
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2-21-2014

Dictionary Attacks and Password Selection Dictionary Attacks and Password Selection

Tarun Madiraju

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Madiraju, Tarun, "Dictionary Attacks and Password Selection" (2014). Thesis. Rochester Institute of
Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9351?utm_source=repository.rit.edu%2Ftheses%2F9351&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

R·I·T
Rochester Institute of Technology

B. Thomas Golisano College of

Computing and Information Sciences

Thesis Report
Dictionary Attacks and Password Selection

By

Tarun Madiraju

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Computing Security & Information Assurance

Department of Computing Security

Date: 02/21/2014

- __ , -..,r - -,I'!"-

Committee Approval

Bill Stackpole Date

Thesis Committee Chairperson

I I

Daryl Johnson Date

Thesis Committee Member

3/ 6 /2 otif-

Yin Pan Date

Thesis Committee Member

ii

ABSTRACT

Passwords, particularly text-based, are the most common authentication mechanisms across all platforms

and services like computers, mobiles, web and network services. Existing password strength evaluators

and online service providers (Gmail, Yahoo, Paypal, Twitter, etc) password strength estimators determine

the effectiveness of passwords chosen by user based on entropy techniques or a similar function of the

parameters: length, complexity and predictability. Such implementations often ignore passwords part of

publicly available password dictionaries and password leaks which are often the primary choice for

malicious adversaries and particularly script kiddies. This paper presents an application that would help in

preventing the use of such passwords thereby reducing the impact of dictionary based password attacks

significantly. The application maintains a database of unique passwords by gathering publicly available

password dictionaries and passwords leaked over the Internet. The application provides users with an

interface to query the database and verify if their passwords are already available on the Internet thereby

preventing them from the use of such passwords.

iii

~ - - -

List of Tables

Table I: Password Strength Comparison .. 26

iv

- - - - --- --- -

List of Figures

Figure I: Building the Password Database ... 9

Figure 2: Current Database Structure .. 11

Figure 3: Future Database Structure ... 12

Figure 4: Web Application Worktlow .. 13

Figure 5: Website - Home Page .. 14

Figure 6: Website - About Page .. 15

Figure 7: Website - Statistics Page ... 16

Figure 8: Website- FAQ Page .. 17

Figure 9: Website - Terms & Conditions .. 18

Figure I 0: Website - Contact Page ... 19

Figure 11: Usage - Input Plaintext Password .. 20

Figure 12: Usage - Output Password Presence ... 20

Figure 13: Usage - Input Password Hash .. 21

Figure 14: Usage - Output Password Presence ... 21

Figure 15: Usage - Input Password ... 22

Figure 16: Usage - Output When Password Not Found .. 22

V

Table of Contents

ABSTRACT .. ii

List of Tables ... iv

List of Figures ... v

INTRODUCTION .. 1

2 LITERATURE REVIEW ... 3

3 APPLICATION DETAILS ... 7

3.1 Application .. 7

3.2 Helper Components ... 7

3.3 Working .. 8

3.3.1 Building the password database .. 8

3.3.2 Application Workflow .. 13

3.4 Application GUI & Usage ... 14

3.5 Application Deployment Models .. 23

3.5.1 Cloud Instance ... 23

3.5.2 Virtual Machine : ... 23

3.5.3 API Model ... 23

3.5.4 Database Only Model .. 23

4 STATISTICS .. 25

5 FUTURE WORK .. 28

6 CONCLUSION ... 29

7 REFERENCES .. 30

8 Appendix ... 32

8.1 Appendix: Scripts .. 32

8.1.1 Password Importer .. 32

8.1.2 Google Password Rating URL - Stats Generator. ... 41

8.1.3 PasswordMeter.com - Stats Generator. ... 44

8.1.4 Password Database - Stats Generator (CommonDB) ... 47

8.1.5 Crackstation Dictionary - Stats Generator (CrackstationDB) ... 51

8.1.6 Harvester for Datalossdb ... 52

8.1.7 Harvester for Twitter ... 57

8.1.8 Harvester for Skull Security ... 60

vi

1 INTRODUCTION

Passwords are the primary choice for authenticating users and are likely to remain for a significant

amount of time in the future [1] [2] because of the practicality and convenience aspects associated with

them for service providers and end- users respectively. Qualys [3] identified password guessing attacks as

a top cyber security risk after analyzing attack data from TippingPoint intrusion prevention systems

deployed for protecting 6000 organizations.

A pre-known list of passwords is gathered together to form a password dictionary tile. Dictionary attacks

leverage such password dictionaries and automate the attempt of breaking in to password-protected

applications and systems by trying each word/password listed in the password dictionary. Dictionary

based password cracking is easy to execute and almost every password cracking tool is bundled with a

pre-built dictionary thereby aiding script-kiddies in performing dictionary based password attacks.

Attackers build comprehensive password dictionaries by compiling passwords from various dictionaries

and password leaks.

Alexander Lystad analyzed password leaks from password attacks on Rockyou and phpBB [4], and

observed that the percentage of unique passwords that can be cracked using common well-defined

dictionaries (like John-The-Ripper, Cain & Abel, etc) is 33.41 % and 39.43% respectively. The analysis

indicates the necessity of enabling users to be aware of such passwords and thereby prevent them from

using those passwords. With passwords being the most common form of authentication and a critical

aspect of identifying users while providing necessary privacy, password based attacks and defense

systems are subjects of ongoing research.

The primary goal of this project is to build a database of unique passwords from publicly available

password dictionaries and passwords leaked over the internet, and implement an application that would

allow regular users and administrators to verify if their passwords are susceptible to dictionary attacks.

The remainder of this paper is organized as follows. Section 2 discusses the literature review which

details existing work in authentication mechanisms particularly passwords and dictionary attacks (their

detection, prevention and response systems). Section 3 details the design and implementation aspects of

the application developed. Section 4 presents statistics related to password dictionaries, leaks and attacks.

Section 5 and 6 discuss future work and conclusion respectively.

2

2 LITERATURE REVIEW

Linux pluggable authentication module (PAM) pam_cracklib [5] incorporates a similar approach to the

proposed as it is used to test passwords against dictionary words. The Linux pam_cracklib module allows

system administrators to incorporate strength checking for user passwords against a system dictionary

followed by a set of password policies [5]. The drawbacks of pam_cracklib module are poor

documentation, limited implementation (few *nix distributions) and that it is primarily aimed for use by

system administrators [6].

Saikat Chakrabarti and Mukesh Singha! present an analysis of existing dictionary attack prevention

techniques and their drawbacks. They discuss about encrypted key exchange based protocols for

protection against oftline dictionary attacks. For thwarting online dictionary attacks, they discuss account

lockout, delayed response, extra computations and Reverse Turing Tests (RTT) [7]. The Password-based

Encrypted Key Exchange (EKE) by Steven Bellovin and Michael Merritt incorporates a combination of

cryptographic schemes to prevent oftline dictionary attacks but it was later observed that the EKE and

variants of EKE protocols are vulnerable to plain text equivalence which would allow an adversary to

masquerade as a victim by using his hashed password captured through eavesdropping [8] [9]. Delayed

responses and account locking are common countermeasures for online dictionary attacks as they reduce

the number of passwords that can be guessed in a given time and lock the user account after reaching a

threshold set for failed login attempts. However, as outlined by Pinkas et. al these countermeasures can

result in denial of service and increased customer service costs as a result of account locking. Further, an

attacker can try multiple login attempts in parallel with different user accounts to circumvent delayed

response and account lockout countermeasures [I]. The extra computation based technique involves the

inclusion of non- trivial computation in addition to providing the password. The idea of such a technique

is to incorporate a large overhead for password attack tools as it would require computation for every

login attempt thereby reducing the number of attempts significantly. The extra computation technique

3

might present usability issues for a legitimate user while an adversary can tackle the overhead by using a

powerful attack machine or environment [7]. Pinkas et al. use a similar approach by incorporating RTT

technique to prevent automated programs from carrying out dictionary attacks. In this approach, the user

needs to present his password and pass the RTT to ensure a successful login [I]. However, it was

observed by Stuart Stubblebine and Paul van Oorschot that the RTT-based implementation is prone to

RTT relay attacks [7]. Several real world RTTs (also called as CAPTCHAs which refer to Completely

Automated Public Turing test to tell Computers and Humans Apart) implemented by popular online

service providers have been broken in the past using computer character recognition based projects [IO],

[11] [12] [13].

Techniques for improving authentication or protection against password attacks in general range from

hardware based solutions, biometric authentication, client certificate mechanisms, graphical password

schemes, grid based logins, multi- factor authentication etc [I]. Pinkas et. al present a range of such

existing authentication mechanisms and drawbacks associated with them [1], which are discussed as

follows. The hardware and biometric based authentication solutions form a robust authentication

technique but also include a range of drawbacks like additional costs and overhead associated with the

need for additional devices and migration from traditional password based authentication. Additionally,

hardware based authentication solutions also involve usability issues as a result of losing or forgetting

device. Multi-factor authentication schemes often combine passwords (something you know) with

hardware (something you have) or biometric solutions (something you are) and hence demonstrate the

same drawbacks as of hardware and biometric solutions along with other convenience issues. Client

certificates is another solution that implements a software based authentication approach but include

drawbacks associated with key portability and storage.

