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Abstract 

 

Nearly 100,000 heart valve replacements or repairs are performed in the US every year. 

Mathematical models of heart valves are used to improve artificial valve design and to guide surgeons 

performing valve-repairing surgeries. Models can be used to define the geometry of a valve, predict blood 

flow dynamics, or demonstrate operating mechanisms of the valve. 

 In this thesis we reviewed features that are typically considered when developing a model 

of a heart valve. The main modeling methods include representing a heart valve using lumped parameters, 

finite elements, or isogeometric elements. Examples of a lumped-parameter model and isogeometric 

analysis are explored. First, we developed a simulation for the lumped-parameter model of Virag and 

Lulić, and we demonstrated its ability to capture the dynamical behavior of blood pressures, volumes, and 

flows in the aortic valve region. A Newton-Krylov method was used to estimate periodic solution 

trajectories, which provide a basis for examining the response to perturbations about initial conditions. 

Next, an isogeometric model of a heart valve was constructed based on NURBS geometry. The 

mechanical stiffness of the valve was computed. We discussed how the isogeometric representation could 

be used in a more complex fluid-structure interaction model to measure surface shear and estimate fatigue 

failure. 
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1 Statistics of Heart Valve Replacement and Repair 

Heart valve replacement and heart valve repair are procedures used to remedy complications from 

congenital and acquired heart valve diseases. According to the Heart Disease and Stroke Statistics 2016 

Update from the American Heart Association (AHA) [32], 2.5% of the population is affected by valvular 

heart disease. The 2016 Society of Thoracic Surgeons (STS) Adult Cardiac Surgery Database [44] 

summary reveals that in 2015, over 72,000 valve replacement procedures were performed in the US. 

These procedures involved the aortic valve (69%), mitral valve (16%), tricuspid valve (14%), and 

pulmonary valve (less than 1%).  Another 12,792 procedures were performed to repair the mitral valve. 

The database further reveals that the number of procedures has been consistent over the past ten years. 

2 Uses of Heart Valve Mathematical Models 

Mathematical models of heart valves can be used as a diagnostic tool to provide data on 

physiological parameters that are difficult to measure. They can be used to produce better artificial valves 

by predicting changes in dynamic blood flow and valve motion with design changes. Researchers can also 

easily adjust model parameters and deduce mechanisms that control valvular function. Models have been 

used to determine the correct size of an implanted bioprosthetic valve. More recent advances in imaging a 

patient’s specific heart valve allow cardiac surgeons to simulate blood flow dynamic outcomes for 

surgical repairs. 

3 Heart Valve Physiology 

Heart valves regulate the flow of blood from the chambers of the heart. The human heart has four 

chambers. Circulating blood returning to the heart collects in an atrium and is pumped from the heart by a 

ventricle. The right atrium and right ventricle transport unoxygenated blood returning from the peripheral 

circulation to the lungs, and the left atrium and left ventricle transport oxygenated blood returning from 

the pulmonary system back to the periphery where oxygen is delivered to the cells.  

Electrical impulses in the cardiac muscle initiate coordinated contractions of the chamber walls. 

The blood fluid pressure changes as the chamber contracts or expands. The heart valves open and close in 

response to pressure gradients that develop across them.  

The tricuspid valve separates the right atrium and right ventricle. The mitral valve separates the 

left atrium and left ventricle. The pulmonary valve releases blood from the right ventricle into the 

pulmonary artery, and the aortic valve releases blood from the left ventricle into the aorta. Figure 1 shows 
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each valve and the nomenclature of each leaflet. Generally, the mitral valve has two leaflets with one 

leaflet having three scalloped edges. Each of other three valves typically has three leaflets. Morphologies 

vary between people and change with degradation due to age or disease, and the number of leaflets may 

be ambiguous since the free edge of the leaflets may be irregular in shape forming extra scalloped ridges. 

 

The two atrioventricular valves, the tricuspid and mitral valves, have common characteristics 

although the pressure of the circulating blood on the right side of the heart is substantially lower than on 

the left side of the heart. These valves consist of an annulus, leaflets, and tendinous anchoring cords. The 

annulus is non-planar, and its shape changes significantly through the cardiac cycle. The annulus forms a 

base for the valve’s leaflets. The leaflets are made of several layers of fibrous tissue. The lamina 

spongiosa layer carries the mechanical load and has sensory and autonomic nerves that contribute to 

forming the curvature of the leaflet’s arterial side. Papillary muscles within the ventricular wall anchor the 

leaflets to the heart. Tendinous cords extending from the muscles connect to the leaflet on the ventricular 

side of the valve. The tendinous cords prevent the leaflets from prolapsing into the atrium. Each cord has 

an elastic collagen core that supports mechanical load during systole and relaxes into a wavy 

configuration during diastole. The cords attach to the leaflet along its entire length. The cords that tether 

the annulus are called the basal cords. Those that attach along the ventricular side of the valve are the strut 

cords, and the bifurcating cords that attach to the free edge of the leaflet are the fan cords. 

Semilunar valve is a common name for a pulmonary or aortic valve. These valves recede into 

sinuses in the arterial wall as the leaflets open during systole to allow unobstructed blood flow. The valve 

Figure 1: Valve leaflet names using modern attitudinally correct nomenclature (Individual drawings are 

not to scale)    

Heart Valves by Springer US. Reproduced with permission of Springer US in the format 
Thesis/Dissertation via Copyright Clearance Center. 
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closes when the fluid pressure in the ventricles falls lower than the arterial pressure. The valves seal along 

commissures, which are fibrous areas. Each leaflet has excess tissue along its length beyond the 

commissures. These free edges are thinner than the commissures and ensure competency of the valve 

without the tendinous cords tethers like in the atrioventricular valves.  

 Valves have two failure scenarios. If the valve fails to open fully (i.e., stenosis), the effective 

orifice area of the valve is reduced. Clinical conditions that cause stenosis are stiffening of the leaflet due 

to calcification or fusion of commissures. If the valve fails to close (i.e., incompetence of the leaflet 

contact to seal), blood flow regurgitates back through the valve, making the heart work harder. 

 Replacement valves are either mechanical or bioprosthetic. Mechanical valves are made from a 

durable material, and they typically have a ball and cage or a tilted disk configuration. Thrombosis can 

results from the altered hemodynamics and material biocompatibility issues. Bioprosthetic valves are 

made of synthetic plastic, treated human or animal tissue, or a homograph from the patient’s own tissue. 

Bioprosthetic valves degrade faster than the original valve, but they operate more naturally and require 

less anticoagulation therapy than with a mechanical valve [16].  

4 Features of a Heart Valve Mathematical Model 

The following topics are typically considered when developing a mathematical model of a heart 

valve. 

Select Modeling Approach 

The system modeling approach is typically finite element, isogeometric, or lumped parameter. 

Each has advantages and limitations related to the type of output, required amount of computational 

resources, and availability in commercial software. 

Finite element models partition the object into a network of meshed elements or volumes and 

allow partial differential equations to be solved across the mesh. This method is widely available in 

commercial software, and many options are available for static or dynamic analyses. The stress 

distribution in a static analysis can reveal sites of calcification build-up or of fracture. Halevi [12] 

modeled an aortic valve with a superimposed image of calcification from a CT scan and predicted the 

reduction in aortic area due to stiffening of the calcification arrangement. Dynamic analyses animate the 

valve and show valve dynamics. The boundary conditions for pressure and flow are prescribed, or 

hemodynamics can be added to model physiologic blood parameters and flow patterns in the circulating 

blood. 
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Isogeometric models define geometry with techniques such as Non-uniform rational B-splines 

(NURBS) and generate a solution on the geometry without using an internal mesh as with finite elements 

[5]. Modeling biological membranes has been a primary application. Better accuracy can be attained on 

thin boundary layers between structures and moving fluids such as shear stress at the surface of valves 

since the solution is analyzed on the exact geometry. The solution can converge with fewer nodes than 

with finite element analysis [31]. In addition time-consuming mesh generating techniques are not needed, 

and many mesh-locking difficulties are avoided. The NURBS surface can be refined locally by using 

T-splines [15][20]. Few commercially-available packages have any isogeometric capability. 

