑝 𝜕𝜂⁄  
exists at any point), the total system of equations can be 

presented in the following non-conservative form: 

where  

    The eigenvalues of 𝐻(𝑈) are real and distinct. PWV is associated with the forward- 

running wave velocity (i.e., the largest eigenvalue [26]); hence, it is identified as   

The partial derivative 𝑃𝜂 indicates sensitivity of pressure with respect to the wall normal 

deflection η, and it has a clear interpretation as tangent (incremental) moduli in finite 

strain inelasticity. The system described by equations (4.1) and (4.2) is typically closed 

by defining an explicit algebraic relationship between pressure and normal deflection. 

For example, in case of small deformation and linear elastic response, where E is the 

Young’s modulus, 𝑣 is Poisson’s coefficient, and pressure relates to the circumferential 

strain η via 

so that equations (4.4) and (4.5) can be transformed to the simplified form derived 

differently in [2,3,21] 

𝜕𝑈

𝜕𝑡
+ 𝐻(𝑈)

𝜕𝑈

𝜕𝑧
= 0 

 

 

           

(4.3) 

𝑈 = [
𝜂
𝑢
] ; 𝐻 = [

𝑢
1 + 𝜂

2
𝑝𝜂

𝜌
𝑢
] 

(4.4) 

𝑃𝑊𝑉 = 𝑢 +√
1 + 𝜂

2𝜌
𝑝𝜂 

(4.5) 

𝑝 =
�̅�𝐻

𝑅
𝜂,                  �̅� =

𝐸

1−ν2
 

(4.6) 
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Under the assumption 𝑢 ≪ 𝑐𝑀𝐾, 𝜂 ≪ 1 (linearized approach), equation (4.7) converts 

into the Moens-Korteweg equation for the forward- and backward-travelling waves. In 

the general case, equation (4.5) should be supplemented by appropriate constituent 

equations for a hyperelastic anisotropic arterial wall, accounting for finite deformation. 

 Hyperelasticity of the Vessel Wall 

It is assumed that arterial wall is hyperelastic, incompressible, anisotropic, and 

undergoing finite deformation. After a few original loading cycles (preconditioning), the 

arterial behavior follows some repeatable, hysteresis-free pattern with a typical 

exponential stiffening effect regarded as pseudoelastic [6,8]. Numerous formulations of 

constitutive models for arteries have been proposed based on polynomials [9], 

exponential functions [6,7,10,11], log functions [12], or their mixtures [14], applied to the 

pseudoelastic strain-energy density formulation. In a comparison paper [13], it is 

concluded that the exponential descriptor of the passive behavior of arteries, due to 

Zhou-Fung, is “the best available”. According to Fung et al. [6,7,10], the strain energy 

density function 𝑊 for the pseudoelastic constitutive relation may be presented in the 

form 

𝑊 =
1

2
𝑐(𝑒𝑄 − 1) (4.8) 

where c is a material coefficient, and Q is the quadratic function of the Green-Lagrange 

strain components. For the finite inflation and extension of a thin-walled cylindrical 

artery, the following strain energy function is used: 

𝑃𝑊𝑉 = 𝑢 + 𝑐𝑀𝐾√1 + 𝜂, 𝑐𝑀𝐾 = √
�̅�ℎ

2𝜌𝑅
 

(4.7) 
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where 𝑐, 𝑎11, 𝑎12, 𝑎22 are material constants. The Cauchy stress components in 

circumferential and axial directions are: 

𝜎𝜃 = 𝜆𝜃
2 𝜕𝑊

𝜕𝐺𝜃
= 𝑐𝜆𝜃

2𝑒𝑄𝑆𝜃, 𝑠𝜃 = 𝑎11𝐺𝜃 + 𝑎12𝐺𝑧

𝜎𝑧 = 𝜆𝑧
2
𝜕𝑊

𝜕𝐺𝑧
= 𝑐𝜆𝑧

2𝑒𝑄𝑆𝑧 , 𝑠𝑧 = 𝑎12𝐺𝜃 + 𝑎22𝐺𝑧

 (4.10) 

With the geometry of the reference state determined, we define R, Z, and H as an 

internal radius, axial coordinate, and a wall thickness in a stress-free configuration. We 

define r, z, h as an internal radius, axial coordinate, and a wall thickness in a 

physiologically loaded configuration. The corresponding principal stretch ratios are 

Assuming isochoric deformation, incorporate the incompressibility condition as  

The Green-Lagrangian strain components relate to the principal stretch ratios of 

equation (4.12) by 

 

For the membrane thin-walled cylindrical artery undergoing finite inflation and axial 

deformation, the load-stress relations follow from the static conditions 

𝑄 = 𝑎11𝐺𝜃
2 + 2𝑎12𝐺𝜃𝐺𝑧 + 𝑎22𝐺𝑧

2             (4.9) 

𝜆𝜃 = 𝑟 𝑅⁄ , 𝜆𝑧 = 𝑑𝑧 𝑑𝑍⁄ , 𝜆𝑟 = ℎ/𝐻 (4.11) 

𝜆𝑧𝜆𝜃𝜆𝑟 = 1             (4.12) 

𝐺𝑖 =
1

2
(𝜆𝑖
2 − 1), (𝑖 = 𝜃, 𝑧, 𝑟) 

(4.13) 
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A substitution back into equation (4.10) yields the desired relations: 

The solution of equations (4.9), (4.13), and (4.15) results in a load-strain relation, which 

with account of the identity 𝜆𝜃 =
𝑟

𝑅
=
𝑟−𝑅

𝑅
+ 1 = 𝜂 + 1 converts into 𝑝 = 𝑝(𝜂), required 

by equation (4.5) to predict a wave front speed of propagation (i.e., PWV).   

 Numerical Computation of a Tangent Moduli in a Finite Strain Hyperelasticity 

To solve the nonlinear deformation problem from equations (4.9), (4.13), and 

(4.15), the theory of continuation method is applied [27]. It enables the transformation of 

algebraic, functional, or differential equations into initial value problems by introducing a 

parameter and embedding the particular problem into a family of relating parametric 

problems. When the load parameter 0 ≤ 𝜏 ≤ 1 is introduced, and 𝑝
 
→ 𝜏𝑝 is 

substituted,  𝑓
 
→ 𝜏 𝑓  describes a continuous successive loading on the vessel by 

internal pressure 𝜏𝑝 and axial load 𝜏𝑓 from zero to nominal values. Assume the solution 

to equation (4.15) depends continuously on load-strain and is differentiable with respect 

to the parameter . Starting from the known answer for a certain value of the parameter 

(𝜏 = 0 at a stress-free case), the solution to the equation for other values of the 

parameter may be obtained by integrating the rate of change of the solution with respect 

𝜎𝜃 =
𝑝𝑟

ℎ
=
𝑝𝑅𝜆𝜃
𝐻𝜆𝑟

=
𝑝𝑅

𝐻
𝜆𝜃
2𝜆𝑧 

𝜎𝑧 =
𝐹

2𝜋𝑅𝐻
𝜆𝑧 = 𝑓𝜆𝑧             

(4.14) 

𝜆𝑧
−1𝑐𝑒𝑄𝑠𝜃 =

𝑝𝑅

ℎ
 

𝜆𝑧 = 𝑐𝑒
𝑄𝑠𝑧 = 𝑓 

 

 

(4.15) 
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to the parameter. To find the rate of strain components with respect to , take the natural 

log of equation (4.15). 

 

− ln 𝜆𝑧 + 𝑄 + ln 𝑠𝜃 = ln 𝜏 + 𝑙𝑛
𝑝𝑅

𝑐𝐻
 

ln 𝜆𝑧 + 𝑄 + ln 𝑠𝑧 = ln 𝜏 + ln 𝑓 

 

(4.16) 

 

and differentiate both sides (the dot above the variable means partial derivative by 𝜏), 

which yields 

where 

As it follows from equation (4.18), when =0, a singular point results. To find the strain 

rates at infinitesimally small , the following asymptotic relations deduced from the 

Taylor expansions in the proximity of a stress-free state (𝑂(… ) stands for the asymptotic 

approximation) 





 𝑀(𝐺)�̇� = 𝑏         (4.17) 

𝑀(𝐺) = [

2𝑠𝜃
2 + 𝑎11 −

𝑠𝜃
1 + 2𝐺𝑧

+ 2𝑠𝜃𝑠𝑧

2𝑠𝜃𝑠𝑧 + 𝑎12
𝑠𝑧

1 + 2𝐺𝑧
+ 2𝑠𝑧

2 + 𝑎22

], 

𝐺 = (
𝐺𝜃
𝐺𝑧
) , 𝑏 = (

𝑠𝜃
𝜏
𝑠𝑧
𝜏

) 

𝜆𝑧 = 1 + 𝑂(𝜏), 𝑄 = 𝑂(𝜏
2), 𝑒𝑄 = 1 + 𝑂(𝜏2)  

    

          

(4.18) 

𝐺𝜃 = 𝐺�̇�𝜏 + 𝑂(𝜏
2), 𝐺𝑧 = 𝐺�̇�𝜏 + (𝜏

2) 

𝑠𝜃 = (𝑎11𝐺�̇� + 𝑎12𝐺�̇�)𝜏 + 𝑂(𝜏
2), 𝑠𝑧=(𝑎12𝐺�̇� + 𝑎22𝐺�̇�)𝜏 + 𝑂(𝜏

2) 

𝜆𝑧 = 1 + 𝑂(𝜏), 𝑄 = 𝑂(𝜏
2), 𝑒𝑄 = 1 + 𝑂(𝜏2)  

    

          

(4.19) 
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should be substituted into equation (4.15). As a result, the linear equation for the strain 

rates at =0, are 𝑀0�̇�(0) = 𝑏0, where  

Once 𝐺 is known at 𝜏 = 0, equation (4.18) can be integrated to result in 

The process continues to provide solutions for 𝜏 = 1. Once strain components 

are known, the Cauchy stress components can be calculated from equation (4.14), and 

stretch ratios and load-deflection relations can be calculated from equations (4.11) and 

(4.13). 

Alternative approaches to solving hyperelastic anisotropic finite strain problems 

can be found in [28,29] using finite element approximations, and in [30,31], based on 

finite difference methods. 



𝑀0 = [
𝑎11 𝑎12
𝑎12 𝑎22

] , 𝑏0 = (

𝑝𝑅

𝑐𝐻
𝑓

𝑐

)             

(4.20) 

      𝐺(𝜏 + ∆𝜏) = 𝐺(𝜏) + 𝑀−1(𝜏)𝑏(𝜏)Δ𝜏       (4.21) 
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4.5. Methods 

To validate the algorithm, the theoretical prediction of the relationship between 

circumferential Lagrangian stress component 𝑇𝜃 = 𝜆𝜃
𝜕𝑊

𝜕𝐺𝜃
 and circumferential stretch 

ratio 𝜆𝜃 is compared with experimental results in [7]. Zhou-Fung’s work was selected 

because in a comparison paper [13] it is concluded that the exponential descriptor of the 

passive behavior of arteries is “the best available”. Each loading curve corresponds to 

the constant value of an axial Lagrange stress component  𝑇𝑧 = 𝜆𝑧
𝜕𝑊

𝜕𝐺𝑧
  recorded in 

protocol 2, where the force in the longitudinal direction was held at 4 or 5 constant 

levels. At each level, the force in the circumferential direction was cycled from the 

preload to the maximum load and back to the preload in the triangular waveform at 0.05 

Hz [7]. 

Four different models are compared for PWV prediction: the finite deformation 

hyperelastic (FDH), small deformation hyperelastic (SDH), small deformation linear 

elastic (SDE), and the Moens-Korteweg (MK) model. The first two models, FDH and 

SDH, have the same set of variables specifying hyperelastic constants (c,a11,a12,a22) 

within the frame of Fung’s model. SDE is obtained from Fung’s exponential model 

accounting for the linear terms only in a Taylor series expansion of Fung’s exponential 

function, presenting potential energy of deformation. The latter results in a quadratic 

expression for the potential energy, typical for classical linear orthotropic theory of 

elasticity. In this case, the number of varying parameters was reduced to three, where 

coefficient c appears as the amplification factor for orthotropic constants a11, a12, and 

a22. The Moens-Korteweg model is a classical model using a single elastic constant, 

which is a priori independent of pressure.  
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The FDH model is utilized to determine the material constants noninvasively 

using PWV versus transmural pressure. Experimental data of Histand and Anliker 

[33,34], who introduced short trains of artificial, high-frequency waves to measure their 

propagation speed in canine aorta at different static pressures, was selected. This 

experiment was selected because it recorded PWV over a wide range of pressures in 

the aorta. The noninvasive extracted material constants for mongrel dogs are then 

compared to an invasive method obtained from a biaxial static load of a canine aorta for 

five mongrel dogs performed by Zhou-Fung [7]. 
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4.6. Results and Discussion 

 Algorithm Validation 

The mechanical properties (c=124.5 kPa, a11=0.264, a12=0.379, a22=0.0461) are 

identified in [7] from experimental data on mongrel dogs’ canine aorta, subjected to 

inflation and longitudinal stretch within the physiological range. The theoretical curves, 

calculated based on the algorithm described above, are shown in Figure 4.1 as 

continuous lines. The stress-strain relationship recorded by protocol 2 in [7] is presented 

by markers for different values of axial stress. The circumferential stress becomes 

typically nonlinear around 𝜆𝜃 = 1.3, increasing its slope monotonically as shown in 

Figure 4.1(a). The theoretical prediction is in good correspondence with experimental 

data within the entire strain range, with the correlation coefficient R2 exceeding 0.99 for 

all cases. 

