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ROCHESTER INSTITUTE OF TECHNOLOGY 

Abstract 

Implementation of the Array-based Approach for the Evaluation of Randomness of the 

Advanced Encryption Standard (AES) 

by Hanadi Yahia Alomari 

 

Randomness is critical when it comes to cryptography. When a cryptographic system has 

randomness in it, it is impossible to decrypt the codes and break the system. To evaluate a 

cryptographic function’s randomness, many statistical tests were developed such as: Diehard 

and ENT, but these tests are not well suited for block ciphers. CryptoStat  is the best statistical 

test suite to test the randomness of the Advanced Encryption Standard or AES, which is a block 

cipher established by NIST, the National Institute of Standard and Technology. An array based 

approach is also used to apply the CryptoStat test suite on AES. 
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Chapter 1 

1.1. Introduction 

Using computers can be extremely unsafe when using personal and financial data such as 

names, passwords, addresses, and bank account information. To keep one’s safety, some 

aspects and applications can be applied. One of these aspects is Cryptography, which is the 

most popular tool for keeping private information safe from the public or third parties. 

Cryptography ensures that information is accessible by authorized people only, which keep 

their privacy. Cryptography also helps with Authentication because it facilitates proofing a 

remote user’s identity, which prevents third parties from pretending to be someone else. 

Moreover, it could be used to provide a means to secure data that is not viewed or altered 

during storage or transaction, which is referred to as Integrity (Dent & Mitchell, 2005). 

Cryptography also could be used for Non-repudiation, which prevents the denial of previous 

actions. This “Non-repudiation” term is popular in financial and e-commerce applications. For 

example, a customer who requested a money transformation from his bank account could 

claim later that he never made that request and demand that money be refunded to his 

account. In such a situation, cryptographic tools are used to prove that the customer has 

requested and authorized the money transaction(Dent & Mitchell, 2005). 

To have an effective cryptographic system, it is crucial to have some randomness in it because 

randomness makes it impossible for someone to break the system and reach the private 
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information. The objective of this thesis is to apply a CryptoStat test suite to evaluate a 

cryptographic system’s randomness using an array based approach and statistical hypothesis 

testing. 

1.2. Thesis Organization 

This thesis consists of 8 chapters and is organized as follows.  Chapter 2 will be mostly an 

overview of randomness in cryptography. The third chapter represents the history and the 

structure of the data that is used here. Since the goal of this thesis is to investigate the 

randomness in this data, chapter 4 introduces some previous tests that were used for this 

purpose. Chapter 5 explains a new array based approach to be used in evaluating the 

randomness. Also, a CryptoStat test suite represented in chapter 6 will be applied on the data, 

and the results will be discussed in chapter 7. 
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Chapter 2 

2.1. Cryptography Overview 

“Cryptography is the science of secret writing with the goal of hiding the meaning of the 

message” (Paar & Pelzl, 2010). Figure 1 shows the basic idea of Cryptography. It starts with the 

unencrypted data which we call “Plaintext.” Plaintext is encrypted into “Ciphertext,” which will 

be decrypted later into the original plaintext (Kessler, 2015).  Encryption is the process of 

disguising a message in such a way as to hide its substance while Decryption is the process of 

returning an encrypted message back into plaintext (Matthews, 2003). 

 

                                                                                 Figure 1: Cryptography basic idea 

 

To clarify, let us say there are two people, Alex and Richard, and they want to communicate 

through a secure channel (Internet connection or telephone line). On the other hand, there is 

Jack, the bad guy here who could somehow interrupt the communication between Alex and 

Richard. When Alex sends the information (the plaintext) to Richard, he transforms the 

plaintext using the encryption function into codes (ciphertext) that go through the channel. 
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Although Jack can get the ciphertext by hacking the channel, he will not be able to understand 

what he received because he does not have the key to decrypt the ciphertext. While Richard, 

who knows the encryption key, will be able to decrypt the ciphertext, and get the plaintext that 

Alex has sent. This idea is shown in figure 2. 

 

 

2.1.  Randomness Definition 

  

 

2.2. Randomness Definition  

A numeric sequence is considered to be statistically random when each number in this 

sequence is obtained completely randomly and has absolutely no correlation between any 

numbers in the sequence (Hörmanseder & Erik, 2007). These numbers in the sequences also 

have to be unpredictable and have no pattern or regularities to be considered as completely 

random (Boutin, 2005). A random bit sequence was also interpreted in (Rukhin & Bassham, 

2008) as the result of flipping an unbiased coin with the sides “0” and “1.” The flips should be 

independent, so each flip is not affected by the previous one. Also, each flip has a probability of 

Figure 2: Cryptography process 
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½ to produce ether “0” or “1.” This unbiased coin is considered a perfect random generator 

since the “0” and “1” values are randomly distributed and [0,1] uniformly distributed. 

2.3. Randomness Importance 

Randomness is important in cryptography, and we expect to see in any ciphertext. Randomness 

can be found in stream ciphers, encryption keys, and in producing number sequences, etc. For 

instance, if the encryption key generates completely random mapping, the cryptographic 

system would be strongly secured. Having some pattern in a cryptographic system means that 

decrypting the ciphertext and attacking the system requires much less effort than attacking a 

system that has an unpredictable, completely random encryption key (Goldberg & Wagner, 

1996). Therefore, more randomness in the encryption key means more strength in the 

cryptographic algorithm and more difficulty to break the system. In addition, randomness is an 

important resource for solving computational problems. Randomized algorithms and protocols 

play key roles in cryptography. These algorithms are typically faster and simpler than the 

deterministic counterparts (Rao, 2007). 