There are a vast number of password strength evaluating applications available over the Internet that

assist users in determining the strength of the passwords chosen by them [14]. Examples for such

4

password evaluating applications are Password Strength Checker at passwordmeter.com [24], GeodSoft

Password Evaluator [15], GetSecurePassword [16], How Secure is My Password? [17], etc. Further,

almost every online service provider implements a password strength indicator to allow users to gauge the

strength of their password while setting up a new account or changing their existing password. Serge

Egelman et. al observed that password strength meters result in stronger password selection by users for

important accounts [18] but these online password strength determining tools and password strength

meters do not take publicly released passwords into consideration while determining the strength of user

chosen password.

The Online Domain Tools team analyzed common password strength evaluating tools available over the

Internet and noted that entropy and complexity are the primary strength determination parameters while

only a few tools considered dictionary attacks [14]. Online domain tools incorporate dictionary attack

based password strength determination application [19] on their website where they break down

passwords, observe the presence of regular dictionary words or parts of it, the presence of leetspeak and

other pattern analysis techniques but the application doesn't consider publicly available passwords.

Online services like pwnedlist.com [20] and shouldichangemypasswordnow.com [21] obtain the user's

email address and _verify if their accounts have ever been compromised based on emails and passwords

gathered from password leaks over the internet. These services inform the user about the presence of their

passwords in public on the basis of their email address. The passwords from dictionaries and leaks that

are not associated with any emails are ignored by these services and hence do not prevent users from

using passwords already available on the Internet.

Another online project leakdb by Abusix states gathering leaked and publicly available human generated

hashes as its objective [22]. This project is similar to the concept demonstrated in this paper but it is

different from the application presented in this paper for the following reasons. The leakdb project

maintains a database of hashes available over the Internet. It takes a hashed value as input and reports the

5

--------- - -

corresponding clear text if it is present in the leakdb database. The project only stores cracked hashes in

the database thereby missing leaked hashes (available on the internet) that haven't been cracked yet. Also,

it doesn't consider passwords from common password dictionaries and passwords leaked in plain text

over the Internet. Further, querying uncracked hashes results in submission of such hashes to leakdb

password cracking feature without notifying the user about such an implementation prior to querying.

This presents a risk to the users as their password is added to the leakdb search database after being

cracked.

The various limitations in terms of costs, usability, awareness, etc. associated with alternate

authentication schemes often result in users sticking with the traditional password based authentication

schemes. These alternate authentication schemes and password attack defense systems require selection

of a regular password and an additional item (something you have/something you are). Dictionary attacks

can be tackled at the root level by aiding the users in selecting passwords that are relatively less prone to

dictionary attacks. In this paper, we demonstrate a technique that aims at equipping users with a

dictionary attack based password evaluation system thereby encouraging them to avoid publicly available

passwords and preventing them from being simple targets.

6

------- ~---- - - - - - --------------- - --

3 APPLICATION DETAILS

3.1 Application

The application built comprises of a user interface, a database and helper components. The database for

this application primarily contains schemas for each hash value supported by the application. These

schemas maintain the database of passwords gathered from various password leaks and dictionaries over

time. The database also has a submission schema that is responsible for maintaining database of user

input ranging from feedback to information about password leaks and dictionaries. The user interface is a

web application that provides a search bar in order to allow users to input passwords and query the

presence of their password in the password database. The helper components of the application are

responsible for working behind the scenes to facilitate gathering of password dictionary or leak sources

and import passwords into the password database. The web application was built on PHP backed by a

MySQL database. The helper components (importer, harvester and statster) were implemented in python.

The helper components are discussed next in this section.

3.2 Helper Components

I) Importer: The importer component of the application is responsible for obtaining passwords from a

file (password dictionary or password leak) and importing each password into the database. The user

passes the following parameters to the importer utility: FILENAME, FORMAT, FILETYPE, DATE and

URL. Passwords in the password dictionary or leak are typically in the same format - plaintext or a hash

type. This input type (plaintext or hash) of passwords is provided by the FORMAT parameter. The

Fl LETYPE parameter refers to the type of the password file and it is either of leak type or dictionary type.

The DA TE parameter, as the name implies, refers to the date on which the security breach happened or

the date the passwords were released to public. The URL parameter can either be a media post about the

breach or the location where the password leak or dictionary are hosted.

7

------------- - - ------~

2) Harvester: The harvester component of the application is responsible for searching and harvesting

information about password dictionaries, security breaches and password leaks. The harvester component

is a collection of scripts that generate an output file with URLs of potential password dictionaries,

password leaks or information associated with them.

3) Statster: Statster is a collection of scripts used for generating statistics outlined in Table 1. These

scripts calculate the total number of entries contributed by a leak or a dictionary to the database and the

crackability aspects. The crackability aspect for online service providers (like Google) or password

strength estimating websites (like passwordmeter.com) refer to the percentage of passwords (in a leak

file) that were identified as weak by those online service providers or password strength estimating

websites while for a password database (built using leaks, dictionaries, etc) like the password database

built in this paper (referred to as CommonDB) and crackstation's password dictionary [25] (referred to as

CrackstationDB). Additional information about the statistics is provided in the statistics section of this

document. The scripts for calculating the crackability aspect for Google's password rating mechanism

[23], passwordmeter.com [24] and CommonDB were implemented in python while the utilities for

calculating crackability aspect for CrackstationDB were obtained from the crackstation-hashdb github

repository [26] and modified to our requirements. Additional information about the statistics is provided

in the statistics section of this document.

3.3 Working

The application working comprises of two processes: building the password database and the web

application for serving user queries.

3.3.1 Building the password database

The first step in the process of building the database involves gathering password dictionaries and leak

sources by the application maintainer. These sources are then inserted into the submission schema of the

database that also stores user feedback and details of password leak or dictionary sources submitted by

8

application users. These sources (typically URLs) are then verified manually in order to avoid potential

database poisoning by malicious users.

The verification process involves identifying at least 3 media posts relevant to each URL. After

verification, password files are downloaded from URLs obtained using harvester utility, user submission

and manual research. The importer utility is leveraged to upload passwords into the database. A database

schema is created for each new hash format. This way the database would have a collection of schemas

like md5, shal, etc. Passwords are uploaded to the specific schemas based on their hash type. If a leak or

a dictionary file has passwords in plaintext, they are converted to md5 hash and stored in md5 schema.

This is to ensure that the application works with hashed version the password only to prevent any

potential misuse.

Building the Password Database

INPUT DB INSERT VERIFY DOWNLOAD DB UPLOAD

Manual

Research Convert
Verify valid plaintext

I Insert Uf{Ls URLs passwords
(Manual)

gathered from into Hash

1
Harvester

different
Output

l
Download

(Source:
--. sources into Password

Harvester)
the

Hesearch & Files
Submission

Identify Upload
Database

Pasword passwords
I Dictionary or into

User Leall file password
Submissi()(ls location (If database

(Source: not
Web provided)

Application)

I

Figure 1: Building the Password Database

9

D
D_l-J-

-

D

The application database has been designed considering the performance and scalability aspect. If a

password file has been identified with a hash format that does not have a corresponding schema yet, the

importer utility will create a schema for that hash format and subsequently all the leaks or dictionaries

that have passwords in this hash format will be uploaded to this schema as separate tables as opposed to

maintaining a single table for storing all the hashes. This way, for a specific hash input the respective hash

schema will be searched rather than searching the entire database. The same has been depicted using the

following two figures. Figure 2: Current database represents the current database while Figure 3: Future

Database refers to the database structure when different hash inputs are imported into the database.

10

*

ySOL Database

da

*

md5

5U brritdidionary

submlll

d1ct_John_ 10001010

dict_ c:ain_ 10001010

_;ilyp;ia_20100301

leak_pl1)bb_20090101

rocl(yOU .. 20091204

Figure 2: Current Database Structure

ta

ta

bl

bl,

tabl

Ulbl

11

u eedback

D

•

SU brrltdictiooary

* ubmillea
table

oor,t

dataoo ubmi:feedba

dictjolv, _ 1000 tO t 0
b

MySOLOatai

dict_ca1�_10001010
able

*

md5

table
lypaa_20100301

databa

leak_phpbb_20090101
ble

leal-._rockyou_20091204
18

sh111

*

�ha224

da:.aba

*

ha256

database

Figure 3: Future Database Structure

12

•

a

•

3.3.2 Application Work.flow

The workflow of this application is similar to a standard web application workflow for a search operation.

