
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

5-21-2012 

Demarcating Computer Science Demarcating Computer Science 

Dana Burkart 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Burkart, Dana, "Demarcating Computer Science" (2012). Thesis. Rochester Institute of Technology. 
Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/44?utm_source=repository.rit.edu%2Ftheses%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Demarcating Computer Science

Dana Burkart

May 21, 2012

Abstract

Despite its relative youth, computer science has become a well-
established discipline, granting over 2% of the bachelors degrees in the
United States (U.S. Department of Education, 2010). For this reason,
it is important that we understand the nature of computer science
and the likely direction for the development of inquiry in computer
science in the future. This paper examines several perspectives on
the nature of the methods of computer science inquiry. These are
empiricist methods, rationalist methods, and an engineering stance.
It argues that empiricist and rationalist stances play identifiable roles
in the scientific nature of computer science reasoning but that the
engineering stance does not. Following the trend in the maturation of
other sciences, this paper recommends an overhaul in computer science
curricula.

1 Identifying Science: Necessary and Su�cient Con-

ditions

Physics, chemistry, biology, psychology: these are all unequivocally scien-

tific fields. Labeling a field as scientific means that it aims at methodically

producing formal or empirical knowledge claims. At the same time, by a�x-

ing the honorific of ‘science’ to some field, we are saying that its knowledge

claims advance toward truth. Other fields include soil science, materials

science, packaging science, computer science, information science, library

1



science, political science, food science, creation science, forensic science,

military science, and “the dismal science.” Is there a nature to scientific

inquiry, such that some or most of these are legitimate sciences while others

fail to meet the epistemic ideal which entitles them to be ‘sciences’?

The demarcation problem of science is the question of how to distinguish

between fields that claim to do science and those that legitimately do. This

problem is not so easily answered: to distinguish between science and non-

science, it is evident that we need a definition which will allow us to specify

some set of fields which are all considered science. At the same time, it

should leave out no scientific field, and similarly, should not let in any non-

scientific field. To put it succinctly, our definition should keep science (as

we consider it) in and non-science out. This is the requirement that any set

of demarcating criteria must be both necessary and su�cient.

As it was first described by Aristotle, science is the field of inquiry that

examines first causes (Aristotle, 1994). This meant that a scientific discipline

examined not the ‘what’ of some phenomenon, but the ‘how’, and such

a discipline almost never examined the ‘why.’ This description of science

held until its practicality was reconsidered. Under the Aristotelian view of

science, something like astronomy could not be considered science because

it is merely descriptive and first causes are not considered. In other words,

astronomy only categorized and catalogued the stars, took note of ‘what’ was

out there — it did not answer the ‘how.’ Later, conceptions for what makes

something ‘scientific’ began to change, and the idea that there could be a

scientific approach to something (such as early astronomy) was becoming

accepted (Peirce, 1957).

2



One more specific goal of demarcation is to identify pseudo-science. The

demarcation project also seeks to distinguish natural science from other

legitimate and related means of knowledge production, such as social science,

engineering, and medicine. To say a field is non-science is not necessarily to

make the claim that it is not producing knowledge. However, it may be a

claim about how that discipline is going about knowledge production.

The main angle of approach when it comes to demarcating science has

been to identify certain demarcation criteria. The idea here is to come

up with a single set of criteria that is both necessary and su�cient. One

such criterion, proposed by Karl Popper, is that of falsifiability : scientific

theories must be able to be falsified. An objection to falsifiability is raised

by Larry Laudan where he claims that with Popper’s falsifiability criteria,

we are forced to acknowledge as scientific “every crank claim which makes

ascertainably false assertions”(Laudan, 1983, 121).1 At first, this objection

seems completely o↵ target: Laudan seems to be making the claim that

because something has been falsified, it is not science, nor was it ever. This

objection is based on certain conceptions about how science is done and is

really a methodological objection. Laudan is making the claim that just

because a piece of knowledge can be falsified, that does not make it science.

How we arrived at that piece of knowledge is the relevant consideration for

determining whether or not it is science.

Other attempts to demarcate science, such as that by Thagard (1978),

1It is interesting to note the subtle distinction between claims that can be scientific if
we are willing to reject them and the same reformulated claims that cannot because we
do not have the same willingness. Does this reflect a certain attitude which makes some
endeavors scientific? Or at least an attitude which makes some people scientific?