2.4. Verifying Randomness in a Cryptographic System 

In cryptography, secret keys must be chosen at random and even the cryptographic algorithms 

must be random as well because the most obvious way to reach randomness is to have access 

to two or more independent sources of randomness. On the other hand, a randomness 

principle exists in the fact that evidence of randomness in the outputs is not proof of 
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randomness of the cryptographic function itself. For ease of description, let us consider the 

basic cryptographic function that can be written as: 

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑘𝑒𝑦, 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡) = 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡                                                   (1)  

If random plaintexts and keys are inputted into the function, the outputs should be random as 

well (Hoyt, 2016). So, in order to have a strong cryptographic system, beside testing the 

randomness of their outputs, block ciphers and cryptographic functions should pass 

randomness tests too (Doganaksoy, Ege, Kocak, & Sulak, 2010). This is because testing 

randomness of outputs from a random selection of inputs is inefficient. When applying 

randomness tests, two possible outcomes would appear: 

 Random outputs which are still do not prove the randomness of the cryptographic 

function which will be discussed later. 

 Non-Random outputs which prove deficiency of the cryptographic function. 

To conclude, non-random configurations of both keys and plaintexts should be tested (Hoyt, 

2016). 

 

 

 

 



P a g e  | 7 

 

 

Chapter 3 

     3.1.      Data 

The AES (Advanced Encryption Standard) (NIST, 2001) is a symmetric block cipher designed by 

Joan Daemen and Vincent Rijmen, which was approved above 15 other candidates by the 

National Institute of Standard and Technology (www.nist.gov). The AES block cipher has a block 

size of 128 bits and a key size of 128, 192, or 256 bits. However, only the 128-bit key version has 

been analyzed in this work. An AES dataset used in this thesis, which was computed by Dr. Alan 

Kaminsky using the AES-128 block cipher. It includes A (plaintexts) and B (encryption keys) 

inputs, and C matrix as the ciphertext output that consists of four main operations: 129 rows, 

129 columns, 10 rounds or repeats, and 128 bytes (block cipher). The AES is considered a block 

cipher, which means that the scheme uses the cipher key to encrypt one block of data at a time 

(Kessler, 2015). The overall transformation process consists of repeated steps called “rounds” 

(Wright, 2001). For that reason, the AES dataset was produced using an iterated block cipher, 

meaning that the initial input block and cipher key undergoes multiple rounds of 

transformation before producing the output (Kessler, 2015). 
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Chapter 4 

4.1. NIST Statistical Test Suite 

To determine if a cryptographic function is considered random, many test suites can be applied. 

There are many statistical tests such as NIST (Rukhin & Bassham, 2008), Diehard (Marsaglia, 

1995), Dieharder (Brown, Eddelbuettel, & Bauer, 2016), ENT (Walker, 2008), and TestU01 

(L'Ecuyer & Simard, 2007). The NIST statistical test suite is a statistical package which contains 

16 tests that were developed to determine whether a binary number sequence is random or 

not by detecting non- randomness types that may exist in the sequence. These tests analyze 

samples from the cryptographic outputs, and decide on the output randomness depending on 

the behavior of the samples selected. 

4.2. NIST Statistical Test Suites and Block Ciphers 

In spite of the fact that its title asserts that the NIST test suite is for cryptographic applications, 

the NIST is actually a statistical test suite for assessing binary sequences' randomness rather 

than being a statistical test on sequences of uniformly distributed numbers (Kaminsky, 2013). 

NIST test suite and the other test suites mentioned earlier are not well suited to evaluate block 

ciphers randomness. That is because to apply the NIST test suite (or another test suite), the 

block cipher must behave as a pseudo-random number generator (PRNG) and generate 

arbitrarily long binary sequences. Although, block ciphers are not PRNGs, a document from 

NIST (Soto & Bassham, 2000) describes how NIST made AES generates long binary sequences 
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using two techniques that include the encryption modes cipher block chaining (CBC) and 

electronic codebook (ECB). However, even after a block cipher is turned into a PRNG, the NIST 

test suite would evaluate the randomness of the PRNG not the randomness of the block cipher 

mapping directly (Kaminsky & Sorrell, 2013). Thus, these test suites are inefficient for the AES 

or any other block cipher because they only focus on the randomness of the outputs without 

considering the cryptographic functions’ randomness, which is essential in the effectiveness of 

the cryptographic system. For example, a cryptographic system could pass these randomness 

test suites because it has random outputs that occur as a combination of random plaintexts and 

non-random encryption key, for instance. 
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Chapter 5 

5.1. Applying an Array Based Approach on AES 

To verify a cryptographic function’s randomness, we should test the randomness of its parts. 

Using an array based tests is the best way to reach the randomness of both plaintexts and 

encryption keys. The array based approach(Hoyt, 2016) is using the structure of an array with 

three dimensions, which are: plaintexts, encryption keys, and encryption bits to apply any 

statistical test on the cryptographic algorithm. Then, any combination of these three 

dimensions is tested to determine which source is causing non-randomness in the outputs. This 

way the cryptographic function’s randomness is tested instead of the outputs’ randomness 

without specifying the exact reason for the non-randomness issues. 

