
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

11-2016 

Detection in Aerial Images Using Spatial Transformer Networks Detection in Aerial Images Using Spatial Transformer Networks 

Daniel Chianucci 
ddc1284@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Chianucci, Daniel, "Detection in Aerial Images Using Spatial Transformer Networks" (2016). Thesis. 
Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9287?utm_source=repository.rit.edu%2Ftheses%2F9287&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


 

 

 

 

 

 

 

 

 

 

 

Detection in Aerial Images Using Spatial 
Transformer Networks 

 
 
 
 
 
 
 
 

DANIEL CHIANUCCI 



 

 

Detection in Aerial Images Using Spatial 
Transformer Networks 

DANIEL CHIANUCCI 

November 2016 

 

 

 
A Thesis Submitted 

In Partial Fulfillment 
Of the Requirement for the Degree of 

Master of Science  
In  

Computer Engineering 
 

 
 
 
 
 
 

 
 

 

 

Department of Computer Engineering 

 



 

i 

 

Detection in Aerial Images Using Spatial 
Transformer Networks 

 

DANIEL CHIANUCCI 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Committee Approval: 

 

 

_____________________________________________Date:______________ 

Dr. Andreas Savakis 

Primary Advisor – R.I.T. Dept. of Computer Engineering 

 

 

 

_____________________________________________Date:______________ 

Dr. John Kerekes 

Committee Member – R.I.T. Center for Imaging Science 

 

 

 

_____________________________________________Date:______________ 

Dr. Dhireesha Kudithipudi 

Committee Member – R.I.T. Dept. of Computer Engineering 

  



 

ii 

 

Dedication 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I would like to dedicate this thesis to my family and friends who helped me get to the 

point where I am today.   
 
 
 
 



 

iii 

 

Acknowledgments 

 

 

 

 

I would like to thank my advisor Dr. Savakis, for his advice and guidance during the 

development and experimentation of this thesis.  I also would like to thank my committee 

members Dr. Kerekes and Dr. Kudithipudi.  Finally I like to thank my peers in the 

Computer Vision Lab Peter Muller, Bret Minnehan, and Sriram Kumar who provided 

both insight and entertainment during the long hours at the lab. 

  



 

iv 

 

Abstract 

Many tasks in the field of computer vision rely on an underlying change detection 

algorithm in images or video sequences. Although much research has focused on change 

detection in consumer images, there is little work related to change detection on aerial 

imagery, where individual images are recorded from aerial platforms over time. 

This thesis presents two deep learning approaches for detection in aerial images.  Both 

systems leverage Spatial Transformer Networks (STN) that identify the coordinate 

transformation for their localization capabilities.  The first approach is based on a semi-

supervised approach which learns to locate changes within a difference image.  The 

second is a fully-supervised approach which learns to locate and discriminate relevant 

targets.  The supervised approach is shown to locate nearly 78% of positive samples with 

an Intersection Over Union (IOU) criterion of over 0.5, and nearly 94% of positive 

samples with an IOU over 0.3.   
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 Introduction Chapter 1.

Change detection, as the name suggests, is the task of finding differences between a set of 

images or across video frames.  Many tasks in the field of computer vision rely on an 

effective underlying change detection algorithm.  For instance, motion detection and 

object tracking rely on a change detection algorithm to determine where to focus 

attention.  Surveillance systems such as Closed-circuit Television (CCTV), and 

Unmanned Aerial Systems (UAS) generate huge amounts of data.  Without automated 

change detection, the task of analyzing each image frame would become unmanageable. 

Although change detection seems like a simple challenge, an algorithm can be easily 

confused by many sources of background noise.  Illumination differences, camera 

movement, animated backgrounds, and even compression artifacts can all affect an 

algorithms performance.  Simple methods, such as difference thresholding can be used 

[1]; however such methods generally perform poorly in all but the most ideal scenarios.  

In order to robustly detect changes in real world images, more advanced methods must be 

employed. 

 Motivation 1.1

Exploitation of aerial images, especially Wide Area Motion Imagery (WAMI) is 

important for military applications, as can be seen by the number of related challenges set 

by the United States Air Force Research Labs (AFRL) [2].  In fact, the AFRL listed Wide 

Area Coverage as an integral aspect of its Intelligence, surveillance and reconnaissance 
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doctrine [3].  With the changing nature of interactions between adversaries, it is 

important that armed and security forces are able to keep an eye on large theaters, while 

at the same time having the ability to focus on smaller areas of interest. 

Many studies have focused on finding a robust algorithm for change detection in 

consumer imagery. Benchmark datasets and leaderboards such as ChangeDetection.net 

(CDNET) [2] ease the process of creating and evaluating new algorithms, and also help 

immensely with making comparisons to other’s results.  However, these benchmarks and 

datasets aren’t applicable to wide area coverage.  While current datasets focus on high 

resolution images where the main topic is the target in question, wide area motion images 

are very low resolution, and interesting objects fill only a minute portion of the scene. 

Wide Area generally means that the images cover an area greater than 50 square miles 

and so it is infeasible for a human analyst to reliably extract the needed information from 

a stream of such images.  Given the sheer size of WAMI images, the number of pixels is 

unmanageable for algorithms developed for consumer applications.  This fact has led to 

the research and development of techniques adapted towards image processing in WAMI 

data.  Besides the number of pixels, such research has to deal with other challenges 

presented by WAMI data.  Small object signatures, as well as low object signal to noise 

ratios (SNRs) mean that simple detection algorithms are not sufficient. 

 Thesis Contribution 1.2

The primary contribution of this thesis is the introduction of two aerial change detection 

techniques using a spatial transformer network.  Spatial transformers are a type of neural 
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network that are able to learn how to parameterize an image transformation which is 

beneficial to a given training objective.  They have been shown to excel in fine grained 

classification tasks [4][5], but have not been used in the context of change detection or 

explicit localization.  Rather than using the spatial transformer to find an area which best 

differentiates class, it is used to learn the bounding box of a target.  

Two approaches are explored; the first is a semi-supervised change detection method 

which attempts to find an area of maximal change in a difference image.  Given that no 

explicit labels are used for training, this method is unable to determine the relevance of a 

change, and instead relies on heuristics to reject false positives.  A second fully 

supervised methodology is employed in order to allow the network to learn the structure 

of specific targets. Rather than finding changes directly from a difference image, this 

methodology requires a set of registered images and compares the predictions from each. 

Both networks are used in a sliding window based approach in order to make multiple 

detections per image. 

 Document Structure 1.3

Following this introduction chapter, Chapter 2 presents a review of previous works.  

First, an overview of the state of change detection in consumer data is given.  This field 

has a number of standardized benchmarks and datasets, and it is relatively 

straightforward to compare methodologies.  Next, an overview of change detection 

techniques for aerial images is presented.  This field of change detection is much more 

diverse than that of consumer data, and there is no standard benchmark for comparisons.  

This is followed by a section devoted to deep learning architectures and training methods.  
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Finally, the chapter concludes with an overview of Spatial Transformer Networks which 

are used extensively in this thesis. Chapter 3 provides a narrative of experimental work 

which was done prior to the final focus of change detection in aerial imagery.  These 

experiments were focused on finding a method of robust change detection in consumer 

data using autoencoder features.  When these features didn’t perform as well as expected, 

they provided valuable lessons as the focus was changed to spatial transformer networks 

and aerial imagery.  Moving forward, Chapter 4 goes into detail about the semi-

supervised aerial change detection method that was explored.  First the methodology is 

described, including the neural network architecture, the training procedure, and the post-

processing steps.  Results are presented, with an overview of the dataset, as well as 

qualitative and quantitative test outcomes. Finally, a discussion of interesting phenomena, 

shortcomings, and challenges is given.  Chapter 5 follows the same structure as Chapter 

4, but describes methods, evaluation, results and discussion for the fully supervised 

methodology.  Finally, Chapter 6 gives concluding remarks, and a statement about 

possible future works. 
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 Background Chapter 2.

Change detection is fundamental to many computer vision tasks such as tracking, medical 

diagnosis, and surveillance.  Although there have been many studies which introduce new 

and efficient methods of change detection, most are designed to work with full motion 

video taken from ground level cameras.  These sequences tend to have a very high spatial 

resolution, and so do not directly correlate with those taken from an aerial source.  

Although research for this thesis began in the field of change detection in consumer data 

sequences, it eventually transitioned to the task of finding changes between a set of two 

still images taken from an aerial vantage point.  Aerial images present a large number of 

challenges including camera motion, large shadows, and extremely small targets to name 

a few.  The data driven method of deep learning will be used to train a neural network to 

locate change targets within large aerial images.   

 Change Detection in Consumer Data 2.1

Change detection in consumer data is a well-researched topic, and as such has the benefit 

of associated standardized benchmarks and datasets. This standardization made the field 

an ideal starting point for the research in this thesis.  

A broad overview of multiple change detection algorithms is provided in [1].  The 

simplest algorithms consist of thresholding a difference image. A difference image as a 

map of pixel differences generated using a pixel-wise distance measure between two 

images.  Due to their simplicity, these types of approaches are extremely fast, however 
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they suffer from poor performance in real world images. These simple methods are 

unable to differentiate between relevant changes, such as those caused by a moving 

person, or from irrelevant changes such as those caused by a rustling tree or shadows. 

This lack of performance in real life scenarios motivated the development of more robust 

methodologies, however, without a standard dataset, these methods were difficult to 

compare.  As such, the changedetection.net (CDNET) dataset was created in order to 

simplify the process of benchmarking the latest advances in change detection [6]. 

Most approaches submitted for the CDNET dataset ranking build a background model 

which is used as a reference for change detection.  A popular model choice is to use one 

or more probability distributions to represent the likelihood that a pixel value will occur 

in an area.  However, simple distributions such as those used in Gaussian Mixture Models 

[7] and Region-based Mixture of Gaussians [8] do not perform as well as newer methods. 

The next step in improving distribution based methods was to utilize models for both 

background and foreground. Methods such as Flux Tensor with Split Gaussian Model 

(FTSG) [9] and Sharable Model [10] generate such models and take temporal, in addition 

to spatial, regions into account.  These additions place the two methods towards the top 

of the CDNET submission rankings, however higher performing methods do exist. 