3



seek to define science as always progressing. Most pseudoscience, such as

astrology, have given up on proposing and testing new claims. The criterion

is insu�cient, though, as it admits ufology into the fold (Laudan, 1983).

Furthermore, it is not clear whether the progressive nature of an area of

inquiry is always easily identifiable. Whether or not a field is ‘progressing’

must be determined within the field itself and may not always be clear to

an outside observer.

A strong candidate for an acceptable demarcating principle comes from

David B. Resnik, who argues that it is unrealistic to expect a solution to the

demarcation problem to provide necessary and su�cient conditions (Resnik,

2000). Instead, he suggests that the best we can do “is to provide a list

of criteria that we associate with disciplines, theories, methods, concepts,

or people that we call scientific” (Resnik, 2000, 257). He brings to light

practical reasons for considering the demarcation problem, such as public

education, medicine, engineering, research funding, and others. In order

to answer the demarcation problem, claims Resnik, we must know who is

trying to distinguish between science and non-science, as well as why that

distinction is wished for. In this way, a consequentialist approach is taken:

i.e., the consequences of making a wrong distinction are taken into account

when setting up the stringency for evaluating a given field.

This view opens itself up to criticism because of its contextualist ap-

proach — in a way, calling something a science under Resnik’s pragmatic

scheme does not tell us much about the nature of any particular discipline.

To understand what it means to call something science in this pragmatic

sense means we must ask a follow-up question: given the stakes, does the

4



discipline satisfy enough conditions for it to sit well? This is problematic

because the term science itself has now lost its meaning. We have given

up on asking whether or not the discipline is well-founded and is accurate

and ambitious enough in its knowledge claims. Instead, we are asking about

history and social membership.

The important point to draw from Resnik is that it may very well be a

fool’s errand to try and find some set of conditions which is both necessary

and su�cient. The best we may hope for could be to o↵er some kind of

template against which to measure candidates. Drawing on the work of

others, I will propose one template for the empirical sciences here:

1. (Theories) The candidate discipline must propose new theories.

2. (Falsifiability) Theories within the candidate discipline must be able

to make predictions which can be falsified.

3. (Progress) The candidate discipline must be able to show some sort of

progress.

4. (Disambiguation) The candidate discipline should display a history of

disambiguation. In other words, the scope of the field should decrease

over time as it becomes more specialized and as related areas of inquiry

become autonomous.

5. (Lineage) Being a candidate for an empirical science, the discipline

should have roots in some other established (empirical or formal) sci-

ence(s).

5



These five conditions together represent a fairly comprehensive set of criteria

which can be used as a template.

The first condition seems obvious; however, it keeps out some disci-

plines which, while being science-adjacent, are nonetheless not rightly sci-

ence. A couple of examples of this are many forms of engineering and clinical

medicine. These disciplines, while certainly involving science, do not neces-

sarily exhibit theory-creation.

The second condition makes sure that the discipline’s theories allow the

right kinds of questions to be asked. Theories within the discipline must be

testable.

The requirement of progress keeps out fields which may have once been

science but are no longer — this makes sense of statements such as “geomet-

ric optics used to be a science, but is now more of an engineering discipline”

(Kuhn, 1996, 79).

Disambiguation, our fourth criterion, makes a somewhat bold normative

claim about science: scientists (like philosophers) should give up problems

they have figured out and those which pose enough new questions to jus-

tify delegating them to autonomous disciplines. Furthermore, when faced

with a seemingly insurmountably complex problem, sub-disciplines should

be created to deal with the intricacies, thus “disambiguating” the field.

Lastly, the requirement of lineage means that for something to rightly

be called science, it must originate from some well-established science, be

that a formal or empirical science.2

2As this is a template for empirical sciences only, we are not faced with a problem
of regress, and can leave the question of where formal sciences are ultimately rooted for
others to answer.

6



Of these five criteria, the one which requires the most defense is disam-

biguation. The property of disambiguation is central to the construction of

a scientific field. Disambiguation serves a very practical purpose: it provides

division of labor to the scientific enterprise. Without this property, scientific

fields become unsustainable in a couple of ways. Becoming a practitioner

of an ‘ambiguous’ field could be prohibitive in some cases, as the amount of

knowledge encapsulated by the field is greater, and greater tenacity would

be required if the practitioner is to have more than a shallow understanding.