When performing a test on AES using the array based approach, a statistical hypothesis testing 

will be used. The null hypothesis 𝐻0 assumes that 𝑃 = 𝑃0 , where 𝑃 represents the proportion 

of 1’s in that sample and 𝑃0 = 2−1 . On the other hand, 𝐻1 is the alternative hypothesis, which 

assumes 𝑃 ≠ 𝑃0. In addition, the Bonferroni correction is considered here since there are many 

statistical tests being performed. For each sample analyzed, a P-value is calculated. If the P-

value > = α, then the hypothesis 𝐻0 is accepted, and the cryptographic algorithm passes the 

test. On the contrary, if the P-value < α, then the hypothesis 𝐻0 is rejected, and the 

cryptographic algorithm fails the test. 
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5.2. Normal Approximation to the Binomial Distribution 

Although the binomial distribution is discrete unlike the normal distribution, when n, the 

sample size is large, the binomial distribution is approximately equal to the normal distribution, 

which is illustrated in the figure below. This concept is crucial since it becomes difficult to 

calculate binomial probabilities when n gets large. This occurs because the binomial distribution 

formula contains factorials which can be complicated in case of large sample sizes. Figure 3 

below shows the binomial distribution and the normal distribution for a variety values of n. 

 

Figure 3: Normal approximation to the binomial 

Normal approximation to the binomial distribution will be used in the statistical hypothesis 

testing applied on the block cipher AES. Considering k block of bits with n bits in each block and 

if in one block, the probability of 1 is p, and in the remaining blocks is p0. Then, the fraction of 

1’s in all blocks approximately follows the normal distribution with the mean:  
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                             (2) 

and variance:  

     

 
2 0 0

2

1 1 1n p p k n p p
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                   (3)    

5.3. Three Possible Ways to Use the Array Based Approach 

on the AES 

First, we need to calculate the fraction of 1’s in AES using the array based approach. If AES is 

random, the fraction of 1’s should be 50%, which means the probability of 1 and 0 is the same, 

which is 0.5. Here is three ways to apply the array based approach:  

 Test1: First test is done by counting all the 1’s in the array, and then applying 1 binomial 

test. 

Since AES dataset has 10 rounds, each round will be considered as a separate array, and we will 

have 10 binomial tests in this case. Table 1 below shows the number of times that the null 

hypothesis was rejected (p-value smaller than 0.05). 

Round Round1 Round2 Round3 Round4 Round5 Round6 Round7 Round8 Round9 Round10 

<0.05 1 0 0 0 0 0 0 0 0 0 
Table 1: Applying 1 binomial test on AES 
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 Test2: Second test is done by counting all the 1’s in each column of the array, and then 

applying 129 binomial tests for each round. 

The results below show that Round 1 has the highest failure rates with 92 failed binomial tests. 

On the other hand, there were no failure issues in the other rounds except for one case in 

Round 9.  

Round Round1 Round2 Round3 Round4 Round5 Round6 Round7 Round8 Round9 Round10 

<0.05 92 0 0 0 0 0 0 0 1 0 
Table 2: Applying 129 binomial tests 

 

 Test 3: The third test is done by counting all the 1’s in each cell, and then applying 129×129 

binomial tests.  

Using this approach will help to detect more failure binomial tests than the previous tests since 

it reaches each cell instead of each column or row. Table 3 shows that more than 11 thousand 

binomial tests have failed in the first round. On the other hand, round 9 has 129 failed binomial 

tests.  

Round Round1 Round2 Round3 Round4 Round5 Round6 Round7 Round8 Round9 Round10 

<0.05 11868 0 0 0 0 0 0 0 129 0 
Table 3: Applying 129×129 binomial tests 
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5.3.1. Investigating Rounds 1 and 9 Based on the Previous Results 

The previous results illustrated that round 1 and round 9 has some issues. So, it is better to take 

a closer look at these rounds. Table 4 shows the number of failed binomial tests using rows, 

columns, and bits for all the rounds.  

Round Round1 Round2 Round3 Round4 Round5 Round6 Round7 Round8 Round9 Round10 
Using 
rows 76 0 0 0 0 0 0 0 0 0 
Using 
columns 92 0 0 0 0 0 0 0 1 0 
Using 
bits 128 0 0 0 0 0 0 0 0 0 

Table 4: Applying binomial tests on AES using rows, columns, and bits 

To understand the nature of the randomness, figure 4 and 5 below show the frequencies of 1’s 

in each ciphertext in round 1 and round 9. The points under the dashed lines fail the test. The 

dashed lines represent the 𝑃0 = 0.5 ± 𝑧. 𝑣𝑎𝑙𝑢𝑒. 

Figure 4 shows the frequencies of 1’s in round 1. The first plot in the figure shows plenty of 

points outside the dashed lines, which are the same 76 failure cases that were shown in table 4 

earlier. The same situation in the second and third plots. On the other hand, figure 5 explains 

the situation in round 9. It shows the same results of table 4, which is one point that outside 

the dashed line and considered to be not random. This occurs when using columns to count the 

1’s and apply the binomial tests. Other points have proportion of 1’s as 50% and considered 

random. 
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Figure 4: The frequencies of 1’s in round 1 



P a g e  | 16 

 

 

 

Figure 5: The frequencies of 1’s in round 9 

Figure 6 and 7 below display the P-values of the proportion of 1’s in each ciphertext. Figure 6 

shows lots of non-randomness issues for the first round. Especially in the third plot when using 

bits, all the 128 bits are under the significance level, which means the probabilities of 1’s are 

less than 0.5. On the other hand, figure 7 shows only 1 point under the dashed line.  The 

dashed line presents the level of significance or 𝛼. 
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Figure 6: The frequncies in Round 1 
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Figure 7: The frequncies in Round 9 
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Chapter 6 

6.1. CryptoStat Test Suite 

Kaminsky and Sorrell have introduced CryptoStat (Kaminsky & Sorrell, 2013), which is a 

statistical test suite that evaluates cryptographic functions’ randomness. It implements the 

Bayesian model selection to analyze Block ciphers’ outputs since some earlier statistical tests 

have failed in detecting randomness in cryptographic functions as previously discussed in 4.2. 

