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Abstract

Multimodal remote sensing is an upcoming field as it allows for many views of the same region of

interest. Domain adaption attempts to fuse these multimodal remotely sensed images by utilizing

the concept of transfer learning to understand data from different sources to learn a fused outcome.

Semisupervised Manifold Alignment (SSMA) maps multiple Hyperspectral images (HSIs) from

high dimensional source spaces to a low dimensional latent space where similar elements reside

closely together. SSMA preserves the original geometric structure of respective HSIs whilst pulling

similar data points together and pushing dissimilar data points apart. The SSMA algorithm is

comprised of a geometric component, a similarity component and dissimilarity component. The

geometric component of the SSMA method has roots in the original Laplacian Eigenmaps (LE)

dimension reduction algorithm and the projection functions have roots in the original Locality

Preserving Projections (LPP) dimensionality reduction framework. The similarity and dissimilarity

component is a semisupervised component that allows expert labeled information to improve

the image fusion process. Spatial-Spectral Schroedinger Eigenmaps (SSSE) was designed as a

semisupervised enhancement to the LE algorithm by augmenting the Laplacian matrix with a

user-defined potential function. However, the user-defined enhancement has yet to be explored

in the LPP framework. The first part of this thesis proposes to use the Spatial-Spectral potential

within the LPP algorithm, creating a new algorithm we call the Schroedinger Eigenmap Projections

(SEP). Through experiments on publicly available data with expert-labeled ground truth, we

perform experiments to compare the performance of the SEP algorithm with respect to the LPP

algorithm. The second part of this thesis proposes incorporating the Spatial-Spectral potential

from SSSE into the SSMA framework. Using two multi-angled HSI’s, we explore the impact of

incorporating this potential into SSMA.
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I. Introduction

The next step for the remote sensing community to make the most of available data and provide

higher quality image products is multisensor remote sensing. Performing data analysis on single

sensor images can be limiting as the data interpretation is constrained to a specific set of acquisition

factors. If there are multiple sensors via different satellites or multiple trials with the same sensor

then there is suddenly an abundance of information of a remotely sensed scene. The multiple

set of acquisition factors can give rise to different interpretations of the scene, enabling a greater

understanding of earth observations. However, fusing information from multiple sensors can be

challenging because it is highly unlikely that the satellite will observe the same area with the

exact same acquisition factors such as sun elevation, sun-target-sensor angle and atmospheric

conditions. With respect to multitemporal data, remotely sensed image models can be limited by

the lack of observations from the same sensor over an area of interest. This can be rectified by

data fusion techniques for multiple sensors.

The machine learning community have entire libraries of image processing and understanding

algorithms that take into account the idea of ’Big Data’. Big data refers to large datasets that

can be analyzed to reveal hidden factors and interactions between components. Hyperspectral

images (HSI) definitely fall into this category of big data, however, the success of many land cover

classification schemes are at the mercy of labeled data. Supervised learning algorithms tend to

base their predictions on learned input factors so if the input factors are of poor quality, then the

learned model will produce poor results. It is unfortunate but although most good classification

algorithms are reliant on quality labeled data, the acquisition can be very expensive in the remote

sensing field. In the context of multisensor output, it would be advantageous for domain adaption

(transfer learning) techniques to reduce the cost of acquiring quality labeled data.

I.1 Research Objectives

My thesis work expands upon current concepts in domain adaption algorithms; in particular

the Semisupervised Manifold Alignment (SSMA) method. This method is based on the Kernel

Eigenmap Projection framework in order to preserve the inherent structure of each individual HSI

whilst pulling like data points together and pushing unlike data points apart between different

HSIs. This is a variation to the Kernel Eigenmap [1] approach as the Kernel Eigenmap Projection

method produces explicit projection functions to map data points from one domain to a shared

1
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latent space. The prime example of a method that uses this framework is the Locality Preserving

Projection (LPP) [2] method; a derivative of the Laplacian Eigenmaps (LE) [3] algorithm. I

introduce the Schroedinger Eigenmap Projection (SEP) algorithm which is a derivative of the

Schroedinger Eigenmaps (SE) [4] method; both being expansions to the LPP and LE algorithms

respectively. Using two iconic HSIs, I look at classification results for all four dimension reduction

techniques and address the strengths and limitations of each. After exploring the use of the

Schroedinger Operator within the Kernel Eigenmap and Kernel Eigenmap Projection frameworks,

I analyze the effectiveness of the Schroedinger Operator within the SSMA schema using two HSIs.

Wang [5] originally introduced the notion of Manifold Alignment with inspiration from transfer

learning and the LPP methodology. Variations [5] of this method were subsequently introduced

followed by Tuia et al. [6] using some of this framework on multimodal HSI fusion. I look at

some of Wang’s original work, Tuia’s original work and the Schroedinger Operator framework

[7] to compare and contrast the effectiveness of these three methodologies in multimodal HSI

classification. Concise unique contributions within this thesis are as follows:

• Compare and contrast the HSI classification accuracy with Laplacian Eigenmaps, Locality

Preserving Projections, Schroedinger Eigenmaps and Schroedinger Eigenmap Projections

• Compare and contrast the multimodal HSI classification accuracy with Wang’s [5] original

manifold alignment method, Tuia et al.’s [6] current Semisupervised Manifold Alignment

method, and the Schroedinger Eigenmap Projection.

I.2 Organization of Thesis

The organization of this thesis is as follows:

• Chapter II gives a background of the remote sensing process and introduces general concepts

such as dimensionality reduction, manifold learning and manifold alignment in the context

of HSI classification.

• Chapter III gives an introduction to manifold learning and key manifold learning algorithms.

It explores the three fundamental matrices used in this thesis including the Adjacency

and the Laplacian matrix. This is followed by a step-by-step introduction to the Laplacian

Eigenmaps algorithm and the Schroedinger Eigenmaps Algorithm. The Locality Preserving

Projections and Schroedinger Eigenmap Projection algorithms are introduced following

the Laplacian Eigenmaps and Schroedinger Eigenmap algorithms respectively. Discussions

2
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including the strengths and limitations follow each of the listed algorithms.

• Chapter IV gives an introduction to the concept of Manifold Alignment by way of describ-

ing the step-by-step process of the Semisupervised Manifold Alignment algorithm. The

matrix construction and projection functions obtained are highlighted in this section. The

Schroedinger Operator in this Manifold Alignment framework is discussed and the final set

of algorithms to be used in experiments are summarized.

• Chapter V introduces the HSI datasets used for the Eigenmap versus Projection classification

results experiment as well as the HSI datasets used for the Multimodal Remote Sensing

classification results experiment. The experiment setup and parameters used are described

as well.

• Chapter VI shows the best results obtained from each of the experiments along with some

sensitivity analysis to showcase how certain parameters affected the classification results. A

table of best results is shown for each dataset and experiment to summarize the outcome of

the classification experiments. This is followed by a detailed discussion of the results as well

as some potential experiments to be done to expand upon this research.

• Chapter VII gives some concluding remarks about this thesis.

3
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II. Background

II.1 Preliminary Remote Sensing

Remote sensing is the science of acquiring information about the Earth’s surface without physically

being present at the scene. This is typically done through a long distance camera, via an aircraft or

on-board satellites. In this particular application, I will be referring to satellite or airbourne remote

sensing. These platforms have sensors that record the electromagnetic radiation on a platform, e.g.

the satellite as shown in figure 1. A popular type of sensor is an passive optical sensor, which

assumes that the sun is the primary source of radiation.

Figure 1: Remote sensing process using airbourne/satellite sensors.1

The sensor detects and records this solar radiation from the sun that is reflected or scattered as it

makes contact with the earth. Different materials on the earth such as buildings, roads, soil and

water reflect this solar radiation differently due to the chemical composition of the material as

well as the angle of acquisition. We characterize the differences via a spectral reflectance signature

which is a measure of the electromagnetic energy or reflectance as a function of wavelength.

An imaging spectrometer can be used to capture the spectral information of a material in relation

to its spatial neighbours. Using this imaging spectrometer, we can acquire remote sensing images

as digital images that represent the scene being observed. These digital images are two- or

three-dimensional arrays where each pixel location contains spectral information of a specific area

on the earth’s surface. Each pixel has an ’intensity’ range and a spatial location marker in this

2http://www.nasa.gov/centers/langley/images/content/69904main_RemoteSnsg-fig2.gif
2http://www.ces.fau.edu/nasa/images/Energy/VisibleLightSpectrum.jpg

4
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Figure 2: Electromagnetic Spectrum.2

Figure 3: Digital Image shown to a user. 3

digital image. Figure 3 is a good illustration of a single pixel in relation to it’s neighbours. There is

a one-to-one correspondence between the pixels location and its geographical coordinates such as

longitude and latitude. According to figure 3, there is an (n1, n2) grid where each intensity value,

i, is usually a measured physical quantity that is used to determine the reflected solar radiance of

that spatial location relative to its neighbours, j where i 6= j and i, j ∈ Rn1×n2 .

There are different types of sensors available for remote sensing. The defining characteristics of

the sensors also characterize the acquired images. Spatial resolution is the scale of an individual

pixel on the ground. The exact distance value between adjacent pixels within the digital image is

the ground sample distance (GSD). This depends upon the altitude of the sensor as well as the

instantaneous field of view (IFOV). An image with a high spatial resolution and a small GSD can

detect smaller objects whereas an image with a low spatial resolution and large GSD can only

detect large objects. As an example, an image with a high spatial resolution can detect objects up

to 0.5 metres as opposed to a low spatial resolution image can detect objects up to 50 metres. In

3http://www.harrisgeospatial.com/docs/HyperspectralAnalysisTutorial.html
3http://www.crisp.nus.edu.sg/~research/tutorial/image.htm

5
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the spatial dimension, pixels that are adjacent to one another are more likely to be the same type

of material. This dimension is valuable because it provides information about the size, shape and

structure of materials on the earth.

Figure 4: Hyperspectral Image 4

The radiometric resolution is how sensitive the sensor is to the intensity levels. These intensity

levels are recorded as a digital number (DN); a generic, pre-calibrated number. The higher the

radiometric resolution the more accurately a sensor can discriminate varying intensity levels.

