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Abstract

There are several different methods for computing a square root of a matrix.
Previous research has been focused on Newton’s method and improving its
speed and stability by application of Schur decomposition called Schur-Newton.

In this thesis, we propose a new method for finding a square root of a matrix
called the exponential method. The exponential method is an iterative method
based on the matrix equation (X−I)2 = C, for C an n×n matrix, that finds an
inverse matrix at the final step as opposed to every step like Newton’s method.
We set up the matrix equation to form a 2n× 2n companion block matrix and
then select the initial matrix C as a seed. With the seed, we run the power
method for a given number of iterations to obtain a 2n × n matrix whose top
block multiplied by the inverse of the bottom block is

√
C + I. We will use

techniques in linear algebra to prove that the exponential method converges to
a specific square root of a matrix when it converges while numerical analysis
techniques will show the rate of convergence. We will compare the outcomes
of the exponential method versus Schur-Newton, and discuss further research
and modifications to improve its versatility.
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1 Introduction

Matrices are tables of elements arranged in set rows and columns, and have long been

used to solve linear equations [3]. A number of operations can be applied to matrices

but the lack of some properties for some operations, such as commutativity with

matrix multiplication, are important to note. Matrices are used in a wide number of

fields such as cryptography, differential equations, graph theory, and statistics. They

also have uses in applications of electronics and imaging science. Understanding

how matrix functions, the mapping of one matrix to another, work and the different

methods of running them is an important topic. Computing the square root of a

matrix is one such matrix function that can be computed in a number of different

ways.

Finding the square root of even a 2 × 2 matrix gets complicated by the fact

that the square of

[
a b

c d

]
is

[
a2 + bc ab+ bd

ac+ cd bc+ d2

]
, so directly taking the square

root of each element in a matrix does not work in nondiagonal matrices [16]. The

lack of commutivity in matrix multiplication and different characterstics of a matrix

also affect the outcome. However, certain groups of matrices have known outcomes

when finding their matrix square roots. For example, matrices with nonnegative

eigenvalues have a square root with positive real parts called the principal square

root [3]. Previous research shows that the matrix square root with positive real

parts to its eigenvalues is unique [15]. Matrices of n × n dimensions and n distinct

nonnegative eigenvalues have 2n square roots, while other matrices such as

[
0 4

0 0

]
have no square root.

There are a number of different methods to find the square root of a number or

matrix but each have associated trade offs. Diagonalization can be used only on a

diagonalizable matrix while Newton’s method requires an inverse at each step and

cannot handle complex entries [1]. We propose a new method called the exponen-

tial method which can be used on nondiagonalizable matrices and requires a matrix

inverse only at the end. Schur decomposition can be used as a pre-step to make a

more manageable matrix for some methods. In fact, using Schur decomposition with

Newton’s method has been analyzed [2]. The exponential method can be made more

versatile in the entries it can solve by introduction of a complex number. On the

other hand, Newton’s method has quadratic convergence when it converges while the

exponential method displays linear convergence.
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In this thesis, we will layout and examine the new exponential method for use in

finding the square root of a matrix. The derivation of the method and an algorithm

for use for real numbers and matrices are first. Proofs on convergence and rate

of convergence examines how the exponential method works and how quickly an

approximation is reached. Comparisons with other methods and possible expansions

to the new method continue the paper. We finish with a conjecture based on the

exponential method about how to quickly find the nondominant square roots of a

matrix requiring the eigenvalues and eigenvectors of said matrix

2 The Exponential Method for Real Numbers

The exponential method is an alternative method to find the square root of a real

number. The derivation of the method comes from sequences. Suppose we have a

polynomial of degree n, which has a nonzero term for all degrees from 0 to n. Let

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 + xn be that polynomial. Since we will be

interested in finding the roots of p(x), we can assume p(x) is monic. Thus we can

define p(x) = xK p̂(x) and because of p̂(x) we have a nonzero constant term.

Now, suppose we have a sequence (x0, x1, x2, · · · ) so that the limit as n → ∞ of
xn+1

xn
= α ∈ C, a nonzero root of p(x) and p̂(x). So there exists some K > 0 such

that |α|
2
< xm+1

xm
≤ 3

2
|α| for all m ≥ K. This root α then p(α) = 0 so we can rewrite

p(α) = 0 as

0 = a0 + a1 lim
m→∞

xm+1

xm
+ a2( lim

m→∞

xm+1

xm
)2 + · · ·+ ( lim

m→∞

xm+1

xm
)m (1)

From this equation, Lemma 2.1 arises.

Lemma 2.1.

( lim
m→∞

xm+1

xm
)n = lim

m→∞

xm+n

xm
(2)

Proof. If α 6= 0 is a root of p̂(x) and thus a root of p(x), then there exists some K

such that K ≤ m < ∞, then xm 6= 0. Then since (xm) is a sequence, we can make

the following observation.
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lim
m→∞

xm+1

xm
= lim

m→∞

xm+2

xm+1

= · · · = lim
m→∞

xm+n

xm+n−1

Therefore,

( lim
m→∞

xm+1

xm
)n

= ( lim
m→∞

xm+1

xm
)( lim
m→∞

xm+2

xm+1

) · · · ( lim
m→∞

xm+n

xm+n−1
)

= lim
m→∞

(
xm+1

xm

xm+2

xm+1

· · · xm+n

xm+n−1
) = lim

m→∞

xm+n

xm

We can rewrite (1) as 0 = a0+a1 limm→∞
xm+1

xm
+a2 limm→∞

xm+2

xm
+· · ·+limm→∞

xm+n

xm
.

Now if we multiply through by xm, we get the approximation

0 ≈ a0xm + a1xm+1 + a2xm+2 + · · ·+ xm+n

Shift values and xm+n ≈ −a0xm − a1xm+1 − a2xm+2 + · · · − an−1xm+n−1. We can

now use this as a recursive property. We seed the recursion with (x0, x1, · · ·xn−1) and

define for m ≥ 1. Then, for m ≥ K, we have

xm+n−1 ≈ −a0xm − a1xm+1 − a2xm+2 + · · · − an−2xm+n−2 (3)

Consider as an example, and starting pointing of this project finding a root to the

polynomial w2 = C. Arranging the setup of the exponential method for real numbers

is as follows.
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1. Given C ∈ R+ and C 6= 1whose square root we are to find.

2. If w2 = (x− 1)2 = C then (x− 1)2 − C = 0.

3. Thus x2 − 2x+ (1− C) = 0.

4. Can rearrange and express as x2 = 2x1 + (C − 1)x0.

5. Thus, xn+2 = 2xn+1 + (C − 1)xn.

6. Let x0 = C and x1 = C.

7. Run for n iterations.

8. Finally, x = xn+1

xn
for last n and x− 1 = xn+1

xn
− 1 ≈

√
C.

Here is an example for looking for the square root of 5. So C = 5 and let n = 14.

Then x0 = 5 and x1 = 5. With 2x1 + (5− 1)x0 = 30, then x2 = 30. If the algorithm

ended there, the ratio of x2 to x1 and subtracting 1 is 30
5
− 1 = 5. Below is table of

values as the exponential method goes through more iterations.