However, the array based approach that was explained in chapter 5 will be used when applying 

the tests on AES instead of Bayesian models.  

CryptoStat test suite consists of 7 tests: the linear approximation test, the coincidence test, the 

input- output independence test, the complement test, the ciphertext independence test, the 

strong avalanche test, and the uniformity test. These tests were applied on 7 block ciphers: 

Kasumi (3gpp.org), Blowfish (Schneier, 1993), SQUASH (Shamir, 2008), AES (NIST, 2001), IDEA 

(Lai & Massey, 1999), PRESENT (Bogdanov, Knudsen, Leander, Paar, Poschmann, Robshaw et 

al., 2007), and ThreeWay (Daemen, Govaerts, & Vandewalle, 1993). The results were presented 

and discussed in the paper (Kaminsky & Sorrell, 2013). 
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6.2. Applying CryptoStat Test Suite on AES 

Some of the tests mentioned above will be applied on AES block cipher to evaluate its 

randomness using the array based approach. The statistical hypothesis testing is used, where 

𝐻0 is the null hypothesis that assumes 𝑃 = 0.5  and passing the test. On the other hand, we 

have 𝐻1 as the alternative hypothesis, which assumes 𝑃 ≠ 0.5 and failing the test. 

 The Linear Approximation Test 

 Test Purpose 

The purpose of the linear approximation test is to assess the cryptographic function’s behavior 

by evaluating precision of an equation that approximates the cryptographic function’s activity.  

 Function Call 

(∑ 𝑏 
𝑏𝜖𝐻∪𝐺 )𝑚𝑜𝑑2                                    (4) 

 where: 

𝑏 is a bit group of size g, where g takes on the values 1, 2, 4, 8, ..., N, and N is the maximum size 

of the ciphertext C.  

𝐻 is a selected bit group from the ciphertext C with the same size as 𝑏. 

𝐺 is a selected bit group from the string K//P with the same size as 𝑏, where K is the encryption 

key and P is the original plaintext. 
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  Test Description 

The previous sum either evaluates to 0 or 1. If it evaluates to 1, the outcome will be considered 

as a Bernoulli success. Otherwise, it is considered a Bernoulli failure. For each bit group, the 

successes are counted. After that, equation 2 is applied for each column and row of AES.  For 

each round, if the bit group examined cannot be presented as a linear estimation of the 

cryptographic function’s activity, the Bernoulli success probability θ will be equal to 𝑝, and 

some other value otherwise. Figure 8 below from Prof. Kaminsky’s paper shows how the linear 

approximation test works. 

 

Figure 8: Linear Approximation Test 
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 Applying the Linear Approximation Test on AES 

When applying a test, the outputs should be 10 numbers for each dimension used since there 

are 10 rounds in AES. These 10 numbers represent the number of cases that having a P-value 

different than 𝑃0 , or 𝑃 ≠ 0.5, which means failing the test. Table 5 shows the results of 

applying the linear approximation test on the first two rounds of the AES block cipher. 

Dimension Round1 Round2 

Rows 50 0 

Columns 64 0 

Bits 108 65 
Table 5: Linear approximation test results 

Using rows and columns dimensions produced 50, 64 failure cases, respectively in the first 

round. On the other hand, using bits’ dimension led to failure in the second round too. While 

the rounds 3 to 10 pass the test, and have 0 failure cases, which means the other rounds are 

random. Figure 9 and 10 shows the frequencies of 1’s after applying the linear approximation 

test for the first two rounds. Points inside the dashed line are considered random, and we fail 

to reject the null hypothesis. Points outside the dashed lines have non-randomness issues. 

Figure 11 and 12 in the following pages show the P-values of each ciphertext when applying the 

linear approximation test on the first two rounds of AES. The first round is highly non-random 

because there are plenty of points under the significance level, which means rejecting the null 

hypothesis. Figure 12 also shows the P-values of the applying the linear approximation test on 

round 2. Only using bits reveals 6 points under the level of significance, which was shown in 

table 5 earlier.  
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Figure 9: Frequencies of 1's for the linear approximation test in round 1 
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Figure 10: Frequencies of 1's for the linear approximation test in round 2 
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Figure 11: Linear approximation test P-values for round1 
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Figure 12: Linear approximation test P-values for round2 

 

 

 



P a g e  | 27 

 

 

 The Coincidence Test 

 Test Purpose 

The coincidence test as described by (Kaminsky, 2013) uses a Bayesian technique to evaluate 

the mapping of a (plaintext, key) to ciphertext in block ciphers. 

 Test Description  

When P the plaintext is encrypted with the encryption key K, The Ciphertext output C is then 

obtained. V is an arbitrarily chosen output which is compared to C. The coincidence test 

examines all the bit sequences of size g, where g takes a value of 1, 2, 4, 8, ..., N, and N is the 

maximum size of the ciphertext C. R and O are bit sequences selected from V and C where 

|R|=|O|= g. A coincidence accrues when each bit of R is equal to the corresponding bit of O, 

which is a success Bernoulli trial. 

The coincidence test performs n Bernoulli trials and counts the number of coincidences k. If the 

block cipher’s (plaintext, key) to ciphertext mapping is random, a coincidence should occur with 

a Bernoulli success probability 𝑝 = 2−𝑔. The coincidence test decides between two binomial 

models: 𝐻0 where the success probability is 2−𝑔 , and 𝐻1 where the success probability is 

otherwise. Then, the coincidence test is repeated for each round in AES. Figure 13 below 

describes how the coincidence test works.  
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Figure 13: Coincidence Test 

                                                                                   

 Applying the Coincidence Test on AES 

Table 6 below represents the results of applying the coincidence test on AES data. When using 

rows or columns to apply the coincidence test, only the first round appears to fail the test. 

