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     Abstract 

 As the traditional eutectic SnPb solder alloy has been outlawed, the electronic industry 

has almost completely transitioned to the lead-free solder alloys [1] [2]. The conventional 

SAC305 solder alloy used in lead-free electronic assembly has a high melting and processing 

temperature with a typical peak reflow temperature of 245ᵒC which is almost 30ᵒC higher than 

traditional eutectic SnPb reflow profile. Some of the drawbacks of this high melting and 

processing temperatures are yield loss due to component warpage which has an impact on solder 

joint formation like bridging, open defects, head on pillow [3], and other drawbacks which 

include circuit board degradation, economic and environmental factors [4],  and brittle failure 

defects in the circuit board like pad cratering. To overcome this, a detailed study has been carried 

out on low temperature lead-free solder paste that utilizes Bi bearing alloys. 

 Three low temperature lead-free solder pastes, Sn-58Bi, Sn-57Bi-1Ag and Sn-40Bi-Cu-

Ni with the melting temperatures of 138ᵒC (which is 45ᵒC below eutectic SnPb and 79ᵒC below 

SAC) were printed on Cu-OSP finish test boards. These pastes were then assembled with 

SAC305, Sn99CN and Sn100C solder spheres. The range of Bi concentrations for various 

mixtures used in this study was calculated to be in the range of 2 to 4 wt%. The mixtures were 

reflowed under two different low temperatures reflow profiles; (a) a traditional SnPb profile with 

a peak temperature 217ᵒC and (b) a low temperature SnBi profile with a peak temperature 177ᵒC 

(recommended by the paste manufacturer). After the assembly process, the mixed solder joints 

were shear tested to study the failure modes and shear strength at rate of 27.50mils/sec. Cross 

sectioning was performed to evaluate the possible microstructural changes at room temperature 

and after aging conditions that may have led to the changes in failure mode observed in shear 

testing. The isothermal aging condition used in the study is 125ᵒC for 200 hours, which mimics 
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21 years of field storage at 25ᵒC degrees using Arrhenius extrapolation for Cu6Sn5 intermetallic 

formation. Our study suggests that high temperature reflow profile (217ᵒC peak profile) had 

better mechanical strength than the low temperature reflow profile (177ᵒC peak profile). A 

metallurgical explanation for the improvement is presented in this paper. Thus, this paper 

describes that by generating a robust reflow assembly process for SnBi solder paste, the shear 

strength can be increased, cost of manufacturing can be reduced and high temperature assembly 

process (SAC) issues can be minimized which may improve product yield in production.  
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1.0 Chapter 1 - Introduction 

 Solder alloy is the key constituent in the printed circuit board assembly process since it is 

used to join the electronic components to the board. The solder alloy initially used by the industry 

was eutectic SnPb alloy (63Sn-37Pb). It is known as eutectic solder because there is no pasty range 

i.e. the solder alloys melts and solidifies at single temperature (here 183ᵒC) [5] [6]. The solder joint 

formed should be strong and reliable in terms of electrical connection, mechanical strength and 

have good thermal properties [7]. Eutectic SnPb was an ideal solder alloy since it performs well in 

wetting a wide range of PCB surface finishes, has a melting point well above most electronics 

operational temperatures and exhibits excellent reliability in a variety of stress conditions. 

 Due to environmental and human health related issue regarding the toxicity of lead, the 

WEEE (The Waste Electrical and Electronic Equipment Directive) and the RoHS (The Restriction 

of Hazardous Substances Directive) legislation has banned lead in solder alloys and significant 

research and development was carried out on lead-free solder alloy alternatives. Considerable 

research has been conducted on electronics devices processed with lead-free solder alloys and their 

performance as compared to SnPb in accelerated life testing and processing conditions [8] [9] [10] 

[11] [12]. Before the introduction of lead-free assembly process the electronic industry has been 

using the tin-lead solder alloy because of the advantages like low melting temperature, good 

wettability, solder joint reliability, ease of handling and low cost. After the RoHS legislation, 

leading researches were carried out and many lead-free solder alloys were suggested as a potential 

replacement for SnPb solder. The most promising suggestion were solder alloys with tin and 

copper, tin and silver, and tin, silver and copper(SAC alloy) [13]. As the electronics industry 

depends on outsourcing to contract manufacturers, a single replacement of SnPb solder alloys is 
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prioritized in order to have an advantage of standardization. So NEMI and IPC recommended 

SAC305 alloy [Sn(96.5wt%) Ag(3wt%) Cu(0.5wt%)] as the replacement for SnPb as it was 

considered to be the next most reliable solder alloy because of its good wetting and mechanical 

properties [14] [15]. 

 SAC solder alloys have gained acceptance as the most used solder alloys in the electronic 

industry. There are various compositions of SAC alloys like SAC105[Sn(98.5wt%) Ag(1wt%)  

Cu(0.5wt%)], SAC305[Sn(96.5wt%) Ag(3wt%) Cu(0.5wt%)], SAC405[Sn(95.5wt%)Ag (4wt%) 

Cu(0.5wt%)], SACX (low Ag lead-free solder alloy) etc. The addition of silver to the solder alloys 

has both advantage and disadvantage, which depends on the application and package requirements. 

Some of the advantage of addition of silver are, it reduces the melting temperature, improves 

wettability, and results in better thermal fatigue property whereas the disadvantages are poor drop 

shock performance, higher cost as the percentage of silver in the solder alloy increases and high Cu 

dissolution rates. [16] [17] 

 One of the biggest concerns regarding the SAC alloy is the high melting and processing 

temperatures.  Since the SAC alloy has the high temperature assembly process, the intermetallic 

tends to be thicker as compared to the SnPb process at the solder-substrate interface which can have 

an effect on the mechanical performance of the solder joint. [18]  

 The solder material reacts with the substrate material and forms an intermetallic compound 

layer at the solder substrate interface. The intermetallic growth once formed will continue to grow 

throughout the life of the solder joint. As the intermetallic layer grows thicker, the solder joint 

becomes more likely to fail through the intermetallic. This is due to the inherent brittle condition of 

the crystal like intermetallic as compared to the amorphous solder. Thick intermetallics pose a 
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reliability risk for the solder joint in case of vibration or any mechanical stress that the substrate is 

subjected to. The intermetallic layer growth rate is proportional to the temperature and follows the 

Arrhenius equation; at high temperature the growth rate is faster due to increase in diffusion rates. 

As the solder melts, the tin will continue to migrate into pad material as long as the temperature is 

above the melting point. However, the time and temperature should be controlled until the desired 

wetting is achieved. If the time in which the solder stays liquidus is high, then the dissolution will 

be high and the intermetallics will continue to grow. One of the studies shows that thickness of 

intermetallic layer depends on the solder alloy, the surface finish material used and the temperature 

at which it is maintained [19]. 

 K.Banerji et al. says that high processing temperature creates excessive brittle intermetallic 

layer which results in weak solder joint formation which is the primary issue in the reliability of 

BGA packages [20]. One of the study [21] Suh, Daewoong et al. says that the higher yield strength 

and elastic modulus of SAC alloys results in poor drop shock resistance because it tends to break at 

the IMC. Another concern about the SAC alloy is the presence of silver in the alloy. Silver being 

expensive makes it economically less favorable to be used in the consumer electronic products. 

 An ideal lead-free solder alloy replacement for SnPb solder should meet the following 

requirements; low melting and processing temperature, good mechanical and thermal properties, 

good wettability, good thermal properties, non-hazardous, availability of resources and low cost 

[22] [23].  

 The electronic industry wants to get rid of lead but at the same time, it does not want high 

temperature lead-free assembly process. To overcome this, research has been carried out on low 

temperature lead-free solder alloys. Gallium, Indium, Bismuth, Zinc and Cadmium are just some of 

the alloying elements which are effective in reducing the melting temperature of solder alloys. 
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Since cadmium is toxic, it is not considered and Gallium containing alloys are not suitable because 

they are liquidus at room temperature, too costly and have supply issues. Bismuth and Indium are 

considered to have similar unique properties, but Indium is much more expensive than any other 

alloying elements used in solders. Current cost for Indium is approximately $200/kg [24]. Zinc is 

not considered because of the oxidation issue and brittle nature of the material. Studies show that 

Sn - Zn based solder alloys have poor wetting properties and they are easily prone to oxidation and 

corrosion [25] [26] [27] [28]. Therefore, bismuth is a suitable alloying element to reduce the 

melting temperature. Moreover, the price range of bismuth is similar as tin [24]. 