Furthermore, without disambiguation, factions may develop and practition-

ers might become combative. In a field with such factions, peer review lends

itself to ad hominem attacks and over-critical refereeing.

It is important that within a field of inquiry (at least a field with well-

founded norms), its practitioners agree about the nature of what they are

doing. There could possibly be di↵erent schools of thought on how to carry

out the science, but there should be very little dispute about what the

research program undertakes to investigate.

With this template in hand, we can continue into a brief history of

computer science.

2 A Short History of Computer Science

The question of whether computer science is a science is a misleading one

— it presupposes that a set definition for computer science can be had.

Empirical fields are easier to demarcate because the details of these fields

have already been worked out. For example, it is only because we know

7



what it entails to do biology that we can even begin to answer the question

of whether biology is science.

Computer science as a field grew out of mathematics in the late 1930’s

with Alan Turing and Alonzo Church theorizing what is now known as

the Church-Turing thesis.3 This thesis was a mathematical theory about

what is computable by a special class of machines, ‘Turing machines,’ and

it plays a central role in computer science itself. Turing machines describe

with mathematical accuracy a kind of abstract machine which can compute

every function which is computable.

Around the same time, a turing-complete class of machines were be-

ing built independently and with no knowledge about these theoretical ad-

vancements by a man named Konrad Zuse (O’Connor and Robertson, 2012).

Thus, computer science in its formative years was as much the study of the

computing machines themselves as it was a formal science. As such, early

views about the nature of computer science held in one hand the computers

themselves, and in the other what the computers were doing. Quickly, this

situation became untenable as increasing advancements in computing hard-

ware called for some practitioners of computer science to become highly spe-

cialized in computer hardware design. A clean break was obviously needed

between those building the machines and those theorizing about them. The

separate discipline of computer engineering was created to acknowledge this.

Computer scientists were content to tighten their belts and focus mostly on

what was done with computers, requiring perhaps a single computer orga-

nization course of new computer science students.

3For a quick treatment of Turing machines, see (Hagar, 2007, §2).

8



Since then, three prevailing views on the nature of computer science have

predominated: that of the computer scientist as rationalist, as empiricist,

and as engineer. This tripartite approach to defining computer science is

recent, although perhaps not in computer science years.4 The approach is

well-documented, and is divisive among many computer scientists (Newell

and Simon, 1976; Eden, 2007). On the whole, these three views make a cou-

ple of claims about computer science: what, specifically, computer scientists

ought to be doing, and the generalization which follows — what the field as a

whole should be accomplishing. While the purposes of these three ‘factions’

are di↵erent, the lines dividing them are not so distinct, and methodolog-

ical distinctions some try to claim exist seem to be confusing at best and

misleading at worst.

So to understand (or begin to understand) what it means to “do” com-

puter science, we should look at what it is modern computer scientists do. In

the next section, I will put forward some ideas about the nature of computer

science. This will help us understand how the three paradigms of computer

science di↵er.

3 Computer Science As Program Theory

Fundamentally, computer science has been the area of study involving the

machines called computers and the programs that are run on them. Early

conceptions of what the field was about reflect this, calling computer science

“the study of the phenomena surrounding computers” (Newell and Simon,

4These are sort of like dog years; the short history of computer science means that just
a few decades span a quarter of the field’s age.

9



1976). This view was empirical in the sense that the machines were being

experimented upon — before a new tradesman learns her craft, she must

learn to use her tools. So early computer scientists were, in a sense, studying

the computers themselves — hence the unfortunate naming of computer

science.5

It is not that we have stopped doing this sort of experimentation in

computer science: we have simply started separating out areas of our field

which are becoming fields in their own right. This sort of individuation

happens in many disciplines. The inception of computer science is owed

to mathematics, and already the organization and design of computers has

broken o↵ into the distinct field of computer engineering.

Today, when we say that computer science is an empirical science, we

have a di↵erent meaning. We want to say that when a computer scientist is

doing an experiment, the role of the computer is that of a tool, much like

a microscope. We would not say that a biologist does experiments on her

microscope. Comparisons between computers and microscopes may seem

ludicrous; however, this is only because the machinery and purpose of such

an instrument seems so tangible and is well understood. To make this point

clearer, we need only turn to electron microscopes, as they possess inner

workings that are more abstract and not as well understood by the layperson.