The two current state of the art methodologies are Pixel-based Adaptive Word Consensus 

Segmenter (PAWCS) [11] and Self-Balanced Sensitivity Segmenter (SuBSENSE) [12].  

These methods are extremely similar in that they do away with the Gaussian models and 

replace them with a set of background frames composed of Local Binary Similarity 
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Pattern (LBSP) descriptors.  A feedback loop is used to adjust both the background 

model as well as the comparison threshold according to a stability metric attributed to 

each pixel.  Stochastic updates are incorporated to prevent the model from becoming 

stale. 

Finally, the top ranked method, termed In Unity There Is Strength or IUTIS, is an 

aggregate of other submitted methods [13].  It uses genetic programming to learn a fusion 

strategy to aggregate other methodologies’ results.  

One common aspect the majority of the approaches submitted to CDNET share is that 

they use engineered features and statistical methods.   

 

 Change Detection in Aerial Images 2.2

Due to a lack of a standardized dataset and challenges, the work done in the field of aerial 

image change detection is less focused on benchmark data.  The large number of image 

modalities, scales, and spectral characteristics makes it difficult to compare approaches.  

In addition to simple RGB images which is the dominant mode for consumer data, aerial 

data also comes in forms such as Wide Area Motion Imagery (WAMI), Synthetic 

Aperture Radar (SAR), Panchromatic, and Multispectral.  Each of these modalities comes 

with its own set of benefits and challenges which must be dealt with. That being said, this 

section presents a selection of works which directly relate to change detection in aerial 

images independent of the type of data.   
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Change detection from aerial images started in the 1960’s when Rosenfeld proposed a 

variety of correlation metrics to measure the similarity between image features [14].  

Early research into change detection came to the realization that not only do geometric 

and radiometric distortions need to be accounted for, but also that changes would need to 

be categorized to reject irrelevant variation such as those caused by clouds or shadows. 

These challenges led to the discovery of symbolic techniques, in the 1970’s and 1980’s, 

which emphasized the detection of changes based on the shapes, sizes, and radiometric 

properties contained within the images [15]–[17]. These techniques generally use a 

segmentation technique to separate the image into discrete areas, which can then be 

classified based on shape, texture, or spectral features.  In particular, [18] uses edge 

detection, and Hough line transforms to detect changes based on straight line matching.  

This approach is particularly well suited for updating urban Geographic Information 

System (GIS) data due to the often grid like city plans. 

With advancements in remote sensing technologies and the introduction of Wide Area 

Surveillance (WAS) new techniques were developed for detecting man made changes in  

in larger scenes. In [19], a man made change detection technique is described which 

involves modeling the spectral and size changes which can be expected during facility 

construction.  These changes are harder to model than naturally occurring changes due to 

the fact that they aren’t as predictable as changes observed for crops and other vegetation 

over time. 

In the early 2000’s an uptick in research involving Artificial Neural Networks (ANN) is 

seen.  However due to limitations in both computing power and neural network 
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techniques, these studies use very small neural networks consisting of only a few layers, 

each using less than 15 neuron units. In [20] Principal Component Analysis (PCA) was 

used to generate features from multispectral pixel data.  These features were then used to 

train and evaluate a three layer ANN to classify features into land use classes.  These 

predicted classes were then used to determine if a change had occurred in land use 

between two images.  Similarly, [21] uses a three layer neural network to predict an after 

image from a before image, and vice versa.  A set of heuristics is then used to determine 

if the prediction is unusual. 

Approaching the late 2000’s, a type of neural network called a Self-Organizing Feature 

Map (SOFM) began to be used.  An SOFM is a nonlinear generalization of PCA [22], 

and is used to learn a low dimensional representation of the input space in an 

unsupervised manner.  Both [23] and [24] use an SOFM network to classify areas into 

changed and not changed regions, however where the first classifies entire segments at a 

time, the second classifies individual pixels. 

A more recent method which uses an SOFM was introduced in [25].  This method detects 

changes to building structures in high resolution RGB images.  First, a histogram of 

illumination invariant features is used to train an SVM for building detection.  Then, an 

SOFM based active contour model is used for boundary extraction.  The extracted 

boundaries can then be used to compare areas between images.  

A non-machine-learning approach was introduced in  [26], which uses optical flow to 

detect changes between a set of aerial images.  This paper introduced the simulated 

Aerial Image Change Detection dataset, which is also used in this thesis.  They perform 
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optical flow on a set of registered images in order to remove changes caused by simple 

parallax effects. 

A statistical tile based methods was introduced in [27], which split an image into equally 

sized tiles and performed change detection at the tile level rather than the pixel level.  

This approach takes tiles from a set of registered images and determines a tiles change 

potential based on a set of complimentary metrics.  The difference of spectral distribution 

means, or mean-shift, is used to quantify large scale changes within a tile, while the 

greatest distance between a pixel and the distribution mean, or and outlier-distance, is 

used to quantify small scale changes.  Combining these metrics allows tiles which contain 

large or small scale changes to be detected.   

Similarly, [28] introduces a graph theoretic approach to detect tile level changes between 

two registered images.  With this approach, a weighted adjacency matrix is calculated for 

each tile, along with the Standard Deviation of Edge Weights edges (SDEL).  A metric 

coined the Normalized Edge Volume (NEV) is used to measure the spectral variability 

between two registered tiles.  Large scale changes within a tile correspond with large 

NEV values, whereas small scale changes correspond with large SDEL value.  Although 

both tile based methods were shown to work well in variety of situations, the resolution 

of the output change map is limited by the size of the tiles. 

Deep learning has been used recently to detect changes between a set of SAR images.  In 

[29], a two input deep neural network is trained to produce a change map directly.  This 

allows the network to learn relevant features, without the need for computing a difference 
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image.  This method however was only shown to work well for large change targets such 

as coastlines, and farmland fields. 

Finally, recent research by Kitware and AFRL [30], has found that change detection in 

WAMI images can be greatly enhanced by applying the differencing to a detection 

response map rather than to the raw image pixels.  By running a Histogram of Oriented 

Gradients (HOG) based vehicle detection Support Vector Machine (SVM), this paper is 

able to create a heat map of sort denoting the likelihood that a vehicle is present.  When 

two of these maps are registered and differenced, the pixels with large differences are 

taken to be potential changes.  This process significantly reduces the number of residual 

bright areas caused by illumination and parallax differences.  This method of detecting 

changes between detection maps rather than raw images was a motivation for the 

supervised detection methodology presented in this thesis. 

 Deep Learning 2.3

Deep learning is a term which encompasses neural networks containing many layers.  

These networks aim to emulate the connections in the human brain in order to learn a rich 

and robust set of features.  Deep learning approaches have been successfully used in 

many machine learning applications, especially in the area of computer vision. Many 

variants of deep networks exist, each with its own benefits and detractors.  

The basic concept of a neural network can be represented by a graph of compute nodes.  

Each node takes a set of inputs and provides a single output.  Although individually, each 

node is incapable of modelling complexity, together they are able to approximate any 
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continuous function [31].  This sounds like an end all solution; however the difficulty 

comes in training the network to perform as desired. 

Training a neural network consists of multiple steps.  First, network architecture must be 

developed, or borrowed.  Basic architectures consist of an input layer, a series of internal 

hidden layers and finally an output layer.  Each layer is generally followed by a nonlinear 

function called nonlinearity or an activation function.  Early deep neural networks 

consisted solely of dense layers which perform a dot-product of the weights and the input 

[32].  Common activation functions included sigmoid and hyperbolic tangent functions.  

However, since each neuron in a dense layer connects to each and every neuron in the 

previous layer, the number of connection weights which must be learned increases at a 

rapid pace.  This motivated the introduction of convolutional layers in 1998 which allow 

weights to be shared across spatial extents [33].  Convolutional networks have been 

shown to excel in many computer vision tasks due to their ability to preserve the 2D 

structure of an image [34]–[36].  Recently, activation functions being used have shifted 

towards Rectified Linear Units (ReLU) rather than sigmoidal forms.  These nonlinearities 

take the form of a simple max operation as seen in Figure 1, and don’t suffer from issues 

such as vanishing or exploding gradients seen in other nonlinearities.  One issue they do 

have however is that non active units contribute nothing to the gradient, and as such 

become permanently inactive.  A simple solution is to introduce a small slope for 

negative samples to make a “Leaky ReLU”. 

Once the architecture has been selected, the feature learning can begin.  A sample is fed 

to the input layer, and the connection weights are used to propagate the sample through 
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the network onto the output. An objective function such as mean square error or 

categorical crossentropy then calculates an error metric between the prediction and the 

ground truth.  This error is then passed back through the network as a series of gradients 

in a process called back propagation in order to update the weights.  

 

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1 + 𝑒−𝑥
 

 
𝑡𝑎𝑛ℎ 

 
𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 

= max (𝑚 ⋅ 𝑥, 𝑥) 
Figure 1: Activation Functions 

 

Although Neural Networks have proven to be very successful they require a large number 

of labeled samples to train. One network architecture which aims to solve this is the 

autoencoder. 

In the simplest form, an autoencoder consists of a neural network appended with its own 

inverse. The network is then trained to reconstruct the input.  In essence, an autoencoder 

is a neural network which aims to approximate the identity function.  Because the identity 

function isn’t very interesting in and of itself, constraints are imposed on the network in 

order to force it to learn interesting structures.  For instance, common constraints include 

making the middle layer much smaller than the input, or enforcing sparsity on the middle 

layer [37].  This forces the network to learn a compressed representation of the input 
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space.  As with self-organizing feature maps, autoencoders can be thought of as a 

nonlinear generalization of PCA [38].  A second approach termed a denoising 

autoencoder involves introducing noise to the input, and train the network to reproduce a 

clean output [39].  This forces the autoencoder to learn only salient features in the 

presence of noise.    

 Spatial Transformer Networks 2.4

A new class of neural networks deemed Spatial Transformer Networks (STN) has 

recently been introduced [4]. As the name suggests, these networks learn to parameterize 

a spatial transformation on an image or feature map in order to focus on pertinent areas.   