 A study by J.S Hwang et al. shows that bismuth based alloys has higher yield and tensile 

strength than SAC alloys. In the Jeong-won Yoon et al. study the eutectic Sn-58Bi solder alloys was 

shown to have a higher strength and creep resistance than the eutectic Sn-Pb solder alloy [29]. 

1.1 Why Bismuth based Solder Alloys 

 SnPb was proven to provide desirable soldering performance and reliability. But, the use of 

lead in the consumer products has been outlawed by Restriction of Hazardous Substances directive 

(RoHS) [30]. At present, PCB's that are used in consumer electronic products are assembled with 

components by reflow soldering with lead-free solder SnAgCu (SAC) which was recommended by 

NEMI [31] . SAC305 solder alloy has the peak assembly processing temperature range of 240ᵒC to 

260ᵒC. Some of the issues with this high temperature SAC solder alloys are: 

a) High melting and processing temperatures which necessitated the use of high Tg boards. 

These high Tg boards are more prone to defects like pad cratering [32].  
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b) Due to high processing temperature CTE mismatch issue arises which may lead to warpage. 

This warpage has an impact on solder joint formation like bridging, head on pillow, open 

defects etc. [33] [34]  

c) SAC solder was proved to have fast coarsening of microstructure resulting in degradation of 

mechanical and thermo-mechanical properties during aging [35] 

d) Economic factor is an issue because as the melting point of the solder alloy goes high, the 

need for high Tg boards and the energy costs in running the reflow oven increases the cost 

of manufacturing. Environment factors like greenhouse gases emissions are significantly 

high with the high temperature solder alloy reflow process   

To overcome these issues, there has been increasing interest in the research of low temperature 

lead-free solder alloys.  To address this we have carried out a study on low temperature lead-free 

solder alloys. The base metal for most solders is tin which melts at 235ᵒC. Number of other alloying 

elements are used to lower the alloys melting temperature. NASA, DOD and other previous 

researches were carried out with SAC solder containing small amount of Bi was found to reduce the 

melting temperature to 206ᵒC and improved thermal cycling reliability. This shows that when Bi is 

added to SAC solder the melting temperature is reduced and the reliability is improved. But these 

researches were focused mainly on reducing the melting temperature of the solder alloy and they 

lacked in detailed investigation of mechanical strength, material behavior, failure mechanisms and 

microstructural analysis. It was also that a risk associated with mixing SnBi paste with SnPb 

terminated component. It was found that the melting temperature of the resulting could produce a 

low temperature alloy (96ᵒC melting temperature) which is very low when compared to the 

operating and processing temperatures of most electronic devices. Finally, one of the studies tells 

that by adding bismuth, 2 to 4 wt% to tin, tin whisker growth can be reduced to some extent [36].   
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  Currently research is being carried out on low melting point, high concentration bismuth in 

tin-based solder alloys like Sn-58wt%Bi, Sn-57wt%Bi-1wt%Ag and Sn-40wt%Bi-Cu-Ni. SnBi 

solder paste is in the market already but one drawback of not using in consumer products has been 

its brittleness under mechanical shock conditions [37]. A few studies proved that by adding 

0.25wt% to 1.0wt% of silver to SnBi binary alloy, can improve the ductility and reduce the brittle 

deformation behavior of SnBi alloys [38] [39]. Moreover, recent research has revealed that by 

mixing BGA solder balls with Bi-Sn-Ag solder paste has shown significant reduction in mechanical 

drop reliability when compared with solder joints formed with SAC solder paste plus SAC ball [40] 

[41]. However, no paper has discussed the mechanical behavior, or the microstructure of the solder 

joint and its effect on failure mechanism in mixing SnBi solder paste with the lead-free solder balls. 

 The objective of this research is to provide the industry with processing recommendation for 

products that are assembled using high temperature SAC solder balls with low temperature SnBi 

solder paste. 

 In this study we have focused on the analysis of mixing lead-free solder spheres like 

SAC305(Sn-3.0wt%Ag-0.5wt%Cu), Sn100C(Sn-0.7wt%Cu-0.05wt%Ni+Ge) and Sn99CN(Sn-

1.1wt%Ag-0.7wt%Cu-0.05wt%Ni+α) with low temperature SnBi solder pastes like L20(Sn-

58wt%Bi), L23(Sn-57wt%Bi-1wt%Ag) and L27(Sn-40wt%Bi-Cu-Ni (the wt% of Cu-Ni is less 

than 1% cumulatively)) manufactured by Senju Metal Industry Co Limited. We have also studied 

the shear strength and microstructure analysis after cross sectioning to give a better understanding 

of mixing these lead-free solder balls with low temperature SnBi solder paste in terms of 

convection reflow process, failure mode, mechanical reliability, IMC growth, and the size and 

distribution of various precipitates in solder joint formation.  
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2.0 Chapter 2 - Experimental Approach 

2.1 Solder Alloys Used 

 The list of lead-free solder spheres and the Bi bearing solder pastes used in this study are 

described in Table 1 

Solder Alloy Composition in Wt% Melting Point (ᵒC) Sphere Diameter  

SAC 305 Sn/3.0Ag/0.5Cu 215ᵒC 30mils 

Sn100C Sn/0.7Cu/0.05Ni+Ge  227ᵒC 20mils 

Sn99CN Sn/1.1Ag/0.7Cu/0.05Ni+α  227ᵒC 18mils 

L20 Sn/58Bi 139ᵒC ~ 141ᵒC Type 4 -Solder Paste 

L23 Sn-57Bi-1Ag 138ᵒC ~ 204ᵒC Type 4 -Solder Paste 

L27 Sn/40Bi-Cu-Ni 138ᵒC ~ 174ᵒC Type 4 -Solder Paste 

Table 1 - List of Solder Alloys used in the study 

2.2 Board Details 

 Universal Instruments Corporation, a global leader in the design and manufacture of 

advanced automation and assembly equipment for the electronics manufacturing industry, provided 

one of their soldering test boards. These boards were plated in Cu-OSP surface finish. The board 

dimensions and thickness are 66 x 66 mm and 2 mm respectively. The board has 7 different pad 

dimensions with 75 pads for each dimension which are all solder mask defined. The picture of the 

board is in Figure 1.  The nominal and measured pad dimensions are in table 2. 
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Figure 1 -Cu-OSP test board 

         

 

 

 

 

 

 

 

Table 2 - Board Dimensions 

 

 

 

Nominal Pad Diameter 

(mils) 

Measured Pad Diameter 

(mils) 

12 10.8 

14 12.8 

16 14.7 

18 16.8 

20 18.9 

22 21.0 

24 23.0 
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2.3 Reflow Oven 

 A reflow profile is the time-temperature relationship of the printed circuit board assembly as 

it runs through the oven. It is a result of the oven recipe developed for the heating and cooling zones 

of convection reflow oven. A Heller 1808 MK III convection oven was used for our 

experimentation. It is a forced convection reflow oven with eight heat zones and two cooling zones. 

It has a single-rail edge hold conveyor belt that is adjustable to accommodate different board size 

(max 20 inches wide) and the maximum conveyor speed is 80 centimeters per minute. It is an ISO 

9001 CMS certified and lead-free approved machine.  

2.4 Thermal Profiling 

 SlimKIC 2000 is the name of the thermal profiler used to create thermal reflow profile for 

the test sample used in this experiment. It has 9 thermocouple (TC) channels/inputs which includes 

a TC for reading air temperature. The KIC profilers have a configuration that can transmit real-time 

data as it moves in the oven and it can simultaneously record the data internally. When the KIC 

profiler comes out of the oven, the internally recorded profile data is wirelessly downloaded into the 

screen as real-time profile. SlimKIC software has the powerful feature called PWI (Process 

Window Index). This tool ranks the generated thermal profile and tells how it fits the standard 

profile given by solder manufacturer. The center of the process window is set to be zero and the 

extreme edges are +/- 99%. When this exceeds greater than +/-100% it tells that the profile is out of 

process specifications. The calculation for PWI is explained in detail in the next section in Figure 5. 

 There are two types of reflow profile a) Ramp-Soak-Spike and b) Ramp-to-Spike.  

The Ramp-Soak-Spike profile has four zones: Ramp up, Soak, Spike and Ramp down. Ramp is 

defined as the rate of change in temperature (ᵒC) over time (seconds). The soak zone is to bring the 
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component and PCB to equilibrium stage in terms of heat energy so that thermal shock can be 

prevented. The spike zone is where the time above liquidus is calculated for a given temperate 

range i.e. the time exceeding the melting point of the alloy. The figure of ramp-soak-spike profile is 

shown in Figure 2 below. 

