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Abstract 
 

 Musculoskeletal (MSK) systems have long been compared to simple mechanical 

machines.  This not only allows for ease of understanding locomotion, but ease of modeling a 

biological system during complex motion.  More specifically, simple lever systems are most 

commonly employed to approximate mechanical performance of complex biological systems.  

Every simple lever system can be characterized by its mechanical advantage, also known as 

gearing.  Through this concept, the performance of a biological system can be modeled for 

comparability of theoretical concepts to actual MSK systems.  In this thesis, a numerical model 

of a simple lever system, analogous to a locust leg and fish fin, was developed to understand the 

effects of mechanical advantage, muscle actuator, and external forces on simple MSK systems.  

Validation of the numerical model was attempted through the use of an existing McKibben air 

muscle test fixture. Conditions related to force loading, inertial loading, and viscous loading 

were tested. 

 The mathematical model showed that the spring-damper in parallel matches the expected 

results of the Hill’s muscle model, where increases in muscle loading cause decreases in muscle 

velocity.  Further, experimental tests conducted on the existing test fixture employed the addition 

of two dampers parallel with the McKibben air muscle. The data suggested that for a given 

damping scenario, under direct loading conditions, there is a maximum potential contractile 

velocity that could be achieved.  Inertial loading tests provided a comparison in the fluid effects 

where observations illustrate the 100% glycerine trials caused a greater drag force to dampen the 

paddle velocity than the room temperature water solution.  
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Chapter 1: Introduction to Musculoskeletal Systems 
 

1.1: Skeletal System Review 

 

Within biological systems, the musculoskeletal system (MSK) is comprised of two sub 

components: the skeletal system and the muscular system. These subsystems help provide 

support, shape, movement, and organism stability [1, 2].   

 The skeletal system is composed of hard tissues, such as bone, and the various connective 

tissues that help provide shape and form to the body.  Bone makeup consists of cancellous and 

cortical bone, as shown in figure 1.  Cancellous bone, also known as trabecular or spongy, has 

long been compared to honeycomb structures.  Within the null space of cancellous bone or 

medullary cavity, bone marrow thrives to promote supplies for new bone formation and growth 

[3 - 5, 6]  In contrast, cortical bone, known as compact bone, serves for the main function of hard 

tissue structures, support and protection.  This bone component is found on the outer exterior of 

the hard tissue [3]. 

 

 

Figure 1: Human bone consists of cancellous bone (b), known as trabecular or spongy bone, and cortical bone (c), 

known as compact bone.  Cancellous bone, although not strong due to the honeycomb nature of the trabeculae and 

porosity ranging from 50 to 90%, is important to the production of red blood cells and mineral storage.  Cortical 

bone, consists of osteons that are tightly packed together to give the bone porosity of 5 to 10%.  Due to the higher 

density, cortical bone’s main function is to protect, and store adipocytes within white bone marrow [4, 7,8]. 
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 Mechanically, cortical bone is a composite material comprised of hydroxyapatite crystals 

bound in a collagen-based polymeric matrix.  This allows for the material to behave in a linear 

elastic manner.  Further, due to the composition, bone is anisotropic in nature [5].  This is a key 

feature as it causes the material properties to change in relation to direction.  Specifically, bones 

have higher toughness strengths in compression and tension longitudinally than transversely.  

This can also be related to the structure and placement of bones within the body.  Lower 

extremities have much higher toughness strengths than the upper body counter parts [1].  The 

material properties of bone are shown in table 1.  In relation to cancellous bone, the material 

behaves similar to beams or plates within a structural frame [5].  Since the design of cancellous 

bone is not the same from one anatomical site to another, the strength and stiffness can vary 

greatly because of the porosity and trabecular design. Through experimentation, it has been seen 

that cancellous bone has an elastic modulus ranging from 10 – 2000 MPa, and strength of 0.1 – 

30 MPa [5]. 

 

 Longitudinal Direction Transverse Direction 

Elastic Modulus( GPa) 17 11.5 

Shear Modulus (GPa) 3-3.5  

Ultimate Strength, Tension (MPa) 120-130 51 

Ultimate Strength, Compression (MPa) 170-180 133 

Ultimate Shear Strength 68  

Table 1: Above are experimental results from various tests of human cortical bone in both the longitudinal and 

transverse directions.  Although, depending on the specimen, bone location, and type of testing, the mechanical 

properties of the bone can vary [5]. 

 

The classification and characterization of specific bones is determined by the structural 

shape.  The classifications of bone are: long, short, flat, irregular, and sesamoid [1, 4, 6].  Long 

bones are tubular in shape with a hollow medullary cavity in the center for adult yellow marrow 

to exist.  Short, flat, irregular bones are consistent of thin periosteum-covered cortical bone and 

endosteum-covered cancellous bone.  The bone marrow within this hard tissue resides in the 

trabeculae structures of the honeycomb-like formation [4, 6]. 

Of the main body functions, protection of the internal organs and soft tissues is vital to 

the survival of the organism.  However, it is not possible for bone to accomplish this task without 

the help of skeletal connective tissues.  These tissues are cartilage, ligaments, and tendons.  
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Articular cartilage is a hydrated hard tissue that covers the connecting surfaces at joints.  It 

functions as a shock absorber to impacts or falls while also lubricating the joint surfaces with 

synovial fluid.  Ligaments and tendons help control placement of contact surfaces within joints 

by transmitting tensile forces between structures.  Ligaments bond two bones together, where 

tendons attach muscle to bone. Material properties for both ligaments and tendons can be seen in 

table 2, although research notes that the change in values from anatomical sites vary greatly. 

 

 Tendon Ligament 

Elastic Modulus (MPa) 500-1850 50-541 

Ultimate Strength, Tensile (MPa) 50-125 13-46 

Ultimate Strain (%) 10-60 10-120 

Table 2:  Similarly to mechanical properties of bone, tendons and ligaments have a wide range.  This is 

dependent upon the anatomical site the specimen is taken from, and the deformation rate of that site.  As shown 

above, tendons have higher elastic moduli and ultimate strength than ligaments due to the necessity of tendons 

bearing the locomotive actions of muscles.  Further, ligaments join bones together, and generally do not bear loads 

unless in extreme cases of flexion or extension [5]. 

 

1.2: Muscular System Review 

 

In order to allow the rigid skeletal system provide locomotion of an organism, the 

muscular system must be explored.  The human body is made up of 630 different skeletal 

muscles that have been characterized to have fast- and slow-twitch contractions of 1/20 and 1/10 

of a second, respectively [1].  In relation to MSK, skeletal muscles attached to various hard 

tissues enable the movement desired by an organism, as opposed to smooth and cardiac muscle.  

Within the body, skeletal muscle is organized in antagonistic pairs, for example biceps and 

triceps of the upper arm.  This organization allows for the motion of the joint to be controlled 

and stabilized.  Furthermore, movement is aided through the use of synergists.  Synergists are 

types of muscles that help refine the motion for more specific pathways.  As the antagonistic 

muscles of the leg help bend the joint for walking, synergist muscles help change the path and 

specific placement of the foot.  



4 
 

 

Figure 2: Above the functional decomposition of muscle is broken down to the smallest unit, also known 

as a sarcomere.  Sarcomeres contain actin, a contractile protein, and myosin, a motor protein, which allow for 

muscular flexion and extension at the presence, or lack thereof, of ATP, among other necessary molecules (i.e. 

creatine phosphate, calcium, and glycogen).  In general, each muscle fiber contains an array of myofibrils that run 

the entire length of the singular fiber.  A bundle of myofibrils, which are surrounded by connective tissue called 

perimysium, form fascicle of skeletal muscle.  From here several fascicles form the overall skeletal muscle [1, 9]. 

 

Skeletal muscles enable the movement through shortening.  In general, shortening is a 

force that causes tension within the sarcomeres, the basic unit of striated muscle, and is best 

explained through the sliding filament theory by Huxley [10].  In this theory, it is suggested that 

myosin does not change length in muscle contraction.  Rather, actin changes in length along the 

sarcomere.  The theory explicitly states, sliding action of actin filaments past myosin filaments, 

within the sarcomere, causes the necessary tension of muscles [11].  A visual of this theory can 

be seen in figure 3, as the contraction of muscle occurs, the A band, where myosin are housed, 

remains constant in length.  

 Muscles can contract in three different manners, concentric, eccentric, and isometric 

contractions, depending on the movement being accomplished.  Concentric contractions occur 

during positive, energy-generating work.  The energy of the system is increased during this 

contraction, and, subsequently, the angular velocity at the joint in motion increases.  On the other 

hand, eccentric work decreases the angular velocity of the joint, and ultimately decreases the 
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energy being produced in the system.  This is comparable to the muscles acting as a brake for the 

joint movement to come to a halt or slow down. 

 

Figure 3: As seen above, relaxation and contraction within a sarcomere is depicted.  Experimentation by 

various researchers showed that the A band (double black lines), which is composed of myosin filaments, remains 

unchanged during the relaxation and contraction of muscle fibers.  In contrast, the I band (red lines), which is 

composed of actin filaments, shortens during contraction phases.  These key observations lead to the overall 

proposal of the sliding filament theory; thus, the motion of actin filaments sliding past myosin filaments causes 

muscle tension [11]. 

 

In order to apply the necessary concentric and eccentric contractions to produce the 

desired motion, it is important to understand the effects of the muscle’s fiber length, orientation, 

and moment arm.  As previously stated, joint motion is caused by the contraction, or shortening, 

of the sarcomeres that make up the myofibrils within a single muscle fiber.  Due to the 

sarcomeres being arranged in series, the total shortening that a single muscle fiber can produce is 

dependent on the sums of all the sarcomeres shortening lengths.  Therefore, the amount a single 

muscle fiber can shorten is approximately 50 to 60% of the total fiber length, and the total 

muscle shortening length is dependent on the contracted length of each constituent fiber [12].  

These fibers, however, can be oriented in various patterns depending on the muscle that affect 

the overall motion and force production.  There are two different types of filament arrangements: 

parallel and pennate.  Parallel filaments are oriented to be in line with the length of the muscle, 

and can classify the muscle as fusiform or strap.  This muscle classification is based on the 
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prominence of the corresponding muscle’s tendons.  For example, fusiform tendons have tendons 

at both ends of the muscles, for which the fibers taper to.  The opposite is true for strap muscles.  

This classification has less prominent tendons that the muscle does not taper to.  In contrast to 

parallel muscles, pennate muscles have one or more tendons that extend the length of the muscle.  

This structure causes the fibers to attach into the tendon indirectly and at an offset angle to the 

desired muscles line of action [13].  The classification within this muscle group is through the 

number of tendons within the muscle (i.e. unipennate has one tendon the muscles attach to 

obliquely) [12].  Lastly, the moment arm of the muscle is known as the angle of application.  

This angle is defined by the insertion point to the bone, and the actuation direction of the muscle 

and the limb it is attached to, as depicted by figure 4. 

 

Figure 4: Depiction of the angle of application of the long head biceps femoris that has insertion points 

along the head of the fibula and the lateral tibia condyle.  The angle is clearly depicted in orange.  With the insertion 

point of the lower leg placed at the lateral tibia condyle, in line with muscle is the actuation direction of the muscle 

contraction to which the angle from the tibia is drawn.  This angle is denoted within the figure as Θ [12]. 

 

Lastly, muscle force production, also known as muscle strength, is affected by muscle 

size, muscle moment arm, muscle stretch, contractile velocity, muscle fiber recruitment, and 

muscle fiber types [12].  For the purpose of this thesis and the understanding of muscle behavior 
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related to mechanical systems, muscle size, moment arm, stretch, and contractile velocity will be 

discussed, in depth. 

Muscle size is the most important factor that determines the force generated during a 

contraction because of the cross linkage of myosin and actin filaments along the muscle fibers.  

Although this correlation can be a little misleading depending on the type o muscle being 

examined.  The anatomical cross-sectional area is the area across the widest portion of a muscle 

and is perpendicular to the muscle’s length.  For parallel muscles, this cross-sectional area cuts 

across the majority of the respective muscle fibers.  This concept does not hold true pennate 

muscles thought.  As previously stated, this type of muscle contains fibers that are not attached 

parallel to the line of muscle action.  This causes the anatomical cross-sectional area to not cut 

across the majority of respective muscle fibers. Thus, it is important to correlate the number of 

muscle fibers along the anatomical cross-sectional area, but it cannot be inferred that with a 

higher number of fibers the higher the force production, as determined by the ability of pennate 

muscle.  In a study completed by Baratta et. al., nine load-moving muscles, from cat hind legs 

with different anatomical architectures, were characterized for force, velocity, and energetics 

[14].  Among other important characteristics from the study, the key results, in relation to muscle 

architecture and force production, show that muscles with high angle of pennation achieve 

optimal kinetic energy and maximal forces for intermediate load bearing scenarios.  For parallel 

fibered muscles, higher maximum velocities, higher elongation, and higher kinetic energy were 

observed during low-load bearing applications [14].  Further observations suggest muscle 

performance for low-load and high-load applications is limited by elongation length to accelerate 

load and force available to accelerate load, respectively. 

The muscles’ moment arm is directly related to the distance from which the force is 

applied (𝑟) and the applied contractile force along the moment arm (𝐹𝑚𝑢𝑠𝑐𝑙𝑒).  This is given by 

the cross-product equation of:  

 

𝑀⃑⃑ = 𝑟  x 𝐹 𝑚𝑢𝑠𝑐𝑙𝑒 

Equation 1:  Resulting Muscle Moment of the Muscles Applied Tension and Associated Muscle Arm from 

Point of Rotation 

 

From this equation, it can be determined that a larger muscle moment arm the larger the 

resulting moment produced.  Further, the angle of application of the muscle force is extremely 

(1) 
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important.  This angle is determined through the muscle force component acting perpendicularly 

to the rotating body.  From figure 4, this causes the true acting muscle force to be 

𝐹𝑚𝑢𝑠𝑐𝑙𝑒𝑠𝑖𝑛 (𝜃𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛), for which 𝜃𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 is determined by the angle the muscle makes to 

the attached skeletal structure being rotated.  Using trigonometric principles, the maximum 

applied moment occurs when the angle between the skeletal structure and muscle is 90°. 

As previously stated by the sliding filament theory, the cross-links formed between 

myosin and actin filaments change the lengths of a single sarcomere within a muscle fiber.  The 

maximum cross-linkage between the two filaments occurs when the muscle fiber is at the resting 

length.  In turn, this is when the muscle has the maximum contractile force.  As the muscle 

contracts, the contracting actin filaments begin to interfere with one another [12].  This 

interference leads to a decrease in the cross-linkages between myosin and actin and the available 

contractile force available in the sarcomere.  Thus, the stretch within a muscle is dependent upon 

the sarcomeres cross-linkage and the elasticity of non-contractile muscle components.  More 

specifically, the non-contractile components are associated with the epimysium, perimysium, 

endomysium, and tendons [12].  Numerous studies have observed the effects of the non-

contractile components of muscles.  As a muscle stretches without any applied contraction or 

stimulus, the muscle will begin to apply a resistance force to any further contraction.  This 

resistance is associated with the recoil of passive elements within a muscle, such as the 

connective tissue and better known as the parallel elastic components.  Further, series elastic 

components are associated with the tendons connecting the muscle to skeletal structures [12].  

These components will be further discussed in Chapter 2 and illustrated in Chapter 4. 

As previously stated, three different contractions are associated with muscle movement: 

eccentric, isometric, and concentric.  It is imperative to understand the differences between these 

types of muscle contractions with their respective contractile forces and contractile velocities. 
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Figure 5: Comparative graph that identifies the change in force between eccentric, isometric, and 

concentric muscle contractions.  The highest force occurs during eccentric contractions where the muscle visibly 

lengthens, and is the least understood contraction type.  During isometric contraction, the contractile velocity is zero, 

but the contractile force is set at the maximum possible force that can be seen in concentric contractions.  In this 

case, isometric contractions are denoted by a singular point, 𝐹𝐼.  Lastly, concentric contractions, also known as 

shortening contractions, occur when the muscle shortening is apparent.  These contractions have a higher muscle 

shortening velocity, but substantially smaller contractile forces to that of eccentric and isometric contractions [12]. 

 

Eccentric muscle contraction occurs as the muscle visibly lengthens.  As seen in figure 5, 

there is a maximum eccentric contractile force that can be achieved, denoted by the plateau.  

However, this force produced remains much higher than that of the isometric and concentric 

contractile forces.  Isometric can be depicted by 𝐹𝐼 on figure 5.  At this point the muscle remains 

at a relatively zero contractile velocity.  From this point, the concentric contractions take over 

increasing the velocity of the shortening, but greatly decreasing the force produced. 

1.3: Simple Machines of the Body 

 

Biological musculoskeletal systems (MSK) are comparable to simple mechanical system, 

such as wheel and axles, levers, and pulleys.  These simple machines can be and, historically, 

have been used to help characterize concepts related to kinetics and kinematics of the biological 

systems being observed.  Each of these three is discussed in the following sections. 
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1.3.1: Wheel and Axle System 

 

Wheel and axle systems are used to enhance the range of motion and speed within a 

MSK.  This can be functionally comparable to the lever systems discussed previously, but as the 

wheel turns the axle must rotate, as well, about a designated fulcrum.  This rotation must occur in 

such a manner that both complete one rotation at the same time. An example of this can be seen 

through the throwing of a ball, shown in figure 6.  Biologically, the rotator cuffs of a shoulder act 

as the point of rotation for humerus, the axle for a bent arm.  This causes the hand and wrist to be 

representative of an outer edge of a wheel.  This structure allows minimal rotation of the rotator 

cuff muscles at the head of the humerus, while the wrist and hand travel a greater distance due to 

the increased radius from the center of rotation.   

 

Figure 6: Biological wheel and axle configurations can be seen through the applied force of rotator cuff muscles to 

the humerus during the throwing of a ball.  The length of the forearm and hand are the theoretical wheel radius, 

which have a greater range of motion than that of the head of the humerus, the inherent force application site [15]. 
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1.3.2: Pulley System 

 

 Pulleys can be exemplified within biological MSK’s.  In mechanical systems, pulleys are 

utilized to change the effective direction for which a force is applied to enable movement of a 

weight or object.  More specifically, when a skeletal muscle slides over a round bony surface, it 

is acting as a simple pulley.  The knee can act as this type of simple machine when the quadricep 

contracts to extend the lower leg up.  The muscle, connected to the patella by the quadricep 

tendon, pulls the patella and patellar tendon connected to the tibia.  