Lumped parameter systems simplify the analysis of complex systems by combining effects of 

subsystems and then applying physics-based relationships between the subsystems. This model requires 

the least computational resources because it is typically less complex than finite element and isogeometric 

models. The valve opening and closing dynamics is prescribed by the position of the leaflets (e.g., angle 

or volume swept by the leaflets.) Virag [39] developed a model that considered the ventricle, aortic valve, 

aorta, and periphery and produced hemodynamic results near an aortic valve. The pressure waveform 

showed physiologically correct features such as a dicrotic notch. Aboelkasssem [1] expanded the model 

to include vortices in sinuses. Korakianitis [21] modeled the full circulatory system including all four 

heart valves and included the ability to consider hemodynamics and valve dynamics with aortic stenosis 

and aortic regurgitation. The lumped parameter system can also be used to define pressure and flow 

boundary conditions for finite element or isogeometric models. Le [24] studied a finite element model of 

a bi-leaflet aortic prosthetic valve driven by a lumped parameter model of the left ventricle. 

Capture Complex Geometry or Patient-specific Geometry  

Imaging data can isolate patient-specific geometry, capturing its inherent irregularities and 

pathologies. Morganti [31] compiled data from CT images of the sinuses and from ultrasound images of 

the leaflet free edge and constructed a patient-specific valve by fitting a NURBS with a least square 

fitting technique. However, accurate modeling is limited by obtaining accurate dimensions. The valve 

experiences dimensional changes over the cardiac cycle [37]. The sinus diameter has the most significant 

change. The diameter at the ventricular outlet does not vary significantly, but the diameter of the aortic 

root changes. The height of the valve from attachment at the aortic root to top of commissure attachment 

does not vary. The length of the free edge increases slightly with pressure, and the coapt length, which is 

the length closed leaflets are in contact in the radial direction, decreases with pressure. The leaflet 

thickness thins. 

Several geometric models of heart valves have been pursued to identify and quantify dimensions 

needed to develop simplified models. These models are typically defined by a few parameters. Haj-Ali 
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[11] determined parametric equations to represent a 3D model of a closed tri-leaflet aortic valve with 

sinuses. The model is scalable by the aortic root diameter, and its shape can be varied by fitting in vivo 

imaging data points to shaping parameters in the equations. Labrosse [23] determined the relationship 

between five dimensional parameters to produce a properly-sealing aortic valve. The model suggests 

dimensional guidelines for valve replacement and repair, and it also provides criteria for bounds on finite 

element input parameters to create a physiologic-shaped valve that does not prolapse.  

The attachment at the aortic root has been assumed to be an ellipse [37], parabola [29], or circle 

[11][37]. A detailed study of the line of attachment by Grousson [10] concluded that the curves are 

non-planar with an elliptical axial-projection and a parabolic transverse-projection. Also the leaflet 

attachments are asymmetric. The right coronary leaflet is the flattest, and the left coronary leaflet has the 

most curvature.  

The load-bearing surface has been assumed to be cylindrical [37] [23]. The dimensions were 

assumed to be fixed through the cardiac cycle, and the plane at the aortic diameter and the plane at the 

commissure diameter were assumed to be parallel. The cylindrical surface of the open leaflet flips around 

the commissure attachment line plane, and a reflected cylindrical surface is formed to support the load. 

Ma [26] concluded that the aortic leaflet of the mitral valve was convex to the left ventricle near the 

annulus and concave near the free edge. The surface was also assumed to be a semi-paraboloid in another 

study [29]. 

Simplify Symmetric Geometry 

In most models leaflet symmetry is assumed, and only one leaflet or one-half of the leaflet is 

modeled to reduce computation time. Models that consider hemodynamic differences when the valves do 

not coapt centrally need to include at least two adjacent leaflets [34]. One leaflet can close faster if an 

asymmetric retrograde blood flow is directed towards it [24]. Asymmetric vortices contributed to higher 

flow shear stress on the leaflets of asymmetric bicuspid aortic valves, a congenital disorder known to have 

a high incidence of stenosis due to calcification [28]. Modeling patient-specific valves from imaging data 

are inherently asymmetric and need to include all leaflets. 

Include Leaflet Thickness 

The leaflet can be modeled as a 2D shell or 3D object with a small thickness. Most models use a 

simplified shell with a Kirchhoff–Love method where the thickness remains normal to the 2D plate 

surface as it deforms. Ma [26] modeled a mitral valve and found that the simulated valve motion matched 

MRI data better when the mural and aortic leaflets were given different thicknesses.  



 

Page 6 of 30 

Arrange Leaflet Fiber Orientation 

Fibers are important load-bearing structures within the leaflets. The fibers are arranged 

non-uniformly, but stained samples show a tendency to align slanted downward toward the leaflet’s 

mid-line on both sides of the leaflet, especially on areas closer to the free edge. As the fibers stretch to 

support load on the closed valve, the fibers become parallel to the free edge. A finite element simulation 

performed by Hammer [13] comparing the slanted fibers to a simplified model of circumferential fibers 

showed a 40% increase in the centrally coapted length. This was due to a greater curvature near the 

coapted surface and tissue compression towards the leaflet’s mid-line. 

Refine Model with Fluid-Structure Interaction 

Fluid-structure interaction models couple fluid hemodynamics to structural stress. The model 

considers the elasticity and transverse stretching of the blood vessels and sinuses as the blood flow 

pulsates. A more accurate stress distribution across the leaflet is determined when hemodynamics that 

include vortices behind the leaflets [42] and turbulent flow are added to the model.  

One of two solvers are typically used to solve fluid-structure interaction problems with heart 

valves. The immersed boundary method (IB), developed by Peskin in 1972, superimposes an elastic curve 

(referred to as a fiber) over a fixed mesh where fluid flows through an Eulerian reference frame. 

Navier-Stokes equations govern the fluid equations, and a traction force is applied to the curve to simulate 

the shear force transmitted by the fluid. The Arbitrary Lagrangian-Eulerian method (ALE) uses a 

Lagrangian reference frame for the solid structure and an Eulerian reference frame for the fluid. 

Computations are performed after mapping both constituents into a third reference frame where the 

surface has a no-slip condition with equal velocities. In finite element programs this technique requires a 

deformable mesh or updating of the mesh at each time step. Most heart valve models are based on IB. 

ALE has been used to model the blood vessels [43] and venous valves [4]. A comparison of IB and ALE 

for modeling heart valves concluded that the ALE approach was infeasible due to its inability to handle 

large mesh displacements [2]. 

Select Material Model 

The material model governs how the material deforms from applied loads. Most models use a 

hyperelastic constituent model, which defines a nonlinear relationship between stress (a measure of 

amount of applied force per area) to strain (a measure of deformation of the material or stretching) based 

on a strain energy density. The modulus of elasticity of the leaflet is non-linear due to the circumferential 

wavy tendon fibers that initially unravel when stretched [37]. There are several hyperelastic models. 

St. Venant–Kirchhoff model is an isotropic hyperelastic model.  For anisotropic models mechanical 
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properties differ in the leaflet’s three principal directions. Mooney-Rivlin, May, Newman-Yin, and 

Gasser-Ogden-Holzapfel are anisotropic models. Tepole [38] evaluated the effect of including anisotropy 

in the material model of an inflated isogeometric-modeled membrane with fixed edges, and he found 

better agreement with experimental results of physical models than with an isotropic model. Saleeb [34] 

found more accurate valve motion with an anisotropic model. 