Historically, multispectral sensors were very popular because they could detect and measure three

to seven wavelength bands for each material. For example the SPOT satellite could measure three

bands, the IKONOS satellite could measure four bands and the LANDSAT satellite could measure

seven bands. In this case, the pixel value on the (n1, n2) grid in Figure 3 digital image would now

be on an (n1, n2, λ̄) grid where λ̄ ≤ 7, where λ is a wavelength value and λ̄ is a binned, discrete

measure of the wavelength. This can be thought of as a stack of images with different spectral

channels. As remote sensing technology got better, hyperspectral sensors became more popular

because they could capture information at hundreds of spectral bands. This precision allowed for

better characterization of areas on the Earth and thereby better identification of materials. This

results in a hyperspectral data cube because each pixel value is within an (n1, n2, λ̄) grid where

λ̄ ≥ 100.

There are a large number of image processing techniques that can be used to extract useful

information about these scenes. Digital image processing usually attempts to enhance, correct,

or restore the image. The objective of enhancement is to help with visually interpreting the

scene, correction may occur to account for any oddities (e.g. noise removal, contrast enhancement,

atmospheric compensation, or spatial registration) that may be in the image that could possibly

hinder the image processing results, and restoration techniques enable a user to fill in any missing

information that may have occurred during the acquisition process.

Another type of image processing is image interpretation or image characterization for applications

6
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such as image segmentation and image classification. Originally, image processing techniques were

reserved for multispectral images (MSI) but the techniques did not always transfer well to HSI.

HSIs contained to nonlinearities within the data as larger hyperspectral cubes were constructed.

This resulted in highly correlated adjacent spectral bands which led to a multitude of redundant

information. This was problematic for some techniques which use a limited number of samples

leading to the notion of the curse of dimensionality [8]; which is discussed in more detail later.

II.1.1 Applications

There are numerous applications of remote sensing using hyperspectral imagery. Below are a few

examples from 5 6 of how HSI have been used:

• to estimate parameters such as biomass, carbon, land cover changes and biodiversity of

forest zones, useful in ecological applications,

• to retrieve physico-chemical mineral properties and parameters such as composition and

spatial density, useful in geological science applications,

• to classify minerals as well as their neighbourhood relationships, useful in minerology,

• to monitor the coast for shoreline changes such as the sediment deposition, structural

shoreline changes and map coastal features, which are useful for coastal mapping and

geological applications to preventing soil erosion,

• to monitor ocean circulation, ocean temperature, wave heights, and sea ice for changes,

useful for understanding how oceans function enabling us to manage the oceanic resources

better,

• to perform target detection for military purposes because of the benefit from the high spatial

and spectral resolution of remote sensing images,

• to classify agricultural classes such as vegetation and crops, used in precision agriculture,

• to track invasive species density measurements of certain vegetation types from temporal

remotely sensed images, useful in ecological applications.

5http://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/
6http://oceanservice.noaa.gov/facts/remotesensing.html

7
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II.2 Issues

The high spectral resolution of HSIs provides more wavelengths for the materials on the scene

which is important for classification objectives. However, there are a few challenges that surface as

the remote sensing technology starts to get better.

II.2.1 Big Data

Remote sensing has become a popular platform to collect hundreds of spectral bands of one region

of interest (ROI) which can potentially be helpful when characterizing chemical compositions

of different materials for the analysis of objects of interest. There has been a multitude of new

satellites that are being deployed, resulting in a large supply of high dimensional and high

resolution data. These data sources generate many airbourne or satellite images of different spatial,

spectral and temporal resolutions which have increased over the last few decades. The increase

in the volume, variation and speed of data distribution falls into the notion of Big Data [9]; large

digital datasets which require high level programming skills in order to transform the data in a

form that can convey meaningful information 7.

II.2.2 Intraband Correlation of HSI

The narrow and contiguous spectral bands in hyperspectral images may contain reflectance or

radiance values that have a high correlation between similar classes of materials. The measured

reflectance values for two material classes can be very similar in many spectral bands except for a

small unknown portion of spectral bands. This leads to methods that require multivariate statistics

to avoid difficulties distinguishing different classes from one another.

II.2.3 Curse of Dimensionality

We are in an era where massive automatic data collection is becoming simpler everyday so high

resolution hyperspectral data is a victim of the curse of dimensionality. According to the Hughes

phenomena [9], the accuracy of a classifier increases as the dimension of each sample increases

up until an optimal dimension. After this point, the large number of features do not guarantee

better results from the classifier because the number of samples become limited compared to the

7https://datascience.berkeley.edu/what-is-big-data/

8
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volume of the feature space. One would need a very large number of samples to xharacterize the

large dimensional space. In Hyperspectral remote sensing, this sample-to-dimension ratio is often

impossible to obtain due to high labour costs, remote access and limited time to collect the ground

truth with the same acquisition parameters as the sensor. This causes classification accuracies to

decrease due to the low sample/dimension ratio. In addition, the large amount of hyperspectral

data captures many features in a ROI with no immediate intuition about which features are the

most important for which application. Consider the spectral domain, where each spectral channel

is one dimension and each pixel is represented as a point in this domain. If we were to increase

the number of spectral channels past the optimal number of channels, the amount of relevant

information for classifier decreases. To combat this, the remote sensing communities use feature

extraction methods to project the relevant information in the high dimensional space to a lower

dimensional subspace to get a better separation between classes.

II.2.4 Nonlinearities

A few physical phenomena that cause a nonlinear spectral response include multiple scattering, the

angular dependence of single scatter in the scene, and the nonlinear attentuation of enery in water

bodies [10][11]. Nonlinear feature extraction methods such as manifold learning have successfully

extracted important features in these high dimensional feature spaces. Linear feature extraction

methods such as PCA and multidimensional scaling (MDS) can result in non-representative

features which causes many classification schemes to have poor classification results [12].

II.2.5 Temporal Variations

Hyperspectral remote sensing seeks to capture scenes on the Earths surface. It is difficult to

interpret these scenes temporally because the earth is dynamic and the environmental conditions

can change in a short time span; causing spectral signatures of certain materials to change with

time [13]. Vegetation and shoreline modeling are very popular applications but the dynamics

associated with these areas are very apparent and so the spectral response of the same material can

appear different with respect to time. Robust classifiers are needed in order to correctly classify

ROIs despite the spectral signature variation with time. This can be more problematic when we

account for the identical ground truth that needs to be captured during every remote sensing

campaign in order to correctly classify these remotely sensed scenes. When limited ground truth

is available, transfer learning or domain adaption can potentially solve this issue [14].
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II.3 Multimodal Remote Sensing

The above section listed a few different applications of remotely sensed images. Among all

applications, classification mapping is one of the most prominent applications. The image classifi-

cation problem is necessary to solve because land-cover maps are essential in the development

of multitemporal studies and modeling efforts in fields like climate change, ocean studies, arctic

studies and vegetation analysis. The accuracies of the image classification schemes are well-studied

in the machine learning community, but the remote sensing community has an ongoing problem

associated with multitemporal campaigns: the analyst has to use multiple sensors at different

spatial and spectral resolutions, coverage locations, angles of acquisition, and temporal scales.

Therefore, there is a need to have image processing algorithms that can use multimodal data

products to produce high quality classification outputs [15]. The need for multimodal image fusion

techniques that are accurate, robust, reliable and fast is becoming paramount for handling big data

problems associated with continuous streams of remotely sensed images. More specifically, these

image processing regimes need to be able to jointly handle heterogeneous pieces of information.

In remote sensing, the modality component stems from the fact that there are many types of

remotely sensed images with different sources such as imaging spectrometry or light detection

and ranging (LiDAR). The fusion problem stems from how these different modality components

are pooled together to produce meaningful interpretations. These can be fused at a feature level, a

classifier level or at an output level. Gomez-Chova et al. [14] review current methodologies for

multimodal classification of remote sensing images and conclude that there are a wide range of

different and successful schemes which reflect the efforts of the remote sensing community to

solve this problem. Such schemes can be classified into:

• multiple kernel learning methods - perform fusion in the implicit high-dimensional feature

representations of the original samples,

• sparse dictionary learning - perform fusion at the signal level

• Markov modeling - use global minimization energy concepts to formalize spatial and

mulitmodal fusion,

• deep learning algorithms - these methods use neural network techniques to easily learn from

different sources and unlabeled data,

• domain adaption and manifold alignment - fuse information from a geometrical perspective

in a target space where the nature and dimensionality of the source domain space is

10
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combined.

II.4 Domain Adaption

Figure 5: The general transfer learning paradigm. [5]

In the field of remote sensing, it is crucial to have good ground truth for applications such as

classification. With the explosion of data sources over the past century, there is now an abundance

of information available. However, the cost for acquiring good labeled data is still costly and may

require extensive campaigns. There are many situations where multiple sources of information can

prove useful in the remote sensing community [6] [14] [16] [17]. Often times there is a situation

where multiple angles can give a better representation of a remote sensing scene. Other times

the field-of-view (FOV) of a sensor can only capture a certain section of a ROI so there needs to

be multiple run throughs. This can result in different acquisition parameters over a single ROI.

Correction methods need to be implemented as well as image mosaicking techniques. The common

case is the scenario of multitemporal remote sensing. The best multitemporal characterization of

a ROI involves many data acquisitions with sensors. But it would be expensive and difficult to

run a campaign to acquire ground truth with each acquisition. Using the same labeled samples

from a single campaign for all sensor run-throughs would be beneficial to minimize the cost to

produce quality classification results. Unfortunately, we cannot use existing ground truth for

newly acquired images because the scene may actually change between acquisitions. Furthermore,

certain acquisition parameters can change the outcome of the classification results. For example,

composition, topography, illumination conditions, sun-target-sensor angles and sensor can effect

characterizing vegetation [14] [18].

