Rochester Institute of Technology

RIT Digital Institutional Repository

Theses

2-21-2014

Dictionary Attacks and Password Selection

Tarun Madiraju

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation
Madiraju, Tarun, "Dictionary Attacks and Password Selection" (2014). Thesis. Rochester Institute of
Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9351?utm_source=repository.rit.edu%2Ftheses%2F9351&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

R-I-T

Rochester Institute of Technology
B. Thomas Golisano College of

Computing and Information Sciences

Thesis Report

Dictionary Attacks and Password Selection

By

Tarun Madiraju

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science
Computing Security & Information Assurance

Department of Computing Security

Date: 02/21/2014

ABSTRACT

Passwords, particularly text-based, are the most common authentication mechanisms across all platforms
and services like computers, mobiles, web and network services. Existing password strength evaluators
and online service providers (Gmail, Yahoo, Paypal, Twitter, etc) password strength estimators determine
the effectiveness of passwords chosen by user based on entropy techniques or a similar function of the
parameters: length, complexity and predictability. Such implementations often ignore passwords part of
publicly available password dictionaries and password leaks which are often the primary choice for
malicious adversaries and particularly script kiddies. This paper presents an application that would help in
preventing the use of such passwords thereby reducing the impact of dictionary based password attacks
significantly. The application maintains a database of unique passwords by gathering publicly available
password dictionaries and passwords leaked over the Internet. The application provides users with an
interface to query the database and verify if their passwords are already available on the Internet thereby

preventing them from the use of such passwords.

List of Tables

Table 1: Password Strength Comparison

List of Figures

Figure 1: Building the Password Databaseccoiiiiiiiiiiiiiiiee e 9
Figure 2: Current Database SrUCTUIE.........eiiiiiiiiiireeee ettt e et e e s ee et ee e saaeeeeeeesneeennseessaeeennneeas 11
Figure 3: Future Database SrUCTUIEcooiiiiiiiiriiieniiie ettt ettt ettt ettt e s e e es 12
Figure 4: Web Application WOTKTIOWooiiiiiiiii it aeeeenenee s 13
Figure 5: Website - HOME PAZEocooiiiiiiieeiie et e aee e st e e na e e e e e ennee s 14
Figure 6: Website - ADOUL PAZE......ccouiiiiiiiiiiiiie et e 15
Figure 7: Website - StatiSticsS PAZe ...cc.cooiiiiiiiiiii e 16
Figure 8: Website - FAQ Page....cooiiiiiiieie ettt et e et e et e e snteeeenaaeeensaeeenneeenens 17
Figure 9: Website - Terms & CONAItIONScouiiiiiiiiiiieiiiie ettt ettt et e e seeeeeseeeeeeaessneeeenes 18
Figure 10: Website = CONtACT PAZEooouiiiiiie et et e et e e e e e eenaeeennsee s 19
Figure 11: Usage - Input Plaintext PASSWOTd.........coooiiiiiiiiiiiieiiiie et 20
Figure 12: Usage - Output PasswWord PreSENCEoo.uiiiiiiiiiiiriie ettt 20
Figure 13: Usage - Input Password Hash..........ccooiiiiiiiiii et 21
Figure 14: Usage - Output Password PreSENCEiovuiiriiieiiiiieiiieeeiie et ritee ettt et e e eieesivaeseeeeeas 21
Figure 15: Usage - INPUL PASSWOT ...c.ciiiiiiiiiiiiiiniie ettt ettt 22
Figure 16: Usage - Output When Password Not FOUNd.........ccoooiiiiiiii e 22

Table of Contents

ABSTRACT .ttt ettt sttt e s e st s ettt e et bt e bt s bt at e sat e e b e e sat e e e e entees i
DT o) A IF: Yo] OSSO \Y
LISE OF FIZUIES ..ottt b e et b ettt e a e s b e et et e bt et eeatenbeseteebe et e eatenieens v
INTRODUGCTION Lottt ettt ettt ettt ettt et e et e sateebeesaee e 1

2 LITERATURE REVIEW Lottt ettt ettt e st enae e st e st e eneeenseeennes 3
3 APPLICATION DETAILS .ottt ettt et sttt ettt e eeesbee s 7
3.1 F N o o] 1% 1 10) F PSSR 7
3.2 HeElPEr COMPONENTS.eiiiieiieiiiiiie ettt ettt ettt e e s te e e s e et e e e e abb e e e e e nbbeeeeansabeeeeanntneeeeas 7
33 WOTKINE 1eetiieeiieeeie ettt et et e st e e st e e bt e e e e e asteeeassee e staeeassaeesssaeessseeenseeassneesnnseeaasneesnsenennns 8
3.3.1 Building the password databaseoccoiiiiiiiiiiiiii e 8
332 APPLICAtion WOTKIIOW L.ocviiiiiiiciiie ettt et e et e e e tee e ereeesnseeesnnaee s 13

3.4 Application GUI & USAZE......ooouiiiiiiiiiiiiiieiieee ettt st 14
3.5 Application Deployment MOdEIScoiiiiiiiiiiieie e 23
3.5.1 ClOUA INSTANCE. ...ttt ettt ettt e e ee et e e et e e st e e sateeeteeesabaeeenaraeeean 23
3.5.2 VITTUAL MACKINE ..vevieieiiieeieeeetee ettt ettt se s aa e seeaesseesens 23
3.5.3 APTMOGEL .ttt ettt e b e sttt et 23
3.54 Database Only MOdel.......couiiiiiiiiie ettt 23

4 ST AT ST O S ettt e bt et e sttt et e st e et e e seeeente e beenbeesabeenbeesbeesmbeesbeesnteens 25
S FUTURE WORK L.ttt ettt e sttt et e bt e bt e beeeeeeeaee 28
6 CONCLUSION .ttt ettt b et e s ht e et e s et e bt e ansb e e st e e eabeanseeseeeaneeenseeeateeneeanseeaseeanses 29
T REFERENCES. .ottt ettt ettt et b e et e e n e se e et e e e naeesaeeeabeeanbeaneeenbeeanneenneens 30
I N o1 o< 1 16 1 OSSOSO 32
8.1 APPENAIX: SCIIPLS ettt ettt sttt sttt e st se e et e it e enneeteeeneenas 32
8.1.1 PassWOrd IMPOITEL ...oo.ciiiiiiiie ettt 32
8.1.2 Google Password Rating URL - Stats GeNerator.........cccccveeruveeeicvieeesieeesieeeenveeeeeeeeesenens 41
8.1.3 PasswordMeter.com - Stats GENETALOTcciieiiiiieiiiierie ettt 44
8.1.4 Password Database - Stats Generator (CommonDB)c...uuvviiieiiiieiiieiieeeeeeeeeeeeeee e 47
8.1.5 Crackstation Dictionary - Stats Generator (CrackstationDB)........c.cccoeeieviiiiiiiiieciieeie, S1
8.1.6 Harvester for Datalossdb........c.cooiiiiiiiiiiiiiieee e 52
8.1.7 Harvester fOr TWIttereeuiiiiieiiee ettt s 57
8.1.8 Harvester for SKUITSECUITLY ..c...oiiiiiie ettt 60

Vi

1 INTRODUCTION

Passwords are the primary choice for authenticating users and are likely to remain for a significant
amount of time in the future [1] [2] because of the practicality and convenience aspects associated with
them for service providers and end- users respectively. Qualys [3] identified password guessing attacks as
a top cyber security risk after analyzing attack data from TippingPoint intrusion prevention systems

deployed for protecting 6000 organizations.

A pre-known list of passwords is gathered together to form a password dictionary file. Dictionary attacks
leverage such password dictionaries and automate the attempt of breaking in to password-protected
applications and systems by trying each word/password listed in the password dictionary. Dictionary
based password cracking is easy to execute and almost every password cracking tool is bundled with a
pre-built dictionary thereby aiding script-kiddies in performing dictionary based password attacks.
Attackers build comprehensive password dictionaries by compiling passwords from various dictionaries

and password leaks.

Alexander Lystad analyzed password leaks from password attacks on Rockyou and phpBB [4]. and
observed that the percentage of unique passwords that can be cracked using common well-defined
dictionaries (like John-The-Ripper, Cain & Abel, etc) is 33.41% and 39.43% respectively. The analysis
indicates the necessity of enabling users to be aware of such passwords and thereby prevent them from
using those passwords. With passwords being the most common form of authentication and a critical
aspect of identifying users while providing necessary privacy. password based attacks and defense
systems are subjects of ongoing research.