Iteration n = xn
xn+1

xn
− 1

1 5 0

2 30 5

3 80 1.6667

4 280 2.5

5 880 2.1429

6 2880 2.2727

7 9280 2.2222

8 30080 2.2414

9 97280 2.3404

10 314880 2.2368

11 1018880 2.2358

12 3297280 2.2362

13 10670080 2.2360

14 34529280 2.2361

15 111738880 2.2361

The square root of 5 rounded to four decimal places is
√

5 ≈ 2.2361. While xn+1

increases with each iteration, xn+1

xn
− 1 oscillates between values above and below

√
5

until it reaches 2.2361. So after 14 iterations, the exponential method was able to

find a close approximation to
√

5.
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2.1 Analysis of the Exponential Method

Before proving convergence for the exponential method, Lemma 2.2 will help set

up the sequence of xn. This lemma will show that the sequence xn+1

xn
− 1 has an

accumulation point when we place this method within the proper context of the

power method in the next section. We’ll be able to conclude limn→∞
xn+1

xn
− 1 exists.

Lemma 2.2. For C ∈ R+, the sequence x0 = x1 = C and xn+2 = 2xn+1 + (C − 1)xn

is monotonically increasing and the set xn+1

xn
is bounded.

Proof. Have that x0 = x1 = C > 0, then x2 = 2x1 + (C − 1)x0 = x1 + Cx0 > x1. In

general, if xn+1 > xn for n ≥ 2 then we have xn+2 = 2xn+1+(C−1)xn > xn+1+Cxn >

xn+1. Thus xn is monotonically increasing for C > 0.

Now it must be proven that xn+1

xn

∞
n=0

is bounded above and below. Observe that

by the monotonic part, xn+1

xn
≥ 1 and xn

xn+1
< 1 for all n ≥ 0. Also for n ≥ 0,

xn+2 = 2xn+1 + (C − 1)xn. If C > 0, then xn+2

xn+1
= 2 + (C − 1) xn

xn+1
≤ 2 + C − 1.

Therefore, xn+2

xn+1
≤ 2 + C − 1 and thus xn+2

xn+1
≤ C + 1.

2.2 Power Method and the Companion Matrix

The exponential method can be rewritten to use a companion matrix and to more

closely resemble the power method. We have the polynomial p(x) = a0 +a1x+a2x
2 +

· · · + an−1x
n−1 + xn. Polynomial p(x) is monic, it has an n × n companion matrix.

This companion matrix is of the form

L(p) =


−an−1 −an−2 −an−3 · · · −a1 −a0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0


If p(x) = (x− 1)2 = x2 − 2x+ 1, then
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L(p) =

(
2 −1

1 0

)

Then the characteristic polynomial of L(p) is

det

(
2− λ −1

1 −λ

)
= λ2 − 2λ+ 1 (4)

Note that λ2 − 2λ+ 1 is the original polynomial, x2 − 2x+ 1.

This is the standard setup between polynomial and companion matrix that goes

back to at least Marden [22]. There, Marden proceeds to find the roots by using

Gerchgorin disks. For the companion matrix, we choose to use the power method to

find the dominant eigenvalue. To bring in the power method, select a seed matrix

such that v =

[
x0

1

]
with x0 = c and do limm→∞(L(p))mv. As m → ∞, (L(p))mv

will converge to a matrix with columns that are the dominant eigenvector of c and

its dominant eigenvalue [14]. The ratio of xm+1

xm
becomes

lim
m→∞

xm+1

xm
→ L(p)1λ

m+1
1 + L(p)2λ

m+1
2

L(p)1λm1 + L(p)2λm2
= λ1

L(p)1λ
m+1
1 + L(p)2λ

m+1
2

L(p)1λm1 + L(p)2λm2
= λ1 (5)

Note that the roots of a polynomial can be found with the eigenvalues of its

companion matrix [8]. As m→∞, then the eigenvalue of greatest magnitude would

dominate the expression. If the dominating eigenvalue is real, then the power method

converges to the dominanting eigenvalue and corresponding eigenvector if the starting

point does not belong to another eigenspace [20]. Since the exponential method uses

the expression xm+1(xm)−1 and has x0, x1 ∈ R, then the matrix square root associated

with the real dominating eigenvalue would be found.

2.3 Convergence

From subsection 2.2, the exponential method is shown to be a modified version of

the power method. This allows us to use theorems about the power method in the
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analysis of the new algorithm. One example of this is showing that the exponential

method converges.

Theorem 2.3. Let C ∈ R+ be a real positive number for (x− 1)2 = x2− 2x+ 1 = C.

The companion matrix for x2 − 2x − C + 1 = 0 is M =

[
2 C − 1

1 0

]
. The power

method applied to the companion matrix M converges if the dominant eigenvalue is

positive and real.

Proof. The proof for Theorem 2.3 uses matrix powers. Seen in [20] as Theorem 10.3

on pages 590 and 591. Thus the solution to x2 − 2x − C + 1 = 0 is x = 1 ±
√
C

which are also eigenvalues of the companion matrix. Since the power method finds

the eigenvalue with greatest magnitude, x = 1 +
√
C which is what the exponential

method converges to.

2.4 Rate of Convergence for Numbers

Iterative methods have a speed at which a sequence approaches a limit if the sequence

is convergent. Speed is one of the important characteristics of an method that can

result in it being used or not. Comparison between truncation errors of different

iterations is often used in matrix series [11]. For this reason, it is vital to find the

rate of convergence of the exponential method as one possible means of comparison

to other iterative methods.

Theorem 2.4. Let C ∈ R+ be a real number. When limn→∞
xn+1

xn
= 1 +

√
C, the

exponential method has linear rate of convergence with order α = 1 since that results

in a finite limit.

Proof. As shown in Theorem 2.3, limn→∞
xn+1

xn
= 1 +

√
C. Note that xn+2 = 2xn+1 +

(C − 1)xn. By the limit law of reciprocals, limn→∞
xn
xn+1

= 1
1+
√
C

. Arrange the rate of

convergence formula for the exponential method as

7



lim
n→∞

|xn+2

xn+1
− (1 +

√
C)|

|xn+1

xn
− (1 +

√
C)|α

(6)

Have α = 1. Then

lim
n→∞

|xn+2

xn+1
− (1 +

√
C)|

|xn+1

xn
− (1 +

√
C)|

= lim
n→∞

|2xn+1+(C−1)xn
xn+1

− (1 +
√
C)|

|xn+1

xn
− (1 +

√
C)|

= lim
n→∞

|(1−
√
C)− (1− C) xn

xn+1
)|

|xn+1

xn
||1− (1 +

√
C) xn

xn+1
|

= lim
n→∞

|1−
√
C||1− (1 +

√
C) xn

xn+1
)|

|xn+1

xn
||1− (1 +

√
C) xn

xn+1
|

=
|1−
√
C|

1 +
√
C

So when α = 1, then asymptotic error constant is a finite limit of |1−
√
C|

1+
√
C

. But

when α > 1 such that α = 1 + ε with ε > 0, then

lim
n→∞

|xn+2

xn+1
− (1 +

√
C)|

|xn+1

xn
− (1 +

√
C)|1+ε

=
|1−
√
C|

1 +
√
C

( lim
n→∞

1

|xn+1

xn
− (1 +

√
C)|ε

) (7)

But note that

( lim
n→∞

1

|xn+1

xn
− (1 +

√
C)|ε

)→∞

Thus when α > 1, there is no finite limit for the asymptotic error constant for the

exponential method. As such, α = 1 and that means the exponential method has a

linear rate of convergence for real numbers.
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3 The Exponential Method for Matrices

Just as Newton’s method can be applied to the matrix equation X2 − C = 0 for

matrices X and C [1], the exponential method can also be applied to the matrix

equation (X − I)2 − C = 0 with I the identity matrix. By generalizing the scalar

iteration, the exponential method can then be used to find the square root of a matrix.