Contour lines of an overall residual √𝑅1
2 + 𝑅2

2, where 𝑅1 and 𝑅2 are the individual 

relative residuals of each of the equations (4.15), are presented in Figure 4.1(b). The 

accuracy of numerical computation within physiological range of transmural pressure 

and axial extension force is better than 1%, which justifies application of a numerical 

scheme as in equation (4.21). An accurate quantification of arterial stiffness is a key 

factor affecting precision of a PWV prediction. 
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Figure 4.1.  The model predictions of stiffness match experimental in-vivo data, which is essential for 

accurate PWV determination. (a) Dependence of circumferential stress on circumferential stretch ratio 

during inflation and extension. The comparison of the Zhou-Fung test to our model shows close 

correlation, with R2=0.99. (b) Contour lines representing an overall residual of solved equations for 

different combinations of transmural pressure and extension force. 

 Material Properties Identification 

In order to find the relationship between PWV and BP, it is essential to identify the 

associated material properties of the vessel. Typically, to identify material properties, 

the fitting process is used, minimizing the least square difference between the 

measured and predicted stress-strain (or load-displacement curves) [6,7,10]. A PWV- 

based methodology, evaluating arterial stiffness by minimizing the difference between 

measured and model-based predicted wave velocities, is presented in [32]. The 

theoretical model used in [32] is the Moens-Korteweg model, which is based on a linear 

elastic behavior of the wall undergoing acoustic interaction with internal flow. As a 

conclusion, the authors affirm “acceptable performance except the region of a soft wall.” 

Due to the strong evidence of essential hyperelastic nonlinearities coupled with finite 

deformations [3,25-37], no limitations are applied to the physical and geometric aspects 

of an arterial wall deformation in the present work. The current chapter investigates a 
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possibility for the arterial wall properties using a noninvasive PWV-based approach. 

There is a noticeable formal similarity between material parameters identification 

problems that are based on measurements of a static pressure versus stretch ratio, and 

those that are based on a static pressure versus PWV. In both cases, the tangent 

(incremental) modulus is a key factor affecting modeling. In both cases, the components 

of Cauchy stress (𝜎𝜃 and 𝜎𝑧) contribute to the solution. 

Histand and Anliker results are presented in [1,33,34], and they are reproduced 

in Figure 4 by square markers as PWV plotted against a single independent variable - 

transmural pressure. The theoretical model, recast in the form (𝜆𝜃 = 𝜂 + 1), 

is calibrated based on a subset of four experimental points (shown in Figure 4.2 by solid 

squares) and verified across the total set of eight experimental points (shown by square 

markers). The mean flow velocity u was estimated using the ratio of 𝑢 𝑃𝑊𝑉 = 0.2⁄  

recommended by T.J. Pedley [34]. The fitting process was based on minimization of the 

sum of squares ∑ (𝑃𝑊𝑉𝑖
𝑒𝑥𝑝 − 𝑃𝑊𝑉𝑖

𝑚𝑜𝑑)2𝑖 , where 𝑃𝑊𝑉𝑖
𝑒𝑥𝑝

 and 𝑃𝑊𝑉𝑖
𝑚𝑜𝑑 are the 

measured and modeled pulse wave velocities corresponding with the i-th experimental 

data point. The Nelder-Mead algorithm available from the MATLAB Optimization 

Toolbox was utilized as an optimization tool. The Fung’s model material properties [c, 

a11, a12, a22] serve as control variables. 

The dashed line in Figure 4.2 indicates theoretical prediction based on the totally 

nonlinear model (i.e., hyperelastic characterization accounting for the finite 

deformation). Using properties identified based on the totally nonlinear characterization, 

                      𝑃𝑊𝑉𝑚𝑜𝑑 = 𝑢 +√
𝜆𝜃

2𝜌
𝑝𝜂    

(4.22) 
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the partially nonlinear model, combining hyperelasticity with a small deformation, was 

used to create a PWV distribution (shown by the solid line in Figure 4.2). Given the 

material properties of an arterial wall, the chart indicates proximity of two models in 

terms of PWV distribution. 

 

Figure 4.2. The nonlinear model produced the best fit of the PWV vs. transmural pressure function. The 

dashed line indicates the theoretical prediction. Square markers illustrate the total set of experimental 

points [31,32]. Solid square markers correspond with the subset of experimental points used for 

calibration. Using the properties extracted from the nonlinear model, the lower (solid) line shows the effect 

on PWV using the partially nonlinear model, combining hyperelasticity with small deformation.   

The quality of a fitting process accounting for different nonlinearities is presented 

in Table 4.1, quantified in terms of the error function (sum of squares). Four different 

models have been compared: the finite deformation hyperelastic (FDH), small 

deformation hyperelastic (SDH), small deformation linear elastic (SDE), and the Moens-

Korteweg (MK) model. Material parameters have been identified for each model 

independently, based on a best fit procedure. The SDE model is obtained from Fung’s 

model, accounting for the linear terms only in a Taylor series expansion of Fung’s 

exponential function (4.8) of a potential energy of deformation. The latter results in a 

quadratic expression for the potential energy, typical for a classical linear orthotropic 

theory of elasticity. In this case, the number of varying parameters was reduced to 

three: c*a11, c*a12, and c*a22, since coefficient c appears only as the amplification 
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factor for orthotropic constants a11, a12 and a22. The Moens-Korteweg model is a 

classical model using a single elastic constant, which serves as a control variable. The 

finite deformation hyperelasticity (FDH) model and small deformation hyperelasticity 

(SDH) model have the highest quality of fitting, creating practically the same model- 

based regression in Figure 4.2 within the physiological range of BP. The small 

deformation with linear elasticity (SDL) model and Moens-Korteweg (MK) model cannot 

be used to predict dependence of PWV on BP. Recall that the SDL model accounts only 

for the convective flow type nonlinearity [3], whereas the MK model is a totally linear 

model in which prediction of PWV is independent of pressure. 
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Table 4.1. Contribution of nonlinearities to the quality of the best fit 

Model FDH SDH SDE MK 

Error Function 0.0147 0.0242 1.08 5.16 

 
It is interesting to compare mechanical properties predicted using the PWV- 

based methodology applied to the FDH model, to those identified in vivo by traditional 

static load. In [7] the thoracic aortas of five mongrel dogs were subjects of a mechanical 

test in which each specimen was stretched biaxially. From the test measurements, 

material constants from the Zhou-Fung hyperelastic model were obtained in [7] for 

canine aortas of mongrel dogs using the least square minimization procedure. The 

extraction of the corresponding five datasets from [7] fills the columns S1-S5 in Table 

4.2. The last column represents the material properties of a canine aorta of a mongrel 

dog, identified based on an experimentally measured PWV versus BP, obtained by 

Histand and Anliker [33,34] and the current methodology. 
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Table 4.2. Material constants, obtained from a biaxial static load of a canine aorta for five mongrel 
dogs (cases S1-S5), performed by Zhou-Fung [7], and from the present results based 
on data collected with PWV versus transmural pressure in mongrel dogs in [33,34]. 

Constants S1 S2 S3 S4 S5 Present Result 

c [mmHg] 901 945 372 1152 1297 1595 

a11 0.320 0.289 0.338 0.175 0.200 0.1205 

a22 0.451 0.397 0.441 0.314 0.292 0.8080 

a12 0.068 0.073 0.010 0.041 0.039 0.001 

 

It can be seen that the proximity of material properties predicted by the described 

methodology and traditional static test in terms of PWV versus BP distributions are 

similar. Figure 4.3 illustrates distributions of PWV for Zhou-Fung’s five static test cases 

(S1-S5 columns in Table 4.2) and its counterpart relating to the properties extracted by 

the present method (the last column of Table 4.2). Except for case S3, which is 

characterized by an anomalously low material coefficient c, the relative variation in PWV 

prediction does not exceed 4% of all other cases within the range of transmural 

pressure presented in the figure.   

 

 

Figure 4.3. The material properties of a canine aorta of mongrel dogs extracted from static measures [7] 

predict PWV vs. BP distributions in close proximity to those extracted from direct PWV vs. BP 

experiments [33,34]. S1-S5 and Present Result (PR)-associated material constants are shown in Table 

4.2. 

 
 According to [35], longitudinal pre-stress may well play a dominant role in wall 

stress distribution and effective arterial stiffness. To illustrate the effect of a longitudinal 
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force on PWV, as a result of a numerical simulation, the variation of PWV due to the 

variability of a longitudinal pre-stress force is presented in Figure 4.4. According to 

simulation, within the realistic physiological range of a longitudinal stress [36], the 

relative deviation in PWV does not exceed 3%.  

 

Figure 4.4. Simulation results show that within a physiological range [36], longitudinal pre-stress load 

affects PWV by ~3%. Tz denotes the axial physiological Lagrangian stress. 

 Stability of the Model Convergence      

Theoretically, a least square procedure can lead to a non-unique set of material 

parameters in the case of a non-convex objective function, when there are a large 

number of control variables. In general, the problem depends on a convexity of an 

objective function, and possibly on a particular least square numerical algorithm and 

starting point of optimization. Stable convergence has been achieved using the Nelder-

Mead algorithm available from the MATLAB Optimization Toolbox. Different initial points 

(corresponding with the five cases presented in Table 4.2) for numerical minimization 

were used. In each case, all varying material constants, except a22, converged to the 

same values, which are presented in the last column of Table 4.2. The quality of the fit 

is characterized by the least square value 0.011 in each case. The coefficient a22 varied 
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from 0.299 to 0.505, which did not affect the distribution of the PWV vs. transmural 

blood pressure (i.e., the quality of the fit).   

 Prediction of Compliance and Distensibility of a Hyperelastic Segment 

 Arterial stiffness or its reciprocals (arterial compliance and distensibility) provide 

an indication of vascular changes that predispose an individual to the development of 

major vascular disease. In an isolated arterial segment filled with a moving fluid, 

compliance is defined as a change in a volume V for a given change in pressure, and 

distensibilty as compliance divided by initial volume [1].  As functions of pressure, the 

local (tangent) compliance C and distensibility D are defined as [37] 

Equations (4.23) determine arterial wall properties as local functions of transmural 

pressure, contrary to the assessment using the diastolic-systolic pulse pressure.  

It is possible to write equations (4.23) in the following equivalent form: 

For the linear elastic response and small deformation, as it follows from equations (4.6), 

(4.7), 

which in turn transforms Equation (4.24) to the classical Bramwell-Hill relations [1] 

Generalization of a Bramwell-Hill equation, based on an empirical exponential 

relationship between transmural pressure and a cross-sectional area, was presented in 

                      𝐶 =
𝑑𝑉

𝑑𝑃
, 𝐷 =

𝐶

𝑉
=

𝑑𝑉

𝑉𝑑𝑃
    (4.23) 

                      𝐶 =
𝑑𝑉 𝑑𝜂⁄

𝑑𝑃 𝑑𝜂⁄
=
2𝑉

𝑃𝜂
, 𝐷 =

𝐶

𝑉
=

2

𝑃𝜂
    (4.24) 

                     𝑃𝜂 =
𝐸𝐻

𝑅
= 2𝜌𝑐𝑀𝐾

2     (4.25) 

                      𝐶 =
𝑉

𝜌𝑐𝑀𝐾
2 , 𝐷 =

𝑉

𝜌𝑐𝑀𝐾
2     (4.26) 
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[34]. Classical results are generalized and discussed for the case of a hyperelastic 

arterial wall, accounting for finite deformation and flow velocity.  

It is possible to determine 𝑝𝜂from equation (4.5) and then substitute it into equation 

(4.23), arriving at the following relations: 

Figure 4.5 illustrates the dependency of distensibility on pressure and flow velocity. 

Because PWV is monotonically increasing with pressure, distensibility is a decreasing 

function. In the classical Bramwell-Hill model (which is linked to the Moens-Korteweg 

model), wave speed predicts arterial distensibility as a constant, irrespective of the 

pressure level. By contrast, the present model predicts distensibility as a function of 

PWV, pressure, and blood flow. 

 

 
 

Figure 4.5. Dependence of distensibilty on transmural pressure and a flow velocity. 

 

                      𝐷 =
1+𝜂

𝜌(𝑃𝑊𝑉−𝑢)2
, 𝐶 = 𝑉𝐷    (4.27) 
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4.7. Conclusion 

A physics-based model predicting PWV in compliant arterial segment is 

presented within the framework of pseudoelastic deformation of biological tissue 

undergoing finite deformation. The model is a natural generalization of a Moens- 

Korteweg-Hughes family of equations [1], which accounts for the constant Young’s 

modulus, or exponentially increasing elasticity as a function of BP. The model was 

analyzed and validated across the available in-vivo experimental data. The method 

shows potential to be used for non-invasive continuous long-term blood pressure 

monitoring. This work is expanded upon in Chapter 5, in which nonlinear thick-wall 

elastic arterial segments are modelled. 
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Chapter 5: Pulse Wave Velocity Prediction in Nonlinear 
Thick-Wall Elastic Arterial Segments  

‘Principles’ and ‘Reasons’ underlie all good practice. ‘Evidence’ follows. - William W. Nichols,            

Michael F. O’Rourke 
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5.1. Abstract 

Pulse wave velocity (PWV) is an important index of arterial hemodynamics, 

which lays the foundation for continuous, noninvasive blood pressure automated 

monitoring. Chapter 4 described a nonlinear thin-walled arterial segment with 

predictions of PWV. The goal of this chapter is to examine the accuracy of PWV 

prediction based on a homogeneous structural model for thin-walled arterial segments 

and compare it to the thick wall model. In reality, arteries are described as composite 

heterogeneous hyperelastic structures, in which the thickness dimension cannot be 

considered small compared to the cross section size. In this chapter, a hemodynamic 

fluid-structure interaction model accounting for the variation of geometry and material 

properties in a radial direction is presented. The model is suitable to account for the 

highly nonlinear orthotropic material undergoing finite deformation for each layer. 