The primary goal of this project is to build a database of unique passwords from publicly available
password dictionaries and passwords leaked over the internet, and implement an application that would

allow regular users and administrators to verify if their passwords are susceptible to dictionary attacks.

The remainder of this paper is organized as follows. Section 2 discusses the literature review which
details existing work in authentication mechanisms particularly passwords and dictionary attacks (their
detection, prevention and response systems). Section 3 details the design and implementation aspects of
the application developed. Section 4 presents statistics related to password dictionaries, leaks and attacks.

Section 5 and 6 discuss future work and conclusion respectively.

o

2 LITERATURE REVIEW

Linux pluggable authentication module (PAM) pam_cracklib [5] incorporates a similar approach to the
proposed as it is used to test passwords against dictionary words. The Linux pam_cracklib module allows
system administrators to incorporate strength checking for user passwords against a system dictionary
followed by a set of password policies [5]. The drawbacks of pam_cracklib module are poor
documentation, limited implementation (few *nix distributions) and that it is primarily aimed for use by

system administrators [6].

Saikat Chakrabarti and Mukesh Singhal present an analysis of existing dictionary attack prevention
techniques and their drawbacks. They discuss about encrypted key exchange based protocols for
protection against oftline dictionary attacks. For thwarting online dictionary attacks, they discuss account
lockout, delayed response, extra computations and Reverse Turing Tests (RTT) [7]. The Password-based
Encrypted Key Exchange (EKE) by Steven Bellovin and Michael Merritt incorporates a combination of
cryptographic schemes to prevent offline dictionary attacks but it was later observed that the EKE and
variants of EKE protocols are vulnerable to plain text equivalence which would allow an adversary to
masquerade as a victim by using his hashed password captured through eavesdropping [8] [9]. Delayed
responses and account locking are common countermeasures for online dictionary attacks as they reduce
the number of passwords that can be guessed in a given time and lock the user account after reaching a
threshold set for failed login attempts. However, as outlined by Pinkas et. al these countermeasures can
result in denial of service and increased customer service costs as a result of account locking. Further, an
attacker can try multiple login attempts in parallel with different user accounts to circumvent delayed
response and account lockout countermeasures [1]. The extra computation based technique involves the
inclusion of non- trivial computation in addition to providing the password. The idea of such a technique
is to incorporate a large overhead for password attack tools as it would require computation for every

login attempt thereby reducing the number of attempts significantly. The extra computation technique

might present usability issues for a legitimate user while an adversary can tackle the overhead by using a
powerful attack machine or environment [7]. Pinkas et al. use a similar approach by incorporating RTT
technique to prevent automated programs from carrying out dictionary attacks. In this approach, the user
needs to present his password and pass the RTT to ensure a successful login [1]. However, it was
observed by Stuart Stubblebine and Paul van Oorschot that the RTT-based implementation is prone to
RTT relay attacks [7]. Several real world RTTs (also called as CAPTCHAs which refer to Completely
Automated Public Turing test to tell Computers and Humans Apart) implemented by popular online

service providers have been broken in the past using computer character recognition based projects [10],

[11][12) [13).

Techniques for improving authentication or protection against password attacks in general range from
hardware based solutions, biometric authentication, client certificate mechanisms, graphical password
schemes, grid based logins, multi- factor authentication etc [1]. Pinkas et. al present a range of such
existing authentication mechanisms and drawbacks associated with them [1], which are discussed as
follows. The hardware and biometric based authentication solutions form a robust authentication
technique but also include a range of drawbacks like additional costs and overhead associated with the
need for additional devices and migration from traditional password based authentication. Additionally,
hardware based authentication solutions also involve usability issues as a result of losing or forgetting
device. Multi-factor authentication schemes often combine passwords (something you know) with
hardware (something you have) or biometric solutions (something you are) and hence demonstrate the
same drawbacks as of hardware and biometric solutions along with other convenience issues. Client
certificates is another solution that implements a software based authentication approach but include

drawbacks associated with key portability and storage.

There are a vast number of password strength evaluating applications available over the Internet that

assist users in determining the strength of the passwords chosen by them [14]. Examples for such

password evaluating applications are Password Strength Checker at passwordmeter.com [24], GeodSoft
Password Evaluator [15], GetSecurePassword [16], How Secure is My Password? [17], etc. Further,
almost every online service provider implements a password strength indicator to allow users to gauge the
strength of their password while setting up a new account or changing their existing password. Serge
Egelman et. al observed that password strength meters result in stronger password selection by users for
important accounts [18] but these online password strength determining tools and password strength
meters do not take publicly released passwords into consideration while determining the strength of user

chosen password.

The Online Domain Tools team analyzed common password strength evaluating tools available over the
Internet and noted that entropy and complexity are the primary strength determination parameters while
only a few tools considered dictionary attacks [14]. Online domain tools incorporate dictionary attack
based password strength determination application [19] on their website where they break down
passwords, observe the presence of regular dictionary words or parts of it, the presence of leetspeak and
other pattern analysis techniques but the application doesn’t consider publicly available passwords.
Online services like pwnedlist.com [20] and shouldichangemypasswordnow.com [21] obtain the user’s
email address and verify if their accounts have ever been compromised based on emails and passwords
gathered from password leaks over the internet. These services inform the user about the presence of their
passwords in public on the basis of their email address. The passwords from dictionaries and leaks that
are not associated with any emails are ignored by these services and hence do not prevent users from

using passwords already available on the Internet.

Another online project leakdb by Abusix states gathering leaked and publicly available human generated
hashes as its objective [22]. This project is similar to the concept demonstrated in this paper but it is
different from the application presented in this paper for the following reasons. The leakdb project

maintains a database of hashes available over the Internet. It takes a hashed value as input and reports the

corresponding clear text if it is present in the leakdb database. The project only stores cracked hashes in
the database thereby missing leaked hashes (available on the internet) that haven’t been cracked yet. Also,
it doesn’t consider passwords from common password dictionaries and passwords leaked in plain text
over the Internet. Further, querying uncracked hashes results in submission of such hashes to leakdb
password cracking feature without notifying the user about such an implementation prior to querying.
This presents a risk to the users as their password is added to the leakdb search database after being

cracked.

The various limitations in terms of costs, usability, awareness, etc. associated with alternate
authentication schemes often result in users sticking with the traditional password based authentication
schemes. These alternate authentication schemes and password attack defense systems require selection
of a regular password and an additional item (something you have/something you are). Dictionary attacks
can be tackled at the root level by aiding the users in selecting passwords that are relatively less prone to
dictionary attacks. In this paper, we demonstrate a technique that aims at equipping users with a
dictionary attack based password evaluation system thereby encouraging them to avoid publicly available

passwords and preventing them from being simple targets.

3 APPLICATION DETAILS

3.1 Application

The application built comprises of a user interface, a database and helper components. The database for
this application primarily contains schemas for each hash value supported by the application. These
schemas maintain the database of passwords gathered from various password leaks and dictionaries over
time. The database also has a submission schema that is responsible for maintaining database of user
input ranging from feedback to information about password leaks and dictionaries. The user interface is a
web application that provides a search bar in order to allow users to input passwords and query the
presence of their password in the password database. The helper components of the application are
responsible for working behind the scenes to facilitate gathering of password dictionary or leak sources
and import passwords into the password database. The web application was built on PHP backed by a
MySQL database. The helper components (importer, harvester and statster) were implemented in python.

The helper components are discussed next in this section.

3.2 Helper Components

1) Importer: The importer component of the application is responsible for obtaining passwords from a
file (password dictionary or password leak) and importing each password into the database. The user
passes the following parameters to the importer utility: FILENAME, FORMAT, FILETYPE, DATE and
URL. Passwords in the password dictionary or leak are typically in the same format - plaintext or a hash
type. This input type (plaintext or hash) of passwords is provided by the FORMAT parameter. The
FILETYPE parameter refers to the type of the password file and it is either of leak type or dictionary type.
The DATE parameter, as the name implies, refers to the date on which the security breach happened or
the date the passwords were released to public. The URL parameter can either be a media post about the

breach or the location where the password leak or dictionary are hosted.