Using our application, the user enters the password in a search bar and selects one of the two radio

buttons that are used to determine if user input is in plaintext format or in hashed format. On submission

of this search form, the PHP search script is fired on the server side that takes user's input and converts it

into a hash if the input supplied is in plaintext format following which a search for that hash in the

database is initiated. If the user input is already in hash format, the input hash is searched directly in the

database without any hashing process. The application looks for user hash in specific database schema

based on hash format (for eg. if the user input is a sha I hash, then the password is searched in sha 1

schema only) while on the other side if the user input was in plaintext, user input is converted into each

hash format supported by our application and searched in all hash schemas until the hash is found. The

final step of this process is alerting the user if the password hash was found in our database or not and

also informing them about the source (leak or dictionary name) in which the hash was found. The

application doesn't store passwords inputted by user.

,splay Rasul:
to User

Figure 4: Web Application Workflow

13

,r Oa:abase

)

3.4 Application GUI & Usage

Website: Home Page

The home page of the web application presents a search bar for receiving user's password. Since,

passwords are in plain text or hash format we present the user with two radio buttons to present the

application with the type of input. In addition to the user input, the home page also focuses on providing

users with some important information about the application with the intention of encouraging them to

use this application.

PasswordslnPublic

Supponed Input: Current

• C�ar text p.assword

• J.105

Supponed Input: Future

• SHA1

• SHA25€

Cl PasswordslnPuhlic

PasswordS1nPubl1c

Pla1n!ext Hash

More Information

• What IS a d1cbonary attack?

• How does thts work.?

• Isl safe to enter my pas.sword here?

Are questions like these runmng in your mind?

Cid on the button below and know more

Figure 5: Website - Home Page

Statistics Terms & Conoltions :.cntac

Updates

• Nov 2013 Added myspace password lea,

• Nov 2013. Added roclyou password leal

• Oct 2013 f.105 hashes supported

14

--- ------ - --------- --- _, - ------- _ - - - -- - -----

Website: About Page

The about page of the website is a simple page provides general background information about the most

common authenticating mechanism - passwords and the state of existing password strength estimation

utilities. The page also describes the goals of this project.

PasswordslnPublic
FAQ Terms & Conditions Contact

The Project

Almost all ex1st1ng pass,..ord strength evaluators and online seMce pr<Mders (Gma1I, Yahoo mail, Paypal, Twitter etc) password strength estimators

determine the effectr.eness of passwords chosen by user based on different entropy techniques or a s1m1lar function of the parameters length complexity

and unpred1ctab1lrty These techniques often ignore passwords part of publicly available password d1ct1onanes and passwords leaked as a result of a

secunty breach These publicly released passwords are often the first choice 1n password attacks for a malicious adversary and particularly scnp1-k1dd1es

This website 1s an attempt to min1m1ze he use of such pass,..ords thereby reducing the impact of d1ct1onary attacks significantly

Passwords are still the most common form of authenticating mechanism used to identify users and are likely to remain for a significant amount of time in

the future because of the practicality and convenience aspects associated w,th them for the seMce providers and end-users respect,vely A preknown 11st of

passwords are gathered together to form a pass,..ord d1ct1onary file D1ct1onary attacks leverage such pass .. ord dict1onanes and automate the attempt of

breaking into password-protected appl1cat1ons and systems by trying each wordlpass,.ord listed in the pass,.ord d1ct1onary D1ct1onary based password

cracking 1s easy to execute and almost every pass,..ord cracking tool 1s bundled with a pre-built d1ct1onary thereby a1d1ng scnpt-k1dd1es in performing

d1ct1onary based password attacks

The primary goal of this proiect 1s to build a database of unique passwords from language d1ct1onanes publicly available password d1ct1onanes and

passwords leaked over the 1ntemet and allow regular users and administrators to venfy 1f the,r chosen passwords are suscep11ble to d1ct1onary attacks that

use publicly released passwords

Figure 6: Website - About Page

15

Website: Statistics Page

The statistics page of the website provides various statistics associated with the observations of this

project. The statistics page presents the imported passwords statistics and the crackability statistics. The

imported passwords statistics list the source type (password leak or password dictionary) of an import and

the number of passwords imported using each file.

PasswordslnPublic

Imported Passwords Statistics

Passo-.ord Sour«

A'ypu

Caraers

E .. t�.aOi\:er

F.a:::e� Pute.C.iY JJa.",.·••e St-:,,e_ ..

F,a::::,eooo,,;. PJ-:st-ed

f&,tt-_:,.,.te,rs

Ha,5

,.,ySpaoe

•roE5

=o·!1U'"'"�· Ste

S,:-g.es.org

Utt<n•ateSt• p:1�0

Rocq,o ..

Jot,,

c.�

!:.X W:;•st �a..;5',t:::>•:.!i

Leaked Passwords in Database Statistics

��

SourCf- l'ype

:.�•ke,

.U!{i!e

_u.ke-=

leatte-:

, .. liKI!':

a..i.oc•:

Luk�

:£,.Kee

�,f..3.<e-�

L£a'Y!Q

.e,c�:

.ea.ceo

,._�o(@o:

D·t::t•:),r.i.'Y

D•::tva'Y

C,::t-o .. •"f

Pass.-,ords Imported

·:?E!

•S,J41

£•"

2�·

z.;-4·

21:

2?� 44

.. FA�

g,,:,;,;

U!!

3S&J

• 4:!441."!L

»:

1»::

:-:>:

Password Source

Ay.u

Passwords. Found in Ona.base- {�fore Import�

Car,le<'s

E.t!itac!w!r

F.a.Deb:X>IIC. ;::-a.ste::..ay vu�:1-•e St-:-e.r

F�?!'.;�e::

F�tl-r•"!te-rs

H1. :

IJySpa::e

!'0 pBE

oOl'""::U""-"°""""·S te

$;-"-�S·:l";

U,t.l'T'.ateStripCi.._c,

Rocityo.;:

,. , ..

!!8:',

s.2�.

4S'.1 �.

• 7.)�.

:;_�� ..

2.:� .•

=-�-.

4;j.3� ..

-�_j•.

x·.

!:.e�.

Figure 7: Website - Statistics Page

16

Website: FAQ Page

The FAQ button on the first page and the FAQ tab present the below shown Frequently Asked Questions.

This page outlines basic information related to dictionary attack and additional information about the way

the application is built which includes handling user's password, password database updates and statistics.

The idea of the FAQ page is to provide transparency about the web application functioning and encourage

user's to try this application.

PasswordslnPublic

Frequently Asked Questions

�c tout ,on, Contact

Here are some common questions and answers that should clear up your queries)·ou can contact us for any other questions that ha'o'en1 been ensv;ered here

What is a dictionary attack'?

A pre-known 11st of passwords ere gathered together to form a password ddionary file. OIC'tlClnary attacks leverage sud! pass\•.1ord d1Cf:10nanes and automate the

attempt of breal..ing rite password-protected applications and systems by tryflg each word/password bted it the password dictionary Dd:Jonary based password

crack119 IS easy to execute and almost e,ery password cract.:119 tool as bundled wlh a pre-buil dld10nnry thereby aldtng scnpt-k.ldd1es m perfomung ddNJnary based

password attacu Attad:ers buict conl)rehensr,e password d1cbonanes by CO"l)1hng passwords from vanous d1chonanes and password leaks

Why should I trust you?

';his site was estabkshed towards a securty research proJed that ts aimed at ald1119 users in seled111g passwords by pre<went1119 them from us119 passwords that

are already available n, the publlC (internet). You can read more about thts proJed in our abeut secbon If you are interested to Ulow more about the proJed. p�ase

c:ntllc' as wl:h any questions or concerns

How do you handle our passwords'?

The web applicabon accepts two forms of 11put Plau, text and Hash -Oe web applicatllln doesn1 log any input entered on the query page Are you stia suspicious? In

case you are we accept hash also That way you don1 have to enter your password 111 plan text

What is a hash and why is it better than clear text'?

Hashing IS the one way transformation of a string of characters mto a usualy shorter f1Xed-length vakJe or 1,.,ey that represents the origrial str119 The flXed length

value (end resul} of hashing process JS caled as a hash The 'one way"' means that ts nearly rnpossib� to derrve the or1911al text from the hash

What should you do if your password is found in our database'?

If your password was found 11 our database. 1f you h1h1e already use that passwords mmediatety change password for al your accounts and verity that there are

no discrep1rncees or unauthonzed changes in those accounts Avoid using passwords found ri our datab8Se for any of your accounts

Where do you get the data and Is the database updated regularly'?

... he applicat10n components invo�te a harvesting infrastrudure that gathers new data e't·eryday. In add1tl0n to the automatic harvest1r1g infrastructure, manual

research and gathering of password dd10nanes and leals are also conducted. The web appic8tion 8tso 8Uows securty researchers to subml leal,., or dlClJonary

1nformabon.The gathered data IS then analyzed and imported r1to our passwor::f database dally

Are there any statistics that you have gathered and compared'?

P�ase refer to our c page for stats gathered for this proJed

Figure 8: Website - FAQ Page

17

Website: Terms & Conditions (Generic)

The Terms & Conditions page lays down standard agreement for a online web application.

PasswordslnPublic
� .<,!,o. S1Et:

PasswordslnPublic Terms and Conditions ("Agreement")

P·,:s Aree.,....e:"t -,,·as ..a:st rro: !.!!': o" Se.pt:.n-� .. 3 .. :. 2·::;?.