While using bits to calculate P-values shows non-randomness in the first two rounds. There 

were no non-randomness issues detected in rounds 3 to 10.  

Dimension Round1 Round2 

Rows 5 0 

Columns 16 0 

Bits 83 8 
Table 6: Coincidence test results 

Figure 14 and 15 below show the frequencies of 1’s when applying the coincidence test for 

round 1 and round 2.  
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Figure 14: Frequencies of 1's for the coincidence test in round 1 
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Figure 15: Frequencies of 1's for the coincidence test in round 2 
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Figure 16 displays the P-values for the first round. The three plots in the figure show the 5, 16, 

and 83 points mentioned above in table 6. These points are under the line, which means they 

are not random and fail the coincidence test. 

 

Figure 16: Coincidence test P-values for round1 
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On the other hand, we have figure 17 that shows the P-values for round 2. Only using bits when 

calculating P-values reveals 8 non-randomness issues, which was also shown in table 6. Lack of 

dashed lines for the first two plots means that the significance threshold is outside of the range 

of the values shown. 

 

Figure 17: Coincidence test P-values for round2 
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 The Input- Output Independence Test 

 Test Purpose 

The input-output independence test consists of number of subtests. Each subtest examines 

whether a particular bit group of a cryptographic function’s output is independent of particular 

input bit group with the same size.  

 Test Description  

Let C be the ciphertext output from the plaintext P and the encryption key K from randomly 

chosen plaintexts, keys and the corresponding ciphertext produced by the block cipher AES. The 

input-output independence test’s subsets examine each pair of bit groups chosen randomly 

from the input and the output. The size of these bit groups is g, where g takes on the values 1, 

2, 4, 8, ..., N, and N is the maximum size of the ciphertext. The input bit group I is constructed 

from bits selected from randomly generated positions in K \\ P where |I| = g. While O, the 

output bit group is constructed from bits selected from randomly generated positions in C, 

where |O| = g. The test then XORs these like-sized bit groups, V = I ⊕O. V is then checked for 

uniform distribution using two methods: counting the 1’s in each bit position and Chi-square 

test. If the input bit groups are independent of the output bit groups, then V is uniformly 

distributed and classified as random, otherwise it is nonrandom. The input-output 

independence test choses between two binomial models: 𝐻0 where V is uniformly distributed 

and 𝐻1, where V has some other distribution.  Input-output independence test is shown in 

figure 18 below. 
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Figure 18: Input-output independence test 

 

 Applying the Input-Output Independence Test on AES 

Table 7 shows the results of applying the input-output independence test on AES. Applying the 

test revealed failing the test issues in the first two rounds while other rounds passed the test 

and showed acceptable random behavior. 

Dimension Round1 Round2 

Rows 36 0 

Columns 41 0 

Bits 128 0 
Table 7: Input-output independence results 

Figure 19 shows the frequencies of 1’s after applying the input-output independence test on 

the first round.  
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Figure 19: Frequencies of 1's for the input-output independence test in round 1 
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Figure 20 below shows the P-values when applying the input-output independence test on the 

first round.  

 

Figure 20: Input-output independence test P-values for round1 
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When using Chi-square test, the first two rounds failed the input-output independence test. 

Table 8 displays the number of rows, columns, and bits failing the input-output independence 

test.  

Dimension Round1 Round2 

Rows 16 0 

Columns 51 0 

Bits 89 9 
Table 8: Input-output independence results using Chi-squared test 

Figure 21 and 22 below show the P-values when applying the input-output independence test 

on the first and the second rounds using Chi-square test. 
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Figure 21: Input-output independence test P-values for round1 using Chi-squared test 
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Figure 22: Input-output independence test P-values for round2 using Chi-squared test 
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 The Complement Test 

 Test Purpose 

If 𝐶′ is a cryptographic function’s output for the inputs: 𝑃′ and 𝐾′, which are the bitwise 

complements of the original inputs: a plaintext (𝑃) and an encryption key (K). Each subset of the 

complement test’s subsets examines whether particular bit sequences of a cryptographic 

function’s output C are independent of the same bit sequences of 𝐶′. 

 Test Description  

Let C be the ciphertext output when P, a valid plaintext is encrypted with the encryption key K. 

On the other hand, let 𝐶′ be the ciphertext output when ¬P, the bitwise complement of the 

original plaintext is encrypted with key ¬K, the bitwise complement of the original encryption 

key. The complement test investigates all bit groups of size g=1, and B bit groups of size g 

where g takes on the values 2, 4, 8, ..., N and N is the maximum size of the ciphertext. 

Let O and 𝑂′ are like-sized bit groups produced from randomly chosen positions from C and 𝐶′  

respectively. If V= O ⊕ 𝑂′ and V is uniformly distributed, then the cipher-texts C and 𝐶′ are 

independent of each other and V can be said to be random. The complement test decides 

between two binomial models: 𝐻0 where V is uniformly distributed and 𝐻1, where V has some 

other distribution. 

 Applying the Complement Test on AES 

Due to the complement test’s description, it cannot be applied on AES because we don’t have 

the output 𝐶′ since we have no access to encrypt the bitwise complement plaintexts and keys.  
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 The Ciphertext Independence Test  

 Test Purpose 

The ciphertext independence test’s subsets examine if each bit group of a cryptographic 

function’s output is independent of other bit groups in that same output.  