2) Harvester: The harvester component of the application is responsible for searching and harvesting
information about password dictionaries, security breaches and password leaks. The harvester component
is a collection of scripts that generate an output file with URLs of potential password dictionaries,

password leaks or information associated with them.

3) Statster: Statster is a collection of scripts used for generating statistics outlined in Table 1. These
scripts calculate the total number of entries contributed by a leak or a dictionary to the database and the
crackability aspects. The crackability aspect for online service providers (like Google) or password
strength estimating websites (like passwordmeter.com) refer to the percentage of passwords (in a leak
tile) that were identified as weak by those online service providers or password strength estimating
websites while for a password database (built using leaks, dictionaries, etc) like the password database
built in this paper (referred to as CommonDB) and crackstation's password dictionary [25] (referred to as
CrackstationDB). Additional information about the statistics is provided in the statistics section of this
document. The scripts for calculating the crackability aspect for Google's password rating mechanism
[23], passwordmeter.com [24] and CommonDB were implemented in python while the utilities for
calculating crackability aspect for CrackstationDB were obtained from the crackstation-hashdb github
repository [26] and modified to our requirements. Additional information about the statistics is provided

in the statistics section of this document.

3.3 Working

The application working comprises of two processes: building the password database and the web
application for serving user queries.

3.3.1 Building the password database

The first step in the process of building the database involves gathering password dictionaries and leak
sources by the application maintainer. These sources are then inserted into the submission schema of the

database that also stores user feedback and details of password leak or dictionary sources submitted by

application users. These sources (typically URLs) are then verified manually in order to avoid potential

database poisoning by malicious users.

The verification process involves identifying at least 3 media posts relevant to each URL. Afier

verification, password files are downloaded from URLs obtained using harvester utility, user submission

and manual research. The importer utility is leveraged to upload passwords into the database. A database

schema is created for each new hash format. This way the database would have a collection of schemas

like md5, shal, etc. Passwords are uploaded to the specific schemas based on their hash type. If a leak or

a dictionary file has passwords in plaintext, they are converted to md5 hash and stored in mdS schema.

This is to ensure that the application works with hashed version the password only to prevent any

potential misuse.

Building the Password Database

INPUT

Manual
Research

[

Harvester
Output
(Souroe:
Harvester)

I

User
Submussions
(Source:
Web
Application)

DB INSERT

Insert URLs
gathered from
different
-8 sources into
the
Submission
Database

VERIFY

Verfy vahd
URLs
(Manual)

Research &
Identify
Pasword
Dictionary or
Leak file
location (If
not
provided)

DOWNLOAD DB UPLOAD

Convert
plaintext
passwords
Into Hash

Download
Password
Files
Upload
passwords
into

password
database

Figure 1: Building the Password Database

The application database has been designed considering the performance and scalability aspect. If a
password file has been identified with a hash format that does not have a corresponding schema yet, the
importer utility will create a schema for that hash format and subsequently all the leaks or dictionaries
that have passwords in this hash format will be uploaded to this schema as separate tables as opposed to
maintaining a single table for storing all the hashes. This way, for a specific hash input the respective hash
schema will be searched rather than searching the entire database. The same has been depicted using the
following two figures. Figure 2: Current database represents the current database while Figure 3: Future

Database refers to the database structure when different hash inputs are imported into the database.

ySQL Database

da

submetdictonary

submtt|

dict_john_10001010

dict_cain_10001010

_alypaa_20100301

leak_phpbb_20090101

rockyou 20091204

Figure 2: Current Database Structure

bk

tabi

tabk

11

cont

dalaba

MySQL Data

databa

sha1

sha224

daaba

database

submtdichonary

ubmitlea

ubnyfeedba

dict_john_10001010

dict_cain_10001010

lypaa_20100301

leak_phpbb_20090101

leak_rockyou_20091204

Figure 3: Future Database Structure

Aable

table

3.3.2 Application Workflow

The workflow of this application is similar to a standard web application workflow for a search operation.
Using our application, the user enters the password in a search bar and selects one of the two radio
buttons that are used to determine if user input is in plaintext format or in hashed format. On submission
of this search form, the PHP search script is fired on the server side that takes user’s input and converts it
into a hash if the input supplied is in plaintext format following which a search for that hash in the
database is initiated. If the user input is already in hash format, the input hash is searched directly in the
database without any hashing process. The application looks for user hash in specific database schema
based on hash format (for eg. if the user input is a shal hash, then the password is searched in shal
schema only) while on the other side if the user input was in plaintext, user input is converted into each
hash format supported by our application and searched in all hash schemas until the hash is found. The
final step of this process is alerting the user if the password hash was found in our database or not and
also informing them about the source (leak or dictionary name) in which the hash was found. The

application doesn’t store passwords inputted by user.

splay Resull
to User

Figure 4: Web Application Workflow

13

3.4 Application GUI & Usage

Website: Home Page

The home page of the web application presents a search bar for receiving user's password. Since,
passwords are in plain text or hash format we present the user with two radio buttons to present the
application with the type of input. In addition to the user input, the home page also focuses on providing
users with some important information about the application with the intention of encouraging them to

use this application.

. Statistics Terms & Conditions Contact
PasswordsinPublic
PasswordsinPublic
Plaintext Hash

Supported Input: Current More Information Updates

* Ciear text password ¢ What s a dictionary attack? * Nov 2013 Added myspace gassword leak

e MDS * How does this work? * Nov 2013. Added rockyou password leak

o Is it safe to enter my password here? Oct 2013 MDS hash rted

Supported Input: Future vpass ‘ asnes suppe

s SHA1

* SHA256 Are questions like these running in your mind?

Click on the button below and know more*

® PasswordsinPublic

Figure S: Website - Home Page

14

Website: About Page
The about page of the website is a simple page provides general background information about the most
common authenticating mechanism - passwords and the state of existing password strength estimation

utilities. The page also describes the goals of this project.

. FAQ Terms & Conditions ~ Contact
PasswordsinPublic

The Project

Almost all existing password strength evaluators and onhine semce prowders (Gmail, Yahoo mail. Paypal, Twitter etc) password strength estimators
determine the effectiveness of passwords chosen by user based on different entropy techniques or a similar function of the parameters length complexity
and unpredictability These techruques ofen ignore passwords part of publicly avalable password dictionanes and passwords leaked as a result of a
secunty breach These publicly released passwords are often the first choice in password attacks for a malicious adversaty and particularly scnpt-kiddies
This website is an attempt to minimize he use of such passwords thereby reducing the impact of dictionary attacks signficantly

Passwords are still the most common form of authenticating mechanism used to identify users and are likely to remain for a significant amount of time in
the future because of the practicality and convenience aspects associated with them for the semce prowders and end-users respectively A preknown list of
passwords are gathered together to form a password dictionary file Dictionary attacks leverage such password dictionaries and automate the attempt of
breaking into password-protected applications and systems by trying each word/password listed in the password dictionary Dictionary based password
cracking I1s easy to execute and almost every password cracking tool is bundled with a pre-built dictionary thereby aiding scnpt-kiddies in performing
dictionary based password attacks

The pnimary goal of this project I1s to bulld a database of unique passwords from language dictionanes publicly available password dictionanes and
passwords leaked over the intemet and allow regular users and administrators to verfy if their chosen passwords are susceptible to dictionary attacks that
use publicly released passwords

Figure 6: Website - About Page

Website: Statistics Page

The statistics page of the website provides various statistics associated with the observations of this
project. The statistics page presents the imported passwords statistics and the crackability statistics. The
imported passwords statistics list the source type (password leak or password dictionary) of an import and

the number of passwords imported using each file.

PasswordsinPublic o

Imported Passwords Statistics

Password Source Source Type Passwords Imported
Alypas Leakea *383
Cargers eakea 94
Euteracker —eaked 83"
Facebook Fastetay Walare Stoier Leakex

Facebook ®}'3hed . EaKec 497
Fa.tnrerters Leaxe: 2247
Hak® Leakea 218
WMySpace caxed 37744
=rpBE Lzakeg “84%8%
PorrilU~xrown S te Leaked 8028
Smgesz.0g 23kes 2222
Ut ateStr pC ud 2aKag 38820
Rockyo. —2axed “ 4344752
Johr C.ctiorary 0
Cam Drztorary 1000

€00 Worst Fazzaoras Ciztorary X3

Leaked Passwords in Database Statistics

Password Source

Passwords Found in Database {before Import}

Ayypaa hR1N
Carsers 68 &%
Eiteracker 88 2%
Facedpoox Fasteray Mamire Stoer 49.1%
Facebook Prsrez e e
Faithrat ters £5.8%
HakE 25

WySpase 0%

Prp3E 40.3%
SomUr«nowt S te AT
S ngees 0g e
UtimateStnpCist £1.8%.