5 NURBS Primer 

Non-uniform rational B-splines (NURBS) form a mathematical representation of a shape 

[5][8][33].The shape can be a curve, surface, volume, or higher-dimensional solid. NURBS are composed 

of rational B-splines and are defined by de Boor control points, their weights and a set of basis functions. 

NURBS equations are given in Equations (1)-(4) below. NURBS are useful because they form exact 

conical shapes as well as free form shapes. The NURBS derivatives are easily calculated and can be 

easily manipulated, which makes it easy to create continuous smooth surfaces and to seamlessly combine 

NURBS patches together. More elaborate shapes can also be formed by revolving or sweeping a NURBS 

(e.g., creating a surface from a swept or revolved NURBS curve). 

𝑁𝑁𝑖𝑖,0(𝜉𝜉) = �1
  𝑖𝑖𝑖𝑖 𝜉𝜉𝑖𝑖 ≤ 𝜉𝜉 < 𝜉𝜉𝑖𝑖+1

0            𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
                                                                                                        (1) 

𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉) =
𝜉𝜉 − 𝜉𝜉𝑖𝑖
𝜉𝜉𝑖𝑖+𝑝𝑝 − 𝜉𝜉𝑖𝑖

𝑁𝑁𝑖𝑖,𝑝𝑝−1(𝜉𝜉) +
𝜉𝜉𝑖𝑖+𝑝𝑝+1 − 𝜉𝜉
𝜉𝜉𝑖𝑖+𝑝𝑝+1 − 𝜉𝜉𝑖𝑖+1

𝑁𝑁𝑖𝑖+1,𝑝𝑝−1(𝜉𝜉)                                                      (2) 

𝑅𝑅(𝑖𝑖)
𝑝𝑝 (𝜉𝜉) =

 𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉) 𝑤𝑤𝑖𝑖

� 𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉)  𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 
                                                                                                          (3𝑎𝑎) 

𝐶𝐶(𝜉𝜉) =  �𝑅𝑅(𝑖𝑖)
𝑝𝑝 (𝜉𝜉)  𝑃𝑃𝑖𝑖

𝑛𝑛

𝑖𝑖=1

                                                                                                                     (3𝑏𝑏) 

𝑅𝑅(𝑖𝑖,𝑗𝑗,𝑘𝑘)
𝑝𝑝,𝑞𝑞,𝑟𝑟 (𝜉𝜉, 𝜂𝜂,𝜑𝜑) =

𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉) 𝑀𝑀𝑗𝑗,𝑞𝑞(𝜂𝜂) 𝐿𝐿𝑘𝑘,𝑟𝑟(𝜑𝜑)𝑤𝑤𝑖𝑖,𝑗𝑗,𝑘𝑘

∑ ∑ ∑ 𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉) 𝑀𝑀𝑗𝑗,𝑞𝑞(𝜂𝜂)𝑁𝑁𝑘𝑘,𝑟𝑟(𝜑𝜑)  𝑤𝑤𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑙𝑙
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

                                               (4𝑎𝑎)                                                             

  𝑉𝑉(𝜉𝜉,𝜂𝜂,𝜑𝜑) = � � � 𝑅𝑅(𝑖𝑖,𝑗𝑗,𝑘𝑘)
𝑝𝑝,𝑞𝑞,𝑟𝑟 (𝜉𝜉,𝜂𝜂,𝜑𝜑)  𝑃𝑃𝑖𝑖,𝑗𝑗,𝑘𝑘                                                       

𝑙𝑙

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
(4𝑏𝑏)  

𝑖𝑖 [𝑗𝑗, 𝑘𝑘]:𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜉𝜉 [𝜂𝜂,𝜑𝜑]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 1 𝑡𝑡𝑡𝑡 𝑛𝑛 + 𝑝𝑝 + 1  [𝑚𝑚 + 𝑞𝑞 + 1, 𝑙𝑙 + 𝑟𝑟 + 1] 

𝑝𝑝 [𝑞𝑞, 𝑟𝑟]: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 1 𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  

𝜉𝜉𝑖𝑖  �𝜂𝜂𝑗𝑗 ,𝜑𝜑𝑘𝑘�:𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝜉𝜉 [𝜂𝜂,𝜑𝜑]  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
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𝜉𝜉 [𝜂𝜂,𝜑𝜑]: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜉𝜉 [𝜂𝜂,𝜑𝜑] 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

𝑁𝑁[𝑀𝑀, 𝐿𝐿]: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜉𝜉 [𝜂𝜂,𝜑𝜑] 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑛𝑛  

𝑛𝑛 [𝑚𝑚, 𝑙𝑙]: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜉𝜉 [𝜂𝜂,𝜑𝜑] 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

𝑃𝑃𝑖𝑖  𝑜𝑜𝑜𝑜 𝑃𝑃𝑖𝑖,𝑗𝑗,𝑘𝑘: 3𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝 

𝑤𝑤(𝑖𝑖) 𝑜𝑜𝑜𝑜 𝑤𝑤(𝑖𝑖,𝑗𝑗,𝑘𝑘): 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝐶𝐶(𝜉𝜉): 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 𝑅𝑅�𝑖𝑖�
𝑝𝑝
�𝜉𝜉�:𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑅𝑅(𝑖𝑖,𝑗𝑗,𝑘𝑘)
𝑝𝑝,𝑞𝑞,𝑟𝑟 (𝜉𝜉, 𝜂𝜂,𝜑𝜑): 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑡𝑡𝑟𝑟𝑟𝑟-𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

𝑉𝑉(𝜉𝜉,𝜂𝜂,𝜑𝜑): 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 

Each point on the NURBS is a weighted linear combination of the control point coordinates. The 

dimension of the control point coordinates determines the dimension of the space where the NURBS 

resides. For instance, if a NURBS curve is determined by a set of control points with three coordinates, 

the curve lies in three dimensional space. A property of NURBS is that its shape is bounded by a polygon 

formed by the control points. The bounding polygon is called a convex hull for 2D and a control mesh for 

3D. A similar NURBS property is the variation diminishing property, which exists for NURBS curves but 

is not scalable to higher dimensions, and hence the property is not seen in NURBS surfaces or NURBS 

volumes. The variation diminishing property states that a plane intersects a NURBS curve no more times 

than it intersects its control polygon.  

The control point weights determine the affinity of the points on the NURBS to the control 

points. A higher weight draws the NURBS closer to a control point. Sometimes the weights are 

interpreted as an additional dimension to the control point coordinates. Pictorially the final NURBS form 

can be seen as a projection of a B-spline computed with weighted coordinates onto a one degree lower 

dimension. 

NURBS basis functions are defined by the Cox-de Boor recursion formula given in equations (1) 

and (2). They are generated from two variables: an order (𝑝𝑝) and a knot vector sequence (𝜉𝜉). Higher order 

basis functions are formed from a linear combination of lower order basis functions.  

The order of the basis function determines how many neighboring control points contribute to the 

support of the bases function. A second-order bases is supported by three adjacent control points. The 

support is always one greater than the order. Each set of basis functions for a given order conforms to the 

partition of unity; therefore each basis function is a coefficient in the linear combination to define the 
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NURBS. The shape of NURBS can be adjusted locally without changing its overall shape due to the basis 

function properties of local support and partition of unity. 

The knot vector is a non-decreasing set of numbers that define how the parametric space is 

partitioned. The basis functions map this parametric space into physical space. Each dimension of 

parametric space has a knot vector. Hence, a univariate NURBS curve has one knot vector. A bi-variate 

NURBS surface has two knot vectors, and a tri-variate NURBS volume has three knot vectors. A knot 

vector is called open when its initial and final elements have multiplicity equal to one greater than the 

order of the basis function. Open knots create NURBS whose end or corner points coincide with control 

points. For bi-variate NURBS or higher, the boundary of the NURBS is a NURBS that has one less 

dimension (i.e., the boundary of a NURBS surface is a NURBS curve). The total number of knots must be 

equal to the sum of the control points and order. However, as specified in the NURBS acronym, knot 

vector elements do not need to be uniformly spaced. Non-uniformity and multiplicity of knots affects how 

the control point coordinates contribute to the NURBS shape, and the order of the basis function and 

multiplicity of the knots determine the continuity of the surface and its derivatives at the knots. 