Numerical analysis of one- and two-layer arterial segments shows that a single layer 

thick model provides sufficient accuracy to predict PWV. The dependence of PWV on 

pressure for three vessels of different thicknesses is compared against our thin wall 

model of a membrane shell interacting with an incompressible fluid described in Chapter 

4. The presented thick wall model provides greater accuracy in the prediction of PWV, 

and it will be important for blood pressure estimation based on PWV measurements. 
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5.2. Nomenclature 

A [
𝑎𝜃𝜃 𝑎𝜃𝑟
𝑎𝜃𝑟 𝑎𝑟𝑟

] Symmetric tensor of material constants 

A Cross-sectional area (m2) 
𝐺𝜃 , 𝐺𝑧 Circumferential and radial Green-Lagrange strain components, respectively 

H Arterial wall thickness (m) 
p Transmural pressure (Pa) 
Q Quadratic function of the Green-Lagrange strains 

𝑅𝑖 , 𝑅𝑒 Internal and external wall radii in a zero-stress condition, respectively (m) 
u Axial flow velocity (m/s) 
W Strain energy density function 
𝛿𝛼𝛽 Kronecker delta: is 1 if the variables are equal, and 0 otherwise 

η Ratio of the wall internal surface normal displacement to the related radial coordinate 
(𝑟)  

𝜆𝑟 , 𝜆𝜃 , 𝜆𝑧 Stretch ratios in radial, circumferential, and axial directions, respectively 
ρ Density of incompressible fluid (kg/m3) 

𝜎𝜃 , 𝜎𝑟 Circumferential and radial Cauchy stress components (Pa), respectively 
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5.3. Introduction 

The potential of estimating arterial blood pressure based on PWV has been 

investigated in a number of publications considering a linearized acoustical approach 

(Moens-Korteweg equation), or its empirical generalization, introducing exponential 

presentation of the Young’s modulus as a function of a blood pressure (BP) [1-3]. A 

physics-based characterization built by modeling arteries as fluid-filled compliant thin-

walled cylindrical membrane shells is presented in Chapters 3 and 4 [4,5]. The present 

chapter describes a mathematical model predicting PWV propagation with rigorous 

account of nonlinearities in the fluid dynamics model, blood vessel elasticity, and finite 

dynamic deformation of multi-layer thick-wall arterial segments. This model is validated 

within the context of published vessel characteristics and finite element simulations, with 

extension to PWV and application to continuous, noninvasive blood pressure 

measurements. 

 

Figure 5.1. The anatomy of the aortic wall. 

In the present work, the arterial wall is considered as a heterogeneous 

composite, hyperelastic structure. Healthy arteries are composed of three distinct 

layers: the tunica intima (the innermost layer), the tunica media (the middle layer), and 
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the tunica adventitia (the outer layer), as shown in Figure 5.1. A material description for 

each layer without thin-wall assumptions is presented, based on a material description 

of an artery in a passive state originally proposed by Zhou and Fung [6]. A novel 

mathematical model predicting PWV is proposed, accounting for nonlinear aspects of a 

convective fluid phenomena, hyperelastic constitutive relations, and finite deformation of 

a thick arterial wall. The errors introduced by the “thin-” walled assumptions have been 

explored by Bergel [7] based on a linear elastic model for the vessel walls undergoing 

small deformations. The present work extends this analysis by accounting more 

accurately for material properties in arterial hydro-elastodynamics and by comparing the 

proposed model against our thin wall model described in Chapter 4.  
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5.4. Theory 

5.4.1. Fluid-Structure Interaction Model 

One-dimensional models simulating blood flow in arteries effectively describe pulsatile 

flow in terms of averages across the section flow parameters. Although they are unable 

to provide the details of flow separation, recirculation, or shear stress analysis, they 

should accurately represent the overall and averaged pulsatile flow characteristics, 

particular PWV. Building on the derivation of dynamics of incompressible flow in a 

compliant thin wall vessel detailed in Chapter 4, section 4.4.1 and references [4,5], the 

mechanical framework for the thick wall is now considered. For the membrane thin- 

walled cylindrical artery undergoing finite inflation and axial deformation, the load-stress 

relations follow from the static conditions. Finite deformation of a thick arterial wall is 

now considered, and the physical relationships for Cauchy stresses and Green strains 

are derived. 
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5.5. Mechanical framework 

Consider an axisymmetric case with polar coordinate R describing material point in a 

load-free state (Lagrangian frame of reference), and a polar coordinate r = r(R) 

associated with a moving particle (Eulerian description) – in a deformed state. Axial 

tethering is not considered here, and axial strain component is neglected. The 

corresponding principal stretch ratios 𝜆𝑟 , 𝜆𝜃 and the Green strains 𝐺𝑟 , 𝐺𝜃, are considered 

[8]. 

𝜆𝑟 =
𝑑𝑟

𝑑𝑅
, 𝜆𝜃 =

𝑟

𝑅
, 𝐺𝛼 =

1

2
(𝜆𝛼
2 − 1), (𝛼 = 𝑟, 𝜃)  (5.1) 

Numerous formulations of constitutive models for arteries have been proposed in 

the literature. In a comparison paper [10], it is concluded that the exponential descriptor 

of the passive behavior of arteries, due to Zhou-Fung, is “the best available”.  According 

to Zhou-Fung [6], the strain energy density function for the pseudoelastic constitutive 

relation may be presented in the form 

𝑊 =
1

2
𝑐(𝑒𝑄 − 1) (5.2) 

where c is the material coefficient, Q is the quadratic function of the Green-Lagrange 

strains 𝐺𝑟 , 𝐺𝜃, and material parameters tensor 𝑨 [6]. The thick wall model uses tensor A 

material parameters described by 𝑎𝜃𝜃, 𝑎𝜃𝑟 , 𝑎𝑟𝑟. For the finite inflation and extension of a 

thin-walled cylindrical artery in Chapter 4, equation (4.9) material constants 

𝑐, 𝑎11, 𝑎12, 𝑎22 were used. The quadratic function of Green-Lagrange strains is described 

as 

𝑄 = 𝑎𝜃𝜃𝐺𝜃
2 + 2𝑎𝜃𝑟𝐺𝜃𝐺𝑧 + 𝑎𝑟𝑟𝐺𝑧

2 (5.3) 



 116 

For infinitesimally small strains, the exponential form of energy function is reduced to 

the following quadratic form that relates to the plane theory of linear anisotropic 

elasticity. 

𝑊 =
1

2
𝑐(𝑒𝑄 − 1) =

𝑐

2
(𝑄 +

𝑄2

2!
+ ⋯) ≅

𝑐

2
(𝑎𝜃𝜃𝐺𝜃

2 + 2𝑎𝜃𝑟𝐺𝜃𝐺𝑧 + 𝑎𝑟𝑟𝐺𝑧
2) 

(5.4) 

The Cauchy-Green stress components are defined as the following [6]: 

𝜎𝜃 = 𝜆𝜃
2 𝜕𝑊

𝜕𝐺𝜃
= 𝑐𝜆𝜃

2𝑒𝑄𝑆𝜃, 𝑆𝜃 = 𝑎𝜃𝜃𝐺𝜃 + 𝑎𝜃𝑟𝐺𝑟

𝜎𝑟 = 𝜆𝑟
2
𝜕𝑊

𝜕𝐺𝑟
= 𝑐𝜆𝑟

2𝑒𝑄𝑆𝑟, 𝑆𝑟 = 𝑎𝜃𝑟𝐺𝜃 + 𝑎𝑟𝑟𝐺𝑟

 (5.5) 

 

Neglecting inertia forces, the problem of an artery subjected by transmural 

pressure is described by solving the equation of equilibrium in an Eulerian frame [8] 

𝜕𝜎𝑟
𝜕𝑟

+
𝜎𝑟 − 𝜎𝜃
𝑟

= 0 (5.6) 

that could be transformed to the Lagrangian coordinates using equation (5.1) 

𝜕𝜎𝑟
𝜕𝑅

+
𝜆𝑟(𝜎𝑟 − 𝜎𝜃)

𝜆𝜃𝑅
= 0 

(5.7) 

 

 

 

Note that an additional equation for the strains, known as the compatibility equation, 

follows from equation (5.1) 

𝜕𝜆𝜃
𝜕𝑅

=
𝜆𝑟 − 𝜆𝜃
𝑅

 
 

(5.8) 

 

 

or, in terms of the circumferential Green strain component 

𝜕𝐺𝜃
𝜕𝑅

= 𝜆𝜃
𝜆𝑟 − 𝜆𝜃
𝑅

= 0. 
 

(5.9) 

 
 

The boundary conditions for the internal and external radii of the artery are 

𝜎𝑟(𝑅𝑖) = −𝑝, 𝜎𝑟(𝑅𝑒) = 0. (5.10) 
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Equations (5.1), (5.5), (5.7), and (5.9) and the boundary conditions defined in equation 

(5.10) allow components of stress, strain, and stretch ratios as functions of a transmural 

pressure, as well as incremental moduli of hyperelastic finite deformation (required by 

equation 4.5) to predict a wave front speed of propagation (i.e., PWV).  

In view of numerical analysis, we have to derive the tangent moduli (D) by differentiation 

of a stress-strain relationship (12) (𝛿𝛼𝛽- Kronecker delta: is 1 if the variables are equal 

and 0 otherwise) 

Dαβ =
∂σθ
∂Gβ

= cλα
2eQ (aαβ + 2SαSβ +

2Sα
λα2
δαβ) , α, β = r, θ (5.11) 

5.5.1. Continuation Method for the Nonlinear Boundary Value Problem 

The theory of the continuation method enables the transformation of a boundary 

value problem into an initial value problem, by introducing a parameter and changing it 

into a family of parametric problems [9]. Assuming a load parameter 0 ≤ 𝜏 ≤ 1 and 

substituting 
 
→ 𝜏𝑝 , it is possible to model the continuous successive load on a vessel 

with an internal pressure ranging from 0 to a nominal value. Assume that the solution of 

equations (5.1) through (5.10) depends continuously on this parameter and is 

differentiable with respect to this parameter. Starting from the known answer for a 

certain value of the parameter (𝜏 = 0 in the present case), the solution of the equation 

for other values of the parameter may be obtained by integrating the rate of change of 

the solution with respect to the parameter.  

Differentiating constituent equations (5.5) by the continuation parameter (the dot above 

means partial derivative with respect to 𝜏), yields 
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𝜎�̇� =∑𝐷𝛼𝛽�̇�𝛽 ,

𝛽

 𝛼, 𝛽 = 𝑟, 𝜃 (5.12) 

To solve the problem numerically, select the vector variable 𝒁 = (𝜎𝑟 , 𝐺𝜃)
𝑇 as the primary 

variable in the model, because it preserves continuity for the multilayered structure with 

discontinuous mechanical properties. The rate of “discontinuous” variables  𝑌 =

(𝜎𝜃, 𝐺𝑟)
𝑇 follows from equation (5.12) accordingly 

�̇� = 𝑩�̇�, 𝑩 = 𝐷𝜃𝜃
−1 (

det (𝑫) 𝐷𝑟𝜃
−𝐷𝜃𝑟 1

)  (5.13) 

To differentiate equation (5.7) by 𝜏, expand the logarithm of the right part 𝐹 =

𝜆𝑟𝜆𝜃
−1(𝜎𝜃 − 𝜎𝑟)/𝑅  

ln 𝐹 = ln 𝜆𝑟 − ln 𝜆𝜃 + ln(𝜎𝜃 − 𝜎𝑟) − ln𝑅 (5.14) 

and take derivatives of both sides 

𝑑�̇�𝑟
𝑑𝑅

= �̇� = 𝐹 (
�̇�𝑟
𝜆𝑟2
−
�̇�𝜃

𝜆𝜃
2 +

�̇�𝜃 − �̇�𝑟
𝜎𝜃 − 𝜎𝑟

) (5.15) 

Using a similar procedure, applied to the compatibility equation, yields equation (5.16) 

𝑑𝐺𝜃̇

𝑑𝑅
=
𝜆𝜃
𝑅𝜆𝑟

�̇�𝑟 + (
𝜆𝑟
𝑅𝜆𝜃

−
2

𝑅
)�̇�𝜃 (5.16) 

Now equations (5.15) and (5.16) could be presented in a matrix form 

𝑑�̇�

𝑑𝑅
= 𝑪1�̇� + 𝑪2�̇� (5.17) 

in which 
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𝐶1 =

(

 
 

−𝐹

𝜎𝜃 − 𝜎𝑟

−𝐹

𝜆𝜃
2

0
𝜆𝑟
𝑅𝜆𝜃

−
2

𝑅)

 
 
; 𝐶2 =

(

 
 

−𝐹

𝜎𝜃 − 𝜎𝑟

−𝐹

𝜆𝑟2

0
𝜆𝜃
𝑅𝜆𝑟)

 
 

 (5.18) 

substituting equation (5.13) into equation (5.17) arrives at the final differential equation 

𝑑�̇�

𝑑𝑅
= 𝑪�̇�, 𝑪 = 𝑪1 + 𝑪2𝑩 (5.19) 

with the boundary conditions, obtained by differentiation of the boundary conditions in 

equation (5.10). (Note that pressure in equation (5.10) is being multiplied by τ, and   𝑰 =

[1 0].) 

𝑰 ∙ 𝒁(𝑅𝑖)=-p; I∙ 𝒁(𝑅𝑒) = 0 (5.20) 

The initial parameter method presumes the solution of the linear boundary value 

problem described in equation (5.19) to be represented in the form 

�̇� = �̇�1 + 𝜇�̇�2 (5.21) 

Here the vector functions  �̇�1, �̇�2 are independent solutions of equation (5.19) with the 

following initial conditions 

�̇�1(0) = (−𝑝  0)
𝑇, �̇�𝟐(0) = (0  1)

𝑇 (5.22) 

and μ is an unknown constant determined from the second boundary condition in 

equation (5.20). 