 

 

Figure 7: A pulley system within the human body can be exemplified above through the extension and flexion of 

the lower leg about the patella.  In this case, the quadriceps contract or relax to complete the motion.  When lifting 

the left the quadriceps contract. Subsequently, this action causes the quadriceps tendon to pull on the patella and 

patellar tendons connected to the tibia.  This contraction overtop of the knee allows the lower leg to be lifted up 

similar to a pulley.  The opposite is true for extension of the lower leg [16]. 

 

1.3.3: Lever System 

 

A levers, which is created by a rigid bar that rotates about a fulcrum, is comparable to the 

skeletal bone structure which rotates about a joint.  However, a lever at equilibrium will not 

rotate about a given fulcrum unless applied with a force against the systems resistance or weight.  

For example, a human leg demonstrates the use of a lever system within a biological application.  

The knee and metatarsophalangeal joints are fulcrums for which the femur and/or tibia can 
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rotate, as exemplified through models in figure 8.  The force to move the bones about the joint is 

applied from the contraction and relaxation of the hamstrings, quadriceps, and triceps surae.   

 

 

Figure 8: Top panel:  An example of a simple FRA lever system. Bottom panel: lifting the body onto toes causes 

the metatarsophalangeal joint of a human foot to be the axis of rotation of a FRA lever system.  As a result, the 

triceps surae applies the force to lift the resistive body weight [17]. 

 

The ability to compare MSK within the body to levers allows for the system’s mechanical 

advantage to be characterized.  Mechanical advantage, A, can be determined in relation to 

system forces or lengths to the system forces.  In this case, the distance to the application force is 

𝑙𝑖𝑛, while 𝑙𝑜𝑢𝑡 is the distance to the resistive force.  The governing equations for mechanical 

advantage are as follows: 

 

𝐴 =
𝐹𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒

𝐹𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
=

𝑙𝑖𝑛

𝑙𝑜𝑢𝑡
 

Equation 2: Mechanical Advantage in Relation to System Forces and Lengths 

(2) 
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 From equation 2, the mechanical advantage of the three types of lever configurations, 

first-class levers (RFA), second-class levers (FRA), and third-class levers (FAR), can be 

determined for biological applications. 

 First class lever systems (RFA) are identified by having the fulcrum between the 

resistance and applied forces.  This type of lever configuration can be understood through lifting 

head movement.  As shown in figure 9, when lifting the head from a downward position, the 

neck muscles apply the force to lift opposing weight resistances of the head and inertia.  These 

muscles are connected to the atlanto-occipital joint located at the base of the skull.  This 

configuration clearly shows that the fulcrum is in between the resistance and applied forces.   

Further, a head simply being balanced on the neck is another example of this type of 

configuration.  On each side of the head, agonist and antagonist muscles are contracting to help 

balance the head from falling too far forward or too far back.  In this example, agonist muscles 

produce the force to keep the head from moving too far forward, while the antagonist muscles 

supply resistive forces. 

 

 

Figure 9: First class lever systems follow the general schematic of resistance-fulcrum-applied force (RFA).  In this 

case, the action of lifting ones head from a downward looking position represents this type of lever configuration.  

The resistance is the weight of the head being lifted, while the fulcrum is at the atlanto-occipital joint of the skull’s 

base.  To complete the action, the cervical paraspinals and upper trapezius apply contractile forces to aid in lifting 

the head [10]. 

 

 Second class levers are extremely critical within the body because they allow force 

movements, as a result of large resistances to be moved with small forces.  Figure 10 shows how 

plantar flexion depicts the change in configuration of resistance to between the fulcrum and 

applied forces.  The triceps surae contracts to pull the heel up off of the ground.  As the heal 
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moves up, muscles attached at the metatarsals further stretch and contract to help balance upon 

the phalanges. 

 

 

Figure 10: Similar configurations of a second class lever were previously depicted in figure 8.  In general, second 

class levers move the resistance to the middle of the system.  Plantar flexion is shown above where the body weight 

resistive forces act along the length of the leg.  While the triceps surae contract to lift the heel, and the motion pivots 

at the metatarsophalangeal joint [10]. 

 

 The last lever system configuration, depicted in figure 11, is known as a third class lever 

system.  In this case, the applied force is placed in between the fulcrum and resistance.  As seen 

in figure 11, simple bicep curls can show how this lever configuration applies to biological 

systems.  The bicep applies contractile forces to pull upon the forearm.  As the forearm moves 

upward closer to the shoulder, the bicep continues to apply greater contractile forces to overcome 

the resistance of the weight in hand.  Further, in this case the elbow joint is the fulcrum to the 

motion of the resistance and contraction of the bicep. 

 

 

Figure 11: Third class levers, which follow the fulcrum-applied force-resistance (FAR) configuration, can be 

exemplified through a bicep curl contractile motion.  In this case, the resistance is applied at hand. As the bicep 

contracts, the insertion point (radial tuberosity and bicipital aponeurosis) on the medial forearm is pulled upward, as 
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shown in the movement completed.  This leaves the elbow joint as the fulcrum in this configuration for the 

contraction and resistance to pivot about [10]. 
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Chapter 2: Mathematical Modeling of Kinetics and Kinematics 

Review 

 

2.1: Characterization of Muscle Performance in Biological Systems 

 

 Although several factors may affect the force development within muscles, the 

performance of muscles is generally assessed on the muscle shortening rates for various loading 

scenarios [16].  For passive and active MSK systems, it has been long understood that the 

relationship between force-velocity can be modeled using Hill-type models.  The original Hill 

equation is as follows: 

(𝐹 + 𝑎)(𝑉 + 𝑏) = 𝑏(𝐹0 + 𝑎) 

Equation 3: Hill Equation [18 - 20] 

 

For this 𝑎 is the coefficient of shortening heat, while F and V are force and velocity, 

respectively.  It should also be noted that 𝐹0 is the maximum isometric tensile force, and 𝑏 is 

defined by the following relationship at which 𝑉0 is the maximum contractile velocity when 

muscle force is zero. 

𝑏 =
𝑎𝑉0

𝐹0
 

Equation 4: Derivation of b parameter for Hill’s Muscle Equation [19, 20] 

 

  This equation bases muscle contraction on a single contractile component, activated by 

an electrical stimulus, and two non-linear springs.  One spring is represented to be in series while 

the other is in parallel [21].    However, modifications to this equation have allowed for a series 

of modeling schemes to be proposed based on the same principles as those in equation 2.  The 

majority of these enhanced modeling equations are classified as zero-dimensional because of the 

lack of consideration to mass and inertial body forces.  This causes the output to be simplified to 

one-dimensional forces for crude reasons.  Further, the inputs of these equations have, 

historically, been based on muscle-tendon-complex (MTC) length, MTC contractile velocity, and 

stimulation from neurons.  These components are integrated into the equation through force-

(3) 

(4) 
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length parameters, force-velocity parameters, and series and parallel elastic energy elements in 

manipulated configurations [22]. 

 

2.2: Modeling Techniques of Biological Systems 

2.2.1: Rigid Body Modeling 

 

 In general, rigid body modeling is utilized to help simulate the locomotion of animals and 

humans through looking at specific portions of the body as rigid, non-deformable bodies [2].  

This model assumes that joints of a body are completely frictionless ball-and-socket, hinge, or 

universal joints.  Simplicity of the modeling scheme, to which the Hill-type models are 

accomplished, is thus implied when employing these techniques. 

 Rigid body modeling can be utilized for a multitude of applications, such as: muscle 

implantation effectiveness and assessment, multi-segment interaction, and performance of 

jumping and walking musculoskeletal systems, to name a few [2].  Raabe et. al. completed an 

investigation of the muscle-skeletal interactions of trunk movement during jogging to create a 

full body model located within OpenSim, musculoskeletal modeling software, in conjunction 

with three previously defined models [23].  Specifically, this modeling technique integrated 

Hamner’s full-body model, Christophy’s lumbar spine model, and Arnold’s model to create the 

full body depiction of a human for simulation purposes.  It was seen that this model was able to 

predict similar gait kinematics of a jogging motion related to the trunk and lower extremities of 

the human body, as shown in figure 12.  This is crucial for understanding the loads of the lower 

body and lumbar spine, especially in applications of pain management and artificial implant 

fitting and/or characterization prior to implantation. 
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Figure 12:  During a jogging motion, the trunk and lower extremities of the human body were simulated by both the 

full body (FBLS) model created by Raabe et. al., while compared to previous simulations completed by Hamner et. 

al..  In general, it can be seen that the simulation results produced by the FBLS model are comparable to those 

previously accomplished by Hamner et. al.  However, the two simulations show kinematics of different subjects, 

which can account for the slight differences in the overall simulated results throughout the gait cycle.  The following 

abbreviations were utilized by Raabe et. al.: extension (ext), flexion (flex), plantarflexion (plantarflex), and 

dorsiflexion (dorsiflex) [23]. 

 

It should be noted that the simulated model involved the use of 21 segments, 30 degrees 

of freedom, and 324 musculoskeletal actuators, which is simpler in design than other full body 

models.  Given that the model created by Raabe et. al was compared to a model of 0 degrees of 

freedom (Hamner’s model) in figure 12, it is promising that this model can be used to, 

somewhat, accurately describe trunk and lower extremity loading scenarios based on the joint 

movements.  However, making a model to accurately predict an individual’s precise motions is 

limited due to the lack of anatomical data, and variance between anthropometric data. 

Works completed by Monsabert et. al. provide further exemplification of rigid body 

modeling in relation to muscle force production of hand grips and simulations of the motion 

being done [24].  Physical experimentation of healthy patients was initially conducted to 

understand force analysis of two gripping tasks (power grip and pinch grip), kinematics of the 

joint movement, and MRI measurements of the healthy hands.  A previous hand model was 

employed, to use the hand modeled as a rigid body, frictionless joints, 23 degrees of freedom, 
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and 42 musculoskeletal actuators.  Muscle tension was predicted through the use of equations 5, 

6, and 7 below.   

 

                                              [𝑅] ∗ {𝑡} + {𝑚𝐿} + {𝑚𝑓} = {0} 

Equation 5: Muscle Tension [24]  

 

 Equation 5 cannot be solved without the use of the “muscle-stress” criterion stated in 

equation 6 as: 

 

𝑚𝑖𝑛∑ (
(𝑡𝑚)𝑠

𝑃𝐶𝑆𝐴𝑚
)
𝑛

𝑚  

Equation 6: “Muscle Stress” Criterion [24] 

 

 Once the muscle tension was achieved through the use of equations 5 and 6, the joint 

forces could be estimated.  This estimation is achieved through the use of the joint reaction 

forces, muscle tension, experimental grip forces, and passive MCP collateral ligament forces.  

Equation 7 represents these components to calculate the joint forces.  

 

{𝐽𝑅}𝑗 + ∑{𝑇}𝑚
𝑚

+ ∑{𝐹}𝑎
𝑎

+ ∑{𝐿}𝑙
𝑙

= {0} 

Equation 7: Joint Force Estimation [24] 

 

 As a result of this study conducted, it was seen that a significant relationship is present 

with the effect of grip and joint for the index and thumb with relation to the joint forces.  Further, 

during the pinch grip and power grip tasks, the forces exerted were 60N and 130N each, 

respectively.  

Although this technique is successful and helpful, there are drawbacks.  First, the 

simplicity of the simulated joints is not ideal or comparable to natural, biological joints.  Second, 

prediction calculations of the kinematics of musculoskeletal systems with a lack of multiple 

inputs are a challenge that remains.  Through the determination of compliant artificial muscle 

actuators, experimental and theoretical data can be determined to create viable simulation 

methods for biological muscles. 

(5) 

(6) 

(7) 
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 2.2.2: Inverse and Forward Dynamic Modeling 

 

 Inverse and forward dynamic modeling techniques are extremely common in attempting 

to calculate various musculoskeletal movements of muscle/joint forces/torques.  Inverse 

techniques look at the joint positions during the movement.  These movements are then 

differentiated to acquire the velocities and accelerations of the motion, and utilized to find forces 

and torques of a given body.  Inverse dynamics modeling is valuable due to the simplistic nature, 

and quasi-experimental results.  However, the downside of this modeling requires further 

optimization for understanding and exploration of muscular contributions, and restricts the 

ability of theoretical scenarios to be simulated.  Basafa et. al. utilized inverse dynamics modeling 

to identify methods of better facial implantation planning through the use of inverse dynamics 

simulations with swine specimen [25].  Overall, inverse dynamics modeling techniques were 

relatively similar with experimental data of swine mastication.  However, moving forward, 

theoretical simulations and experimental data need to be completed hand in hand with the same 

specimen to identify better congruency between the two methods. 

Alternatively, forward dynamic modelling is the opposite of the inverse dynamic 

technique.  In this case, muscular movements are directly characterized through theoretical 

simulations.  This allows for muscle torques to be identified through the forces and muscular 

moment arms.  Subsequently, the acceleration, velocity, and position can be determined.  

Although this modelling technique can help predict the muscle performance from various 

individuals and provide a valuable design tool, there are several disadvantages.  First and 

foremost, this modelling is not based on experimental data, such as the inverse dynamic models.  

It also can use parameters that are not necessarily easy to obtain or estimate, especially those 

related to individual muscle parameters.  Lastly, this technique is restrictive in the simulations 

being evaluated.  For example, only simplistic patient locomotion and muscle movement 

scenarios can only be simulated. 

 Combinations of inverse and forward dynamics models, such as inverse-muscular 

forward-skeletal dynamics and forward-muscular inverse-skeletal dynamics have been explored.  

Sharif Shourijeh et. al. studied inverse-muscular forward-skeletal dynamics for creating at 2-

dimensional full-gait, human model  [26, 27].  Optimization was required during each of the 

simulations, to help provide proper outcomes of the calculations, which can be seen through 
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figure 13.  Through this combination of modelling, it was determined that lower extremity 

kinematics, muscle activation, and ground reaction forces through the two step gait cycle 

simulated were congruent with experimental results during gait.   

 

a)                                              b)  

c)  

Figure 13:  Dynamic optimization is utilized by many studies that employ forward and inverse dynamics modelling 

of musculoskeletal systems.  Sharif Shourijeh et. al. completed simulations for: a) fully forward (FF),  b) inverse-

forward starting at joint torques (IFT), and c) inverse-forward starting at muscle forces (IFM).  The schematics for 

each follow the same design; however, the forward dynamics approach requires the initial muscle activations and 

lengths to complete the simulation. For the simulations proposed by IFT and IFM, utilized inverse dynamics for 

which the simulations solved for joint torques and activation of muscle-tendon force and length, respectively [26]. 

 

On the other hand, Lloyd et. al. utilized a forward-muscular inverse-skeletal dynamic 

method to estimate the muscle forces of knee joints [28].  In general, electromyography (EMG) 

driven models were utilized to predict the muscular moment of human knees through the use of 

inverse dynamics.  Physiological based parameters, such as those related to muscular set-up, 

were obtained through specific patient parameters, in order to measure the muscle moments to 

the skeletal system through inverse dynamic calculations.  Through this experimentation, it was 

determined that EMG driven models can accurately predict the muscle moments, when 

calibrated to specific patients. 

2.2.1: Finite Element (FE) Modeling 

 

 Finite element modelling, along with musculoskeletal rigid body modelling schemes, has 

been historically used to help provide information of loading scenarios at joints during dynamic 
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activities.  This is crucial in understanding joint interactions during normal locomotive actions of 

various specimens. 

Fitzpatrick et. al. [29] experimented with joint loading ratios of internal-external to 

compression and anterior-posterior to compression force ratios were estimated to help aid design 

and implantation modelling of total knee replacement devices and surgeries.  This study, even 

though utilizing different methods than those presented previously, proved to show that it is 

imperative to have accurate data to that of patients with specific loading scenarios seen in vivo.  

Although they use telemetric data from patients, the availability of information is generally 

scarce. 

2.3: Modeling Techniques of Jumping in Biological Systems 

 

 The mechanics of jumping have been studied extensively to understand the energy 

storage within animal legs, and take off velocities.  One of the governing equations of this type 

of locomotion is as follows:  

𝑈 = √
2𝛱

𝑚𝑏𝑜𝑑𝑦
 

Equation 8: Instantaneous Take-off Velocity of Jump [30] 

 

In this case, velocity is correlated to an animal’s legs and body mass with relation to the 

stored energy per unit of body mass, denoted by Π [30].  Understanding these components 

allows for the calculation of maximum attainable jump height, assuming no losses to surrounding 

fluid and all kinetic energy is changed to gravitational potential energy. The maximum height of 

the jump can be determined as that shown in equation 9.  

 

𝐻 =
𝛱

𝑚𝑏𝑜𝑑𝑦𝑔
=

𝑈2

2𝑔
 

Equation 9: Maximum Height of Jump Attainable [30] 

 

 Understanding that the stored energy per unit of body mass, Π, has been explored by 

Bennet-Clark who proposed that the number of this parameter is roughly 20 J/kg [30].  From 

this, it can be determined that the maximum height of a jumping animal is not a function of the 

animals mass or length, due to the interpreted relations of equation 8 into equation 9.  However, 

(8) 

(9) 
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the maximums, of both velocity and height, are greatly dependent on the stored energy per unit 

of body mass.  In relation to muscle gearing, this energy based approach brings up an interesting 

point of view; there must be an optimal muscle shortening velocity to maximize power produced 

from the muscle, and maximize the take-off velocity, U.  In this case, this maximum power 

produced causes the velocity at take-off to be maximized and, subsequently, the jump height to 

be maximized.   

Gregersen and Carrier, completed a study that: 1) calculated the gear ratios of canine 

extensor muscles of major limb joints to verify signs of increasing gear ratios during jumping, 2) 

measured length changes of the extensor muscles that exhibited this increasing gear ratio, and 3) 

computed the contributions of this increasing gear ratio joint to the overall work produced during 

the jump [31].  This study defined the gear ratio as the out-lever length of the ground reaction 

force moment arm (distance to the application force) divided by the in-lever of the muscle 

moment arm (distance to the resistive force), similar to that provided by equation 2.   