For this, we will utilize an iterative method so that we generate a sequence of matrices

S0, S1, S2, · · · where S0 = I and S1 = αC for α ∈ C and α 6= 0. Then for k ≥ 2, we

have Sk = 2Sk−1 + (C − I)Sk−2.

The exponential method for real numbers uses the ratio xk+1

xk
for k iterations,

which has a matrix equivalent of Sk+1(S
−1
k ). Because we take a matrix inverse as a

final step, it is important that there is no singular matrix Sk. A matrix is singular if

and only if its determinant is 0. The following lemma is an immediate consequence.

Lemma 3.1. The matrix C and the matrices Sk, as defined by Sk = 2Sk−1 + (C −
I)Sk−2 and with S0 = I and S1 = αC with α ∈ C and α 6= 0, share the same

eigenspaces.

Proof. Let v be an eigenvector of C with corresponding eigenvalue λ. Then S2v =

[2αC + (C − I)I]v = [2αλ+ λ− 1]v. Note that [2αλ+ λ− 1] is a scalar multiple.

Now let λk+1 be an eigenvalue of Sk+1 corresponding to v and λk be an eigenvalue

of Sk corresponding to v. Then Sk+2v = [2Sk+1 +(C−I)Sk]v = [2λk+1 +(λ−1)λk]v.

Note that [2λk+1 + (λ− 1)λk] is a scalar multiple. Since this is done for v being some

random eigenvector of C with its corresponding eigenvalue, it can be extended to the

remaining eigenvectors and eigenvalues. Thus the matrices C and Sk share the same

eigenspace

Lemma 3.1 can be used to show that only finitely many of the Sk may fail to be

invertible since the scalar multiple can equal 0 but only finite times as k →∞.

Lemma 3.2. For C an invertible matrix, any nonzero α ∈ C, if we define S0 = I,

S1 = αC and Sk+2 = 2Sk+1 + (C − I)Sk. Then Sk is invertible for all k ≥ K with

K > 1.

9



Proof. Let Skv = µv, Sk+1v = νv, and λ an eigenvalue of C. Then Sk+2v =

(2ν + (λ − 1)µ)v. Note that 2ν + (λ − 1)µ = 0 if and only if ν
µ

= 1−λ
2

. That is

2ν + (λ− 1)µ = 0, then Sk+2 is singular. Note that νk = µk+1. Thus, µk+1

µk
cannot be

1−λ
2

infinitely often.

If the equality were true infinitely often, then for any ε > 0, there exists K such

that the complex norm |(µk+1

µk
− 1) −

√
λ| < ε for all k ≥ Kλ. But there would be a

k0 ≥ K so that
µk0+1

µk0
= 1−λ

2
such that |1−λ

2
−1−

√
λ| < ε. Then the following complex

norms are of the form

|1− λ− 2− 2
√
λ| < 2ε

| − (1 + λ)− 2
√
λ| < 2ε

|λ+ 2
√
λ+ 1| < 2ε

|(
√
λ+ 1)2| < 2ε (8)

The process produces
√
λ with positive real part. So

√
λ+ 1 has Re(

√
λ+ 1) > 1,

therefore |(
√
λ + 1)2| > 1. This contradicts the above inequality if ε is chosen to be

0 < ε < 1
2
. So while the exponential method might have a singular Sk, as k → ∞ it

becomes very unlikely that we end there.

With each Sk being invertible for sufficiently large k, we can apply similar arith-

metic to matrices as we did with real numbers. The main difference is that matrix

multiplication is not commutative in general. With that fact in mind, the exponential

method can be implemented for matrices as follows:

1. Declare some nonsingular matrix C with dimensions (n, n).

2. Initialize i for number of iterations, S0 = I and S1 = C.

3. Initialize Z = C − I.

4. For i iterations or until Si becomes too ill-conditioned, do Si+1 = 2Si + (Z)(Si−1),

5. After iteration steps stop, find S−1i .

6. Set n× n matrix Q = Si+1(S
−1
i )− I.

10



3.1 Rate of Convergence for Matrices

The rate of convergence of the exponential method for numbers can also be applied

when the method is used on matrices. One would expect that the exponential method

converges linearly when it converges since it is based on the power method [21]. To

prove this, the exponential method will be defined as Sn+2 = 2Sn+1 + (C − I)Sn. We

can modify Theorem 2.4 as follows.

Theorem 3.3. Let C be an invertible matrix with a square root. When limn→∞(Sn+1)(Sn)−1 =

I +
√
C, the exponential method for matrices has a linear rate of convergence with

order α = 1.

Proof. Given that n ≥ K as defined in Lemma 3.2, limn→∞ Sn+1(Sn)−1 = I +
√
C.

Note that Sn+2 = 2Sn+1 + (C − I)Sn. Then, limn→∞ Sn(Sn+1)
−1 = (I +

√
C)−1.

Arrange the rate of convergence formula for the exponential method as

lim
n→∞

|Sn+2(Sn+1)
−1 − (I +

√
C)|(|Sn+1(Sn)−1 − (I +

√
C)|)−1×α (9)

With α = 1. Then

lim
n→∞

|Sn+2(Sn+1)
−1 − (I +

√
C)|(|Sn+1(Sn)−1 − (I +

√
C)|)−1

= lim
n→∞

|(2Sn+1 + (C − I)Sn(Sn+1)
−1)− (I +

√
C)|(|Sn+1(Sn)−1 − (I +

√
C)|)−1

= lim
n→∞

|(2I+(C−I)Sn(Sn+1)
−1)−(I+

√
C)|(|I−(I+

√
C)Sn(Sn+1)

−1||Sn+1(Sn)−1|)−1

= lim
n→∞

|I −
√
C − (I − C)Sn(Sn+1)

−1|(|I − (I +
√
C)Sn(Sn+1)

−1||Sn+1(Sn)−1|)−1

= lim
n→∞

|I −
√
C||I − (I +

√
C)Sn(Sn+1)

−1|(|I − (I +
√
C)Sn(Sn+1)

−1||Sn+1(Sn)−1|)−1

11



= lim
n→∞

|I −
√
C||Sn(Sn+1)

−1|

= |I −
√
C|(I +

√
C)−1 (10)

So when α = 1, then asymptotic error constant is a finite limit of |I −
√
C|(I +√

C)−1. If α > 1, then since the real case in the previous chapter amounts to the

1× 1 matrix case, this would imply that α > 1 in the real case. This has been proven

incorrect.

3.2 Existence of Matrix Square Roots and Number of Square

Roots

Before one starts the task of finding a square root of some sample matrix, it is

worthwhile to make sure that the sample matrix even has a square root. As noted

before, some matrices do not have a square root such as

[
0 1

0 0

]
. One can determine

if a square root exists for a matrix by use of Jordan canonical form. In [3], Gordon

presents a theorem for the existence of square roots of a matrix. This theorem works

on singular and nonsingular matrices and also proves how many distinct square roots

a matrix has.