𝜇 = −
𝑰 ∙ 𝒁1(𝑅e)

𝑰 ∙ 𝒁2(𝑅e)
 (5.23) 

Once �̇� is known at 𝜏 = 0, then vector 𝒁 of continuous variables and vector 𝒀 of 

discontinuous functions could be calculated by integrating the relating rate of change 
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𝒁(𝜏 + ∆𝜏) = 𝒁(𝜏) + �̇�(𝜏)Δ𝜏 

(5.24) 

𝒀(𝜏 + ∆𝜏) = 𝒀(𝜏) + 𝑩�̇�(𝜏)Δ𝜏 

The above process continues to obtain solutions for τ = 1. The pressure versus normal 

displacement 𝑝 = 𝑝(𝜂) is tracked at  𝑅 = 𝑅𝑖 for each level of successively increasing 

load to create an incremental moduli 𝑝(𝜂) function, required by equation (4.5) to predict 

a wave front speed of propagation (i.e., PWV).   
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5.6. Results and Discussion 

 To validate the algorithm, the numerical investigation of an inflated rabbit carotid 

arterial segment is presented and compared with the results based on a finite element 

analysis, obtained by Holzaphel et al. [10]. The rabbit arterial data presented by Chuong 

and Fung [11]: c=26.95kPa; 𝑎𝜃𝜃 = 0.9925, 𝑎𝜃𝑟 = 0.0193, 𝑎𝑟𝑟 = 0.0089, Ri=0.71 mm, Re 

= 1.1 mm (from experiment number 71) is used.  Figure 5.2 (a) shows the predicted 

mechanical response of the considered artery. Squares relate to the finite element 

analysis [10] and are in good agreement with the results based on our present single 

layer thick wall model. The derivative 𝑝𝜂 of pressure by radial displacement of an 

internal surface (i.e., hyperelastic incremental moduli), presented in Figure 5.2 (b), is a 

primary factor affecting PWV in a cylinder filled with a moving fluid according to 

equation (4.5). At diastolic pressure when flow is close to zero, PWV is dominated by 

the physical anisotropic properties of the aorta. At systolic pressure, the pulse wave 

velocity is also affected by flow velocity, which may be approximated as 20-25% of 

PWV according to Pedley [15].  
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Figure 5.2. Mechanical response of a carotid artery from a rabbit during inflation. a) depicts the 

dependence of the inner diameter on internal pressure. The solid line is a prediction based on our single- 

layer thick wall model that is in good correlation with the results (squares) from [10]. b) depicts 

incremental moduli 𝑝𝜂of the hyperelastic artery (i.e., derivative of a pressure by the radial displacement 

𝜂). 

 A single layer thick wall model with homogeneous mechanical properties does 

not account for the distinct mechanical response of the separate layers (intima, media, 

and adventitia). Since the intima contributes negligible mechanical strength [10], a two- 

layer model, incorporating media and adventitia only, is analyzed. Following [10,12], 

assume that media occupies approximately 0.6 of the arterial wall thickness. 

Experimental tests indicate that media is about ten times stiffer that adventitia [12,13], 

which allows to scale accordingly material properties tensor A. Figure 5.3 depicts 

predicted mechanical response of the considered artery, calculated based on a single 

layer thick wall model (dashed lines) and a two-layer-thick wall model (solid lines). The 
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circumferential Cauchy stress is plotted in Figure 5.3 (a), normal displacement in Figure 

5.3 (b), and radial component of Green strain in Figure 5.3 (c), all against the radial 

coordinate. The abrupt change in mechanical properties at the boundary between 

media and adventitia results in a sharp discontinuity of circumferential stress and radial 

strain components. Radial displacement is a continuous function, deviating slightly from 

the single-layer counterpart as shown in Figure 5.3 (b). In the proximity of the internal 

cylindrical surface, distributions of all parameters calculated by both models (1 layer, 2 

layers) are identical as seen in Figure 5.3. Since PWV is determined by the local wall 

stiffness, relating to the internal cylindrical surface, the latter justifies application of the 

single layer thick model to the PWV-related problems. 

 

Figure 5.3. Single layer thick wall model (dashed line) is as accurate for PWV prediction as the two-layer 
thick wall model (solid line) and avoids associated discontinuities. Plots of circumferential Cauchy stress 
(a), normal displacement (b), and radial component of a Green strain (c) through the wall thickness. For 

the two-layer model, the light gray represents the media and the dark gray represents the adventitia layer. 
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Figure 5.4 depicts the dependence of PWV on pressure for the systole phase 

(marked as “SBP”) and a diastole phase (marked as “DBP”) for three vessels of 

different thicknesses of a human aorta. The anisotropic material constants for a human 

aorta with an outer radius of 14.5 mm are taken from Fung et al. [14]. The inner radius 

is then set based on the three wall thicknesses considered in Figure 5.4. Following [15], 

assume here that the flow velocity u = 0 for the diastole phase and that it is equal to 

20% of PWV for the systole phase. All results have been compared with the simplified 

thin-walled model of a membrane shell interacting with an incompressible fluid [5].  
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Figure 5.4. PWV curves for systolic blood pressure (SBP) and diastolic blood pressure (DBP) for the 

nonlinear single layer thin and thick aortic wall. Figure 5.4 (a) corresponds to the vessel thickness of 

H = 4 mm, H/Ri = 0.38;  Figure 5.4 (b) to H = 2.5 mm, H/Ri = 0.21;  Figure 5.4 (c) to H = 1 mm, 

H/Ri = 0.07;  Figure 5.4 (d) to the percent difference between the thin and thick wall model predictions at 

SBP/DBP = 150/95 mmHg for PWV (solid line) and blood pressure (dotted line). 
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The analysis presented in Figure 5.4 considers normal wall thicknesses of less than 

4 mm [16] across a range of transmural blood pressures.  To explore inaccuracies 

induced by use of the less complex thin wall model, errors in both PWV and blood 

pressure were calculated for a blood pressure of SBP/DBP = 150/95 mmHg, 

representing the median of stage 1 hypertension [17]. The single layer thick wall model 

improves PWV accuracy by 4.0-8.4% across a range of normal wall thickness. One of 

the goals for the model is PWV-based blood pressure prediction, where the thick wall 

model offers an improvement of 3.3-19.4%. Accuracy improvements are highly 

dependent on the relative dimensions of wall thickness to arterial radius. As the ratio of 

H/Ri approaches zero, the error of PWV prediction approaches zero, showing an 

asymptotic accuracy as an order of wall thickness to internal radius ratio. 



 127 

5.7. Conclusion 

A novel mathematical model predicting PWV propagation with rigorous account 

of nonlinearities in the fluid dynamics model, blood vessel elasticity, and finite 

deformation of multi-layer thick-wall arterial segments was studied. It was found that the 

account for the multilayer model affects distribution of local parameters in the proximity 

of the external layer (adventitia) and does not affect stiffness related to the internal 

layer. The latter means that the single layer thick model is sufficient to predict PWV of 

an arterial segment. For a hypertensive subject, the three-dimensional thick- wall model 

provides improved accuracy up to 8.4% in PWV prediction over its thin-wall counterpart. 

This translates to nearly 20% improvement in blood pressure prediction based on a 

PWV measure.   
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Chapter 6: Improved Blood Pressure  
Prediction Using Systolic Flow Correction  

of Pulse Wave Velocity 

Hence, the more rapidly moving elements of a wave will tend to catch up to those which are moving more 
slowly; in other words the wave will tend to become more vertical, and, under suitable conditions, parts of 
it may actually tend to topple over and form "breakers." - J. Crighton Bramwell and A. V. Hill; July 7, 1923 
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6.1 Abstract 

Hypertension is a significant worldwide health issue. Continuous blood pressure 

monitoring is important for early detection of hypertension and for the improvement of 

treatment efficacy and compliance. Pulse wave velocity (PWV) has the potential to allow 

for a continuous blood pressure monitoring device; however, published studies 

demonstrate significant variability in relating PWV to blood pressure. In Chapters 3, 4, 

and 5, the presented physics-based mathematical models of PWV describe how flow 

velocity is additive to the classic pressure wave as estimated by arterial material 

properties. This suggests flow velocity correction may be important for cuff-less non-

invasive blood pressure measures. The present study examined the impact of systolic 

flow correction of a measured PWV on blood pressure prediction accuracy using data 

from two published in vivo studies. Both studies examined the relationship between 

PWV and blood pressure under pharmacological manipulation, one in mongrel dogs 

and the other in healthy adult males. Systolic flow correction of the measured PWV 

improves the R2 correlation with blood pressure from 0.51 to 0.75 for the mongrel dog 

study, and from 0.05 to 0.70 for the human subjects study. The results support the 

hypothesis that systolic flow correction is an essential element of non-invasive, cuff-less 

blood pressure estimation based on PWV measures. 
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6.2 Introduction  

Pulse wave velocity (PWV) is a non-invasive measure that offers the promise to 

continuously monitor blood pressure and has been studied extensively [4-7]. The PWV 

is calculated based on a measured true transit time (TT) and an arterial distance 

between measurement points, as shown in Figure 6.1. Measurements may be at two 

locations on the same artery, or often the electrocardiogram (ECG) R-wave is used as a 

starting reference combined with a distal measurement point with or without correction 

for pre-ejection period (PEP). While many studies consider only TT, it may be 

considered an equivalent corollary to PWV because these measures are linked through 

a distance that is constant within each study. 
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Intra-arterial PWV 

 

Gold-standard 
Invasive Method 

Simultaneous pressure 
recorded invasively with 
pressure sensors just 
before the aortic root [a] 
and above the aortic 
bifurcation [b] 

Alternative 
Method 

Sequential ECG-gated 
recordings, just before the 
aortic root [a] and above 
the aortic bifurcation [b] 

Distance Length measured by 
radiographic images or 
catheter lengths 

Non-invasive PWV 

Gold-standard 
Method 

Simultaneous carotid [c] 
and femoral artery 
tonometry [d] 

Alternative 
Method 

ECG R-wave, impedance 
plethysmography for PEP, 
and distal pulse wave at 
the index finger [e] 

Distance Length measured from the 
sternal notch to the 
femoral artery at the groin 
or index finger 

 

Figure 6.1. Illustration of measurement methods used for PWV and the associated anatomical locations. 

 
Bramwell and Hill recognized that an increase in pressure increases the pulse 

wave velocity. They concluded that the foot-to-foot wave velocity increased proportional 

to diastolic pressure [11,12]. In their innovative experiment, they replaced blood with 

mercury to reduce wave velocity. This enabled accurate measurement of PWV in an 

excised human carotid artery. Varying pressure from 20 mmHg to over 200 mmHg, they 

found an exponential relationship between PWV and pressure. Continuing experiments, 

where the velocity of different points on the pressure wave were measured optically and 

with a sphygmograph, suggests that the systolic peak of the pressure pulse travels at 

higher velocity than the diastolic foot [12]. Histand and Anliker superimposed a low-

amplitude pulse train directly on the aorta to enable PWV calculations at different 
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locations on the pulse wave (SBP, DBP) [13]. They found a wave speed change of 

~30% between diastole and systole. The interesting implication is that pressure pulse 

foot-based PWV estimations are likely correlated with diastolic pressure, an implication 

supported by in vivo studies. Researchers have used this knowledge and empirically 

modified the cMK equation (1.1) to use the dynamic Young’s modulus equation (1.2) to 

incorporate blood pressure into the Moens-Korteweg equation [10,14].  

Payne et al. conducted an in vivo study to determine the correlation between 

blood pressure and transit time in twelve healthy men [15]. Four vasoactive drugs 

(glycerol trinitrate, angiotensin II, norepinephrine, and salbutamol) were administered 

intravenously to modulate physiological state. Two types of transit time were 

considered: ECG R-wave to the foot of the distal pulse wave (rPTT), and ECG R-wave 

to the foot of the distal pulse wave minus PEP to provide an estimate of TT. In both 

cases, the distal pulse wave was measured using photoplethysmography at the 

dominant index finger. They found TT was most closely correlated with diastolic blood 

pressure (DBP) R2=0.85, while rPTT was most closely correlated with systolic blood 

pressure (SBP) R2=0.39.   

Ochiai et al. conducted a similar in vivo study with ten mongrel dogs that 

determined the correlation between blood pressure and PWV [16]. Hypertension was 

induced by continuous infusion of dobutamine and phenylephrine; hypotension was 

induced by deepening isoflurane anesthesia, acute blood loss, and nitroglycerine 

infusion. Two types of transit time were considered: rPTT measured by the ECG R-

wave to the foot of the pressure wave measured at the bifurcation of the abdominal 

aorta, and TT measured by the pressure wave at the ascending aorta to the pressure 
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wave measured at the bifurcation of the abdominal aorta. Two intra-arterial catheter tip 

pressure transducers were placed distal to the aortic root and abdominal aorta 

bifurcation as shown in Figure 6.1, locations a and b, respectively. They found that TT 

was most closely correlated with both DBP (R2=0.92) and SBP (R2=0.81) across all 

conditions. The correlation of TT with both DBP and SBP, and rPTT with SBP (R2=0.59) 

were higher for Ochiai et al. than the correlations found by Payne et al., likely due to the 

internal aortic measurement locations. It is known that some of the drugs used in the 

studies affect the elastic arteries differently than the muscular arteries [17]. 

Nitroglycerin, for example, produces a peripheral vascular effect by relaxing the smooth 

muscle. The mid-sized peripheral arteries are muscular in nature and thereby 

susceptible to nitroglycerin action.  

 Other studies have considered the effect of left ventricular ejection time (LVET) 

and its relationship to pressure and PWV [6,18,19]. Nurnberger et al. conducted a study 

of young, healthy males to determine if LVET was a determinant of PWV [6]. He studied 

102 subjects under resting conditions and then six subjects under stimulation of β- or α- 

adrenoreceptors. They found that LVET may be an important determinant of PWV 

under resting conditions and adrenergic conditions in healthy young males. A similar 

study over a large population of 3020 untreated subjects was conducted by Salvi et al. 