 

Figure 2 - Ramp-Soak-Spike Reflow Profile 

  The ramp down zone is the cooling section. The Ramp-to-Spike profile has 3 zones. The 

profile looks like a linear graph with a ramp up zone to spike and then ramp down. There is no soak 

zone and the soak here is controlled by the conveyor speed. The reflow profile used in our study is 

the ramp-to-spike profile. The figure of ramp-to-spike profile is shown in Figure 3 below. 
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Figure 3 - Ramp-to-Spike Reflow Profile 

 The profile in figure 4 below shows the comparison of lead-free solder and SnPb solder 

alloys. It can be seen from the profile that lead-free profile as higher temperature than the SnPb 

profile profile. The melting point of SnPb is 183ᵒC and for the lead-free solder alloy (here SAC305) 

is 215ᵒC. The differences in the melting point between these two profiles are 34ᵒC. The peak 

temperature for the SnPb profile is 220ᵒC and the peak temperature for the lead-free solder alloys is 

260ᵒC. The differences in the peak temperature between these two profiles are 40ᵒC. This clearly 

shows that the SAC305 alloy has higher processing temperature than SnPb profile. To reduce this 

higher processing temperature, low melting SnBi solder alloys are used.  
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Figure 4 - Comparison of Lead-free and High temperature profile 

 To start the reflow profiling, thermocouple is attached on the pad. The Heller oven is 

allowed to heat until all zones reaches its set temperatures. Then the test boards with the 

thermocouples attached in it are sent to the reflow machine and desired profile was generated. The 

generated profile was analyzed and necessary changes were made on the zone temperatures until we 

get the optimum profile that relates to the solder alloy used.  

The following are the parameter that needs to be considered for the reflow profiling: maximum 

rising slope, maximum falling slope, reflow time (time above liquidus), peak temperature, conveyor 

speed and process window index.  

1) Maximum Rising Slope - It is the rate of change in rising temperature to time which is expressed 

in degrees per second. 
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2) Maximum Falling Slope - It is the rate of change in falling temperature to time which is 

expressed in degrees per second. 

3) Time Above Liquidus (TAL) - It is the time exceeding the melting point of the alloy over certain 

temperature range. It is expressed in seconds. 

4) Peak Temperature - It is the maximum temperature the board undergoes during the reflow 

profile. It is expressed in degree centigrade. 

5) Conveyor Speed - It is the speed at which the conveyor rail runs inside the reflow oven. It is 

expressed in centimeters per minute. 

6) Process Window Index (PWI) - PWI is a statistical tool that comes with SlimKIC software. PWI 

is a measure that tells how well a profile fits the user defined process limits. It compares the 

generated reflow profile with the standard reflow profile given by solder manufacturer and shows 

how good the generated profile is in terms of standard specification. It is expressed in percentage. 

The profile is considered good if the PWI is between +/- 99%. If PWI exceeds more than this then 

the process is not acceptable. For example, if four thermocouple are used for running a profile and 

four profile statistic are logged for each thermocouple then there would be 16 statistic for that 

profile and the PWI will be the worst case i.e. the highest number expressed as percentage in that 

set of profile statistics. The Figure 5 below shows four statistics like slope, soak time, peak 

temperature and time above liquidus. The PWI is calculated for individual statistic using the 

formula below and it is found to be 0%, 20%, 60% and 40% respectively and the overall PWI for 

the profile is 60% (highest number expressed as percentage).   
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Figure 5 -PWI Calculation 

The formula for Process Window Index calculation (PWI) [42] is as follows, 

 

i =1 to N (number of thermocouples) 

j = 1 to M (number of statistic per thermocouple) 

Measured value[i,j] =[i,j]th statistic's value 

Average limits[i,j] = average of the [i,j]th  statistic's high and low limits 

Range[i,j] = [i,j]th statistic's high limit minus the low limit 
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 Now, let us see the generated reflow profile of low temperature and high temperature 

(SnPb) reflow profile process. The zone temperatures of the profile and its parameters are in Table 

3 and  

 

Table 4. The reflow profile of low temperature and high temperature reflow profile are shown in 

Figure 4 and Figure 5. 

A) High Temperature Reflow Profile 

  

Figure 4 -  High Temperature Reflow Profile 

Zone Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Conveyor Speed 

- 54.0cm/min 

PWI - 60% 

Temp(ᵒC) 90 95  100 135 138 138 195 200 

Table 3 - Zone Temperatures of High Temperature Reflow Profile 



 

16 
 

B) Low Temperature Reflow Profile  

   

Figure 5 - Low Temperature Reflow Profile 

 

 

Table 4 - Zone Temperatures of Low Temperature Paste 

The solder manufacturers recommended reflow specification for high temperature and low 

temperature reflow profile is as follows in Table 5 

Table 5 - Recommended Reflow Specifications 

Zone Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Conveyor Speed- 

47.0 cm/min 

PWI - 73% 

Temp(ᵒC) 90 120 150 165 175 175 255 260 

Reflow Profile Max Rising Slope 

(ᵒC/seconds) 

Soak Time 

(seconds) 

Peak Temp 

 (ᵒC) 

Time Above Liquidus 

(seconds) 

High Temp 0 - 1.5  0 - 60 205 - 225 30 - 90 

Low Temp 0 - 2 0 - 60 165 - 200 60 - 120 
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The actual generated reflow profile specification for high temperature and low temperature process 

is shown in Table 6 below. All the reflow parameters are within the specification given by the 

solder manufacturers and the process window index of both the profiles are with the acceptable 

range. 

Reflow Profile Max Rising Slope 

(ᵒC/seconds) 

Soak Time 

(seconds) 

Peak Temp 

(ᵒC) 

Time Above Liquidus 

(seconds) 

High Temp 1.45 48 217 76 

Low Temp  0.98 50 177 101 

Table 6 - The Actual Reflow Specifications 

2.5 BGA on Solder Paste attachment 

 Once the desired profile were generated, the SnBi solder paste are printed using a stencil 

and lead-free solder spheres are populated on the paste deposited. Three low-temperature solder 

pastes Bi-42Sn, Sn-57Bi-1Ag and Sn-40Bi-Cu-Ni with the melting point of 138ᵒC are deposited 

using stencil and squeegee on the Cu-OSP finish test boards. A stencil is used in order to get 

uniform solder paste deposition in the entire pad.  Thickness of the stencil used is 4.33 mils. Then, 

SAC 305, Sn100C and Sn99CN solder spheres are placed on the solder paste deposited manually 

using tweezers and the microscope. The solder spheres are placed on considerably smaller pads so 

that it will provide an ideal shape to the soldered sphere for shear testing. The Table 7 below shows 

the size of the solder sphere and the nominal pad diameter on which it is placed.  
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Solder Sphere Solder Sphere Size 

(mils) 

Nominal pad diameter on which 

solder sphere are placed (mils) 

SAC305 30 24 

Sn100C 20 14 

Sn99CN 18 12 

Table 7 - Solder sphere size and nominal pad diameter on which solder sphere are placed 

  

Figure 6 - Mixed Solder Alloy – SnBi paste + Lead-free balls 

 After populating the boards with solder spheres, it is then sent into the reflow oven. Two 

different reflow profiles were used, a) High temperature profile (Eutectic Tin-Lead profile with the 

melting temperature of 183ᵒC, peak temperature of 217ᵒC and time above liquidus (TAL) of 73 

seconds) and b) Low temperature profile (SnBi reflow profile with the melting temperature of 

138ᵒC, peak temperature of 176ᵒC and TAL of 111.6 seconds). Comparison is done with the 

traditional SnPb (Here high temperature profile), because it is considered as the standard profile 

earlier. Shear testing was done to study the mechanical strength of the mixed solder alloy. The 

Figure 7 below shows the solder ball after reflow for shear testing. 
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Figure 7 - Solder ball after reflow for shear testing 
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2.6 Sample Solder Mixture Calculation 

Volume of L20 paste - πr2h 

   r – Radius of the stencil (10.8 mils) 

   h – Thickness of the stencil (4.33 mils) 

 Volume of L20 paste = π x (0.0108)2x 0.00433 (1 mil = 0.001inch) 

                                    = 1.59x10-6 inch3 

                                                     = 2.6x10-5cm3  (1 inch3 = 16.387 cm3) 

 Volume of SAC305 ball = 
4

3
 πr3 

    r – Radius of the SAC305 sphere (30 mils) 

                           = 
4

3
 x π x (0.015)3 

                                     = 1.4x10-5 inch3 (1 mil = 0.001inch) 

                                     = 2.3x10-4cm3   (1 inch3 = 16.387 cm3) 

 Density X Volume = Mass 

For L20 - 8.62 g/cm3x (2.6x10-5cm3x 50%) = 0.000112g (Type 4 Solder Paste = 50% Solder Wgt, 

50% flux wgt) 

               Mass, m1= 0.112mg             ----- (1)                                    

For SAC305 – 7.39 g/cm3x 2.3x10-4cm3 =0.00171g 

              Mass, m2 = 1.71mg     ----- (2) 

Total Mass = m1+m2 = 1.822mg      ----- (3) 

Composition L20 Paste - Sn - 42 wt% 

                                         Bi - 58 wt%      ----- (4) 
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Composition of SAC305 ball - Sn - 96.5 wt% 

                                                    Ag - 3.0 wt% 

                                                    Cu - 0.5 wt%     ----- (5) 

By multiplying individual composition of L20 paste (equation 4) to the mass of L20 paste (equation 

1), we get weight in mg of L20Paste. 