 

 

Figure 14: The simplified limb segment utilized for calculating the gear ratio of canine jumps is shown.  R 

represents the ground reaction force moment arm, while r is for the muscle moment arm.  Further, the following 

variables are defined as such: 𝛽 is the angle of the joint, p is the center of pressure, j is the center of the joint, 𝑟𝑝/𝑗  is 

the position of the center of pressure, and 𝐹𝑔and 𝐹𝑚 are the force vectors of the ground reaction moment and muscle 

moment, respectively [31]. 

 

 As a result of this study, it was seen that in the canine knee and shoulder joints, there is 

gearing that matches the original theory that at some point there is an optimal gearing ratio to 

produce maximum power output from a muscle as it shortens.  This is depicted below in figure 

15, as the contact time increases on the force pad, the gearing ratio of knee and shoulder begin to 
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increase greatly in a somewhat linear fashion as the joint extends during the initial jump [31].  

Further, Gregersen and Carrier studied the length changes of the canine’s vastus lateralis, a 

muscle of the hind leg.  It was seen to undergo shortening of 17 to 29% of the standing length at 

rates of 2.7 to 3.8 muscle lengths per second, and was observed to be relatively constant for two 

of the canine subjects.  From previous studies, it was determined that the observed shortening 

length is approximately 30% of the maximum shortening velocity, and suggests that the 

maximum shortening velocity is approximately 10.7 muscle lengths per second.  This is similar 

to studies that predict the maximum shortening velocity to be 12.5 muscle lengths per second.  

These findings and observations help confirm that there is an optimum of muscle gearing to 

produce maximum power output in a jumping system [31]. 
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Figure 15: The wrist, elbow, shoulder, ankle, knee, and hip joints of three different canines were examined during a 

jump.  Dark solid lines represent the gear ratios, while the light dashed lines represent the joint angle.  These are 

both shown in correlation to the contact time and support phase of the jumping motion.  In these graphs, the data of 

a) comes from a single canine specimen, while b) comes from the means and standard deviations of all three canine.  

a) b) 
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Further, gear ratios above zero show positive muscle moments during extension, and decay of joint angles show 

flexion of the joint [31]. 

 

 One major implication to this theory of muscle gearing though is the fluid mechanics 

around the animal jumping in question.  For larger animals, the medium for which their primary 

locomotion occurs does not greatly affect the overall height and body length jumping ratio.  For 

smaller animals, this is a large consideration where drag is a large factor in the overall jump [30].  

In relation to locomotive performances, based on force and velocity outputs, this is a point of 

argument.  It has been heavily understood that there is an inherent trade-off between force and 

velocity of musculoskeletal systems.  However, arguments related to this theory, on the basis of 

absolute velocity and force, are proposing that there is no such trade-off.  Theoretical modeling 

is accomplished below to help observe this new contradictory claim. 

 2.4: Modeling Techniques that Consider Environmental Conditions on 

Locomotion 

 

 While previously discussed research targets the anatomical structure, biological reaction, 

and physiology to understand motion of organisms through specific actions, the effects from the 

environment are relatively substantial on the performance of a MSK.  This can be initially 

exemplified through studies of guinea fowl funning over unpredictable terrain that requires the 

animal to compensate for unexpected changes in height through either dissipating or converting 

energy.  Daley et. al provided camouflaged terrain to understand the muscle control during 

sudden drops in terrain height [32].  It is suggested that three outcomes can be possible: 1) the 

sudden drop is fully compensated for to maintain the steady, spring-like route without any net 

changes in energy components (i.e. 𝐸𝑝, 𝐸𝐾ℎ, 𝐸𝐾𝑣) 2) change in 𝐸𝑝, total potential energy, was 

converted to change in totally kinetic energy to increase the velocity, while still following 

conservation of mass-spring dynamics, and 3) change in 𝐸𝑝 results in change in center of mass 

energy and is absorbed through negative work.  It was observed that although the guinea fowl 

were able to maintain stability throughout the unexpected height changes, delays in the muscular 

loading and decreases in the muscular tension occurred.  This suggests that there is a connection 

between the actuating system and the environmental conditions associated with it.  Most 
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importantly, this verifies that the effects on the mechanical output and system movement do not 

relate only to the biological system responses, but environmental factors. 

Continuing observations related to environmental conditions, Richards aimed to 

understand the effects of environmental factors through the experimentation of frog leg muscle 

activation.  Male Xenopus laevis , an aquatic frog, were dissected to obtain the plantaris longus 

(PL) muscle.  Two test fixtures were then made.  The first related to the robotic leg, to be 

activated through PL muscle activation, and a ‘work loop’ ergometer, to measure in vitro muscle 

data.  The robotic foot was actuated within air, for inertial loading cases, and water, for 

hydrodynamic exploration.  Various gearing multipliers, essentially gearing ratios, were used to 

observe changes in gearing ratio of the force and displacement data within the software feedback 

loop [33].  These changes and conditions allowed for loading, gearing multiplier, and foot size to 

ultimately be tested.  Environmental loading cases, between inertial and fluid effects, 

demonstrated that an immersed robotic foot would produce forces to mainly overcome the 

hydrodynamic drag, in addition to the mechanical and hydrodynamic inertial forces.  

Additionally, peak force and shortening velocities were observed with the fluid cases.  However, 

muscle work output between the cases remained fairly consistent, with 5.30±2.12 and 6.67±2.93 

𝐽

𝑘𝑔
 for air to water cases, respectively, while net power output was higher within the air trials 

[33].  The force-length dynamics were sensitive to any gearing ratio change, in addition to the 

effects of gearing between inertial and fluid cases.  Increases in gearing, significantly decreased 

the shortening velocity, but increased the power output in the air loading cases. 

In general, from the experimentation of Richards, it was concluded that peak forces seen 

in the hydrodynamic cases are much more sensitive to the muscles intrinsic force-velocity 

relationship, as opposed to those seen within the inertial loading cases.  Further, changes in 

anatomical structure of a limb, not only decrease or increase the velocity per the loading 

scenario, but are directly dependent upon the mechanical advantage of the system [33]. 
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Chapter 3: Problem Statement 

 

 Since the early 1900’s, it has been understood, and accepted, that with small mechanical 

advantages (ratio of in-lever length to out-lever length) produce fast movements with small 

application forces.  Conversely, large mechanical advantages produce slow movements with 

larger forces, as explicitly stated by Smith and Savage [34, 35].  This relationship is regularly 

used in interpreting function and performance of MSK systems of locomotion, evasion, and 

feeding.  Further, numerous groups have exemplified understanding of MSK function and 

performance through studies with the objective to understand evolutionary enhancements of 

species ability to capture prey [36-40].  However, these studies are divided between observing a 

trade-off in the force-velocity relationship that is widely accepted, versus not.  Although the 

above research areas have targeted feeding habits of various species, locomotion of organisms 

has also been a primary research field. 

 In 2010, modeling works of locust hind legs, by McHenry, challenged this perception of 

mechanical advantage to the force-speed relation [35, 36].  It is stated that there is no trade-off 

between the force and absolute speed of the system due to the inability to fix the rate of 

shortening of the actuator (muscle or biological spring), and the change in geometry of the 

system being observed.  This research focuses on developing a theoretical system model and 

experimental model to validate the longstanding characterization of musculoskeletal systems. 

 

 The objectives of this research topic were: 

 Develop a mathematical system model for various actuators and loading scenarios 

 Identify and design modifications to an existing McKibben air muscle test fixture 

 Implement and integrate modifications to study various loading cases and environmental 

conditions and validate theoretical data 

 Identify, from an engineering perspective, the relationship and effects of load, gearing, 

and actuator type on the force-velocity curve of dynamic lever systems 

 

The system model was created from locust leg geometry that consists of a muscle, rigid 

upper leg bone, knee joint, and rigid lower leg bone geometry.  A simple schematic of this 

geometry can be observed in figure 16.  The model was implemented using Simulink, a 
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graphical programming environment for modeling within MATLAB, and the ODE45 solver.  

This model allowed for the addition of various actuators to be implemented and various force 

scenarios to be observed.  Schematics and additions to the generalized model of figure 16 will 

be presented in Chapter 4 for each case and loading scenario.  It should be noted that the upper 

and lower leg links move as one body, when applied with the actuator force. Further, this 

modeling method enabled various components of the theoretical cases to be observed 

individually for contributions to the overall leg kick. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Generalized Locust Leg Geometry for Various Loading and Actuator Case Scenarios 

 

Experimentation was accomplished on an existing test fixture used to observe the 

compliance and comparability of McKibben air muscles to biological muscle through the force-

velocity relationship curve.  Modifications were made to allow for force, inertial, and viscous 

loading cases to be observed, while using a damper in parallel with the existing McKibben air 

muscle.  Collection of the data was accomplished with a previously designed LabView code and 

interface that allows for the data to be collected in an Excel spreadsheet for post-processing.  

Although this experimentation does not directly correlate to a dynamic lever system, it 

demonstrates the ability to utilize a commercially available pneumatic air muscle, in 

conjunction with a damper, under varying loading scenarios to determine the usability of such a 

test fixture for musculoskeletal characterization.  In addition to characterizing varying loading 

 𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑝 

𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑛𝑘 𝑜𝑓 𝑙𝑒𝑔 

𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑛𝑘 𝑜𝑓  𝑙𝑒𝑔 

𝜃 
𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟 

𝑝 
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cases, the damper and pneumatic air muscle system can be tuned to create different “muscles” 

to be tested under varying loading conditions.  A simple schematic of the system, without 

relation to a specific loading scenario, is shown below in figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Simple Schematic of Experimental McKibben-Damper Muscle Test Fixture  

 

Later in Chapter 5, modifications for varying loading conditions will be presented and depicted, 

but will still follow the generalized schematic presented in figure 17. 
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Chapter 4: Musculoskeletal Theoretical Model 

 

 The mathematical model was developed in MATLAB (R2015b) using Simulink.  

Simulink model configuration parameters were set to solve for the solution using a variable time-

step with ODE45.  Each simulation was set to run for 1 second, but depending on the angular 

displacement, the simulation would stop before getting to this time.  This is due to a built-in 

conditional parameter within each of the Simulink block diagrams.  Looking at the generalized 

geometry of figure 16, it is not possible for the rotating leg to exceed an angular displacement,𝜃 , 

of 180°.  With this being known, a conditional stop was placed within the derived block diagrams 

for each case.  As the solution iterates for each time-step, the value of the angular displacement 

is checked against the maximum angular displacement parameter of 180°.  If the solution in the 

time-step exceeds 180°, then the solver stops.  Further, within the MATLAB code, a correction 

was made for the data coming from the Simulink block diagram.  The last data point, within each 

relevant variables data vector, exceeds 180° prior to the simulation stopping.  A for-loop was 

created in MATLAB to correct all relevant variable data vectors by deleting the last data point.  

Further, the relative tolerance and absolute tolerance for ODE45 were set to 1𝑒−8 for each 

simulation.  This allows for better accuracy and error of integration, in this case from 𝜃̈ to 𝜃, 

throughout the simulation.  More specifically, absolute tolerance refers to the point at which 

anything smaller than the set threshold value does not need higher accuracy.  At this point, the 

simulation assumes there is no need for higher accuracy, as it can be assumed these values are so 

small they represent zero.  Relative tolerance, on the other hand, is the error of the integration 

within a single time-step.  Given that each case deals with integrating twice in one time-step, the 

error needs to be minimized.  Each iteration not only compounds integration error for a single 

step, but all subsequent time-steps.   

The models were derived from the generalized geometry previously proposed by figure 

16.  As the models started off simplistic, they began to increase in complexity, until the inertial 

loading, reactant force loading, and viscous force loading cases were obtained and quantified in a 

graphical manner. Below the models are presented and discussed by each case, and the 

governing equations are identified. 
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4.1: Case 1: Constant Applied Force 

  

 Case 1 is the most simplistic of all the models.  It begins with the base geometry shown 

in figure 18, but has a constant force applied as the comparable muscle actuator as shown in 

figure 16.  The purpose of creating this model schematic as a first step helped to identify how the 

system, built within Simulink, reacts under a constant, controllable force.  In this case, it was 

hypothesized and observed that the model has a constant force throughout the actuation time of 

the model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Model schematic of case 1, which has a constant controllable force applied at the top of 𝑙𝑖𝑛.  When the 

force is applied, the lower leg, consisting of 𝑙𝑖𝑛 and 𝑙𝑜𝑢𝑡, rotate in their fixed positions around the knee joint.  This 

knee joint is depicted by the white circle attached to the rigid link defining the upper leg. 

 

 From figure 18, the governing equation of the system is derived by summing the torques 

of the system about the pivot point, 𝑝.   

 

𝐼𝜃̈ = 𝐹 𝑠𝑖𝑛(𝜃) 𝑙𝑖𝑛 

Equation 10: Governing Equation of Constant Force Applied (Case 1) 

 

𝐹 

𝑙𝑖𝑛 

𝑙𝑜𝑢𝑡 

𝜃 

𝐼𝜃̈ 

𝑚𝑏𝑜𝑑𝑦 

𝑝 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

(10) 
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 The system has an initial angular displacement of 6°, this consideration is noted by 

resolving the applied force, 𝐹, for the y-component, given by 𝐹𝑠𝑖𝑛(𝜃).  Further, the force of the 

system is relatable to a spring force by being determined through equation 11:  

 

𝐹 = 𝑘𝐿 

Equation 11: Constant, Controllable Force 

 

, where L is defined the by spring stretch, sstretch, of 1.5e−3m that is measured from the rigid 

wall.  It should be noted that with this simulation, the mass of the leg was treated as acting about 

the base of the lower leg distance, 𝑙𝑜𝑢𝑡.  In this case, the moment of inertia was based on the 

rotation of a rod about the end. 

𝐼 =
𝑚𝑏𝑜𝑑𝑦𝑙𝑜𝑢𝑡

2

3
 

Equation 12: Moment of Inertia for a Rod 

 

 In applying this moment of inertia, it is assumed that the geometry of the leg, other than 

in viscous loading simulations, is deemed to be unimportant in the overall modeling of the locust 

leg kick.  The key parameters moving forward are in relation to the characterization of the 

muscle actuator proposed (i.e. spring and spring-damper actuators), the weight applied to the 

muscle for inertial consideration, and external forces (i.e. reactant and viscous forces). 

 As previously stated, the constant, controllable force was defined by the spring stretch 

length, which is the maximum length the spring can be stretched in these models.  Although, in 

this model it is not truly representative of a muscle behavior because the force does not die out 

over the duration of the kick, it was important to help define, 𝐿, for the subsequent models and 

performed in Case 2a. 

4.2: Case 2a: Spring Muscle Force in terms of 𝒍𝒊𝒏 

 

 In order to determine the proper expression for 𝐿 that relates it to the change in position 

of 𝑙𝑖𝑛, it is necessary to look at the change in geometry through a series of key angles, 0°, 90°, 

and 180°.  As depicted in figure 19, the maximum stretch possible for the muscle in this 

orientation occurs when the angle between 𝑙𝑖𝑛 and the horizontal axis.  For these simulations the 

maximum stretch was correlated to 2𝑙𝑖𝑛, and is equivalent to the spring stretch value of 1.5e−3m 

(11) 

(12) 
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previously used in Case 1.  It should be noted for the initial stages of this case, the lower leg, 

𝑙𝑜𝑢𝑡, is not taken into consideration for the derivation of 𝐿, but is utilized within the simulation 

for inertial contributions. 

 

 

Figure 19: Spring Stretch at Maximum Length of 2𝑙𝑖𝑛 when Initial Angular Displacement is 0° 

 

 Further looking at the relaxed state of the spring, the stretch is required to be 0m.  This is 

a key factor into the derivation of the equation for 𝐿, and helps signify the importance of the 

angular displacement of 𝑙𝑖𝑛 during the kick.  As seen above for the maximum spring stretch 

consideration and figure 20 for the requirement of the spring stretch to be 0m at 180°, the spring 

force is resolved only for the forces along the y-direction. 

 

 

Figure 20: Spring Stretch at Maximum Rotation Allowable (180°) where Spring Stretch is 0m and Spring Force is 

0N 

 

However, the length for the stretch must be resolved in x-direction because of the 

orientation to the leg.  This causes the length to be associated to cos (𝜃) for each of the two cases 

presented with the derived equation as follows:  

 

𝐿(𝜃) = 𝑙𝑖𝑛 + 𝑙𝑖𝑛 cos(𝜃) 

Equation 13: Derivation of Spring Stretch with Relation to Upper-Leg Angular Position 

 

 This equation can be verified along with the two previous scenarios suggested for 

maximum and minimum stretch through the following simple hand calculations: 

 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔 

𝑙𝑖𝑛 
𝜃𝑙𝑒𝑔 = 0° 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔 

𝑙𝑖𝑛 𝜃𝑙𝑒𝑔 = 180° 

(13) 
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Scenario 1: Maximum Stretch at Minimum Angular Displacement of Leg: 

𝐿(0°) = 2𝑙𝑖𝑛 = 𝑙𝑖𝑛 + 𝑙𝑖𝑛cos (0°) 

𝐿(0°) = 2𝑙𝑖𝑛 = 𝑙𝑖𝑛 + 𝑙𝑖𝑛(1) 

𝐿(0°) = 2𝑙𝑖𝑛 = 2𝑙𝑖𝑛 

 

Scenario 2: Minimum Stretch at Maximum Angular Displacement of Leg: 

𝐿(180°) = 0 = 𝑙𝑖𝑛 + 𝑙𝑖𝑛cos (180°) 

𝐿(180°) = 0 = 𝑙𝑖𝑛 + 𝑙𝑖𝑛(−1) 

𝐿(0°) = 0 = 0 

 Lastly, an intermediate step can be taken to represent the leg as it moves through 90° to 

verify further that equation 13 holds true for all angles along the kicks angular trajectory.  Figure 

21 shows the simple schematic to represent this intermediate scenario. 