[19]. They found an inverse linear association between PWV and LVET across all five 

age groups (<25yrs, 25-44yrs, 45-64yrs, 65-84yrs, and >85 yrs.; p < 0.0001, R2=0.35). 

In Chapters 3-5, a nonlinear traveling wave-based mathematical approach to 

predict the dependence of PWV on transmural pressure and LVET was developed. This 

first principles model reduces to the Moens-Korteweg speed of propagation under 
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conditions of linear elasticity and zero pressure. An in-vitro cardiovascular 

hemodynamic simulator was used to validate the theoretical predictions confirming an 

inverse quadratic relationship between LVET and PWV [20]. However, the fundamental 

equations suggest that it is flow velocity and the properties of the aortic wall, and not 

LVET explicitly, that influence PWV in arterial segments. In this study, we found 

analytically and empirically that flow velocity is additive to the PWV predicted based on 

pressure and material properties alone. 

Although published results establish correlation between SBP or DBP and 

measures of pulse wave velocity (PWV, TT, rPTT), no measure has emerged as a 

robust predictor of blood pressure across the full physiologic range. The aim of this 

study is to test the theory that accounting for the flow contribution to PWV based on 

fundamental physics of wave propagation in nonlinear elastic arteries will improve 

overall blood pressure prediction. The approach used is based on a novel mathematical 

model predicting PWV, accounting for nonlinear aspects of a convective fluid 

phenomena, hyperelastic constitutive relations, and finite deformation of the arterial wall 

[20]. In this work, the use of peak flow to correct PWV for determination of systolic blood 

pressure is proposed. To test the theory, the mean data presented in Payne et al. and 

Ochiai et al. [15,16] is used. Using linear regression and the coefficient of determination, 

the correlation between pressure and measured PWV, flow-corrected PWV (PWVf), and 

rPTT is compared.  

6.2.1 Fluid-Structure Interaction Model 

The potential for estimating arterial blood pressure based on PWV has been 

investigated based on statistical regression models, or empirical representation of an 



 137 

incremental isotropic elastic modulus as a function of a transmural pressure [21,22]. 

Models treating arteries as fluid-filled compliant thin-walled cylindrical membrane shells 

have been validated using data from in vitro and in vivo studies [23,24]. Recent work 

accounting for nonlinear aspects of a convective fluid phenomena, hyperelastic 

constitutive relations, and finite deformation of the arterial wall-determined PWV is 

associated with the forward-running wave velocity [20] as shown in equation (6.1). PWV 

accounting for flow (PWVf) is a function of axial flow velocity (𝑢), wall normal 

displacement nondimensionalized by vessel radius (η), blood density (𝜌), and 

transmural pressure (𝑝).  

𝑃𝑊𝑉𝑓 = 𝑢 + √
1 + 𝜂

2𝜌
𝑝𝜂 = 𝑢 + 𝑃𝑊𝑉𝑝 

(6.1) 

 

 

 

 

The partial derivative p indicates sensitivity of pressure with respect to the wall normal 

deflection, and it has a clear interpretation as tangent (incremental) moduli in finite 

strain inelasticity. The right term of equation (6.1) presents PWVf   as a superposition of a 

peak flow velocity (u) and a pressure-dependent PWVp. 
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6.2.2 Flow-Corrected PWV 

 PWV is classically measured at the foot of the forward-moving distal pressure 

wave, since estimation from the peaks, or peak-to-peak velocity, can give considerable 

errors due to contamination with reflected waves [25,26]. During the diastolic cardiac 

phase, the axial flow velocity is close to zero, allowing equation (6.1) to simplify to 

𝑃𝑊𝑉𝑓 = 𝑃𝑊𝑉𝑝. In both Payne et al. and Ochiai et al., the diastolic PWV is used; there 

was no determination of a systolic PWV associated with peak flow and the peak of the 

distal wave.   

A systolic PWV can be estimated from a foot-based PWV measure accounting 

for flow velocity as in equation (6.1) and a calibration based on arterial pressure and 

radius. Equation (6.1) reformulated to explicitly indicate a classical PWV measurement 

location for systolic and diastolic is shown in equations (6.2) and (6.3), respectively. 

𝑃𝑊𝑉𝑓 = 𝑢 + √
[(1 + 𝜂)𝑝𝜂]𝑝𝑘

2𝜌
 

(6.2) 

 

 

 

 

 

 

𝑃𝑊𝑉 = √
[(1 + 𝜂)𝑝𝜂]𝑓𝑡

2𝜌
 

(6.3) 

 

 

 

 

 

This leads to a systolic PWV based on a diastolic PWV measure. 

𝑃𝑊𝑉𝑓 = 𝑢 + 𝑃𝑊𝑉√
[(1 + 𝜂)𝑝𝜂]𝑝𝑘

[(1 + 𝜂)𝑝𝜂]𝑓𝑡
 

(6.4) 

 

 

 

 

 

The subscripts pk and ft relate to the properties measured at the peak and foot 

respectively, and PWV is measured at the foot of the forward-moving distal pressure 
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wave. For linear elasticity 𝑝𝜂 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝜂 =
𝑝𝑅

𝐸ℎ
 , in which E- linear elastic modulus, R-  

internal radius of the vessel, h- wall thickness, equation (6.4) can be written in a 

simplified form 

𝑃𝑊𝑉𝑓 = 𝑢 + 𝑃𝑊𝑉√
1 +

𝑝𝑝𝑘𝑅𝑝𝑘

𝐸ℎ

1 +
𝑝𝑓𝑡𝑅𝑓𝑡

𝐸ℎ

 

(6.5) 

 

 

 

The numerical result under the square root is a correction coefficient that accounts for 

shifts in PWV due to transmural pressure. In this work, the correction coefficient was set 

to unity since the required measurements were not recorded in the referenced papers 

[4,5]. PWV is calculated by dividing the constant arterial distance by the foot-to-foot 

transit time of the pressure wave with referenced lengths provided in the supplemental 

section for Ochiai et al. and Payne et al.  
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6.3 Methods 

Although flow was not directly measured in the referenced papers, the peak flow 

velocity can be estimated using measured values of ejection volume, LVET, and aortic 

radius. Peak flow velocity (m/s) was calculated using the diastolic systolic aorta cross-

sectional area (CSA) assuming a circular cross-section, LVET, cardiac output (CO), and 

heart rate (HR) [27]. 

𝑢 =
𝐶𝑂/𝐻𝑅

𝐶𝑆𝐴
𝐿𝑉𝐸𝑇⁄  (6.6) 

Left ventricular ejection time (LVET) was calculated from PEP using a conservative 

fixed ratio of PEP/LVET = 1/3 [27,28], and an average aortic radius was used for each 

species, human and dog [25,28]. Systolic PWV was corrected for flow, using equation 

(6.5). Statistical analysis was completed to calculate the coefficient of determination (R2) 

and analysis of variance (ANOVA).  

6.3.1 Aortic Flow and Systolic Flow Velocity 

A simple modification of (6.6) accounting for a typical profile of a time-dependent 

aortic flow is presented in [29]. All distributions are topologically equivalent to a triangle, 

as shown in Figure 6.32.  
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Figure 6.2. Ascending Aortic Flow profile for a heart coupled to a vascular system. 

 

The total stroke volume (SV), consisting of the amount of blood ejected by the left 

ventricle in one contraction, is calculated as the following integral of flow rate Q by time  

SV=∫𝑄(𝑡)𝑑𝑡 (6.7) 

Approximating Q(t) as a triangle with a height 𝑄𝑝𝑒𝑎𝑘 = 560𝑚𝑙/𝑠 and a base Δt=0.225s, 

arrives approximately to  SV=
1

2
𝑄𝑝𝑒𝑎𝑘 Δt=63 ml/s, instead of the exact value of 64 ml/s 

presented in [31]. As it follows from (6.7), an average value of a ventricular outflow is 

equal to approximately half of its peak value. 

𝑄𝑎𝑣𝑔 =
∫𝑄(𝑡)𝑑𝑡

Δt
=≈

1

2
𝑄𝑝𝑘 Δt

Δt
≈
1

2
𝑄𝑝𝑘 

(6.8) 

Now we can present systolic velocity 𝑢𝑠 using systolic aortic flow 𝑄𝑝𝑒𝑎𝑘 and a systolic 

cross section area 𝐴𝑠 
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𝑢𝑠 =
𝑄𝑝𝑘

𝐶𝑆𝐴𝑠
= 𝑘𝑠

𝑄𝑎𝑣𝑔

𝐶𝑆𝐴𝑠
= 𝑘𝑠

𝐶𝑉

𝐶𝑆𝐴𝑠Δt
,    𝑘𝑠 =

𝑄𝑝𝑘

𝑄𝑎𝑣𝑔
≈ 2 (6.9) 

where ks represents the scale factor to convert from Qavg to Qpk. 

6.3.2 Aortic and Peripheral Studies 

Payne et al. modulated cardiac output in healthy male subjects (mean age: 22 

years) using four drugs. Angiotensin II is a peptide hormone that causes 

vasoconstriction and a decrease in CO [30]. Glyceryl trinitrate, commonly used to treat 

angina, is known to decrease both CO and ejection volume. Norepinephrine released by 

the sympathetic nervous system increases the force with which ventricular muscle fibers 

contract and affects both cardiac output and ejection volume [31]. Salbutamol is a 

vasodilator that causes a significant increase in heart rate and associated CO [32,33]. 

Blood pressure and PWV averages across all subjects for baseline and each 

pharmaceutical manipulation were used in this analysis.  Although the Payne et al. data 

lacks a direct cardiac output measure, literature provides averages for baseline and 

each of the pharmaceuticals as shown in Table 6.1. 
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Table 6.1. Angiotensin II (ARB), Glyceryl Trinitrate (GTN), Norepinephrine (NE), Salbutamol (SAL) 

 CO 
[lpm] 

Note 

Baseline 

SBP 

5.00 Healthy person at rest [28] 

ARB 

134 

4.25 Decrease by 15% [30] 

GTN 

134 

4.60 Decrease by 8% [34] 

NE 

122 to 

5.60 Increase by 12% [31] 

SAL 

141 

6.50 Increase by 30% [33,32] 
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Table 6.2. Mean physiological measurements from Ochiai et al. [16]. 

 SBP 
[mmHg] 

DBP* 
[mmHg] 

HR 
[bpm] 

PEP 
[ms] 

LVET* 
[ms] 

CO 
[lpm] 

TT 
[ms] 

PWV* 
[ms] 

Flow* 
[m/s] 

PWVf** 
[m/s] 

Baseline 127 77 126 72 215 1.79 74 8.1 0.7 8.8 

ISO 90 47 118 67 200 1.2 88 6.8 0.6 7.4 

Baseline 154 103 128 87 260 1.65 59 10.1 0.5 10.7 

NTG 127 78 140 69 207 1.95 71 8.5 0.7 9.2 

Baseline 129 105 126 86 260 1.62 65 9.2 0.5 9.7 

HVM 79 58 127 86 260 0.75 76 7.9 0.2 8.2 

Baseline 168 107 123 69 207 1.75 64 9.4 0.7 10.2 

DBT 226 119 139 43 128 3.33 53 11.4 2.0 13.4 

Baseline 159 104 127 80 241 1.78 62 9.7 0.6 10.2 

PHE 190 132 112 98 294 1.22 50 12.0 0.4 12.4 

Isoflurane (ISO), Nitroglycerine (NTG), Hypovolemia (HVM), Dobutamine (DBT), Phenylephrine (PHE), 
and Baseline represent the measurement before a drug was administered. *Calculated value. **Flow-
corrected PWV. DBP was calculated using the measured MAP data [16]. 
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Table 6.3. Mean physiological measurements from Payne et al. [15].  

 SBP 
[mmHg] 

DBP 
[mmHg] 

HR 
[bpm] 

PEP 
[ms] 

LVET* 
[ms] 

CO# 
[lpm] 

TT 
[ms] 

PWV* 
[ms] 

Flow* 
[m/s] 

PWVf** 
[m/s] 

Baseline 139 67 62 100 300 5.00 166 6.0 0.6 6.7 

ARB 156 82 60 105 315 4.25 150 6.7 0.5 7.2 

Baseline 134 66 63 95 285 5.00 164 6.1 0.7 6.8 

GTN 122 61 77 92 276 4.60 184 5.4 0.5 6.0 

Baseline 141 68 61 95 285 5.00 165 6.1 0.7 6.7 

NE 164 81 57 87 261 5.60 151 6.6 0.9 7.5 

Baseline 151 71 66 91 273 5.00 158 6.3 0.7 7.0 

SAL 153 39 125 30 81 6.50 188 5.3 1.5 6.9 

Angiotensin II (ARB), Glyceryl Trinitrate (GTN), Norepinephrine (NE), Salbutamol (SAL), and Baseline 
represent the measurement before a drug was administered. 
*Calculated value. #Referenced values used. **Flow-corrected PWV. 
 
 

For Ochiai et al., a reference inner aortic radius at diastolic and systolic of Ri=4.5, 

5.4 mm respectively and length d = 0.6m for the canine aorta [35] was used for all 

calculations. DBP was calculated from the measured SBP and mean arterial pressure 

(MAP) using the equation: 

𝐷𝐵𝑃 = 1.5𝑀𝐴𝑃 − 0.5𝑆𝐵𝑃 (6.6) 

For the Payne et al. study, a human inner aortic radius at diastolic and systolic of Ri = 

10.5, 12.6 mm respectively was used for all calculations [25,36]. The referenced 

distance from the aortic root to the index finger of d=1.0 m was used to calculate PWV 

[28]. 