Bi - 0.065 mg 

Sn - 0.047 mg      ----- (6) 

Similarly, by multiplying individual composition of SAC305 ball (equation 5) to the mass of 

SAC305 ball (equation 2) we get weight in mg of SAC305 ball. 

Sn - 1.650 mg 

Ag - 0.0513 mg 

Cu - 0.00855 mg      ----- (7) 

Adding equation (6) and equation (7) we get the weight in mg of the resulting mixture, 

Sn -1.697 mg 

Bi - 0.065 mg 

Ag - 0.0513 mg 

Cu - 0.00855 mg      ----- (8) 

To get the resulting mixture in wgt %,  the individual composition of mixture in equation (8) is 

divided by total mass in equation (3), 
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L20 + SAC305 = Sn – 93.14 wt% 

                            Bi – 3.56 wt% 

                            Ag – 2.81 wt% 

                            Cu -  0.47 wt%  

Similar calculation is done for other solder paste and solder ball combination and the resulting 

mixture in weight percentage is calculated which shown in Table 8    

Mixed Solder Alloy Composition in Wt % of Solder Mixture After Reflow 

L20 + SAC305 Sn - 93.14% 

Bi - 3.56% 

Ag - 2.81% 

Cu - 0.47% 

L23 + SAC305 Sn - 93.15% 

Bi - 3.50% 

Ag - 2.87% 

Cu - 0.47% 

L27 + SAC305 Sn - 94.31% 

Bi - 2.33% 

Ag - 2.82% 

Cu - 0.5% 

Ni - 0.029% 

L20 + Sn100C Sn - 95.21% 
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Bi - 4% 

Cu - 0.651% 

Ni - 0.023% 

Ge - 0.023% 

L23 + Sn100C Sn - 95.14% 

Bi - 4% 

Ag -0.07% 

Cu - 0.65% 

Ni - 0.023% 

Ge - 0.023% 

L27 + Sn100C Sn - 96.55% 

Bi - 3% 

Cu - 0.687% 

Ni - 0.057% 

Ge - 0.023% 

L20 + Sn99CN Sn - 94.47% 

Bi - 4% 

Ag - 1.02% 

Cu - 0.65% 

Ni+α – 0.047% 

L23 + Sn99CN Sn - 94.51% 

Bi - 3.71% 

Ag - 1.08% 



 

24 
 

Cu - 0.65% 

Ni+α - 0.046% 

L27 + Sn99CN Sn - 95.71% 

Bi - 2% 

Ag - 1.03% 

Cu - 0.68% 

Ni+α - 0.078% 

Table 8 - Resulting Solder Mixture Composition after reflow      

2.7 Shear Test 

 The strength of solder ball joints can be characterized by mechanical ball shear tests. Ball 

shear testing is a destructive testing method that is used to study the solder joint strength by 

applying load. As the load propagates through the solder joint plastic deformation occurs and the 

failure modes are analyzed from the fractured surface  [43] [44] [45]. 

 The Nordson Dage 4000 series is a multipurpose bond tester that is used in this study for 

shear testing. This equipment is capable of performing various pull and shear application like wire 

bond pull test, ball shear test, die shear test. We have performed solder ball shear test using the 

bond tester. The reflowed solder balls were sheared individually using the tool and shear force is 

measured (in grams) throughout the test. The Figure 8 below represents the image of shear tool 

sitting before solder ball. Fifteen solder balls were sheared for each solder mixture and the readings 

were noted. Low speed shear test are not used because they are not suitable for evaluation of joint 

strength under drop loading. 100 kg load cartridge was used with test speed of 27.50 mils/sec and 

the height of the tool from the PCB is 1 mil. The solder ball shear testing is done in accordance with 

the JEDEC JESD22-B117 standard. The position of shear tool during shear test is very important 
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for accurate and repeatable results. The shear height accuracies for this equipment is +/- 0.25 

microns. The system accuracy is up to +/- 0.1% of the selected load range. The more precise 

alignment of the shear tool to the ball is achieved using joystick control. The shear force in grams is 

converted to Newton’s, which is then normalized to MPa. The parameters used for shear testing are 

as follows in Table 9.  

Parameters Description 

Load Cartridge 100kg 

Range 0 to 5 kg (+/- 1.25) 

Test Speed 27.54 mils/sec 

Test Load 2000g 

Land Speed 19.67 mils/sec 

Shear Height 1.5 mil 

Table 9 - Ball Shear Test Parameters 
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Figure 8 - Shear tool before solder ball 

 After shear testing, the sheared pad surfaces were analyzed using the microscope to find the 

type of failure mode that has occurred. There are three kinds of failure modes: Solder failure, dual 

failure and IMC failure. When the fractured pad surface has 0 to 30% IMC then it is called as solder 

failure. When it is 30 to 70% IMC, then it is called as dual failure and when it is 70 to 100% IMC 

then it is called as IMC failure mode. 

2.8 Box Plot Graph 
 A box plot is a summary of distribution of a sample which shows the shape, variability and 

central tendency (mean, median, mode). It helps in comparing and understanding of various 

distributions. Box plot graph in this study is generated using the Minitab software for the various 
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shear forces and the trend in the shear forces are analyzed for two different reflow profiles with 

different solder mixtures.  The box plot graph gives details about the mean, median, variability and 

the standard deviation of the sample-sheared forces. A sample box plot graph is shown in Figure 9 

[46]. The middle line in the box plot is the median, which is where 50% of the value lies. The line 

below that is lower quartile and it is where 25% of the value lies. The line above the median is the 

upper quartile and it is where 75% of the value lies. The line above upper quartile is the upper 

extreme and the line below the lower quartile is the lower extreme. The single point sitting outside 

the plot represents the outlier. 

 

Figure 9 - Box Plot Summary 

2.9 Statistical Analysis 
 2 sample t-test and paired t test statistical analysis were carried out to support the shear 

strength analysis. Both the t-tests are carried out using the Minitab 16 statistical software. 
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2 sample t-test 

 2 sample t-test is carried out to calculate the difference between the population means and to 

determine if the means of the two independent population are equal. It is type of hypothesis test 

where the null hypothesis is, the means of the two samples are equal and the alternate hypothesis is, 

they are not equal. The result of the 2 sample hypothesis test includes the confidence limits for the 

mean and the P-value. Confidence limits for the mean are interval estimate for the true mean value. 

A confidence interval generates lower and upper limit for the mean and it tells how much 

uncertainty is there in our estimate true mean. The tighter the interval, the precise is our estimate. 

Confidence intervals are shown in terms of confidence level.   In our study we have used a 

confidence level of 95% which means we are confident that 95% of the time, the intervals will 

contain the true mean. P-value is used to check the hypothesis. Generally, 5% is considered as the 

alpha risk, which means that there are 5% chances for the mean to be out of the interval. If the P-

value is greater than 0.05 then we fail to reject the null hypothesis and if the P-value is less than 

0.05 then we reject the null hypothesis. In our study a 2 sample t-test is carried out to check whether 

the shear strength of paste-ball combinations in two reflow profiles (high temperature and low 

temperature) are having the same mean. An example of 2 sample t-test result is shown below, 

 

 

 

 

Two-sample T for L23+SAC305/Low Temp/30mils(N/mm2)vs L23+SAC305/High 

Temp/30mils(N/mm2) 

 

                                N   Mean  StDev  SE Mean 

L23+SAC305/Low Temp /30mils    15  46.65   3.31     0.85 

L23+SAC305/High Temp/30mils    15  86.10   5.68      1.5 

 

 

Difference = μ (L23+SAC305/Bi-Eco/30mils(N/mm2)) - μ (L23+SAC305/SnPb/30mils(N/mm2)) 

Estimate for difference:  -39.44 

95% CI for difference:  (-42.97, -35.92) 

T-Test of difference = 0 (vs ≠): T-Value = -23.23  P-Value = 0.000   
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 In our test, the null hypothesis is the mean shear strength of two reflow profiles are equal 

(µLowTemp - µHighTemp=0) and the alternate hypothesis is, the mean shear strength of the two reflow 

profiles are different (µLowTemp - µHighTemp ≠ 0). Where µlowTemp is the mean shear strength of paste-

ball combinations using low temperature reflow profile and µHighTemp is the mean shear strength of 

paste-ball combinations using high temperature reflow profile. 