Rockyou

Figure 7: Website - Statistics Page

Website: FAQ Page

The FAQ button on the first page and the FAQ tab present the below shown Frequently Asked Questions.
This page outlines basic information related to dictionary attack and additional information about the way
the application is built which includes handling user's password, password database updates and statistics.
The idea of the FAQ page is to provide transparency about the web application functioning and encourage

user's to try this application.

He bout ons Contact

PasswordsInPublic

Frequently Asked Questions

Here are some common questions and answers that should clear up your queries You can centact us for any other questions that havent been answered here

What is a dictionary attack?

A pre-known list of passwords are gathered together to form a password dictionary file. Dictionary attacks leverage such password dictionaries and automate the
attempt of breaking into password protected applications and systems by trymg each word/password ksted in the password dictionary. Dictionary tased password
crackmg 18 easy to execute and almest every password cracking tool 1s bundled with a pre-buikt dictionary thereby aiding script-kiddies in performing dictonary based
password attacks Attackers tuid comprehensive password dictionaries by compiling passwords from various dictionaries and password leaks

Why should | trust you?

This ste was estatlished towards a security research project that 1s aimed at aiding users in selecting passwords by preventing them from usng passwords that
are already available in the public (internet). You can read more about this project in our abcut section If you are interested to know more about the project, please
ccntac’ us with any questions or concerns

How do you handle our passwords?

The web application accepts two forms of mput: Plain text and Hash The web applicaticn doesnt log any input entered on the query page Are you stifl suspicious? In
case you are we accept hash aiso That way you don't have to enter your password in plam text

What is a hash and why is it better than clear text?

Hashing ts the one way transformation of a string of characters into a usualy shorter fixed-iength value or key that represents the origmal strmg The fixed length
value (end result) of hashing process s calied as a hash The “one way” means that #s nearly mpossible to derve the original text from the hash

What should you do if your password is found in our database?

If your password was found in our datatase, if you have already use thatpasswords immedsately change password for all your accounts and verify that there are
no discrepancees or unauthorized changes in those accounts Avoid using passwords found in our datatase for any of your accounts

Where do you get the data and Is the database updated regularly?

“he application components involve a harvesting infrastructure that gathers new data everyday In addtion to the automatic harvesting infrastructure, manual
research and gathering of password dictionaries and leaks are also conducted. The web apptication aiso allows securtty researchers to submi leak or dictionary
information. The gathered data 18 then analyzed and imported into our password database daity

Are there any statistics that you have gathered and compared?

Piease refer to our s page for stats gathered for this project

Figure 8: Website - FAQ Page

Website: Terms & Conditions (Generic)

The Terms & Conditions page lays down standard agreement for a online web application.

Abou Statis

n

PasswordsinPublic

PasswordsinPublic Terms and Conditions ("Agreement")

Tris Agreewert was st mo3 f.2a o Septemar 30, 2373

Siease read trase Terrs arg Conators (Agreemant”, Terms ana Cora tors”) carefukly ne‘ore Lsing http waw. FassworasirPublic.com (Ctre Site”) oparates
py P3sswordsirFupnc (Cus”, "we”, of "our™}. This Agreemart sete forth the legsily birdirg te'ms 3nd cona tore for your use of tre Ste at
htp:rwaw Fassaom2sin®uthc.Ccom

By acoessimg or usirg the St2 inany manrar irsul t3, but "ot kmid=s to, vistr3 of D'oasirg tre Site or cortributirg cortert or otrer materais to tre Ste,
YOu agree to be bouna by trez= Terers anz Cora tors. Cspita zet tarvs are gsfiraz ir tr € Agreemsart

Inteliectual Property

Tre Stz a~2 1= ong ral cortant, ‘eatures anz ‘L-ctorality 37e own=2 by Fa
tracde sacret anz Gtrer mte 20tua proparty or propristsny rgrts 3ws

-worczlnPublic anz are protected by mtartatoral copyrgrt, trazemark, patart,

Termination

We may termirate your assess to the Stte, witrout causs of rotice, whicrmay result ir tne forf= ture ara aestructior of all mforrston assocated w th you

Al provisiore of this Agragrert that by traa r3tute showz s.rvive termeation srall survive term rator, rslus mg thout Emtatior, OATershE provis
‘arranty disciairars, rzemnity, ars imitators of Lamity.

Links To Other Sites
Our Stz may corta n Irks to th.ra-party = t=3 trat 37 not owra2 of Sortrol £1 Dy PassaorasirPubhe

PazewordslcFublic £as no control over, ar2 3ssurres no mesponzdikty for, the cortert, pnvacy pohsies, or prastioes of ary thirz party = t2s or senvices We
stro~3fy 33w se you to reaz the t2rms 3= COrz bors atz prwacy poicy of any third-party s te trat you visit

Governing Law

Thiz Agreerrert [anc any furtrer ru.es, polioas, or gunlskras noorporates by referero2) srall be JOVEIrEl and COTSINLET i 3TCOTISN0R Win the . avs o°
Ceiawsre, Unte: States, without giving 8°f=ct to any prinspies of corficts 0° &

Changes To This Agreement

We reserve the right, 3t Our soie isCretor, to Moy or rep.soe tnese Terrs 372 Conatiors by posting tre * poated terms or tre Ste You” cortiryas use of
tre Ste a‘ter any zuCh cr3rjez consttutes your acceptarce of the raw Tarms arz Coratons

S 2358 'e¢ @ th € AQreer 2t penoMcally for ora-zes. |© you ¢o "ot 3gTee to a1y of tris Agraamart of any Cr3TJes to this Agreenart, o not LSe, acoess or
ocrtru to 3coess tre Ste or 3E3ortiruE any use of the Site smma1 staly

Contact Us
¢ yo. rave any 5.est072 asout tr 3 Agreemert, p=3ase Sortact us

Figure 9: Website - Terms & Conditions

Website: Contact Page

The contact page is an import aspect of this application. The contact page is used for two important

things: receiving password submissions and receiving feedback. The password database is a collection of

password leaks harvested over the internet and the commonly used dictionaries.

Homre About Statshes FAZ Termz § C

PasswordsinPublic

Submissions

Submit Password Leaks Submit Password Dictionaries

Feedback

Se=ct ‘zsicsce tyos

Figure 10: Website - Contact Page

Usage: Plain text based password query

The following screenshots demonstrate the query for a plain text password input and the result based on

the password's presence in the password database built from leaks and dictionaries.

PasswordsInPublic

PasswordsinPublic

password@123

Supported Input: Current

« Clear text password
* MDS

Supported Input: Future
« SHA1
« SHA256

Figure 11:

PasswordsinPublic

o Plantext Hash

More Information Updates

« What 18 a dictionay attack? o Nov 2013 Added myspace password leak

* How does this work? * Nov 2013 Added rockyou password leak
o Is it safe to enter my password here? o Oct 2013 MDS hashes supported

Are questions like these running in your
mind? Chck on the button below and know
moreh!

Usage - Input Plaintext Password

PesswordsinPublic

Password hash already in public!

2138cb5b0302e84382dd9b3677576b24 was found in rockyou password leak.

Supported Input: Current

o Clear text password
* MD5

Supported Input: Future

« SHAt
« SHA256

© PasswordsinPublic

More information Updates

« Nov2013 Added myspace password leak

o Nov 2013 Added rockyou password leak
s Oct 2013 MD5 hashes suppoaited

o What is a dictionaty attack?
* How does this work?
* 15 «t safe to enter my password here?

Are questions like these running in your
mind? Click on the button below and know
moren

Figure 12: Usage - Output Password Presence

20

Usage: Hash based Query

The following screenshots demonstrate the query for a hashed password input when the password

found in the password database built from leaks and dictionaries.