Theorem 3.4. Let C ∈ Mn, with Mn being the set of all complex matrices. There

are two branches depending on C being nonsingular or singular.

(a) If C is nonsingular and has µ distinct eigenvalues and ν Jordan blocks in its

Jordan canonical form, then it has at least 2µ and at most 2ν nonsimilar square roots.

At least one square root can be expressed as a polynomial in C.

(b) If C is singular and has Jordan canonical form C = SJS−1, then let Jk1(0) +

Jk2(0)+ · · ·+Jkp(0) be the singular part of J . J is arranged such that the blocks are in

decreasing order of size k, so k1 ≥ k2 ≥ · · · ≥ kp ≥ 1. Let δ be the difference between

successive pairs of kp, such that δ1 = k1−k2, δ3 = k3−k4, etc. C has a square root if

and only if δi = 0 or 1 for i = 1, 3, 5, · · · and kp = 1 for odd p. A square root that is

12



a polynomial in C exists if and only if k1 = 1, which is equivalent to rank C = rank

C2.

If C has a square root, its set of square roots lies in finitely many different simi-

larity classes [3].

Proof. The proof for Theorem 3.4 uses the Jordan form theorem. Seen in [3] as

Theorem 5.2 on pages 23 and 24.

3.3 Role of Matrix Inverse

In block-form matrix multiplication, have the matrix product

[
M N

O P

] [
G

H

]
where M , N , O, P , G, and H are all matrices of size n × n. This is called block-

invariant if there exists an n×n matrix R satisfying

[
M N

O P

] [
G

H

]
=

[
RG

RH

]
.

The particular systems is of the form A =

[
2I C − I
I 0

] [
S2

S1

]
which iterates

starting with S2 = C and S1 = I. The main result is that when this iteration

approaches a left block-invariant matrix

[
S2

S1

]
then R = S2S

−1
1 and (R− I)2 = C.

As the exponential method iterates for k iterations, the output eventually becomes

AkB with A the companion matrix and B the seed matrix. Matrix B is a block matrix

with the top half designated S2 and the bottom half designated S1. The process below

will show how S−11 is used in the algorithm and that it will lead one to the square

root of the initial matrix C.

Let

A =

(
2I C − I
I 0

)
and

B =

(
S2

S1

)

With A and B, set R = S2(S1)
−1 such that after k iterations

13



AkB =

(
S2

S1

)

From the exponential method, The next S2 is a linear recurrence of the two previ-

ous terms and this is the same as (R)S2. So (R)S2 = 2S2+(C−I)S1 and (R)S1 = S2.

(R)S2 = 2S2 + (C − I)S1

(R− I)S2 = S2 + (C − I)S1

(R− I)(R)S1 − (R− I)S1 = S2 + (C − I)S1 − (R− I)S1

(R− I)(R− I)S1 = S2 + (C − I − (R− I))S1

(R− I)(R− I)S1 = S2 + (C −R)S1

(R− I)(R− I)S1S
−1
1 = S2S

−1
1 + (C −R)S1S

−1
1

(R− I)2 = R− (C −R) = C

With R = S2(S1)
−1, subtract I from it to find the square root of the initial matrix

C.

3.4 Continued Fractions and Matrix Square Root

Continued fractions are representations of numbers and matrices represented through

an iterative process that involves integers and reciprocals. It was proved that the

approximants of Newton’s method for a square root can be represented by a continued

fraction expansion [6]. One can use continued fractions to prove that the exponential

method goes to a square root of a matrix.

Theorem 3.5. Let Sn+2 = 2Sn+1 + (C− I)Sn be an iterative process with C a square

matrix with a square root. If the sequence Si
∞
i=0 is composed entirely of nonsingular

matrices, then the expression Sn+1(Sn)−1 − I =
√
C.

Proof. Let Yi = Si+1(Si)
−1. Then Sn+2 = 2Sn+1 + (C − I)Sn becomes Yn+1 =

2I + (C − I)Y −1n with the substitution. For the sake of easier reading while using

continued fractions, let Y −1n = 1
Yn

. Now express Yn as a continued fraction.
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Y1 = 2I + (C − I)S0

S1
= 2I + (C−I)

C
= 3I − I

C

Y2 = 2I + C−I
3I− I

C

Y2 = 2I + C−I
2I+ C−I

3I− I
C

· · ·
Yn = 2I + C−I

2I+··· ···
2I+

(C−I)
C

So now Yn has a continued fraction expression. If the sequence Yi converges

to a matrix F , then F = 2I + (C−I)
F

. Multiply the right hand side by F to get

F 2 = 2F + C − I. From there
F 2 = 2F + C − I
F 2 − 2F + I = C

(F − I)2 = C

Since (F−I)2 = C and the sequence Yi converges to F , then F−I = Sn+1(Sn)−1−
I =
√
C.

3.5 Specific Square Root and the Power Method

As stated before, the exponential method is based on the power method and shares

some of the same characteristics. The power method can fail to converge to the

dominant eigenvalue λ1 if there is another eigenvalue λ2 such that λ1 6= λ2 but

|λ1| = |λ2|. The exponential method converges to the quotient Sn+1(Sn)−1 which

is equal to
√
A + I, if it converges. One can use the power method’s convergence

to explain why the exponential method converges to a matrix square root whose

eigenvalues have positive real parts.

Theorem 3.6. Let n×n Jordan block matrix A have a square root and has k Jordan

blocks Ak with k being the number of distinct eigenvalues of A. Let 2n× 2n matrix L

be of the form

[
2I A− I
I 0

]
. Then the exponential method of the companion matrix

form applied to L will output a matrix square root of A with eigenvalues that have

nonnegative real parts, if it converges.
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Proof. It was shown earlier that the exponential method of the companion matrix is

a modified power method and converges to the expression Sn+1(Sn)−1. The power

method converges to the eigenpair where the eigenvalue has the greatest magnitude

out of all eigenvalues of the matrix. It was also shown earlier that the companion

matrix L has twice the eigenvalues of A and are of the form λi = 1 ± √µj with λi

being the ith eigenvalue of L with i = 1, 2, · · · , 2n and µj being the jth eigenvalue of

A with j = 1, 2, · · · , n. So, λi = 1 +
√
µj and λi+1 = 1−√µj. Note that since A is a

Jordan block matrix, operations on the separate blocks are not connected and thus

the exponential method would work on each individual block. With this fact and

λi = 1 ± √µj, one can divide the possible outcomes into three instances depending

on µj.

(1) If µj is a positive real number, then
√
µj ∈ R. Thus, |1 +

√
µj| > |1 −

√
µj|

and the exponential method will go towards the eigenvalue λi = 1 +
√
µj of the ith

Jordan block Ai.

(2) If µj is a complex number of the form a+ bi with a, b ∈ R, then
√
µj will exist

and be in the forms p + qi and −p − qi with p, q ∈ R. However, since µi /∈ (−∞, 0]

then p 6= 0 and we may assume p > 0 and that
√
µi = p+ qi. Make the substitution

to get 1±√µj = 1± (p+ qi). Distribute the minus to get |1 + p+ qi| and |1− p− qi|.
Thus, |1 + p + qi| > |1 − p − qi| and the exponential method will go towards the

eigenvalue λi = 1 +
√
µj of the ith Jordan block Ai.