11
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Domain adaption is a viable method for tackling the problem of domain adaption. One class

of domain adaption methods that has recently surfaced in the literature is called feature-based

domain adaption. Some examples include manifold alignment [5], kernel based methods [19]

and transfer components analysis [20]. Under the assumption that each data source has its own

feature space that are somewhat related to one another, the objective of domain adaption is to

find a target feature space where the source feature spaces have the same attributes. See figure 5

for a generic view of domain adaption in terms of transfer learning. Notice how there are three

different sources of information being conveyed to one single latent space. In the context of HSI, if

there are two separate HSIs with labeled information, the two source images should have similar

class labels in the target space. This ensures that the labeled instances in the source space can be

used in the target space.

II.5 Manifold Alignment

Manifold Learning has been successfully applied to hyperspectral image classifcation [12]. It excels

at addressing the curse of dimensionality as well as correctly modeling the nonlinearities that

sensors capture in nature when sensors have narrow spectral bands and high spatial resolutions.

As a data-driven methodology, many studies have used manifold learning as an approach to the

domain adaption problem such as manifold Procustes analysis [21], manifold warping [22], class

centroid alignment [23] and semisupervised manifold alignmemt [6]. There are many factors that

can affect different manifold learning methods such as dimension of manifold coordinates, the

selection of the free parameters, the number of classes and the specific scene characteristics.

Figure 6: Manifold Alignment [8].

The manifold alignment approach attacks the domain adaption problem by reducing all data
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sources to a common target space [24]. This is done by aligning different domains (or manifolds)

from the source space to a manifold joint in the latent space (or target space). In this target space,

the datasets will have similar behaviours to their respective source domains. Figure 6 depicts a

high-level interpretation of this manifold alignment process. From the classification perspective,

similar classes between the two source domains will be close together in the target domain. The

target domain should have desirable properties such as local neighbourhood consistency, cross

class correlation and class discrimination [23]. There should also be some sort of projection

function in order to project data from a source domain into the target domain. Tuia et al. [6] found

that by constructing this manifold alignment method using Laplacian Eigenmaps, they were able

to get 90% classification accuracy with multiangluar remote sensing images. Using the Laplacian

Eigenmaps (LE) framework for the similarity and dissimilarities between classes in each source

domain, they were able to construct a cost function to minimize in order to pull similar classes

apart and push dissimilar classes together in the target domain [25].
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III. Manifold Learning

We have established in the Chapter II the importance of dimension reduction in the RS field.

Generally, dimensionality reduction seeks a transformation of the high dimensional data to a

lower dimensional space whilst still preserving the important features present in the data.

The two main branches of dimensionality reduction are linear and nonlinear. Principal Components

Analysis (PCA) [26] is the most famous method which finds the greatest variance between the

data points. An excellent survey of some linear techniques with applications to remote sensing

can be found here [27]. Nonlinear methods include some fundamental methods such as Kernel

PCA (KPCA) [28], Isometric Mapping (Isomap) [29], Locally Linear Embedding (LLE) [30], and

Laplacian Eigenmaps (LE) [3]. These were followed shortly by subsequent methods including

Diffusion Maps (DM) [31], Schroedinger Eigenmaps (SE) [4], Local Tangent Space Alignment

(LTSA)[32], and Hessian LLE (HLLE) [33]. Most of these methods can be described as Kernel

Eigenmap Methods [1] as they attempt to construct some unique kernel matrix which provides

information about the pairwise relationship between data points in order to discriminate important

features.

Manifold learning is the nonlinear dimensionality reduction method of data. A manifold is a

topological space that is locally Euclidean. A basic example is the earth which resides as a 2-D

sphere in a 3-D space (when viewed from space) but it is a generally flat 3-D coordinate system

from our point of view [34]. Simply put, the Earth appears to be 3D but there are places along

the Earth’s surface which are flat from our point of view. Thinking of high dimensional spaces

in terms of manifolds allows for powerful techniques to emerge with an effort to reduce this

dimensionality to an embedding space with valid approximations to the data in the higher space.

An introduction to the necessary graph theory is presented in order to facilitate the introduction

the manifold learning algorithms discussed. This chapter focuses on the Laplacian Eigenmaps (LE)

algorithm and some derivatives including the Locality Preserving Projection (LPP) method and

the Schroedinger Eigenmaps (SE) method. Furthermore, the Schroedinger Eigenmaps Projection

(SEP) algorithm is introduced. This chapter will provide a step-by-step breakdown of the original

LE algorithm and some key matrices and additions from the LPP, SE and SEP schemes.
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Figure 7: S-Curve example: The manifold learning techniques shown are Local Linear Embedding, Isometric

Mapping, Laplacian Eigenmaps and t-distributed Stochastic Neighbourhood Embedding. 8

III.1 Spectral Graph Theory

III.1.1 Overview

A graph G :< V, E > is a set of vertices, V and a set of unordered pairs of vertices, E where

V = {v1, v2, . . . , vN} and E = {(u1, v1), (u2, v2), . . .}. A single unordered pair of vertices, e is

known as an edge where e = (u, v). A simple graph will consist of vertices (points) that are

connected to one another by edges (lines). Each vertex can represent an object and each edge will

represent the relationship between one or more objects. We don’t pay attention to the position

of the vertices or to the length of the edges. We only care about how each vertex is related to

one another. Figure 8 shows a simple example of a graph as a representation of an arbitrary set

of data points. Graph-based models are popular in the computer vision and machine learning

community due to their simplistic representation of complex structures whilst still maintaining

important structural information. This is due to their emphasis on connectivity of the original

structure rather than just comparing the similarity between data points.

If we are given a large graph as a representation of a scenario, it would be useful to extract

information from the graph concisely. One way we could do this would be to study the spectra of

the matrices used to represent these graphs. The core of spectral graph theory is the relationship

between the eigenvalues and the structure of graphs. This is the culmination of basic graph theory

and tools of linear algebra. In this section, I will introduce three common matrices associated with

graphs; the adjacency matrix, the Laplacian matrix and the normalized Laplacian matrix. I will

also give some examples of how the eigenvalues can be used to extract information from a graph.

Throughout this section, I will use Figure 9 as a basic example and will present the key matrices

that can be obtained from this graph.

8http://scikit-learn.org/stable/modules/manifold.html
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Figure 8: A graph with edges.

III.1.2 Adjacency Matrix

Figure 9: A simple graph, G with weighted edges.

The adjacency matrix A of graph G is the |V| × |V| matrix defined by:

Aij =

 1 if (vi, vj) ∈ E;

0 if (vi, vj) 6∈ E; .
(III.1)

An example of the adjacency matrix for Figure 9 is:
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A =



0 1 1 0 1 0

1 0 0 0 0 0

1 0 0 1 1 1

1 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0


(III.2)

From a spectral graph theory point of view, the ordering of vertices does not matter, as a

reordering causes A to be transformed to a similarity matrix which preserves the eigenvalues.

The eigenvalues can be thought of as functions on the set of vertices. The adjacency matrix is

symmetric for undirected graph graphs, which also means that the eigenvalues are real. Also,

because the matrix, A is symmetric, it follows that the matrix has a full set of eigenvectors, and

that eigenvectors corresponding to distinct eigenvalues are mutually orthogonal. This is a nice

property which enables many applications using undirected graphs.

In the adjacency matrix for 9, we use 0s and 1s to indicate the absences or presence of an edge.

However, we could use different entries that specify how strongly connected a vertex is to another.

Let w(u, v) denote the weighting function for vertex u and v. For the graph in figure 9 get

Wu,v = w(u, v) which results in the following matrix:

W =



0 0.6 0.2 0.3 0 0

0.6 0 0 0 0 0

0.2 0 0 0.1 0.7 0.9

0.3 0 0.1 0 0 0

0 0 0.7 0 0 0

0 0 0.9 0 0 0


(III.3)

III.1.3 Laplacian Matrix

The second type of matrix that is important for our applications is the Laplacian matrix, L, which

is defined as:
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Li,j =


di if i = j;

−1 i is adjacent to j;

0 otherwise,

(III.4)

where di is the degree of the ith vertex, i.e. di = ∑j Wi j. We can relate the Laplacian matrix to the

adjacency matrix by L = D−A, or in the weighted case,

L = D−W, (III.5)

where D is the diagonal matrix the degree on the diagonals and W is the adjacency matrix. An

example of the Laplacian matrix for the graph of figure 9 is:

L =



1.1 −0.6 −0.2 −0.3 0 0

−0.6 0.6 0 0 0 0

−0.2 0 1.9 −0.1 −0.7 −0.9

−0.3 0 −0.1 0.4 0 0

0 0 −0.7 0 0.7 0

0 0 −0.9 0 0 0.9


(III.6)

There are some important properties of the Laplacian matrix, L such as:

1. L is symmetric and positive semi-definite.

2. The smallest eigenvalue of L is λ0 = 0, and 1 = (1, 1, . . . , 1)T is a correct eigenvector.

3. The algebraic multiplicity of the zero eigenvalue is equal to the number of connected

components; where a connected component is the set of vertices in a graph that are linked

to each other by paths.

III.2 Laplacian Eigenmaps

In machine learning, we often come across problems where the data is given to us in a high

dimensional space but the actual intrinsic information of the data lies on a low dimensional

manifold. Working in a lower dimension can make a classification problem easier because of the

computational advantage as well as the better separation of classes.
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To formally introduce the dimension reduction problem, consider m points {x1, x2, . . . , xm} ∈ RN ,

that lie in an an n dimensional manifold, M ⊆ RN . Our objective is to find a lower dimensional

representation {y1, y2, . . . , ym} ∈ Rn where n << N. In this formulation, yi would represent xi

in the new dimensional space. Linear algorithms such as PCA or MDS consider the variance

between data points and construct the yi’s to be a linear transformation of the xi’s. LE considers

the geometric relationship between the data points. There are other nonlinear dimensionality

reduction techniques such as LLE or Isomap that use neighbourhood information of each point by

considering its relationship within the graph structure.

In this section, we will to introduce the LE algorithm. I describe the algorithm followed by some

possible pros and cons to the method.