PasswordsinPublic

Supported Input: Current

s Clear text password
* MD5

Supported Input: Future

* SHA1
« SHA256

© PasswordsInPublic

PasswordsinPublic

PasswordsinPublic

2138cb5b0302e84 382dd9Ib3677576b24
Plaintext o Hash

More Information Updates

o What 1s a dictionary attack?
* How does this work?
e Is 1t safe to enter my password here?

» Nov 2013 Added myspace password leak
» Nov 2013 Added rockyou password leak
o Oct 2013 MD5 hashes suppoited

Are questions like these running in your
mind? Chick on the button below and know
moreli!

Figure 13: Usage - Input Password Hash

Home About

PasswordsinPublic

Password hash already in public!

2138cb5b0302e84382dd9b3677576b24 was found in rockyou password leak.

Supported Input: Current

= Clear text password
* MD5

Supported Input: Future
« SHA1
« SHAZ56

© PasswordsinPublic

More Information Updates

» What 15 a dictionary attack?
* How does this work?
o Is 1t safe to enter my password here?

o Nov 2013 Added myspace password leak
* Nov 2013 Added rockyou password jeak
o Oct 2013 MD5 hashes suppoited

Are questions like these running in your
mind?Click on the button below and know
moreltt

Figure 14: Usage - Output Password Presence

21

Usage: Password not found in database

The following screenshots demonstrate the query for a plain text password input when the password is not

found in the password database built from leaks and dictionaries.

PasswordsinPublic

Supported Input: Current

® Clear text password
. MOS

Supported Input: Future

* SHA1
* SHA256

PasswordsinPublic

We are

Supported Input: Current

 Clear text password
* MDS

Supported Input: Future

* SHat
» SHA256

PasswordsinPublic

38S08@10A23Q"F
@) Pantext Hash

More Information Updates

© Whats a dxctionary attack? « Nov 2013 Added myspace password leak
* How does this work? * Nov 2013 Added rockyou password leak
o Is it safe to enter my password here? © Oct 2013 MDS hashes supported

Are questona ke these runang n your nnd?
Ciick on the button below and know more

Figure 15: Usage - Input Password

PasswordsinPublic

You password was not found In our database!

tly up g our please check back later!

More Information Updates

* What s a dichionary attack? * Nov 2013 Added myspace password leak
* How does this work? e No 2013 Added rockyou password leak
« ki safe to enter my password here? « Oct 2012 MD< hashes supported

Are Questions e these runnmg 1 your mnd?
Ciick on the button below and know mere

Figure 16: Usage - Output When Password Not Found

22

3.5 Application Deployment Models

The application can be deployed using different models as outlined below:

3.5.1 Cloud Instance

With the convenience and advantages of cloud based implementations, an Amazon Machine Image (AMI)
on Amazon Web Services (AWS) or other such pre-configured images on different cloud platforms would
provide great flexibility. This would allow a regular user as well as organizations to launch the pre-

configured passwords-in-public cloud instance for personal and organizational use respectively.

3.5.2 Virtual Machine

Virtual Appliance is another deployment model that can be considered for organizations. The application
can be packaged and installed on a virtual machine so that it can be easily setup in the organization's
private data center or in house deployment. Organization's concerned about transmitting password over
the network outside their organization can consider the virtual appliance deployment model. Different

virtual appliances can be built to support variety of virtualization platforms like VMware, KVM, etc.

3.5.3 API Model

The application can also be provided as a service using public or private APl for querying user or
employee passwords and identifying the presence of their chosen password in the password database. The
API can accept password as the input and return information associated with that password like presence

in the password database, number of leaks that have this password, etc.

3.5.4 Database Only Model

The last model described in this section is the database only model where users or organizations would be
allowed to download the password database only. This model will not be a pre-configured application and
the user or organization opting this deployment model must build an command line or web based utility to

interact with the application.

23

The deployment models cloud instance, virtual appliance and database only can be bundled with an
update script that would allow users to update their database periodically. Additionally, these models can
also be leveraged to build a scalable implementation. The cloud instance deployment model would allow
organizations to spin multiple instances to cater to the needs of a large user base. Similarly, they can
deploy multiple virtual appliances to on their virtualization platform when option for virtual appliance
deployment model while the database only deployment model would allow the users to clone or replicate

the password database to serve large user requests.

24

4 STATISTICS

The proof of concept for this paper is based on our database that included a sample of passwords
(CommonDB column) harvested and gathered from easily available password leak files and commonly
used dictionaries. The commonly used dictionaries considered for this test included john-the-ripper [27],
cain [28], twitter's banned passwords and 500 worst passwords [29]. To demonstrate the potential of the
concept presented in this paper, we also considered Crackstation dictionary [25] which is a popular

password dictionary that has "1212356398" passwords gathered from various sources.

Table | presents the statistics that compare how an online service provider (Google), an online password
strength estimating utility (passwordmeter.com) and password databases built for this paper (CommonDB
and CrackstationDB) fared when tested using password leak files listed in Leak Name column. Actual
password leaks contain real passwords of people and were hence considered as a basis for the

comparison.

For the comparison, the number of passwords from password leak files identified as weak were noted for

Google's password rating mechanism and for PasswordMeter's password rating website while on the other

hand the number of passwords from leak files found in CommonDB and CrackstationDB were noted.

25

Alypaa

Carders

Elite Haccker

Facebook

(Pastebay Malware)

Facebook (Phished)

Faithwriters

Hak$

MySpace

PhpBB

Porn Unknown Site

Singles.org

Ultimate Strip Club

Rockyou

Table 1: Password Strength Comparison

1384

1904

895

55

2442

8347

2351

37144

184389

8088

12233

38820

12413667

35.48

26.79

45.81

20

13.96

19.98

9.23

8.06

7.35

30.46

2211

14.34

0.37

71.37

68.54

88.16

49.09

100

59.6

24.97

49.92

40.29

75.64

100

51.65

1.95

98.99

80.73

98.99

87.27

76.6

26.67

60.95

76.82

79.49

95.57

91

81.84

72.91

100

93.22

100

100

99.84

100

100

99.97

100

100

100

100

99.97

26

The statistics demonstrated that the percentage of passwords identified as weak by Google's password
rating mechanism (Google) was significantly lower than the percentage of passwords that are part of other
leak files and common dictionaries (CommonDB). On the other hand, the password rating mechanism at
passwordmeter.com (PasswordMeter) fared significantly better than Google and CommonDB. The
concept of password database was expanded from CommonDB to CrackstationDB to better demonstrate
the potential of the application. The statistics for CrackstationDB presented an average of 99.4% success
rate in terms of finding a password in the Crackstation dictionary thereby demonstrating the best
performance.

These statistics justify that existing password strength evaluating applications and online service’s
password strength estimator primarily focus on parameters like entropy, length and/or complexity and do
not consider dictionary attacks while evaluating user passwords, thereby providing incomprehensive

password strength estimation.

5 FUTURE WORK

The existing implementation does not incorporate other password strength determination parameters for
determining the strength level of the password selected by the user. Future work could be integrating
demonstrated approach that focuses on dictionary-based attacks with existing password strength
evaluators that primarily focus on entropy, complexity and randomness. Integrating the demonstrated
technique into password settings of applications, password setup routines of operating systems, online
web services and password strength indicators can also be considered as an avenue of future work. The
technique discussed in this paper can also be integrated with password managers (LastPass, Browser

password managers, etc) to alert users when the passwords selected by them are found in the database.

28

6 CONCLUSION

The area of implementing authentication mechanisms, improving password based authentication
mechanisms and assisting users in selecting secure passwords is under constant research. In addition to
the improvement in password based authentication systems, password attack defense techniques and
password strength evaluators, security researchers and evangelists must make efforts to continually
educate and guide users about alternate authentication mechanisms, selection of passwords and the
various password based attack techniques. The technique demonstrated in this paper incorporates the
concept of guiding and enabling the users to select relatively secure passwords from a dictionary attack
perspective by informing them about passwords that are part of publicly released password dictionaries
and leaks. Integrating such a technique with existing password rating mechanisms would result in a

thorough and comprehensive password strength estimation.