(3) If µj is a negative real number, then
√
µj is of the form qi with q ∈ R. Note

that |1+qi| =
√

(1)2 + (q)2 and |1−qi| =
√

(1)2 + (−q)2. Thus, |1+
√
µj| = |1−

√
µj|

even though 1 +
√
µj 6= 1−√µj. This situation will cause the power method to fail

since there the two eigenvalues of greatest magnitude are not equal to each other and

the method oscillates at each iteration. If the
√
µj = qi was graphed onto a complex

plane, it would lie directly on the y-axis. Thus, the exponential method fails to find

the square root of a matrix with a negative real eigenvalue.

In the first and second instances, the eigenvalue of A has a positive real part that

is equal to or greater than 1, so Sn+1(Sn)−1− I will not result in a negative real part.

In the third instance, there are two eigenvalues whose magnitudes are equal to each

other but larger than all the other eigenvalues so the exponential method does not

converge in that case. Since the eigenvalues of A have a positive real part, they are

unique [15].
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Finally, it can be proven that the exponential method and Newton’s method will

converge to the same square root of a matrix if they converge.

Theorem 3.7. Newton’s method and the exponential method enacted on a matrix

with a square root C will converge to the same square root of C, the unique matrix

square root that has positive real parts to its eigenvalues.

Proof. Higham has shown that Newton’s method will converge to the matrix square

root that has positive real parts to its eigenvalues if it converges [1]. Theorem 3.6 from

earlier shows that the exponential method will converge to the matrix square root

with eigenvalues that have positive real parts if it converges. Given that the square

root of a matrix with positive real parts to its eigenvalues is in the right complex half-

plane, that square root is thus unique [15]. Thus, both Newton’s method and the

exponential method converge to the same square root of a matrix if they converge.

3.6 Schur Decomposition and Convergence

It has been proven that the exponential method converges for finding the square roots

of real numbers. Schur decomposition can be used as a pre-step to Newton’s method

to improve stability when the initial matrix is ill-conditioned [2]. The method can

also be applied to the eigenvalues of a matrix to determine the square root of said

matrix.

Given a square matrix X of order m with m distinct eigenvalues λ, one can find

matrix U such that UXU−1 =


Λ1 0 0 · · · 0

0 Λ2 0 · · · · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · Λm−1 0

0 0 · · · 0 Λm


Which is the Jordan normal form of matrix X. Each submatrix Λp for 1 ≤ p ≤ m

is of the form
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λ1 1 0 · · · 0

0 λ2 1 · · · · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · λp−1 1

0 0 · · · 0 λp


From the exponential method, let (X − I)2 = C with C an order m matrix with

a square root and I the identity matrix. Then X2 − 2X + I = C and Xn+2 =

2Xn+1 + (C − I)Xn.

Let C have two matrices, W and ∆, such that WCW−1 =


∆1 0 0 · · · 0

0 ∆2 0 · · · · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · ∆p−1 0

0 0 · · · 0 ∆p


Each block matrix ∆p is of the form


δ1 1 0 · · · 0

0 δ2 1 · · · · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · δp−1 1

0 0 · · · 0 δp


So matrix C is converted into Jordan normal form and each block ∆p has a main

diagonal with δp, the eigenvalues of C. Now apply the exponential method block by

block.


λn+2 1 0 · · · 0

0 λn+2 1 · · · · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · λn+2 1

0 0 · · · 0 λn+2

 =
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2λn+1 2 0 · · · 0

0 2λn+1 2 · · · · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 2λn+1 2

0 0 · · · 0 2λn+1

+


δn − 1 1 0 · · · 0

0 δn − 1 1 · · · · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · δn − 1 1

0 0 · · · 0 δn − 1




λn 1 0 · · · 0

0 λn 1 · · · · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · λn 1

0 0 · · · 0 λn


Bring terms together.


λn+2 1 0 · · · 0

0 λn+2 1 · · · · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · λn+2 1

0 0 · · · 0 λn+2

 =


2λn+1 2 0 · · · 0

0 2λn+1 2 · · · · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 2λn+1 2

0 0 · · · 0 2λn+1

+


λn(δn − 1) δn − 1 + λn 0 · · · 0

0 λn(δn − 1) δn − 1 + λn · · · · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · λn(δn − 1) δn − 1 + λn

0 0 · · · 0 λn(δn − 1)


Thus, λn+2 = 2λn+1 + λn(δn − 1) with each block matrix Λ having their main

diagonal of eigenvalues of X be defined by the recurrence relation of the exponential
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method. Assemble the block matrices to get UXU−1, which is the square root of

WCW−1.

3.7 Diagonalization and Schur Decomposition

One issue with the exponential method is that it finds one square root of a given

matrix when there can be more. However, if matrix C is diagonalizable then Schur

decomposition can be used. Schur decomposition takes the given matrix C and con-

verts it into MUM−1, with U being an upper triangular matrix.

If C = MUM−1 and U1/2 is the square root of U , then

(MU1/2M−1)2 = MU1/2(M−1M)U1/2M−1 = MUM−1 = C

Thus, MU1/2M−1 is a square root of C. If C = MUM−1 then C1/2 = MU1/2M−1

and U1/2 the Schur form of C [4]. By finding the upper triangular matrix U1/2, one

can change the sign of the elements to find other square roots of U and thus of A.

Let U
1/2
1 be the square root of U with positive elements. Thus, if

(
a b

0 d

)

and

U
1/2
1 =

(
a b

0 d

)

then

(U
1/2
1 )2 =

(
x2 xy + yz

0 z2

)
=

(
a b

0 d

)
.

Then x = a1/2, z = d1/2, and y = b
a1/2+d1/2

. Suppose the two square roots of a

are a1/2 and −a1/2 and the two square roots of d are d1/2 and −d1/2. Thus y can be
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written in different forms depending on the square roots of a and d. This changes the

signs of the elements of U1/2

y =
b

a1/2 + d1/2

=
b

a1/2 − d1/2

=
b

−a1/2 + d1/2
=

−b
a1/2 − d1/2

=
b

−a1/2 − d1/2
=

−b
a1/2 + d1/2

The exponential method can then be used on U . Knowing the elements of one

square root allows one to find the other square roots. If the square root of d is −d1/2

and z = d1/2, then −z = −d1/2 and (−z)2 = (−d1/2)2. Thus

U
1/2
2 =

(
x y

0 −z

)
=

(
a1/2 b

a1/2−d1/2

0 −d1/2

)
.

From the above form of U1/2, one can multiply by M−1 and M to receive a different

square root of C with different elements. Multiplying U
1/2
1 and U

1/2
2 by −1 gives U

1/2
3

and U
1/2
4 , respectively.

U
1/2
3 =

(
−x −y
0 −z

)

U
1/2
4 =

(
−x −y
0 z

)

Thus by finding U , the Schur form of A, we can find the square root of U and

manipulate its entries to find other square roots of U and therefore of C. Using the

exponential method to directly find other square roots is covered later. The algebra

for 2× 2 matrices is direct but it becomes more difficult for 3× 3 matrices and those

with higher orders.
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3.8 Uniqueness of Matrix Square Roots

By putting the square roots of a matrix on the complex plane, it is shown that there

is a unique square root that exists on the open right half of that plane. In [15],

Johnson et al. prove that for any complex matrix there is a square root whose set of

eigenvalues exist in the right half of the complex plane and that it is unique.