 From the result, we can see that the P-value is less than 0.05, so we reject the null 

hypothesis which means that there is a significant difference between the two reflow profiles. It can 

also be said from the confidence interval because the value zero (µLowTemp - µHighTemp =0) does not 

lie between the estimated confidence interval (-42.97,-35.92) so we reject the null hypothesis which 

means that there is a significant difference between the two reflow profiles.  

Paired t-test 

 A paired t-test is carried out to check if the mean of the differences between two paired 

samples differs from zero. A paired t-test is mostly used for analyzing before-after studies. In our 

study, we have carried out the paired t-test to determine if there any change in the mean shear 

strength before and after the aging condition. A paired t-test calculates the difference between 

before and after aging condition's mean shear strength, determines the difference in the mean, and 

tells if it is significant. It is also a type of hypothesis testing, where the null hypothesis is the 

population mean of the difference are equal and the alternate hypothesis is the population mean of 

the difference is not equal. An example of paired t-test result is shown below, 

 

 

Paired T for Before aging L23+Sn100C/High Temp/20mils(N/mm2) - After aging 

L23+Sn100C/High Temp/20mils(N/mm2) 

 

                                N   Mean  StDev  SE Mean 

L23+Sn100C/High Temp/20mils    15  83.07   4.97     1.28 

AL23+Sn100C/High Temp/20mils   15  85.20  13.57     3.50 

Difference                     15  -2.12  16.81     4.34 

 

 

95% CI for mean difference: (-11.43, 7.18) 

T-Test of mean difference = 0 (vs ≠ 0): T-Value = -0.49  P-Value = 0.632 



 

30 
 

 In our test, the null hypothesis is the population mean of difference before and after aging 

are equal (µBefore aging - µAfter aging=0) and the alternate hypothesis is, the population mean of 

difference before and after aging are not equal (µBefore aging - µAfter aging ≠ 0). Where µBefore aging is the 

mean shear strength of paste-ball combinations before aging (here high temperature reflow profile) 

and µAfter aging is the mean shear strength of paste-ball combinations after aging (here high temp 

reflow profile). 

 From the result, we can see that the P-value is greater than 0.05, so we fail to reject the null 

hypothesis which means that the population mean of difference before and after aging are equal. It 

can also be said from the confidence interval because the value zero (µBefore aging - µAfter aging = 0) lies 

between the estimated confidence interval (-11.43, 7.18) so we fail to reject the null hypothesis as 

the population mean difference before and after aging are not different.  

2.10 Aging Treatment and Micro structural Analysis 

 The solder joints are cross-sectioned for examination immediately after reflow and then 

after aging process to study and compare the evolution of microstructure over the period of time. 

Isothermal aging is done to study the consequence and effect of constant prolonged elevated 

temperature on solder alloys and to study the effect of intermetallics on solder joint reliability. The 

Arrhenius Equation is used to correlate time in the field at normal use temperature to a Constant 

Temperature Accelerated Life Test.  The Acceleration Factor (AF) calculation is as follows, [47] 

AF = e[(-Ea/K)(1/T1-1/T2) 

T1 = Field Temperature (K) 

T2 = Test Temperature (K) 



 

31 
 

Ea = 0.7eV  

K = 8.62x10-5 eV/K (Boltzman constant) 

Ea 

K 
= 8120.64 

1

T1 
 = 

1

298 
 

1

T2 
 = 

1

398 
 

1

T1 
 - 

1

T2 
 = 8.431x10-4 

AF = e(8120.64)(8.431x10^-4) 

AF =934.49 

 Testing at 1000 hours at 125ᵒC is therefore equivalent to 934,490 hours or 106.67 years of 

life at the normal operating temperature at 25ᵒC. Aging the board for 200 hours (8.33 days) is 

equivalent to 21.2 years. To mimic end of life conditions, isothermal aging of our sample solder 

joints were aged at 125ᵒC for 200 hours.  
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2.11 Cross Sectional Analysis 

 Cross sectional analysis was done to evaluate the following: Dissolution of SnBi paste on 

lead-free solder balls, grain boundary orientation using cross polarized images, intermetallic growth 

in the as-soldered and isothermal aged conditions, change of failure mode in shear testing in the as-

soldered and isothermal aging condition, and the size and distribution of various precipitates in the 

solder joint formation using Scanning Electron Microscope (SEM). The samples were molded in an 

epoxy resin for cross sectioning. Grinding and polishing were done using diamond based 

suspension particles (up to 1 micro meter particle size). 

  Struers Tegraforce 5 was the equipment used for cross sectioning samples. The Tegraforce 

5 is fully automatic and it is capable of holding up to 6 specimens. The samples to be cross-

sectioned are molded in an epoxy resin, and were ground and polished using diamond based 

suspension particles. Grinding removes particles on the sample, by which it levels and cleans the 

sample surface. Silicon carbide grit paper number 500 and 1000 were used for grinding. Polishing 

removes the micro particles and the marks formed during the grinding process. 15, 9, 3, 1 

micrometer particles were used to prepare the samples for optical microscopy.   

2.12 Optical Microscope  

 The optical microscope used in this experiment is Olympus bx60m which is a compound 

microscope with two or more lenses. The eyepiece lens is 10X and the objective lenses are 5X, 

10X, 20X, 50X, 100X. This microscope is capable of capturing bright field, dark field and cross-

polarized images. In this study, we have used bright field images for dissolution analysis and cross-

polarized images for grain morphology analysis. The optical microscope is a type of microscope 

which utilizes the light and some of the lenses to magnify images of the samples. The Figure 10 

below illustrates the working principal of an optical microscope [48].   The main components of the 
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optical microscope are ocular lens, objective lens, specimen stage and the light source.  The ocular 

lens is in the eyepiece and the objective lenses are in the revolving nosepiece which is near the 

specimen sample. The specimen stage is where the specimen sample is held and the light source is 

below the specimen stage. This microscope gets the light from the light source and sends it through 

the objective lens which magnifies the samples and sends it to the eyepiece. This eyepiece which 

has the ocular lens of 10X magnification further magnifies the sample and gives the virtual image to 

the eyes. To focus the image, coarse focusing knob is first used and then the fine focusing knob is 

adjusted to get the clear image. The revolving nosepiece consists of different objectives. This can 

rotated to change the magnification of the microscope. Each objectives has the lens of different 

magnification. The microscope magnification can be determined by multiplying the objective lens 

value to the eyepieces lens value (which is 10X). For example, if a 10X objective is used then the 

total magnification is 100X. This optical microscope used in this study was capable to provide 

magnification up to 1000X. To view samples at higher magnification typically electrons 

microscopes are used. In addition to the standard bright light microscopy, polarized light 

microscopy technique was available with this microscope. It is a technique which uses polarized 

light to illuminate the sample. The direct light from the light source is blocked by two polarizer 

oriented from each other. The captured dual-polarized image gives details about the crystal 

orientation and grain structure of the Sn in the solder alloys. The desired image is captured and 

analyzed using the Image Pro Plus software.  
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Figure 10 - Working Principle of Optical Microscope  

2.13 Scanning Electron Microscope (SEM) Analysis 

 The microstructural analysis was performed on the cross-sectioned samples using scanning 

electron microscope (SEM) in order to study the size and distribution of various precipitates in the 

solder substrate interface and in the bulk solder. The Scanning Electron Microscope (SEM) uses a 

beam of electrons to form an image. SEM focuses a high-energy beam of electrons on the surface of 

the specimen and the signal from electron-sample gives details about solder morphology.  

 The main components for the working principle of SEM are vacuum chamber, electron gun, 

electromagnetic lenses, anode, X-ray detector, secondary electron detector, backscatter detector and 

specimen stage. The Figure 11 illustrates the various components of a scanning electron microscope 

[49]. Electron gun and various focusing lenses transmit the beam of electrons down to the specimen 

in the chamber. These electromagnetic lenses focus the electron beam to the specimen. 