 

 

Figure 21: Intermediate Scenario Schematic of Spring Stretch Derivation 

 

 It can be inferred from the previous scenarios that the angular displacement of the leg at 

90° represents the halfway point of the kick motion and energetics.  Thus, the stretch of the 

spring should be equivalent to 𝑙𝑖𝑛.  This hypothesis can be verified through the following hand 

calculations: 

 

Scenario 3: Intermediate Step with Half the Maximum Stretch and Half the Maximum Angular 

Displacement of the Leg 

𝐿(90°) = 𝑙𝑖𝑛 = 𝑙𝑖𝑛 + 𝑙𝑖𝑛cos (90°) 

𝐿(90°) = 𝑙𝑖𝑛 = 𝑙𝑖𝑛 + 𝑙𝑖𝑛cos (0) 

𝐿(90°) = 𝑙𝑖𝑛 = 𝑙𝑖𝑛 

 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔 

𝑙𝑖𝑛 𝜃𝑙𝑒𝑔 = 90° 
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 The remainder of Case 2a follows a similar format to Case 1, other than the 

representation of the force actuator as a spring rather than a constant applied force. This changes 

the governing equation to be defined as:  

 

𝐼𝜃̈ = 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 sin(𝜃) 𝑙𝑖𝑛 

Equation 14: Governing Equation of Constant Force Applied (Case 2a and 2b) 

 

, and the force of the spring, 𝐹𝑠𝑝𝑟𝑖𝑛𝑔, is defined by that given previously as just a constant 

controllable force in equation 10.  The case schematic is illustrated below for reference. 

 

 

Figure 22: Schematic of Case2a and Case 2b with an applied spring as the mode of actuation is given.  The spring 

attaches at the top of the upper leg, denoted by a length of 𝑙𝑖𝑛.  As the spring applies a force, due to its maximum 

stretch at the initial 6° angular displacement of the upper leg, the rotational component associated of both the upper 

and lower leg, denoted by a length of 𝑙𝑜𝑢𝑡, rotate about the pivotal joint connection between the two anatomical 

structures. 

 

 The main drawback of this case is the correlation of the spring stretch to the length of the 

upper leg, 𝑙𝑖𝑛.  The key purpose of this thesis is to understand the effects of mechanical 

advantage, or gearing, within a simple lever system.  For this system, when 𝑙𝑖𝑛 is increased or 

decreased in numerical length value the spring stretch is affected.  Graphical results and 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔 

𝑙𝑖𝑛 

𝑙𝑜𝑢𝑡 

𝜃 

𝐼𝜃̈ 

𝑚𝑏𝑜𝑑𝑦 

(14) 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

𝑝 
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discussions will be presented later, but this dependent relationship between the spring stretch and 

mechanical advantage are corrected for in the subsequent Case 2b. 

4.3: Case2b: Spring Muscle Force in terms of 𝜽 

 

 As previously discussed, the maximum length of the spring stretch is related, 

numerically, to 1.5e−3m.  In order to get the spring stretch equation, equation 13, independent of 

the 𝑙𝑖𝑛, this value needs to be utilized.  Since 𝑙𝑖𝑛, is exactly half of this maximum stretch value 

then the two can be related by the following correlation: 

 

𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 2𝑙𝑖𝑛 

1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 𝑙𝑖𝑛 

, which can be replaced within equation 13 derived in Case 2a.  This allows for the new spring 

stretch equation to be defined as:  

 

𝐿 = (
1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) + (

1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) cos (𝜃) 

Equation 15:  Redefined Equation 14 for the Spring Stretch Length during a Kick without 𝑙𝑖𝑛 Dependence 

 

 Equations 15 can be tested to hold true for all of the constraints previously determined for 

the stretch of the spring actuator throughout the simulated kick. 

 

Scenario 1: Maximum Stretch at Minimum Angular Displacement of Leg: 

𝐿(0°) = 2𝑙𝑖𝑛 = (
1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) + (

1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) cos (0°) 

𝐿(0°) = 2𝑙𝑖𝑛 = (
1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) + (

1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) (1) 

𝐿(0°) = 2𝑙𝑖𝑛 = 𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ 

 

Scenario 2: Minimum Stretch at Maximum Angular Displacement of Leg: 

𝐿(180°) = 0 = (
1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) + (

1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) cos (180°) 

(15) 
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𝐿(180°) = 0 = (
1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) + (

1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ)  (−1) 

𝐿(180°) = 0 = (
1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) − (

1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) 

𝐿(180°) = 0 = 0 

 

Scenario 3: Intermediate Step with Half the Maximum Stretch and Half the Maximum Angular 

Displacement of leg 

𝐿(90°) = 𝑙𝑖𝑛 = (
1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) + (

1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) cos (90°) 

𝐿(90°) = 𝑙𝑖𝑛 = (
1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) + (

1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) (0) 

𝐿(90°) = 𝑙𝑖𝑛 = (
1

2
𝑠𝑠𝑡𝑟𝑒𝑡𝑐ℎ) 

 

 Following, similar simulation schemes as Case 2a and the schematic in figure 22 are 

utilized for the remainder of this case.  However, up until this point the actuator utilized within 

the simulation is not truly representative of a theoretical muscle.  As proposed earlier, Hill-type 

muscle models involve the use of two springs, one in series with another in parallel to the 

contractile element, as represented below in figure 23. 

 

Figure 23: Representation of a Hill-type muscle with all components visualized.  There are two springs within the 

system, one being in series (𝐾𝑆𝐸) and the other being in parallel (𝐾𝑃𝐸) to the contractile component.  The contractile 

component is composed of a damping component with damping coefficient of b and a muscle stimulus component.  

When this component fires, the muscle actuates through the contraction and elongation of muscle fibers within the 

muscle [19]. 
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 Since, this model lacks the use of a force damping element, the next iteration of 

simulations employs the use of damper in parallel with the spring actuator presented in Case 2a 

and Case 2b.   

 

4.4: Case 3: Spring – Damper Muscle Force 

 

 

Figure 24: Case 3 problem schematic with an applied force composed of a spring and damper in parallel to 

represent the muscle actuator.  Similarly to previous case schematics, the rotation occurs about the pivot joint 

connecting the upper leg to the lower leg.  The mass acting at the base of the lower leg is still considered to be a 

point mass that only adds to the effects of the applied moment of inertia about the pivot joint. 

 

 For this case to be more representative of a muscle actuator, an energy producer and 

energy absorber are placed in parallel as a spring-damper actuator, illustrated above in figure 24.  

Due to the addition of the damper in parallel, the governing equation, therefore, becomes the 

following:  

 

𝐼𝜃̈ = 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑𝑠𝑖𝑛(𝜃)𝑙𝑖𝑛 

Equation 16: Governing Equation of Applied Spring-Damper Muscle Force (Case 3) 

 

⬚

𝐹
𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

𝑙𝑖𝑛 

𝑙𝑜𝑢𝑡 

𝜃 

𝐼𝜃̈ 

𝑚𝑏𝑜𝑑𝑦 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

(16) 

𝑝 
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, where the applied force, 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑, is the addition of the spring force,𝐹𝑠𝑝𝑟𝑖𝑛𝑔, previously defined, 

and damper force,𝐹𝑑𝑎𝑚𝑝𝑒𝑟, given by:  

 

𝐹𝑑𝑎𝑚𝑝𝑒𝑟 = 𝑐𝑉𝑚 

Equation 17: Force due to an Applied Damper 

 

 In equation 17, the damping coefficient, 𝑐, is varied through this simulation to understand 

the effects the damping has on the simple kinematics, system energetics, applied force, and 

actuation velocity.  The range was determined from nearly zero damping to a damping effect that 

caused drastic decreases in the output muscle force.  The mass of the leg was held at 10mg for 

this simulation in its entirety.  It should be noted that for the duration of this simulation and 

subsequent simulations, the muscle velocity associated to the damping force was derived from 

the following equation:  

 

𝑉𝑚 = 𝜃̇𝑙𝑖𝑛sin (𝜃) 

Equation 18: Horizontal Muscle Velocity during Actuation of Leg Kick 

 

 The muscle is defined as such because of two reasons: 1) the importance of the muscle’s 

velocity depends on the change in angular velocity of the rotating leg components and 2) the 

position of the resolved applied force during the kick.  Without the consideration of these two 

components the muscle velocity would not be properly defined for the resulting data and the 

cases that build on top of this case’s simulation.  However, this is changed in Case 4. 

4.5: Case 4: Spring – Damper Muscle Force with Consideration of Gravity 

 

 Previous simulation iterations did not explore the effects of gravity on the theoretical kick 

of a locust leg.  In this case, the mass of the leg is an evenly distributed along the lower leg.  The 

center of mass, denoted by 𝑚𝑏𝑜𝑑𝑦𝑔, is located 
𝑙𝑜𝑢𝑡

2
 away from the pivot joint of the rotating leg 

geometry, as seen in figure 25.  In order to take the summation of the torques in this simulation, 

the leg weight is resolved to use the contributions of the force acting perpendicularly to the leg 

geometry.  The consideration of the torque within the governing equation for this simulation is as 

follows: 

(17) 

(18) 
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𝐼𝜃̈ = (𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 sin(𝜃) 𝑙𝑖𝑛) + (
𝑙𝑜𝑢𝑡

2
𝑚𝑏𝑜𝑑𝑦𝑔𝑐𝑜𝑠(𝜃)) 

Equation 19: Governing Equation of Spring-Damper Muscle Force with Gravitational Effects (Case 4) 

 

, where the force applied is still related to the spring and damper acting in parallel as the muscle 

force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Case 4 problem schematic with an applied force composed of a spring and damper in parallel similarly to 

Case 3, but with proper leg mass contributions.  The mass of the lower leg is evenly distributed along the lower leg 

length, 𝑙𝑜𝑢𝑡, but then resolved for a single applied force at a distance of 
𝑙𝑜𝑢𝑡

2
 from the knee joint. 

 

 With the proper loading of the lower leg mass, this simulation represents the first case 

that is somewhat comparable and representative to an actual MSK system.  This simulation case 

allows for the characterization of the system under force based loading.  In this case, the leg 

mass was assumed to be the weight load applied to the system.  Each load was run for damping 

coefficients of 0, 0.0001, 0.001, 0.01, 0.1, 0.5 kg/s. 

 The drawback with this simulation is the lack of consideration for the reaction force 

associated with a jump.  All simulations up to this point have disregarded an actual jump, and 

aimed to characterize a leg kick.  This is taken into consideration during Case 5, which adds a 

ground reaction force acting on the base of the lower leg. 

(19) 

𝑙𝑜𝑢𝑡 

⬚

𝐹
𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

𝑙𝑖𝑛 
𝜃 

𝐼𝜃̈ 

𝑚𝑏𝑜𝑑𝑦𝑔 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 
𝑝 
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4.6: Case 5: Spring – Damper Muscle Force with Consideration of Gravity 

and Reaction Forces 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Model schematic of Case 5 which follows the proper weight loading as proposed previously in Case 4, 

but add the ground reaction force acting on the leg.  This is denoted by 𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 that acts at the base of the lower 

leg, and assumes the leg does not slip from the ground and friction does not play a factor. 

 

 As previously suggested in Section 4.5, all previous models and simulations of the locust 

leg neglected the effects of ground reaction forces.  Without this consideration previous models 

represent a leg kick, not a leg jump.  This simulation looks to resolve all the forces acting on the 

leg, with the addition of a ground reaction force, to represent a leg jump.  In this case, the 

governing equation is defined as such:  

 

𝐼𝜃̈ = (𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 sin(𝜃) 𝑙𝑖𝑛) + (
𝑙𝑜𝑢𝑡

2
𝑚𝑔𝑐𝑜𝑠(𝜃)) − (𝑙𝑜𝑢𝑡𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 cos(𝜃)) 

Equation 20: Governing Equation of Spring-Damper Muscle Force with Gravity and Ground Reaction Forces (Case 

5) 

, where the ground reaction force needed to be resolved into the y-component, as previously 

accomplished for the weight force applied in Case 4.  If the steps to resolve the forces in the 

𝑙𝑜𝑢𝑡 

⬚

𝐹
𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

𝑙𝑖𝑛 
𝜃 

𝐼𝜃̈ 

𝑚𝑏𝑜𝑑𝑦𝑔 

𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 

𝑝 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

(20) 
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appropriate direction are not taken, then issues will arise during the summation of torques 

process to get the appropriate governing equations 19 and 20. 

 Furthermore, the ground reaction force was assumed to be 10 times the weight (𝑚𝑏𝑜𝑑𝑦𝑔) 

of the leg for the nominal case.  This assumption stems from the weight of the entire locust being 

some constant multiple of the leg mass.  Further, acceleration was considered to be used to 

determine the ground reaction force, but, due to the solution method, it was much easier to get 

proper data using the mass of the leg multiplied by the gravitational acceleration.  Furthermore, 

this assumption makes sense due to the acceleration output of the rotating leg from the 

simulation being related to the leg rotation not gravitational affects. 

 During the simulation two other ground reaction forces were examined: 50 times the leg 

weight and 100 times the leg weight.  The effects of an organism’s weight during a jump wanted 

to be determined, in order to understand how the force-velocity curve would be changed.  The 

damping coefficient was held at 0.5 kg/s as this applied a great enough resistive force for the 

addition of the reaction force to the modeled governing equation 20. 

4.7: Case 6: Spring – Damper Muscle Force with Consideration of Gravity 

and Drag Forces 

 

 The last simulation utilizes the model derived in Case 4, but adds a drag force, 𝐹𝑑𝑟𝑎𝑔, to 

study the effects that varying viscosities have on the simulation model.  As the model has been 

previously used and assumed to be two-dimensional, there was no need to define the shape or 

dimensions of the lower leg.  However, it is now necessary to designate the shape to solve for the 

drag force applied.  Further, for better understanding on the effects that viscous forces have on 

the actuator and solution method, the model will be compared to a fin of a fish.   
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Figure 27: Case 6 model schematic with applied drag force and weight acting at 
𝑙𝑜𝑢𝑡

2
 of the fin.  The drag force, 

𝐹𝑑𝑟𝑎𝑔, acts normal to the fin surface, that has dimensions of 2𝑙𝑖𝑛 by 𝑙𝑜𝑢𝑡., while the gravitational force still needs to 

be resolved for the y-component prior to summing all torques about the pivot point. 

 

 From understanding basic principles of fluid mechanics, the drag force, 𝐹𝑑𝑟𝑎𝑔, acts 

perpendicularly to the surface area regardless of position/orientation of the area.  Moreover, the 

drag forces acts uniformly across the entire surface, but for this case, the drag force is resolved to 

act in the center of the fin geometry, denoted by the all black piece in figure 27.  This leaves the 

summation of torques to be fairly easy to get equation 21. 

 

𝐼𝜃̈ = (𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 sin(𝜃) 𝑙𝑖𝑛) − (−
𝑙𝑜𝑢𝑡

2
(𝑚𝑔𝑐𝑜𝑠(𝜃) + 𝐹𝑑𝑟𝑎𝑔)) 

Equation 21: Governing Equation of Spring-Damper Muscle Force with Gravity and Drag Forces (Case 6) 

 

 Due to the actuator not changes from previous cases, 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 is still defined by the 

addition of the spring and damper force.  The only addition for this case is the drag force, defined 

by equation 22 below. 

 

 

𝑙𝑜𝑢𝑡 

⬚
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𝐹𝑑𝑟𝑎𝑔 =
1

2
𝐶𝑑𝜌𝑉𝑙𝑜𝑢𝑡

2𝐴𝑓 

Equation 22: Drag Force 

 

 For this equation, 𝐶𝑑 is the coefficient of drag that was determined through commonly 

used shapes [42].  A flat, rectangular plate was assumed to be representative of the fin for this 

case and has a coefficient of drag of 1.28.  The density was determined from varying percent 

glycerine solutions at 20°C, roughly room temperature [43].  These densities and associated 

percent glycerine solutions can be found in table 3. The velocity, 𝑉𝑙𝑜𝑢𝑡
, is the velocity of the fin 

as it moves through the varying glycerine solutions.  Lastly, the frontal area, 𝐴𝑓, is obtained from 

the area of the theoretical fin, depicted in figure 27, as 2𝑙𝑖𝑛𝑙𝑜𝑢𝑡. 

 

Density of Glycerine-Water Solutions 

Glycerin Density at 20°C Density at 20°C 

% (g/mL) (kg/m³) 

0 0.99823 998.23 

25 1.0598 1059.8 

50 1.1263 1126.3 

75 1.19485 1194.85 

100 1.26108 1261.08 

Table 3: Percent Glycerine Solution and Associated Density at 20°C [43] 

 

 Similarly to Case 5, the damping coefficient was held at 0.5 kg/s to understand the effects 

of viscous drag on the model rather than the effects of damping in addition to the viscous drag on 

the rotating geometry.  Further, only 10mg and 80mg leg masses were observed for this 

simulation.  It was assumed that the variance would be greater observed between the 10mg and 

80mg cases, rather than completing the simulations with more varying loads between the 

minimum and maximum leg weight. 

  

(22) 
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Chapter 5: Experimental Set-up 

 

 Experimentation involved the use of a McKibben air muscle test fixture and LabView 

interface created by Phatak to identify the force-velocity relation under varying air pressures 

[44].  Overall, the test fixture remained the same for components used to measure absolute 

pressure changes and contractile distance, data processing from the LabView program, and 

hardware.  Slight changes, however, were made to create a better comparison to the theoretical 

models and simulations presented in Chapter 4.  The main change was the addition of two 

dampers in parallel with the McKibben air muscle.  This causes the experimental test fixture to 

not only be synonymous to the simulated ‘muscle’, but comparable to Hill-type muscles shown 

in figure 23.  The use of two dampers further allows for better control of contraction and 

expansion of the McKibben air muscle.  As the solenoid valve is opened or closed, the test 

fixture ‘muscle’ is limited to two-degrees of freedom: the z-axis and rotation about the z-axis.  

The axes can be seen in figure 17.  It should be noted that for the inertial and viscous loading 

conditions an additional test fixture was employed that enabled linear movement along the y-axis 

and rotation about the x-axis. 