The main building block of a spatial transformer network is the Spatial Transformer 

layer.  This specialized layer does not contain any weights, and as such does not learn on 

its own.  Rather it applies a differentiable transformation given by a parameterized input 

onto an input feature map.  Because the transformation is differentiable, gradients are 

able to flow through this layer during backpropagation in order to update the weights of 

both the transformation parameter input, as well as the feature map input.  If the 

transformation parameters are provided by a neural network, as intended, then the 

backpropagation allows the transformation to be learned. 

Although the transformation may take any form as long as it remains differentiable, the 

authors focus on pointwise affine transformations, given by the form shown in (1), where 

(𝑥𝑖, 𝑦𝑖) is a normalized coordinate on the input space, (𝑥𝑖
𝑡, 𝑦𝑖

𝑡) is a normailized coordinate 

on the output space, and 𝑇𝜃 is an affine transformation matrix. 
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[
𝑥𝑖

𝑦𝑖
] = 𝑇𝜃 (

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1

) = [
𝜃11 𝜃12 𝜃13

𝜃21 𝜃22 𝜃23
] (

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1

) 

 

(1) 

 

By applying such a transformation to a regular grid 𝐺 = {(𝑥𝑖
𝑡, 𝑦𝑖

𝑡)}, consisting of all 

target pixel coordinates, an output feature map consisting of input space sampling points 

is generated.  The input image is then sampled and interpolated using the generated 

points, resulting in a transformed image as shown in Figure 2. 

 

Figure 2: Application of a Spatial Transformer Sampling Grid 

 

Each coordinate (𝑥𝑖, 𝑦𝑖) generated by the sampling grid represents the location in the 

source image, U, where a sampling kernel is applied to get the pixel value for the output, 

V.  A bilinear sampling kernel is shown in (2), where 𝑉𝑖
𝑐 is the output value for pixel 𝑖 on 

V 

U 

 

𝑇𝜃(𝐺)  
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channel 𝑐.  Similarly, 𝑈𝑛𝑚
𝑐  denotes the input pixel at coordinate (𝑛, 𝑚).  The two 𝑚𝑎𝑥 

functions determine the relative weight for each pixel to obtain the bilinear interpolation. 

𝑉𝑖
𝑐 = ∑ ∑ 𝑈𝑛𝑚

𝑐 ⋅ max(0,1 − |𝑥𝑖 − 𝑚|) ⋅

𝑊

𝑚

𝐻

𝑛

max(0,1 − |𝑦𝑖 − 𝑛|) ∀𝑖∀𝑐 

 

(2) 

 

For back propagation to occur, partial derivatives must be calculated.  For the bilinear 

kernel shown in (2), the partial derivatives can be calculated as follows. 

𝛿𝑉𝑖
𝑐

𝛿𝑈𝑛𝑚
𝑐 = ∑ ∑ max(0,1 − |𝑥𝑖 − 𝑚|) ⋅

𝑊

𝑚

𝐻

𝑛

max(0,1 − |𝑦𝑖 − 𝑛|) 

 

(3) 

 

𝛿𝑉𝑖
𝑐

𝛿𝑥𝑖
= ∑ ∑ 𝑈𝑛𝑚

𝑐 ⋅ max(0,1 − |𝑦𝑖 − 𝑛|)

𝑊

𝑚

𝐻

𝑛

⋅ 𝑠𝑖𝑔𝑛(max(0,1 − |𝑥𝑖 − 𝑚|)) 

 

(4) 

 

The partial derivative shown in (3), allows gradients to flow backwards from the output 

to the input feature map.  The derivative shown in (4) on the other hand allows the 

gradients to flow from the output to the sampling coordinates, and in turn the 

transformation parameters and localization network.  Note that the partial derivative with 

respect to 𝑦𝑖 follows a similar equation to (4). 

Spatial transformer networks have been shown to perform extremely well in 

classification tasks [4], [5].  In these tasks the localization portion of the STN will 

inherently learn to focus onto the portion of the feature map which is best able to 

discriminate between classes. The ability to learn the size and shape of the important 

image regions would seem to be a perfect fit for the task of changed target detection; 

however few if any works have studied this.  
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With that being said, this thesis proposes a new method to train an STN in order to 

parameterize the bounding box of changed targets within aerial images.  First, a semi-

supervised approach to finding changes within a difference image is presented.  This 

method receives no information on the structure of relevant targets during training.  In 

order to better predict only relevant targets, a supervised approach is also introduced.  

This method integrates a detection network with the semi-supervised architecture which 

allows structure to be learned.  
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 Preliminary Experiments Chapter 3.

Although this thesis eventually settled on change detection in aerial images, the initial 

experiments that were run were more geared towards detecting changes in full motion 

consumer videos.  This section serves as a narrative of the process that was followed in 

order to end at the new focus. 

The desired approach was leveraging deep learning features.  Because learned features 

are robust to various sources of noise, it follows that they would excel in tasks, such as 

change detection, where environmental noise is expected.  However, because real world 

change detection scenarios don’t have human labelled ground truths, deep learning is 

severely limited.  This presents an opportunity for unsupervised learning with 

autoencoders. 

 Difference of Reconstructions 3.1

The first approach considered was to train an autoencoder, and use its reconstructions to 

generate a difference image.  The thought was that since autoencoders tend to retain only 

major aspects of an input, differencing the reconstruction rather than the original images 

would result in a difference image with only major changes. In the case of change 

detection, where one does not need nor want to detect inconsequential changes, this loss 

of small details could be a benefit.   

Multiple models of autoencoder were tested by trial and error.  The final model consisted 

of three convolution layers using ReLU nonlinearities each followed by a 2x2 max 
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pooling layer.  The first convolutional layer consisted of 32 7x7 filters, the second was 16 

5x5 filters, and the final convolution was 16 3x3 filters.  The decoder portion of the 

network was a linear inverse of the encoder described. 

A deep convolutional autoencoder model was trained on 32x32 patches from the CDNET 

video sequences.  The training objective was set to minimize the mean square error 

between the input and output images, the reconstructions still contained remnants of the 

inconsequential changes.  If the network was instead trained to reconstruct a clean 

background, defined as the pixel wise median of the previous temporal window, the 

network would simply overfit.  The bias of the final layer learned to emulate the mean of 

the entire sequence, while the weights stop contributing to the output.  If the bias was 

then constrained, the network simply reverts to modeling the input image including 

irrelevant changes. 

 Difference of Encodings 3.2

It was then hypothesized that if the difference was taken at the feature level, then the 

resulting encoding would decode back into a clean difference image similar to what is 

seen in Figure 3. First an autoencoder was trained using the same method as the 

“Difference of Reconstructions” autoencoder described above.  The encoder and decoder 

portions were then split apart.  A changed image and a clean image were fed through the 

encoder portion to generate two encodings represented as h and h’.  A function, F, is 

applied to h and h’ which generates a third encoding.  This third encoding is sent through 

the decoder to generate a full sized difference image. 
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Encoder

Decoder

Encoder

= F F(h,h�)

h

h�

 

Figure 3: Autoencoder Difference of Encodings.   

Both clean and changed images are fed through the encoder portion of the autoencoder.  A function F 

is applied to the hidden representations h and h’.  The result is decoded using the decoder portion of 

the network, thus resulting in a difference image 

 

Because the encoded features are an abstract representation, there is no established 

method to compare two encodings. Therefore, in an attempt to generate a clean difference 

image, both the difference and absolute difference were tested. However, the resulting 

reconstructions tended to be blurry and contain bright halos.  These reconstructions were 

thresholded and cleaned using morphological operations; however evaluation proved that 

similar results could be obtained by simply applying the same morphological operations 

to a standard difference image.   This finding ultimately led to seeking alternate 

approaches. 
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 Temporal Feedback 3.3

Image 
Representation

Change Mask

Classification 
Stability

Update Rate

Distance 
Threshold

Background 
Model

 

Figure 4: Temporal Feedback Mechanism.   

At each time step the autoencoder hidden representation of an image is input, and a change mask is 

output.  A stability metric is used to update the distance thresholds, and background update rate.  

 

Autoencoder features were next considered in a different setting.  Looking into the 

feedback based approaches of SuBSENSE and PAWCS [11], [12], it can be seen that the 

results are dependent on the robustness of the underlying features being used.  A similar 

feedback mechanism shown in Figure 4 was developed to test the feasibility of 

autoencoder features in comparison to the LBSP features used in [11]  and  [12]. 

Although autoencoder features showed promise in theory, in practice they did not work 

as well as expected.  The LBSP features and feedback used by PAWCS and SuBSENSE 

produced cleaner results, and were much less computationally expensive.  Where LBSP 

descriptors can be calculated using simple comparison operations, autoencoder features 

employ the use of multiple convolutions. After the features are computed, LBSP 
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descriptors are still more efficient in the fact that distance comparison requires only XOR 

operations, whereas floating point math is required with autoencoder features. 

Because of the computational load accompanying autoencoder features, even if detection 

performance was on par with the state of the art, the low computational efficiency would 

rule them undesirable for this application.  Although there were high expectations for the 

use of autoencoders in change detection, they tended to not perform as well as desired.  

For this reason, the focus was altered towards using spatial transformers and aerial 

images. 
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 Semi-Supervised Approach Chapter 4.

In this chapter a semi-supervised approach to change detection in aerial images is 

introduced.  This method aims to find unstructured changes between two images.  This is 

accomplished using a Spatial Transformer, which is trained to find an area of maximal 

change in a difference image. 

 Methodology 4.1

A Spatial Transformer Network was utilized to localize changes transforming its input 

image so the output viewport contained maximal change.  In this case, maximum change 

is defined as maximum Euclidean distance between the original and changed images.  

The assumption that significant changes will result in bright areas in the difference image 

was made, however this heuristic doesn’t hold in all cases.  It is additionally expected 

that a system trained using this methodology will only work correctly on images which 

are taken from similar sensors and altitudes. 

The trained network is used with a sliding window based approach in order to detect 

multiple changes in a single image.  A heuristic based approach is used for post 

processing in order to reject false positives and merge similar predictions. 

 Network Architecture 4.1.1

Since change is defined as maximum Euclidean distance between input samples, it is 

natural for the Network to work on a difference image directly. This difference image is 
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generated by taking the pixel-wise Euclidean distance between the clean and changed 

RGB images.   This results in a greyscale image in which significant changes tend to 

appear as structured bright patches, whereas illumination differences tend to appear as 

smooth gradients. The task of the neural network is to help distinguish which of these 

areas contain actual changes, and which are insignificant. 