  The electrons are accelerated through the focusing tube, by having an anode at the base of 

the electron gun. Since the anode is positively charged, the negatively charged electrons are 
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attracted. There is a hole in the middle of the anode, so the electron beam will pass through. The 

specimen stage at the bottom where the sample is placed is also positively charged, so this also keeps 

the electron beam moving in that direction. When the electron bean hits the specimen, two types of 

electrons are produced: a) secondary electrons and b) back scattered electrons.  

Secondary Electrons -When electron beam hits the atoms of the specimen, those atoms 

absorb the energy and give off the electrons which are called as secondary electrons. There is a 

secondary electron detector, which has positively charged particles in it. This detects these electrons 

and the detector uses the information from this electron to form the image on the screen. Secondary 

electrons are surface electrons and they are good for getting surface features.   

Backscattered electrons - These electrons do not come off the atoms like the secondary 

electrons. When the incident electron beam collides with nucleus of the sample atom, it reflects back 

out of the sample as a backscattered electron. Backscattered electrons are reflected electrons that 

come from deeper in from the specimen. Backscattered electrons have higher energies than the 

secondary electrons because the sample with higher density creates more of them which are used to 

form backscattered electron image.   

X-ray radiation is also generated during the operation of scanning electron microscope 

which is characteristic for the chemical element present in the sample. If the energy and the intensity 

of the x-ray radiation can be measured with the x-ray detector then the elemental composition of the 

sample can be determined. The SEM is also equipped with an energy dispersive spectroscopy (EDS) 

detector. EDS analysis is carried out to determine different elements present on the sample 

microstructure. The EDS micrograph tells the elements present. The Y-axis tells the counts (i.e) 
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number of x-rays received and detected by the detector in the operational window and the X-axis 

represents energy level of those counts from which the element present is identified. 

  The main elements for operating a scanning electron microscope are  

column for the electron beam generation, specimen chamber, vacuum pump, control panels and 

monitor. First, the vacuum pump control is turned on and this vents the specimen chamber. After 

equalizing the pressure in the specimen chamber the cover plate is opened. To prepare the specimen 

a few steps need to be followed. The cross-sectioned specimen is coated with the gold palladium 

using a sputter coater, as non-conducting materials are subject to charging under electron beam 

imaging. By keeping it in the vacuum chamber it removes moisture present in the specimen, oil and 

other dirt. The prepared sample is then loaded into the specimen chamber and the cover plate is 

closed. Now the high vacuum pump is turned on and the electronic control is started. It takes some 

time to achieve sufficient vacuum in the chamber. Then, the motorized stage is initialized and the 

microscope scope controller is started. The accelerated voltage is adjusted until the reasonable image 

is obtained. The working accelerated voltage can range from 2 to 40kv; however 15kv is a good 

starting point.  

  SEM analysis was performed for the after reflow and aged conditions. From SEM/EDS 

analysis the solder joint microstructures, the intermetallic compounds formed and its composition 

were examined. Elemental mapping was also used for this study.  
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Figure 11 - Working Principle of Scanning Electron Microscope 

2.14 IMC Growth Evaluation 
 ImageJ software was used in evaluating the thickness of IMC growth. First, the scale is set 

with respect to the scale in the image selected. Then, vertical lines are drawn based on the IMC 

growth. The imageJ software provides the length of the vertical lines with respect to the set scale. 

The measured set of length is averaged to find the thickness of IMC growth. The Figure 12 below 

shows a sample IMC thickness measurement. The yellow lines are vertical lines and measured 

length is then averaged to find the IMC thickness. 
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Figure 12 - IMC Growth Thickness Measurement 

3.0 Chapter 3 - Results and Discussion 

  In this section the shear strength analysis, failure analysis and microstructural evaluation are 

discussed for various mixed solder alloy combinations that are used in two different reflow profiles 

(low temperature and high temperature). As discussed earlier, fifteen solder bumps were sheared for 

each combination and the shear forces are noted. 

A) Sn99CN Process 

  In this study, SnBi solder pastes L20, L23, L27 mixed Sn99CN solder ball is called as 

Sn99CN process. The solder alloy composition, size of solder ball and the reflow profile with peak 

temperature in Sn99CN process are restated in Table 10 below.  
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Paste / Composition wt% Solder Ball (size) / 

Composition wt% 

Reflow Profile 

(Peak Temp ᵒC) 

L20 = Sn/58Bi  

 

Sn99CN(18mils)  

Sn/1.1Ag/0.7Cu/0.05Ni+α  

 

Low Temperature 

Reflow Profile 

(177ᵒC) 

L23 = Sn/57Bi/1Ag 

L27 = Sn/40Bi-Cu-Ni 

L20 = Sn/58Bi High Temperature 

Reflow Profile 

(217ᵒC) 

L23 = Sn/57Bi/1Ag 

L27 = Sn/40Bi-Cu-Ni 

Table 10 - Sn99Cn Process 

After reflow condition 

  Shear test is carried out for the Sn99CN process and the shear test parameters are shown in 

table 8 in the experimental approach section (chapter 2).  Looking into the shear force for the after 

reflow condition, the mean value of the shear strength of L20+Sn99CN in low temperature reflow 

profile and high temperature reflow profile is 65.54MPa and 81.35MPa respectively. A 2-sample t-test 

with 95% confidence interval was carried out and from the statistical analysis a significant change in 

the shear strength between the low temperature reflow profile and high temperature reflow profile was 

observed. For L23+Sn99CN case in the low temperature reflow profile and high temperature reflow 

profile, the shear strength is 76.39MPa and 91.72MPa respectively. In this case, for the 2-sample t-test 

with 95% confidence interval, there is a significant change in the shear strength between the low 

temperature reflow profile and high temperature reflow profile. For L27+Sn99CN case in low 

temperature reflow profile and high temperature reflow profile, the shear strength is 68.13MPa and 

74.74MPa. For the 2 sample t-test with 95% confidence interval, there is no significant effect in the 

shear strength between the low temperature reflow profile and high temperature reflow profile. Figure 
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13 shows the Box plot containing shear strength of Sn99CN process in as-soldered condition. From 

the box plot analysis it can be clearly seen that the shear strength of the high temperature reflow 

process is higher than low temperature reflow process in all the paste-ball combinations.  

 

Figure 13 - Box plot containing shear strength of Sn99CN process in after reflow condition 

After aging condition 

  After the aging condition (125ᵒC for 200 hours), the mean value of the shear strength of 

L20+Sn99CN in low temperature reflow profile and high temperature reflow profile is 73.43MPa and 

100.30MPa respectively. The mean value of shear strength of L23+Sn99CN in low temperature reflow 

profile and high temperature reflow profile is 70.48MPa and 101.70MPa respectively. The mean value 

of shear strength for L27+Sn99CN in low temperature reflow profile and high temperature reflow 

profile is 66.29MPa and 96.51MPa. In the after aging condition, for the 2 sample t-test with 95% 
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confidence interval, there is a significant change in the shear strength between the low temperature 

reflow profile and high temperature reflow profile for all the three paste-ball combinations.  

  Overall for the Sn99CN process (1.1 wt% Ag alloy), the L23+Sn99CN/ High temperature 

profile solder alloy looks to have better strength than the L20+Sn99CN and L27+Sn99CN mixed 

solder alloys in after reflow and after aging condition.  The Figure 14 shows the Box plot containing 

shear strength of Sn99CN process in aged condition. The Table 11 below shows the mean shear 

strength comparison of S99CN process in after reflow and after aging condition. 

 

Figure 14 -Box plot containing shear strength of Sn99CN process in aged condition 
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Table 11 -Mean shear strength of Sn99CN process before and after aging conditions

B) Sn100C Process 

 In this study, SnBi solder pastes L20, L23, L27 mixed with Sn100C solder ball is called as 

Sn100C process. The solder alloy composition, size of solder ball and the reflow profile with peak 

temperature in Sn99CN process are restated in Table 12 below.  