While the PWV versus pressure curve is nonlinear [10,20,23,25], both Payne et 

al. and Ochiai et al. fit a linear model using regression analysis. We have used the 

same R-squared statistics to run comparisons with their published results.



6.4 Results 

 To test the theory that a PWVf -based estimate of SBP is more accurate than 

PWV uncorrected for flow and rPTT, we used data from both Ochiai et al. and Payne et 

al. [15,16]. This data allowed comparison of the coefficient of determination across the 

different physiological changes induced in the two studies and assessment of the 

statistical significance. 

6.4.1 Flow correction improves aortic PWV correlation with blood pressure 

 Measured and flow-corrected PWV and associated blood pressures for the 

mongrel dog aorta study of Ochiai et al. are provided in Table 6.2. A linear regression 

was performed, and the associated coefficient of determination was calculated and 

compared as shown in Figure 6.3a and Figure 6.3b for PWV and PWVf respectively for 

SBP. The same comparison was made for SBP and DBP (Figure 6.3c and Figure 6.3d). 

For both comparisons, PWVf (equation (6.5)) significantly improves the linear fit of the 

data. ANOVA showed a significant positive relationship between pressure and PWVf, 

R2 = 0.75 and P < 0.0001. Multivariable ANOVA also shows a significant positive 

relationship for both systolic pressure and flow to PWV, P < 0.0001. Analysis of diastolic 

pressure versus PWV resulted in a significant positive relationship with R2 = 0.92 and P 

< 0.01, consistent with prior studies [7,14-16,27]. 
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Figure 6.3. PWVf measured in the aorta improves blood pressure prediction. Error bars represent the 

standard deviation of PWV calculated from the referenced TT measurements from [16] and uncertainty in 

measures required for calculation of flow velocity. For all figures, the systolic pressure is represented by a 

circle, and diastolic pressure is represented by a square. The left side includes SBP only, while the right 

side includes both pressures (SBP and DBP). a) PWV uncorrected for flow across measured SBP. b) 

PWV corrected for flow velocity improves the correlation with SBP alone. c) The lowest correlation was 

observed with PWV uncorrected for flow across measured pressures. d) PWV corrected for flow velocity 

improves the overall correlation across all pressures. Analysis of diastolic pressure versus PWV (data not 

shown) produced an R2 = 0.92.   
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6.4.2 Flow correction improves peripheral PWV correlation with blood pressure 

  Measured and flow-corrected PWV and associated blood pressures for the   

human subject study of Payne et al., with the distal PWV measurement point at the 

index finger, are provided in Table 6.3. A linear regression was performed, and the 

associated coefficient of determination was calculated and compared, as shown in 

Figure 6.3a and Figure 6.3b, respectively for SBP. The same comparison was made for 

SBP and DBP (Figure 6.3c and Figure 6.3d). For both comparisons, the PWVf equation 

(6.5) significantly improves the linear fit of the data. ANOVA showed there is a 

significant positive relationship between pressure and PWVf, R2=0.70 and P<0.0001.  

Analysis of diastolic pressure versus PWV showed a significant positive relationship 

with R2 = 0.85 and P < 0.01, consistent with prior studies [7,14-16,27]. Multivariable 

ANOVA also shows there is a significant positive relationship for both systolic pressure 

and flow to PWV, p < 0.01. 
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Figure 6.4. PWVf measured at the finger improves blood pressure prediction. Error bars represent the 

standard deviation for PWV calculated from the referenced TT measurement [15] and uncertainty in 

measures required for calculation of flow velocity. For all figures, the systolic pressure is represented by a 

circle, and the diastolic pressure is represented by a square. The left side includes SBP only; the right 

side includes both pressures (SBP and DBP). a) PWV uncorrected for flow across measured SBP. 

Salbutamol (SAL) was the farthest of any other measure from the trend line. b) PWV corrected for flow 

velocity improves the correlation with SBP alone. c) The lowest correlation was observed with PWV 

uncorrected for flow across measured pressures. d) PWV corrected for flow velocity improves the overall 

correlation across all pressures. Analysis of diastolic pressure versus PWV (data not shown) produced 

R2 = 0.85. 
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6.4.3 Flow-corrected PWV provides the most robust correlation with blood pressure 

It has been previously reported that the rPTT provides a stronger correlation with 

SBP [15], while PWV provides a stronger correlation with DBP [15,16].  
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Table 6.4. Linear correlation for rPTT, PWV, PWVf with pressure (SBP, DBP). 

 Payne 
R2 

Ochiai 
R2 

Note 

rPTT to SBP 

SBP 

0.39 0.59 NA 

PWV to DBP 

134 

0.85 0.92 NA 

PWV to SBP 

134 

0.34 0.81 No flow correction 

PWVf to SBP 

122 to 

0.88 0.92 Flow correction 

PWV to Pressure 

141 

0.05 0.51 No flow correction 

PWVf to Pressure 

164 

0.70 0.75 Flow correction 

 

As shown in Table 6.4, there was a good correlation between PWV and DBP for both 

Payne et al. and Ochiai et al. (R2 = 0.92, 0.85 respectively). However, using our PWVf 

produced the highest coefficient of determination when compared with both PWV 

uncorrected for flow and rPTT. It is interesting to note that Payne et al.’s peripherally 

measured PWV to SBP data had the lowest R2, which may be due to the influence of 

peripheral muscular arteries versus the elastic nature of the aorta. 
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6.5 Discussion 

 The main novel contribution of the present study is the introduction of a PWVf 

that improves correlation with blood pressure over both uncorrected PWV and rPTT. For 

diastolic pressure prediction, PWV measured at the foot, near the diastolic point, should 

be used. PWVf calculated using equation (6.5) allows correlation of PWV with SBP, with 

time point measurement at the diastolic foot of the waveform, a robust measurement 

point.  

It has been observed in some papers that rPTT has a stronger correlation with 

systolic pressure than PWV [15,16]. We believe this correlation occurs because of the 

PEP component of rPTT. PEP accounts for a substantial and variable portion of rPTT, 

ranging from 12 to 35% [15] and has been shown to inversely correlate with contractility 

[27]. It is likely that the observed relationship between SBP and rPTT is due to this 

embedded measure of contractility. For example, exercise results in increased SBP, 

increased contractility, and decrease in PEP, driving an associated increase in flow 

velocity that in turn increases PWV. The result is a two-fold influence on rPTT: a 

decrease due to reduced PEP and shorter transit time. It was found that rPTT had an 

inverse linear correlation with SBP (combined average across all subjects and drugs) 

for Payne et al. and Ochiai et al. as R2 = 0.39, and R2 = 0.59, respectively. We found 

that based on equation (6.5), using flow-corrected PWV produces an R2 = 0.88 and 

R2 = 0.92, respectively (Payne et al., Ochiai et al.). This approach offers the strongest fit 

of all the permutations considered, as seen in Table 6.4.  
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In this work, equation (6.6) is used as an estimate of peak flow velocity. In other 

work, aortic peak flow has been found to be ~2 times average aortic flow [29]. Using this 

alternate estimate of peak flow, our R2 results improved from 0.7 to 0.87 and 0.75 to 

0.85 for the Payne et al. and Ochiai et al. data, respectively. These results are 

consistent with historic literature in which peak volumetric flow in relation to the aortic 

pressure is most closely associated with the forward-moving systolic peak pressure 

wave [25-27]. For a continuous estimation of SBP, a flow-based measure is required. 

An estimate is possible using a head ballistocardiogram [35] or by using a percentage of 

PWV [37].  

Prior studies have recognized that compensating measured PWV with LVET may 

be important [6,19].  Salvi et al. and Nurnberger et al. found that a change in ejection 

time of ~40 ms (~12%) caused a change in PWV of ~1 m/s (~17%) [6,19]. Salvi et al. 

[19] performed a large population study to explore the link between PWV and LVET. An 

inverse linear association was found between PWV and LVET at all ages (R2=0.35, 

p < 0.0001) [19]. Nurenberger considered all hemodynamic parameters (except flow 

velocity) and found that at rest, only DBP and LVET correlated with PWV. In our 

previous work [18], we showed that increased flow velocity was responsible for the 

increase in PWV under conditions of decreasing LVET and fixed ejection volume. PWV 

was substantially affected by flow velocity (~10%) and peak pressure (~2%) changes 

controlled by ejection time. As represented in equation (6.5), PWVf is affected by both 

flow and the physical properties of the aorta as represented by the correction 

coefficient. At diastolic pressure when flow is close to zero, PWV is dominated by the 

physical anisotropic properties of the aorta. At systolic pressure, the pulse wave velocity 
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is also affected by flow velocity. To estimate the impact of uncertainty of the input data 

upon PWVf, we performed a sensitivity analysis using a variation of +/-10% for each of 

the following datasets: C0, LVET, and CSA. We have found that the R2 varied from 

0.73-0.76 for the Ochiai et al. dataset and from 0.64-0.73 for the Payne et al. dataset. 

Building on this work, we have developed per patient calibration to allow for the 

prediction of blood pressure. For this analysis, all data is based on measures taken on a 

middle-aged, healthy male, in our laboratory. The measured aortic length of ~ 0.6 m 

was used to calculate PWV from the transit time measures. The first step extracts 

material characteristics for an artery, using a calibration step that provides at least three 

values each for blood pressure, internal radius, and wall thickness of an arterial 

segment. It is assumed that wall thickness is a constant, with minimal change between 

systolic and diastolic pressure. Ultrasound is used to measure the aortic diameter with 

an observed variance of (±0.8𝑚𝑚). This results in a per patient blood pressure, transit 

time calibration curve as shown in Figure 6.5 with an observed variance in the measure 

leading to a maximum uncertainty of ~1.8%.  

 

Figure 6.5. The patient’s transit time calibration curve created by the fully nonlinear thick wall model 

described in Chapter 5, using the noninvasive extraction of the aortic material characteristics from the 

ultrasound aortic radial measures and the cuff-based blood pressure measures. 
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Using the calibration curve, the accuracy required to meet the Association for the 

Advancement of Medical Instrumentation (AAMI) standard is analyzed. AAMI stipulates 

that the mean difference between the test device and the standard shall be less than or 

equal to 5 mmHg with a standard deviation of less than or equal to 8 mmHg [40]. The 

transit time accuracy required to achieve the AAMI standard of ±5 𝑚𝑚𝐻𝑔 is shown in 

Figure 6.6. In the range of normal diastolic pressure (80 𝑚𝑚𝐻𝑔 ± 5 𝑚𝑚𝐻𝑔), an  

 

Figure 6.6. The transit time accuracy required to achieve the AAMI blood pressure standard ±5 𝑚𝑚𝐻𝑔. 

An accuracy of 9.8 ms is required for a diastolic pressure of 80 mmHg. For a systolic pressure of 120 

mmHg, an accuracy of ~5.1 ms is required. In conditions of hypertension, for a systolic pressure of 200 

mmHg, an accuracy ~2.0 ms is required. 

associated transit time measure of 117 ms (PWV of 5.1 m/s) with an accuracy of ~9.8 

ms is required, as summarized in Table 6.5. For systolic pressure (120 𝑚𝑚𝐻𝑔 ±

5𝑚𝑚𝐻𝑔), where the slope of the calibration curve is more gradual, an associated transit 

time measure of 88.6 ms (PWV of 6.7 m/s) with an accuracy of ~5.1 ms is required. 
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Table 6.5. The transit time accuracy required to meet the AAMI standard. 

Pressure 
[mmHg] 

TT 
[ms] 

PWV 
[m/s] 

Accuracy 
[ms] 

80 

SBP 

117 5.1 9.8 

120 

134 

88 6.7 5.1 

 

A measured PWV includes both the pressure-dependent PWV term, represented 

by the calibrated model, and an additive flow velocity component. This flow velocity can 

be estimated as a percentage (~20%) of PWV [37]. Using the calibrated model, at 120 

mmHg  the associated PWV is ~6.7 m/s. This results in an estimated flow velocity of 1.3 

m/s. The slope of the calibration curve at a systolic pressure point is 0.04 (m/s)/mmHg. 

Thus, in this example, ignoring flow velocity leads to an underestimate of systolic blood 

pressure by ~32 mmHg  for both normal and hypertensive conditions. 

Data for LVET was not presented in either the Ochiai et al. or Payne et al. 

studies. We recognize that under varying physiological conditions, this ratio is not 

always fixed. However, a conservative fixed ratio of PEP/LVET=0.33 was used for all 

drugs and baseline [27,28]. To analyze the effect of a true measure of this ratio, 

salbutamol was considered, since it produced one of the largest changes in PEP (~ -

65 ms from the average baseline, Table 6.3). Burgess et al. found a maximal decrease 

in 𝑃𝐸𝑃 𝐿𝑉𝐸𝑇⁄  of 0.070 that lasted for ~30 mins for salbutamol via a nebulizer (2.35 mg) 

[32]. When we decreased the PEP/LVET ratio by this amount down to 0.27 (a 20% 

reduction) for the salbutamol data, the SBP to PWVf R2 value improved to 0.92 from the 

previously reported 0.88. It can be seen that salbutamol has the biggest impact on the 

uncorrected R2 value in Figure 6.4a (SAL). Since salbutamol increases cardiac output 
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and decreases the PEP/LVET ratio, it causes the largest flow increase from the 

baseline. 

The aortic PWV measure offered higher correlation than PWV measures at the 

periphery. Prior studies have found a ~20% increase in PWV when measured in the 

periphery (femoral-ankle) versus central measures (carotid-femoral) caused by changes 

in arterial radius, thickness, and modulus of elasticity [37,38]. The correlation difference 

is likely caused by drugs that affect elastic arteries differently than the muscular arteries 

[17]. Nitroglycerin, for example, produces a peripheral vascular effect by relaxing the 

smooth muscle. This insight supports the view that noninvasive sensors should be 

placed in as close proximity to an elastic artery as possible for PWV measures to avoid 

the modulation of PWV possible in the muscular arteries. 