Theorem 3.8. Let C ∈Mn such that the intersection of set of eigenvalues of C and

(∞, 0] is empty. Then there is a unique X ∈ Mn such that X2 = C with the set of

eigenvalues of B contained in the open right half of the complex plane [15].

Proof. The proof for Theorem 3.8 uses Lyapunov’s theorem and Schur’s theorem. It

is found in [15] as Theorem 5 on pages 56 and 57.

Theorem 3.8 from Johnson et al. tells us that only one square root of a matrix

has eigenvalues with positive real components. The exponential method is based on

the power method, which finds the dominant eigenvalue and associate eigenvector

of a matrix [14]. By using it to find the eigenvalues of the companion matrix L(C)

and eigenvectors of C, we can then find other square roots of C with C having order

greater than 2. This requires use of the following Theorem 3.9 and finds some more

but not all of the remaining square roots.

Theorem 3.9. Let C be an n×n matrix with a square root and eigenvalues λ1, λ2, · · ·λm.

Then let D be a 2n × 2n block matrix of the form

[
2I C − I
I 0

]
. The eigenvalues

of D are of the form µm = 1±
√
λm.

Proof. Note that D has four eigenvalues and C has two eigenvalues. Then λ1 is

the largest eigenvalue of C and λ2 is the next largest eigenvalue. Block C − I has

eigenvalues λ1 − 1 and λ2 − 1. Matrix D is the companion matrix of matrix C and

has characteristic polynomial of X2−2X− (λ1−1) or X2−2X− (λ2−1). For λ1−1,

the solution of the quadratic equation is 1±
√
λ1 − 1 + 1 = 1±

√
λ1. For λ2 − 1, the

solution of the quadratic equation is 1±
√
λ1 − 1 + 1 = 1±

√
(λ2).

Thus, each eigenvalue of C results in two eigenvalues of D of the forms 1 +
√
λn

and 1−
√
λn.
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3.9 Finding Other Square Roots of a Matrix

Now one can continue on to find other square roots of C using the eigenvalues of the

companion matrix L(C), but not all that remain. The simple Theorem 3.10 is based

on decomposing the matrix C to C = V SV −1 [17].

Theorem 3.10. Let C be an n × n matrix with square roots and let L(C) be the

block companion matrix formed from the characteristic polynomial of C. Let vi be

the eigenvector associated with λi, the ith eigenvalue of C, with i = 1, 2, · · · , n, with

descending magnitude. Let matrix V have the form
[
v1 v2 · · · vn

]
. Let µk be

the eigenvalues of D formed from λi and are associated with the same eigenvector of

C for k = 1, 2, · · · , n− 1, and let matrix S be a diagonal matrix whose entries are µk

arranged by descending magnitude. Then, V SV −1 − I =
√
C.

Proof. Note that S =


µ1 0 · · · 0

0 µ2 · · · 0

· · · · · · · · · · · ·
0 0 · · · µk

, which is equal to


√
λ1 + 1 0 · · · 0

0
√
λ2 + 1 · · · 0

· · · · · · · · · · · ·
0 0 · · ·

√
λk + 1

 if µk =
√
λn + 1.

Note that the columns of V are arranged so that the eigenvectors of C pair with

their corresponding eigenvalues of C which form the entries of L(C). So V SV −1

represents the decomposition of
√
C + I since S =

√
C + I. By subtracting the

identity matrix I from V SV −1, one revieves V SV −1 − I =
√
C.

What is interesting to note is the exponential method does not need a full set of

eigenvalues and eigenvectors of a matrix to find a square root. It is able to return the

principal square root with one eigenvalue and associated eigenvector if it converges.

The power method can calculate one eigenvalue and one eigenvector at a time until

deflation is used to find other eigenpairs [10]. Even with the exponential method

being based on the power method, it is surprising and counter-intuitive that it is able

to find a square root without complete knowledge of the eigenvalues and eigenvectors

of a matrix.
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4 Modifications and Observations

One advantage of the exponential method compared to other root-finding algorithms

is its customizability. The base method is to use (x − 1)2 = c for real numbers but

the (x+ i− 1)2 = c can be used if c is a complex number. Similarly, the base method

for matrices with real eigenvalues is (S − I)2 = C but (S + iI − I)2 = C can be used

if C has complex eigenvalues. The modified algorithms are shown below.

4.1 Modification for Negative Numbers

With the necessary modification, the exponential method can find the square root of

numbers that Newton’s method cannot handle. This modification allows us to find

the square roots negative negative and thus imaginary square roots to those numbers.

The setup is as follows.

1. Let w = x+ i− 1 and w2 = C.

2. Then (x+ [i− 1])2 − C = 0 if w2 − C = 0.

3. Thus x2 + 2x(i− 1) + (−2i− C) = 0.

4. Can rearrange and express as to x2 = 2(i− 1)x1 + (−2i− C)x0.

5. Thus, xn+2 = (−2i+ 2)xn+1 + (2i+ C)xn.

6. Finally, x = xn+1

xn
for last n and x+ i− 1 = xn

xn−1
+ i− 1 =

√
C.

4.2 Modification for Negative Eigenvalues

The modification for negative numbers can also be applied to matrices with negative

eigenvalues. This modification allows us to find the square roots of matrices with

negative eigenvalues and thus imaginary square roots to those eigenvalues. The setup

for matrices with negative eigenvalues is as follows.

1. Declare some nonsingular matrix A with dimensions (n, n).

2. Initialize i for number of iterations, S1 = C and S2 = C.

3. Initialize Z = 3C − 2I + 2iI.

4. For i iterations or until Si is too ill-conditioned, do Si+1 = 2Si − 2iSi + (Z)(Si−1),

5. After step iterations stop, find S−1i .

6. Set nxn matrix Q = Si+1(S
−1
i ) + iI − I.
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4.3 Ratio of Elements in 2× 2 Matrices and Graphing

Given a 2× 2 matrix C, let S be the square root of C so S2 = C. Let x, y, w, and z

be the elements of S and let a, b, c, d be the elements of C. Thus(
x y

w z

)(
x y

w z

)
=

(
a b

c d

)

(
x2 + yw xy + yz

xw + zw yw + z2

)
=

(
a b

c d

)

From the above matrices

a = x2 + yw

b = xy + yz

c = xw + zw

d = yw + z2

Rearrange to get

P = x2 + yw − a = 0

Q = xy + yz − b = 0

R = xw + zw − c = 0

S = yw + z2 − d = 0

Since S is the square root of C, the above is true.

For any polynomials α, β, γ, and δ, αP +βQ+ γR+ δS = 0 at the points solving

the four equations. From there, set the polynomials equal to an element of S to knock

off a leading term.

If α = y and β = x, then
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αP = x2y + y2w − ay = 0

βQ = x2 + xyz − bx = 0

αP − βQ = xyz − y2w − by + ay = 0

The set of equations is to the third degree. If β = w and γ = y, then

βQ = xyw + ywz − bw = 0

γR = xyw + ywz − cy = 0

βQ− γR = bw − cy = 0

Thus, bw = cy and w = c
b
y if b 6= 0. So the initial matrix C has a ratio that is

preserved in
√
C for b and c. The exponential method preserves the ratio of b and c

so if a seed has bn+1

cn+1
6= bS

cS
, then the algorithm won’t return a correct square root.