F.!e.3..5-E' ..-e� t+-i!s.€ T�'TI".i. a.".:l Co".,ltor.!: {"Agre,e_rrc:-::t'. leT'!Ts a. .. o Coi:::f to.-.:j oare.! .. 1ry �'"ore �.s,r-;; tttp:/h,.,."K,Fa.ss·NOr1slr?.;bltr::.oo� ftt-e- S·te·; ·:Jop:.•at�:

oy ?3..:s· .. 'Ordslr P1;_b,1c fi...s",,t", Of ''o;.fl. Tt-,s. A;re.rr.-ert sets fortr tre fe.-1;.fy t,1ri,r; t�'!!';> 3.,i,d ::or1 tors for yo .. r -...se o� tre Ste at

.,ttp:1/il,-.·.1;. Pa.ss4''.l"a..il rP ;;.t-�c.:>:>I"':.

By a�sT:, or u..S..r; t'"-e Ste �r. a.ry �a r r.er, �,o;::::.' .. ·:l l'.'J, c."'t '"¢1 Irr. tei: to, v; s.tr-; Of b•:r•·s;s::1 t'"e S:te .or ::ortrib .. Li:::, :::orte."t or otre.r rr.ate.·r3.:s to tre S.te,

yot.- a;rH to be bo;..r.: by tt-e.:= Tem:s ar·: Cor:1ti0,.s. Ca.p;ta.�e:1 t:Jo:"t5 a.re Oi:�Jre-: 111':' tt s i'-drtt"!'e:rt

lnt..llo,ctu.l Property

T!:e s ti: ... : ts. 0*"'1 _:;.I ::Ol"ti:".t , fut .. rc ,i/•·= f:.r:::t,01:a.�ty 3.'"i: Oilt'f:i::l by Fa.ss ·M::.td.slr_P.:b�:: a."'C •re prjte-::tel by lr.t:''"!",i.lO\':"a.l oocyr:-;;rt. tr.i,:i:r-r.,r<., patr.,:t,

traa,e ::-cre.t ar.J ct+-":.r l!:tE. :::;;t...a. pr.o�'ty or propr,ets.ry !•;tt: .3.i�rlS

Tenninat1on

'!Ne !"'!'3.Y tE.'"!'!".:r..i.te yo;;r a:::::ess to lr.'e S·te. wtf'o:..t �;..= :,r !'.:.t::e, '1.1°'_,::;;!"_ rray .re.s;,;'rt 1,r t".'e for!e. t..:re arl a.est�::::tc.:.. o' a� �forrr.itor. a.!:.S.::>cat� ,. tt. yo ..

A.� prO'e'!.5�Jrs of tr"!: �ree.�t".t tt;.t b)' l;,eir !'.3.t.;re sto;,.--\.:: s.orv;-.•e- t:r!T'..;".'al,or. :':.!.� 5�r'e'1Ve te-rf!' _ratio;., .i!'.:::�,::..!'.•;

·1rrarty d,.s.c.a.T!T'eJ:. �r-::.en-.!"Jty, ar:i Lrr,ta.t.oo:: o� f.acity.

Links To Other Sit..s

0;..r Ste .IT..ay ::OO::l3. !"' . Lr:...S tc ttc_.r)-party s tes tr"at &'"E- !"'Ot O'II.'!"£>: ,y :::ortrome: by P.a..s.s·""·or115h:?.;:bb::

l''\'li;.t L�_tator, O'tli'".'e.rs!'Jp prove;

Pa.;s·NOtdslr_F-i.b&c l".a.s. �o oortr ol over, a.r,:i a..ssi..l""'es rv.> r,e:spor.s•b!ty for, t�-e, oor.tert, priva.::y pofi�>e.s. o, pract,c,es. o' ;p•y tl-__;r::i p.a..rty s tc.s or sel"\'1ee.5 Vv'e

stro-:gty a::·J Se" y-o.: to re.a-: &e li:'"!T'.S a.r : CO�·:! tor.: a_.- : Dr 'o'a.cy DOiicy o' a_.-y tt-Jr:-party· 5 te tr.at yo� v:..S t

Governing LAw

Tt;.5 Aiir�.,-ert (a.Mary !1.111:+-�r fli'!'.5, pot:e.:, or Q"i.1:¥l:;rae_s �rco"porat� Dy re'ere-'"O!) :ta�� j10'.'e.tr�:i ar;,:: oor.stn.K ,r. a.:::;oor-l3.r,ce ._. tr. tt"e, . .1 ... ·s o'

De.a.·,,,-3."e, u .. _te-:i: Sta.t::.5, ·,fti-,::)1.t ;,v.l!'; e�'e:;t to a.ry pr,:;.::,pe.s :,:" :xir:�lict: o' '.a:

Changes To This Agrttrnent

V"l'e r eserve the !"�df't. 3.t our so:e .:,so-re.tor:, t:, rro::.,!y or re:p:3.ec, u:ese Terrt.s, 3."::. CoM.tor.s by postr,a tr-e · .. paate,j ter�s O"'.. ttr Ste Yo;,;• :::ort,"..ec .;_se c•

tre S t,e .a.'ter a.ry ::.�r. �i-3."·d:'E co-:stt:..tc yo.:a •coepta.nce of tf'e !:�Ii T:r"°.:, a,:.:: Cor:i:t>vrs

C·,eas: •e·Je,1,· t,.. s �ree:f'!"E'"l per1:>l1:.a.1ty for �3."d�S. I� yo:: tl<C· ;.:,t 3.1"* to a.ry o! t'"..: A;;"ee"'"ert OI" a.ry ct.a;;e:s to tr . .s Ad,"ee.!";e:!"t, �c, ;ot �. •��Ji or

cc,r:tr :,� t� -��== tr� Ste or 1..s:,:,o:t,::.� a�y :..se :>� t+:' Ste tf'!'!T'E-:i ,3.t:.)'.

Contact Us

I� yo .. !'"a·Je ary : .. e:tr0'"5 a.OOi..t tt-_.: A••*""e.r:t, p·-:.ase :ort.ct -:..s

Figure 9: Website - Terms & Conditions

18

Website: Contact Page

The contact page is an import aspect of this application. The contact page is used for two important

things: receiving password submissions and receiving feedback. The password database is a collection of

password leaks harvested over the internet and the commonly used dictionaries.

PasswordslnPublic
i-,orr.,� �Li� '.:tat:5?1C!i FA::- ,..ern-s ! 2

Submissions

Submit Password Leaks Submit Password Dictionaries

Feedback

S: ::.t fee:::.:a�· tyt·:<

Figure to: Website - Contact Page

19

Usage: Plain text based password query

The following screenshots demonstrate the query for a plain text password input and the result based on

the password's presence in the password database built from leaks and dictionaries.

PasswordslnPublic

Supported Input: Current

• Clear text pusword
• MD5

Supported Input: Future

• SHA!

• SHA256

P•sswordslnPubltc

password@123

• Pfarriut Hash

More Information

• V'.'hll 11 a d1cbonMy attack?
• How does th,1 '#Ofk?
• Is 11. safe to enttf my password ti•"'

Are q.,est,ons �k• L!'leu runr11ng 11'1 you,
m1'Cf? Cbck on the button bc!IOw and kFIOW
mon1III

Updates

• NOit 2013 Added mysp.::e pan-word leak
• NOil 201J Added nx:kyou passllfOfd le•
• Oct 2013 MOS hashH supported

Figure 11: Usage - Input Plaintext Password

PasswordslnPublic

PasswordslnPubl1c

Password hash already in public!
2138cb6b0302eM382dd9b36n576b24 was found in rockyou password leak.

Supported Input: Current

• Clear text password

• MD!>

Supported Input: Future

• SHA1

• SHA256

C PasswordslnPubhc

More Information

• What ,s a dlct,onaiy attack?

• Ho¥, does th,s wortc?
• ,s rt safe to enter my pa&aword he111?

Ale qu1tiit1ons �ke these runnrng m your

mmd' Ckk on the button belov. and know
"""'"

Updates

• Nov 2013 Added myspace �ssword leak

• Nov 201J Added roclcyou password leak

• Od 2013 MD!, hashH supportad

Figure 12: Usage - Output Password Presence

20

f

Usage: Hash based Query

The following screenshots demonstrate the query for a hashed password input when the password is

found in the password database built from leaks and dictionaries.

PasswordslnPubllc

Supported Input: Current

• Clear text passwo1d
• MD5

Supported Input: Future

• SHA1
, SHA256

0 PassoNordslnP1Jbl,c

PasswordslnPublic

- About

'
PasswordstnPubl1c

21 38c b5b0302e84 382dd9b36775 76b24
Pl.-iteXI o Hash

More Information

• What 1s a d1ehooary attack?
• How does this WOf'K?
• Is 11 safe to enter my password here?

Ive questions like these running tn your
mi,,d? CNck on the button belD'* and kn0¥11
morellt

Updates

• NCH 2013 Added myspace password leak
• NO¥ 2013 Added rockyou password leak
• Oct 2013 MOS hashes supported

Figure 13: Usage - Input Password Hash

'

ttome About

Passwords1nPubl1c

Password hash already in public!
2138cb5b0302e84382dd9b3677576b24 was found in rockyou password leak.