 Test Description 

Let C be the ciphertext output when a plaintext P is encrypted with an encryption key K. The 

ciphertext independence test evaluates each pair of bit groups from the ciphertext C. Let 𝑂1 

and 𝑂2 be two bit groups from two randomly chosen bit positions in the ciphertext C. These 

two bit groups are like-sized with |𝑂1|=|𝑂2|=g where g takes on the values 2, 4, 8, ..., N/2 and 

N is the maximum size of the ciphertext. In addition, 𝑂1 ∩  𝑂2 = ∅, the intersection of these two 

sets must be empty. If the cryptographic function being tested satisfies the ciphertext 

independence criterion, the two bit positions in the ciphertext C (where 𝑂1 and 𝑂2 were 

constructed from) are independent and V=𝑂1⊕𝑂2 is a uniformly distributed variable. Then, 

one of the two models will be chosen: 𝐻0 where V is uniformly distributed and 𝐻1, where V has 

some other distribution. Figure 23 below from Kaminsky and Sorrell paper shows how the 

cipher independence test works. 
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Figure 23: Ciphertext independence test 

 

 Applying the Ciphertext Independence Test on AES 

Table 9 represents the number of rejecting the null hypothesis cases when applying the 

ciphertext independence test on AES using counting the 1’s in each bit position method. 

Dimension Round1 Round2 

Rows 61 0 

Columns 56 0 

Bits 128 25 
Table 9: Ciphertext independence test results 

Figure 24 and 25 show the frequencies of 1’s after applying the ciphertext independence test 

on round 1 and 2. In figure 24 for round 1, all the points are under the dashed lines when using 

bits. The second round in figure 25 only have some failing the test cases. 
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Figure 24: Frequencies of 1's for the ciphertext independence test in round 1 
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Figure 25: Frequencies of 1's for the ciphertext independence test in round 2 
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Figure 26 shows the P-values of the cyphertexts in round 1. All the points in the third plot are 

located under the level of significance. On the other hand, figure 27 only shows some issues in 

the second round.   

 

Figure 26:: Ciphertext independence test P-values for round1 
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Figure 27: Ciphertext independence test P-values for round2 
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Figure 28 and 29 shows the P-values of applying the ciphertext independence test using the 

Chi-squared test method.

 

Figure 28: Ciphertext independence test P-values for round1 using Chi-squared test 
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Figure 29: Ciphertext independence test P-values for round2 using Chi-squared test 
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 The Strong Avalanche Test 

 Test Purpose 

The strong avalanche test’s subsets examine all possible ciphertexts produced by flipping each 

bit of the plaintexts and keys. 

 Test Description  

When P the plaintext is encrypted with the encryption key K, The Ciphertext output C is then 

obtained. Let 𝑃′ is the plaintext produced by flipping one bit in P, the original plaintext. Also, let 

𝐾′ is the encryption key produced by flipping one bit in the original encryption key K, and 𝐶′ is 

the ciphertext output when either a plaintext 𝑃′ is encrypted with the original key K, or the 

original plaintext P is encrypted with key 𝐾′. Thus, the ciphertext 𝐶′ will be containing the bits 

that were produced by flipping all possible bits in both K and P. The strong avalanche test 

analyzes bit groups from both ciphertext outputs C and 𝐶′ by comparing between each bit 

group O from C and the corresponding bit group 𝑂′ from 𝐶′ when |O|=|𝑂′|= g, where g takes a 

value of 1, 2, 4, 8, ..., N, and N is the maximum size of the ciphertext C. If V= O ⊕ 𝑂′ and V is 

uniformly distributed, then each bit of the bit group 𝑂′ differs from the corresponding bit of O 

with probability 1/2 and V can be said to be random. The strong avalanche test then decides 

between two binomial models:  𝐻0 where V is uniformly distributed and 𝐻1, where V has some 

other distribution. Figure 30 shows a simple structure for one round from AES. Each Ciphertext 

C consists of 128 bits. If strong Avalanche test was applied on the first ciphertext 𝐶1,1, both 𝐶1,2 

and 𝐶2,1 are produced by flipping one bit in the plaintext or the encryption key, and could be 

considered as 𝐶′. 
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Figure 30: Structure of an AES round 

 

 Applying the Strong Avalanche Test on AES 

The results are shown in table 10 and figures 31, 32, 33, and 34 below. Only the first two 

rounds seem to fail the strong avalanche test. Second round only has problems when using bits 

in calculating the P-values. 

Dimension Round1 Round2 

Rows 27 0 

Columns 44 2 

Bits 119 27 
Table 10: Strong Avalanche test results 

Figure 31 and 32 show the frequencies of 1’s when applying the strong avalanche test on the 

first two rounds. 
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Figure 31: Frequencies of 1's for the strong avalanche test in round 1 
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Figure 32: Frequencies of 1's for the strong avalanche test in round 2 

Below, there are figure 33 and 34 showing the P-values of applying the strong avalanche test on 

round 1 and 2 of AES. Figure 33 for first round has plenty of points under the significance level. 

Figure 34 for round 2 on the other hand has few non-randomness issues. 
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Figure 33: Strong Avalanche Test P-values for round 1 
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Figure 34: Strong Avalanche Test P-values for round 2 

 

 

 



P a g e  | 55 

 

 

 The Uniformity Test 

 Test Purpose 

The uniformity test examines whether specific bit groups from the ciphertext output C are 

uniformly distributed or not. 

 Test Description  

Let C be the ciphertext output when P, a valid plaintext is encrypted with the encryption key K. 

The uniformity test investigates all bit groups of size g=1, and B bit groups of size g from the 

ciphertext output where g takes on the values 2, 4, 8, ..., N and N is the maximum size of the 

ciphertext. Let O be a bit group produced from randomly chosen positions from C when |O|=g. 

If O is uniformly distributed, then the ciphertext output C can be said to be random. The 

uniformity test choses between two binomial models: 𝐻0 where V is uniformly distributed and 

𝐻1, where V has some other distribution. 