By getting the ratio w = c
b
y, then P , Q, R, and S can be rewritten as

P = x2 +
c

b
y2 − a = 0

Q = xy + yz − b = 0

R =
c

b
yx+

c

b
yz − c = 0

S =
c

b
y2 + z2 − d = 0

Note that P , Q, R, and S are in terms of three variables with b and c as constants.

With these manipulations, we can get 3d plots of the exponential method with each

variable being a plane. Where the planes intersect indicate a square root for the

matrix.

The intersection of the three surfaces of the first plot show the square root of the

matrix

[
33 24

48 57

]
. The intersection of the three surfaces of the second plot show

26



the square root of the matrix

[
29 20

20 29

]
.
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Figure 1: 3d plot of intersection of surfaces for a square root of

[
33 24
48 57

]
.
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Figure 2: 3d plot of intersection of surfaces for a square root of

[
29 20
20 29

]
.
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4.4 Ratios of Entries Not in Main Diagonal

Another further point of research is the ratio of matrix entries not in the main diagonal

for n × n matrices where n ≥ 3. It was shown previously the observation that for

2× 2 matrix

[
a b

c d

]
, the ratio of b

c
is preserved for its square root as long as b 6= 0

and c 6= 0. This property appears to extend to larger matrices.

Conjecture 4.1. For 2 × 2 matrix

[
a b

c d

]
that has a square root, the ratio of b

c

is preserved for its square root. Then for n× n matrices that have a square root and

n > 2, the ratio of two entries in the secondary diagonal of a square block is equal

between the matrix and its square root as long as none of the entries are in the main

diagonal of the matrix and none of them are equal to 0.

4.5 Heuristic Rule for Ill-Conditioned Matrices

The exponential method computes a matrix inverse once at the end while Newton’s

method a matrix inverse at every step. While computationally expensive, this means

that Newton’s method can detect a singular matrix at the iteration it appears and

stop there. The exponential method will continue on until at the end the singular

matrix is detected. The matrix Sk is invertible at every step as shown in Lemma

3.2, but becomes very ill-conditioned as the size of its entries increases. Thus the

program would be unable to find an inverse to Sk due to computer limitations. Some

heuristic to tell the program to stop as the matrices become too ill-conditioned would

be useful.

Let B be the output matrix of the iterative portion at the current step and let

n be the order of the matrix B. To determine if the matrices are becoming too

ill-conditioned to continue, calculate at each step r =
(max(bi,j)

n

detB
. If r becomes large

enough that it is represented as a floating point number, then the program is unable

to find the inverse of B at that step. For Maple 2016, the algorithm failed when r

was to the order of 1016 or greater. Thus stopping before that point, when r was to

the order of 1015, means the computer can calculate the inverse of the output matrix

before it becomes too ill-conditioned.
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The calculation r =
(max(bi,j)

n

detB
works in that almost singular matrices have de-

terminants that are almost 0. However, 1
detB

could be masked by large entries in

B. Multiplying by max(bi,j)
n accounts for the largest entry being raised to the nth

power.

An example of this is finding the square root of the matrix

[
33.0001 24

48 57.0001

]
.

After 42 iterations, r goes beyond an order of 1015 and is represented as a floating

point number. S42 is very ill-conditioned and the program cannot calculate its inverse

because of computer limitations. Thus one can determine when the exponential

method is going to run into trouble and find an appropriate cut off point.

5 Results and Comparison

There are a handful of methods that can find the square root of a number and a

matrix. The comparison is to Newton’s method with Schur decomposition. The

exponential method has a linear rate of convergence but Newton’s method has a

quadratic rate of convergence [4]. While Newton’s method returns the square root

faster than the exponential method, the latter has a simpler iteration step. This is

because Newton’s method finds calculates a matrix inverse at every step while the

exponential method only needs a matrix inverse at the end. Comparisons between the

two methods are shown below. Note that the results are to eight significant figures.

1.

In this case, both methods return a square root of

[
33 24

48 57

]
. However, Schur-

Newton returns the output earlier than the exponential method. Every iteration for

n = 1, 2, · · · , 10 is recorded while every fifth iteration is recorded for n > 10.

31



Iteration n = Schur-Newton Exponential

1

[
17 12

24 29

] [
33 24

48 57

]

2

[
9.42926 6.02926

12.0585 15.4585

] [
1.85853 0.05853

0.11707 1.91707

]

3

[
6.22525 3.20172

6.40344 9.42697

] [
11.8665 8.00936

16.0187 19.8758

]

4

[
5.17383 2.17374

4.34749 7.34758

] [
3.02123 0.37417

0.74834 3.39540

]

5

[
5.00475 2.00475

4.00951 7.00951

] [
8.05335 4.85980

9.71961 12.9131

]

6

[
5.00000 2.00000

4.00000 7.00000

] [
3.69227 0.78458

1.56916 4.47686

]

7

[
5.00000 2.00000

4.00000 7.00000

] [
6.62369 3.57645

7.15290 10.2001

]

8

[
5 2

4 7

] [
4.12242 1.14577

2.29154 5.26819

]

9

[
5 2

4 7

] [
5.93797 2.92623

5.85246 8.86421

]

10

[
5 2

4 7

] [
4.41432 1.42017

2.84034 5.83449

]

15

[
5 2

4 7

] [
5.52189 2.21874

4.43748 7.43767

]

20

[
5 2

4 7

] [
4.93160 1.93161

3.86323 6.86322

]

25

[
5 2

4 7

] [
5.02275 2.02275

4.04550 7.04550

]

30

[
5 2

4 7

] [
4.99258 1.99258

3.98516 6.98516

]

2.

Here, the methods look for a square root of the Hilbert matrix
1 0.5 0.33333 0.25

0.5 0.33333 0.25 0.2

0.33333 0.25 0.2 0.166666

0.25 0.2 0.166666 0.142857

.
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Schur-Newtons fails to return a square root while the exponential method suc-

ceeds. Every fifth iteration is represented after the first iteration, up to iteration

25.