NURBS can be refined by increasing the order of the basis function or by adding additional 

knots. Adding knots increases the number of basis functions but keeps the continuity of NURBS. Order 

elevation increases the continuity of higher derivatives but has a lower increase in basis functions than 

with knot insertion. Refinement is done globally and cannot be performed locally on a patch, and 

refinement is not able to produce a “water-tight” geometry. 

6 Example Model 1: Lumped Parameter 

Motivation for the Model 

We investigated a lumped parameter model and verified that it captures the cyclic behavior of the 

blood pressure, flow rates, and volumes associated with a portion of the circulatory system that includes 

the aortic valve and left ventricle. A Newton-Krylov method was used to estimate periodic solution 

trajectories of the model, which provide a basis for examining the response to perturbations about initial 

conditions.  

Methods 

The lumped parameter model is based on the heart valve model by Virag and Lulić [39]. It 

consists of a chamber for the left ventricle, leaflets with a prescribed opening and closing time delay, a 

chamber for the arterial system, and peripheral capillary resistance. The variables used in the model are 

described in Table 1. The leaflet dynamics and leaflet flow function, QL, are shown in Table 2. The leaflet 
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dynamics are modeled as a conic section of varying volume. The flow of the leaflets, QL, is a continuous 

piecewise function that is divided into seven segment over the cardiac cycle. The function passes to 

consecutive segments as a pressure or leaflet volume criterion is met. The model equations are given in 

(5)-(12). The left ventricle pressure drives the system and is a linear combination of systolic and diastolic 

pressure (5), and the coefficients of the linear combination are defined by an interpolation function shown 

in Figure 2.  

𝑝𝑝𝐿𝐿𝐿𝐿 =  𝛼𝛼(𝑡𝑡)𝑝𝑝𝑠𝑠 +  �1 −  𝛼𝛼(𝑡𝑡)�𝑝𝑝𝑑𝑑 =  𝛼𝛼(𝑡𝑡)𝐸𝐸𝑒𝑒𝑒𝑒�𝑥𝑥1 −  𝑉𝑉0,𝑒𝑒𝑒𝑒� + �1 −  𝛼𝛼(𝑡𝑡)�𝐸𝐸𝑑𝑑�𝑥𝑥1 −  𝑉𝑉0,𝑑𝑑�             (5) 

𝑝𝑝𝑠𝑠𝑠𝑠 =  𝐸𝐸𝑠𝑠𝑠𝑠�𝑥𝑥2 −  𝑉𝑉0,𝑠𝑠𝑠𝑠�+  𝜂𝜂𝑠𝑠𝑠𝑠(𝑥𝑥5 −  𝑥𝑥4)                                                                                                 (6) 

𝑥̇𝑥1 =  −𝑥𝑥4 +  𝑄𝑄𝐿𝐿(𝑥𝑥3,𝑥𝑥4)                                                                                                                               (7)

 
𝑥̇𝑥2 =  𝑥𝑥4 −  𝑥𝑥5                                                                                                                                                 (8)

 
𝑥̇𝑥3 =  𝑄𝑄𝐿𝐿(𝑥𝑥3,𝑥𝑥4)                                                                                                                                             (9)

 𝑥̇𝑥4 =  
𝐴𝐴𝑎𝑎𝑎𝑎
𝜌𝜌𝜌𝜌𝑎𝑎𝑎𝑎

�𝑝𝑝𝐿𝐿𝐿𝐿 −  𝑝𝑝𝑠𝑠𝑠𝑠 −
𝜌𝜌

2𝐴𝐴𝑎𝑎𝑎𝑎2
𝑥𝑥42�                                                                                                         (10) 

𝑥̇𝑥5 =  
𝐴𝐴𝑠𝑠𝑠𝑠
𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠

(𝑝𝑝𝑠𝑠𝑠𝑠 −  𝑝𝑝𝑠𝑠𝑠𝑠 −  𝑅𝑅𝑠𝑠𝑠𝑠𝑥𝑥5)                                                                                                              (11) 

𝑉𝑉𝑠𝑠𝑠𝑠 =  � ( 𝑥𝑥4 −  𝑥𝑥5) 𝑑𝑑𝑑𝑑 + 𝑉𝑉𝑠𝑠𝑠𝑠(0)

𝑡𝑡ℎ𝑝𝑝

0

                                                                                              (12) 

The set of equations was solved with an operator splitting technique where the pressure variables 

in equations (5)-(6) were updated between each iteration of solving equations (7)-(11) with a fourth-order 

Runge-Kutta program. The nsoli algorithm by C.T. Kelley was used for the Newton-Krylov method [19]. 

All code was implemented in Matlab. For initial tests, the parameter values and initial conditions that 

were suggested in [39] were used. 
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Table 1 Virag Heart Valve Model Variables 

Patient-specific measured data as measured from a single patient [39] 

𝐴𝐴𝑎𝑎𝑎𝑎 = 3.46 𝑐𝑐𝑐𝑐2  Area of aortic root 
𝐴𝐴𝑠𝑠𝑠𝑠 = 1.75 𝑐𝑐𝑐𝑐2 Area of systemic arterial system 
𝑇𝑇ℎ𝑝𝑝 = 1062 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Time of a single cardiac cycle 

𝐿𝐿𝑎𝑎𝑎𝑎 = 5 𝑐𝑐𝑐𝑐 Effective length between left ventricle pressure and arterial pressure measurement site 
used in inertia pressure drop estimate 

𝐿𝐿𝑠𝑠𝑠𝑠 = 90 𝑐𝑐𝑐𝑐 Effective length between arterial pressure and systemic venous pressure measurement 
site used in inertia pressure drop estimate 

𝑝𝑝𝑑𝑑 =  10 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Diastolic pressure 
𝑝𝑝𝑠𝑠𝑠𝑠 = 5 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Systemic venous pressure 
𝑉𝑉0,𝑑𝑑 = 20 𝑚𝑚𝑚𝑚 Equilibrium volume at zero transmural pressure 
𝑉𝑉0,𝑒𝑒𝑒𝑒 =  −10 𝑚𝑚𝑚𝑚  Unloaded volume at end systole 
𝑉𝑉0,𝑠𝑠𝑠𝑠 = 300 𝑚𝑚𝑚𝑚 Volume of unpressurized arterial system 
𝑉𝑉𝐿𝐿𝐿𝐿(ed) = 124 𝑚𝑚𝑚𝑚 Left ventricle volume at end diastole 
VTI=21 cm Velocity Time Integral; Stroke Volume=VTI*𝐴𝐴𝑎𝑎𝑎𝑎 

𝜌𝜌 =  7.87e − 4
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠2

𝑐𝑐𝑐𝑐2  Density of blood 

State Variables 

𝑥𝑥1 =  𝑉𝑉𝐿𝐿𝐿𝐿 Volume of left ventricle; Initial value is 𝑉𝑉𝐿𝐿𝐿𝐿(ed) 

𝑥𝑥2 =  𝑉𝑉𝑠𝑠𝑠𝑠 Volume of systemic arterial system; initial value can be calculated from 
Newton-Krylov method 

𝑥𝑥3 =  𝑉𝑉𝐿𝐿 Volume swept by leaflet opening; initial value is 0 
𝑥𝑥4 =  𝑄𝑄𝑎𝑎𝑎𝑎 Flow through aortic root; initial value is 0 