III.2.1 Algorithm

Step 1. Construct the Adjacency Matrix

We build a graph G whose vertices i and j are connected if xi is among k-Nearest Neighbours

(k-NN) or ε-ball graph. The weights between the data points are measured in the euclidean

distance metric. This adjacency matrix A represents the connectivity of the original data where

k, the number of neighbours, is the free parameter for the k − NN approach and ε is the free

parameter for the ε-ball approach.

Step 2. Compute weights for each Edge

We want weighted edges on the graph to represent the proximity of the vertices to their adjacent

neighbours. One common kernel to use is the diffusion weight matrix, W. We can define W

as:

Wij =

 e−
||xi−xj ||

2
2

2σ2 if i, j are connected

0 otherwise.
(III.7)

where σ is a parameter that controls the width of the kernel.

Step 3. Solve the eigenvalue problem

Now, we want to minimize the following cost function
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min
yT Dy=I

1
2 ∑

i,j
||yi − yj||2Wij (III.8)

which is equivalent to minimizing the following

min
yT Dy=I

tr
(

yT Ly
)

(III.9)

where L = D−W is an mxm laplacian operator and I is the identity matrix.

The solution to this minimization problem is given by finding the first n eigenvalue solutions to

the generalized eigenvalue problem:

L f = λD f (III.10)

We solve our generalized eigenvalue to obtain the solutions f0, f1, . . . , fn−1 eigenvectors which are

ordered by the smallest n− 1 eigenvalues λ0, λ1, . . . λn−1. The smallest eigenvalue. λ0 is trivial

because of the normalization


d1 − w1 . . . −w1n

...
. . .

...

−wn1 . . . dn − wnn




1

. . .

1

 =


0

. . .

0

 (III.11)

This is the trivial solution f0 = 1 associated with the λ0 = 0 which results in the eigenfunc-

tion

f0 : x → (1, . . . , 1) (III.12)

This argument assumes that the graph is connected. This first vector represents the minimum

distance necessary for the cluster which would result in the entire graph being one big cluster. So

if there is only one connected component, then it would be the trivial solution of the entire graph.

If this graph were not connected then the number of connected components would be equal to the

number of zero eigenvalues. This rest of the eigenvectors will be orthogonal to f0 because L is

symmetric. If we take the first d + 1 eigenvectors, we obtain an embedding from the original high

dimensional space to the lower d dimensional space:
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F : xi → ( f1(xi), . . . , fk(xi)) (III.13)

III.2.2 Computational Complexity

The three main components of this problem are the weighted adjacency matrix construction,

the graph Laplacian construction, and the partial eigenvalue decomposition. Assuming an

approximate nearest neighbour method, the nearest neighbour search has a computational

complexity of O (Dlog(k)Nlog(N)) where D is the original dimension of the data, N is the

number of data points and k is the number of nearest neighbors chosen. The eigenvalue de-

composition typically translates from a generalized eigenvalue problem of the form Ax = λBx

into the form B−1 Ax = λx of O
(

DN3). Then solving for the d smallest eigenvalue results in

O(dN2), where d is the desired number of eigenvalues. This leaves us with the final order

O (Dlog(k)Nlog(N)) +O
(

DNk3)+O (dN2).
III.2.3 Discussion

The LE method has many advantages and disadvantages over linear methods as well as other

nonlinear methods. Some advantages include:

• The algorithm is easy to implement because it involves solving a generalized eigenvalue

problem for which many packages exist. The nearest neighbour searches consist of the most

computational effort, but there are many different packages available to optimize the search.

• The algorithm preserves geometric relationships the data. By reducing the dimension of our

high dimensional data, we still maintain the local geometry.

• The locality-preserving principle of the LE algorithm means that the method is insenstive to

modest noise and outliers [35]. So scale, rotation and translation does not effect the outcome

of the final embedding.

Some disadvantages include:

• Requires out-of-sample extension, i.e. you cannot use new data points that was not in the

original data space.

• The approximation assumes that the data is sampled uniformly from the high dimensional

space. This rarely happens in real world applications.
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• Some of the parameters are difficult to estimate and choose. The k, σ, d parameters require

cross-validation methods in order to accurately reduce the dimension. The desired results

also depend on the application so there is no one-size-fits all reduced dimension.

III.3 Locality Preserving Projections

The main disadvantages of LE are the computational cost and the requirement for out-of-sample

extensions to project new samples into the embedding. A class of methods called Kernel Eigenmap

Projection methods (similar to Kernel Eigenmap methods) [1] can be used to approximate dimen-

sion reduction methods required out-of-sample extensions. One member of this family, the Locality

Preserving Projection (LPP) [36] algorithm, came forth as an approximation method to the original

LE algorithm [2]. The purpose was to provide a linear dimensionality reduction technique that

utilized the Laplacian operator but still retained the useful graph theoretic capabilities. By doing a

simple transformation of letting Y = XF, we end up with the following eigenvalue decomposition

equation

XTLXF = λXTDXF (III.14)

where X is the original data matrix, L is the Laplacian matrix and D is the degree matrix. The

desired number of the top d eigenvalues are found to produce the projection functions for the

dataset.

III.3.1 Discussion

A higher level explanation of a key difference between the Kernel Eigenmap and the Kernel

Eigenmap projection methods entails the notion of feature-based versus instance-based methods

dimension reduction techniques. An instance-based case is looking directly at the data instance-by-

instance whereby the final eigenvalue decomposition finds likely clusters within these data points.

The LE embedding is an example of a dimension reduction technique that pulls likely clusters

together from the original instance-based space. A feature-based case transforms the data points

into the feature-based space whereby the final eigenvalue decomposition finds likely clusters

within these features. LPP is an example of a feature-based dimension reduction technique that

translates the instance-based space to the feature-based space via the X matrix multiplied by the L

and D. Also, since this is a linear transformation, solving the eigenvalue decomposition produces
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a projection function based off of the similar features. We can project the original data and new

data from its original space to the new embedding from the solution to the LPP algorithm.

III.3.2 Computational Complexity

Similar to the LE method, the three main components of this problem is the weighted adjacency

matrix construction, the graph Laplacian construction, and the partial eigenvalue decomposition.

Assuming an approximate nearest neighbour method has a computational complexity of about

O (Dlog(k)Nlog(N)) where D is the original dimension of the data, N is the number of data

points and k is the number of nearest neighbors chosen. The eigenvalue decomposition typically

translates a generalized eigenvalue of the form Ax = λBx into the form B−1 Ax = λx of O
(

DN3),
an eigenvalue problem. Then solving for the d smallest eigenvalue results of the feature based

matrix instead of the instance based matrix gives us O(d3), where d is the desired number of

eigenvalues. This leaves us with the final order O (Dlog(k)Nlog(N)) +O
(
log(ksp)Nlog(N)

)
+

O
(

DNk3)+O (d3).
III.4 Schroedinger Eigenmaps

The Schroedinger Eigenmaps method [4] has origins from the Laplacian Eigenmaps method with

the addition of an extra term referred to as a "potential". The use of an additional potential matrix

to augment the LE algorith have been studied in the context of hyperspectral remote sensing

[37][38]. There are two types of potentials, the cluster potential and the barrier potential. Potentials

that can force certain pixels that are similar to be close to one another in the final embedding are

called ’cluster potentials’. Potentials that force certain pixels, and any pixels near to them, to stand

out in the final embedding are called ’barrier potentials’ because it tries to insert its own clustering

centroid which draws other pixels to its origin. There have been many applications of SE to

problems in remote sensing. Spatial-spectral cluster potentials have been shown to be very effective

at classification [39]. Likewise, barrier potentials proved useful in target detection with attempts

to highlight certain pixels [40][41][42]. In image segmentation applications, a generalization of the

normalized cuts algorithm incorporates must-link and cannot-link constraints [43] in a similar

manner to how SE incorporates cluster potentials.
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III.4.1 Origin

The Laplacian operator has origins in the diffusion equation which describes the dynamics of

particles that move from a region of higher concentration to a region of lower concentration. The

diffusion operator is defined as

∂tψ(x, t) = 4ψ(x, t) (III.15)

Similarly, the Schroedinger operator is defined as:

∂tψ(x, t) = 4ψ(x, t) + v(x)ψ(x, t) (III.16)

where v(x) is a potential function that is multiplied by a non-negative operator or constant. We

can come up with a discrete analogue like so:

S = L + V (III.17)

where V is a nonnegative diagonal mxm potential matrix. The potential matrix can act as an

enhancement or modification to the laplacian operator. So the problem given by the Laplacian

eigenmaps method

min
yT Dy=I

tr(yT Ly) (III.18)

now becomes

min
yT Dy=I

tr(yT (L + αV) y) (III.19)

and subsequently

min
yT Dy=I

[
tr(yT Ly) + tr

(
yTαVy

)]
(III.20)

where the parameter α is greater than or equal to zero. This alpha parameter is used as a trade-off

parameter between the Laplacian term and the potential term. So our final minimization problem

can be expressed by adding a penalty term to [4]:
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min
yT Dy=I

1
2 ∑

i,j
||yi − yj||2Wij + α ∑

i,j
V(i)||yi|| (III.21)

where V is a diagonal matrix. The end result is the same generalized eigenvalue problem as the

original Laplacian Eigenmaps algorithm:

(L + αV) f = λD f (III.22)

where we need to find the smallest d + 1 eigenvalues and eigenvectors. Since the potential matrix

V is only used as a penalty term to the graph Laplacian, L, there is some flexibility when using

this term. In remote sensing applications, one could use this penalty term for semisupervised

classification. By adding a potential, in the form of a cluster potential, to the graph Laplacian,

one could try and force certain pixels with the same class to be closer to one another in the final

embedding. Alternatively, one could use a potential, in the form of a barrier potential term, to try

and push pixels, with the same or different class, apart in the final embedding.

III.4.2 Cluster Potentials

If we have a collection of nodes that represent the data samples, then we can define a cluster

potential matrix, V which has zeros everywhere except for nodes that we want to link by adding a

one in the off diagonal entries. For example, if we wanted to initiate a semisupervised connection

between nodes 1 and 2, we would put a one in the off diagonal entries like so.