For all loading conditions tested, the following were held constant: 

 

Testing Conditions 

Gauge Pressure 40 psi 

Contractions per Weight/Case Trial 3 contractions 

Flow Rate ¼ turn from fully closed  

Table 4: Test Conditions for Force, Inertial, and Viscous Experimental Tests 

 

Set-up for the experimental testing started by turning on the air supply and checking the 

pressure gauge of the air compressor to ensure it is set to 40 psi.  To guarantee the flow valve is 

placed at the proper opening value, it is first placed in a fully closed position.  From here the 

valve is opened a ¼ turn.  The system is run for 5 minutes prior to testing the system, so it has 

reached a steady state.  During this time, the power supply is turned on to 12V, the excitation 

voltage for the linear potentiometer, and the LabView program is launched.  Once set-up is 

complete, the resting length and diameter are measured using calipers between specified points 

on the McKibben air muscle.  This is done prior to each test, and start-up of the test fixture.  
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Depending on the testing case, the appropriate damping and weight is applied to the appropriate 

test fixture modification.  An initial contraction is held after the addition of weight.  A contractile 

length and contractile diameter are measured with calipers, and recorded in the appropriate post-

processing Excel sheet, along with the testing conditions and any other data pertinent to the test. 

In general, each scenario used the same post-processing data method.  An Excel 

spreadsheet collected all data related to time, absolute pressure, and linear potentiometer voltage 

readings.  The linear potentiometer voltage was then changed into a displacement length using 

the relationship that 1 volt is equivalent to 0 inches, while 10 volts is related to 1 inch.  The 

length was then converted from English units to metric for the contractile velocity to be 

determined.  The contractile velocity was obtained by dividing the change in linear potentiometer 

length by the change in time.  However, due to the actuation of the muscle, the velocities 

associated with the contraction are negative, while those associated with expansion are positive.  

In order to obtain the contractile velocity as positive, the determined velocity was multiplied by -

1.  The data associated to time and contractile velocity were then read into MATLAB using the 

code found in Appendix H.   This code plots the contractile velocity versus time, but due to the 

noise associated with the data a moving average filter was applied to obtain a smoother curve 

from the data.  The maximums were taken from the filtered data to be the maximum contractile 

velocity for the load scenario and applied loading trial.   Force velocity curves for each loading 

case were then acquired. 

 5.1: Force Loading Modifications 

 

 Force loading used the addition of a basket for the weights to be placed on.  This allowed 

for direct loading onto the ‘muscle’.  Masses of 500g were added one by one onto the basket to 

allow force loading of masses 500g to 4000g to be observed.  Placement of the weight basket can 

be observed in figure 28. 

 Three contractions were taken for each weight trial and damping force applied.  For this 

experimental case, two damping scenarios were observed.  Adjustment for increased or 

decreased damping is applied through the knobs at the top of both dampers acquired from Airpot 

(Model: 2KS325A2.0TX).  For minimal damping a single turn from the no-damping condition 

was applied, while for maximum damping, four turns from the no-damping applied condition 
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were applied.  A total of three experimental tests were completed for both the minimal and 

maximum damping cases for all weights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Schematic of force loading experimental test fixture with modification of dampers in parallel with the 

pneumatic air muscle and the addition of the weight basket.  Actuation of the muscle occurs only about the Z-axis, 

shown previously in figure 17.  After the completion of each trial, per weight, data was exported from the LabView 

code into a data drop excel file, and then copied into the appropriate data processing spreadsheet. 

 

 5.2: Inertial Loading Modifications 

 

 The inertial loading experiment aimed to determine the effects of indirect loading on the 

‘muscle’ performance.  In doing so the same test fixture, shown in figure 28, was used for this 

case.  However, the addition of an inertial loading test bed was accomplished.  This test bed 

utilized linear bearings and rails for the weight to be applied, while being attached to the muscle 
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by the use of heavy-duty rope.  As previously suggested at the beginning of Chapter 5, the 

addition of this test bed allows for movement in the Y-axis, due to the placement of the inertial 

test bed to the overall test fixture, in figure 30.  A diagram of the inertial test bed is shown below 

in figure 29. 

 

c 

 

 

 

 

 

Figure 29: Inertial test bed fixture that allows for linear motion along the Y-axis through the use of linear slides and 

linear bearings.  A weight plate was attached directly to the linear slide rails to enable the indirect force loading.  

Not shown in the picture above are the pulleys within the bearing houses.  The pulleys allow for placement of the 

rope, and ensure that the rope moves without resistance to the contractile force from the ‘muscle’. 

 

 Similarly to the force loading case, weights ranging from 500g to 4000g were applied to 

the test fixture, and data was processed using methods suggested at the beginning of Chapter 5. 
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Figure 30: Integration of inertial test bed with overall test fixture that allows two degrees of freedom at the 

‘muscle’, but linear motion of the inertial test bed along the Y-axis.  Weighs varying from 500g to 4000g were 

placed on the test bed’s linear rails. 

 5.3: Viscous Loading Modifications 

 

 Previously, weight was added to the test fixtures of figure 28 and 30.  For the viscous 

loading experimental case, weights were not added to the test fixture. Instead, the actuation of 

the muscle under viscous loading was observed through the addition of a paddle to the inertial 

test bed.  The inertial test bed was machined to allow a 3/8 inch linear rod to be fitted through the 

base structure.  The paddle was created to be 6inches by 6inches in frontal surface area from 3d 

printed ABS.  The paddle is able to slide onto the 3/8 inch linear rod with the addition of a pulley 

for rope placement.  This allowed the paddle to rotate about the X-axis by the attachment of the 

heavy-duty rope to the base of the paddle and the base of the experimental ‘muscle’, shown in 

figure 31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Modifications associated with the inertial test bed include the 3/8 inch through hole for a linear shaft, 

pulley, and paddle attachment.  The paddle rotates about the X-axis, and allows for two degrees of freedom for the 

entire test fixture to actuate.  The paddle was tested under air and water viscous cases.  Water, at room temperature, 

was placed in a bucket for the paddle to actuate in.  The rope utilized the pulleys along the bearing houses to 

decrease the resistance to contractile actuation. 
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 The paddle was observed under water and air actuation, both assumed to be 20°C.  This 

allowed for proper calculation of the drag forces acting on the paddle through the use of equation 

22. 

Chapter 6: Results and Comparisons 

 

 Results per each theoretical simulation and experimental case are presented within this 

section.  Comparisons are made on the effects of varying actuator types and external forces, 

while presenting validation data to support both the work presented throughout this thesis. 

6.1: Case 1: Constant Applied Force 

 

As discussed in Section 4.1, an applied force, resembling a spring force, was used for the 

first simulation.  However, this force was held constant throughout the entirety of the simulation, 

as represented by figure 32.  The purpose of this case was to understand how the simulation acts 

under varying loads and mechanical advantages as a baseline for the subsequent theoretical 

cases.  Further, this force did not change with the variance of leg masses, 10mg, 20mg, 40mg, 

60mg, and 80mg, and nominal in-lever, 𝑙𝑖𝑛, length. 
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Figure 32: Applied actuator force during the entirety of a leg kick, under constant force application.  The force was 

calculated using equation 11, which is synonymous to a spring force.  However, the force was calculated using a 

constant, 𝐿.  This value was held at the maximum possible stretch value, 1.5𝑒−3m, because this is equivalent to the 

maximum possible force output of the system. 

 

However, the simulation did show changes along the angular displacement attributed to 

each leg mass applied in figure 33.  This is to be expected because the leg mass is assessed 

within the simulation through the moment of inertia about the lower leg, a distance of 𝑙𝑜𝑢𝑡 from 

the pivot point.  With an increase in the leg mass, there is ultimately an increase in the moment 

of inertia and, subsequently, a decrease in the angular displacement of the system at a given time. 
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Figure 33: Variation in the angular displacement of the locust leg kick with a constant, controllable applied force.  

In this case, the maximum possible angular displacement increases slightly from 165.2201° with a 10mg load to 

171.3678° with a 80mg load.  Further, the time to get to this maximum angular displacement slowly increases over 

the increase in applied load.  This is to be expected as the load slows down the speed of the translational velocity of 

the lower leg geometry.  It should be noted for this graphical interpretation and comparison, the in-lever length, 𝑙𝑖𝑛, 

remained at the nominal length of 7.6𝑒−4m. 

 

 Increases in the simulation time, as the load increases, occurs due to the change in 

translational velocity of the lower leg, more specifically the linear velocity in the y-direction.  

This can be depicted by figure 34, where the translational velocity of the lower leg, is compared 

not only to nominal in-lever length, but percent changes of -75%, -50%, 50%, 75%, and 100%.  

For loads of 10mg and 80mg, increases of 200% and 300% in-lever length were further assessed.  

The purpose of changing the in-lever length was to assess the changes in mechanical advantage, 

previously defined by equation 2.  It is observed that the translational velocity increases relative 

to the mechanical advantage, in addition to the already apparent differences in maximum 

translational velocity for a given applied lower leg mass. 
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Figure 33: Relationship between translational velocity changes of the lower leg and mechanical advantage increases 

and decreases.  It is observed that not only is there apparent increases between the loads applied under the nominal 

case, but increases due to the increase in mechanical advantage. Leg masses of 10mg and 80mg have longer 

resulting graphs due to the calculation of 200% and 300% increases of in-lever length. 

 

 Lastly, the rate of change in angular momentum about the pivot point, p, was observed in 

relation to the mechanical advantage.  This value is the torque of the system as it rotates about 

the knee joint in the locust leg.  It can be defined by the following:  

 

𝑅𝑜𝐶𝐴𝑀 =  𝐼𝛼 

Equation 23: Rate of Change of Angular Momentum about Pivot Point, p 

 

It has been previously suggested by other researchers, that due to the inability to hold the 

muscle velocity of a system constant, the torque produced by the rotation of the system will 

remain constant with increases in mechanical advantage.  This simulation disproves this theory 

through the use of figure 34.  With an increase in mechanical advantage the torque of the system 

increases linearly for all loads.  This is to be expected based on the very definition of 𝑅𝑜𝐶𝐴𝑀 

given by equation 23.  The moment of inertia is based on the variance in the load, while the 
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angular acceleration is subsequently solved from the changes in load applied through this inertia.  

Thus, is understandable that the two will increase linearly as they do in figure 34. 

 

 

Figure 34: Depiction of linear relationship between rate of change of angular momentum, better known as the leg 

kick’s torque, and mechanical advantage.  It is shown that regardless of the mass, the rate of change of angular 

momentum is the same for all leg masses.  This can be justified through the understanding of equation 23.  Even 

though the loads vary, the moment of inertia and angular acceleration can be comparable between each of the loads 

by a constant multiplier.  For this system the rate of change of angular momentum cannot be changed unless a 

different muscle is used for each of the loads. 

 

6.2: Case 2a and 2b: Spring Muscle Force in terms of 𝒍𝒊𝒏 and 𝜽 

 Case 2a and 2b were the first cases that employed the use of a spring within the simulated 

locust leg kick.  The difference between the two stemmed from the definition of the springs 

stretch as it related to time, 𝐿.  Case 2a related 𝐿 to the length of the upper leg, 𝑙𝑖𝑛, while Case 2b 

corrected for the errors in defining 𝐿 through the upper leg length by associating it only with 𝜃, 

the leg’s instantaneous position.  The errors suggested with Case 2a are related to the direct 

relation created between the translational velocity and mechanical advantage when defining 𝐿 
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with respect to 𝑙𝑖𝑛.  However, mechanical advantage should not be directly related to the change 

in velocity.  In turn, it should still be related but in a less direct manner.  Using 𝜃 to correct for 

this in the applied force equation 15, enables the force, velocity, and mechanical advantage to 

present proper data seen in Case 1.  This effect and comparison between Cases 2a and 2b can be 

seen below in figure 35. 

 

 

Figure 35: Result comparison of the translational velocity-mechanical advantage relationship between Case 2a and 

2b.  As it is observed, using 𝑙𝑖𝑛 to define the spring’s change in length over the kick, causes a linear relationship 

between the translational velocity and mechanical advantage.  However, with the change in spring’s length being 

defined by 𝜃, allows for the two variables to not be directly related.  Further, the results from Case 2b resemble 

those derived from Case 1 in figure 33. 

 

 Further on top of there being a difference between the translational velocities, there were 

differences between the comparison results of the rate of change of angular momentum and 

mechanical advantage.  Similarly to the translational velocity-mechanical advantage relationship 

from Case 2a, errors were observed in the relationship between rate of change of angular 

momentum and mechanical advantage.  However, this was corrected for again by redefining 

equation 13 with the use of 𝜃 in equation 15.  The results between the cases can be observed 

below in figure 36.  Further, it should be noted the discrepancies in values of translational 

velocity and rate of change of angular momentum between the Cases 2a and 2b with Case 1.  
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This is due to the change in actuator.  The first case only dealt with an actuator that did not ‘die 

out’ over the course of the kick.  In this case, the force applied by the actuator decreases 

overtime until there is no force left to cause further rotation of the leg geometry.  This allows for 

decreases to be seen in the translational velocities observed and the rate of change of angular 

momentum observed within Cases 2a and 2b. 

 

 

Figure 36: Comparison between the rate of change of angular momentum-mechanical advantage relationship 

between Case 2a and 2b.  Once again, due to the use of 𝑙𝑖𝑛 in defining the spring’s instantaneous stretch throughout 

the locust leg kick, it is apparent the effects are related to mechanical advantage changes, defined by equation 2.  

The use of 𝜃 in defining the spring’s instantaneous stretch, by equation 15, eliminates this direct correlation to 

obtain the proper data observed in figure 34.  Further, the differences between the values of the rate of change of 

angular momentum are attributed to the change in actuator used between Case 1 and Cases 2a and 2b. 

6.3: Case 3: Spring – Damper Muscle Force 

 

 After the completion of properly defining the spring by the change in angular position 

during a kick, the application of an ideal damper in parallel with a spring was observed.  For this 

case, the main variation was related to the damping coefficient and the effect that increasing or 
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decreasing the damping coefficient has on the model.  In this case, a mass of 10mg was used 

throughout to understand the effects on the spring-damper ‘muscle’. 

 

Figure 37: Effects of the damping coefficient on the spring-damper muscle show that very little change occurs with 

a damping coefficient of 0.0001, 0.00005, and 0.0001 kg/s.  However, once 0.0005 is applied to the system, the 

simulation outputs data that proves the damping coefficient effects the muscle force overtime greatly.  Further, 

damping coefficients of 0.005 and 0.01 kg/s dramatically affect the muscle actuation force, and cause the force to go 

to zero almost immediately. 

 

 As seen in figure 37, the effects of the damper greatly affect the muscle output force.  In 

this case, damping coefficients of 0.01 and 0.005 kg/s drastically decrease the output force.  On 

the other hand, damping coefficients of 0.00001, 0.00005, and 0.001 kg/s hardly affect the 

overall force output of the theoretical muscle.  These effects lead to the investigation into the 

translational leg velocity and muscle velocity affects.  It was hypothesized from the effects of 

damping that the translational velocity would decrease the maximum possible rotational velocity 

output, subsequently the translational velocity of the leg during a kick.  Further, due to the 

addition of the damper, the time for the actuation to complete will increase.  These hypotheses 
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were confirmed through figure 38, a comparison between the muscle velocities over time due to 

changes in damping coefficients. 

 

Figure 38:  It can be observed that the previously stated hypothesis holds true.  The increasing the damping 

coefficient causes increases in actuation time of the leg rotation during a locust leg kick.  Further, the translational 

leg velocity observed decreases with the increase of damping coefficient.  This is understandable because as the 

damper is resisting the contraction of the spring during a kick, the maximum achievable velocity of the leg during 

rotation will decrease from this resistance. 

 

In addition to the effects of translational velocity due to damping, it is very clear that 

there are effects on the muscle velocity itself.  As previously defined by equation 18, muscle 

velocity is related to angular velocity, and change in position of the upper leg.  Further from 

equation 17, the velocity of the muscle is directly proportional to the damping force.  In this case, 

due to this direct relationship from equation 17, the graphical representation of these two should 

be linear.  This linear relation can be seen in figure 39 below.  Not only from equation 17, but 

figure 39, it is apparent that the slope of the linear line between the two is equivalent to one 

divided by the damping coefficient.  More so, this relationship shows that the damper acts as an 

ideal damper within these simulations and the muscle force can be interpreted as an ideal muscle 

for the remaining simulations. 
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Figure 39: Relationship between muscle velocity and damping force within the spring-damper muscle system.  The 

linearity between the two variables represents the relationship defined by the damping force in equation 17, where 

the damping force is equivalent to the muscle velocity times the damping coefficient.  The slope of each of these 

lines to be one divided by the damping coefficient used. 

 

It should be noted from figure 39 that the smallest damping coefficients produce 

extremely steep lines that look as if they would be undefined.  However, this is more so due to 

the values being so much smaller in a case where the damping force is negligible to those that 

affect the muscle performance, like damping coefficients of 0.005 and 0.01 kg/s. 

6.4: Case 4: Spring – Damper Muscle Force with Consideration of Gravity 

 

Cases 1 through 3 employed the use of a point mass held at a distance of 𝑙𝑜𝑢𝑡 from the 

pivot joint of the leg geometry.  This case begins to use a resolved force at 
𝑙𝑜𝑢𝑡

2
 of the lower leg.  

With this, a true force-velocity curve could be determined to visualize the effects of changing 

spring stiffness and damping on the muscle.  First the effects of spring stiffness were observed 

with k equal to 200, 300, and 400 kg/s², while damping was zero. 
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Figure 40: Relationship between the changes in stiffness of the spring of the spring-damper muscle as it pertains to 

the force-velocity relationship curve.  In general, the higher the stiffness the higher the achievable maximum 

velocity for force loads ranging between 10 and 80N.   

 

 As seen above in figure 40, it is apparent that the three different spring stiffness 

coefficients used follow the same pattern in the force-velocity curve.  The major difference is the 

higher the muscle velocity in a case with spring stiffness of 400 kg/s² compared to spring 

stiffness of 200 kg/s².  This can be explained by the increase in the force produced by the spring 

of higher stiffness than in a case of a spring with much lower stiffness, given by equation 11.  