Supported Input: Current

• Clear text password
• MOS

Supported Input: Future

• SHA1
, SHA256

C Passw0<dslnPublic

More Information

• WI lilt 1s a d1Ct1oriary attack?

• How does this wort,:?
• Is It safe to enter my password here?

Ase questions like these running in your
mind? Chck on the button below and know
moreut

Updates

• ND'l 2013 Added myspace password lea!(
• Nov 2013 Added rockyou password 1eak

• Oct 2013 M05 hashes supported

Figure 14: Usage - Output Password Presence

21

Usage: Password not found in database

The following screenshots demonstrate the query for a plain text password input when the password is not

found in the password database built from leaks and dictionaries.

PasswordslnPublic

Support•d Input: Current

• Cleartexts,assword
• U05

Supponed Input: Future

• SHA1
• SltA256

PasswordslnPublic

PasswordslnPubUc

saS01JQf:::1..ZJcft

�·Pll!lr1text Huh

More Information

• Vv'tlat•1dlctJc,r\ary1ttaO."'
• Howdonth•wor1..'
• Is I sale to enter mv password here'

Are QUoffbona lile U'IKe nmn11g " your nwtC"
Clci. on the butte" below and MOv. more

Updates

• Ptov 2C13 Added myspac:e password 1HI
• Nav 201� Acicted roctyou password IHI
• Oct 2013 I.ID!' hashes aupporte(!

Figure 15: Usage - Input Password

PasswordSlnPublic

You password was notfound 1n our database!
We are constantly updating our database, please check back later!

Supponed Input: Current

• Clear text password
• UD5

Supported Input: Future

• SHA1

• SHA.256

More Information

• 'Ntl1t•adlc:klnaryattacl."
• How does this wort'
• Is I sate lo enter m, password hffe'?

Are QUesllons Ile these runnng l'I)'(lur fTWl(f?
CIICI. en tile button below and t..now mor,

Updates

• Nov 2013 Added mvspace password leal
• NC' 2013 Added roclyotJ paSSWOfd teal

• Od 2ce � hashes SYpported

Figure 16: Usage - Output When Password Not Found

22

3.5 Application Deployment Models

The application can be deployed using different models as outlined below:

3.5.1 Cloud Instance

With the convenience and advantages of cloud based implementations, an Amazon Machine Image (AMI)

on Amazon Web Services (A WS) or other such pre-configured images on different cloud platforms would

provide great flexibility. This would allow a regular user as well as organizations to launch the pre­

configured passwords-in-public cloud instance for personal and organizational use respectively.

3.5.2 Virtual Machine

Virtual Appliance is another deployment model that can be considered for organizations. The application

can be packaged and installed on a virtual machine so that it can be easily setup in the organization's

private data center or in house deployment. Organization's concerned about transmitting password over

the network outside their organization can consider the virtual appliance deployment model. Different

virtual appliances can be built to support variety of virtualization platforms like VMware, KYM, etc.

3.5.3 API Model

The application can also be provided as a service using public or private API for querying user or

employee passwords and identifying the presence of their chosen password in the password database. The

AP! can accept password as the input and return information associated with that password like presence

in the password database, number of leaks that have this password, etc.

3.5.4 Database Only Model

The last model described in this section is the database only model where users or organizations would be

allowed to download the password database only. This model will not be a pre-configured application and

the user or organization opting this deployment model must build an command line or web based utility to

interact with the application.

23

The deployment models cloud instance, virtual appliance and database only can be bundled with an

update script that would allow users to update their database periodically. Additionally, these models can

also be leveraged to build a scalable implementation. The cloud instance deployment model would allow

organizations to spin multiple instances to cater to the needs of a large user base. Similarly, they can

deploy multiple virtual appliances to on their virtualization platform when option for virtual appliance

deployment model while the database only deployment model would allow the users to clone or replicate

the password database to serve large user requests.

24

4 STATISTICS

The proof of concept for this paper is based on our database that included a sample of passwords

(CommonDB column) harvested and gathered from easily available password leak files and commonly

used dictionaries. The commonly used dictionaries considered for this test included john-the-ripper (27],

cain (28], twitter's banned passwords and 500 worst passwords (29]. To demonstrate the potential of the

concept presented in this paper, we also considered Crackstation dictionary (25] which is a popular

password dictionary that has "1212356398" passwords gathered from various sources.

Table I presents the statistics that compare how an online service provider (Google), an online password

strength estimating utility (passwordmeter.com) and password databases built for this paper (CommonDB

and CrackstationDB) fared when tested using password leak files listed in Leak Name column. Actual

password leaks contain real passwords of people and were hence considered as a basis for the

comparison.

For the comparison, the number of passwords from password leak files identified as weak were noted for

Google's password rating mechanism and for PasswordMeter's password rating website while on the other

hand the number of passwords from leak files found in Common DB and CrackstationDB were noted.

25

Table 1: Password Strength Comparison

Leak Name Total Google SimpleDB Password CrackstationDB

Passwords Meter

Alypaa 1384 35.48 71.37 98.99 100

Carders 1904 26.79 68.54 80.73 93.22

Elite Haecker 895 45.81 88.16 98.99 100

Facebook

(Pastebay Malware) 55 20 49.09 87.27 100

Facebook (Phished) 2442 13.96 100 76.6 99.84

Faith writers 8347 19.98 59.6 26.67 100

HakS 2351 9.23 24.97 60.95 100

MySpace 37144 8.06 49.92 76.82 99.97

PhpBB 184389 7.35 40.29 79.49 100

Porn Unknown Site 8088 30.46 75.64 95.57 100

Singles.org 12233 22.11 100 91 100

Ultimate Strip Club 38820 14.34 51.65 81.84 100

Rockyou 12413667 0.37 1.95 72.91 99.97

26

- --------------- .

The statistics demonstrated that the percentage of passwords identified as weak by Google's password

rating mechanism (Google) was significantly lower than the percentage of passwords that are part of other

leak files and common dictionaries (CommonDB). On the other hand, the password rating mechanism at

passwordmeter.com (PasswordMeter) fared significantly better than Google and CommonDB. The

concept of password database was expanded from CommonDB to CrackstationDB to better demonstrate

the potential of the application. The statistics for CrackstationDB presented an average of 99.4% success

rate in terms of finding a password in the Crackstation dictionary thereby demonstrating the best

performance.

These statistics justify that existing password strength evaluating applications and online service's

password strength estimator primarily focus on parameters like entropy, length and/or complexity and do

not consider dictionary attacks while evaluating user passwords, thereby providing incomprehensive

password strength estimation.

27

5 FUTURE WORK

The existing implementation does not incorporate other password strength determination parameters for

determining the strength level of the password selected by the user. Future work could be integrating

demonstrated approach that focuses on dictionary-based attacks with existing password strength

evaluators that primarily focus on entropy, complexity and randomness. Integrating the demonstrated

technique into password settings of applications, password setup routines of operating systems, online

web services and password strength indicators can also be considered as an avenue of future work. The

technique discussed in this paper can also be integrated with password managers (LastPass, Browser

password managers, etc) to alert users when the passwords selected by them are found in the database.

28

6 CONCLUSION

The area of implementing authentication mechanisms, improving password based authentication

mechanisms and assisting users in selecting secure passwords is under constant research. In addition to

the improvement in password based authentication systems, password attack defense techniques and

password strength evaluators, security researchers and evangelists must make efforts to continually

educate and guide users about alternate authentication mechanisms, selection of passwords and the

various password based attack techniques. The technique demonstrated in this paper incorporates the

concept of guiding and enabling the users to select relatively secure passwords from a dictionary attack

perspective by informing them about passwords that are part of publicly released password dictionaries

and leaks. Integrating such a technique with existing password rating mechanisms would result in a

thorough and comprehensive password strength estimation.

29

------------ - - -

7 REFERENCES

[I] B. Pinkas and T. Sander, "Securing passwords against dictionary attacks," in Proceedings of the 9th

ACM conference on Computer and communications security, ser. CCS '02. New York, NY, USA: ACM,

2002, pp. 161-170. [Online]. Available: http://doi.acm.org.ezproxy.rit.edu/lO. l 145/586110.586133

[2] C. Herley and P. Van Oorschot, "A research agenda acknowledging the persistence of passwords,"

Security Privacy, IEEE, vol. I 0, no. I, pp. 28-36, 2012.

[3] "The top cyber security risks."

crispo/teaching/seceng2012/ Assignment 1 /toprisk.pdf

[Online]. Available: http://www.cs.vu.nl/

[4] "How effective is a straigth dictionary attack," Feb. 2012. [Online]. Available:

http://thepasswordproject.com/2012-02- 0 I how effective is a straight dictionary attack

[5] "sourCEntral - PAM CRACKUB." [Online]. Available: http://man.sourcentral.org/SLES11/8+pam

cracklib

[6] H. Pomeranz, "Linux password security with pam cracklib." [Online]. Available: http://www.deer­

run.com/ hal/sysadmin/pam cracklib.html

[7] S. Chakrabarti and M. Singha!, "Password-based authentication: Pre- venting dictionary attacks,"

Computer, vol. 40, no. 6, pp. 68-74, 2007.