V =



0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (III.23)

Once we have put as many links between specific nodes as desired, we can find the laplacian

matrix of the potential matrix which results in our final potential matrix.
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V =



1 −1 0 0 0

−1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (III.24)

If we assume that the nonzero rows in equation III.24 are ’cluster potentials’, then the generalized

formulation for a single cluster potential can be shown as

Vk,l(i, j) =



m −1 −1 . . . −1

−1 m −1 . . . −1
. . . . . . . . . . . . . . .

−1 −1 . . . m −1

−1 −1 −1 . . . m


. (III.25)

where each m represents the number of links that are added to each node in a semisupervised

manner. In principle, the cluster potential acts attracts like vertices close together. Adding a

cluster potential between two or more vertices forces those points to be closer together in the final

embedding space. Practically speaking, this allows an analyst to use a semisupervised method on

an unsupervised dimensionality reduction algorithm to force certain known pixels to be together

with unknown pixels in the classification outcome. Ultimately, one can add as many cluster

potentials V(i, j) as necessary within the full potential matrix, V.

III.4.3 Barrier Potentials

If we want to make V a barrier potential, we could make a diagonal matrix with ones along the

main diagonal to indicate everywhere there should be a barrier.

V =


0 0 0 0

0 1 0 0
...

...
...

...

0 0 0 0


So the one located in the second row would be the location of the pixel where a barrier would be

drawn around it in the high dimensional space. This potential matrix introduces a penalty term at
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each nonzero entry. By forcing this term to zero, the nearest neighbours will also be pulled to zero

because the local geometry is preserved in the embedding.

III.4.4 Computational Complexity

Similar to the LE and LPP method, the three main components of this problem is the weighted

adjacency matrix construction, the graph Laplacian construction, and the partial eigenvalue

decomposition. Assuming an approximate nearest neighbour method has a computational

complexity of about O (Dlog(k)Nlog(N)) where D is the original dimension of the data, N is the

number of data points and k is the number of nearest neighbors chosen. However, the SE method

will also have a nearest neighbor search for the spatial domain as well. This has the computational

complexity of O
(
log(ksp)Nlog(N)

)
where ksp is the number of spatial nearest neighbors. The

eigenvalue decomposition typically translates a generalized eigenvalue of the form Ax = λBx

into the form B−1 Ax = λx of O
(

DN3), an eigenvalue problem. Then solving for the d smallest

eigenvalue results in O(dN2), where d is the desired number of eigenvalues. This leaves us with

the final order O (Dlog(k)Nlog(N)) +O
(
log(ksp)Nlog(N)

)
+O

(
DNk3)+O (dN2).

III.5 Schroedinger Eigenmap Projections

As a precursor to the manifold alignment regime, a new method will be briefly presented to

augment the modifications of LPP on the LE method. The LPP method sought to reduce the

computational complexity as well as get explicity projection functions for the data from the original

space to the lower dimensional embedding. SE attempts to enhance the Laplacian matrix present

in LE to get stronger cohesion between similar classes to be present in the embedding. The next

logical outcome for the SE method is to enhance the LPP method with the same benefits as the LE

method. The modification is simple: by adding the potential matrix, V to the LPP scheme, we end

up with the following equation

XT(L+αV)XF = λ(XTDXF) (III.26)

called the Schroedinger Eigenmap Projections (SEP) method.
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III.5.1 Hypothesis

The LPP method has been shown to be effective in a wide range of applications including the

remote sensing field. It successfully cuts down the computational time as well as give reasonably

good results for classification purposes. There has also been a lot of work to further improve

the LPP methodology by incorporating small additions to counter its disadvantages. The SE

methodology successfully enhanced the LE methodology so I hypothesize that the SE methodology

should also benefit the LPP methodology. The Laplacian matrix is a key component in all Kernel

Eigenmap methods so it makes sense that strengthening the key component can enhance the

outcome of the algorithm.
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IV. Manifold Alignment

Figure 10: SSMA process: (a) two datasets, (b) geometric structures for each individual dataset, (c) similarity

and dissimilarity between labeled samples, (d) aligned dataset. [6]

The main idea of the semisupervised manifold alignment (SSMA) method [6] is to align individual

manifolds by projecting them into a joint latent space F . See Figure 10 for a general overview of

embedding process. With respect to remote sensing, the authors of [6] have provided evidence to

support the notion that the local geometry of each image dataset is preserved and the regions with

similar classes are brought together whilst the regions with dissimilar classes are pushed apart

in the SSMA embedding. By using graph Laplacians for each of the similarity and dissimilarity

terms, a Rayleigh Quotient function is minimized to extract projection functions. These projection

functions are used to project the individual manifolds into a joint latent space.

IV.1 Outline

In this chapter, I introduce the semisupervsied manifold alignment (SSMA) method that was

presented in [6]. I give a brief overview of the algorithm in section IV.1.1 followed by some

notation declarations in 1.2. I proceed to talk about the cost function in section 1.3 followed by

explicit construction of some cost function components in sections 1.4, 1.5 and 1.6. I give some
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insight into the projection functions in section 1.7 followed by some advantages of this method

with other alignment methods in section 1.8. I conclude this chapter with some insight into the

computational complexity of the SSMA method in section 1.9.

IV.1.1 Notation

Suppose we have a series of M images with each data matrix Xm, where m = 1, 2, . . . , M. Let each

matrix Xm be split into unlabeled samples {xm
i }

um
i=1 and labeled samples {xm

j , ym
j }

lm
j=1. Typically,

there are many more unlabeled samples than labeled samples, so lm << um. Let Xm be of dmx nm

dimensions which says that d dimensional data by nm labeled and unlabeled samples. Succinctly,

we have Xm ∈ Rdmx nm , where nm = lm + um. We can explicitly concatenate each individual data

matrix into a block diagonal matrix X where X = diag(X1, . . . , XM) and X ∈ RdxN .

X =


X1 0 0 0

0 X2 0 0
...

...
...

...

0 . . . . . . XM

 . (IV.1)

N is the total number of labeled samples for all of the images and d is the overall dimension of all

of the images, i.e. N = ∑M
m nm and d = ∑M

m dm.

Note that these images do not necessarily need to replicate the same spectral density, the same

spatial dimension or even the same sensor. Practically, this means that we do not need to have the

same m for each matrix Xm, i.e. m 6= m̄.

IV.1.2 Semisupervised Loss Function

Tuia et al. [6] construct a semisupervised loss function with the idea of aligning M images to a

common representation. Ultimately, they created M projection functions f m that mapped image

Xm from Xm ∈ Rdmxnm to f m ∈ Rdmx d where m = 1, 2, . . . , M. They ensure that the projection

functions f m bring samples from the same class closer together and push samples from different

classes apart whilst still preserving the geometry of each individual manifold. Their aim is to

maximize the distance between the dissimilarities and minimize the distance between similarities.

This can be expressed via the following equation:
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C = G + µS
B

(IV.2)

where G is the geometric term, S is the similarity term with an arbitrary parameter µ to control

the trade off between G and S, and B is the dissimilarity term. If the denominator gets very large

then this cost function will get very small. The Rayleigh Quotient is used because the problem has

terms that need to be minimized and terms that need to be maximized.

Fopt = argmin
F

FT(G + µS)F
FT DF

(IV.3)

= argmin
F

{
tr
(
(FT(G + µS)F)−1FT BF

)}
(IV.4)

F is a dxd matrix and the row blocks of F correspond to the domain specific projection functions

f m ∈ Rdmxd that project the data matrix Xm into the joint latent space. The matrix G + µS

corresponds to the term that needs to be minimized and the matrix D corresponds to the term that

needs to be maximized. Tuia et al. [6] describe the term G + µS as two components, a geometric

component G and a class similarity component, S. They want to preserve the geometric structure

of each data matrix Xm and bring data from the same classes within each individual Xm closer

together in the joint latent subspace manifold. They combine the geometric component, G, and

the similarity component, S, to create the discriminant component A, i.e., A = S + µG, where µ

is a free parameter to monitor the trade-off between the local manifold and the class similarity.

The authors choose to use three graph Laplacian matrices to construct the terms in the Rayleigh

quotient, G, S, and B as shown in subsequent sections.

IV.1.3 Geometric Spectral Similarity Term

The G term in equation IV.2 preserves the manifold of each individual data set Xm throughout the

transformation as no inter-domain relationships are considered. Affinity matrices are constructed

for each Xm and then put into a block diagonal matrix Wm
g ∈ Rnmxnm . There are many ways to

construct affinity matrices including k nearest neighbour graphs (k-NN) and ε-neighbourhood

graphs (ε-N). The graphs are assumed to be undirected so the affinity matrix should be symmetric,

i.e. if xi is connected to xj then xj is connected to xi. An example of the final matrix Wg is:
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Wg =


W1

g 0 0 0

0 W2
g 0 0

...
...

...
...

0 . . . . . . WM
g

 (IV.5)

Entries in the matrices Wm
g are Wm

g (i, j) = 1 if xi and xj are connected and 0 otherwise. Using the

k-NN weighted graph, this term ensures that the samples in the original m domain remains in

the same proximity in the new latent projected space. A graph laplacian, Lm
g is constructed from

each of the affinity matrices and put into a block diagonal matrix Lg, where Lm
g = Dm

g −Wm
g and

Dm
g is the degree matrix defined as Dm

g (i, i) = ∑nm
j Wm

g (i, j). The laplacian matrix Lm
g is positive

semi-definite and symmetric. An example of the final matrix Dg and Lg are below:

Dg =


D1

g 0 0 0

0 D2
g 0 0

...
...

...
...

0 . . . . . . DM
g

 (IV.6)

and

Lg = Dg −Wg =


L1

g 0 0 0

0 L2
g 0 0

...
...

...
...

0 . . . . . . LM
g

 . (IV.7)

The term G in equation IV.2 that needs to be minimized is now:

G =
M

∑
m=1

nm

∑
i,j=1

Wm
g (i, j)|| f mTxm

i − f mTxm
j ||2 (IV.8)

which is equivalent [44] to:

G = tr(FTXLgXT F). (IV.9)

So if two data points (or instances) are similar in the original space, then they should be similar in

the shared latent space.
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IV.1.4 Class Label Similarity Term

The S term in equation IV.2 ensures that the inter-domain classes are brought together in the joint

latent space by pulling labeled samples together. Tuia et al. [6] uses a matrix of class similarities

to act as an affinity matrix. Entries in the matrices Wm,m′
s (i, j) = 1 if the samples between class m

and m′ have the same label and 0 if not, for m, m′ = 1, 2, . . . , M because this affinity matrix only

compares the labeled samples, we can be sure that this matrix will be very sparse.