29

7 REFERENCES

[1] B. Pinkas and T. Sander, “Securing passwords against dictionary attacks,” in Proceedings of the 9th
ACM conference on Computer and communications security, ser. CCS *02. New York, NY, USA: ACM,
2002, pp. 161-170. [Online]. Available: http://doi.acm.org.ezproxy.rit.edu/10.1145/586110.586133

[2] C. Herley and P. Van Oorschot, “A research agenda acknowledging the persistence of passwords,”
Security Privacy, IEEE, vol. 10, no. 1, pp. 28-36, 2012.

(3] “The top cyber security risks.” [Online]. Available: http://www.cs.vu.nl/
crispo/teaching/seceng2012/Assignmentl /toprisk.pdf

[4] “How effective is a straigth dictionary attack,” Feb. 2012. [Online]. Available:
http://thepasswordproject.com/2012-02- 01 how effective is a straight dictionary attack

[5] “sourCEntral - PAM CRACKLIB.” [Online]. Available: http://man.sourcentral.org/SLES11/8+pam
cracklib

[6] H. Pomeranz, “Linux password security with pam cracklib.” [Online]. Available: http://www.deer-
run.com/ hal/sysadmin/pam cracklib.html

[7] S. Chakrabarti and M. Singhal, “Password-based authentication: Pre- venting dictionary attacks,”
Computer, vol. 40, no. 6, pp. 68-74, 2007.

[8] S. Bellovin and M. Merritt, “Encrypted key exchange: password-based protocols secure against
dictionary attacks,” in Research in Security and Privacy, 1992. Proceedings., 1992 IEEE Computer
Society Symposium on, 1992, pp. 72-84.

[9] D. Jablon, “Extended password key exchange protocols immune to dictionary attack,” in Enabling
Technologies: Infrastructure for Collaborative Enterprises, 1997. Proceedings., Sixth IEEE Workshops
on, 1997, pp. 248-255.

[10] G. Mori and J. Malik, “Recognizing objects in adversarial clutter: breaking a visual captcha,” in
Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference
on, vol. 1, 2003, pp. I-134-1-141 vol.l.

[11] S. Li, S. A. H. Shah, M. A. U. Khan, S. A. Khayam, A.-R. Sadeghi, and R. Schmitz, “Breaking e-
banking captchas,” in Proceedings of the 26th Annual Computer Security Applications Conference, ser.

ACSAC ’10. New York, NY, USA: ACM, 2010, pp. 171-180. [Online]. Available:
http://doi.acm.org/10.1145/1920261.1920288

[12] S. Hocevar, “PWNtcha caca labs.” [Online]. Available: http://caca.zoy.org/wiki/PWNtcha

30

[13] K. A. Kluever, “Breaking the paypal hip: A comparison of classifiers,” 2008.

[14] “Quality of online password checkers,” Mar. 2013. [Online]. Available: http://blog.online-domain-
tools.com/2013/03/12/quality-of- online-password-checkers/

[15] *“GeodSoft password Evaluator/Checker.” [Online]. Available: http://geodsoft.com/cgi-
bin/pwcheck.pl

[16] “Check passwords strength. online. free.” [Online]. Available:
http://www.getsecurepassword.com/CheckPassword.aspx

[17] “How secure is my password?” [Online]. Available: http- s://howsecureismypassword.net/

[18] S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and C. Herley, “Does my password go
up to eleven?: the impact of password meters on password selection,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI *13. New York, NY, USA: ACM, 2013,
pp. 2379-2388. [Online]. Available: http://doi.acm.org.ezproxy.rit.edu/10.1145/2470654.2481329

[19] Password checker - evaluate pass strength, dictionary attack. [Online]. Available: http://password-
checker.online-domain-tools.com/

[20] “PwnedList.com.” [Online]. Available: https://www.pwnedlist.com/

[21] “Should i change my password? j how safe is your password?” [Online]. Available:
https://shouldichangemypassword.com/

[22] “Abusix leakdb project.” [Online]. Available: http://leakdb.abusix.com/

[23] “Google password rater.” [Online]. Available:
https://www.google.com/accounts/RatePassword?Passwd=

[24] “Password strength checker.” [Online]. Available: http://www.passwordmeter.com/

[25] “CrackStation - online password hash cracking - MDS5, SHAT, linux, rainbow tables, etc.” [Online].
Available: https://crackstation.net/

[26] “defuse/crackstation-hashdb GitHub.” [Online]. Available: https://github.com/defuse/crackstation-
hashdb

[27] “John the ripper password cracker.” [Online]. Available: http://www.openwall.com/john/
[28] “oxid.it - cain & abel.” [Online]. Available: http://www.oxid.it/cain.html

[29] “Passwords - SkullSecurity.” [Online]. Available: https://wiki.skullsecurity.org/Passwords

31

8 Appendix

8.1 Appendix: Scripts

8.1.1 Password Importer

from _future_ importdivision
from warnings import filterwarnings
import MySQLdb

import hashlib

import sys

import argparse

import ConfigParser

import os

import pdb

filterwarnings(‘ignore', category=MySQLdb.Warning)

def crackability_db(infile, dbcreds):
ef = open('/v ar/w ww /bootstrap/statistics/entries.csv', 'a')
leakname = infile.split(".")[0]
hashtype = infile.split(".")[1]

datevalue = int(infile.split("_")[2].split(".")[0])

if hashtype == "plaintext":

hashtype = 'md$'

Ih copme tron - chanoc the tcking uscr « ess from root

db =MySQLdb.connect(dbcreds[0], dbcreds[|], dbcreds[2])

cur = db.cursor()

try:
whnpc the passy ords belong 1

db.select_db(hashtype)

B

query = "SELECT table_name FROM INFORMATION_SCHEMA.TABLES WHERE
TABLE_SCHEMA ="%s"" % hashtype

cur.execute(query)

tables = []
for table in cur.fetchall():

if leakname in table[0]:

continue

tables.append(table[(])

crackcount, hashcount = 0, ()
with open(infile, 'r') as cf:

for hash in cf:

33

hash = hash.rstrip()
hashcount += |
for table in tables:
if mittablc split’’
query = "SELECT hashvalue FROM %s WHERE hashvalue = '%s' LIMIT 1" %
(table, hash)
res_rows = int(cur.execute(query))
if res rows==1:
print query
crackcount += |
break
elif res rows ==):

continue

print "
print "Final: ", crackcount, hashcount
crackability = (crackcount / hashcount) * 100
print crackability
print leakname + ": " + str(crackability)
entry = leakname +"." +\
str(crackcount) + "." + str(hashcount) + "." + str(crackability) + "' n"
ef.write(entry)

print "Completed"”

print "

except:

print "Error!"

def import_passwords(dbcreds, infilename):

34

hashivpe
if infilename.split(".")[1] == 'plaintext":

hashtype = 'md5'

else:
hashtype = infilename.split(".")[1]
pass

tablename = infilename.split(".")[0]

infilepath = str(os.getcwd())+"/"+infilename

print hashinp

db = MySQLdb.connect(dbcreds|[(], dbcreds[1], dbcreds[2])

redatms a o curs i

cursor = db.cursor()

try:

sql_cd="CREATE DATABASE IF NOT EXISTS %s" %hashtype

print "\n [+] import:",sql_cd

db.select db(hashtype)

sql_ct="CREATE TABLE %s (hashvalue VARBINARY(60) NOT NULL. UNIQUE
(hashvalue))" %(tablename)

print "\n[+] import:",sql_ct

LO1D DAT

35

sql_Id ="LOAD DATA INFILE '%s' INTO TABLE %s FIELDS TERMINATED BY '' LINES
TERMINATED BY "\n" %(infilepath,tablename)
print "\n[+] import:",sql_Id

VS

cursor.execute(sql_cd)
cursor.execute(sql_ct)
cursor.execute(sql_Id)

db.commit()

except MySQLdb.Error, e:
X
if db:
db.rollback()
print "Error: %d: %s" %s(e.args[)], e.args[|])

sys.exit()

finally:

db.close()

def build_infile(pwdfile, details):

infilename = "%s_%s_%s.%s.temp" %(details[].details[0],details[3].replace('-'","),details[4])

try:
inf = open(infilename,'w")

with open(pwdfile, 'r') as pf:

36

for each in pf:

print each

each = each.rstrip()

if details[4] == 'plaintext":
if each.strip():
hash_value = hashlib.md5(each).hexdigest()
print each, hash_value
else:

continue

else:

hash value = each

inf.write(hash_value)

inf.write("\n")

except:
pf.close()

inf.close()

finally:
pf.close()
inf.close()

return infilename

def main():