Furthermore, with a change in the damping coefficient, the smaller the expected maximum 

velocity output is for each applied load.  This can be seen below in figure 41.  For the produced 

data depicted in figure 41, the spring stiffness was held at 300 kg/s² as previously used for all 

other simulations.  As depicted below, the variance is slight between no damping and extreme 

damping.  However, it still follows the described trend that higher damping causes higher 

resistive force, so lower maximum muscle velocities. 
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Figure 41:  Relationship of increasing damping coefficient on the force-velocity relationship curve.  As observed, 

the increase in damping coefficient causes a decrease in the maximum achievable velocity for a given load.  In this 

case, the case with a damping coefficient of 0.1 kg/s causes the greatest variation away from the zero-damping case.  

Although this is a slight change, it is justifiable for the simulation to produce data as such.  Suggested previously, 

the increase in damping coefficient increases the resistance to motion. In this case, the motion being resisted is the 

contraction of the spring. 

6.5: Case 5: Spring – Damper Muscle Force with Consideration of Gravity 

and Reaction Force 

 

The main purpose of this simulation is to ultimately simulate the jumping of a locust.  

Previous iterations have failed to fully simulate the jumping because of the lack of ground 

reaction forces acting on the leg of the locust.  Thus, up until this point only a locust leg kick has 

been observed through the simulations.  Below, in figure 42, the force-velocity curve relationship 

can be observed. 
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Figure 42:  Force Velocity Relationship for varying locust masses during a jump.  Locust mass multipliers of 10, 50 

and 100 were used to observe the effects of weight on the maximum velocity output and force-velocity relationship 

curve.  As observed, a locust weighing 100 times had higher muscle velocity with a wider range of forces.  The 

locust weight only 10 times the mass of the leg observed the lowest muscle velocities. 

 

 As seen in figure 42, a locust weighing only 10 times the leg mass had the lowest muscle 

velocity and applied forces.  This is in part due to the higher effects on gravity within this model 

on a locust of this size.  As suggested through literature, the effects of not only viscous drag, but 

gravitational effects, on organisms of smaller body size cause greater effects on the force-

velocity curve for that organism [30].  In this case, the gravitational effect on the smaller locust 

outweighs the potential to achieve higher muscle velocities and applied forces.  The opposite 

holds true for the larger locust, with 100 times the leg mass.  These results are expected to that of 

what has been seen within literature of organism locomotion.   
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6.6: Case 6: Spring – Damper Muscle Force with Consideration of Gravity 

and Drag Force 

 

The last simulation accomplished dealt with the effects of viscous drag on a fin, rather 

than a locust leg.  Varying percent glycerine solutions were used to obtain the density necessary 

for the drag force equation.  Only two leg masses were used in this case, 10 mg and 80mg, while 

the damping force remained at 0.5 kg/s.  The results can be shown in tables 5 and 6 for 10mg and 

80mg fin masses, respectively. 

 

10 mg Fin Mass 

Percent Glycerine Muscle Velocity Viscous Force 

% m/s N 

0 0.006589388 0.025056829 

25 0.006396227 0.025063626 

50 0.006205593 0.025070334 

75 0.006025927 0.025076657 

100 0.005866399 0.025082271 

Table 5: Data related to viscous force and muscle velocity on a 10mg fin on varying percent glycerine solutions.  

The results yield data that shows as the viscous force increases due to the resistance to higher velocities, the muscle 

velocity decreases.  Further, as the percent glycerine solution increases to a highly viscous environment, the muscle 

velocity drastically decreases. 

 

80mg Fin Mass 

Percent Glycerine Muscle Velocity Viscous Force 

% m/s N 

0 0.006567089 0.024716744 

25 0.006374493 0.02472359 

50 0.006184428 0.024730342 

75 0.006005303 0.024736712 

100 0.005846262 0.024742373 

Table 6: Similarly to the data presented for a fin mass of 10mg, an 80mg fin has decreasing velocity with 

increasing viscous forces and percent glycerine solution.  The results show that the 80mg fin has lower muscle 

velocities than the 10mg fin for all percent glycerine solutions. 

 

 The results are as expected, the higher the percent glycerine solution the higher the 

density will be and the lower the output velocity.  With an increase in the density the viscous 
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force will be increased slightly, but the overall change in viscous force is due to the reaction of 

the fluid to higher muscle velocities trying to actuate within the solution.  

6.8: Effects of Varying Actuator Types to Propagate Leg Kick 

 

 The effects of differing actuator types are exemplified through Cases 1, 2a, 2b, and 3.  

The first case, being the simplest, only involved the use of a constant, controllable applied force.  

It was observed that this was not truly representative of a muscle, as the force over the duration 

of the leg kick did not lose energy.  However, valuable data was shown through the depictions of 

angular displacement, translational leg velocity, and rate of change of angular momentum of the 

constant system, through figures 32, 33, and 34, respectively.  Under varying changes of mass, 

the maximum angular displacement achieved decreased as mass increased.  This should hold true 

because of the higher moment of inertia, for which the leg mass is accounted by within the Case 

1 model.  By definition, moment of inertia is the tendency of a body to resist angular 

acceleration.  The additional weight added to the leg is resisting the muscle’s force to want to 

accelerate in a kicking fashion.  Secondly, with the increase in leg mass, the translational 

velocity of the lower leg drastically decreases.  In a similar explanation to the moment of inertia, 

the increase in leg mass causes for decreases in the maximum allowable translational velocity for 

the leg.  Although the actuator presented in this case was not a comparable to an actual muscle, it 

was an important case to propagate Case 2b, and 3 from, and began as a starting point to build 

the model presented in Cases 4, 5, and 6. 

 The second type of muscle employed was the use of a single spring in Case 2a and 2b.  

The spring itself allows for proper energetics of the system to be observed, but lacks the ability 

to have an intrinsic damping effect to resist the rotational motion of the lower leg.  Simply put, 

the springs simulated in this case wanted to rotate.  Although the decreases in the translational 

velocity were observed with increase in mass, it is understood through Hill-type muscles that at 

some point the resistive forces will cause either a constant maximum output velocity to be 

achieved or decrease in maximum output velocity.  This was, however, observed in Case 3, with 

the addition of a damper to the actuator, and can be visualized in figure 43 below.  In general, the 

decrease in maximum achievable translational velocity between the masses is still observed.  

However, there is a logarithmic nature to the curve for each mass simulated.  This is what is 
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expected of a Hill-type muscle, not only in relation to the effects mechanical advantage has on 

the system, but the effects of a damper wanting to resist the contraction of an ideal spring. 

 

Figure 43: Graphical representation of the effects of adding a damper to the actuator.  The above shows what is 

expected of a Hill-type muscle, for the translational velocity of the lower leg follows a logarithmic trend to resist the 

rotation of the lower leg as mechanical advantage increases. 

6.9: Effects of External Forces on Simulation Model 

 

 External forces were observed through the simulations of Cases 4, 5, and 6 on inertial 

loading, ground reactant force loading, and viscous force loading.  Each of these was observed to 

follow the general shape of a Hill-type muscle through the force-velocity relationship curve.  

Looking at case 4, the effects were seen drastically in the variance of damping coefficient and 

spring stiffness of the system.  The only external force added to the system for this case, was the 

inertial loading of the leg mass resolved about a distance of 𝑙𝑜𝑢𝑡 from the knee joint of the leg.  

Looking at figure 40 and 41, it is clear to see that as the inertial load increases the muscle 
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shortening velocity decreases with respect to changes in both damping coefficient and spring 

stiffness. 

 Moving onto Case 5, the same decaying relation between force and muscle velocity was 

observed.  As stated previously, this simulation held the damping coefficient at 0.5kg/s because 

it was large enough to visibly see the effects within the simulation on the force-velocity relation.  

Moreover, the locust mass was assumed to be 10 times the leg mass for the nominal case, while 

observations were made for 50 times the leg mass and 100 times the leg mass.  Looking at figure 

42, it is apparent that Case 5 yields similar results to that of Case 4.  However, the main 

difference lies within the trend between the assumed locusts’ leg mass.  There is an 

understandable increase in the maximum achievable velocity as the locusts’ mass increases.  This 

is because the higher the mass of the body the larger the reaction force output onto the ground.  

Due to equal and opposite reactions, this same force is acted back onto the locust as it jumps.  

Thus, with a higher body mass a higher reaction force will be achieved along with a higher 

maximum muscle velocity. 

 Lastly, the viscous loading effects were observed on a fin, similar in shape to the locust 

leg geometry.  Looking at tables 5 and 6, it can be inferred that as the viscous force increases on 

the fin during actuation, the muscle velocity decreases.  This is in part due to the damper of the 

muscle, but also the resistance of the viscous fluid onto the fin.  Thus, being able to see this 

inference from the physical data, it is understood that the viscous forces acting on the fin cause a 

similar force-velocity relationship seen in Cases 4 and 5.  However, the relationship does not 

represent an exponentially decaying graph.  Instead, figure 44 shows that the trend between the 

viscous force acting on the muscle from varying glycerine solutions is linear to the muscle 

velocity.  This has been concluded to be due to the relationship of the viscous drag force to the 

muscles velocity through equation 22.  The square of the viscous force is approximately that of 

the muscle velocity, and the damping force can account for the variance between the muscle 

velocity observed and the viscous force. 
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Figure 44: Comparison between the 10mg and 80mg fin.  It is observed that the viscous force squared is almost 

equivalent to that of the muscle velocity, which hold true from equation 22 defining viscous drag.  Although this is 

not an exponential decay with the relation to the Hill’s force velocity curve, it does represent a decrease in the 

muscle velocity with increasing viscous resistance. 

 

6.10: Validation Data from Experimental Testing 

 

 The experimental tests aimed to validate the data shown through the theoretical 

simulations.  Force loading, inertial loading, and viscous loading cases were tested as discussed 

in Chapter 5.  It should be noted that the data for each case and trial were conducted on separate 

days and times.  This aided in the randomization of the test, and subsequently determines 

repeatability of the testing.  Overall, the results from the force loading tests yielded the most 

useful data, in regards to this thesis project.  Two cases of damping were observed: minimal and 

maximum.  The results are shown in figures 45 and 46, respectively. 
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Figure 45: Minimal damping case under force loading conditions.  The weights were applied to the spring-damper 

‘muscle’ directly through the use of a weight basket.  It can be seen that there is an apparent decrease in the data 

from 0.5kg to 4.0kg applied load.  Three trials were accomplished for each loading case, and three contractions are 

related to each data point.  The top graph shows the standard deviation of contractions per load trial, while the 

bottom graph shows the standard deviations between all trials. 
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Figure 46: Maximum damping case with applied load directly onto the spring-damper ‘muscle’.  Slight appearance 

of decrease in the contractile force as the load increases from 0.5kg to 4.0kg.  Three trials were accomplished in a 

similar fashion to the minimal loading case, where each data point represents an average of three contractions. The 

top graph shows the standard deviation of contractions per load trial, while the bottom graph shows the standard 

deviations between all trials. 
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damping force tests.  It is evident that there is a slight decrease in the contractile velocity 

between the loads, but the standard deviation is much greater and causes overlap between these 

loads.  Moreover, the average percent error between the three trials was extremely high, as 

observed in table 7. 

 

Loading Average Percent Difference 

kg % 

 

0.5 55.164 

 

1.0 78.154 

 

1.5 35.435 

 

2.0 17.063 

 

2.5 60.696 

 

3.0 27.347 

 

3.5 43.580 

 

4.0 32.199 

Table 7: Percent Difference between All Three Trials of Force Loading Experimental Case with Damping 

 

 These errors could be due to the two degrees of freedom along the spring-damper 

‘muscle’.  During contraction the muscle will contract in a manner of the least resistance.  With 

the maximum damping force case, the spring-damper ‘muscle’ rotated about the Z-axis for some 

loading trials due to it being the path of least resistance to the contraction.  However, these trials 

were repeated for proper data.  Modifications to correct for this issue will be further discussed in 

Chapter 7. 
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 The inertial loading and viscous force cases yielded the worst data of all the experiments, 

due to the lack of force-velocity relationship.  Since the minimal damping force gave the best 

results for the force loading case, it was implemented for the experimentation of both the inertial 

and viscous loading tests. The force-velocity curves for each can be seen in figures 47 and 48, 

respectively. 

 

 

Figure 47: Force-velocity relationship for inertial loading case, under minimal damping conditions.  There no trend 

observable between the force loading and contractile velocity of the muscle that is related to the Hill’s muscle 

model. 
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Figure 48: Relationship between force-velocity of the spring-damper ‘muscle’ under viscous loading conditions in 

air and water.  As seen above, the data between each viscous fluids trials are greatly related, but there is no 

correlation between the viscous force and the contractile velocity of the experimental muscle. 

 

 The issues associated with the data could be due to the limitations of the test fixture.  The 

linear potentiometer of the test fixture has a 10V maximum.  This is correlated to a 1 inch change 

in distance.  Due to this, the McKibben air muscle could only be built to actuate less than 1 in.  

The motion of the air muscle is already slight, so the addition of indirect test fixtures, such as the 

inertial test bed and the viscous test bed, do not actuate much.  This limitation could cause for the 

discrepancies of the force-velocity curves for the inertial and viscous loading experiments.  

Modifications to negate this issue will be later presented in Chapter 7. 
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Chapter 7: Conclusion 

7.1: Overview 

 This thesis aimed to present a working theoretical model for a simple MSK lever system 

that included a muscle, a lever, and a load.  Various cases were explored.  This included varying 

properties of the muscle, ranging from a simplistic constant force, to a spring damper system that 

replicated the Hill muscle equation.  The cases also included varying the resistive forces acting 

on the lever.  For every combination of muscle and resistive force, the gearing was varied in 

order to explore the effect of gearing on the MSK system.  

Cases 4, 5, and 6 clearly show that the use of a theoretical spring-damper ‘muscle’ 

follows similar trends to the Hill’s muscle model.  More specifically, these cases clearly depict 

the proper force-velocity relationship where with increasing loads acting on the muscle, there 

will be a decrease in the muscle velocity.  Furthermore, it is observed through Case 3, that the 

spring-damper in parallel produces data related to the translational velocity of the rotating body 

and mechanical advantage that represent a biological muscle. 

 Experimental data did further the validation of the theoretical model for the force loading 

case, as it gave the most promising data.  Not only was the data repeatable between trials, but the 

data clearly showed a trend between the force-velocity relation for the minimal damping case.  

Although there was slight relation with the maximum damping case, it was apparent that changes 

need to be made to the test fixture prior to obtaining better data.  Moreover, the viscous and 

inertial loading cases presented data that was unhelpful in the sole purpose of validating the 

theoretical model.  It was seen that there were issues pertaining to the test fixtures capabilities 

that need to be addressed for better validation of this model. 

7.2: Future Research Opportunities 

 There are several opportunities for future research regarding both the theoretical and 

experimental models.  In relation to the theoretical model, further research should be 

accomplished on the viscous force case.  As presented previously, data showed a linear trend 

between the viscous force and the muscle velocity of Case 3.  For future work to obtain a proper 

force-velocity curve, iterations of varying damping force should be explored.  Although it is 

understandable the relation between the viscous force and muscle velocity in equation 22, a 

higher or lower damping force might be able to obtain the force-velocity curve.  Moreover the 
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theoretical model should be assessed on another biological system to validate the usability and 

continuity of the model to represent all MSK lever systems.  This is a rather large area of 

research, but better data may be available regarding MSK physiology of humans or other large 

organisms.  Furthermore, the application of a theoretical model to a larger MSK system might 

allow for better comparability to the experimental models that utilize the McKibben air muscle in 

parallel with dampers. 

 Lastly, major research can be conducted on the use of McKibben air muscles in parallel 

with dampers.  As observed in this thesis project, only the force loading scenario provided 

fruitful data.  This was concluded to be associated with the limitations of the current test fixture.  

The linear potentiometer was the limiting factor for this experimental testing.  It only was 

capably of extending an inch past its resting length.  Furthermore, it is unwise to run the linear 

potentiometer to its limits (i.e. 1V and 10V).  In order to allow for larger McKibben air muscles, 

a larger linear potentiometer must be employed.  This will allow for a greater contraction in the 

McKibben air muscle that will actuate the inertial test bed and viscous test bed over a larger 

range.  This may provide better data compared to the current model.  In addition to the change in 

linear potentiometer, the spring-damper ‘muscle’ must be limited to only one degree of freedom.  