 

Figure 5: Semi-supervised Network Architecture. 

 

The network architecture, displayed in Figure 5, consists of three convolution-pool layers 

followed by three dense layers and finally a spatial transformer.  From first to last, the 

convolution layers consist of 25, 64, and 128 filters respectively. All convolution layers 

use 3x3 filters, and a leaky ReLU nonlinearity, with a leakiness factor, 𝑚, of 0.01.  Each 
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is followed by a 2x2 max-pooling layer.   The final pooling layer is followed by three 

consecutive dense layers consisting of 256, 128, and 2 units respectively.  The first two 

dense layers utilize the same leaky ReLU nonlinearity, while the final dense layer, 

labeled 𝜃, parameterizes the spatial transform and as such is left linear.  Finally, the 

spatial transformer applies the 𝜃 transform to the input difference image, and outputs the 

result. 

The transformation parameter 𝜃, consists of two outputs corresponding to translation in 

the x and y directions.  The scale parameter of the affine transformation is fixed at 50%, 

which approximately matches the size of the desired targets.  For reasons conferred in the 

discussion, the fixed scale is necessary when using this methodology. 

This particular network architecture was found through trial and error by starting with a 

very small network and growing it both in width and depth until the network began to 

overfit.  At this point it was shrunk slightly to remove the overfitting.  Both 5x5 and 3x3 

filters were experimented with in the convolutional layers, as well as using a standard 

ReLU nonlinearity rather than the leaky ReLU.  The final architecture represents the best 

of the tested architectures after training. 

 Network Training 4.1.2

Training data was generated from the Aerial Image Change Detection dataset described 

below.  The 500 generated difference images were split into 80% training and 20% 

holdout sets, leaving 400 training images and 100 test images.  Positive sample patches 

were extracted from both the training and holdout sets by randomly offsetting 64x64 
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windows from the center of the desired structure. For each of the images, 10 patches were 

extracted using random offsets, resulting in 4000 positive training samples and 1000 test 

samples.   

Only positive samples are used during training in an attempt to get the network to overfit 

to the desired structures.  Although the network doesn’t receive explicit labels during 

training, the fact that only positive samples are used requires there to be an implicit label 

associated with each patch. This method is thus not fully unsupervised, and so the term 

semi-supervised is more accurate.  

The loss function is defined as the mean square error between the predicted patch, and a 

maximally changed patch, which in the case of a scaled difference image is a fully 

saturated greyscale patch.  Stochastic gradient descent with Nesterov momentum is used 

during the backpropagation pass to update the network weights. 

 Sliding Window and Post Processing 4.1.3

In order to detect multiple changes per image, a sliding window is employed. A 64x64 

window is moved across the image, and a single location prediction is generated for each 

window position.  Because the localization network is able to further narrow the location 

to a 32x32 box within a given window, it is unnecessary to visit every possible window 

location, and a strided approach was taken instead.  A sequence of post-processing filters 

was applied to the predicted locations in order to reject false positives. 
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The first filter is based on the observation that the network tends to predict a translation 

of 0 if there are no structures present.  As such, (5) shows that the first filter takes the set 

of all location predictions,𝑃, and retains only the predictions which have a maximum 

translation of at least 𝛼.  The new set of filtered predictions is labelled 𝑃𝑡.  Maximum 

translation, 𝒎(𝑃),  is defined in (6) as the maximum magnitude of the x and y axis 

translations, where  𝑇𝑥 and 𝑇𝑦 are the translation in the x and y directions.  It must be 

noted that using the 𝛼 threshold is only useful when operating the sliding window where 

it is guaranteed that at least one window will contain the object off center.  Otherwise, 

windows which happen to contain a centered object will be rejected.  

𝑃𝑡 = {𝑃(𝑖) |  𝒎(𝑃(𝑖)) ≥ 𝛼 ∀𝑖} 

 

(5) 

 

𝒎(𝑃) = 𝒎𝒂𝒙(|𝑇𝑥|, |𝑇𝑦|) (6) 

The next step is to filter out patches of flat texture which have low energy using (7).  This 

filter takes the set of translation filtered predictions, 𝑃𝑡, as described above and retains 

only those with an energy above a threshold 𝛿.  The remaining predictions are placed in 

the set labeled 𝑃𝑒.  The energy function, 𝒆(𝑃),  shown in (8) defines the energy of 

prediction 𝑃 to be the mean squared error between 𝑝 and 𝜇, where 𝑝 is the set of pixels in 

𝑃, and 𝜇 is the average value of 𝑃. As with the first filter, the I subscripts denotes the i’th 

prediction in the given set. 
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𝑃𝑒 = {𝑃𝑡(𝑖) | 𝒆(𝑃𝑡(𝑖)) ≥ 𝛿 ∀𝑖} (7) 

𝒆(𝑃) = 𝒎𝒆𝒂𝒏 ((𝑃(𝑖𝑗) − 𝜇)
2

) (8) 

The final filtering stage uses Algorithm 1 to combine predictions for which the overlap 

ratio is greater than 𝛽, and to remove any predictions for which fewer than 𝛾 original 

predictions agreed upon. The final set of predictions is taken to be the set of bounding 

boxes left over after post-processing. 

 Results 4.2

In the experimental setting, Python 3 was used as the programming language for all tasks.  

A combination of Nolearn [40], Lasagne [41], and Theano[42] API’s were used to model 

the neural network.  Theano is a tensor based computing API which allows for automatic 

differentiation, as well as GPU acceleration of tensor operations.  Lasagne is a library 

which defines many common neural network layer types in terms of Theano tensors.  

Finally, Nolearn is a wrapper around Lasagne which makes it compatible with the scikit-

learn API. 
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Algorithm 1: Merge and Overlap Filter 

 

 

Both training and testing were performed using an Intel Core i5 6200U processor in 

addition to an Nvidia GeForce 940M GPU.  The Neural Network Analysis and training 

were performed with a parallel batch size of 10 64x64 image patches.  The Sliding 

window was performed sequentially using no GPU resources.  Training the network took 

roughly 30 seconds per epoch, and took around 37 epochs to fully converge.  This results 

in just under 30 minutes hours of training with the 4000 training patches.  Running the 

analysis takes about 2 minutes 10 seconds to make predictions for the 1000 test patches.  

 Dataset 4.2.1

The Aerial Image Change Detection (AICD) dataset was used for the semi-supervised 

approach because it provides change images, as well as background images needed for 
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training [26].  This dataset consists of 100 simulated scenes each captured from 5 

viewpoints giving a total of 500 samples.  For every sample, the dataset provides the 

clean image, the image with a change, and the ground truth. Figure 6 shows an example 

for a single sample viewpoint.  Although, each scene has both shadowed and un-

shadowed variants, this experiment, only used the shadowed versions.  The small number 

of images contained in this dataset makes it very important to keep the network 

complexity in check.  With such a small dataset, too large of a network would not be able 

to fully train. 

 Localization Results 4.2.2

To characterize the localization ability of the network, all samples in the holdout set were 

passed through the network to collect predicted class and locations. Because no attempt is 

made to determine the relevancy of the predicted area, the prediction is irrelevant for 

negative samples.  However if the sample is positive, then it is desired that the predicted 

area match the target area.  Therefore, the Intersection Over Union (IOU) ratios between 

the predicted bounding box and ground truth bounding box were recorded for all positive 

samples.  The IOU is a measurement which characterizes how well two areas overlap.  

As the name suggests, it is calculated by dividing the area of the bounding boxes 

geometric intersection by the area of their geometric union.  In cases where multiple 

ground truth locations occur in a single patch only the maximum IOU was recorded. 
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As an example, Figure 7 shows a patch with multiple ground truth objects represented as 

circles; only the maximum IOU between the predicted square, and green circle is 

recorded.  The localization performance was then calculated as the average IOU over all 

positive samples, along with the percentage of prediction areas which matched the 

ground truth.  

 
(A) No Change 

 
(B) Changed 

 
(C) Difference Image 

 
(D) Ground Truth 

Figure 6: AICD Scene 94 - Viewpoint 0 With Changed Area Circled 
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Figure 7: Localization Network IOU Example - The maximum IOU is recorded between the predicted 

square and green circle 

 

The average IOU of all predictions with their respective ground truths is shown in Table 

1.  The final column shows the percentage of predictions which match the ground truth 

location with an IOU greater than the given threshold.  An IOU of 0.5 is the standard 

used in consumer image detection challenges such as the Pascal Visual Object Challenge 

[43], however in these challenges the target boxes tend to contain many thousands of 

pixels, and as such small deviations in bounding boxes don’t effect the overall IOU 

significantly.  In contrast, if a 32x32 px bounding box with an IOU of 0.5 is offset by 

only 4 pixels in both directions, then the IOU can decrease to 0.3.  As such multiple IOU 

thresholds, including 0.1, 0.3, and 0.5, are tested. 

The average IOU of 0.57 is lower than expected, but can be explained by the non-

structural learning targets.  Because the localization target is to simply find the “most 

changed” area, there is no way for it to determine which changed area it is desirable to 

find. 
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Table 1: Semi-supervised Localization Network Average IOU Results 

Match 

Threshold
Match %

0.1 99.4%

0.3 87.0%

0.5 62.1%

Avg IOU

0.57 ±0.2

 

As an example, Figure 8 shows three qualitative examples of network predictions.  In 

(A), the network has correctly identified the desired target changed area.  Note however 

that there is very little background noise.  In (B), the network has found an arbitrary 

location, but the energy threshold has determined that there is no object present.  Finally, 

(C) shows that the network has trouble with background noise which is of similar size 

and shape to the desired structure. The network has performed the given task of finding 

the significantly changed area; however in this case, the given task doesn’t match with 

what is actually desired.  Cases similar to this can be expected to decrease the average 

IOU as well as the percentage of matched predictions. 