A graph Laplacian, Ls is constructed from the affinities Wm,m′
s . The term that needs to be minimized

is now:

S =
M

∑
m,m′=1

lm ,l′m

∑
i,j=1

Wm,m′
s (i, j)|| f mTxm

i − f mTxm
j ||2 (IV.10)

= tr(FTXLsXTF). (IV.11)

IV.1.5 Class Label Dissimilarity Term

The B term in IV.2 ensures that the inter-domain classes are pushed apart in the joint latent space

by pushing differently labeled samples apart. Tuia et al. [6] uses a matrix of class dissimilarities to

act as an affinity matrix. Entries in the matrices Wm,m′
d (i, j) = 1 if the samples between class m

and m′ have different labels and if not, for m, m′ = 1, 2, . . . , M, because this affinity matrix is only

comparing the labeled samples, we can be sure that this matrix will be very sparse.

A graph Laplacian, Ld is constructed in the same way as the geometric term is. The term that

needs to be minimized is now:

B =
M

∑
m,m′=1

lm ,l′m

∑
i,j=1

Wm,m′
d (i, j)|| f mTxm

i − f mTxm
j ||2 (IV.12)

= tr(FTXLdXT F). (IV.13)

IV.1.6 Projection Functions

We can aggregate all of the graph Laplacians Lg, Ls, Ld ∈ Rnxn and then use the Rayleigh Quoitient

formulation to get our cost function that needs to be minimized:

33



Schroedinger Eigenmaps Manifold Alignment

Fopt = argmin
F

{
tr
(
(FTXLdXTF)−1FTX(µLg + Ls)XTF

)}
. (IV.14)

We can find a solution to this minimization problem by looking for the smallest eigenvalues γi of

the generalized eigenvalue problem:

X(µLg + Ls)XTΓ = λXLdXTΓ. (IV.15)

The optimal solution to the generalized eigenvalue problem contains the projection functions

necessary to project each Xm into the joint latent space. If we look at Fopt, we can see the matrix

will be built as follows:

Fopt =
[√

λ1γ1| . . . |
√

λMγM

]
(IV.16)

Fopt =


f 1
1 . . . f 1

d

f 2
1 . . . f 2

d
...

...
...

f M
1 . . . f M

d

 . (IV.17)

To put it succinctly, we have a projection of Xm from domain m to the joint latent space F of

dimension, d:

P f (X
m) = f mTXm

Furthermore, any data matrix Xm can be projected into the latent space of data matrix Xm′ .

Let Xp = Xm f m be the projection of data matrix Xm into the joint latent space. This can be

translated into the latent space of Xm′ via the translation Xm1 = Xm f m( f m′)† where ( f m′)† is the

pseudoinverse of the eigenvectors of domain m′.
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IV.2 Schroedinger Eigenmaps for Manifold Alignment

Tuia et al. [6] paved the way for using manifold alignment for remote sensing applications. As

discussed in chapter IV, the SSMA framework is solid with evidence to explain the authors

effectiveness with HSI fusion. Wang et al. [5] originally proposed the method that the SSMA

framework is based off of. The original generalized eigenvalue decomposition proposed by Wang

is

XT(Lg+µLs)XF =λXTDgXF. (IV.18)

The Ls matrix is defined exactly as the SSMA; however, the normalization term, Dg, is still the

degree matrix of the geometric Laplacian. This is very similar to the SE framework discussed

in Chapter III where the potential term, V enables semisupervision. So we are setting up two

comparisons: the first method implements the original manifold alignment equation IV.18 from

Wang et al. [5] one method implements the original Wang method which utilizes a degree

normalization term and the other method implements Wang et al.’s method

XT((Lg+αV)+µLs)XF =λXTDgXF (IV.19)

with an additional potential term, V, to enhance the geometric component of the manifold

alignment scheme.

IV.2.1 Normalization

In graph-based methods, the objective is to find a partition of the graph that minimizes some

graph-cut; an arbitrary method which minimizes the quality of the partition [45]. A normalization

term is a direct result of a continuous relaxation heuristic that approximately solves the graph-cut

we use. The normalization term, typically D, used in the Kernel Eigenmap methods has not been

explored thoroughly in the community. In early clustering methods, the ratio cut [46] used a

simple identity matrix for normalization. By using the Identity matrix, we optimize the objective

function to the number of nodes in each cluster. The normalized cut metric [47] used the degree

matrix which constrained the degrees of each vertex on the diagonal entries. Results typically

seemed to be better when the degree of the vertex is used in the normalization, as it is the shifts the

importance to vertices that have more connections. In the Kernel Eigenmap methods, Johnson et

35



Schroedinger Eigenmaps Manifold Alignment

al. [45] studied the affect of different normalization parameters and found that the identity matrix

performed the least in classification experiments compared to the degree and a new implemented

K-Scaling parameter.

A related issue comes up in the LPP scheme which stems from having more dimensions than

samples. Since LPP is a kernel eigenmap projection method, it suffers from possibly having more

dimensions than samples; more so than the embedding methods. Yu et al. [48] stated that the

nullspace of the normalization matrix could be large whereas the nullspace of the Laplacian matrix

could be small. Hence it is disadvantageous to disregard information from the Laplacian matrix

because of the wealth of information it could hold. Yu et al. [48] and Kittler et al. [49] introduced

a method that utilized a joint diagonalization scheme to preserve as much information as possible

from the Laplacian component.

In both special cases of the spectral methods, ratio cuts and normalized cuts, the normalization

parameter could have an important impact on the classification results of HSI. The SSMA scheme

uses the difference in labeled instances between domains which inherently leaves the normalization

very sparse with a large nullspace. The degree matrix is full rank so you will never divide by zero.

However, the dissimilarity matrix from [6] is almost never full rank which means that you can get

division by zero in the numerical computation. Furthermore, utilizing the degree matrix should

ensure that information is preserved in the geometric and similarity terms. This equation is seen

in IV.18 and also in the SE framework.

IV.2.2 Spatial-Spectral Fusion

There have been many attempts to incorporate spatial information into the LE methodology for

HSI classification. This can be done by constructing heat kernels that combine the spatial and

spectral information. Cahill et al. [39] successfully constructed a cluster potential matrix that

would encode the proximity between the spatial components of the vertices. This was able to

increase the classification accuracy of the Indian Pines and Pavia HSI. The cluster potential was

constructed as:

V =
k

∑
i=1

∑
xj∈N

p
ε (xi)

V(i, j)ωi,je
−
||xp

i −xp
j ||

2

σi
p , (IV.20)
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where N p
ε (xi) is the set of points in the ε-neighborhood of X , ω(i, j) = e

−
||x f

i −x f
j ||

2

σ2
f , and V(i, j) can

be defined as:

V(i, j)k,l =


1, (k, l) ∈ {(i, i), (j, j)}

−1, (k, l) ∈ {(i, j), (j, i)}

0, otherwise

. (IV.21)

The V(i, j) term incorporated the spectral information of the pixels and One distinct advantage of

the SSSE methodology is the ability to change the impact of the spatial-spectral information by the

use of the parameter α or by the ω(i, j).

IV.2.3 New Cost Function with Spatial-Spectral Potential

The original Wang method [5] provides us with the final cost function to compare to is defined

in equation IV.18. The SEMA method uses that normalization principle in the SSMA framework

with the addition of the potential term, V. Finally, the SEMA method solves:

Fopt = argmin
F

FTX(Ls+µLg+αV)XTF
FTXLdXTF

. (IV.22)

Critical points of the cost function IV.22 can be found by solving the following generalized

eigenvalue decomposition in equation IV.19 where the only visible change is the included potential

term V to augment the geometric term Lg.

IV.2.4 Hypothesis

The SSSE method has demonstrated its effectiveness and is competitive with current state of the art

Kernel Eigenmap methods. SSMA also uses the Laplacian framework and the LPP methodology to

construct an effective method which fuses multiple HSIs with shared partial labels between them.

By incorporating the spatial spectral term into manifold alignment, there should be an increase

in classification accuracy over the traditional SSMA algorithm. The normalization parameter is

present in [5] and in [4] as an important component of the spectral decomposition. The following

experiments should show whether or not this normalization parameter is important for getting

more accuracy classification results.
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V. Experiment

V.1 Dataset I

(a) False Colour Composite Image (b) Ground Truth

Figure 11: Indian Pines HSI

The this experiment, I have considered two data sets: a HSI of the well-known Indian Pines

imagery as well as the also well-known Pavia University imagery. The Indian Pines imagery was

acquired by the AVIRIS sensor and consists of 220 spectral bands. The Pavia Centre imagery was

acquired from the ROSIS sensor and consists of 103 spectral bands. For illustrative purposes,

figure 11 and 12 show a false color composition of the HSI data and the ground truth available

for the respective datasets. Table 1 and 2 shows the details for the class names and available

training and testing samples for both datasets respectively. These datasets are available online 9as

a community benchmark for comparing various machine learning algorithms in other applications

a kin to this study.

V.2 Dataset II

In this experiment, I have considered a HSI dataset provided by the Virginia Commonwealth

University [50]. This RS imagery covers the entire Hog Island area but a sub-sample was taken.

The first image was captured at an altitude of 2000m above the ROI with 96 spectral bands

collected. The second image was captured at an altitude of 400m above the ROI with 48 spectral

9http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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(a) False Colour Composite Image (b) Ground Truth

Figure 12: Pavia HSI

(a) False Colour Composite Image (b) Ground Truth

Figure 13: VCU Image I

bands collected. Both images are georeferenced to the same datum but they are not necessarily

over the exact same ROI. There is partially labeled ground truth available with 7 classes.