In this work, the correction coefficient was set to unity since the required 

measurements were not recorded in the referenced papers [15,16]. We recognize the 

physical properties of the aorta at SBP are different (less compliant) than those at DBP, 

causing a faster-moving pressure wave. To estimate the impact of the correction 

coefficient, referenced values [27] for both a canine and a human were substituted into 

equation (6.5). The pressure to PWVf R2 values improved from 0.70 to 0.92 and 0.75 to 

0.94 for the Payne et al. and Ochiai et al. datasets, respectively. It is possible for future 

studies to perform per patient calibration as shown by equation (6.5) and to measure 

the required aortic wall information using ultrasound. A PWVf can then be calculated 

from a foot-based PWV measure that is free from errors induced by reflected waves 

[25,26]. Additional studies are required to determine the advantage of this estimate and 

the associated improvement in SBP prediction.  



 158 

Flow-corrected PWV significantly improves PWV correlation with SBP, which is 

important for continuous cuff-less blood pressure measures. Uncorrected data could 

potentially lead to unneeded treatments. For a single person tested in our laboratory, it 

was found that ignoring flow velocity leads to an underestimate of systolic blood 

pressure by~32 mmHg  for both normal and hypertensive conditions. A key limitation of 

this study is the lack of published data that includes both flow velocity and PWV. 

Additional studies are required that explicitly measure aortic flow velocity along with 

PWV and vessel characteristics across a broad age range, under varying physiological 

conditions. 
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6.6 Conclusion 

Accounting for the flow contribution to PWV based on the fundamental physics of 

wave propagation in nonlinear elastic arteries improves blood pressure prediction. It 

was found that flow-corrected PWV correlates with SBP better than both uncorrected 

PWV and rPTT, based on analysis of prior published studies with pharmaceutically 

induced blood pressure shifts. We found that using peak flow velocity to correct PWV 

produces robust blood pressure to PWVf correlation for peripheral (R2 = 0.70) and aortic 

(R2 = 0.75) PWV measurements across the full range of physiologic pressure. Flow 

correction of PWV unifies the correlation curves, enabling both SBP and DBP to be 

associated with the same physical PWV measure. 
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Chapter 7: Conclusions and Future Work 

Study hard what interests you most, in the most undisciplined, irreverent and original manner possible.     

- Richard Feynman, Physicist and Bongo player 
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7.1 Summary of Contributions 

 The overriding goal of this work was to create a continuous noninvasive blood 

pressure system. PWV and ECG are two of the physiological signals required. While 

today’s wearables have integrated photoplethysmography as a way to measure heart 

rate, they have yet to extend and combine the necessary measures to extract PWV. 

Companies like AlivCor have created smartphone sensors that enable ECG 

measurement; however, the sensors are not yet in a wearable form. In addition to these 

measures, a measure of pre-ejection period and flow are required. Multiple approaches 

show promise, such as the ballistocardiogram (BCG), impedance plethysmography, 

inductive sensing, RF techniques such as dual-antenna nanosecond pulse near-field 

sensing (NPNS), and micro-ultrasound sensors. As of this writing, none of these 

techniques have been in a wearable form factor and validated across various 

physiological states against a gold standard (Doppler ultrasound). The combination of 

ECG, PWV, and flow measures is required in a wearable microsystem to allow for cuff- 

less continuous non-invasive blood pressure monitoring. To provide the missing insights 

in this area, we developed and validated a series of three models, each incorporating 

additional complexities and nonlinearities of the arterial system.  

The first model, presented in Chapter 3, was a one-dimensional nonlinear model 

for pressure wave propagation in a compliant tube with a linear elastic wall filled with an 

incompressible fluid. It was recognized in a number of clinical studies that both pressure 

and LVET affected PWV. Using our first model and a physiologically based 

electromechanical hemodynamic simulator, we studied this effect. The results indicate 

an inverse quadratic relationship between ejection time and PWV, with ejection time 
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dominating the PWV shifts, over those observed with changes in peak pressure. The 

key insight provided by the model is that PWV is a superposition of flow velocity and a 

pressure-dependent term as seen in equation (3.16). Flow velocity can dominate the 

change in PWV under physiological conditions that cause a large change, such as 

digestion. In our study, PWV was substantially affected by average flow velocity (~10%) 

changes controlled within the physiological range of LVET. To a lesser extent, PWV 

was affected by peak pressure changes alone (~2%). 

The second model, presented in Chapter 4, predicted the general relationship 

between PWV and BP with a rigorous account of nonlinearities in the fluid dynamics 

model, blood vessel elasticity, and finite dynamic deformation of a membrane type thin 

anisotropic wall. Pulse wave propagation in a compliant arterial segment is presented 

within the framework of pseudoelastic deformation of biological tissue undergoing finite 

deformation in thin-walled arterial segments. An essential ingredient is the dependence 

of results on nonlinear aspects of the model: convective fluid phenomena, hyperelastic 

constitutive relation, large deformation, and a longitudinal pre-stress load. An exact 

analytical solution for PWV is presented as a function of pressure, flow, and 

pseudoelastic orthotropic parameters. The key insight was that the entirely nonlinear 

model achieves the best match with the experimental data. To retrieve individual 

vascular information of a patient, the inverse problem of hemodynamics is presented, 

calculating local orthotropic hyperelastic properties of the arterial wall. The proposed 

technique can be used for non-invasive assessment of arterial elastance and blood 

pressure using direct measurement of PWV, accounting for hyperelastic orthotropic 

properties. This critical finding creates a non-invasive aortic calibration by using the 
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(pressure, PWV) curve to extract the associated material properties of the vessel 

(𝑐,  𝑎11,  𝑎12,  𝑎22). A similar calibration technique is also possible by measuring pressure 

and the corresponding change in aortic radius. 

The final model, presented in Chapter 5, examined the impact of the thick arterial 

wall made up of three layers (intima, media, and adventitia) with different material 

properties in the radial direction. We examine the accuracy of PWV prediction based on 

a traditional homogeneous structural model for thin-walled arterial segments. In reality, 

arteries are described as composite heterogeneous hyperelastic structures, where the 

thickness dimension cannot be considered small compared to the cross-section size. 

The dependence of PWV on pressure for three vessels of different thicknesses is 

compared against that of a traditional thin wall model of a membrane shell interacting 

with an incompressible fluid. The key insight was that a single thick layer model is 

sufficient to predict PWV of an arterial segment and provides improved accuracy over 

the thin wall model. For a hypertensive subject, the thick wall model provides improved 

accuracy up to 8.4% in PWV prediction over its thin wall counterpart. This translates to 

nearly 20% improvement in blood pressure prediction based on a PWV measure. 
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In the linear and fully nonlinear model, flow velocity is additive to the classic 

pressure wave, as estimated by arterial material properties. This suggests that flow 

velocity correction may be important for cuff-less, non-invasive blood pressure 

measures. In Chapter 6, we examined the impact of systolic flow correction of a 

measure of PWV on systolic blood pressure prediction accuracy using data from two 

published in vivo studies. Both studies examined the relationship between PWV and 

blood pressure under pharmacological manipulation, one in mongrel dogs and the other 

in healthy adult males. Systolic flow correction of the measured PWV improves the R2 

correlation to systolic blood pressure from 0.81 to 0.92 for the mongrel dog study, and 

from 0.34 to 0.88 for the human subjects study. The key insight is the introduction of a 

flow-corrected PWV that improves correlation with systolic blood pressure over 

uncorrected PWV. For diastolic pressure prediction, PWV measured at the foot should 

be used. Flow-corrected PWV calculated using equation (6.5) allows correlation of PWV 

with SBP, with time point measurement at the diastolic foot of the waveform, a robust 

measurement point. 
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7.2 Future Work 

 The overriding goal of this work is to create a continuous noninvasive blood 

pressure system. While we have successfully advanced the science in this area, there 

are still exciting areas in which to work to achieve a truly wearable device with accurate 

calibration across all physiological states.  

 In the first linear model, we created and validated a model that shows that flow is 

additive to PWV and critical for SBP prediction. There are multiple approaches that 

show promise, such as the ballistocardiogram (BCG), impedance plethysmography 

(IPG), inductive sensing, RF techniques such as dual-antenna nanosecond pulse near-

field sensing (NPNS), and micro-ultrasound sensors. As of this writing, none have been 

created in a wearable form factor and validated across various physiological states 

against a gold standard (Doppler ultrasound).   

 To create the complete microsystem capable of continuous monitoring of blood 

pressure, it is critical to accurately sense ECG, PEP, transit time, and aortic flow. ECG 

sensors are now commonly worn on the chest. Companies like MC10 have created 

systems that communicate the raw signal via Bluetooth low energy to handheld devices. 

Wrist-worn measures are also possible by having an electrode on the left wrist and 

touching the top plate electrode with one’s right finger. Companies like AliveCor have 

demonstrated this technology on a handset. The final location that is ideal for a 

wearable is an ear-worn ECG [1]. This location is relatively free of motion artifacts and 

is ideal for BCG and PPG. 
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 BCG is considered a noninvasive method to determine both aortic valve opening 

and stroke volume [1,2]. PEP is extracted as the time from the ECG R-wave to the J-

wave of the BCG signal. Significant research is still required to understand this measure 

over various physiological states. Stroke volume can be estimated from the J-wave 

amplitude. A linearly proportional relationship between J-wave amplitudes and stroke 

volume is observed because the BCG recoil is directly related to the mass (or volume) 

of the pumped blood [1]. Stroke volume coupled with aortic radius and LVET would 

allow for flow velocity estimation. 

 A transit time measure is typically done from the aortic valve opening to a distal 

point on the body using a PPG sensor. He et al. successfully demonstrated an ear- 

mounted system that combined ECG, BCG, and PPG [1]. This approach allowed the 

extraction of transit time from the BCG J-wave to the foot of the PPG signal. Sola et al. 

have also demonstrated a transit time measure on the chest [3]. They used IPG to 

detect the aortic valve opening and a PPG sensor located at the aortic arch and 

brachiocephalic branch point.  

 The challenge is to develop a microsystem that can integrate the sensors and 

algorithms into a single device or devices that are accurate, discrete, and wearable. The 

location and system will depend heavily on the use case and frequency required for 

sampling the sensors. The system will then need to be refined and validated across 

numerous IRB studies.   

 For the first time in our history, wearable devices are collecting meaningful 

physiological data and digitally storing them to the Cloud. Our work has provided the 
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theoretical framework that may enable cuff-less noninvasive blood pressure (CNIBP) 

monitoring. This advancement is exciting because information like heart rate, ECG, 

CNIBP, activity level, and weight are continuously being stored for many people. The list 

of clinically meaningful and wearable sensors is constantly growing and improving. The 

ability to use this information for data mining, and look for health trends, I believe, will 

lead to medical breakthroughs never before possible. It is my hope that this will truly 

democratize medicine. 
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Social and Scientific Value 

 Hypertension is an important risk factor for cardiovascular diseases, such as 

cardiac failure, stroke and coronary artery disease. The incidence of hypertension in the 

United States was about 31% according to the NHANES data from 1999-2000.1 The 

increase in prevalence beyond the expected rate is likely related to increasing incidence 

of obesity and the aging of the population.1,2  The number of persons with hypertension 

worldwide was 972 million in 2000 and is anticipated to increase to 1.56 billion by the 

year 20253.  

Adding to the burden of hypertension further are factors that confound office 

blood pressure readings, the data on which physicians mostly rely for making treatment 

decisions. White coat hypertension, where the office blood pressure readings are higher 

than ambulatory readings, is present in nearly 21% of the population.4 Though overall, 

white coat hypertension causes less morbidity than sustained hypertension, it still needs 

to be treated, and may result in excess medication usage, given the erroneously high 

office blood pressure readings.5 

Masked hypertension is a relatively new entity, where office blood pressure 

readings are deceptively low and ambulatory blood pressure readings are high. The 

incidence of masked hypertension is about 19% among adults when determined using 

self or ambulatory blood pressure readings. Their cardiovascular risk seems 

comparable to patients with recognized hypertension.6   Failure to recognize the 

presence of masked hypertension may result in delayed diagnosis of hypertension 

and/or hypertension that is inadequately treated.  



 175 

 

The gold standard for blood pressure measurement is the intra arterial 

measurement of blood pressure, whose invasive nature renders it impractical for routine 

use. The invention of aneroid sphygmomanometers has facilitated repetitive blood 

pressure measurements in ambulatory and outpatient settings. The current 

recommendation with this machine, is to check blood pressure in the same arm 

repeated at least twice, with additional readings if the difference is 5 mmHg or greater. 

Blood pressure readings are influenced by the condition of the machine and operator 

characteristics such as, but not limited to, proper method, end-digit preference and 

selective recording of desirable readings.7   Optimal recording of blood pressure as 

described above is less often practiced than desired, given the time constraints of 

modern medical practice. A study in 2006 showed that aneroid blood readings were 

inaccurate when compared to intra arterial blood pressure readings performed at the 

same time, regardless of BMI.8 An automated and more accurate method of blood 

pressure measurement that eliminates operator introduced error in measurement, and 

can be office based and ambulatory can potentially enhance treatment of hypertension. 

There is a growing body of research on non-invasive, continuous blood pressure 

(BP) monitoring techniques that do not rely on an occlusive cuff.  These techniques 

include external pressure sensors, near infrared imaging, ultrasound, and 

photoplethysmography (PPG).  While all these methods have limitations, the 

photoplethysmographic (PPG) technique offers the greatest potential for true continuous 

monitoring of BP in a form that facilitates unrestricted ambulatory movement.  The small 
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form factor is less cumbersome to carry, and facilitates use in outpatient and ambulatory 

settings.  However, accuracy and calibration remain an issue.   