The disparity between the ‘facts’ (details on the order of atoms) and their

representation is now more apparent.6 In much the same way, we would like

to claim there are ‘facts’ that the computer is able to represent. We describe

5Unfortunate in the sense that computer scientists may have started out studying the
computers themselves, but that is no longer truly the case.

6For a thorough treatment of this topic see Hacking (1981).

10



a computer as the tool that allows us to access these representations.

So if we consider computers to be the tools, what is it that computer

scientists are studying? In short the answer is that computer scientists study

algorithmic programs and processes. Denning et al. (1989) identify computer

science as “the systematic study of algorithmic processes — their theory,

analysis, design, e�ciency, implementation, and application — that describe

and transform information.” The distinction here between ‘program’ and

‘process’ is important. A program is the a priori knowledge about the

process — the blueprint — while the process is that program being run

on some computer.7 With this distinction in hand, we can identify the

rationalist computer scientist:

The rationalist paradigm [...] defines computer science as a

branch of mathematics, treats programs on a par with math-

ematical objects, and seeks certain, a priori knowledge about

their ‘correctness’ by means of deductive reasoning (Eden, 2007,

135).

This satisfies a definition of computer science as being a type of mathe-

matical endeavor. However, most computer scientists would probably agree

that this does not characterize everything which falls under the umbrella of

computer science.

For the (modern) empiricist and what concerns her, the rationalist ap-

proach to computer science is not su�cient. Having a priori knowledge

7In much the same way as DNA is the blueprint for biological life. Or, to put it
di↵erently, the program is the equivalent of a fact which the process is a representation

of.

11



about a program will not do, for the simple reason that for the types of pro-

grams she studies, full understanding may not exist. These programs are

more akin to theories, and as such, complete knowledge about them cannot

be claimed without experimentation. The programs that empiricists exper-

iment with are generally descriptive in nature: they might describe some

natural process or simulate some system. So, in this way, the empiricist is

interested in processes, not only the programs that describe them. Eden

provides this definition for the empiricist:

The scientific paradigm [...] defines computer science as a nat-

ural (empirical) science, takes programs to be entities on a par

with mental processes, and seeks a priori and a posteriori knowl-

edge about them by combining formal deduction and scientific

experimentation (Eden, 2007, 135).

In this definition, the scientific paradigm seems to be a sort of superset

of the rationalist paradigm. However, I would amend Eden’s definition to

be more precise about what it is empiricist computer scientists study. In

addition to being interested in programs, computer scientists in the scientific

paradigm study processes. Eden acknowledges this by asserting that they

“take programs to be entities on a par with mental processes”; however, it is

not the program itself by means of which empiricists do experiments, rather

it is the process that is created by running the program.

Of course, the separation between empiricist and rationalist is not great

— it is expected that each is well acquainted with the other. At the same

time, sub-fields usually exhibit proclivity for one paradigm over another.

12



For example, computer scientists doing work in artificial intelligence, while

certainly employing rationalist methods, operate empirically. The systems

being built are usually complex and hinge on theories of intelligence for

which there is little or no a priori knowledge. Theoretical computer science,

on the other hand, is one of the few sub-fields within computer science which

fully satisfies the rationalist paradigm and shows few signs of the other two.

Almost all of the work done in theoretical computer science is done by way of

formal proofs, and it easily may be the case that some theoretical computer

scientists need not write a single line of code.

4 Verification - A Sticking Point

This brings us to program verification, which is a common thread throughout

computer science: no matter which paradigm we look at, we can find some

idea or other about how verification should be carried out. Verification, as

we will use the term, is the attempt to verify a program’s correctness. This,

in turn, brings to light the question: what does it mean for a program to be

correct?

Initially, we can define a program to be correct i↵ all inputs to the

program result in correct outputs. However, this definition is problematic:

its very statement is circular. All output of some program is sure to be

correct in relation to its input for the program as it is written. In other

words, assuming the program is valid, any errors made when writing it may

change the output; however, the output will still be correct in relation to

13



the program itself.8

Surely, this is not what we mean when we say a program is correct,

so what really makes some output correct given its associated input? We

answer this by saying that the output of some program is correct in relation

to the given input i↵ the program as specified would generate that output.9

For this reason, program correctness is a nebulous concept at best — the

correctness of a program lies in how well the specification of that program

corresponds to the implementation of it. To put it another way:

(Correct) A program is correct i↵ for each input X we get ex-

pected output E.