This will cause the ‘muscle’ to only actuate in the Z-axis, and provide stronger data for the 

maximum damping force experimentation. 
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Appendix A: Case 1 – Constant Applied Force Simulation 

Documents 

Case 1 Simulink Block Diagram 

 

Case 1 MATLAB Code 
 

%% Case 1: Constant Force  

% Created by: Jenna Hopkins 

  

close all 

clear all 

clc 
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k = .3e3; %N/m 

inlength = (7.6e-4)+((7.6e-4)*0)%m 

sstretch = 1.5e-3; %m 

L = sstretch;%m 

m = 10e-6; %kg 

theta0 = 6*(pi()/180);%rad 

lleg = 30e-3; %m 

I = (m/3)*((lleg/2)^2); %kg-m^2 

outlength = 1.73e-2; %m 

  

Fspring = k*L; %N 

F = ones(57,1); % Vector containing all 1's 

Fspring_matrix = Fspring.* F; % Vector containing Constant Force 

MA = inlength/outlength;  % Mechanical Advantage of System 

  

  

sim('Sim_Locust') 

% Output of Simulink Data with ODE45 

AAcceleration1 = AAcceleration*(180/pi()); % Angular Acceleration [deg/s^2] 

AVelocity1 = AVelocity*(180/pi()); % Angular Velocity [deg/s] 

ADisplacement1 = ADisplacement*(180/pi()); % Angular Displacement [deg] 

  

% Correcting Simulation Output 

j = size(ADisplacement1); 

  

for i = 1:j % Correcting all output vectors for last index before simulation goes over 

180 degrees 

    if ADisplacement1(i) < 180 

        ADisplacementc(i) = ADisplacement1(i); 

        AAccelerationc(i) = AAcceleration1(i); 

        KineticEnergyc(i) = KineticEnergy(i); 

        AVelocityc(i) = AVelocity1(i); 

        PotentialEnergyc(i) = PotentialEnergy(i); 

   

    end 

end 

  

LAcceleration1 = (AAccelerationc*pi()/180)*outlength; % Lineaer Acceleration [m/s^2] 

LVelocity1 = (AVelocityc*pi()/180)*outlength; % Linear Velocity [m/s] 

LDisplacement1 = (ADisplacementc*pi()/180)*outlength; % Linear Displacement [m] 

  

% Obtain Maximums of Kinematics 

Max_AAcceleration = max(AAccelerationc); % Maximum Angular Acceleration [deg/s^2] 

Max_AVelocity = max(AVelocityc); % Maximum Angular Velocity [deg/s] 

Max_ADisplacement = max(ADisplacementc); % Maximum Angular Displacement [deg] 

  

Max_LAcceleration = max(LAcceleration1); % Maximum Linear Acceleration [m/s^2] 

Max_LVelocity = max(LVelocity1); % Maximum Linear Velocity [m/s] 

Max_LDisplacement = max(LDisplacement1); % Maximum Linear Displacement [m] 

  

Max_ForceInput = max(Fspring_matrix); %Maximum Spring Force [J] 

Max_PotentialEnergy = max(PotentialEnergyc); %Maximum Potential Energy [J] 

Max_KineticEnergy = max(KineticEnergyc); %Maximum Kinetic Energy [J] 

rcam = (I.*AAccelerationc); 

Max_rcam = max(rcam); %Maximum Rate of Change of Angular Momentum  

  

% Display Data in Command Window 

display(MA, 'Mechanical Advantage of System:') 

display(Max_LVelocity, 'Maximum Linear Velocity:') 

display(Max_ADisplacement, 'Maximum Angular Displacement:') 

display(Max_ForceInput, 'Maximum Input Force:') 
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% display(Max_KineticEnergy, 'Maximum Output Rate of Change of Angular Momentum:') 

display(Max_rcam, 'Maximum Rate of Change of Angular Momentum:') 

  

figure(1) % Figure of Potential Energy vs. Time 

plot(tout, PotentialEnergy) 

title('Potential Energy during Leg Kick') 

xlabel('Time (s)') 

ylabel('Potential Energy (J)') 

  

figure (2) % Figure of Constant Force for Entire Time of Simulation  

plot(tout, Fspring_matrix, '--r') 

title('Spring Force during Leg Kick') 

xlabel('Time (s)') 

ylabel('Spring Force (N)') 
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Appendix B: Case 2a - Spring Muscle Force in terms of 𝒍𝒊𝒏 

Simulation Documents 

Case 2a Simulink Block Diagram 

 

Case 2a MATLAB Code 
 

%% Case 2a: Spring Force in terms of lin 

% Created by: Jenna Hopkins 

  

close all 

clear all 

clc 

  

k = .3e3; %N/m 

inlength = (7.6e-4)+((7.6e-4)*0);%m 

sstretch = 1.5e-3; %m 

L = sstretch;%m 

m = 10e-6; %kg 
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theta0 = 6*(pi()/180);%rad 

lleg = 40e-3; %m 

I = (m/3)*((lleg/2)^2); %kg-m^2 

outlength = 1.73e-2; %m 

MA = inlength/outlength; %Mechanical Advantage of the System   

  

sim('Sim_Locust2') 

% Output of Simulink Data with ODE45 

AAcceleration1 = AAcceleration*(180/pi()); % Angular Acceleration [deg/s^2] 

AVelocity1 = AVelocity*(180/pi()); % Angular Velocity [deg/s] 

ADisplacement1 = ADisplacement*(180/pi()); % Angular Displacement [deg] 

% Correcting Simulation Output 

j = size(ADisplacement1); 

  

for i = 1:j % Correction to take data points before simulation is more than 180 

degrees 

    if ADisplacement1(i) < 180 

        ADisplacementc(i) = ADisplacement1(i); 

        AAccelerationc(i) = AAcceleration1(i); 

        KineticEnergyc(i) = KineticEnergy(i); 

        AVelocityc(i) = AVelocity1(i); 

        PotentialEnergyc(i) = PotentialEnergy(i); 

   

    end 

end 

  

LAcceleration1 = (AAccelerationc*pi()/180)*outlength; % Lineaer Acceleration [m/s^2] 

LVelocity1 = (AVelocityc*pi()/180)*outlength; % Linear Velocity [m/s] 

LDisplacement1 = (ADisplacementc*pi()/180)*outlength; % Linear Displacement [m] 

  

% Obtain Maximums of Kinematics 

Max_AAcceleration = max(AAccelerationc); % Maximum Angular Acceleration [deg/s^2] 

Max_AVelocity = max(AVelocityc); % Maximum Angular Velocity [deg/s] 

Max_ADisplacement = max(ADisplacementc); % Maximum Angular Displacement [deg] 

  

Max_LAcceleration = max(LAcceleration1); % Maximum Linear Acceleration [m/s^2] 

Max_LVelocity = max(LVelocity1); % Maximum Linear Velocity [m/s] 

Max_LDisplacement = max(LDisplacement1); % Maximum Linear Displacement [m] 

  

Max_ForceInput = max(Fspring); %Maximum Spring Force [J] 

Max_PotentialEnergy = max(PotentialEnergyc); %Maximum Potential Energy [J] 

Max_KineticEnergy = max(KineticEnergyc); %Maximum Kinetic Energy [J] 

rcam = (I.*AAccelerationc); 

  

Max_rcam = max(rcam); %Maximum Rate of Change of Angular Momentum  

% Display Data in Command Window 

display(MA, 'Mechanical Advantage of System:') 

display(Max_LVelocity, 'Maximum Linear Velocity:') 

display(Max_ADisplacement, 'Maximum Angular Displacement:') 

display(Max_ForceInput, 'Maximum Input Force:') 

display(Max_rcam, 'Maximum Rate of Change of Angular Momentum:') 

% display(Max_PotentialEnergy, 'Maximum Input Force:') 

% display(Max_KineticEnergy, 'Maximum Output Rate of Change of Angular Momentum:') 

  

figure(1) % Spring Force vs. Time 

plot(tout, Fspring) 

title('Spring Force during Leg Kick') 

xlabel('Time (s)') 

ylabel('Spring Force (N)') 

  

figure(2) % Potential Engery vs. Time 

plot(tout, PotentialEnergy) 

title('Potential Energy during Leg Kick') 
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xlabel('Time(s)') 

ylabel('Potential Energy (J)') 

  

figure(3) % Angular Discplacement vs. Time 

plot(tout, ADisplacement1) 

title('Angular Acceleration during Leg Kick') 

xlabel('Time(s)') 

ylabel('Angular Displacement (deg/s^2)') 
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Appendix C: Case 2b - Spring Muscle Force in terms of 𝜽 

Simulation Documents 

Case 2b Simulink Block Diagram 

 

Case 2b MATLAB Code 

 

%% Case 2b: Spring Force in Terms of Theta 

% Created by: Jenna Hopkins 

  

close all 

clear all 

clc 

  

k = .3e3; %N/m 

inlength = (7.6e-4)+((7.6e-4)*0)%m 

sstretch = (1.5e-3)- (7.6e-4); %m 

L = sstretch;%m 

m = 110e-6; %kg 
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theta0 = 6*(pi()/180);%rad 

lleg = 30e-3; %m 

I = (m/3)*((lleg/2)^2); %kg-m^2 

outlength = 1.73e-2;%m 

  

  

MA = inlength/outlength; %Mechanical Advantage  

  

  

sim('Sim_Locust3') 

% Output of Simulink Data with ODE45 

AAcceleration1 = AAcceleration*(180/pi()); % Angular Acceleration [deg/s^2] 

AVelocity1 = AVelocity*(180/pi()); % Angular Velocity [deg/s] 

ADisplacement1 = ADisplacement*(180/pi()); % Angular Displacement [deg] 

  

% Correcting Simulation Output 

j = size(ADisplacement1); 

  

for i = 1:j 

    if ADisplacement1(i) < 180 % Correction to take data points prior to 180 degrees 

        ADisplacementc(i) = ADisplacement1(i); 

        AAccelerationc(i) = AAcceleration1(i); 

        KineticEnergyc(i) = KineticEnergy(i); 

        AVelocityc(i) = AVelocity1(i); 

        PotentialEnergyc(i) = PotentialEnergy(i); 

   

    end 

end 

  

LAcceleration1 = (AAccelerationc*pi()/180)*outlength; % Lineaer Acceleration [m/s^2] 

LVelocity1 = (AVelocityc*pi()/180)*outlength; % Linear Velocity [m/s] 

LDisplacement1 = (ADisplacementc*pi()/180)*outlength; % Linear Displacement [m] 

  

% Obtain Maximums of Kinematics 

Max_AAcceleration = max(AAccelerationc); % Maximum Angular Acceleration [deg/s^2] 

Max_AVelocity = max(AVelocityc); % Maximum Angular Velocity [deg/s] 

Max_ADisplacement = max(ADisplacementc); % Maximum Angular Displacement [deg] 

  

Max_LAcceleration = max(LAcceleration1); % Maximum Linear Acceleration [m/s^2] 

Max_LVelocity = max(LVelocity1); % Maximum Linear Velocity [m/s] 

Max_LDisplacement = max(LDisplacement1); % Maximum Linear Displacement [m] 

  

Max_ForceInput = max(Fspring); %Maximum Spring Force [J] 

Max_PotentialEnergy = max(PotentialEnergyc); %Maximum Potential Energy [J] 

Max_KineticEnergy = max(KineticEnergyc); %Maximum Kinetic Energy [J] 

rcam = (I.*AAccelerationc); 

Max_rcam = max(rcam); %Maximum Rate of Change of Angular Momentum  

  

% Display Data in Command Window 

display(MA, 'Mechanical Advantage of System:') 

display(Max_LVelocity, 'Maximum Linear Velocity:') 

display(Max_ADisplacement, 'Maximum Angular Displacement:') 

display(Max_ForceInput, 'Maximum Input Force:') 

% display(Max_KineticEnergy, 'Maximum Output Rate of Change of Angular Momentum:') 

display(Max_rcam, 'Maximum Rate of Change of Angular Momentum:') 

  

figure(1) % Potential Energy during Kick 

plot(tout, PotentialEnergy)  

title('Potential Energy during Kick') 

xlabel('Time(s)') 

ylabel('Potential Energy (J)') 

  

figure (2) %Force of Spring during Kick 
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plot(tout, Fspring) 

title('Spring Force in Terms of Theta during Leg Kick') 

xlabel('Time(s)') 

ylabel('Spring Force (N)') 
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Appendix D: Case 3 - Spring – Damper Muscle Force Simulation 

Documents 

Case 3 Simulink Block Diagram 

 

Case 3 MATLAB Code 
%% Case 3: Spring-Damper Muscle 

% Created by: Jenna Hopkins 

  

close all 

clear all 

clc 

  

k = .3e3; %N/m 

inlength = (7.6e-4)+((7.6e-4)*0);%m 

sstretch = (1.5e-3)-(7.6e-4); %m 

L = sstretch;%m 

m = 10e-6; %kg 

theta0 = 6*(pi()/180);%rad 

lleg = 30e-3; %m 

I = (m/3)*((lleg/2)^2); %kg-m^2 

outlength = 1.73e-2; %m 

c =0.0001;  %Coefficient of Damping 

g = -9.8; %m/s^2 

  

MA = inlength/outlength;  %Mechanical Advantage 

  

  

sim('Sim_Locust5') 

% Output of Simulink Data with ODE45 

AAcceleration1 = AAcceleration*(180/pi()); % Angular Acceleration [deg/s^2] 

AVelocity1 = AVelocity*(180/pi()); % Angular Velocity [deg/s] 

ADisplacement1 = ADisplacement*(180/pi()); % Angular Displacement [deg] 

  

% Correcting Simulation Output 
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j = size(ADisplacement1); 

  

for i = 1:j 

    if ADisplacement1(i) < 180 %Correction to take data points before 180 degrees 

        ADisplacementc(i) = ADisplacement1(i); 

        AAccelerationc(i) = AAcceleration1(i); 

        KineticEnergyc(i) = KineticEnergy(i); 

        AVelocityc(i) = AVelocity1(i); 

        PotentialEnergyc(i) = PotentialEnergy(i); 

   

    end 

end 

  

LAcceleration1 = (AAccelerationc*pi()/180)*outlength; % Lineaer Acceleration [m/s^2] 

LVelocity1 = (AVelocityc*pi()/180)*outlength; % Linear Velocity [m/s] 

LDisplacement1 = (ADisplacementc*pi()/180)*outlength; % Linear Displacement [m] 

LVelocity1t = LVelocity1'; 

  

% Obtain Maximums of Kinematics 

Max_AAcceleration = max(AAccelerationc); % Maximum Angular Acceleration [deg/s^2] 

Max_AVelocity = max(AVelocityc); % Maximum Angular Velocity [deg/s] 

Max_ADisplacement = max(ADisplacementc); % Maximum Angular Displacement [deg] 

  

Max_LAcceleration = max(LAcceleration1); % Maximum Linear Acceleration [m/s^2] 

Max_LVelocity = max(LVelocity1); % Maximum Linear Velocity [m/s] 

Max_LDisplacement = max(LDisplacement1); % Maximum Linear Displacement [m] 

  

Max_ForceInput = max(Fspring); %Maximum Spring Force [J] 

Max_PotentialEnergy = max(PotentialEnergyc); %Maximum Potential Energy [J] 

Max_KineticEnergy = max(KineticEnergyc); %Maximum Kinetic Energy [J] 

rcam = (I.*AAccelerationc); 

Max_rcam = max(rcam); %Maximum Rate of Change of Angular Momentum  

Max_Vm = max(Vm); % Maximum Muslce Velocity 

  

% Display Data in Command Window 

display(MA, 'Mechanical Advantage of System:') 

display(Max_LVelocity, 'Maximum Linear Velocity:') 

display(Max_ADisplacement, 'Maximum Angular Displacement:') 

display(Max_ForceInput, 'Maximum Input Force:') 

% display(Max_KineticEnergy, 'Maximum Output Rate of Change of Angular Momentum:') 

display(Max_rcam, 'Maximum Rate of Change of Angular Momentum:') 

display(Max_Vm, 'Maximum Muslce Velocity:') 

  

figure (1) 

subplot(4,1,1) % Angular Displacement during Kick 

plot(tout, ADisplacement1) 

title ('Angular Displacement vs Time') 

xlabel('Times(s)') 

ylabel('Angular Displacement (deg/s)') 

  

subplot(4,1,2) 

plot(tout, Vm) %Muscle Velocity 

title('Muscle Velocity vs. Time') 

xlabel('Time(s)') 

ylabel('Muscle Velocity (m/s)') 

  

subplot(4,1,3) 

plot(tout, Force)% Force Output of Muscle 

title('Force Output vs. Time') 

xlabel('Time(s)') 

ylabel('Muscle Force Applied (N)') 

  

subplot(4,1,4) 
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plot(Fdamper1, Vm) % Force of Damping in Relation to Muscle Velocity 

title('Muscle Velocity vs. Damping Force') 

xlabel('Damping Force (N)') 

ylabel('Muscle Force (N)')) 

  

figure(2) 

plot(tout, Fspring) % Force of the Spring during Kick 

  

figure (3) 

plot(tout, Fdamper1)% Damping Force during Kick 

Fdamper1 

  

figure (4) 

plot(tout, PotentialEnergy) % Potential Energy during Kick 
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Appendix E: Case 4 - Spring – Damper Muscle Force with 

Consideration of Gravity Simulation Documents 

Case 4 Simulink Block Diagram 

 

Case 4 MATLAB Code 
%% Case 5: Spring-Damper Muscle with Gravity and Reaction Force 

% Created by: Jenna Hopkins 

 close all 

clear all 

clc 

  

k = .3e3; %N/m 

inlength = (7.6e-4)+((7.6e-4)*0);%m 

sstretch = (1.5e-3)-(7.6e-4); %m 

L = sstretch;%m 

m = 80e-6; %kg 

theta0 = 6*(pi()/180);%rad 

lleg = 30e-3; %m 

I = (m/3)*((lleg/2)^2); %kg-m^2 

outlength = 1.73e-2;%m 

c =0.5;% Damping Coefficient 

g = -9.8; %m/s^2 

  

MA = inlength/outlength;  %Mechanical Advantage 

  

  

sim('WeightDistribution') 

% Output of Simulink Data with ODE45 

AAcceleration1 = AAcceleration*(180/pi()); % Angular Acceleration [deg/s^2] 

AVelocity1 = AVelocity*(180/pi()); % Angular Velocity [deg/s] 

ADisplacement1 = ADisplacement*(180/pi()); % Angular Displacement [deg] 

  

% Correcting Simulation Output 

j = size(ADisplacement1); 

  

for i = 1:j 

    if ADisplacement1(i) < 180 %Correction to get data points before 180 degrees 

        ADisplacementc(i) = ADisplacement1(i); 

        AAccelerationc(i) = AAcceleration1(i); 

        KineticEnergyc(i) = KineticEnergy(i); 

        AVelocityc(i) = AVelocity1(i); 
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        PotentialEnergyc(i) = PotentialEnergy(i); 

   

    end 

end 

  

LAcceleration1 = (AAccelerationc*pi()/180)*outlength; % Lineaer Acceleration [m/s^2] 

LVelocity1 = (AVelocityc*pi()/180)*outlength; % Linear Velocity [m/s] 

LDisplacement1 = (ADisplacementc*pi()/180)*outlength; % Linear Displacement [m] 

LVelocity1t = LVelocity1'; 

  

% Obtain Maximums of Kinematics 

Max_AAcceleration = max(AAccelerationc); % Maximum Angular Acceleration [deg/s^2] 

Max_AVelocity = max(AVelocityc); % Maximum Angular Velocity [deg/s] 

Max_ADisplacement = max(ADisplacementc); % Maximum Angular Displacement [deg] 

  

Max_LAcceleration = max(LAcceleration1); % Maximum Linear Acceleration [m/s^2] 

Max_LVelocity = max(LVelocity1); % Maximum Linear Velocity [m/s] 

Max_LDisplacement = max(LDisplacement1); % Maximum Linear Displacement [m] 

  

Max_ForceInput = max(Fspring); %Maximum Spring Force [J] 

Max_PotentialEnergy = max(PotentialEnergyc); %Maximum Potential Energy [J] 