37

parser = argparse.ArgumentParser(description='Import password dictionaries or leaks into the
password database')

parser.add_argument(’-d', '--dict’, help='password dictionary filename (absolute path if not in current
directory)')

parser.add argument(’-I', '--leak’, help="password leak filename (absolute path if not in current
directory)')

parser.add_argument('-f', '--format', help='"Password format in the dictionary\nValid options:
plaintext | mdS | sha | etc')

parser.add_argument('-date’, '--date', help='date of password leak")

parser.add_argument('-url', '--url’, help="URL for dictionary | leak source | media post about leak if
no leak source')

parser.add_argument('-s', '--stats', help="Perform statistics calculation only | No infile generation | No
upload | Existing infile must be provided')

parser.add_argument('-b', --build', help="Use this for building infile")

args = vars(parser.parse_args())

print args, len(args)

if args['stats']:

b« onfigurariom list
config = ConfigParser.ConfigParser()
config.read("conf/importer.conf™)
host = config.get('dbaccess’,'dbhost")
user = config.get('dbaccess','dbuser")
pwd = config.get('dbaccess’,'dbpass")

dbcreds = [host, user, pwd]

infile = args['stats'|

crackability _db(infile, dbcreds)

elif len(args) !=7:

38

print "Arguments Error"

else:
passy oord dictionary file
try:

if args['dict']:
pwdfile = args['dict']
type = 'dict’

elif args['leak']:
pwdfile = args['leak']
ty pe = 'leak’

else:
raise Exception("Arguments Error")

sys.exit()

h ININ
config = ConfigParser.ConfigParser()
config.read("conf/importer.conf™)
host = config.get('dbaccess','dbhost")
user = config.get('dbaccess','dbuser")
pwd = config.get('dbaccess','dbpass')

dbcreds = [host, user, pwd]

date = args['date']

source_name = args[ty pe].split("/")[-1].split(".")[(]
source_type =ty pe

source_url=args['url']

hash_type = args['format']

details = [source_name,source_type,source_url,date,hash_type]

39

if

Wl fo ne INFILE

infilename = build_intile(pwdfile, details)

call tor msert duta mto

import_passwords(dbcreds,infilename)

[ul ate ndd o1

crackability _db(infilename, dbcreds)

except IOError:

print "File doesn't exist or incorrect file path"

except:

print "Error!!!"

name ==' main

main()

40

8.1.2 Google Password Rating URL - Stats Generator

import requests
import sys
import urllib
import subprocess
import time

from collections import defaultdict

def stats():
#labels
WEAK = |
MEDIUM =2
STRONG =3

VERYSTRONG =4

filename = sys.argv|[1]
pt' = open(filename, 'r")

count = defaultdict(int)

for pwd in pfi.readlines():
url ="http://www .google.com accounts/RatePassword?Passwd="\
+ urllib.quote_plus(pwd.rstrip())
try:
print pwd, url
r = requests.get(url)
if r.status code == 104:

r=temp_sleep(url)

41

elif r.status code == 200:
res = r.text.rstrip()

ifres=="1"

count['Wcount'] +=

elif res =="2"

count['Mcount'] +=
elif res =="3"

count['Scount'] += |
elif res =='4"

count['VScount'] += |
else:

count['unknown'] +=

else:
print "HTTP status code is %s" % r.status_code
print r.text

count['not104not200'] +=

except Exception, e:
print repr(e)

time.sleep(30)

print count

def temp_sleep(url):
print "[+] Sleeping for 5 mins"
time.sleep(-00)
r = requests.get(url)
if r.status code == 04:

temp_sleep(url)

elif r.status code == 200:

returnr

def main():

stats()

if name

main()

main

'

43

8.1.3 PasswordMeter.com - Stats Generator

import sys
from pyvirtualdisplay import Display

from splinter import Browser

#labels
WEAK = |
MEDIUM =2
STRONG =3

VERYSTRONG =4

def stats():

display = Display(visible=0, size=(800, 600))
display.start()

filename = sys.argv[]
pf = open(filename,'r')

count = {'"VWcount":0, 'Wcount":0, 'Gcount":0, 'Scount’:0, '"VScount":0, 'Unicode":0}

browser = Browser('firefox")
fileurl = "file:/ /path/to/passwordmeter.html"

browser.visit(fileurl)

for pwd in pf.readlines():
pwd = pwd.rstrip()

44

if not pwd:

continue

pwdtype = is_ascii(pwd)

if pwdtype:

browser.fill('passwordPwd',pwd)

result = browser.find_by_id(‘complexity').value

if result =='Very Weak":
count['VWcount'] +=

elif result =="Weak":
count['Wcount'] += |

elif result =="'Good":

count['Geount'] +=
elif result == 'Strong":
count['Scount'] +=
elif result == 'Strong":

count['VScount'] +=

print pwd+" : "+ result

print count

else:
count['Unicode']+=

print count

browser.quit()

display.stop()

print " Final

print count

def is_ascii(pwd):

return all(ord(c) < 128 for c in pwd)

def main():

stats()

if name ==' main

main()

46

8.1.4 Password Database - Stats Generator (CommonDB)

from future import division

from warnings import filterwarnings

import ConfigParser
import argparse
import hashlib
import os

import sys

import MySQLdb

filterwarnings('ignore’, category=MySQLdb. Warning)

def crackability_db(infile, dbcreds):

ef'= open('/var/www/bootstrap/statistics/entries.csv', 'a')

fit = open(‘foundinfile.txt', 'a")

leakname = infile.split(".")[(]
hashtype = infile.split(".")[1]
datevalue = int(infile.split("_")[2].split(".")[0])

if hashtype == 'plaintext":

hashtype ='md5’

47

d imiectienn chanoo the fiyp ke e, from root

db = MySQLdb.connect(dbcreds[0], dbcreds[], dbcreds[2])

Creatm » a cursol obgect

cur = db.cursor()

try:
se datu torih n e the passsords belon

db.select_db(hashtype)

nwpe of the
sy ord file
query = "SELECT table_name FROM INFORMATION _SCHEMA.TABLES WHERE
TABLE_SCHEMA ="%s"" % hashtype

cur.execute(query)

adl
tables =[]
for table in cur.fetchall():
11
print leakname, table[]
if table[0] in leakname:
print "table in leakname”
continue
tables.append(table[0])

print tables

crackcount, hashcount = 0, ()
with open(infile, 'r') as cf:

for hash in cf:

hash = hash.rstrip()
hashcount += |
for table in tables:
ifitttable splite - "112], datey alue
query = "SELECT hashvalue FROM %s WHERE hashvalue ='%s' LIMIT 1" % (
table, hash)
res_rows = int(cur.execute(query))
if res rows == [:
print query
crackcount += |
break
elif res rows ==0:

continue

print "
print "Final: ", crackcount, hashcount
crackability = (crackcount / hashcount) * 00
print crackability
print leakname + ": " + str(crackability)
entry = leakname + "." +\
str(crackcount) + "." + str(hashcount) +\
"." + str(crackability) + "\n"
ef.write(entry)

print "Completed”

print "

except:

print "Error!”

def main():

49

A Zumenis (//7([(}/
parser = argparse.ArgumentParser(

description="Import password dictionaries or leaks into the password database")
parser.add_argument(

'-d', "--dict', help="password dictionary filename (absolute path if not in current directory)")

args = vars(parser.parse_args())

infilename = args['dict']

uilding dh
config = ConfigParser.ConfigParser()
config.read("conf/importer.conf™)
host = config.get('dbaccess', 'dbhost')
user = config.get('dbaccess’, 'dbuser")
pwd = config.get('dbaccess’, 'dbpass")

dbcreds = [host, user, pwd]

crackability _db(infilename, dbcreds)

if name main

main()

50

8.1.5 Crackstation Dictionary - Stats Generator (CrackstationDB)
?php

xdebug_disable();

error_reporting(0);

require_once('l.ookupTable.php');

$ﬁle=f0pen($argv[]],‘ "r");

$stats_file = "stats.txt";

$md5 = new LookupTable("crackstation-md5.idx", "crackstation.txt", "mds");
$total = 0;