𝑥𝑥5 =  𝑄𝑄𝑠𝑠𝑠𝑠 
Flow in systemic capillary system; initial value is calculated from  
(𝐸𝐸𝑠𝑠𝑠𝑠�𝑉𝑉𝑠𝑠𝑠𝑠(0) − 𝑉𝑉0,𝑠𝑠𝑠𝑠� + 𝜂𝜂𝑠𝑠𝑠𝑠𝑄𝑄𝑎𝑎𝑎𝑎(0) − 𝑝𝑝𝑠𝑠𝑠𝑠(0))/𝜂𝜂𝑠𝑠𝑠𝑠 or can be calculated from 
Newton-Krylov method 

Tuned Variables  (Tuned to produce 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑇𝑇𝑒𝑒𝑒𝑒  values that matched clinical data) 

𝐸𝐸𝑒𝑒𝑒𝑒 = 1.7 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚 Ventricular contractility 
𝐸𝐸𝑠𝑠𝑠𝑠=0.45 mmHg /ml Arterial wall elasticity 
𝜂𝜂𝑠𝑠𝑠𝑠=.293 mmHg s/ml Arterial damping coefficient per volume  
𝑅𝑅𝑠𝑠𝑠𝑠=1.429 mmHg s /ml Systemic capillary resistance 

Calculated Input Variables 

𝐸𝐸𝑑𝑑 =
𝑝𝑝𝑑𝑑

𝑉𝑉𝐿𝐿𝐿𝐿(ed) −  𝑉𝑉0,𝑑𝑑
= 0.096 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚

 Elasticity of left ventricle at end diastole 

𝑉𝑉𝐿𝐿𝐿𝐿(es) = 𝑉𝑉𝐿𝐿𝐿𝐿(ed) − VTI ∗ 𝐴𝐴𝑎𝑎𝑎𝑎 Left ventricle volume at end systole 
𝑝𝑝𝑠𝑠 =  𝐸𝐸𝑒𝑒𝑒𝑒�𝑉𝑉𝐿𝐿𝐿𝐿(es) −  𝑉𝑉0,𝑒𝑒𝑒𝑒� Systolic pressure 

Calculated Output Variables 

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑄𝑄𝑎𝑎𝑎𝑎/𝐴𝐴𝑎𝑎𝑎𝑎 Maximum velocity through aortic root 
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  Time from pressure cross-over (𝑝𝑝𝐿𝐿𝐿𝐿 ≥ 𝑝𝑝𝑠𝑠𝑠𝑠) to maximum velocity through aortic root 
𝑇𝑇𝑒𝑒𝑒𝑒  Time from pressure cross-over (𝑝𝑝𝐿𝐿𝐿𝐿 ≥ 𝑝𝑝𝑠𝑠𝑠𝑠) to coaptation of leaflets 
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Table 2 Definition of the continuous piecewise function for leaflet flow, 𝑄𝑄𝐿𝐿  as modeled by Virag [39] 
Graphic from Virag [39] with 
annotations Valve progress in cycle Function 𝑄𝑄𝐿𝐿(𝑉𝑉L,𝑄𝑄av) 

 

Valve is fully closed; Systole has begun and 
isovolumetric contraction of heart has started. 
 
Advance to next stage when left ventricle pressure 
exceeds systemic arterial pressure (𝑝𝑝𝐿𝐿𝐿𝐿 ≥ 𝑝𝑝𝑠𝑠𝑠𝑠). 

0 

Valve is moving but is still sealed; the leaflets sweep 
out a volume as they open (gray area); Advance to 
next stage when volume swept by leaflets, 𝑉𝑉𝐿𝐿, 
reaches a maximum, 𝑉𝑉𝐿𝐿0 , where the coapted surfaces 
open (𝑉𝑉𝐿𝐿 ≥ 𝑉𝑉𝐿𝐿0) 
𝑉𝑉𝐿𝐿0: volume swept by leaflet from aortic root to 
position where seal opens; computed as 𝛾𝛾𝑅𝑅𝐴𝐴𝐴𝐴3 𝜋𝜋 
where 𝛾𝛾 is a user-selectable constant (assumed to be 
0.3) and 𝑅𝑅𝐴𝐴𝐴𝐴 is the radius of the aortic valve orifice. 

𝑄𝑄av 

Valve is opening;  
Advance to next stage when valve is fully opened 
 (𝑉𝑉L ≥ 𝑉𝑉𝐿𝐿0 + 𝑉𝑉𝐿𝐿1). 
𝑉𝑉𝐿𝐿0 + 𝑉𝑉𝐿𝐿1: volume swept by leaflet when fully 
opened; computed as 𝛽𝛽𝑅𝑅𝐴𝐴𝐴𝐴3 𝜋𝜋 where 𝛽𝛽 is a user-
selectable constant (assumed to be 0.6) and 𝑅𝑅𝐴𝐴𝐴𝐴 is 
the radius of the aortic valve orifice. 

𝑄𝑄av �1 − �
𝑉𝑉L − 𝑉𝑉𝐿𝐿0
𝑉𝑉𝐿𝐿1

�
2

� 

Valve is fully open; 
 
Advance to next stage when systemic arterial 
pressure exceeds left ventricle pressure (𝑝𝑝𝑠𝑠𝑠𝑠 ≥ 𝑝𝑝𝐿𝐿𝐿𝐿). 

0 

Valve closing; 
 
Advance to next stage when volume swept by leaflet, 
𝑉𝑉𝐿𝐿 , reaches, 𝑉𝑉𝐿𝐿0 , where leaflet coapt. 

𝑄𝑄𝑎𝑎𝑎𝑎.𝑐𝑐𝑐𝑐: aortic flow when 
systemic arterial and left 
ventricle pressures cross 
(𝑝𝑝𝑠𝑠𝑠𝑠 = 𝑝𝑝𝐿𝐿𝐿𝐿) at the start of 
this stage 
 

𝑄𝑄av − 𝑄𝑄𝑎𝑎𝑎𝑎.𝑐𝑐𝑐𝑐 �
𝑉𝑉L − 𝑉𝑉𝐿𝐿0
𝑉𝑉𝐿𝐿1

�
2

 

Valve sealed at coapted surface but leaflets are still 
moving toward aortic root; 
 
Advance to next stage when valve is closed, 𝑉𝑉𝐿𝐿 = 0. 

𝑄𝑄𝑎𝑎𝑎𝑎.𝑐𝑐𝑐𝑐: aortic flow when 
the leaflets coapt at the 
start of this stage. 
 
𝑡𝑡𝑐𝑐𝑐𝑐: time when the leaflets 
coapt. 

 
𝑄𝑄𝑎𝑎𝑎𝑎.𝑐𝑐𝑐𝑐𝑒𝑒−(𝑡𝑡−𝑡𝑡𝑐𝑐𝑐𝑐)𝑄𝑄𝑎𝑎𝑎𝑎.𝑐𝑐𝑐𝑐/𝑉𝑉𝐿𝐿0  

Valve fully closed and remains closed through 
diastole. 0 

𝑉𝑉𝐿𝐿1 (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) 

𝑉𝑉𝐿𝐿0 (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) 

Sinus of 
Valsalva and 
aortic valve 

leaflets 

Left Ventricle 
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The values of four parameters (𝐸𝐸𝑒𝑒𝑒𝑒,𝐸𝐸𝑠𝑠𝑠𝑠 , 𝜂𝜂𝑠𝑠𝑠𝑠 ,𝑅𝑅𝑠𝑠𝑠𝑠) were varied to assess the model’s ability to 

produce calculated values for 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 , and 𝑇𝑇𝑒𝑒𝑒𝑒 that matched clinical data provided in Virag [39]. Virag 

“tuned” these values because they are difficult to measure accurately. Each parameter was tested at 

Virag’s suggested value and tested at a higher and lower level for a total of 81 sample test points. 

Results 

Figure 2 shows the interpolation function that was generated from timing equations provided in 

[39]. The interpolation function is used to determine the left ventricle pressure that drives the model, and 

its shape prescribes pressure cross-over timings between the left ventricle and arterial pressures. These 

two pressure cross-overs cause the leaflets to move and are different from the valve opening and leaflet 

coaptation times, which are controlled by a time delay built into the model.  