Max_KineticEnergy = max(KineticEnergyc); %Maximum Kinetic Energy [J] 

rcam = (I.*AAccelerationc); 

Max_rcam = max(rcam); %Maximum Rate of Change of Angular Momentum  

Max_Vm = max(Vm); % Maximum Muslce Velocity 

  

% Display Data in Command Window 

display(MA, 'Mechanical Advantage of System:') 

display(Max_LVelocity, 'Maximum Linear Velocity:') 

display(Max_ADisplacement, 'Maximum Angular Displacement:') 

display(Max_ForceInput, 'Maximum Input Force:') 

% display(Max_KineticEnergy, 'Maximum Output Rate of Change of Angular Momentum:') 

display(Max_rcam, 'Maximum Rate of Change of Angular Momentum:') 

display(Max_Vm, 'Maximum Muslce Velocity:') 

  

figure (1) 

subplot(4,1,1)% Angular Displacment during Kick 

plot(tout, ADisplacement1)  

title ('Angular Displacement vs Time') 

xlabel('Time(s)') 

ylabel('Angular Displacement (deg/s)') 

  

subplot(4,1,2) 

plot(tout, Vm)% Muscle Velocity during Kick 

title('Velocity vs. Time') 

xlabel('Time(s)') 

ylabel('Muslce Velocity (m/s)') 

  

subplot(4,1,3) 

plot(tout, Force) % Force of Muscle during Kick 

title('Force Output vs. Time') 

xlabel('Time(s)') 

ylabel('Muscle Force Applied during Leg Kick (N)') 

  

subplot(4,1,4) 

plot(Fdamper1, Vm) % Muscle Velocity vs. Damping Force 

  

figure(2) % Potential Energy during Kick 

plot(tout, PotentialEnergy) 

 figure (3) % Spring Force during Kick 

plot(tout, Fspring) 

 figure (4) % Force of Damper during Kick 

plot(tout, Fdamper1)  
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Appendix F - Case 5 - Spring – Damper Muscle Force with 

Consideration of Gravity and Reaction Force Simulation Documents 

Case 5 Simulink Block Diagram 

 

Case 5 MATLAB Code 
%% Case 5: Spring-Damper Muscle with Gravity and Reactant Force 

% Created by: Jenna Hopkins  

  

close all 

clear all 

clc 

  

k = .3e3; %N/m 

inlength = (7.6e-4)+((7.6e-4)*0);%m 

sstretch = (1.5e-3)-(7.6e-4); %m 

L = sstretch;%m 

m = 80e-6; %kg 

theta0 = 6*(pi()/180);%rad 

lleg = 30e-3; %m 

I = (m/3)*((lleg/2)^2); %kg-m^2 

outlength = 1.73e-2;%m 

c =0.5; %Coefficient of Damping 

g = -9.8; %m/s^2 

  

MA = inlength/outlength;  % Mechanical Advantage 

  

  

sim('ReactantForce') 

% Output of Simulink Data with ODE45 

AAcceleration1 = AAcceleration*(180/pi()); % Angular Acceleration [deg/s^2] 

AVelocity1 = AVelocity*(180/pi()); % Angular Velocity [deg/s] 

ADisplacement1 = ADisplacement*(180/pi()); % Angular Displacement [deg] 

  

% Correcting Simulation Output 

j = size(ADisplacement1); 

  

for i = 1:j 
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    if ADisplacement1(i) < 180 % Correction to stop data collection to before 180 

degrees 

        ADisplacementc(i) = ADisplacement1(i); 

        AAccelerationc(i) = AAcceleration1(i); 

        KineticEnergyc(i) = KineticEnergy(i); 

        AVelocityc(i) = AVelocity1(i); 

        PotentialEnergyc(i) = PotentialEnergy(i); 

   

    end 

end 

  

LAcceleration1 = (AAccelerationc*pi()/180)*outlength; % Lineaer Acceleration [m/s^2] 

LVelocity1 = (AVelocityc*pi()/180)*outlength; % Linear Velocity [m/s] 

LDisplacement1 = (ADisplacementc*pi()/180)*outlength; % Linear Displacement [m] 

LVelocity1t = LVelocity1'; 

  

% Obtain Maximums of Kinematics 

Max_AAcceleration = max(AAccelerationc); % Maximum Angular Acceleration [deg/s^2] 

Max_AVelocity = max(AVelocityc); % Maximum Angular Velocity [deg/s] 

Max_ADisplacement = max(ADisplacementc); % Maximum Angular Displacement [deg] 

  

Max_LAcceleration = max(LAcceleration1); % Maximum Linear Acceleration [m/s^2] 

Max_LVelocity = max(LVelocity1); % Maximum Linear Velocity [m/s] 

Max_LDisplacement = max(LDisplacement1); % Maximum Linear Displacement [m] 

  

Max_ForceInput = max(Fspring); %Maximum Spring Force [J] 

Max_PotentialEnergy = max(PotentialEnergyc); %Maximum Potential Energy [J] 

Max_KineticEnergy = max(KineticEnergyc); %Maximum Kinetic Energy [J] 

rcam = (I.*AAccelerationc); 

Max_rcam = max(rcam); %Maximum Rate of Change of Angular Momentum  

Max_Vm = max(Vm); % Maximum Muslce Velocity 

  

% Display Data in Command Window 

display(MA, 'Mechanical Advantage of System:') 

display(Max_LVelocity, 'Maximum Linear Velocity:') 

display(Max_ADisplacement, 'Maximum Angular Displacement:') 

display(Max_ForceInput, 'Maximum Input Force:') 

% display(Max_KineticEnergy, 'Maximum Output Rate of Change of Angular Momentum:') 

display(Max_rcam, 'Maximum Rate of Change of Angular Momentum:') 

display(Max_Vm, 'Maximum Muslce Velocity:') 

  

  

% figure (1) 

% subplot(4,1,1) 

% plot(tout, ADisplacement1) 

% title ('Angular Displacement vs Time') 

% xlabel('Time(s)') 

% ylabel('Angular Displacement (deg/s)') 

%  

% subplot(4,1,2) 

% plot(tout, Vm) 

% title('Velocity vs. Time') 

% xlabel('Time(s)') 

% ylabel('Muslce Velocity (m/s)') 

%  

% subplot(4,1,3) 

% plot(tout, Force) 

% title('Force Output vs. Time') 

% xlabel('Time(s)') 

% ylabel('Muscle Force Applied during Leg Kick (N)') 

%  

% subplot(4,1,4) 

% plot(Fdamper1, Vm) 
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% title('Muscle Velocity vs. Damping Force') 

% xlabel('Damping Force (N)') 

% ylabel('Muscle Velocity (m/s)') 

  

% figure(2) 

% plot(tout, PotentialEnergy) 

%  

% figure (3) 

% plot(tout, Fspring) 

% figure (4) 

% plot(tout, Fdamper1) 

% Fdamper1 
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Appendix G: Case 6 - Spring – Damper Muscle Force with 

Consideration of Gravity and Drag Force Simulation Documents 

Case 6 Simulink Block Diagram 

 

Case 6 MATLAB Code 
%% Case 6: Spring-Damper Muscle Force with Consideration Gravity and Drag Force 

close all 

clear all 

clc 

  

k = .3e3; %N/m 

inlength = (7.6e-4)+((7.6e-4)*0);%m 

sstretch = (1.5e-3)-(7.6e-4); %m 

L = sstretch;%m 

m = 80e-6; %kg 

theta0 = 6*(pi()/180);%rad 

lleg = 30e-3;%m 

I = (m/3)*((lleg/2)^2);%kg-m^2 

outlength = 1.73e-2;%m 

c =0.5;% Coefficient of Drag 

g = -9.8; %m/s^2 

Cd = 1.28; %assuming flat plate NASA determination 

rho = 1261.08; %kg/m^3 which is varied based on % glycerine solution at 20C (Room 

Temp) 

A = 2*inlength*outlength;  % Projected Area of lower leg geometry. 

  

MA = inlength/outlength;  % Mechanical Advantage 

  

  

sim('ViscousDrag') 

% Output of Simulink Data with ODE45 

AAcceleration1 = AAcceleration*(180/pi()); % Angular Acceleration [deg/s^2] 

AVelocity1 = AVelocity*(180/pi()); % Angular Velocity [deg/s] 

ADisplacement1 = ADisplacement*(180/pi()); % Angular Displacement [deg] 

  

% Correcting Simulation Output 

j = size(ADisplacement1); 
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for i = 1:j 

    if ADisplacement1(i) < 180 %Correction to obtain data prior to 180 degrees 

        ADisplacementc(i) = ADisplacement1(i); 

        AAccelerationc(i) = AAcceleration1(i); 

        KineticEnergyc(i) = KineticEnergy(i); 

        AVelocityc(i) = AVelocity1(i); 

        PotentialEnergyc(i) = PotentialEnergy(i); 

   

    end 

end 

  

LAcceleration1 = (AAccelerationc*pi()/180)*outlength; % Lineaer Acceleration [m/s^2] 

LVelocity1 = (AVelocityc*pi()/180)*outlength; % Linear Velocity [m/s] 

LDisplacement1 = (ADisplacementc*pi()/180)*outlength; % Linear Displacement [m] 

LVelocity1t = LVelocity1'; 

  

% Obtain Maximums of Kinematics 

Max_AAcceleration = max(AAccelerationc); % Maximum Angular Acceleration [deg/s^2] 

Max_AVelocity = max(AVelocityc); % Maximum Angular Velocity [deg/s] 

Max_ADisplacement = max(ADisplacementc); % Maximum Angular Displacement [deg] 

  

Max_LAcceleration = max(LAcceleration1); % Maximum Linear Acceleration [m/s^2] 

Max_LVelocity = max(LVelocity1); % Maximum Linear Velocity [m/s] 

Max_LDisplacement = max(LDisplacement1); % Maximum Linear Displacement [m] 

  

Max_ForceInput = max(Fspring); %Maximum Spring Force [J] 

Max_PotentialEnergy = max(PotentialEnergyc); %Maximum Potential Energy [J] 

Max_KineticEnergy = max(KineticEnergyc); %Maximum Kinetic Energy [J] 

rcam = (I.*AAccelerationc); 

Max_rcam = max(rcam); %Maximum Rate of Change of Angular Momentum  

Max_Vm = max(Vm); % Maximum Muslce Velocity 

  

% Display Data in Command Window 

display(MA, 'Mechanical Advantage of System:') 

display(Max_LVelocity, 'Maximum Linear Velocity:') 

display(Max_ADisplacement, 'Maximum Angular Displacement:') 

display(Max_ForceInput, 'Maximum Input Force:') 

% display(Max_KineticEnergy, 'Maximum Output Rate of Change of Angular Momentum:') 

display(Max_rcam, 'Maximum Rate of Change of Angular Momentum:') 

display(Max_Vm, 'Maximum Muslce Velocity:') 

% figure(7) 

% plot(tout, PotentialEnergy) 

%  

% figure (8) 

% plot(tout, Fspring) 

% figure (9) 

% plot(tout, Fdamper1) 

% Fdamper1 

  

figure (1) 

subplot(4,1,1) 

plot(tout, ADisplacement1) 

title ('Angular Displacement vs Time') 

xlabel('Time(s)') 

ylabel('Angular Displacement (deg/s)') 

  

subplot(4,1,2) 

plot(tout, Vm) 

title('Velocity vs. Time') 

xlabel('Time(s)') 

ylabel('Muslce Velocity (m/s)') 
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subplot(4,1,3) 

plot(tout, Force) 

title('Force Output vs. Time') 

xlabel('Time(s)') 

ylabel('Muscle Force Applied during Leg Kick (N)') 

  

subplot(4,1,4) 

plot(Fdamper1, Vm) 

title('Muscle Velocity vs. Damping Force') 

xlabel('Damping Force (N)') 

ylabel('Muscle Velocity (m/s)') 

  

figure (2) 

plot(Force, Vm) 



101 
 

Appendix H: Experimental Data Post-Processing MatLab Code for 

Force, Inertial, and Viscous Loading 
 

%% Experimental Data Processing: Minimal Damping Trial 2 - Force Loading 

% Created by: Jenna Hopkins 

  

close all 

clear all 

clc 

format compact 

  

%%Read Spreadsheet in Matlab 

  

% 500g Spreadsheet (One Load) 

One = xlsread('Force Scenario (Minimal Damping 3.xlsx', 10); 

t1 = One(:,1); 

v1 = One(:,2); 

iterationsperstep = 40; 

coeff4stepMA = ones(1, iterationsperstep)/iterationsperstep; 

averagevel1 = filter(coeff4stepMA, 1, v1); 

fDelay1 = (length(coeff4stepMA)-1)/2; 

figure(1) 

plot(t1, v1,t1-fDelay1/85, averagevel1) 

ylabel('Contractile Velocity (m/s)') 

xlabel('Time (s)') 

title('Contractile Velocity of "Muscle" with 500g Load') 

legend('Raw Data for 500g Load', 'Moving Average Filtered Data') 

  

% 1000g Spreadsheet (One Load) 

One = xlsread('Force Scenario (Minimal Damping 3.xlsx', 10); 

t2 = One(:,3); 

v2 = One(:,4); 

iterationsperstep = 40; 

coeff4stepMA = ones(1, iterationsperstep)/iterationsperstep; 

averagevel2 = filter(coeff4stepMA, 1, v2); 

fDelay2 = (length(coeff4stepMA)-1)/2; 

figure(2) 

plot(t2, v2,t2-fDelay2/85, averagevel2) 

ylabel('Contractile Velocity (m/s)') 

xlabel('Time (s)') 

title('Contractile Velocity of "Muscle" with 1000g Load') 

legend('Raw Data for 1000g Load', 'Moving Average Filtered Data') 

  

% 1500g Spreadsheet (One Load) 

One = xlsread('Force Scenario (Minimal Damping 3.xlsx', 10); 

t3 = One(:,5); 

v3 = One(:,6); 

iterationsperstep = 40; 

coeff4stepMA = ones(1, iterationsperstep)/iterationsperstep; 

averagevel3 = filter(coeff4stepMA, 1, v3); 

fDelay3 = (length(coeff4stepMA)-1)/2; 

figure(3) 

plot(t3, v3,t3-fDelay3/85, averagevel3) 

ylabel('Contractile Velocity (m/s)') 

xlabel('Time (s)') 

title('Contractile Velocity of "Muscle" with 1500g Load') 

legend('Raw Data for 1500g Load', 'Moving Average Filtered Data') 
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% 2000g Spreadsheet (One Load) 

One = xlsread('Force Scenario (Minimal Damping 3.xlsx', 10); 

t4 = One(:,7); 

v4 = One(:,8); 

iterationsperstep = 40; 

coeff4stepMA = ones(1, iterationsperstep)/iterationsperstep; 

averagevel4 = filter(coeff4stepMA, 1, v4); 

fDelay4 = (length(coeff4stepMA)-1)/2; 

figure(4) 

plot(t4, v4,t4-fDelay4/85, averagevel4) 

ylabel('Contractile Velocity (m/s)') 

xlabel('Time (s)') 

title('Contractile Velocity of "Muscle" with 2000g Load') 

legend('Raw Data for 2000g Load', 'Moving Average Filtered Data') 

  

% 2500g Spreadsheet (One Load) 

One = xlsread('Force Scenario (Minimal Damping 3.xlsx', 10); 

t5 = One(:,9); 

v5 = One(:,10); 

iterationsperstep = 40; 

coeff4stepMA = ones(1, iterationsperstep)/iterationsperstep; 

averagevel5 = filter(coeff4stepMA, 1, v5); 

fDelay5 = (length(coeff4stepMA)-1)/2; 

figure(5) 

plot(t5, v5,t5-fDelay5/85, averagevel5) 

ylabel('Contractile Velocity (m/s)') 

xlabel('Time (s)') 

title('Contractile Velocity of "Muscle" with 2500g Load') 

legend('Raw Data for 2500g Load', 'Moving Average Filtered Data') 

  

% 3000g Spreadsheet (One Load) 

One = xlsread('Force Scenario (Minimal Damping 3.xlsx', 10); 

t6 = One(:,11); 

v6 = One(:,12); 

iterationsperstep = 40; 

coeff4stepMA = ones(1, iterationsperstep)/iterationsperstep; 

averagevel6 = filter(coeff4stepMA, 1, v6); 

fDelay6 = (length(coeff4stepMA)-1)/2; 

figure(6) 

plot(t6, v6,t6-fDelay6/85, averagevel6) 

ylabel('Contractile Velocity (m/s)') 

xlabel('Time (s)') 

title('Contractile Velocity of "Muscle" with 3000g Load') 

legend('Raw Data for 3000g Load', 'Moving Average Filtered Data') 

  

% 3500g Spreadsheet (One Load) 

One = xlsread('Force Scenario (Minimal Damping 3.xlsx', 10); 

t7 = One(:,13); 

v7 = One(:,14); 

iterationsperstep = 40; 

coeff4stepMA = ones(1, iterationsperstep)/iterationsperstep; 

averagevel7 = filter(coeff4stepMA, 1, v7); 

fDelay7 = (length(coeff4stepMA)-1)/2; 

figure(7) 

plot(t7, v7,t7-fDelay7/85, averagevel7) 

ylabel('Contractile Velocity (m/s)') 

xlabel('Time (s)') 

title('Contractile Velocity of "Muscle" with 3500g Load') 

legend('Raw Data for 3500g Load', 'Moving Average Filtered Data') 

  

% 4000g Spreadsheet (One Load) 

One = xlsread('Force Scenario (Minimal Damping 3.xlsx', 10); 
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t8 = One(:,15); 

v8 = One(:,16); 

iterationsperstep = 40; 

coeff4stepMA = ones(1, iterationsperstep)/iterationsperstep; 

averagevel8 = filter(coeff4stepMA, 1, v8); 

fDelay8 = (length(coeff4stepMA)-1)/2; 

figure(8) 

plot(t8, v8,t8-fDelay8/85, averagevel8) 

ylabel('Contractile Velocity (m/s)') 

xlabel('Time (s)') 

title('Contractile Velocity of "Muscle" with 4000g Load') 

legend('Raw Data for 4000g Load', 'Moving Average Filtered Data') 
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