Iteration n = Schur-Newton

1


1 0.5 0.33333 0.25

0.5 0.33333 0.25 0.2

0.33333 0.25 0.2 0.166666

0.25 0.2 0.166666 0.142857



5


0.91150 0.33870 0.19352 0.13074

0.33870 0.35574 0.24155 0.18408

0.19325 0.24155 0.25516 0.19947

0.13074 0.18408 0.19947 0.22889



10


0.91146 0.33903 0.19271 0.13098

0.33903 0.35285 0.24745 0.18069

0.19271 0.24745 0.24110 0.20855

0.13098 0.18069 0.20855 0.22260



15


0.91146 0.33903 0.19271 0.13098

0.33903 0.35285 0.24745 0.18069

0.19271 0.24745 0.24110 0.20855

0.13098 0.18069 0.20855 0.22260



20


0.91146 0.33903 0.19271 0.13098

0.33903 0.35285 0.24745 0.18069

0.19271 0.24745 0.24110 0.20855

0.13098 0.18069 0.20855 0.22260



25


−47.9369 550.364 −1324.05 861.119

−27.5129 313.962 −754.801 491.092

−19.6778 223.986 −538.435 350.440

−15.4097 175.166 −421.089 274.138



33



Iteration n = Exponential

1


1 0.5 0.33333 0.25

0.5 0.33333 0.25 0.2

0.33333 0.25 0.2 0.16666

0.25 0.2 0.166666 0.142857



5


0.90638 0.34800 0.19465 0.12847

0.34800 0.32286 0.25167 0.20089

0.19465 0.25167 0.23208 0.20647

0.12847 0.20089 0.20647 0.19700



10


0.91055 0.34267 0.19207 0.12812

0.34267 0.33726 0.25170 0.19174

0.19207 0.25170 0.23524 0.21043

0.12812 0.19174 0.21043 0.20940



15


0.91104 0.34081 0.19229 0.12964

0.34081 0.34488 0.25058 0.18535

0.19229 0.25058 0.23571 0.21115

0.12964 0.18535 0.21115 0.21515



20


0.91126 0.33989 0.19243 0.13042

0.33989 0.34875 0.24995 0.18214

0.19243 0.24995 0.23607 0.21140

0.13042 0.18214 0.21140 0.21819



25


0.91136 0.33972 0.19201 0.13116

0.33945 0.35073 0.24926 0.18087

0.19249 0.24969 0.23617 0.21160

0.13079 0.18075 0.21127 0.21960


The square of the exponential method’s output is the initial matrix. Schur-Newton

gets close to the matrix square root but then diverges as the iterations continue.

3.

In this instance, Schur-Newton is used while the exponential method incorpo-

rates the modification to handle complex numbers from above. The initial matrix is[
−9 1

0 −4

]
and has eigenvalues −9 and −4. With the modification, Schur-Newton

fails to converge while the modified exponential method succeeds. Every fifth iteration

after the first is shown, up to iteration 30.

34



Iteration n = Schur-Newton

1

[
−4 0.50000

0 −1.50000

]

5

[
−2.52459 0.84153

0 1.68306

]

10

[
7.20264 −2.40088

0 −4.80176

]

15

[
47.72390 −15.9079

0 −31.8159

]

20

[
−1.40549 0.46849

0 0.93699

]

25

[
0.35253 −0.11751

0 −0.23502

]

30

[
−4.36977 1.45659

0 2.91318

]

Iteration n = Exponential

1

[
−8 + i 1

0 −3 + i

]

5

[
0.18622− 2.51671i −0.00566 + 0.07176i

0 0.15789− 2.51578i

]

10

[
0.018886− 2.98165i −0.00454 + 0.19638i

0 −0.00382− 1.99970i

]

15

[
0.00115− 2.99955i −0.00022 + 0.19991i

0 0.000053− 1.99957i

]

20

[
0.00005− 3.00000i −0.00001 + 0.20000i

0 −1.85847 ∗ 10−7 − 2.00000i

]

25

[
2.47090 ∗ 10−6 − 3.00000i −4.96647 ∗ 10−7 + 0.20000i

0 −1.23320 ∗ 10−8 − 1.99999i

]

30

[
8.55423 ∗ 10−8 − 3.00000i −1.70311 ∗ 10−8 + 0.20000i

0 3.83062 ∗ 10−8 − 2.00000i

]

The exponential method’s output when squared is approximately the square root

of the initial matrix. However the Schur-Newton’s output when squared is

[
19.0949 1.45659

0 2.91318

]
and not close to the initial matrix.
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6 Possible Future Research

In the previous sections, we analyzed the inner workings of the exponential method.

Now we look outwards to find applications of the new algorithm to other fields. One

such field is Clifford algebra, a form of associative algebra with more dimensions rep-

resenting planes and volumes that has useful properties. There is the quadratic form

formed of variables x, y which form a vector [xy]T as part of the exponential method.

In general, we have f : V → F, where F is a field that cannot have characteristic of

2. Thus, f(λ,X) = λ2f(X).

A Clifford map is a vector space homomorphism φ : V → F and (φv)2 = f(v) as

vectors. If φ(λv) = λφ(v) so φ(λv)2 = λ2φ(v)2 = λ2f(v) = f(λv). From there, we

can define φ(v) =
√
f(v) by the exponential method.

Now, we can define a map f : V → Fnxn with f(λv) = λ2f(v). We will call this

a higher-order quadratic form. Define the corresponding higher-order Clifford map

as φ : V → Fnxn so that (φ(v))2 = f(v). Then we can construct φ(v) to be the

dominant left invariant block

[
SN2

SN1

]
of the matrix

[
2I [f(v)]− I
I 0

]
. Then we

have to consistently choose square roots with Clifford maps for all v. Thankfully,

Theorem 3.6 and Theorem 3.8 allows one to accomplish this and give a constructive

approach to φ(v). Finally, such a left invariant block exists for every v we could define

φ(v) = SN2(SN1)
−1 − I.

By linking the exponential method to Clifford algebra and Clifford maps, it can

be possibly expanded to applications in various topics. Clifford algebra is used in

physics for the study of spacetime and in imaging science for the study of computer

vision.

7 Concluding Remarks

The exponential method can calculate the dominant square root of a matrix when it

converges with a linear rate. If it converges, it converges to the matrix square root

with nonnegative real parts to its eigenvalues. What is interesting to note is that

the new method does not appear to need the full set of eigenvalues and eigenvectors

to find a matrix square root. While the exponential method converges slower than
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Schur-Newton to the same matrix square root, it can be easily modified to converge

for a wider group of matrices.

From previous research, we know whether a given matrix has a square root and

the number of square roots. Furthermore, the uniqueness of the matrix square root

in the right half of the complex plane gives insight into why the exponential method

converges to that particular square root. Matrix functions are an important part of

linear algebra and research is complicated by some matrix operations lacking certain

properties. Stable and versatile ways to implement matrix functions benefit a variety

of theoretical and applied fields.

8 Appendix

Provided below is code for implementation of the base exponential method as it should

be used in Maple.

A := input (Enter an n× n matrix) ;

count := input (Enter the number of iterations) ;

n := Dimension(A) ;

Id := IdentityMatrix(n) ;

SN1 := A ;

SN2 := A ;

Z := A - Id ;

for i from 1 to count do temp := SN2 ; SN2 := (2SN2) + Multiply(Z,SN1) ; SN1

:= temp ; end do :

ISN1 := Matrix Inverse(SN1) ;

SR := Multiply(SN2,ISN1) - Id ;

ANS := Multiply(SR,SR) ;
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The following is the code as implemented in Maple for the exponential method

with a companion matrix.

A := input (Enter an n× n matrix) ;

count := input (Enter the number of iterations) ;

n := Dimension(A) ;

Id := IdentityMatrix(n) ;

Z := A - Id ;

L := <<2Id, Id> | <Z, 0Id>> (L is a 2n× 2n matrix) ;

seed:= <<A, Id>> ;

for i from 1 to count do seed := Multiply(L,seed) ; end do ; (seed is a 2n × n

matrix)

SN2 := <<seed(1,1), ..., seed(1,n)> | <..., ..., ...> | <seed(n,1), ..., seed(n,n)>> ;

SN1 := <<seed(n+1,1), ..., seed(n+1,n)> | <..., ..., ...> | <seed(2n,1), ...,

seed(2n,n)>> ;

ISN1 := MatrixInverse(SN1) ;

SR := Multiply(SN2,ISN1) - Id ;

ANS := Multiply(SR,SR) ;
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