 Applying the Uniformity Test on AES 

The results of applying the uniformity test on AES’s rounds are shown in table 11, figure 35 and 

36 below. The first round is the only round that fails the test and considered not random based 

on the uniformity test. 

Dimension Round1 Round2 

Rows 32 0 

Columns 42 0 

Bits 128 0 
Table 11: Uniformity test results 
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Figure 35: Frequencies of 1's for the uniformity test in round 1 
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Figure 36: Uniformity test P-values for round1 

Table 12, figure 37 and 38 represent applying the uniformity test using the Chi-squared test 

method. In this case, two rounds failed the uniformity test. 

Dimension Round1 Round2 

Rows 43 0 

Columns 61 0 

Bits 128 11 
Table 12: Uniformity test results using Chi-squared test 
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Figure 37: Uniformity test P-values for round1 using Chi-squared test 
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Figure 38: Uniformity test P-values for round2 using Chi-squared test 
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Chapter 7 

       Results and Discussion 

In the previous chapter, CryptoStat test suite was applied on AES. When using counting the 

numbers of 1’s in each bit position, the first round failed all the tests, but the second round 

failed the linear approximation test, coincidence test, ciphertext independence test, and strong 

avalanche test. On the other hand, when using the Chi-squared test method, the first two 

rounds failed all the tests. Other rounds pass the tests and show acceptable randomness.  

Figure 39 shows the results of applying the CryptoStat test suite on AES. 

Also, using the array based approach allowed us to understand the nature of non-randomness 

in AES. For example, using bits always shows more non-randomness cases because it has more 

access to the ciphertexts more than using rows or columns.  

 



P a g e  | 61 

 

 

 

Figure 39: CryptoStat test suite results 

 

To conclude, round 1 and 2 of the AES block cipher are non-random based on CryptoStat test 

suite. The rounds 3, 4, 5, 6, 7, 8, 9, and 10 are random rounds. Although AES was designed to 

have 10 rounds to eliminate the non-randomness, the first two rounds were enough. 
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Chapter 8 

       Conclusion and Future Work 

We hereby conclude the results of this thesis by summarizing the analysis and providing some 

future work. The focus of this thesis is to evaluate the randomness of the Advanced Encryption 

Standard (AES) block cipher, which comprises of 10 rounds. CryptoStat is a statistical test suite 

that evaluates cryptographic functions’ randomness, which includes 7 tests: linear 

approximation test, coincidence test, input output independence test, complement test, 

ciphertext independence test, strong avalanche test, and uniformity test. Except for the 

complement test, these tests were applied on AES using an array based approach and 

hypothesis testing.  

The results show that the first two rounds have some randomness issues. On the other hand, 

the other rounds pass the tests and can be considered random. 

Future work can include adding new statistical tests to CryptoStat test suite, and then applying 

them to AES to investigate its randomness. The array based approach could be used to apply 

other tests on AES or any other block cipher.  
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Appendix A  

Selected R Code 

########AES Structure######## 

> str(C.mat.list) 
List of 3 
 $ A: int [1:129, 1:128] 0 1 0 1 1 1 0 1 0 1 ... 
 $ B: int [1:129, 1:128] 0 1 1 1 0 0 0 0 1 0 ... 
 $ C: int [1:129, 1:129, 1:10, 1:128] 0 1 0 0 1 1 0 1 0 0 ... 
 

######## An array based approach####### 

##Test 1: counting all the 1s and applying 1 binomial test## 

load("C.mat.list") 

C.mat <- C.mat.list$C 

Ind <- c(1,2,4) # 1 for rows, 2 for columns, and 4 for bits  

v <- apply(C.mat,3,sum) 

n <- prod(dim(C.mat)[Ind]) 

p <- v/n 

SE <- sqrt(0.25/n) 

p.val <- 2*(1-pnorm(abs(p-0.5)/SE))*10*100 

round(p.val,1) 
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##Test 2: counting all the 1s in each column and applying 129 binomial tests## 

Ind <- 2 # 1 for rows, 2 for columns, and 4 for bits 

Dim.v <- dim(C.mat)[c(Ind,3)] 

p.val.mat <- matrix(0,Dim.v[1],Dim.v[2]) 

n <- prod(dim(C.mat)[-c(Ind,3)]) # sample size for each test 

SE <- sqrt(0.25/n) 

k <- prod(Dim.v) # number of comparisons 

if (Ind>3) Ind <- Ind - 1 

for (Round in 1:10) { 

  C.mat.R <- C.mat[,,Round,] 

  v <- apply(C.mat.R, Ind, sum) 

  p <- v/n 

  p.val.mat[,Round] <- 2*(1-pnorm(abs(p-0.5)/SE))*k*100  

} 

apply((p.val.mat < 5),2,sum) 

a <- apply(p.val.mat,2,min) 

round(a,1) 
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##Test 3: counting all the 1s in each cell and applying 129*129 binomial tests for each round## 

p.val.f <- function(mat){ 

  Ind <- 2 #1 for rows, 2 for columns, and 4 for bits 

  Dim.v <- dim(C.mat)[c(Ind,3)] 

  p.val.mat <- matrix(0,Dim.v[1],Dim.v[2]) 

  n <- prod(dim(C.mat)[-c(Ind,3)]) # sample size for each test 

  SE <- sqrt(0.25/n) 

  k <- prod(Dim.v) # number of comparisons 

  for (Round in 1:10) { 

    C.mat.R <- C.mat[,,Round,] 

    v <- apply(C.mat.R, Ind, sum) 

    p <- v/n 

    p.val.mat[,Round] <- 2*(1-pnorm(abs(p-0.5)/SE))*k*100  

  } 

  p.val.mat} 

load("C.mat.list") 