 

 
(A) 

 
(B) 

 
(C) 

Figure 8: Qualitative Unsupervised Network Predictions - Yellow is the predicted box, blue is the ground truth 

box 

(A) The network has correctly localized the object of interest in a low noise environment 

(B) The network has correctly determined that no object of interest is present 

(C) The Network has identified an object in the wrong location due to clutter 
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 Energy Thresholding  4.2.3

In order to measure the ability of the energy function to reject false positives, a Receiver 

Operating Characteristics (ROC) curve was generated by varying the 𝛿 threshold.  This 

curve plots the true positive rate against the false positive rate in order to visualize the 

tradeoff between finding all positive samples and finding no negative samples.  Because 

only the predicted patch is seen by the energy function, the ground truth was taken to be 

whatever was present within the given predicted area, as shown in Figure 9.  Note that 

although all patches contain a ground truth object, the test result is determined solely by 

what is contained inside the predicted area.  For a predicted area to be considered as 

containing a ground truth object, it must overlap with the object with an IOU above a 

given threshold. 

 

Figure 9: Prediction Truth Scenarios – The circle is the ground truth, the square is the predicted area, the sign is 

the class prediction, and the text at the bottom indicates the test result 

 

The ROC curves shown in Figure 10 show that although the energy based relevancy 

measure isn’t ideal, it performs significantly better than random given the locations 

provided by the network.  When the network is used in the system, the translation of the 

transformation is also taken into account, which was expected to help even more.  
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In order to quantify the ROC performance as a scalar value, the Area Under the Curve 

(AUC) is calculated.  Table 2 shows a summary of the calculated AUC scores for the 

tested ground truth IOU thresholds.  With a minimum IOU of 0.5, the AUC of 0.788 

shows that there is room for improvement, however given that the relevancy measure 

does not take the target’s structure into account it is about as good as can be expected. 

 

 

Figure 10: Unsupervised Energy Based Detection ROC 

 

The Precision vs. Recall curve shown in Figure 11 was also generated for the different 

IOU thresholds.  As can be seen, the semi-supervised approach loses precision steadily as 
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recall is increased.  The mean Average Precision (mAP) for the network is listed 

alongside the AUC in Table 2.  It can be seen that the minimum IOU threshold has a 

large impact on the precision of the network due to the fact that the average IOU of the 

location predictions is close to the threshold to begin with. 

 

Figure 11: Semi-Supervised Energy-Based Detection Precision vs. Recall 

 

Table 2: Unsupervised Area Under Curve and mean Average Precision 

Min IOU AUC mAP

0.1 0.910 0.860

0.3 0.866 0.795

0.5 0.788 0.656  
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Table 3 gives the detailed truth counts for the semi-supervised network when the 

localization IOU threshold is set at 0.5.   Metrics given include False Positive Rate (FPR), 

True Positive Rate (TPR), Precision (Pr), Specificity (Sp), F-Measure, and Percent 

Wrong Classification (PWC).  See Appendix I for metric definitions. 

 

Table 3: Detailed Energy Based Detection Characteristics (min IOU=0.5) 

δ TP TN FP FN FPR TPR Pr Sp F-meas PWC

0.100 14 1379 0 607 0.00 0.02 1.00 1.00 0.04 30.4%

0.095 33 1377 2 588 0.00 0.05 0.94 1.00 0.10 29.5%

0.090 57 1373 6 564 0.00 0.09 0.90 1.00 0.17 28.5%

0.085 86 1369 10 535 0.01 0.14 0.90 0.99 0.24 27.3%

0.080 120 1365 14 501 0.01 0.19 0.90 0.99 0.32 25.8%

0.075 180 1355 24 441 0.02 0.29 0.88 0.98 0.44 23.3%

0.070 216 1344 35 405 0.03 0.35 0.86 0.97 0.50 22.0%

0.065 236 1321 58 385 0.04 0.38 0.80 0.96 0.52 22.2%

0.060 257 1267 112 364 0.08 0.41 0.70 0.92 0.52 23.8%

0.055 283 1232 147 338 0.11 0.46 0.67 0.89 0.54 24.3%

0.050 327 1220 159 294 0.12 0.53 0.67 0.88 0.59 22.7%

0.045 333 1195 184 288 0.13 0.54 0.64 0.87 0.59 23.6%

0.040 367 1162 217 254 0.16 0.59 0.63 0.84 0.61 23.6%

0.035 441 1115 264 180 0.19 0.71 0.63 0.81 0.67 22.2%

0.030 468 1038 341 153 0.25 0.75 0.58 0.75 0.65 24.7%

0.025 507 983 396 114 0.29 0.82 0.56 0.71 0.67 25.5%

0.020 559 943 436 62 0.32 0.90 0.56 0.68 0.69 24.9%

0.015 604 890 489 17 0.35 0.97 0.55 0.65 0.70 25.3%

0.010 621 795 584 0 0.42 1.00 0.52 0.58 0.68 29.2%

0.005 621 703 676 0 0.49 1.00 0.48 0.51 0.65 33.8%

0.000 621 0 1379 0 1.00 1.00 0.31 0.00 0.47 69.0%  

 System Results 4.2.4

When running the system as a whole there is an ambiguity as to what constitutes a true 

positive.  Because an overlapping window is used, multiple positive predictions may map 

to the same ground truth location, and similarly a single prediction may overlap with 
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multiple ground truth locations.  To handle this ambiguity, the Pascal Visual Object 

Challenge (VOC) method of only accepting a single prediction per ground truth is used.  

If multiple predictions match with a single ground truth, only the first is considered a true 

positive, while the rest are considered false positives.  In this case a match is defined as 

two boxes with an IOU ratio greater than 0.5.  More specifically, the truth counts are 

defined as follows: 

TP – Number of ground truths which match at least one prediction 

FN – Number of ground truths which don’t match any predictions 

FP – Number of predictions, which don’t match an available ground truth 

TN – Total Number of Predictions – (TP+FP+FN) 

To measure the system wide performance the post processing sequence was run using 

various combinations of α, β, γ, and δ in order to generate Miss Rate vs False Positives 

Per Image (FPPI) curve.  The patch agreement threshold 𝛾 was test with values of 1 and 

2.  It was found that at 𝛾 = 1, the system benefitted from a higher energy threshold 0f 

0.02, while at 𝛾 = 2, a lower energy threshold of 0.01 worked slightly better.   

Figure 12 shows the Miss Rate curve for four sets of parameters.  The systems using two 

overlapping windows run slightly better than the systems with four overlaps due to the 

smaller possible number of negative samples which must be rejected. Even still, the high 

FPPI shows that the localization network selects irrelevant changes too often, and the 

energy and translation heuristics are not a strong enough method to reject the large 

number of negative samples created by the sliding window.  
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Figure 13 shows example results for four scenes using parameters 𝛼 = 0.4, 𝛽 = 0.5, 𝛾 =

2, and 𝛿 = 0.01.  A common aspect of all four images is the number of false positives 

which pass the energy and translation heuristics.   

 

 

Figure 12: Semi-Supervised System Miss Rate vs FPPI 

 

 Discussion 4.3

 Fixed Scale Parameter 4.3.1

When running the semi-supervised network, it became apparent that if the affine 

transformation scale parameter was left as a trainable parameter, then the network would 

simply learn to zoom onto a single bright pixel in the input patch.  Given the definition 

0.01

0.1

1

1 10 100 1000

M
is

s 
R

at
e

 

FPPI 

4 Overlaps  (γ=1, δ=0.02) 

4 Overlaps  (γ=2, δ=0.01) 

2 Overlaps  (γ=1, δ=0.02) 



 

40 

 

that change is represented by relative brightness in a difference image, this was the most 

convenient way for the network to find the maximal area of change, however it is 

obviously not the desired operation.   

 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 13: Semi-Supervised System Example Predictions 

(A)     The target has been found, in addition to false positives 

(B)     The target was missed, with few false positives 

(C-D) The target is missed with many false positives 

 

One potential method to counteract this without imposing a fixed scale would be to apply 

a penalty to predictions with small scales, however since the general size of the targets 

was known, it was easier to tune the scale parameter directly than to tune a penalty 

parameter. 
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 Dataset Complexity and Overfitting 4.3.2

The AICD is very small dataset in terms of deep learning applications.  The fact that the 

simulated images lack much complexity that would be present in a real image, along with 

the fact that there are only 500 scenes, means that anything but the simplest of networks 

would over fit. 

Even with positive samples only, the network didn’t quite operate as desired.  Rather than 

overfitting to positive samples, it seems to find the largest bright area with little to no 

indication that it prefers the desired target over other differences.  The simulated nature 

of the dataset may play a role in this outcome, as the shadows tend to have very sharp 

edges and lack subtleties found in real images.  However this cannot be tested for using 

only the AICD dataset. 

 Semi-Supervised vs Unsupervised 4.3.3

As noted, although this methodology doesn’t give the network explicitly labelled data, 

the fact that it only trains with positive samples implies that there must be an implicit 

label for each sample.  Due to the fact that the network is trained with only positive 

samples, by definition it isn’t unsupervised, however because no labels are used during 

training it isn’t fully supervised either.  Since the network doesn’t completely lie in either 

unsupervised or supervised camps, the term semi-supervised was used.  
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 System Window Overlap 4.3.4

When qualitatively assessing the semi-supervised network, it became apparent that it was 

able to parameterize transformations with larger translation components than the 

supervised counterpart.  Because it proposes areas closer to the edges of the input patch, 

the overlapping window didn’t need to be as dense as with the supervised network. This 

can be seen by the fact that the best performing version of the system uses only two 

overlaps vs the four used by the supervised system.   

 Real World Viability 4.3.5

Although the semi-supervised method was an interesting experiment it needs additional 

training on large scale datasets before it can mature into a viable change detection 

solution.  The network is able to locate changes within an image, but without any 

reference to what constitutes a relevant change, the network will not be able to determine 

this distinction on its own.  

This can be seen by the large number of predicted locations which correspond to an 

irrelevant change.  Since relevant changes tend to be greatly outnumbered by irrelevant 

changes, such as illumination differences, a method of determining a change’s relevancy 

is needed. Given that fact that implicit labels are needed anyways, it may be more 

productive to train a supervised system. 
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 Fully Supervised Approach Chapter 5.

In this section a fully supervised method is presented which builds on the semi-

supervised approach described in the previous chapter.  Rather than trying to find an 

arbitrary area of maximum change, this methodology is paired with a binary classifier in 

order to detect specific targets.  This not only increases localization performance, but also 

removes the need for the heuristics and replaces them with an explicit detection network.  