 

 

Figure 2 Interpolation Function 
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The Newton-Krylov method worked well. The values of 𝑉𝑉𝑠𝑠𝑠𝑠 ,𝑉𝑉𝐿𝐿,𝑄𝑄𝑎𝑎𝑎𝑎 ,𝑄𝑄𝑠𝑠𝑠𝑠 ,𝑝𝑝𝑠𝑠𝑠𝑠  each returned to 

their initial values at the end of the cardiac cycle. The values for 𝑉𝑉𝐿𝐿𝐿𝐿 and 𝑝𝑝𝐿𝐿𝐿𝐿 do not need to return to their 

initial values. The left ventricle is separated from the model during diastole since the aortic valve is closed 

and the mitral valve is open over this interval. The initial values of 𝑉𝑉𝐿𝐿𝐿𝐿 and 𝑝𝑝𝐿𝐿𝐿𝐿 are restored at the start of 

each cycle to re-charge the system as the aortic valve opens. The model runs as a continuous animation of 

physiologic pressures, volumes, and flows. The system runs over many cycles without introducing any 

erroneous inflation into the arterial system. See Figure 4-7 for an example of one cardiac cycle. The 

approximate run time for the Newton-Krylov solver is 65 sec. The solver is only needed once to solve for 

the initial conditions, then the animation can be run continuously with no delays. 

The optimal values of 𝐸𝐸𝑒𝑒𝑒𝑒 and 𝜂𝜂𝑠𝑠𝑠𝑠 for my coded model were found to be different from the 

settings suggested by Virag [39]. The combined settings of 𝐸𝐸𝑒𝑒𝑒𝑒 = 2.2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚,  𝜂𝜂𝑠𝑠𝑠𝑠=.193 mmHg-s/ml, 

𝑅𝑅𝑠𝑠𝑠𝑠=1.429 mmHg-s/ml, and any of the three tested levels for 𝐸𝐸𝑠𝑠𝑠𝑠 generated values of 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,  𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 , and 𝑇𝑇𝑒𝑒𝑒𝑒 

(see Table 1 for their definitions) that matched clinical data from Virag [39] better than the Virag’s 

suggested values of 𝐸𝐸𝑒𝑒𝑒𝑒 = 1.7 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑙𝑙, 𝐸𝐸𝑠𝑠𝑠𝑠 = 0.45 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚, 𝜂𝜂𝑠𝑠𝑠𝑠=.293 mmHg-s/ml, 𝑅𝑅𝑠𝑠𝑠𝑠=1.429 

mmHg-s/ml). The results of comparing calculated ejection and acceleration time and maximum velocity to 

clinical data is given in Figure 3. The optimal setting points have the same values for 𝐸𝐸𝑒𝑒𝑒𝑒, 𝜂𝜂𝑠𝑠𝑠𝑠 ,𝑅𝑅𝑠𝑠𝑠𝑠 and are 

the three iterations with a varying value of 𝐸𝐸𝑠𝑠𝑠𝑠 . 

The graphical displays of pressures, volumes, and flows for one animation cycle are shown in 

Figure 4-7. A simulated dicrotic notch appears on the arterial pressure waveform, and the leaflets show an 

early slow-closing and late fast-closing that is seen clinically. Both of these simulated clinical attributes 

are due to the prescribed change in the leaflet flow function at coaptation. Initial values for the optimized 

settings of 𝐸𝐸𝑒𝑒𝑒𝑒 = 2.2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚, 𝐸𝐸𝑠𝑠𝑠𝑠 = 0.45 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚, 𝜂𝜂𝑠𝑠𝑠𝑠=.193 mmHg-s/ml, 𝑅𝑅𝑠𝑠𝑠𝑠=1.429 mmHg-s/ml 

are 𝑉𝑉𝑠𝑠𝑠𝑠 =  504.376 𝑚𝑚𝑚𝑚,𝑄𝑄𝑠𝑠𝑠𝑠 = 52.64001 𝑚𝑚𝑚𝑚/𝑠𝑠, and 𝑝𝑝𝑠𝑠𝑠𝑠 = 81.83739 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. The shape of the pressure 

and volume waveform for these settings has a descending plateau. The roundness and slant of the pressure 

and flow plateau vary with the settings, mainly with the ventricular contractility and the peripheral 

resistance settings. 
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Figure 3  Optimizing Parameters by Matching Verification Data 

 

This chart shows the results of adjusting the values of four parameters (𝐸𝐸𝑒𝑒𝑒𝑒,𝐸𝐸𝑠𝑠𝑠𝑠 ,𝜂𝜂𝑠𝑠𝑠𝑠 ,𝑅𝑅𝑠𝑠𝑠𝑠) to assess the 
model’s ability to produce calculated values for 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎, and 𝑇𝑇𝑒𝑒𝑒𝑒 that matched clinical data provided 
in Virag [39]. This clinical data is referred to as the Verification Point (magenta diamond) in the chart. 
Each parameter was tested at three settings for a total of 81 test points (black dots). The data point for 
the settings suggested by Virag [39] (𝐸𝐸𝑒𝑒𝑒𝑒 = 1.7 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚, 𝐸𝐸𝑠𝑠𝑠𝑠 = 0.45 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚,
𝜂𝜂𝑠𝑠𝑠𝑠=.293 mmHg-s/ml, 𝑅𝑅𝑠𝑠𝑠𝑠=1.429 mmHg-s/ml) is called the Suggested Parameter Point and is 
highlighted with a blue circle. The percent error for calculated values of 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 , and 𝑇𝑇𝑒𝑒𝑒𝑒 are plotted 
in a three-dimensional scatter plot. The three views are showed. The three test points that are closest to 
the Verification Point are called the Optimal Parameter Points and are each highlighted with a green 
circle. Their parameter values are 𝐸𝐸𝑒𝑒𝑒𝑒 = 2.2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚, 𝜂𝜂𝑠𝑠𝑠𝑠=.193 mmHg-s/ml, 𝑅𝑅𝑠𝑠𝑠𝑠=1.429 mmHg-
s/ml and one point for each tested value of Esa . 
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 Figure 4 Heart Valve Model with 𝐸𝐸𝑒𝑒𝑒𝑒 = 2.2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚, 𝐸𝐸𝑠𝑠𝑠𝑠 = 0.45 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚, 𝜂𝜂𝑠𝑠𝑠𝑠=.193 mmHg-s/ml, 𝑅𝑅𝑠𝑠𝑠𝑠=1.429 mmHg-s/ml 

 

 

 

 

 

 

 

 

 

 

 

Simulated early slow-closing and late fast-closing of 
leaflet occurs when QL function changes from a 
quadratic to an exponential function at coaptation 

Opening pressure cross-over where 𝑝𝑝𝐿𝐿𝐿𝐿 first exceeds 𝑝𝑝𝑠𝑠𝑠𝑠  
Closing pressure cross-over where 𝑝𝑝𝑠𝑠𝑠𝑠 first exceeds 𝑝𝑝𝐿𝐿𝐿𝐿  
 

Simulated dicrotic notch occurs when QL 
function changes at leaflet coaptation 
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7 Example Model 2: Isogeometric 

Motivation for the Model 

Shear forces develop on a thin surface layer of solids emerged in a fluid flow. An accurate 

calculation of shear on the valve surface indicates areas prone to wear and areas prone to stiffening 

calcification build-up. Isogeometric models provide a better estimate of boundary layer shear than finite 

element models since isogeometric model solve on the exact geometry of the thin layer. We constructed a 

valve from NURBS geometry and computed its stiffness. We also produced a routine where it could be 

used with a FSI model to calculate surface shear or where it could be animated to show the surface 

contour as it closes. 