V.3 Classifiers

This study aims to address the feasibility and effectiveness of the SEMA method in HSI. The

manifold alignment techniques require labeled samples from either domain so standard supervised

classifiers are used. The first classifier, Linear Discriminant Analysis (LDA), is known for its

discriminative power. The second method, Support Vector Machine (SVM), is known for its

39



Schroedinger Eigenmaps Manifold Alignment

(a) False Colour Composite Image (b) Ground Truth

Figure 14: VCU Image II

kernel nature. Although the exact details of these algorithms are beyond the scope of this thesis,

please refer to [51] and [52] for more information regarding these techniques. In a nutshell,

SVM is a binary classification method that kernelizes the data to project nonlinear data into a

higher dimension where the classes are linearly separable whereas LDA is a linear transformation

technique which maximizes the class-separation.

V.4 Experiment I

In this experiment, I compare the per class and overall classification accuracy of the two HSIs

mentioned in section V.1 for the LE, LPP, SE and SEP algorithms. The objective of this experiment

was to show the validity of the SEP algorithm as an extension to the original SE algorithm. A

secondary objective is to see how LPP performs as a derivative of the original LE algorithm. The

kernel eigenmap algorithms were used as the dimensionality reduction step to transform the data

into a lower dimensional space. Subsequently, approximately 10% data was used for each class to

train the SVM classifier and the remaining 80% was used to test how well the classifier was able to

predict the remaining classes. Prior to dimensionality reduction, the data was normalized to a

norm of 1. The k and σ parameter for the heat equation was kept constant at 20 and the suggested

value from [39].
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V.5 Experiment II

In this experiment, I compare and contrast the use of the degree matrix and dissimilarity matrix

within the manifold alignment framework and I investigated how the spatial-spectral potential

matrix in the SEMA algorithm affects the geometric matrix overall accuracy of the classification

methods. The objective of this experiment was to see if normalization using the degree matrix

will increase the classification accuracy per domain. The original method by Wang [5] used the

degree matrix, whereas the new SSMA method from [6] used the dissimilarity matrix for the

normalization. I choose 40% of the ground truth data to be used for labeled and unlabeled data. I

then choose four cases of splitting that data between labeled and unlabeled data. Case 1 has 10%

labeled data for both domains. Case 2 has 10% labeled and 50% unlabeled for domains 1 and 2

respectively. Case 3 has 50% labeled and 10% labeled for domains 1 and 2 respectively. Case 4

has 50% labeled and 50% labeled for domains 1 and 2 respectively. The values of µ and α have

been chosen as arithmetically log spaced parameters between -2 and 1. Prior to dimensionality

reduction, the data was also normalized. It is worth noting that this type of normalization is not

appropriate to apply independently to different images when comparing classification results

across a set of images. This is because the magnitudes of the spectral components of the data carry

useful class-specific information that can be distored or lost when different images are normalized

differently. The k and σ parameter for the heat equation was kept constant at 20 and the suggested

value of 1 from [39].
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VI. Results

VI.1 Experiment I

VI.1.1 Best Results

(a) Laplacian Eigenmaps (b) Schroedinger Eigenmaps

(c) Locality Preserving Projections (d) Schroedigner Eigenmap Projections

Figure 15: Classification Maps for Indian Pines Using SVM for each of the different Manifold Learning

algorithms.
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Table 1: Best Results for the Indian Pines HSI

Class Train Test LE SE LPP SEP

Alfalfa 5 41 1.00 1.00 1.00 1.00

Corn-notill 143 1285 0.87 0.99 0.89 0.93

Corn-mintill 83 747 0.92 1.00 0.94 0.95

Corn 24 213 0.97 1.00 0.98 0.98

Grass-Pasture 49 434 0.98 1.00 0.98 0.99

Grass-Trees 73 657 0.97 1.00 0.98 0.99

Grass-Pasture-Mowed 3 25 1.00 1.00 1.00 1.00

Hay-Windrowed 48 430 0.99 1.00 0.99 0.99

Oats 2 18 1.00 1.00 1.00 1.00

Soybean-notill 98 874 0.90 0.99 0.83 0.87

Soybean-mintill 246 2209 0.82 0.99 0.83 0.87

Soybean-clean 60 533 0.93 1.00 0.94 0.97

Wheat 21 184 0.99 1.00 1.00 1.00

Woods 127 1138 0.98 1.00 0.95 0.98

Buildings-Grass-Trees-Drives 39 347 0.96 1.00 0.97 0.98

Stone-Steel-Towers 10 83 1.00 1.00 1.00 1.00

Overall Accuracy 0.64 0.98 0.67 0.78

Average Accuracy 0.95 1.00 0.95 0.97

Average Precision 0.54 0.97 0.56 0.64

Average Specificity 0.97 1.00 0.98 0.98

κ 0.58 0.98 0.62 0.75

κ Variance 0.00 0.00 0.00 0.00

Dimensions 50 50 50 50

Time 38.4 69.1 20.8 21.1
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Table 1 shows the best results for the Indian Pines HSI and figure 15 shows the different classifica-

tion maps for the Indian Pines HSI. These are the best results found using the specified methods

from experiment I. The SE algorithm had the best overall results and this is apparent because it

has the most homogeneous regions of all the classmaps. The LE algorithm did the worst, which is

evident from the presence of a lot of speckled regions. The LPP and the SEP method have better

overall accuracy than the LE method but worse accuracy than the SE method. The SEP method

was able get slightly greater accuracy than the LPP method at lower dimensions but the LPP

method would get comparable or better accuracy with more dimensions in the embedding.
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(a) LE (b) SE

(c) LPP (d) SEP

Figure 16: Classification Maps for Pavia Using SVM for each of the different Manifold Learning algorithms.

Table 2 shows the best results for the Pavia HSI and figure 16 shows the different classification maps
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Table 2: Best Results for the Pavia HSI

Class Name Train Test LE SE LPP SEP

Trees 664 5967 0.96 1.00 0.95 0.94

Asphault 1865 16784 0.89 1.00 0.93 0.93

Bitumen 210 1889 0.95 1.00 0.97 0.97

Gravel 307 2757 0.98 1.00 0.99 0.99

Metal Sheets 135 1210 1.00 1.00 1.00 1.00

Shadow 503 4526 0.91 1.00 0.93 0.94

Bricks 133 1197 0.98 1.00 0.97 0.97

Meadows 369 3313 0.96 1.00 0.95 0.95

Bare Soil 95 852 1.00 1.00 1.00 1.00

Overall Accuracy 0.81 1.00 0.85 0.85

Average Accuracy 0.96 1.00 0.97 0.97

Average Precision 0.76 0.99 0.75 0.75

Average Specificity 0.98 1.00 0.98 0.98

κ 0.74 0.99 0.79 0.80

κ Variance 0.00 0.00 0.00 0.00

Dimensions 50 50 50 50

Time 852.6 1136.3 591.4 597.4
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for the Pavia HSI. These are the best results found using the specified methods from experiment

I. The LPP method had the best classification results at around 10 dimensions. However, after

15 dimensions the SE algorithm had the best overall results with every number of dimensions

following. Similar to Indian Pines, the LE algorithm did the worst for all dimensions and the

LPP and the SEP method has a better overall accuracy than the LE method. The SEP method

has worse classification accuracy than the LPP method in earlier dimensions but the SEP method

would get comparable for better classification accuracy in later dimensions. There also is less

variability in the results of the SEP method as after 10 dimensions, the classification accuracy stays

constant.

VI.1.2 Sensitivity Analysis
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Figure 17: Sensitivity Analysis for the dimensions and κ coefficient.

Figure 17 compares the number of dimensions and the κ coefficient for the different manifold

learning techniques. SE has the best overall results at the earliest dimensions for both Indian Pines

and Pavia HSIs. The SE method also reaches a plateau very early; within the first 10 dimensions

for Indian Pines and within the first 30 dimensions for Pavia. The SEP method reaches its peak κ

coefficient of ∼0.73 at around 20 dimensions for the Indian Pines image whereas it reached its

peak of ∼0.8 at around 10 dimensions. The LPP method does the worst for Indian Pines and does

not reach its peak of ∼0.7 at around 80 dimensions. It does better for Pavia with a peak of ∼0.89

at around 10 dimensions. The LE method has the worst κ coefficient out of all the dimensionality

reduction methods. It has a peak of ∼0.6 at 100 dimensions for indian pines versus a peak of ∼0.7

at 90 dimensions.
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Figure 18: Sensitivity Analysis for the α parameter with respect to the number of dimensions and κ coefficient.

The HSI is Indian Pines using the SVM classifier.

Figure 18 shows the α parameter with respect to the number of dimensions and the κ coefficient for

the Indian Pines HSI. The SE method has the best LDA classification accuracy after 20 dimensions.

The best α values are within 20. The κ coefficient starts to plateau within 50 dimensions and

and an α value of 20. However, notice that there is still a steady increase in the κ coefficient as

the α value and the κ coefficient increases. The SVM classification algorithm reaches its peak κ

coefficient sooner than the SVM method at 25 dimensions with an α value of ∼20.
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Figure 19: Sensitivity Analysis for the α parameter with respect to the number of dimensions and κ coefficient.

The HSI is Indian Pines using the LDA classifier.

The SEP algorithm has the best κ coefficient after an α value of ∼10 and dimensions ∼20. Unlike

the SE method, once the plateau is reached, there is no noticeable steady increase in the κ
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coefficient. The SEP algorithm for the SVM classification method has the best κ value in earlier

dimensions of 10 but decreases classification accuracy following 10 dimensions. The low α value

does not increase the κ coefficient significantly after a value of ∼10.
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Figure 20: Sensitivity Analysis for the α parameter with respect to the number of dimensions and κ coefficient.

The HSI is Pavia using the LDA classifier.