Rather than finding changes directly, this methodology instead detects specific targets.  In 

order to detect changes, a set of registered images is required.  If a target is detected at the 

same position in both images, then no change has occurred, however if the target is only 

present in a single image, then a change has occurred. 

 Methodology 5.1

The supervised approach aims to combine the tasks of localization and detection by using 

a Spatial Transformer Network.  Rather than attempting to find an arbitrary area of 

maximal change, this network is trained to find specific targets in a grayscale aerial 

image.  A neural network binary classifier is appended to the transformation, and used as 

a detector.  The entire network is trained end to end using multi task regression. 

The trained network is then integrated with a sliding window similar to that used with the 

semi-supervised approach. Rather than heuristically rejecting false positives, the trained 

detector is used instead.  
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As with the semi-supervised methodology, it is expected that a system which uses this 

methodology will only work on images which contain similar targets taken from 

comparable altitudes using the same type of sensors.  If these limitations are not 

conformed to, then the target signatures will be too dissimilar for the detection network to 

reliably find.  In order to make the methodology generalizable, a dataset containing the 

desired target types and altitudes must be used for training. 

 Network Architecture 5.1.1

The network shown in Figure 14 is based on the network used in the semi-supervised 

method with three exceptions.  First, the scale parameter of the affine transformation does 

not need to be fixed at a predefined value.  Second, the localization target is now a 

specific structure rather than an arbitrary change.  And third, a second spatial transformer 

and detection network have been added. 

The first spatial transformer branch performs the transformation directly to the 64x64 

input patch and outputs a zoomed in image patch labeled “localization output”.  This 

branch is trained to reconstruct the 32x32 patch centered on the structure of interest as 

described in the following section. 
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Figure 14: Supervised Network Architecture 

 

The second branch performs an identical transformation onto the feature map output by 

the final convolution layer. This results in an abstract “zoomed in” feature, which is then 

fed to a binary softmax classifier for use in detecting relevant changes. This branch is 

trained to minimize the categorical cross-entropy between the predicted relevancy and the 
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target relevancy. As with the localization portion of the network, all dense layers in the 

detector use leaky ReLU nonlinearities with a leakiness of 0.01. 

Two versions of this network were considered.  The first version leaves the scale 

parameter of 𝜃 as a learnable unit, and connects the feature map input of the detector 

spatial transformer to the final convolution map.  In contrast, the second version fixes the 

scale parameter at 0.5, and connects the detector transformer to the output of the first 

convolution layer.  As will be discussed in the results, this fixed-scale network performed 

better in multiple ways. 

 Training 5.1.2

The total loss function used for training is the weighted sum of the two task losses as 

shown in Equation (9), where 𝑀 is the pixel-wise mean squared error function, 𝐶 is the 

categorical crossentropy function, 𝑇𝑑𝑒𝑡 is the target detection relevancy in {1,0}, 𝑇𝑙𝑜𝑐 is 

the target location patch, and 𝑃𝑑𝑒𝑡 and 𝑃𝑙𝑜𝑐 are the predicted relevancy and location patch 

respectively.  In order to ensure that neither the detection nor localization task 

overpowered the total loss, the objective function weighted each task loss with hyper-

parameters 𝜆𝑑𝑒𝑡 and 𝜆𝑙𝑜𝑐. 

𝐿 = 𝜆𝑑𝑒𝑡 ⋅ 𝐶(𝑇𝑑𝑒𝑡, 𝑃𝑑𝑒𝑡) + 𝜆𝑙𝑜𝑐 ⋅ 𝑇𝑑𝑒𝑡 ⋅ 𝑀(𝑇𝑙𝑜𝑐 , 𝑃𝑙𝑜𝑐) (9) 

Note that the localization loss term is multiplied by the target detection relevancy.  This 

ensures that the localization loss term only contributes to the total loss for samples which 

actually contain a relevant target ( 𝑇𝑑𝑒𝑡 = 1).  Conversely, the localization term is 
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irrelevant for samples which don’t contain a target ( 𝑇𝑑𝑒𝑡 = 0), and as such must be 

suppressed. 

To extend this strategy from small 64x64 patches where the STN operates to large 

images, a sliding window approach is used.  First the image is split into overlapping 

64x64 pixel patches.  The network is then used to generate a single localization and 

relevancy prediction per patch.  Post-processing is used to filter out bad predictions. 

 Post processing 5.1.3

The post processing for the fully supervised system is based on a similar principle to that 

of the semi-supervised system.  The difference is that rather than heuristically rejecting 

false detections using energy and minimum translation, the class score output by the 

second network branch is used.   

First, (10) is used to remove all predictions with a detection relevancy score lower than 𝛼.  

This filter retains a set of predictions 𝑃𝑐, consisting of all predictions, 𝑃, which have a 

class score above a threshold 𝛼.  The 𝑃(𝑖) and 𝐶(𝑖) represents the 𝑖’th prediction and its 

class score respectively.   

𝑃𝑐 = {𝑃(𝑖) | 𝐶(𝑖) ≥ 𝛼} (10) 

Then, the same merge and agreement filter is used as the semi-supervised system.  

Algorithm 1 is used to merge predictions for which the overlap ratio is greater than 𝛽, 

and remove any remaining predictions for which fewer than 𝛾 original predictions agreed 

upon. The final set of predictions is taken to be the set of bounding boxes left over after 

post-processing. 
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 Supervised Results 5.2

 WPAFB Dataset 5.2.1

The Wright Patterson Air Force Base (WPAFB) Dataset was used for the supervised 

experiment because it is one of the few publicly available aerial image databases [44].  

This dataset consists of over 1600 greyscale aerial images taken above the WPAFB over 

the course of 20 minutes.  Each image is roughly 30,000 by 20,000 pixels covering about 

64 Km2.  Ground truth locations are provided for moving vehicles only. Because 

nonmoving vehicles are not labelled, this dataset is not well-suited for detection 

evaluation. 

To obtain training and test data for our experiments, a single scene from the dataset was 

manually labelled to define the location of every vehicle in the frame.  Windows of 

512x512 pixels were displayed on screen at a resolution of approximately 100 pixels per 

inch, and ground truth points were generated from mouse clicks. Figure 15 shows the full 

scene as well as a labeled sub window. In some cases, such as parking lots, where cars 

were close enough that it was difficult to determine where one ended and another began, 

a best guess was taken.  Although it is possible that some points are mislabeled, it is 

expected that the vast majority are accurate.  This process resulted in roughly 4,500 

labeled vehicles which were used for training. 
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(A) (B) 

Figure 15: Full WPAFB Dataset Scene 

(A) Full Scene Overview - The vertical line corresponds to the initial train-test split at column 19,968 

(B) A 512x512 image chunk labeled with ground truth center points 

For each target sample in the training set a 64x64 patch was randomly offset from center 

by up to 16px in both cardinal directions. An equal number of 64x64 patches which 

contained no labeled locations were then selected for negative samples.  For positive 

samples, the localization target was set to the 32x32 patch centered perfectly on the 

location, while for negative samples the localization loss does not contribute towards the 

objective.  The detection target is set to 1 for positive samples and 0 for negative. 

As with the semi-supervised network, both training and testing were performed using an 

Intel Core i5 6200U processor with an Nvidia GeForce 940M GPU.  Training the 

network took roughly 90 seconds per epoch, and took around 100 epochs to fully 

converge.  This results in just less than 3 hours to train on three of the four K-Fold splits.  

Generating predictions and running post processing for an entire WPAFB scene takes 

roughly an hour and a half.  It is important to note that parallel processing of the 
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512x5123 image chunks could speed up the analysis. Running the analysis takes about 2 

minutes 10 seconds to make predictions for the 1000 test patches. 

 Localization Results 5.2.2

For the initial localization test, column 19,968, shown as a vertical red line in Figure 15, 

was used to split the scene into roughly 80% training and 20% testing samples.  Figure 16 

shows a set of typical location predictions for the free scale network.  The three columns 

show the input patch, the target patch, and finally the predicted patch received from the 

network.  The yellow box in the first column displays the bounding box for the location 

prediction.  The class score, as well as the affine prediction are shown to the right of each 

prediction.   

The first row (A) shows the network predicting a true positive where both the class and 

the location are correct.  In the second row (B), the network has detected the target 

correctly, however rather than translating a small box, it has kept the box mostly centered 

and simply grown it until the car is in bounds.  The third prediction (C) shows the 

network correctly predicting that no cars are present, even though there are structures in 

the bottom left corner.  In this case, the location output can be completely ignored.  

Finally, the last row (D) shows the network predicting a false positive.  In this case, it is 

easy to see that the network was confused by the bright patch on the left side. 

The main issue with the free-scale network is that rather than translating a small box to 

the target, it instead simply grows the box until the target is within bounds.  This can be 
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seen in Figure 16 (B) and (C) where the bounding box is significantly larger than the 

target requires. 

 

(A) 

Class  :  0.73 

Scale :  0.48 

Tx : -0.16 

Ty : -0.02 

 

(B) 

Class  :  0.73 

Scale  :  0.56 

Tx  : -0.07 

Ty  : 0.04 

 

(C) 

Class : 0.27 

Scale : 0.66 

Tx : 0.11 

Ty : 0.06 

 

(D) 

Class : 0.73 

Scale : 0.54 

Tx : -0.12 

TY : 0.04 

Figure 16:  Localization and Detection Examples for Free-Scale Network 

Sub figures show that the network has : 

(A) detected and localized the car well. 

(B) detected the car correctly, but the localization is unsatisfactory 

(C) correctly determined that nothing is present 

(D) incorrectly identified a car where none is present 

The inability for the network to correctly learn the scale parameter was thought to be due 

to two factors.  First, there might simply not have been enough training data, and second, 

the detection task may have been overpowering the localization task by growing the 

bounding box to get a larger context.   To reduce these issues, the scale parameter was 
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fixed at 0.5 as determined by the general size of all vehicles within the dataset.  This 

eliminates the competition between the networks, however it still leaves the issue of 

enough context making its way to the detection layers.  The second issue was alleviated 

by connecting the detection transformer to the first convolution layer rather than the last, 

thus the detector receives a full 30x30 feature map rather than the smaller 6x6 feature. 