As the prevailing view of program verification among philosophers of

computer science goes, a demarcating feature of rationalists and empiricists

is how they go about verifying programs. The rationalist seeks formal proofs

to verify the correctness of programs. They try to show mathematically

that as it is written a program serves its intended purpose. Empiricists,

on the other hand, verify programs through experimentation — a program

accepting some input is written, and then run and checked against expected

output. Its correctness is a measure of how well its actual output corresponds

to its expected output.

The main argument against formal verification is the monumental di�-

culty of proving a non-trivial program formally correct. Another objection

8I take a valid program to be one with no syntactical errors. In other words, it compiles
(if written in a compiled language) or runs (if the language is interpreted).

9When we talk about a program as it is specified, or the specifications for some program,
we are talking about the ‘plans’ or purpose of that program. In other words, program
specifications are a description of what the program is supposed to do. If the program as

written corresponds to its specifications, we call that program correct.

14



comes from Colburn (1991, 2003) where he argues that there is an inher-

ent flaw in the rationalist method of verification. The adequacy of formally

proving a program correct rests on the assumption of the formal correct-

ness of all subsystems a↵ecting the program in question. A formally verified

program is only proven to be correct on an ideal machine. In reality, the

program relies on expected behavior in subsystems, which, unless exhaus-

tively verified by separate formal verification proofs, means that incorrect

assumptions were used in the higher-level proof. Bugs in underlying soft-

ware systems and glitches in hardware might result in unforeseen behavior

in a formally proven program.

These objections, in my mind, are pragmatic in nature. They say nothing

against the validity of formal verification. No method of verification guards

entirely against unforeseen material flaws in hardware. Furthermore, given

enough resources, we could theoretically have an entirely formally verified

system on which to run formally verified programs. This, of course, would

not be practical, but it serves to illustrate the validity of formal proofs.

Because such a system does not exist, this objection simply points out the

infeasible but not impossible nature of them.

A bigger problem is that of ‘specification verification.’ Given some spec-

ification for a program which we are verifying against, what assurance do

we have that the specification itself is correct? In other words, how do we

verify a specification? Is it even possible to verify program specifications

without falling into some sort of regress? Any error in the specification of

some program will result in a formally-verified program which exhibits be-

havior we probably did not want. In this way, it seems futile to attempt to

15



prove the correctness of any program.

An empiricist, on the other hand, seeks to verify her programs using

experiments. This can be attributed to the nature of the programs being

written — generally, some sort of external system or process is being mod-

eled. Usually these systems are natural. For example, a computer scientist

looking to examine theories about the human visual system would write a

program to simulate the particulars of the di↵erent theories under examina-

tion. The rationalist approach to program verification will not work here,

since in this case the computer scientist does not know if her specification is

correct as far as the system is concerned. The only means of verification in

this situation is that of designing an experiment on the program and some

input, and gauging the results against what we expect.

Of course, computer scientists need not be empiricists in just this natu-

ralistic way; there are other systems which are empirically verified by com-

puter scientists. Examples of this are database systems: although they are

grounded in solid theory, the properties of them are empirically verified.

Here is where computer science as an engineering discipline becomes

relevant. A parallel between the empiricist’s method of verification and the

engineer’s reliability test can be drawn here. In fact, reliability tests are

analogous to verification in software engineering. Opinions di↵er on this,

however, and the high road is often given to the empiricists. Eden argues

that there is a clear distinction between reliability tests and experiments.

He describes the distinction:

The purpose of a reliability test is to establish the extent to

16



which a program meets the needs of its users, whereas a scientific

experiment is designed to corroborate (or refute) a particular

hypothesis. (Eden, 2007, 155)

I would argue that Eden is drawing a line in the sand where there should be

none: just because the expected output comes from users instead of some

other source does not mean the engineer and scientist are doing something

di↵erent. They are still verifying program correctness, just based on dif-

ferent criteria. In fact the methods by which the empiricists and engineers

of computer science verify program correctness are more similar than dis-

similar. Reliability tests are di↵erent sorts of experiments, but experiments

nonetheless. In the same way that the empiricist does not know if her pro-

gram is correct in relation to the system it models, the engineer does not

truly know if her program “meets the needs of its users,” but the program’s

output might still be unexpected.

This has traditionally been how philosophers characterize the argument

over verification, but the actual state of a↵airs has been misrepresented.