 

 

 

 

 

 

Solder Sphere Solder Paste Reflow Profile Mean Shear Strength 

in MPa 

(After Reflow) 

Mean Shear Strength 

in MPa 

(Aging) 

Sn99CN L20 Low Temp 65.54 73.43 

High Temp 79.36 99.17 

L23 Low Temp 76.39 70.48 

High Temp 91.72 101.45 

L27 Low Temp 68.13 66.11 

High Temp 74.53 96.51 
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Paste / Composition wt% Solder Ball (size) / 

Composition wt% 

Reflow Profile 

(Peak Temp ᵒC) 

L20 = Sn/58Bi  

 

Sn100C(20mils)  

Sn/0.7Cu/0.05Ni+Ge  

 

 

Low Temperature 

Reflow Profile 

(177ᵒC) 

L23 = Sn/57Bi/1Ag 

L27 = Sn/40Bi-Cu-Ni 

L20 = Sn/58Bi High Temperature 

Reflow Profile 

(217ᵒC) 

L23 = Sn/57Bi/1Ag 

L27 = Sn/40Bi-Cu-Ni 

Table 12 - Sn100C process 

After reflow condition 

  Looking into the shear force for the after reflow condition, the mean value of the 

shear strength of L20+Sn100C in low temperature reflow profile and high temperature reflow profile 

is 73.05MPa and 81.85MPa respectively. A 2-sample t-test with 95% confidence interval was carried 

out and from the statistical analysis a significant change in the shear strength between the low 

temperature reflow profile and high temperature reflow profile was observed. For L23+Sn100C case 

in the low temperature reflow profile and high temperature reflow profile, the shear strength is 

64.48MPa and 83.07MPa respectively. In this case, for the 2 sample t-test with 95% confidence 

interval, there is also a significant change in the shear strength between the low temperature reflow 

profile and high temperature reflow profile. For L27+Sn100C case in low temperature reflow profile 

and high temperature reflow profile, the shear strength is 68.70MPa and 71.57MPa. For the 2 sample 

t-test with 95% confidence interval, there is no significant effect in the shear strength between the 

low temperature reflow profile and high temperature reflow profile. Figure 15 shows the Box plot 

containing shear strength of Sn99CN process in as-soldered condition. From the box plot analysis, it 
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can be clearly seen that the shear strength of the high temperature reflow process is higher than low 

temperature reflow process in all the paste-ball combinations.  

   

Figure 15 - Box plot containing shear strength of Sn100C process in after reflow condition 

After aging condition 

 After the aging condition (125ᵒC for 200 hours), the mean value of the shear strength of 

L20+Sn100C in low temperature reflow profile and high temperature reflow profile is 67.97MPa and 

82.95MPa respectively. The mean value of shear strength of L23+ Sn100C in low temperature 

reflow profile and high temperature reflow profile is 67.31MPa and 85.19MPa respectively. The 

mean value of shear strength for L27+ Sn100C in low temperature reflow profile and high 

temperature reflow profile is 63.45MPa and 76.78MPa. In the after aging condition, for the 2 sample 

t-test with 95% confidence interval, there is a significant change in the shear strength between the 
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low temperature reflow profile and high temperature reflow profile for all the three paste-ball 

combinations. 

  Overall for the Sn100C process (no Ag alloy), the L23+Sn100C/ High temperature profile 

solder alloy looks to have better strength than the L20+Sn100C and L27+Sn100C mixed solder 

alloys in after reflow and after aging condition.  The Figure 16 shows the Box plot containing shear 

strength of Sn100C process in aged condition. The Table 13 below shows the mean shear strength 

comparison of Sn100C process in after reflow and after aging condition. 

  

Figure 16 - Box plot containing shear strength of Sn100C process in aged condition 
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Solder Sphere Solder Paste Reflow Profile Mean Shear Strength 

in MPa (After Reflow) 

Mean Shear Strength 

in MPa (Aging) 

Sn100C L20 Low Temp 73.05 67.97 

High Temp 81.63 82.95 

L23 Low Temp 64.48 67.31 

High Temp 83.07 85.19 

L27 Low Temp 68.70 63.29 

High Temp 71.57 76.78 

Table 13 - Mean shear strength of Sn100C process before and after aging conditions 

C) SAC Process 

 In this study, SnBi solder pastes L20, L23, L27 mixed Sn100C solder ball is called as 

Sn100C process. The solder paste composition, solder ball composition, size of solder ball and the 

reflow profile with peak temperature in Sn99CN process are restated in Table 14 below.  

Paste / Composition wt% Solder Ball (size) / 

Composition wt% 

Reflow Profile 

(Peak Temp ᵒC) 

L20 = Sn/58Bi  

 

SAC305 (30mils)  

Sn/3.0Ag/0.5Cu 

 

 

Low Temperature 

Reflow Profile 

(177ᵒC) 

L23 = Sn/57Bi/1Ag 

L27 = Sn/40Bi-Cu-Ni 

L20 = Sn/58Bi High Temperature 

Reflow Profile 

(217ᵒC) 

L23 = Sn/57Bi/1Ag 

L27 = Sn/40Bi-Cu-Ni 

Table 14 - SAC305 process 
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After reflow condition 

 Looking into the shear force for the after reflow condition, the mean value of the shear 

strength of L20+SAC305 in low temperature reflow profile and high temperature reflow profile is 

40.05MPa and 68.32MPa respectively. A 2-sample t-test with 95% confidence interval was carried 

out and from the statistical analysis a significant change in the shear strength between the low 

temperature reflow profile and high temperature reflow profile was observed. For L23+ SAC305 

case, in the low temperature reflow profile and high temperature reflow profile, the shear strength is 

46.65MPa and 86.09MPa respectively. In this case, for the 2-sample t-test with 95% confidence 

interval, there is also a significant change in the shear strength between the low temperature reflow 

profile and high temperature reflow profile. For L27+ SAC305 case, in low temperature reflow 

profile and high temperature reflow profile, the shear strength is 48.86MPa and 81.87MPa. For the 

2-sample t-test with 95% confidence interval, there is significant change in the shear strength 

between the low temperature reflow profile and high temperature reflow profile. Figure 17 shows the 

Box plot containing shear strength of SAC305 process in as-soldered condition. From the box plot 

analysis it can be clearly seen that the shear strength of the high temperature reflow process is higher 

than low temperature reflow process in all the paste-ball combinations.  

 Overall for the SAC305 process (3wt% Ag alloy), the L23+SAC305/High temperature 

profile solder alloy looks to have better strength than L20+SAC305 and L27+SAC305 mixed solder 

alloys. The reason for L23 paste with lead-free solder alloys having higher shear strength than the 

other mixed solder alloys is the presence of silver in the L23 paste. With 1% silver in the L23 SnBi 

paste, it reduces the melting temperature of the solder alloy, improves wetting and gives better 

mechanical strength. 
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Figure 17 - Box plot containing shear strength of SAC305 process in after reflow 

After aging condition 

 After the aging condition (125ᵒC for 200 hours), the mean value of the shear strength of 

L20+SAC305 in low temperature reflow profile and high temperature reflow profile is 45.83MPa 

and 64.58MPa respectively. The mean value of shear strength of L23+SAC305 in low temperature 

reflow profile and high temperature reflow profile is 40.30MPa and 75.82MPa respectively. The 

mean value of shear strength for L27+SAC305 in low temperature reflow profile and high 

temperature reflow profile is 35.02MPa and 80.45MPa respectively. In the after aging condition, for 

the 2 sample t-test with 95% confidence interval, there is a significant change in the shear strength 

between the low temperature reflow profile and high temperature reflow profile for all the three 

paste-ball combinations. Figure 18 shows the Box plot containing shear strength of SAC305 process 
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in after aging condition. The Table 15 below shows the mean shear strength comparison of Sn100C 

process in after reflow and after aging condition. 

 

Figure 18 - Box plot containing shear strength of SAC305 process in aged condition  

Solder Sphere Solder Paste Reflow Profile Mean Shear Strength 

in MPa 

(After Reflow) 

Mean Shear Strength 

in MPa 

(Aging) 

SAC305 L20 Low Temp 40.05 45.83 

High Temp 68.19 65.22 

L23 Low Temp 46.65 40.30 

High Temp 86.09 75.82 

L27 Low Temp 48.86 35.01 

High Temp 81.87 79.87 

 Table 15 - Mean shear strength of SAC305 process before and after aging conditions 
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  Comparing the shear strength between the after reflow condition and the aged conditions, 

there is not much of a trend. The mean shear strength is almost same in some of the cases or it 

varies by a small margin in some cases which can be seen in the table above. A paired t test 

statistical analysis with 95% confidence interval was carried out in comparing the shear strength of 

the after reflow and after aging conditions. The following paste-ball combinations were found to 

have no effect on those two conditions: L23+Sn99CN/LowTemp, L27+Sn99CN/HighTemp, 

L20+Sn100C/HighTemp,L23+Sn100C/LowTemp,L23+Sn100C/HighTemp,L27+Sn100C/HighTem

p and L27+SAC305/HighTemp. Rest of the combinations was found to be statically significant. 