$count = 0;

while(!feol($file))

{
$each pwd = fgets($file);
Seach_pwd = trim ($each_pwd);
$total = $total + 1;

$to_crack = md5($each_pwd);

$result = $mdS->crack($to_crack);

if ($result !'== FALSE) {
$count = $count + 1;
echo "Cracked: " . $result[]." Count:". $count . " Total:" . $total . "\n";

}

fclose($file);

$crack_percentage = ($count/$total) * 100;
$crack_percentage = round(S$crack_percentage, 2);
$result_final =

Final

Password File: $argv[1]

Total Cracked Count: $count

Total passwords in $argv[1]: $total
Percentage Cracked: $crack_percentage

",
>

print $result_final;
file put contents($stats_file, $result_final, FILE_APPEND | LOCK_EX);

DI

8.1.6 Harvester for Datalossdb

usr Fine o paihon

colding utf

from _ future_ import division
from datetime import datetime
from math import ceil

from mechanize import Browser
import bs4

import re

mpor? ¢)0KI

and urpin t
urls = {'dbloss":
'http://datalossdb.org/search?data_type%SB%SD=PW D&direction=asc&order=reported_date'}

target_file = open('datalossdb_urls.list', 'a+")

Hialize hroy
b = Browser()
b.set_handle_robots(sc¢)
b.addheaders = [('User-agent', '"Mozilla/5.0 (X 11: U:\
Linux 1686: en-US: rv:1.9.0.1)\
Gecko/2008071615 Fedora/3.0.1-1.fc9 Firefox/3.0.1")]

ki Uil

m

b.open('https://datalossdb.org/sessions/new")

b.select_form(nr=0)

b['login'] = "tarunmadiraju’

b['password'] ="wc*V9IphRS5j3IMeZ "8 mv'
b.submit()

elre o laml rerriove < trsg po
response = b.open(urls['dbloss'])

soup = bs4.BeautifulSoup(response.read())

ncidents from the n
def get_first(total_incidents):

print "get_first", total_incidents

pages = int(ceil(total_incidents / 20))
print pages

raw_input("Continue 5?")

n red wun PU D
for page in xrange(!, pages + |):
page url="{pwd_base url}&page={page}\
".format(pwd_base_url=urls['dbloss'], page=page)
page_response = b.open(page url)

soup_in = bs4.BeautifulSoup(page response.read())

RL« 1 the outpur 1
for each in soup_in.find_all('a"):

if "/incidents/" in each('href']:

target_file.write("http://datalossdb.org/{incident_url}"
.format(incident_url=each[href']))

target_file.write("\n")

53

umm
print "Harvesting Summary = {date} : {incidents}" \
.format(date=datetime.now().strftime('%Y %m%d'), incidents=new_count)
target_file.write("Entry = {date} : {incidents}"
.format(date=datetime.now().strftime('%Y %m%d"),
incidents=total_incidents))
target_file.write("\n\n")

target_file.close()

def get_new(new_count, old_count):
pages_from = int(ceil(old_count/2))

pages_to = int(ceil(new_count/ 20))

lav e dwith PHD
for page in xrange(pages_from, pages to+):
page url="{pwd_base_url}&page={page}\
".format(pwd_base_url=urls['dbloss'], page=page)
page response = b.open(page url)

soup_in = bs4.BeautifulSoup(page_response.read())

¢ the I RL
for each in soup_in.find_all('a"):

if " incidents/" in each['href']:

target_file.write("http://datalossdb.org/{incident_url}"
.format(incident_url=each['href']))

target_file.write("\n")

54

target_file.write("\n")

1opend horyesting summan
print "Harvesting Summary = {date} : {incidents}" \
.format(date=datetime.now().strftime('%Y %m%ad"), incidents=new_count)
target_file.write("Entry = {date} : {incidents}"
.format(date=datetime.now().strftime('%Y %m%ad"),

incidents=new_count))

target_file.write("\n\n")

target_file.close()

def main():
toral moher of 15
for each_span_tag in soup.findAll('span’):
if "Displaying Incident” in each_span_tag.text:
current_incident_count = int(

each_span_tag.findChildren('b")[|].text)

S 1 clricvec
target_file.seek(0, 0)
tile_data = target_file.read()
entries = re.findall(r'Entry = .*', file_data)

print "[+] Incidents harvested previously: {entries}".format(entries=entries)

if entries:
old_incident_count = int(entries[-1].split(":")[1)
diff = current_incident_count - old_incident_count

if diff:

55

print "[+] New incidents added. Difference:", diff
get_new(current_incident_count, old_incident_count)
else:
print "[+] No new password incidents"
elif not entries:

get_first(current_incident_count)

if name main

main()

56

8.1.7 Harvester for Twitter

import codecs
import sys

import tweepy

CONSUMER KEY ="--"
CONSUMER SECRET ="--"
ACCESS KEY ="--"
ACCESS SECRET ="--"

auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)
auth.set_access_token(ACCESS_KEY, ACCESS_SECRET)

api = tweepy.APl(auth)

def get_accounts():
accounts = {}
friends = api.get_user('PwnMagic').friends()
for friend in friends:
accounts|friend.screen_name] = friend.id

return accounts

57

gathor hweets

def tweets(account, tf):
{151 of tvw 2els

tweets_all =[]

M ey Ncels

tweets_all.append(api.user_timeline(id=account, count=200))

sis wsime AP (36)
Medked o g 11V ey ds)
request = ()
while request < 18:
maxid = tweets_all[request].since_id
tweets_all.append(
api.user_timeline(id=account, count=200, max_id=maxid))
request += |
if maxid ==tweets_all[request].since_id:

break

tf.write("== {acc} ==\n".format(acc=account))
for tweets in tweets all:
for tweet in tweets:

tf.write(u' {tweet} .format(tweet=tweet.text))

tf.write("== End of {acc} ==\n".format(acc=account))

tfowrite("\n\n")

58

Prototvpe of filicr function include 1
#PastebinLeaks Specific Filter
for tweets in tweets all:

for tweet in tweets:

it any(i in tweet.text for i in ['pass'. 'password']):

print "[+] Password leak: ". tweet.text
else:
#print "[-] Other leak: ".tweet.text

pass

def main():
users Py M
accounts = get_accounts()

tf = codecs.open(‘tweets_file.txt', 'w', 'utf-8")

eve tmeeds of PwnMage
for account in accounts:

tweets(account, tf)

if name__ ==' main

main()

59

8.1.8 Harvester for SkullSecurity

ust hin em python

- -coding utf-8

import bs4

from mechanize import Browser

define URL
urls = {'skullsecurity" 'http://downloads.skullsecurity.org/passwords/'}

target_file = open('skullsecurity urls.list', 'w')

it
br = Browser()
br.set_handle_robots()
br.addheaders = |

(‘User-agent', 'Mozilla/5.0 (X 11: U: Linux i686; en-US: rv:1.9.0.1) Gecko/2008071615 Fedora/3.0.1-
| .fc9 Firefox/3.0.1")]

reguest v ehsite
response = br.open(urls['skullsecurity'])

soup = bs4.BeautifulSoup(response.read())

rieve password il
for each in soup.find_all('a'):
if "/" not in each.string:

target_file.write(each.string)
target_file.write("\n")

60

	Dictionary Attacks and Password Selection
	Recommended Citation

	Page_001
	Page_002
	Page_003
	Page_004
	Page_005
	Page_006
	Page_007
	Page_008
	Page_009
	Page_010
	Page_011
	Page_012
	Page_013
	Page_014
	Page_015
	Page_016
	Page_017
	Page_018
	Page_019
	Page_020
	Page_021
	Page_022
	Page_023
	Page_024
	Page_025
	Page_026
	Page_027
	Page_028
	Page_029
	Page_030
	Page_031
	Page_032
	Page_033
	Page_034
	Page_035
	Page_036
	Page_037
	Page_038
	Page_039
	Page_040
	Page_041
	Page_042
	Page_043
	Page_044
	Page_045
	Page_046
	Page_047
	Page_048
	Page_049
	Page_050
	Page_051
	Page_052
	Page_053
	Page_054
	Page_055
	Page_056
	Page_057
	Page_058
	Page_059
	Page_060
	Page_i
	Page_ii
	Page_iii
	Page_iv
	Page_v
	Page_vi