Very few computer scientists buy into formal verification full-throttle. In-

stead, they seek to verify certain aspects of programs. For example, certain

languages have what is called typing — this means that the type of data held

in variables is specified when the program is written. Programs with this

quality (often called strongly-typed languages) have the nice property that

certain kinds of errors can be caught before runtime. Another property we

may want to verify is that all paths of execution are reachable in the program

— any unreachable path can be optimized out, thus allowing the program to

17



be more space-e�cient. Such properties are almost never verified by hand.

Whenever computer scientists talk about formal verification they are almost

certainly referencing some form of automated formal verifier or other. An

example of such a verifier is ACL2, which is “A Computational Logic for

Applicative Common Lisp.” This system allows the computer scientist to

write a LISP program, write properties (as LISP programs themselves), and

ACL2 will prove that theorems hold.10 In general, when computer scientists

talk of formal verification, they mean that they can formally verify certain

properties about a program. This is an important distinction because for-

mal verification as understood by computer scientists is not incompatible

with the type of verification proposed by empiricists. In this way, more of

what computer scientists do can be accounted for without needing compet-

ing views about verification: empiricists can make use of these automated

tools in addition to their empirical methods of verification.

5 Applying Demarcation to Computer Science

Recall our template from the first section:

1. Theories

2. Falsifiable

3. Progress

10Some other formal verifiers include:

SPIN – verification of concurrent systems / programs

Coq – theorem proving system with extraction

Boogie, Spec# from Microsoft

18



4. Disambiguation

5. Lineage

Until this point, I have argued for an empirical view of computer science,

one which incorporates elements from the formal paradigm. My next task

is to apply the template for an empirical science I constructed in the first

section, and see how well it fits.

Do computer scientists come up with theories? The answer to this ques-

tion is somewhat hard to see. Experiments are conducted and hypotheses

tested, so there must be some sort of underlying theories. The Church-

Turing thesis is the central theory of computer science, and there are many

theories which lie tangential to that one. These theories allow computer

scientists to make predictions and design experiments which can be used to

test theories and possibly falisify them — and so computer science easily

satisfies the requirement for falsifiability. Progress is perhaps the easiest

to see — the rapid pace of advancements over the span of the field’s history

points to progress.

Disambiguation is the first of our principles which poses a prima facie

problem. The problem is easy to see upon examination: the simple fact that

there is more than one paradigm (each with staunch supporters) that com-

puter scientists align themselves with means that computer science as a field

is not adequately disambiguated. We have, so far, listed three paradigms:

that of the rationalist, empiricist, and engineer. Further, we have argued

for the empiricist view over the formal one, and shown that as far as is

necessary we can incorporate many, and perhaps all, of the formal concepts

19



within the empiricist paradigm. Talk of the engineer, however, has been

spare. This is because it is here that the di↵erences cannot be reconciled —

it seems we must simply choose one over the other. The goal of the engineer

is too di↵erent from that of the empiricist or rationalist — for him, computer

science is a much di↵erent endeavor. The engineering of software solutions

is his primary goal, not the advancement of knowledge in the field. While

no normative claim is being made, these two paradigms being interwoven is

harmful to computer science as a whole.

This is not a new problem, and computer science is not the first field to

have faced such a crisis. Fields such as biology and chemistry have faced

a similar situation, and both have resolved it by di↵erentiating separate

sub-fields, such as bioinformatics, genetics, biochemistry, and flavor chem-

istry. Computer science itself has already done this once with computer en-

gineering, physics with many engineering disciplines, math with computer

science. For computer science to truly disambiguate itself, it must separate

out software engineering as a distinct discipline. Eden presents a normative

argument for separating software engineering, claiming that many ‘hard’

computer science classes are being dropped from educational programs in

favor of software engineering-oriented classes (Eden, 2007). His concern is

that keeping the engineering paradigm within computer science will cause

the field to shift away from making the sort of scientific progress it can.

Our last principle, that of lineage, is easily satisfied. The conception

of computer science took place within mathematics in the 1930’s with the

question of what was and was not a computable function. Much of the

opposition to thinking of computer science as a science stems from this

20



lineage, as it is harder to see how a discipline with formal roots can be an

empirical science. But as the formal aspects of computer science become

more a part of the toolset and less the main focus of research, the practice

of computer science comes to resemble an empirical science more and more.