C.mat <- C.mat.list$C 
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for (Round in 1:10) { 

  C.mat.R <- C.mat[,,Round,] 

  v <- apply(C.mat.R, 1, p.val.f) 

  v} 

a <-  apply((v < 5),1,sum) 

a2 <- matrix(a,129,10) 

apply(a2 ,2,sum) 

b <- apply(v,1,min) 

b2 <- matrix(b,129,10) 

round(apply(b2,2,min),1) 

 

############# Plotting  round 1 and round 9############ 

Round <- 1 

load("C.mat.list") 

C.R1.mat <- C.mat.list$C[,,Round,] 

par(mfrow=c(3,1)) 

Label <- c("rows", "columns","bits") 
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for (Ind in 1:3) { 

  n <- prod(dim(C.R1.mat)[-Ind]) # sample size for each test 

  k <- dim(C.R1.mat)[Ind] # number of comparisons 

  SE <- sqrt(0.25/n) 

  freq.p.v <- apply(C.R1.mat, Ind, sum) 

  freq.p.v <- freq.p.v/n 

  plot(freq.p.v,xlab=paste("Index for",Label[Ind]), ylab="p = frequency of 1", 

       main=paste("Frequncy of 1's for",Label[Ind])) 

  z.val <- qnorm(1-0.05/(2*k), sd=SE) 

  abline(h = 0.5+z.val,lty=2) 

  abline(h = 0.5-z.val,lty=2) 

} 

#################Coincidence Test################## 

P.val.f <- function(Ind=1,V=c(1,1,1,1)) { 

  Match.V.f <- function(t,V=1) { 

    all(t==V) 

  } 
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  Coincid.vec.test.f <- function(x,V=1) { 

    k <- length(V) 

    m <- floor(length(x)/k) 

    mat <- matrix(x[c(1:(k*m))],k,m) 

    d <- apply(mat,2,Match.V.f,V=V) 

    sum(d) 

  } 

  Coincid.mat.test.f <- function(mat,V=1) { 

    Count.v <- apply(mat,1,Coincid.vec.test.f,V=V) 

    sum(Count.v) 

  } 

  load("C.mat.list") 

  C.mat <- C.mat.list$C 

  Dim.v <- dim(C.mat)[c(Ind,3)] 

  Dim.test.v <- dim(C.mat)[-c(Ind,3)] 

  m <- length(V) 

  n <- Dim.test.v[1]*floor(Dim.test.v[2]/m) # sample size for each test 
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  k <- prod(Dim.v) # number of comparisons 

  SE <- sqrt(0.25/n) 

  p.val.mat <- matrix(0,Dim.v[1],Dim.v[2]) 

  p0 <- 2^(-m) 

  # Now calculating for each round: 

  if (Ind>3) Ind <- Ind - 1 # "manual" adjustment for Ind beyond Round index 

  for (Round in 1:10) { 

    C.mat.R <- C.mat[,,Round,] 

    # here need to apply coincidence test to the matrix (for now to rows only) 

    v <- apply(C.mat.R, Ind, Coincid.mat.test.f,V=V) 

    p <- v/n 

    p.val.mat[,Round] <- 2*(1-pnorm(abs(p-p0)/SE))*k*100  

    # browser() 

    # This needs adjustment if Ind is a vector 

    # *k because of Bonferroni 

    # *100 to get percentages 

  } 
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  p.val.mat # typically 129 by 10 matrix 

} 

b <- P.val.f(Ind=1) 

apply((b < 5),2,sum) 

 

####################Uniformity Test################# 

Unif.P.val.f <- function(Ind=1,V=c(1,1,1,1)) { 

  Unif.vec.test.f <- function(x,V=V) { 

    k <- 32 

    m <- floor(length(x)/k) 

    mat <- matrix(x[c(1:(k*m))],k,m) 

    v1 <- apply(mat,2,sum) 

    v2 <- k-v1 

    v <- rbind(v1,v2) 

    v <- t(v) 

    p.v <- rep(0,m) 

    for(j in 1:m){ 
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      p.v[j] <- chisq.test(v[j,])$ p.val 

    } 

    sum(p.v) 

  } 

  Unif.mat.test.f <- function(mat,V=V) { 

    Count.v <- apply(mat,1,Unif.vec.test.f,V=V) 

    sum(Count.v) 

  } 

  load("C.mat.list") 

  C.mat <- C.mat.list$C 

  Dim.v <- dim(C.mat)[c(Ind,3)] 

  Dim.test.v <- dim(C.mat)[-c(Ind,3)] 

  m <- 32 

  n <- Dim.test.v[1]*floor(Dim.test.v[2]/m) # sample size for each test 

  k <- prod(Dim.v) # number of comparisons 

  SE <- sqrt(0.25/n) 

  p.val.mat <- matrix(0,Dim.v[1],Dim.v[2]) 
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  p0 <- 2^(-1) 

  # Now calculating for each round: 

  if (Ind>3) Ind <- Ind - 1 # "manual" adjustment for Ind beyond Round index 

  for (Round in 1:10) { 

    C.mat.R <- C.mat[,,Round,] 

    # here need to apply coincidence test to the matrix (for now to rows only) 

    v <- apply(C.mat.R, Ind, Unif.mat.test.f,V=V) 

    p <- v/n 

    p.val.mat[,Round] <- 2*(1-pnorm(abs(p-p0)/SE))*k*100 

  } 

  p.val.mat # typically 129 by 10 matrix 

} 

a <- Unif.P.val.f (Ind=1) 

apply((a < 5),2,sum) 
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