Methods 

We used control points of a hemispherical shell from [5] as test data and used geometry described 

by Labrosse in [23] to simulate a more realistic cylindrical heart valve. The valve’s initial position is an 

open valve so that the coapted contact surface does not have to be defined but instead can be calculated. 

The Labrosse geometry is shown in Figure 6. Nominal dimensions for the aortic root diameter (13 mm), 

commissure diameter (15 mm), and valve thickness (.428 mm) were used. A 12° tilt declination was 

computed to produce a properly closing valve from equations given in [23].  

Figure 6   Aortic Valve Geometry 

 
Order Detail ID: 70159345  
Journal of biomechanics by AMERICAN SOCIETY OF 
BIOMECHANICS ; EUROPEAN SOCIETY OF 
BIOMECHANICS ; UNIVERSITY OF MICHIGAN 
Reproduced with permission of PERGAMON in the format 
Thesis/Dissertation via Copyright Clearance Center. 

The geometry of an aortic valve [23] constructed 
from a cylindrical surface.  
 
The white surface is the open valve. The bottom 
curve is a 120° arc that attaches to the aortic root. 
Its plane lies perdendicular to the aortic axis. The 
plane of the upper free edge is titled toward the 
aortic axis. 
 
The gray surface is the closed valve. The closed 
valve contacts the adjacent leaflets at the 
coaptation surfaces. The section of the leaflet 
from the commissure to the aortic root and below 
the attachment line is fixed. The load-bearing 
surface resists valve prolapse. 

 

The valve is generated from a tri-variate NURBS. The xi-direction in parameter space creates 

NURBS curves along the aortic root and the free edge of the leaflet. Two elements were used to increase 
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the parameterization, and each curve is second-order. Therefore, its knot vector is [0 0 0 .5 .5 1 1 1].  The 

eta- and zeta-directions each have a knot vector of [0 0 1 1] with a linear order. The eta-direction 

generates a ruled surface from the aortic root to the free edge, and the zeta-direction generates a ruled 

volume through the leaflet’s thickness. Control points are coincident with the ends of the curves for both 

the aortic root and free edge and for the inner and outer layer. These control points have a weight of 1. 

The intermediate points have a weight of √3/2, which is cosine of half the angle of each element’s arc 

[33]. 

We developed a plotting routine to check the results. The surface points of the volume were 

computed using equation (4b). Adjacent surface points were connected with the Matlab Delaunay 

triangulation function and plotted with the trisurf function.  

Cottrell, Hughes, and Bazilevs [5] developed a process to calculate the stress distribution over a 

static 3D object simulated as a tri-variate NURBS. They presented code to map the knot vectors in index 

space into shape functions in parameter space and to calculate the stress on the surface in physical space. 

They recommend Piegel’s code [33] to calculate univariate NURBS basis functions. Shape functions are a 

summation of univariate NURBS in multiple dimensions. (See NURBS Primer in Section 5 for more 

information on what NURBS are and how they work). A linear elastic model is assumed where applied 

force is equal to the stiffness matrix times the displacement vector. 

 The stiffness matrix for an element within the NURBS is given in equation (13). The local 

stiffness for each element is combined into a total stiffness for the NURBS shape. We used a Poisson 

ratio of  𝜐𝜐 = 0.3, which is in the range for polymers used in artificial valves, and we used a modulus of 

elasticity of 𝐸𝐸 = 2 MPa [14]  to estimate an isotropic modulus of elasticity. 

The force load of the pulsating flow is both spatially- and time-dependent. Since FSI was not 

integrated into the model, we used a rough estimate for applied force. The applied force is equal to the 

mean pressure times the surface area at the aortic root. 

We developed a methodology for animating the valve over one cardiac cycle. 

 

𝐾𝐾𝑒𝑒 =  𝑒𝑒𝑖𝑖 ∫ 𝐵𝐵𝐴𝐴𝑇𝑇𝐷𝐷𝐵𝐵𝐵𝐵 𝑑𝑑Ω 𝑒𝑒𝑗𝑗 |J| 
Ω𝑒𝑒                                                                                                        (13) 

𝐷𝐷𝑖𝑖𝑖𝑖 =  𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜆𝜆 𝛿𝛿𝑖𝑖𝑖𝑖 +  𝜇𝜇 �𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗�                                                                                           (14)  
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𝐵𝐵𝐴𝐴𝑒𝑒𝑖𝑖 =  

⎣
⎢
⎢
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𝐾𝐾𝑒𝑒 ∶  Local Stiffness of NURBS element 
Ω𝑒𝑒 ∶  Domain of an element in parametric space 
𝐷𝐷,𝐶𝐶 ∶ Material stiffness matrix with D given in Voigt notation 
𝛿𝛿 ∶ Kronecker delta 

𝜆𝜆, 𝜇𝜇 ∶  Lamé parameters 𝜆𝜆 =  𝐸𝐸 𝜈𝜈
(1+ 𝜈𝜈) (1−2𝜈𝜈)

   and 𝜇𝜇 =  𝐸𝐸
2 (1+ 𝜈𝜈)

 where E=modulus of elasticity and ν=Poisson’s ratio 

𝐴𝐴,𝐵𝐵 ∶ Global shape function numbers 
𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑗𝑗 ∶ Unit vectors 
𝐵𝐵 ∶   Deformation tensor 
𝑅𝑅𝐴𝐴,𝑅𝑅𝐵𝐵 : = 𝑅𝑅(𝑖𝑖,𝑗𝑗,𝑘𝑘)

𝑝𝑝,𝑞𝑞,𝑟𝑟 (𝜉𝜉, 𝜂𝜂,𝜑𝜑)  from (4a) where the global shape function number A or B correspond to the (i,j,k) 
coordinates 
|J| ∶ Determinant of the Jacobian that transforms the integral from parametric space into physical space 
 

Results 

The picture of the test valve is shown in Figure 6. The simulated cylindrical heart valve is shown 

in Figure 7 and 8. The simulated heart valve is composed of two elements. Since the knot has a 

multiplicity of two at the interface, the surface only has C0 continuity at the 0.5 knot. 

The code calculates the stiffness matrix by integrating over the entire surface. The code required 

3.57 sec per selected quadrature point for the test NURBS and 1.65 sec for the simulated aortic valve. 
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Figure 6  Test tri-variate NURBS 

 

Control Point Coordinates [5] Weights 
(9.98, 0, 0)  1 
(9.98, 9.98, 0)  0.7071 
(0, 9.98, 0)  1 
(9.98, 0, 9.98)  0.7071 
(9.98, 9.98, 9.98)  0.5 
(0, 9.98, 9.98)  0.7071 
(0, 0, 9.98)  1 
(0, 0, 9.98)  0.7071 
(0, 0, 9.98)  1 
(10.02, 0, 0)  1 
(10.02, 10.02, 0)  0.7071 
(0, 10.02, 0)  1 
(10.02, 0, 10.02)  0.7071 
(10.02, 10.02, 10.02)  0.5 
(0, 10.02, 10.02)  0.7071 
(0, 0, 10.02)  1 
(0, 0, 10.02)  0.7071 
(0, 0, 10.02)  1 

 

 

This figure shows the test tri-variate NURBS for the semi-hemispherical shell. The blue cube is the 
parametric space. The knot values in the ξ-, η-, Ϛ-direction are {0 0 0 1 1 1}, {0 0 1 1}, {0 0 1 1}, 
respectively. The NURBS is composed of a single element formed from 18 control points. The control 
points were used from [5] and are indicated by red squares and are listed above. Since the shell 
thickness is small, the control points for the inner and outer layer are overlapping. Three control points 
are coincident for both the inner and outer shell at the tip as the ξ-direction compresses into a single 
point at the pole of the sphere in physical space. The quadrature points are indicated by black dots.  
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Figure 7  Index and parametric space of computed tri-variate NURBS aortic heart valve  

 

 

This figure shows the index and parametric space of the computed tri-variate NURBS aortic heart valve 
in the open position. The knot values in the ξ-, η-, Ϛ-direction are {0 0 0 .5 .5 1 1 1}, {0 0 1 1}, 
{0 0 1 1}, respectively. The ξ-direction has a repeated knot between the two elements. 
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Figure 8  Computed tri-variate NURBS aortic heart valve in the open position 

 

 

 

 

This figure shows two views of the same tri-variate NURBS aortic heart valve in the open position. 
The upper view shows the ventricle-facing side of the valve. The lower view shoes a side-view of the 
valve. The NURBS is computed from 20 control points and forms a cylindrical shell with a small 
thickness. The control points are indicated by red squares and open blue squares. Since the shell 
thickness is small, the control points for the inner and outer layer are partially overlapping. The 
quadrature points are indicated by black dots. 