Historically, the methods that used PPG for blood pressure measurement relied 

on the relationship between pressure and pulse wave velocity in the arteries. 

Frequently, the time period between the R-wave of an EKG recording and arrival of the 

resultant pulse at a peripheral point obtained via PPG are recorded.  Based on this 

data, pulse wave velocity is calculated, and DBP and SBP are derived using a 

regression equation. The results from this approach show modest correlation to systolic 

blood pressure (SBP) but correlate poorly with diastolic blood pressure (DBP)9.   

It is hypothesized that this is due to  

1. Difference in vascular compliance through out the vascular tree especially when 

using blood vessels of different caliber and physical characteristics 

2. use of a single transit time measurement for determination of both SBP and DBP 

which are influenced and are dependent on different factors 

3. and the inclusion of pre-ejection period (PEP) in the transit time calculation while this 

period precedes pulse transmission into the arteries.  Since the fundamental equations 

are based on pulse wave velocity in the arteries, inclusion of PEP represents an error 

term.   

An alternate approach utilizes two PPG measurements on a single artery (most 

commonly the radial artery). However, variable sensor coupling impacts the shape of 

the waveform there by making consistent measurement of time difference difficult.   
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The proposed work will examine two approaches to mitigate the challenges described 

above with non-invasive sensors.  Data will be simultaneously collected for both 

approaches with occlusive-cuff BP measurements collected for comparison. 

Approach 1:  The Electrocardiogram (EKG), phonocardiogram (recording of heart 

sounds), and ear PPG will be used to allow determination of PEP and the true transit 

time.  This true transit time will be correlated with DBP, while SBP will be correlated with 

PEP. 

Approach 2:  PPG signals will be measured on both ears, and waveforms recorded. 

The time difference between arrivals of the foot of the waveform at both ears will be 

correlated to DBP; and the time difference between the arrivals of the peak of the 

waveform at both ears will be correlated to SBP.  This approach fundamentally relies on 

the fact that from the origin of the right brachiocephalic artery, the distance to left ear 

(via the aortic arch, left common carotid and then left external carotid arteries) is greater 

than the distance to right ear from the heart (via the brachiocephalic and right common 

carotid and then external carotid arteries) which then results in differences in pulse 

transit time, assuming the pulse velocity is the same in both branches.  Since the pulse 

wave velocity is related to arterial elasticity, which in turn is correlated with pressure in 

the system, the time differences at the foot and peak of the PPG waveforms can be 

used to estimate DBP and SBP respectively.  It may allow for beat to beat pressure 

readings to be accurately recorded. 
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During both approaches, participants will be asked to assume different positions, and 

recordings using the sphygmomanometer and PPG based method will be obtained in all 

these positions. The positions include—supine, head of bed elevated at 45 degrees, 

sitting and standing.  

Public Dissemination of Trial Results 

 The results may be disseminated in summary form through conferences and/or 

journal publications. 

Objective of the Study 

 This study will provide adequate data from a clinical population for preliminary 

validation of the two approaches described above.  Subsequent work will involve 

development of a microelectrode based system with wireless sensor nodes for non-

invasive, continuous, ambulatory monitoring of blood pressure without the use of an 

occlusive cuff.   

Outcomes   

 Study results will be compared to blood pressure measures obtained with an 

aneroid sphygmomanometer and/or intra arterial measurements when available.  BP 

accuracy will be compared against the Association for the Advancement of Medical 

Instrumentation (AAMI) standards for noninvasive arterial blood pressure measurement 

(maximal mean difference and standard deviation from at least 85 patients should not 

exceed 5±8 mmHg from a reference method). 

Sample Size 
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Sample size was chosen to provide a reasonably large dataset for testing the current 

concept, as this is a pilot study, meant to calibrate the PPG based device. The sample 

size is not driven by statistics, as there is no base line data available to estimate 

variance. 

We expect to have 3 groups of 50 participants each. 

Group I: To be recruited from an outpatient setting from the Rochester General Health 

System (RGHS). 

Group II: To be recruited from those scheduled for a cardiac stress test either at 

inpatient or outpatient units belonging to the RGHS. 

Group III: To be recruited from those scheduled to have a coronary angiogram at the 

Rochester General Hospital. 

Randomization – Sequence Generation 

No randomization is required.   

Randomization – Allocation Concealment 

No randomization is required. 

Randomization Implementation 

No randomization is required. 

Blinding 

Blinding is not applicable to this study. 
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Statistical Methods 

Group comparisons are not planned at this time since this is not the aim of the proposed 

study. 

Fair Subject Selection – Recruitment of Participants 

Participants will be recruited from outpatient or inpatient settings belonging to RGHS. 

Exclusion criteria 

Less than 18 years of age,  pregnancy, severe cardiac disease, severe COPD, severe 

peripheral vascular disease, inability to tolerate change in position as described above, 

inability to follow instructions in English, impaired cognitive or functional status.   

Favorable Risk-Benefit Ratio – Interventions Offering the Prospect of Health 
Related Benefit 

Participants receive no direct benefit from participating in the study.  But, an easier and  

accurate method of blood pressure measurement method may result in better BP 

control and resultant benefits accrue to society in general. 

Interventions Performed Solely to Answer the Research Questions 

1. Collection of EKG, phonocardiogram, two ear PPG, and cuff-based BP from 

individuals participating in the study in an out patient, non-stress test related 

setting.  This data may be obtained on two separate occasions, and in different 

body positions as mentioned earlier in the protocol. This data is required to test 

the proposed approach for non-invasive, cuff-less blood pressure monitoring. 

2. Collection of two ear PPG, EKG and phonocardiogram (wherever possible) data 

on patients undergoing cardiology stress testing.  This data is required to test the 

proposed approach for non-invasive, cuff-less blood pressure monitoring under 

exercise conditions. 
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3. Collection of two-ear PPG, EKG and phonocardiogram (wherever possible) data 

on patients undergoing cardiac catheterization procedures.  This data is required 

to test the proposed approach for non-invasive, cuff-less blood pressure 

monitoring. 

 

Clinical Balance 

There is no intervention performed as part of the study. 

Respect for Potential and Enrolled Subjects – Trial Monitoring Plan 

Not applicable, as the study involves only obtaining measurements and does not involve 

any intervention, medical or surgical. 

Communication of Protocol Changes and Trial Monitoring 

Not applicable, as the study involves only obtaining measurements and does not involve 

any intervention, medical or surgical. 
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Social and Scientific Value 

 Hypertension is an important risk factor for cardiovascular diseases, such as 

cardiac failure, stroke and coronary artery disease. The incidence of hypertension in the 

United States was about 31% according to the NHANES data from 1999-2000.1 The 

increase in prevalence beyond the expected rate is likely related to increasing incidence 

of obesity and the aging of the population.1,2  The number of persons with hypertension 

worldwide was 972 million in 2000 and is anticipated to increase to 1.56 billion by the 

year 20253.  

Adding to the burden of hypertension further are factors that confound office 

blood pressure readings, the data on which physicians mostly rely for making treatment 

decisions. White coat hypertension, where the office blood pressure readings are higher 

than ambulatory readings, is present in nearly 21% of the population.4 Though overall, 

white coat hypertension causes less morbidity than sustained hypertension, it still needs 

to be treated, and may result in excess medication usage, given the erroneously high 

office blood pressure readings.5 

Masked hypertension is a relatively new entity, where office blood pressure 

readings are deceptively low and ambulatory blood pressure readings are high. The 

incidence of masked hypertension is about 19% among adults when determined using 

self or ambulatory blood pressure readings. Their cardiovascular risk seems 

comparable to patients with recognized hypertension.6   Failure to recognize the 

presence of masked hypertension may result in delayed diagnosis of hypertension 

and/or hypertension that is inadequately treated.  
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The gold standard for blood pressure measurement is the intra arterial 

measurement of blood pressure, whose invasive nature renders it impractical for routine 

use. The invention of aneroid sphygmomanometers has facilitated repetitive blood 

pressure measurements in ambulatory and outpatient settings. The current 

recommendation with this machine, is to check blood pressure in the same arm 

repeated at least twice, with additional readings if the difference is 5 mmHg or greater. 

Blood pressure readings are influenced by the condition of the machine and operator 

characteristics such as, but not limited to, proper method, end-digit preference and 

selective recording of desirable readings.7   Optimal recording of blood pressure as 

described above is less often practiced than desired, given the time constraints of 

modern medical practice. A study in 2006 showed that aneroid blood readings were 

inaccurate when compared to intra arterial blood pressure readings performed at the 

same time, regardless of BMI.8 An automated and more accurate method of blood 

pressure measurement that eliminates operator introduced error in measurement, and 

can be office based and ambulatory can potentially enhance treatment of hypertension. 

There is a growing body of research on non-invasive, continuous blood pressure 

(BP) monitoring techniques that do not rely on an occlusive cuff.  These techniques 

include external pressure sensors, near infrared imaging, ultrasound, and 

photoplethysmography (PPG).  While all these methods have limitations, the 

photoplethysmographic (PPG) technique offers the greatest potential for true continuous 

monitoring of BP in a form that facilitates unrestricted ambulatory movement.  The small 



 186 

form factor is less cumbersome to carry, and facilitates use in outpatient and ambulatory 

settings.  However, accuracy and calibration remain an issue.   

Historically, the methods that used PPG for blood pressure measurement relied 

on the relationship between pressure and pulse wave velocity in the arteries. 

Frequently, the time period between the R-wave of an EKG recording and arrival of the 

resultant pulse at a peripheral point obtained via PPG are recorded.  Based on this 

data, pulse wave velocity is calculated, and DBP and SBP are derived using a 

regression equation. The results from this approach show modest correlation to systolic 

blood pressure (SBP) but correlate poorly with diastolic blood pressure (DBP)9.   

The proposed work will examine an approach to mitigate the challenges described 

above with non-invasive sensors.  Data will be collected necessary to measure BP 

using the new approach and compared with occlusive-cuff BP measurements. 

 

During this approach, participants will be asked to ride a stationary recumbent bicycle 

for 35 minutes with the difficulty level increased every 5 minutes for the first 25 minutes, 

followed by 2 cool down steps where the level is decreased. Recordings using the 

sphygmomanometer and PPG based method will be obtained each time after 3 minutes 

at a particular resistance level. The participants will remain on the stationary recumbent 

bicycle for the complete length of the test, approximately 45 minutes. Participants will be 

asked back to repeat the study in approximately 1 week. 
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Resistance level 1 feels like you are riding on a flat surface with no head wind. 

Resistance level 5 feels like you are riding up a moderate incline or into a 15-20 MPH 

head wind. Resistance levels 2-4 are linearly increasing in difficulty between these two 

extremes. In general it will cause your heart rate to increase, as it would during 

moderate aerobic exercise. You should be able to carry on a conversation at all of the 

levels of this testing. 

  

Public Dissemination of Trial Results 

 The results may be disseminated in summary form through conferences and/or 

journal publications. 

Objective of the Study 

 This study will provide adequate data from a clinical population for preliminary 

validation of the approach described above.  Subsequent work will involve development 

of a microelectrode based system with wireless sensor nodes for non-invasive, 

continuous, ambulatory monitoring of blood pressure without the use of an occlusive 

cuff. 

Outcomes   

 Study results will be compared to blood pressure measures obtained with an 

aneroid sphygmomanometer.  BP accuracy will be compared against the Association for 

the Advancement of Medical Instrumentation (AAMI) standards for noninvasive arterial 

blood pressure measurement (maximal mean difference and standard deviation from at 

least 85 patients should not exceed 5±8 mmHg from a reference method). 
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Sample Size 

Sample size was chosen to provide a reasonably large dataset for testing the current 

concept, as this is a pilot study, meant to calibrate the PPG based device. The sample 

size is not driven by statistics, as there is no base line data available to estimate 

variance. We expect to have 1 group of 30 participants. Group I: To be recruited from 

Rochester Institute of Technology students or faculty. (RIT).   

Randomization – Sequence Generation 

No randomization is required.   

Randomization – Allocation Concealment 

No randomization is required. 

Randomization Implementation 

No randomization is required. 

Blinding 

Blinding is not applicable to this study. 

Statistical Methods 

Group comparisons are not planned at this time since this is not the aim of the proposed 

study. 
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Fair Subject Selection – Recruitment of Participants 

Participants will be recruited from students or faculty on the Rochester Institute of 

Technology Campus  

Exclusion criteria 

Less than 18 years of age,  pregnancy, severe cardiac disease, severe COPD, severe 

peripheral vascular disease, inability to tolerate change in position as described above, 

inability to follow instructions in English, impaired cognitive or functional status.   

Favorable Risk-Benefit Ratio – Interventions Offering the Prospect of Health 
Related Benefit 

Participants receive no direct benefit from participating in the study.  But, an easier and  

accurate method of blood pressure measurement method may result in better BP 

control and resultant benefits accrue to society in general. 

Interventions Performed Solely to Answer the Research Questions 

4. Collection of EKG, phonocardiogram, two ear PPG, and cuff-based BP from 

individuals participating in the study in an out patient, non-stress test related 

setting.  This data may be obtained on two separate occasions, and in different 

body positions as mentioned earlier in the protocol. This data is required to test 

the proposed approach for non-invasive, cuff-less blood pressure monitoring. 

Clinical Balance 

There is no intervention performed as part of the study. 
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Respect for Potential and Enrolled Subjects – Trial Monitoring Plan 

Not applicable, as the study involves only obtaining measurements and does not involve 

any intervention, medical or surgical. 

Communication of Protocol Changes and Trial Monitoring 

Not applicable, as the study involves only obtaining measurements and does not involve 

any intervention, medical or surgical. 

Monitoring Equipment Approved for Use with Humans 

The biopac system will be used to measure PPG and ECG on the subjects. Biopac 

systems provided an EC declaration of conformity with the equipment. 
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