 

(A) 

Class  :  0.99 

Tx : 0.10 

Ty : -0.03 

 

(B) 

Class  :  0.99 

Tx  : 0.12 

Ty  : -0.20 

 

(C) 

Class  :  0.02 

Tx  : -0.09 

Ty  : 0.15 

Figure 17:  Localization and Detection Examples for Fixed-Scale Network 

Sub figures show that the network has : 

(A) detected and localized a centered car correctly  

(B) detected and localized an offset car correctly 

(C) found an interesting patch and determined that nothing is present 

 

Localization metrics were calculated similarly to the semi-supervised system.  The 

average IOU, as well as the percentage of matched locations were both considered.  Table 

4 and Table 5 show the initial test localization results for the fixed-scale and free-scale 

networks respectively.  The “Total” column shows the average IOU of all predictions 
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with the ground truth.  The percentage column shows the percentage of predictions which 

matched with a ground truth object.  In all cases, matching with a ground truth object is 

defined as the 32x32 prediction overlapping with the 32x32 ground truth target with IOU 

greater than that specified by the given IOU threshold.  As can be seen, the fixed scale 

network greatly outperforms the free-scale network in terms of localization.  Not only are 

the average IOUs consistently greater, but also the percentage of matching predictions 

stays high even when the minimum IOU threshold is increased. Due to its better 

performance, only the fixed scale network results are discussed moving forward. 

Table 4: Fixed Scale Network Average IOU Localization Results 

min IOU %

0.1 100%

0.3 96.8%

0.5 82.7%

Fixed Scale

0.66 ± 0.2

Total

 

Table 5: Free-Scale Network Average IOU Localization Results 

min IOU %

0.1 99.8%

0.3 80.8%

0.5 36.5%

Free Scale

0.46 ± 0.2

Total

 

To alleviate concerns of dataset bias, K-fold cross validation was performed with K=4 to 

ensure that the network performed similarly across the entire scene.  Folds were 

generated using random sampling of 512x512 labelled chunks, and patch samples were 

extracted from their respective folds.   

Table 6 shows the K-fold localization results, where the parenthesized values indicate the 

match percentage for a set of random predictions with a given IOU threshold. 
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These results illustrate that, on average, the predicted locations overlap with the ground 

truth with an IOU greater than 0.5 for almost 78% of predictions.  If the ground truth 

overlap ratio is decreased to 0.3, then nearly 94% of predictions match.  Using an IOU 

threshold of 0.1 doesn’t give much insight into the reliability of predictions due to the 

fact that even random predictions achieve a 90% match rate. 

 

Table 6: Fixed Scale Network K-Fold Localization Results 

Fold

1 0.65 ± 0.19 99.0% (89%) 93.9% (52%) 81.4% (28%)

2 0.64 ± 0.19 99.0% (89%) 94.3% (59%) 77.6% (27%)

3 0.62 ± 0.19 99.4% (91%) 93.9% (57%) 74.5% (27%)

4 0.63 ± 0.19 98.9% (90%) 93.3% (60%) 77.5% (27%)

Total 0.63 ± 0.19 99.1% (90%) 93.8% (57%) 77.8% (27%)

Avg IOU

Percent Matching

min IOU 0.1 min IOU 0.3 min IOU 0.5

 

Although the average IOU of 0.63 is acceptable, it is still interesting to analyze some of 

the ways that the localization can be wrong.  As such, Figure 18 shows a set of typical 

samples from the fixed-scale network which were detected correctly but had a low IOU 

score with the ground truth.  As can be seen in (A), a significant cause for a missed 

prediction area seems to be that the predicted bounding box encapsulates the object closer 

to its edge than its center. The ground truth on the other hand is expecting the bounding 

box to be centered.  The second sample (B) shows that in some cases the location 

prediction seems to be confused by background clutter, and coincidentally the detector 

predicts that a target is present.  Finally, the last case (C) shows multiple objects within 

the input patch: the labelled vehicle as well as the vehicle on the right border. The 
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network localizes somewhere between them rather than fully committing to a single 

object. 

 

 
IOU=0.16 

(A) 

 
IOU=0.15 

(B) 

 
IOU=0.26 

(C) 

Figure 18:  Correct Detections with Low IOU - Yellow boxes are the predictions, blue boxes are the ground 

truth 

 

 Network Weights 5.2.3

When training a neural network it is common to examine the learned weights to gain 

insights into what the network has learned. It is widely known that a well-trained network 

should have first layer weights which look like Gabor filters.  As a simple sanity check, 

the first layer weights for the shared convolutions, as well as the first dense layer in the 

localization and detection portions of the network were analyzed using the network 

trained on the first k-fold split.  

Figure 19 shows the weights learned by the first convolutional layer.  Gabor like features 

are discernable within these 5x5 filters, however there is also a fair amount of pixilation 

present.   
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Figure 19: First Convolution Layer Weights 

 

Similarly Figure 20 shows the weights learned by the first 144 units of the first dense 

layer in the localization network.  These dense units each connect to 128 6x6 feature 

maps output by the final shared pool layer in the convolutional portion of the network.  

The visualization shows the mean weight values for each unit.  These 6x6 weight maps 

show a set of abstract features, so it is hard to determine which are useful.  A number of 

the units seem to have learned flat weights, where single pixel is the same value 

indicating dead weights or overfitting. 
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Figure 20: First Dense Localization Layer Weights 

 

Finally Figure 21 shows the weights learned by the first 144 units of the dense detection 

network.  Each of these units connects to a 25x30x30 feature map which is a spatially 

transformed version of the first convolutional layer.  As can be seen, many of the units 

haven’t improved substantially from the random initialization. This indicates that using 

fewer units in this layer would be beneficial. 

Figure 19 - Figure 21 all lean towards the fact that the modelling capacity of the network 

may be too large for the given dataset and task.  Using fewer filters in the convolution 
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layers and fewer dense units in the dense layers would allow the network to learn a better 

model of the data with fewer noisy weights.  

 

Figure 21: First Dense Layer Detector Weights 

 

The noise in the weights can also indicate that the network has overfit, however the fact 

that the validation loss closely follows the training loss as seen in Figure 22, along with 

the fact that the network performs similarly across all dataset splits show that overfitting 

is not an issue. Regardless, shrinking the network, applying more regularization, and 

using a larger dataset would all remove this concern. 
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Figure 22: Training Loss History 

 

 Detection Results 5.2.4

Moving on to detection results, Figure 23 shows the ROC curves generated for the four 

data splits given a minimum IOU threshold of 0.5. As was expected, the network 

performs similarly for all four splits.  Table 7 shows the AUC results for each of the 

splits, as well as each of the minimum IOU thresholds.  The average AUC score of 0.91 

shows that the detector performs well when the localization net correctly predicts the 

area.  
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Figure 23: Supervised Detector Receiver Operating Characteristics 

 

Table 7: Supervised Detector ROC Areas 

Split

1

2

3

4

Avg 0.931 ± .005 0.927 ± .007 0.912 ± .011

0.928 0.929 0.906

0.926 0.917 0.898

0.936 0.926 0.919

0.935 0.934 0.923

AUC Scores

Min IOU

0.1 0.3 0.5

 

Detailed results for the fixed scale network are shown in Table 8.  The truth counts in this 

table reflect the predictions of the detection output as it corresponds to the predicted area. 
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The same metrics used with the semi-supervised network are given. Refer to Appendix I 

for specific definitions. 

Finally, to get a sense of how the localization network and detection network interact, the 

precision vs. recall curves for the detector were generated. Figure 24 shows these curves 

for all four splits with a minimum IOU set at 0.5, while Table 9 shows the mAP scores 

for all splits and all minimum IOU thresholds.  Note that the reason Split 1 reaches a 

precision of 1.0 is due to the single true positive detection when 𝛼 equals 1. 

Table 8: Detailed Network Test Results For Split 1 (min IOU=0.5) 

α TP TN FP FN FPR TPR Pr Sp F-Meas PWC

1 1 1154 0 791 0.00 0.00 1.00 1.00 0.00 40.6%

0.95 618 1035 119 174 0.10 0.78 0.84 0.90 0.81 15.1%

0.9 662 1014 140 130 0.12 0.84 0.83 0.88 0.83 13.9%

0.85 689 997 157 103 0.14 0.87 0.81 0.86 0.84 13.4%

0.8 704 979 175 88 0.15 0.89 0.80 0.85 0.84 13.5%

0.75 716 966 188 76 0.16 0.90 0.79 0.84 0.84 13.6%

0.7 728 956 198 64 0.17 0.92 0.79 0.83 0.85 13.5%

0.65 735 942 212 57 0.18 0.93 0.78 0.82 0.85 13.8%

0.6 737 939 215 55 0.19 0.93 0.77 0.81 0.85 13.9%

0.55 745 930 224 47 0.19 0.94 0.77 0.81 0.85 13.9%

0.5 754 915 239 38 0.21 0.95 0.76 0.79 0.84 14.2%

0.45 761 905 249 31 0.22 0.96 0.75 0.78 0.84 14.4%

0.4 762 888 266 30 0.23 0.96 0.74 0.77 0.84 15.2%

0.35 768 879 275 24 0.24 0.97 0.74 0.76 0.84 15.4%

0.3 771 862 292 21 0.25 0.97 0.73 0.75 0.83 16.1%

0.25 772 841 313 20 0.27 0.97 0.71 0.73 0.82 17.1%

0.2 776 815 339 16 0.29 0.98 0.70 0.71 0.81 18.2%

0.15 781 797 357 11 0.31 0.99 0.69 0.69 0.81 18.9%

0.1 784 762 392 8 0.34 0.99 0.67 0.66 0.80 20.6%

0.05 786 688 466 6 0.40 0.99 0.63 0.60 0.77 24.3%

0 792 0 1154 0 1.00 1.00 0.41 0.00 0.58 59.3%  
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Table 9: Supervised Network Mean Average Precision  

Split

1

2

3

4

Avg 0.918 ± .013 0.899 ± .017 0.823 ± .048

mAP Scores

Min IOU

0.1 0.3 0.5

0.936 0.918 0.888

0.914 0.902 0.830

0.917 0.899 0.790

0.907 0.876 0.782

 

 

Figure 24: Supervised Precision vs Recall Curve 
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 System Results 5.2.5

Due to the enormous size of the WPAFB scene, the sliding window system evaluation 

was performed in chunks of 512x512 pixels.  Because the scene doesn’t uniformly fill the 

rectangular image, there is a relatively large white border which can be seen in Figure 15.  