[8] S. Bellovin and M. Merritt, "Encrypted key exchange: password-based protocols secure against

dictionary attacks," in Research in Security and Privacy, 1992. Proceedings., 1992 IEEE Computer

Society Symposium on, 1992, pp. 72-84.

[9] D. Jablon, "Extended password key exchange protocols immune to dictionary attack," in Enabling

Technologies: Infrastructure for Collaborative Enterprises, 1997. Proceedings., Sixth IEEE Workshops

on, 1997, pp. 248-255.

[10] G. Mori and J. Malik, "Recognizing objects in adversarial clutter: breaking a visual captcha," in

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference

on, vol. I , 2003, pp. I-134-1-141 vol. I .

[11] S. Li, S. A.H. Shah, M. A. U. Khan, S. A. Khayam, A.-R. Sadeghi, and R. Schmitz, "Breaking e­

banking captchas," in Proceedings of the 26th Annual Computer Security Applications Conference, ser.

ACSAC '10. New York, NY, USA: ACM, 2010, pp. 171-180. [Online]. Available:

http://doi.acm.org/10.1145/1920261.1920288

[12] S. Hocevar, "PWNtcha caca labs." [Online]. Available: http://caca.zoy.org/wiki/PWNtcha

30

[13] K. A. Kluever, "Breaking the paypal hip: A comparison of classifiers," 2008.

[14] "Quality of online password checkers," Mar. 2013. [Online]. Available: http://blog.online-domain­

tools.com/2013/03/12/quality-of- online-password-checkers/

[15] "GeodSoft password Evaluator/Checker." [Online]. Available: http://geodsoft.com/cgi-

bin/pwcheck.pl

[16] "Check passwords strength. on line. free." [Online]. Available:

http://www. getsecurepassword .com/CheckPassword .as px

[17] "How secure is my password?" [Online]. Available: http- s://howsecureismypassword.net/

[18] S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and C. Herley, "Does my password go

up to eleven?: the impact of password meters on password selection," in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, ser. CHI '13. New York, NY, USA: ACM, 2013,

pp. 2379-2388. [Online]. Available: http://doi.acm.org.ezproxy .rit.edu/10.1 I 45/2470654.2481329

[19] Password checker - evaluate pass strength, dictionary attack. [Online]. A vai I able: http://password­

checker.online-domain-tools.com/

[20] "PwnedList.com." [Online]. Available: https://www.pwnedlist.com/

[21] "Should i change my password? j how safe is your password?" [Online]. Available:

https://shouldichangemypassword.com/

[22] "Abusix leakdb project." [Online]. Available: http://leakdb.abusix.com/

[23] "Google password rater."
https://www.google.com/accounts/RatePassword?Passwd=

[Online].

[24] "Password strength checker." [Online]. Available: http://www.passwordmeter.com/

Available:

[25] "CrackStation - online password hash cracking - MD5, SHA I, linux, rainbow tables, etc." [Online].

Available: https://crackstation.net/

[26] "defuse/crackstation-hashdb GitHub." [Online]. Available: https://github.com/defuse/crackstation­
hashdb

[27] "John the ripper password cracker." [Online]. Available: http://www.openwall.com/john/

[28] "oxid.it - cain & abel." [Online]. Available: http://www.oxid.it/cain.html

[29] "Passwords - SkullSecurity." [Online]. Available: https://wiki.skullsecurity.org/Passwords

31

8 Appendix

8.1 Appendix: Scripts

8.1.1 Password Importer

,1,,, n111 , 111 / 11110,1

l 1-

from _future_ import division

from warnings import filterwarnings

import MySQLdb

import hashlib

import sys

import argparse

import ConfigParser

import os

import pdb

filterwarnings('ignore', category=MySQLdb. Warning)

f ,,,,, or,h 1111 ,he p,1,,11 � /J,1/ <it,,

,·. I

def crackability _db(infile, dbcreds):

ef = open('/\ ar/\, W\\ /bootstrap/statistics, entries.csv', 'a')

leakname = inti le.split(". ")[O]

hashtype = infile.split(".")[1]

datevalue = int(infi le.spl it("_")[2].spl it(". ")[O])

if hashtype == 'plaintext':

32

hashtype = 'md5'

lh, """·. 11,H,. Lh,11,0, 1h, t.t, lci11v ll'L'. , , ,, frotll ,., .. ,,

db = MySQLdb.connect(dbcreds[O], dbcreds[l], dbcreds[2])

cur = db.cursor()

try:

,.,/i q Pl ,;7, / a,·,1 ,,rj, /1e/011).; I

db.select_ db(hashtype)

u

query = "SELECT table_name FROM INFORMATION_SCHEMA.T ABLES WHERE

T ABLE_SCHEMA = 'o/os"' % hashtype

cur.execute(query)

tables = []

for table in cur.fetchall():

if leakname in table[O]:

continue

tables.append(table[(])

crackcount, hashcount = 0, r,

with open(infile, 'r') as cf:

for hash in cf:

l\

33

hash = hash.rstrip()

hashcount += I

for table in tables:

If //1/t/,Jf)fl \J>flf• I

query = "SELECT hashvalue FROM o/os WHERE hashvalue = 'o/os' LIMIT I"%

(table, hash)

res _rows = int(cur.execute(query))

if res rows == I :

print query

crackcount += I

break

elif res rows ==):

continue

print "=="

print "Final:", crackcount, hashcount

crackability = (crackcount / hashcount) * I ')()

print crackability

print leakname + ": "+ str(crackability)

entry = leakname + "." + \

str(crackcount) + "_" + str(hashcount) + "." + str(crackability) + "' n"

ef. write(entry)

print "Completed"

print "----------------========------------------"

except:

print "Error!"

def im port_passwords(dbcreds, infilename):

I

34

/.,.,/7/J/h

if infi lename.spl it(".")[1] == 'plainte-.t':

hashtype = 'md5'

else:

hash type = infi lename.spl it(".")[I]

pass

tablename = infilename.spl it(". ")[O]

infi le path = str(os.getcwd())+"/"+infi lename

JW/111 ll(J\'ht.l'f'

db = MySQLdb.connect(dbcreds[(], dbcreds[I], dbcreds[2])

/';. i)l1J1" LI '/,I\ 1/

cursor = db.cursor()

try:

sql_cd = "CREATE DATABASE IF NOT EXIST5 °1os" %hashtype

print "\n [+] import:",sql_cd

db.select db(hashtype)

sql_ct = "CREATE TABLE °'os (hashvalue VARBINARY(60) NOT NULL. UNIQUE

(hashvalue))" %(tablename)

print "\n[+] import:",sql_ct

/()1{)/>17

35

sql_ld = "LOAD DATA IN FILE '%s' INTO TABLE %s FIELDS TERMINATED BY'' LINES

TERMINATED BY '\n"' %(infilepath,tablename)

print "\n[+] import:",sql_ld

I \

cursor.execute(sq 1_ cd)

cursor.execute(sq I_ ct)

cursor.execute(sql_ld)

db.commit()

except MySQLdb.Error, e:

/(

if db:

db.rollback()

print "Error: %d: %s" %s(e.args[J], e.args[I])

sys.exit()

finally:

db.close()

def build _infile(pwdfi le, detai Is):

infilename = "%s_ %s_%s.%s.temp" %(details[],detai ls[O],details[,].replace('-',"),details[--1])

try:

inf= open(infilename,'v\ ')

with open(pwdfile, 'r') as pf:

36

for each in pf:

print each

except:

pf.close()

inf.close()

finally:

'II' /l'u'f/1,tr II

each= each.rstrip()

if details[-+]== 'plaintext':

if each.strip():

else:

else:

hash_value = hashlib.mdS(each).hexdigest()

print each, hash_ value

continue

hash value = each

inf.write(hash_ value)

inf.write("\n")

pf.close()

inf.close()

return infilename

def main():

37

parser = argparse.ArgumentParser(description='lmport pass\rnrd dictionaries or leaks into the

pass\\ ord database')

parser.add_argument('-d', '--diet', help='paSS\\Ord dictionary filename (absolute path if not in current

director))')

parser.add_argument('-1', '--leak', help='paSS\\Ord leak filename (absolute path if not in current

director))')

parser.add_argument('-f, '--format', help='Pass\,ord format in the dictionary\nValid options:

plaintext I md5 I sha I etc')

parser.add_ argument('-date', '--date', help=' date of pasS\\ ord leak')

parser.add_argument('-url', '--url', help='URL for dictionar) I leak source I media post about leak if

no leak source')

parser.add_argument('-s', '--stats', help='Perfonn statistics calculation onl:, I No infile generation I No

upload I Existing infile must be provided')

parser.add_argument('-b', '--build', help='Use this for building infile')

args = ,ars(parser.parse_args())

print args, len(args)

if args['stats']:

/-. l ,l1f1{71J14,,,: ·'1 /J \/

config = ConfigParser.ConfigParser()

config.read("conf/importer.conf')

host = config.get('dbaccess','dbhost')

user = config.get('dbaccess','dbuser')

pwd = config.get('dbaccess' ,'dbpass')

dbcreds = [host, user, pwd]

infile = args['stats']

crackability _db(infile, dbcreds)

elif len(args) != 7:

38

else:

print "Arguments Error"

nu,·,•1 ,rel till 1;,,11,1,·1• t,h

try:

if args ['di ct']:

pwdfile = args['dict']

type = 'diet'

elif args [' I eak. ']:

else:

pwdfile = args['leak.']

t) pe = 'leak'

raise Exception(" Arguments Error")

sys.exit()

h JJ I I,·/

config = ConfigParser.ConfigParser()

confi g. read(" conf/i 111 porter .conf')

host = config.get('dbaccess','dbhost')

user = config.get('dbaccess','dbuser')

pwd = config.get('dbaccess','dbpass')

dbcreds = [host, user, pwd]

date = args['date']

source_ name= args[t) pe].split("/")[- I].split(".")[(]

source_type = t) pe

source_url = args['url']

hash_type = args['format']

details = [source_ name,source _ type,source_url,date,hash_type]

39

,I I to ,IL I\ Tiff

intilename = build_intile(pwdtile, details)

t c1tl fr,r ,11\t rt ,/L,,L, 111/0

import _passwords(dbcreds,inti lename)

I ·1,f ,IL ,n,t m n

crackability _db(intilename, dbcreds)

except IOError:

print "File doesn't exist or incorrect tile path"

except:

print "Error!!!"

if name == ' ma111

main()

40

8.1.2 Google Password Rating URL - Stats Generator

·'' '11111,,1/z,l/i

import requests

import sys

import urllib

import subprocess

import time

from collections import defaultdict

def stats():

#labels

WEAK = I

MEDIUM =2

STRONG = 3

VER YSTRONG = 4

file name = sys.argv[I]

pf= open(filename, 'r')

count= defau!tdict(int)

for p\\-d in pf.readlines():

url = 'http://\\\\\\.goog!e.com accounts/Rate Pass\\ ord?Passwd=' \

+ url ! i b.q uote _pl us(pwd.rstri p())

try:

print pwd, url

r = requests.get(ur!)

if r.status code == I 0-l:

r = temp_sleep(url)

41

elif r.status code == 2UO:

res = r.text.rstrip()

if res == ' I ':

count['Wcount'] += I

elif res == '2':

count['Mcount'] += I

elif res == '3':

count['Scount'] += I

elif res == '4':

count['YScount'] += I

else:

count['unkno\\ n'] +=

else:

print "HTTP status code is %s" % r.status_code

print r.text

count['not I 04not200'] +=

except Exception, e:

print repr(e)

time.sleep(10)

print count

def tern p _sleep(url):

print"[+] Sleeping for 5 mins"

ti me.sleep(., 00)

r = requests.get(url)

if r.status code == 0-l:

temp_sleep(url)

42

elif r.status code == 200:

return r

def main():

stats()

if name

main()

main '·

43

8.1.3 PasswordMeter.com - Stats Generator

fi

import sys

from pyvirtualdisplay import Display

from splinter import Browser

#labels

WEAK= I

MEDIUM = 2

STRONG = 3

VERYSTRONG = 4

def stats():

display = Display(visible=O, size=(&Oll, 6ilU))

display.start()

ti lename = sys.argv[I]

pf = open(filename,'r')

count = {'VWcount':O, 'Wcount':0, 'Gcount':0, 'Scount':0, 'VScount':O, 'Unicode':O}

browser = Browser('firefox')

fi leurl = "file:/ /path/to/pass\\ ordmeter.htm I"

browser. visit(fi leurl)

for p'wd in pf.readlines():

pwd = pwd.rstrip()

44

if not pwd:

continue

pwdtype = is_ascii(pwd)

if pwdtype:

browser.ti I l('pasS\\ ordP\, d',pwd)

result= browser.find_by_id('complexity').value

if result == 'Ver) Weak':

count['VWcount'] +=

elif result== 'Weak':

count['Wcount'] += I

elifresult == 'Good':

count['Gcount'] += J

elif result== 'Strong':

count['Scount'] +=

elif result== 'Strong':

count['VScount'] +=

print pwd+" : "+ result

print count

else:

count['U nicode']+=

print count

browser.quit()

display.stop()

45

print "--------------Fina 1------------------------"

print count

def is_ascii(pwd):

return all(ord(c) < 128 for c in pwd)

def main():

stats()

if name ==' main

main()

46

8.1.4 Password Database - Stats Generator (CommonDB)

/1\I {'/Ii ('/11 f'\ //if,//

'1(///l < t1/f-"i - -

from _future_ import division

from warnings import filterwarnings

import ConfigParser

import argparse

import hashlib

import os

import sys

import MySQLdb

,11 I II

filterwarnings('ignore', category=MySQLdb. Warning)

def crackability _db(infile, dbcreds):

ef = open('/var/wwv\ /bootstraplstatistics/entries.csv', 'a')

fif = open('foundinfile.txt', 'a')

leaknarne = infile.split(".")[C]

hashtype = infile.split(".")[1]

datevalue = int(infi le.spl it("_")[2].spl it(". ")[O])

if hashtype == 'plaintext':

hashtype = 'md5'

47

,I l1J11)f /11,11 'hdJl'..1'/ f/1.) f/t J..·11)(.r ll\'1,, (/ tr,,111 1,u,I

db = MySQLdb.connect(dbcreds[O], dbcreds[l], dbcreds[2])

(·,., 111n1, J, ,,r"J, of,,e,._ I

cur = db.cursor()

try:

\(: c.f,Jf, J 1,1r ,I, ,, f1J t fl1t /Ju,,·1 ,,rel,/-, 11,11, f

db.select_ db(hashtype)

(\'/ll ,11 lilt

11,,, ,_1·.1111t

query = "SELECT table_name FROM INFORMATION_SCHEMA.T ABLES WHERE

TABLE_SCHEMA = 'o/os"' % hashtype

cur.execute(query)

tables = []

for table in cur.fetchall():

print leakname, table[']

if table[O] in leakname:

print "table in leak.name"

continue

tab I es.append(tab I e [0])

print tables

crackcount, hashcount = 0, 0

with open(infile, 'r') as cf:

for hash in cf:

(•(If

((

48

hash= hash.rstrip()

hashcount += I

for table in tables:

If 1111(1.Jh/c \f1///t "i(}j, Jc1h \ elf/I,

query= "SELECT hashvalue FROM o/os WHERE hashvalue = 'o/os' LIMIT I"% (

table, hash)

res_rows = int(cur.execute(query))

if res rows == I :

print query

crackcount += I

break

elif res rows == 0:

continue

print "=="

print "Final:", crackcount, hashcount

crackability = (crackcount / hashcount) * 00

print crackabi I ity

print leak name + ": " + str(crackabi I ity)

entry = leakname + "." + \

str(crackcount) + "." + str(hashcount) + \

"." + str(crackability) + "\n"

ef. write(entry)

print "Completed"

print ''===============---------=================="

except:

print "Error!"

def main():

49

,11 .1!11111, 11/\ ,,,,,,,,,

parser = argparse.ArgumentParser(

description='Import pass\rnrd dictionaries or leaks into the paSS\\Ord database')

parser.add_ argument(

'-d', '--diet', help='pasrnord dictionar) filename (absolute path if not in current director))')

args = \ ars(parser.parse _ args())

infilename = args['dict']

11t!.l111! . JI,

config = ConfigParser.ConfigParser()

config.read("conf/importer.conf')

host = config.get('dbaccess', 'dbhost')

user = config.get('dbaccess', 'dbuser')

pwd = config.get('dbaccess', 'dbpass')

dbcreds = [host, user, pwd]

crackabil ity _db(infi lename, dbcreds)

if name

main()

main

50

8.1.S Crackstation Dictionary - Stats Generator (CrackstationDB)

?php

xdebug_ disable();
error _reporti ng(O);
require_once('LookupTable.php');

$file=fopen($argv[J], "r");
$stats_file = "stats.txt";

$md5 = new LookupTable("crackstation-mdS.idx", "crackstation.txt", "md5");
$total = O;
$count = O;

while(!feotr$file))
{

}

$each pwd = fgets($file);
Seach_pw d = trim ($each_p\\ d);
$total = $total + I;

Sto_crack = md5($each_pwd);

$result= $md5->crack($to _ crack);

if ($result !== FALSE) {
$count = $count + I ;
echo "Cracked: ". $result[] . " Count:". $count." Total:". $total. "\n";

fclose($file);
$crack _percentage = ($count/$total) * I OfJ;
$crack_percentage = round($crack_percentage, 2);
$result_final =

''======-==============================Final============================

Password File: $argv[1]
Total Cracked Count: $count
Total pasS\\Ords in $argv[l]: $total
Percentage Cracked: $crack_percentage