6 Importance of Curriculum

Scientists are not born — they are shaped, at least in part, by their ed-

ucation. This is something many scientists perhaps lose sight of — that

although science is not only method, forming good habits helps determine

the quality of the scientist. This is not a new idea — Thomas Kuhn calls this

part of the disciplinary matrix, and attributes much of a scientist’s success

to her education (Kuhn, 1996). This disciplinary matrix is a specific aspect

of Kuhn’s more general paradigm, and it indicates the entire scope of a field:

the education, practice, and basis for that discipline.11

It is important, then, that the curriculum of undergraduate “future scien-

tists” reflect what the end product is meant to be — a well-trained scientist

who is able to operate within the disciplinary matrix of her field. Computer

science, with software engineering included (sometimes even being the fo-

cus) in the curriculum of many undergraduate programs, undermines this

goal. Just as with computer engineering, only a single software engineering

course should be required of students. Some schools have already separated

11Kuhn’s idea of a paradigm denotes much more than what I have been using the word
‘paradigm’ to indicate. It indicates not only a way of looking at some aspect of the world
(as it relates to a discipline), but a way that is incommensurable with its predecessors.
Kuhn’s paradigm is too broad for discussion here, so my use of the word will be roughly
analogous to Kuhn’s disciplinary matrix.

21



out software engineering as a separate area of study, allowing those not

interested so much in the ‘science’ to focus on aspects of software design.

7 Conclusion

Before we can identify computer science as being a science or not, we must

first demarcate computer science from computer engineering and software

engineering. Computer science must disambiguate; software engineering

should be completely separated out as a distinct yet related discipline. Not

only are there philosophical and scientific reasons for doing this, there are

strong normative reasons as well. Software engineering is an integral part of

society and is the most practical application of the many discoveries made

in computer science. Keeping it intertwined with computer science does a

disservice to both disciplines.

The damage done to computer science by watered-down curriculum is

much greater than to software engineering, however. Software engineer-

ing, being so readily applicable, lucrative, and in such demand means that

computer science departments which haven’t yet made this distinction have

begun supplanting the bread-and-butter courses of computer science with

software engineering courses which rightly belong in another major.

22



References

Aristotle (1994). Posterior Analytics. Clarendon Press.

Colburn, T. R. (1991). Program verification, defeasible reasoning, and two
views of computer science. Minds and Machines 1, 97–116.

Colburn, T. R. (2003). Methodology of computer science. In The Black-
well Guide to the Philosophy of Computing and Information. Blackwell
Publishing.

Denning, P. J., D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J.
Turner, and P. R. Young (1989). Computing as a discipline. Communi-
cations of the ACM 32 (1), 9–23.

Eden, A. H. (2007). Three paradigms of computer science. Minds & Ma-
chines 17, 135–167.

Hacking, I. (1981). Do we see through a microscope? Pacific Philosophical
Quarterly 62, 305–322.

Hagar, A. (2007). Quantum algorithms: Philosophical lessons. Minds and
Machines 17 (2).

Kuhn, T. S. (1996). The Structure of Scientific Revolutions. The University
of Chicago Press.

Laudan, L. (1983). The demise of the demarcation problem. Boston Studies
in the Philosophy of Science 76, 111–127.

Newell, A. and H. A. Simon (1976). Computer science as empirical inquiry:
Symbols and search. Communications of the ACM 19 (3), 113–126.

O’Connor, J. J. and E. F. Robertson (2012, May). Zuse biography. http:

//www.gap-system.org/

~

history/Biographies/Zuse.html.

Peirce, C. S. (1957). Essays in the Philosophy of Science. Liberal Arts Press.

Resnik, D. B. (2000). A pragmatic approach to the demarcation problem.
Studies in History and Philosophy of Science Part A 31 (2), 249–267.

Thagard, P. R. (1978). Why astrology is a pseudoscience. PSA: Proceedings
of the Biennial Meeting of the Philosophy of Science Association 1, 223–
234.

23



U.S. Department of Education, National Center for Education Statistics,
H. E. G. I. S. (2010). Degrees and other formal awards conferred sur-
veys, 1970-71 through 1985-86; and 1990-91 through 2008-09 integrated
postsecondary education data system. http://nces.ed.gov/programs/

digest/d10/tables/dt10_282.asp?referrer=list.

24


	Demarcating Computer Science
	Recommended Citation

	tmp.1387430365.pdf.Rkfq0