Rather than waste computations on these areas, all chunks which did not contain at least a 

single non-white pixel were completely ignored.  As with the semi-supervised approach, 

the system performance was measured using the Miss Rate vs. False Positive Per Image 

(FPPI) curve.   

The sliding window approach was performed using the network and holdout set for the 

first k-fold split.  Varying the post processing parameters 𝛼, 𝛽 and 𝛾 showed that the best 

Miss Rate performance was obtained using 𝛽 = 0.5 and 𝛾 = 1.  By varying the detection 

threshold 𝛼, the Miss Rate Curves shown in Figure 25 were generated.   

This figure shows that the ideal overlap is two, increasing to four overlaps greatly 

increases the runtime, but doesn’t significantly improve performance. That being said, the 

FPPI at which the miss rate begins to decrease indicates that the detector is not strong 

enough to deal with the huge number of negative samples that it must correctly reject.  

For the first k-fold split, running the sliding window with two overlaps generates nearly 

70,000 windows, only 973 of which contain a positive target.  Even if the detector was 

able to correctly reject 95% of negative windows, it would still be expected to produce 

around ten false positives per 512x512 section. 
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Figure 25: Supervised System Log-Log Miss Rate vs. FPPI on the First K-fold split 

 

With this in mind, it is easy to see why the false positives occur in Figure 26 which 

shows the predictions and ground truth locations for four 512x512 input chunks.  Yellow 

boxes show predictions, whereas the pink boxes show ground truth locations.  

The first subfigure shows the system finding all ground truth locations, albeit with 3 false 

positives.  It can be seen that each of the three false positives contain a blob which 

confuses the detector.  The second sub figure shows that the system has trouble detecting 

the darker targets on the road.  The third subfigure shows the system correctly rejecting 

all locations in the scene. Finally, the last subfigure shows that certain textures confuse 

the detector.  In this case the bushes in front of the building are incorrectly detected as 
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vehicles.  It isn’t hard to see that the low resolution of the images makes it difficult for 

the detection network to differentiate between blobs caused by vehicles, and similarly 

sized blobs caused by other objects. 

 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 26: Supervised System Predictions Using Detection Threshold 𝜶 = 𝟎. 𝟖  

Yellow boxes are predictions, pink boxes are ground truths 

(A) All targets are detected, along with three false positive “blobs” 

(B) The system has trouble detecting dark vehicles against the road. 

(C) The system correctly determines that no targets are present 

(D) The system is confused by the bushes in front of the building 
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Finally the system was run on a second full image from the WPAFB dataset taken 

roughly 5 minutes after the image used during training.  Because no ground truths were 

provided for this image, only qualitative results were acquired.  Figure 27 shows four 

512x512 windows with location predictions.  As can be seen, the system performs 

similarly for both images. 

 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 27: Supervised System Predictions On Second Holdout Image  

Yellow boxes are predictions, No Ground truths are provided 
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 Discussion 5.3

 Fixed Scale vs. Free Scale 5.3.1

Unlike the semi-supervised approach, for which the fixed scale was an inherent constraint 

of the system, the supervised methodology fixed the scale simply because doing so 

resulted in better performance. In theory, a network which leaves all transformation 

variables as learnable parameters should be better able to model bounding boxes to the 

found objects.  However experimentation with the WPAFB dataset showed that this was 

a difficult task with the given data.  Although an overall cause for this has not been 

identified there are some likely sources.   

First, although the localization target was a fixed size box, there is no discernable 

difference a mismatch due to a large bounding box, and a mismatch due to a bounding 

box in the wrong location.  As with the semi-supervised approach, a fixed scale may have 

been avoided by applying a penalty during training which discouraged large bounding 

boxes.  Again however, since the target size is known beforehand, it is simpler to provide 

the size directly than to tune a penalty parameter. 

Another possible solution, if a learnable scale is desired, would be to train the localization 

task using the bounding boxes directly.  For instance, if the localization task was to 

minimize the IOU between the prediction and ground truth boxes directly, rather than 

minimizing the reconstruction loss, the inherently account for differences in patch sizes.  

This would also have the added benefit of evening out the loss associated with high and 

low contrast patches.  As it stands in the current implementation, the loss is dependent on 
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the contrast of the prediction; low contrast patches will inherently have a lower 

reconstruction loss because the pixel values are closer together.  With direct bounding 

box regression, the localization loss is independent of visual characteristics. 

 Low Resolution Targets 5.3.2

With any detection system the main aim is to create an acceptable tradeoff between 

detecting all of the targets, and rejecting all non-targets.  With low resolution images 

especially, this can be an extremely difficult task.  The WPAFB dataset contains very 

large images, however since the image covers such a large area of land, the large size 

doesn’t translate into high resolution. Even for a human, some of the targets are difficult 

to identify without enough context information.  This can be seen in Figure 26d, where 

the detector gets confused by the blobs created by the bushes in front of the building.  

Without an overview of the entire scene, which the detector was not provided, the task of 

determining what type of object created a low resolution blob is extremely difficult.   

 System Performance 5.3.3

In terms of localization, the system performs very well.  On average, the STN is able to 

correctly locate nearly 80% of positive samples within a patch with an IOU greater than 

0.5.  If the match IOU threshold is lowered to 0.3, then the network is able to find nearly 

94%.  However, with a sliding window approach, the number of windows which don’t 

contain a target far outnumber the number of windows which do.  This leads to the need 

for an extremely strong detector which can reject close to 100% of the negative samples.  

The huge WAMI scenes found in the WPAFB dataset make this problem difficult on two 
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fronts.  Not only do the relevant targets make up only a miniscule portion of the covered 

area, but they also have very limited resolution.   

The vast majority of windows must be rejected by the detector, while at the same time, a 

relatively small number of positive samples must be found.  With higher resolution 

targets it may be possible to simply increase the detection threshold, however with the 

low resolution targets this isn’t as easy a task.  Even with context it is sometimes hard to 

distinguish whether a blob is a relevant target, or some other object. As such increasing 

the detection threshold to the point that irrelevant blobs are rejected tends to make 

relevant targets be rejected as well.  
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 Conclusions  Chapter 6.

 Concluding Remarks 6.1

In this thesis, two methodologies for change detection in aerial images were introduced.  

The basic idea uses a Spatial Transformer network to generate a location prediction, 

which can then be categorized as containing or not containing a change.  A semi-

supervised method is presented which is trained to find the area of maximal change in a 

difference image patch.  Because no reference to a target’s specific structure is used for 

training, the semi-supervised system has trouble differentiating relevant changes from 

background clutter. Therefore a supervised method is also introduced which incorporates 

a detection network with the Spatial Transformer Network in order to teach the network 

the structure of the desired targets.   

This supervised network performed much better at localizing relevant areas.  Even with 

low resolution targets, this network is able to accurately localize up to 94% of positive 

targets.  However due to the fact that the number of negative samples far outnumbers the 

amount of positive samples, the detector becomes the limiting factor in the sliding 

window system.  The low resolution of the targets makes it extremely difficult to 

differentiate between relevant and irrelevant targets which tend to look like simple blobs.  

This means that even with a high detection threshold, it is likely that false positives will 

make it through the system.  Although the detector is not strong enough to create a 
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completely autonomous detection system, it does greatly reduce the amount of area 

which must be covered by human analysts.   

The main challenge for both semi-supervised and fully supervised systems seems to be a 

lack of data.  Although both networks are very small compared to current state of the art 

detectors, they still seem to have unused modeling capability as shown by the learned 

weights of the supervised network.  Although it is possible to shrink the networks, either 

by retraining a smaller architecture, or by using compression techniques, a more robust 

solution would be to increase the amount of training data available. 

 Future Works 6.2

Future improvements to the network can take multiple paths.  Different architectures, 

training methodologies, and data sources are all prime candidates. For instance, a 

shallower network may be beneficial due to the low resolution of the data.  A deep 

network’s consecutive pooling layers will decrease the resolution further still. Even 

without additional pooling, many of the samples are indistinguishable from simple blobs 

if no surrounding context is given. This issue may be alleviated by increasing the spatial 

extent of the filters and input patches, however higher resolution data may still be 

required for robust deep learning. 

The methods used to train the network also have a great impact on its performance.  As 

such it may be beneficial to further experiment with different objective loss functions.  

One interesting approach would be to train the network to maximize the IOU between its 

predicted location and the ground truth location.  As stated in the supervised discussion, 
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this would make the localization loss independent from the predicted patch, and allow 

both high contrast and low contrast predictions to contribute the same amount of error.   

The factor with greatest impact on the performance of a neural network is the data used to 

train it. It may therefore be beneficial to train the network on more scenes from the 

WPAFB dataset.  With a larger dataset, more discrimination can be used when selecting 

training samples.  For instance, training with only high contrast or otherwise discernable 

targets may decrease overall recall, but it would also increase the precision of the 

network.   

Finally, models such as Digital Imaging and Remote Sensing Image Generation 

(DIRSIG) may be utilized as an alternative source of image data [45].  This simulation 

engine developed by the Rochester Institute of Technology (RIT) Digital Imaging and 

Remote Sensing (DIRS) Laboratory is able to generate radiometrically accurate scenes 

limited only by the digital models being used.  Simulated models are able to produce a 

large variety of targets, backgrounds, and illumination characteristics, with the additional 

benefit that accurate ground truths can be generated without the need for hand labeling.  

Training with simulated data is therefore a logical step towards building a strong aerial 

detection system which generalizes well to multiple scenarios. 
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Appendix I – Evaluation Equations 

TP, TN:    True  Positive / Negative,  

FP, FN :     False Positive / Negative 

Precision (Pr):     
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Recall (Re):     
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity (Sp):    
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

False Pos. Rate (FPR):   
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

True Pos. Rate (TPR):   See Recall 

Miss Rate:    
𝐹𝑁

𝐹𝑁+𝑇𝑃
 

F-Measure:     
2⋅Pr⋅ 𝑅𝑒

Pr +𝑅𝑒
 

Percentage Wrong Class (PWC):  
𝐹𝑁 + 𝐹𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
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