Figure 20 shows the κ coefficient with respect to the number of dimensions and the α coefficient

for the Pavia HSI. The LDA method reaches a plateau κ coefficient at ∼20 dimensions. The α value

does not significantly increase or decrease the κ coefficient if the number of dimensions are high

enough. However, at lower dimensions there is a slight fluctuation in the κ coefficient depending

upon the α value. The SEP method has a peak κ coefficient at ∼20 dimensions. However, after the

peak there is a sharp decrease in the κ coefficient. The α parameter does not seem to cause the κ

coefficient to fluctuate significantly at its peak.
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VI.2 Experiment II

VI.2.1 Sensitivity Analysis
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Figure 21: κ for different values of µ for the Wang implementation for each source domain. The values range

between 0 and 1. The top row is case I with 10% labeled samples for both domains. The bottom

row is case II with 10% labeled samples for domain I and 50% labeled samples for domain II. (a)

and (c) are for Domain I. (b), and (d) are for Domain II.
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Figure 22: κ for different values of µ for the Wang implementation for each source domain. The values range

between 0 and 1. The top row is case III with 50% labeled samples for domain I and 10% labeled

samples for domain II. The bottom row is case IV with 50% labeled samples for both domains. (a)

and (c) are for Domain I. (b), and (d) are for Domain II.

Figure 21 and 22 shows the results of different µ values for the κ coefficient versus the number

of dimensions used in the latent space classification using the original Wang implementation.

Similarly, Figure 23 and 24 shows the same results but for the SSMA algorithm. Immediately, one

notices the difference in κ coefficient and the number of dimensions between the two domains.

Domain I had a higher spatial resolution and domain II had a higher spectral resolution. As the

number of dimensions increase for domain II, the κ coefficient decreases whereas the κ coefficient

decreases as the number of dimensions increase for domain I. Otherwise, the results for both the

Wang and the SSMA algorithm have very similar results with very little differences between values

of µ. In general, there is no best µ parameter as there is no discernible highest κ coefficient, µ and
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dimension combination that cannot be found in another figure. The key experimental parameter

between subsequent figures is the amount of labeled samples used. For this dataset, increasing

the number of labeled samples does not appear to have significant changes on the κ coefficient as

there is some value of µ and number of dimensions to get a high classification accuracy.
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Figure 23: κ for different values of µ for the SSMA implementation for each source domain. The values

range between 0 and 1. The values range between 0 and 1. The top row is case I with 10% labeled

samples for both domains. The bottom row is case II with 10% labeled samples for domain I and

50% labeled samples for domain II. (a) and (c) are for Domain I. (b), and (d) are for Domain II.
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Figure 24: κ for different values of µ for the Wang implementation for each source domain. The values range

between 0 and 1. The top row is case III with 50% labeled samples for domain I and 10% labeled

samples for domain II. The bottom row is case IV with 50% labeled samples for both domains. (a)

and (c) are for Domain I. (b), and (d) are for Domain II.

VI.2.2 Best Results

Table 3 shows the best results for the Manifold Alignment experiment. On a per class accuracy, the

SSMA had the highest accuracy compared to the Wang and SEMA implementation. The SSMA

method had the highest overall accuracy and kappa coefficient. Figures 25, 26, 27, and 28 show

the sensitivity analysis when trying to find the best parameter for the SEMA algorithm. There are

certain α values that provide a slight increase in the κ coefficient for some µ values. However, the

α value that is common between all graphs with the best κ coefficient within VCU image I and II

is ∼20.
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Figure 25: κ for different values of α for the SEMA implementation for each source domain. The values range

between 0 and 1. The x-axis represents the number of dimensions used for classification. The

values range between 0 and 50 dimensions. (a), (c), and (e) are for Domain I. (b), (d), and (f) are

for Domain II.
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Figure 26: κ for different values of α for the SEMA implementation for each source domain. The values range

between 0 and 1. The x-axis represents the number of dimensions used for classification. The

values range between 0 and 50 dimensions. (a), (c), and (e) are for Domain I. (b), (d), and (f) are

for Domain II.
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Figure 27: κ for different values of α for the SEMA implementation for each source domain. The values range

between 0 and 1. The x-axis represents the number of dimensions used for classification. The

values range between 0 and 50 dimensions. (a), (c), and (e) are for Domain I. (b), (d), and (f) are

for Domain II.
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Figure 28: κ for different values of α for the SEMA implementation for each source domain. The values range

between 0 and 1. The x-axis represents the number of dimensions used for classification. The

values range between 0 and 50 dimensions. (a) is for Domain I. (b) is for Domain II.

Table 3: Best Results of the Manifold Alignment Experiment

Class Train Test Wang SSMA SEMA

1 78 78 5883 1013 0.96 0.98 0.95 0.98 0.96 0.98

2 127 127 8225 3094 0.93 0.93 0.93 0.94 0.94 0.95

3 85 85 5114 2450 0.96 0.92 0.96 0.94 0.95 0.94

4 88 88 5704 2130 0.97 0.94 0.98 0.95 0.96 0.96

5 102 102 6761 2259 0.95 0.94 0.97 0.95 0.95 0.96

6 101 101 6686 2311 0.96 0.96 0.98 0.97 0.97 0.97

7 46 46 2859 1256 0.99 0.99 0.99 0.98 0.99 0.99

Overall Accuracy 0.86 0.83 0.88 0.85 0.86 0.87

Average Accuracy 0.96 0.95 0.97 0.96 0.96 0.96

Average Precision 0.85 0.85 0.87 0.86 0.85 0.89

Average Specificity 0.98 0.97 0.98 0.97 0.98 0.98

κ 0.83 0.80 0.86 0.83 0.83 0.85

κ Variance 0.00 0.00 0.00 0.00 0.0 0.0

Dimensions 10

Time 4.6 8.61 4.76
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VI.3 Discussion

This study has addressed the notion of using the Schroedinger Operator in the LPP framework

as well as in the manifold alignment framework. The LPP framework results dictate that the

SEP method was more successful in accuracy than the traditional LE and LPP methods for

both the Indian Pinesand Pavia but only better than the LPP method for the Indian Pines. This

can be explained because the Indian Pines HSI appears to have more classes in larger portions

whereas the Pavia HSI has less density in a class region. The SEP method proves to be effective

at increasing the classification accuracy of a HSI with more dense class placement than the LPP

method. However, this does not seem to be effective in a HSI with less densely placed classes.

The alignment framework dictates that the methods do not necessarily increase or decrease the

accuracy in a significant manner. The SEMA method did better in some specific regions but was

unable determine a specific region where it had better classification accuracy.

The key difference between the SSMA method and the methods that I used was the exclusion

of the dissimilarity matrix. There was no component in the methods I proposed that included a

matrix that would try to push dissimilar classes apart whereas the SSMA method explicitly creates

a matrix to do so. Experiment I showed that the LPP and SEP method were very similar in overall

classification accuracy depending on the HSI dataset used. It is possible that the dataset used in

Experiment II did not have the same homogeneous regions to ensure the additional Spatial-Spectral

term in the SEMA method made a difference. Furthermore, these were all projection methods

where there was no vast difference in classification accuracy. But Experiment II showed a vast

difference in classification accuracy between the eigenmap methods and the eigenmap projection

methods. The comparison between manifold alignment methods that use projection functions

versus eigenmap functions would be a good aspect to explore in the future.

The LPP framework was originally introduced in order to obtain explicit projection functions

and reduce the overall computational cost. The SE framework took the most computational time

for each HSI image, but the accuracy was significantly greater than any other method. This

study did not use embedding methods for the alignment stage, so there is no conclusion to be

drawn from there. However, it is worth noting that there are alternative methods to cut down the

computational cost of kernel eigenmap methods and produce explicit projection methods whilst

still retaining accuracy [53] [54] [40] [37]. A good study is needed to showcase the difference

speed-up techniques of the embedding methods versus the projection methods.

The strength of this study lies in the first look at the kernel eigenmap methods versus kernel
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eigenmap projection methods. This allowed the justification to use the Schroedinger operator

argument for the SSMA scheme. This moves the Schroedinger Eigenmaps literature forward

and from a different perspective. Some limitations include the rudimentary computational

complexity analysis. There could be alternative cases to looking at the entire dimension reduction

- classification pipeline process; for example, by performing dimension reduction only on training

data and then projecting the unreduced data into the embedded space. Finally, there are never

enough practical datasets with good reference data to really validate the robustness of this method

for industry.
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VII. Conclusion

This objective of this thesis was to build upon the Tuia et al.’s [6] SSMA framework by leveraging

the components from the SE algorithm in multimodal HSI classification. The modifications came

from the SSSE algorithm where expert knowledge can increase the classification accuracy for HSIs.

The SSMA algorithm used the Kernel Eigenmap Projection approach as there explicit are projection

functions to map individual datasets to a shared latent space where similar data points are closer

together and dissimilar data points are further apart. Therefore, it was necessary to explore the

effectiveness of the SSSE algorithm within the LPP framework on HSI classification. Two HSI

datasets, Indian Pines and Pavia, were used to assess the quality of the embedding produced

by the LE, SE, LPP and SEP dimension reduction algorithms by looking at the κ coefficient

obtained from the classifier. Some sensitivity analysis was done to look at how the variation in

key parameters effect on the classification accuracy. The LE algorithm performed the worst and

the SE algorithm performed the best. The SEP algorithm had a higher κ coefficient than the LPP

algorithm for the Indian Pines dataset as it had more homogeneous regions. Conversely, the LPP

algorithm performed better than SEP on the Pavia dataset as it had less homogeneous regions. The

overall differences in classification accuracy between the LPP and SEP methods was relatively low

compared to the difference between the SE algorithm and the other dimension reduction methods.

Wang et al. [55] produced the original Manifold Alignment framework and Tuia et al. ultimately

used a modified version for multimodal remote sensing classification. This modified version

did not include the degree matrix for normalization and instead incorporated a dissimilarity

component to ensure that dissimilar data points would be further away from each other in the

latent space. Wang et al.’s original algorithm, Tuia et al.’s algorithm, and a modification using a

Spatial-Spectral potential was studied by looking at the classification accuracy for two multimodal

VCU HSIs. The results showed very little difference between the methods and the sensitivity

analysis showed that parameter tuning is necessary to achieve the best κ coefficient. Ultimately, a

future study would be to look at incorporating the Kernel Eigenmap framework into the SSMA

framework for multimodal remote sensing classification.
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