  

Free edge of valve is tilted 
from the aortic root 
diameter plane by 12° 

Base of valve that attaches 
to the aortic root is a 2π/3 
circular arc 



 

Page 23 of 30 

Computed tri-variate NURBS aortic heart valve in the open position 

Control Point Coordinates Weights Knots 
(6.495, 11.2497, 0)  1 ξ-direction knot values {0 0 0 .5 .5 1 1 1} 

 
η-direction knt values {0 0 1 1} 
 
Ϛ-direction knot values are {0 0 1 1} 

(12.99, 7.4998, 0)  0.866 
(12.99, 0, 0)  1 
(12.99, -7.4998, 0)  0.866 
(6.495, -11.2497, 0)  1 
(7.3303, 12.9817, 19.4376)  1 
(14.6607, 8.6545, 17.8752)  0.866 
(14.6607, 0, 17.8752)  1 
(14.6607, -8.6545, 17.8752)  0.866 
(7.3303, -12.9817, 19.4376)  1 
(6.505, 11.267, 0)  1 
(13.01, 7.5113, 0)  0.866 
(13.01, 0, 0)  1 
(13.01, -7.5113, 0)  0.866 
(6.505, -11.267, 0)  1 
(7.3401, 12.999, 19.4355)  1 
(14.6802, 8.666, 17.871)  0.866 
(14.6802, 0, 17.871)  1 
(14.6802, -8.666, 17.871)  0.866 
(7.3401, -12.999, 19.4355)  1 

 

The methodology for animating the leaflets is shown in Figure 9. Code was written in Matlab. 

Existing code from [5][33] was converted to Matlab. The program, Algo4, was modified from [5] to 

include extra animation steps. The original Algo4 assembles the NURBS. It establishes a numbering 

system to identify local and global shape functions, and it calculates a stiffness matrix and defines a load 

vector of force applied on the leaflet from the blood flow.  The modified code adds a damping matrix to 

simulate the flow resistance, a mass matrix to simulate inertial resistance to acceleration, and boundary 

system constraints.  

The next position of the surface point was calculated from a Newmark algorithm. To compute the 

new control points from the surface points. First, the surface must be parameterized to obtain a knot 

vector. We used a chord parameterization method. Then the control points were calculated with a least 

square method. The stiffness matrix was re-calculated for each time step since the shape of the surface 

changes. The leaflets were assumed to coapt at the center of the aorta. The program terminates when the 

leaflets coapted length reaches a maximum length defined by Labrosse equations [23]. The height of 

coapted center is 47.1 mm for input dimension that were used.  
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Figure 9   The methodology for animating the leaflets 
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Data_Semihemisphere
Stores surface points for
a semi-hemisphere shell
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Stores surface points for
an open 3D heart valve
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8 Discussion 

Lumped Parameter Model 

The lumped-parameter model demonstrated dynamic closure of the valve and captured the 

dynamical behavior of blood pressures, volumes, and flow. The model could be used to demonstrate 

waveform characteristics in the aortic valve region and to provide initial settings for a more complex 

model.  

The model requires some patient-specific timing information to generate the interpolation 

function. Since the model only includes part of the circulatory system, the pressure of the left ventricle’s 

driving state variable is uncoupled from the system and has to be prescribed. The model would need to be 

extended to include the entire circulatory system, such as with Korakianitis [21], to be able couple the 

hemodynamics and valve dynamics. Korakianitis [21] model also includes the ability to consider cases 

with aortic stenosis and aortic regurgitation. Another limitation of the model is that 𝑉𝑉0,𝑠𝑠𝑠𝑠 and 𝑉𝑉0,𝑒𝑒𝑒𝑒 need to 

be measured clinically. 

The lumped-parameter model could be refined to get more accurate values of 𝐸𝐸𝑒𝑒𝑒𝑒,𝐸𝐸𝑠𝑠𝑠𝑠 ,𝜂𝜂𝑠𝑠𝑠𝑠 ,𝑅𝑅𝑠𝑠𝑠𝑠 

that are difficult measure directly. The Virag and Lulić model used ejection and acceleration times and 

maximum velocity ejection to valid the model and adjust parameters. This verification could be 

supplemented with fitting the shape of the pressure and flow waveforms to patient-specific data. The 

roundness, skewness, plateau slant, and area bounded by these waveforms differed with adjusted settings.  

The aortic valve area could be computed to verify the model against clinical data. The aortic 

valve orifice area was not calculated because either the actual shape of the load-bearing surface or the 

maximum flow velocity needs to be known for an accurate estimate. Since blood flow measurements 

were not incorporated into the model, an assumption about the shape of the closing valve needs to be 

made. The surface is probably not a regular polygon shape, but an approximation with a regular shape 

would provide a fast way of estimating the minimum orifice area and location. 

Isogeometric Model 

The isogeometric example constructed a simulated aortic valve and advanced the motion by one 

time step. Future work includes animating the valve to show the shape of the load-bearing surface as it 

opens and closes and to identify valve opening and closing times. A comparison of the timing to actual 

patient data could verify the accuracy of the model. 

The NURBS model could also be incorporated into a FSI model to get more accurate 

hemodynamic results and estimates of surface shear and fatigue failure cycles. Our model could not 
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generate changing forces applied on the leaflet from the flow. However, a FSI model would provide the 

alternating reaction between the force applied on the leaflet from the flow and the effect of the resulting 

motion of the leaflet back on the flow. FSI capability is currently available in commercial software with 

finite element models. 

The isogeometric model could also include a non-linear, anisotropic material model. A non-linear 

hyperelastic model would more accurately follow the large deformations, especially with irregular flows. 

The anisotropic feature would better model how the mechanical properties differ in different directions. 

The valve is a composite of different layers and interposed fibers. A more refined model would take 

advantage of the third-parameter dimension’s contribution of revealing compression and extension of the 

thickness. 

An algorithm that accepts unordered points would be able to model complex curvature of surface 

shapes including folds.  NURBS can have free-form shapes; therefore, it is an ideal frame for fitting a set 

of point clouds to patient-specific data. We used a set of ordered points whose order in the parametric 

space grid was known and remained fixed. To take full advantage of modeling folds and complex surface 

curvature, surface points should be described by a cloud of unordered points. Algorithms for cloud points 

have been investigated [6].  

Isogeometric models can model other more geometrically complex valves. Our simulated valve 

was an aortic valve. The mitral valve geometry is more complex because of its anchoring chords and its 

position in the interior of the heart. Isogeometric geometry can more easily model basal, strut, and fan 

cords than finite element geometry and merge the geometry into a single model. 

9 Conclusions 

In conclusion, we provided two examples of models of an aortic valve. The lumped-parameter 

system based on a model of Virag and Lulić provided a description of blood flow dynamics, and it could 

show waveform characteristics. It requires low computational resources and could provide an initial 

estimate of physiologic parameters for a more in-depth study with a finite element or an isogeometric 

model. The isogeometric model captured the geometry of an aortic valve with NURBS, and it could be 

refined by merging it with a FSI model to compute surface shear, estimate fatigue on the valve, and 

demonstrate valve operating mechanisms. 
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