"·
'

print $result_final;
file put contents($stats_file, $result_final, FJLE_APPEND I LOCK_EX);

,, ... >

51

8.1.6 Harvester for Datalossdb

It \f /· i11. II' J 1 ,/,, 1/1

L, 1 li11l' ltl/

from _future_ import division

from datetime import datetime

from math import ceil

from mechanize import Browser

import bs4

import re

fl'jl('I 1 (. Jf)/(1 ._

ll/1J 1/1//>/-' I

urls = {'dbloss':

'http://datalossdb.org/search?data _ t) pe%5 8%5 D=P'A D&d i rection=asc&order=reported _date'}

target_file = open('datalossdb_urls.list', 'a+')

111t11,::e ,,, ,n

b = Browser()

b.set_handle_robots(\�)

b.addheaders = [('User-agent', 'Mozilla/5.0 (X 11: U: \

Linux i686: en-US: rv: 1.9.0. I)\

Gecko/2008071615 Fedora/3.0. I- I .fc9 Firefox/3.0. I')]

•A I ti/I

1,1

b.open(' https ://data I ossd b.org/sess ions/new')

52

b.select_form(nr=O)

b['login'] = 'tarunmadiraju'

b['paSS\\Ord'] = \\c*Y9 I phR5j31MeZ/\8mv'

b.submit()

L /r1, , /i/111/ 1 t Ir i, \'• I /i,.�/ n,1

response = b.open(urls['dbloss'])

soup = bs4.Beautifu1Soup(response.read())

lie /t/(',//1 f1 ()/1/ fill I

def get_first(total_incidents):

print "get_first", total_incidents

pages = int(ceil(total_incidents I 20))

print pages

ra_input("Continue 5?")

n 't cJ ,t t/u 1'11 [J

for page in ,range(I, pages + I):

page_url = 11 { pwd_base_url l &page= 1 page]\

I]

". format(pwd _ base _url=urls['dbloss'], page=page)

page _response = b.open(page _ url)

soup_in = bs4.Beautifu1Soup(page_response.read())

RI\ I , th, fll///'i'/ f

for each in soup_in.find_all('a'):

if "/incidents/" in each['href]:

target_file. write("http://datalossdb.org/ (incident_ url J"

. format(i ncident_ url=each['href]))

target_fi le. write("\n")

53

/ii/ill/

print" Harvesting Summary = : date) : : incidents)" \

.format(date=datetime.now().strftime('% Y%m%d'), incidents=new _count)

target_file. write(" Entr) = l date} : : incidents)"

. format(date=datetime.now().strftime('% Y%m%d'),

incidents=total_incidents))

target_fi I e. write("\n\n")

target_ftle.close()

def get_ new(ne� _ count, old_ count):

pages_from = int(ceil(old_count / 2))

pages_to = int(ceil(new_count / 20))

(,ti!.!,, ,,,1111'1' f)

for page in \.range(pages_from, pages_to +):

page_url = " (p\, d_base_url l &page= : page]\

".format(pwd _base_ url=urls['dbloss'], page=page)

page _response = b.open(page _ url)

soup _in = bs4. Beauti fu I Soup(page _response.read())

l iht I RL

for each in soup_in.find_all('a'):

if" incidents/" in each['href]:

target_fi le. write("http://datalossdb.org/ { incident_ url l"

. format(i ncident_ url=each ['href]))

target_ft le. write("\n ")

54

target_fi le. write("\n")

lr,/)(/Id /),JJ', C \///),!, \[///7/1/,// \

print "Harvesting Summar) = (date l : (incidents J" \

. format(date=datetime.now().strftime('o/o Y%m%d'), incidents=new _ count)

target_file.write("Entry = (dateJ : {incidents}"

.format(date=datetime.now().strftime('o/o Yo/omo/od'),

incidents=new _ count))

target_ ti le. write("\n\n ")

target_ fi I e.c I ose()

def main():

I ,1,J/ /1////1 rd ()/ 7/1

for each_span_tag in soup.tindAll('span'):

if "Displa) ing Incident" in each_span_tag.text:

current_incident_count = int(

each _span _tag.tindChi ldren('b')[I].text)

It ,,, (/1"/(\ u

target_tile.seek(O, 0)

file_data = target_tile.read()

entries = re.findall(r'Entr) = .*', tile_data)

print"[+] Incidents harvested previous!) : (entries) ".format(entries=entries)

11

if entries:

old_incident_count = int(entries[-1].split(":")[])

diff = current incident count - old incident count

if diff:

- - - -

55

print"(+] Nev. incidents added. Difference:", diff

get_new(current_incident_ count, old _incident_ count)

else:

print"[+] No nev, paSS\,\Ord incidents"

elif not entries:

get_ ft rst(current_i ncident_ count)

if name

main()

main

•

56

8.1.7 Harvester for Twitter

,,�, I· 111 c II' j \ 111, }/

import codecs

import sys

import tweepy

1.,liJ t£!1111ir, ,I J.:

CONSUMER KEY = "--"

CONSUMER SECRET = "--"

ACCESS KEY="--"

ACCESS SECRET="--"

I

auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)

auth.set_access_token(ACCESS_KEY, ACCESS_SECRET)

api = tweepy.APl(auth)

def get_accounts():

accounts = {}

\t I

friends = api.get_user('P,\ nMagic').friends()

for friend in friends:

accounts[friend.screen_name] = friend.id

return accounts

57

't 1/ !1< /' I,• �'<'I\

deftweets(account, tt):

/J\/ IJT TY lf)I\

tweets_ all = []

{\, "/11 /'Ill/\

tweets_ al I.append(api. user_ ti mel i ne(id=account, count=200))

\I, 11,t1L! II'/ (;,, /

/'1 uJA«J {cl 5 I{\ 'L'/\ ,i,· l l

request = 0

while request< 18:

maxid = tweets_all[request].since_id

tweets_ all.append(

api.user _timeline(id=account, count=2011, max _id=maxid))

request+= l

if maxid == tweets_all[request].since_id:

break

tf.write("== (ace l ==\n".format(acc=account))

for tweets in tweets all:

for tweet in tweets:

tf. write(u' (t\\ eetl '.format(tweet=tweet.text))

tf.write("== End of (ace) ==\n".format(acc=account))

tf.write("\n\n")

I

58

!'r,,u,1,1,l ,,f fifh /' il,17< 1,11/1 i11l /,,tfc I

Ill

#PastebinLeaks Specific Filter

for tv\ eets in tv\ eets a II:

for tv\eet in tweets:

if any(i in tv, eet.text for i in ['pass'. 'passv\ ord']):

print"[+] Passv\ord leak:". tv,eet.text

else:

#print"[-] Other leak:". t\,eet.text

pass

def main():

11'<1" !', ,,\f

accounts = get_ accounts()

tf= codecs.open('tv\eets_file.txt', \,', 'utf-8')

IL\ L /11 (t /S Uf />,, II \f ,<T

for account in accounts:

tweets(account, tf)

if name ==' main

main()

- -

59

8.1.8 Harvester for Sku11Security

/{\/ hi11 di\ 1111h,1,,

- - c't)(/il/� 1/f/-i'\

import bs4

from mechanize import Browser

de ftlll' I 'Rl

urls = {'skul !security': 'http://downloads.skullsecurit).org/passwords/'}

target_tile = open('skullsecurity_ urls. I ist', 'w')

/1111

br = Browser()

br.set_handle_robots()

br.addheaders = [

('User-agent', 'Mozilla/5.0 (X 11: U: Linux i686: en-US: rv: 1.9.0. I) Gecko/20080716 I 5 Fedora/3.0. J­

l .fc9 Firefox/3.0. I')]

1't.ltlL\f l cf\1/c

response = br.open(urls['skullsecurit) '])

soup = bs4.Beautifu1Soup(response.read())

Ir IL\ t /1L1\S ••,,,.,I t,f

for each in soup.find_all('a'):

if"/" not in each.string:

target_ ti le. write(each.string)

target_fi le. write("\n")

60

	Dictionary Attacks and Password Selection
	Recommended Citation

	Page_001
	Page_002
	Page_003
	Page_004
	Page_005
	Page_006
	Page_007
	Page_008
	Page_009
	Page_010
	Page_011
	Page_012
	Page_013
	Page_014
	Page_015
	Page_016
	Page_017
	Page_018
	Page_019
	Page_020
	Page_021
	Page_022
	Page_023
	Page_024
	Page_025
	Page_026
	Page_027
	Page_028
	Page_029
	Page_030
	Page_031
	Page_032
	Page_033
	Page_034
	Page_035
	Page_036
	Page_037
	Page_038
	Page_039
	Page_040
	Page_041
	Page_042
	Page_043
	Page_044
	Page_045
	Page_046
	Page_047
	Page_048
	Page_049
	Page_050
	Page_051
	Page_052
	Page_053
	Page_054
	Page_055
	Page_056
	Page_057
	Page_058
	Page_059
	Page_060
	Page_i
	Page_ii
	Page_iii
	Page_iv
	Page_v
	Page_vi