 From the shear strength analysis, it can be seen that in all the three processes the shear 

strength of high temperature reflow profile is higher than the low temperature reflow profile. 

Moreover, the statistical analysis clearly shows that there is a significant change in the shear strength 

of high temperature reflow profile and low temperature reflow profile, which is consistent with all 

the solder ball-paste combinations. The reason for the higher shear strength in the high temperature 

reflow profile is improved mixing and smaller Bi precipitates which will be explained in detail in the 

failure analysis part. The improved mixing in high temperature reflow process is because of the peak 

temperature of high temperature reflow profile which is 217ᵒC whereas the peak temperature of low 

temperature reflow profile is 177ᵒC. With the higher peak temperature in high temperature process, 

the lead-free solder balls are able to melt and coalesce well with the SnBi paste which is the reason 

for higher shear strength in high temperature reflow process. 

3.1 Failure Analysis 
 The master polished cross section samples were evaluated using the optical microscopes to 

study the solubility of SnBi paste on lead-free solder balls. First, SnBi paste with SAC ball is 

evaluated. For the low temperature reflow profile there was not much of a dissolution in the mixed 
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solder alloy combinations which can be seen in Figure 19a where the paste on the bottom and the ball 

on the top can be seen clearly. Whereas with the high temperature reflow profile, the tin has 

completely dissolved into the bismuth as shown in Figure 19b where the ball and paste are 

completely dissolved. This change in the dissolution is because of the difference in the peak 

temperature of the two reflow profiles. With the low temperature reflow profile the SAC ball is not 

able to melt completely as its melting temperature is 215ᵒC and peak temperature of the reflow 

profile is 177ᵒC. However, in the high temperature reflow profile, with the peak reflow temperature 

of 217ᵒC the bismuth paste and SAC305 balls are able to dissolve better than the low temperature 

reflow profile. For the SAC305 process, with L20, L23 and L27 pastes for the low temperature 

reflow profile the solubility of tin in bismuth is very small. Whereas for the high temperature reflow 

profile the SnBi paste is completely dissolved. The Figure 20 below shows the cross-polarized 

images of L20+SAC305. The Figure 20a shows the cross-sectioned image of low temperature profile 

which has interlaced and beach ball structure whereas Figure 20b represents High temperature 

profile which has single grain structure. Unlike single grain structure, many small boundaries are 

present in interlaced structure.   

 

 Figure 19 - Cross section of L20+SAC305 a) Low temperature reflow Profile b) High temperature 

reflow profile 

The SnBi paste at the bottom and 

solder ball at the top can be seen 

clearly in the low temperature 

profile. Whereas for the high 

temperature profile (fig b), there 

is a complete dissolution of the 

paste and ball.  
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Figure 20 - Cross Polarized Image of L20+SAC305 a) Low temperature reflow Profile b) High 

temperature reflow profile 

 For the Sn100C process, with the L20, L23 and L27 pastes for the low temperature reflow 

profile there is no dissolution between SnBi paste and the Sn100C ball(Figure 21a) which is same as 

the SAC305 process, whereas for the high temperature reflow profile the SnBi is partially dissolved 

with Sn100C solder ball which can be seen in Figure 21b. The partial dissolution in Sn100C process 

may be because of very high melting temperature of Sn100C ball which is 227ᵒC. Therefore, at a 

peak reflow temperature of 217ᵒC the Sn100C ball is not able to dissolve completely as it did for 

SAC305 ball. The Figure 22 below shows the cross-polarized images of L23+Sn100C. The Figure 

22a shows the cross polarized image of low temperature profile which has single grain structure 

whereas Figure 22b represents high temperature profile which has interlaced structure.  
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Figure 21 - Cross section of L23+Sn100C a) Low temperature reflow Profile b) High temperature 

reflow profile  

             

Figure 22 -Cross Polarized Image of L23+Sn100C a) Low temperature reflow Profile b) High 

temperature reflow profile 

 For the Sn99CN process, with L20, L23 and L27 pastes for the low temperature reflow profile, 

there is no dissolution between SnBi paste and the Sn99CN ball. This is consistent with all the three 

processes for low temperature profile. With the high temperature reflow profile 

L20+Sn99CN case looks almost completely (90%) dissolved. The reason for not complete dissolution 

is due to the high melting point of Sn99CN (227ᵒC). With L23+Sn99CN and L27+Sn99CN/High 

temperature profile, tin has completely dissolved into the SnBi paste which can be seen in Figure 23. 

The partial dissolution of 

L23+Sn100C is because of the 

high melting temperature of 

Sn100C and the pasty range 

difference. 
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Figure 23 - Cross section of L27+Sn99CN a) Low temperature reflow Profile b) High temperature 

reflow profile 

The Figure 24a below shows the cross-polarized images of L27+Sn99CN. The figure 23a shows the 

cross section image of low temperature profile which has beach ball structure whereas Figure 24b 

represents high temperature reflow profile which also has beach ball structure. The beach ball structure 

has three different unique Sn morphologies in it. 

                

Figure 24 - Cross Polarized Image of L27+Sn99CN a) Low temperature reflow Profile b) High 

temperature reflow profile 

  From this analysis, Sn100C process looks to different from the other two process (SAC305 and 

Sn99CN) in terms of high temperature profile. The reason for the partial dissolution in the Sn100C 

process is due to the absence of silver content in the solder ball. With SAC305 and Sn99CN there are 

3% and 1.1% of silver in the solder ball respectively. Therefore, with the silver content in the solder 
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ball, the tin is able to dissolve well in SnBi paste. Moreover, the pasty range of L23 paste is 75ºC 

whereas L20 is eutectic and L27 it is 30ºC. With the higher pasty range, the tin is not able to completely 

dissolve into the paste and hence we have the partial dissolution. So, the higher pasty range tend to 

affect the dissolution of the L23+Sn100C process. From this evaluation, it is evident that the Ag content 

in the solder ball and SnBi pasty range tends to affect the dissolution of the paste and ball. 

  When comparing the after aging condition, the cross section images looks to project the same 

kind of result (in terms of dissolution) as it did for the after reflow condition in all the three processes.  

The Table 16 below shows the level of solubility (partial mixed or fully mixed) and the kind of cross-

polarized grain structure of various solder paste-ball combinations. 
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Solder 

Paste 

Solder 

Sphere 

Alloy 

Sphere 

Diameter 

Bi wt% 

 

Ag 

wt% 

Peak Temp 

of Reflow 

Profile 

Fully 

Mixed 

Partially 

Mixed 

Grain 

Structure 

L20 SAC305 30 mils 3.56% 2.81% 177ᵒC   BB/IL 

L20 SAC305 30 mils 217ᵒC X  SG 

L20 Sn100C 20 mils 3.53% - 177ᵒC   BB 

L20 Sn100C 20 mils 217ᵒC  X IL 

L20 Sn99CN 18 mils 3.73% 1.01% 177ᵒC   BB 

L20 Sn99CN 18 mils 217ᵒC  X SG 

L23 SAC305 30 mils 3.50% 2.87% 177ᵒC   BB/IL 

L23 SAC305 30 mils 217ᵒC X  BB/IL 

L23 Sn100C 20 mils 4.0% 0.07% 177ᵒC   SG 

L23 Sn100C 20 mils 217ᵒC  X IL 

L23 Sn99CN 18 mils 3.71% 1.08% 177ᵒC   BB/IL 

L23 Sn99CN 18 mils 217ᵒC X  SG 

L27 SAC305 30 mils 2.33% 2.82% 177ᵒC   BB/IL 

L27 SAC305 30 mils 217ᵒC X  BB 

L27 Sn100C 20 mils 2.31% - 177ᵒC   IL/SG 

L27 Sn100C 20 mils 217ᵒC  X BB 

L27 Sn99CN 18 mils 2.46% 1.02% 177ᵒC   BB/SG 

L27 Sn99CN 18 mils 217ᵒC X  BB 

Table 16 -Microstructure Evaluation 
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BB -Beach Ball 

SH - Single Grain 

IL - Interlaced 

 A representative set of cross-sections of the SnBi paste and lead-free solder balls are taken 

into consideration for SEM analysis to further investigate the size and distribution of various 

precipitates in the solder joint and in the bulk solder.  

  First, L27+SAC305/low temperature reflow profile, aged at 125ᵒC for 200 hours is 

investigated.  

Figure 25  shows the low magnification image of L27+SAC305/ low temperature profile/Aged where 

the paste at the bottom and the ball at the top can be seen clearly. The microstrucure of the sheared 

pad surface of this sample shows that there are high concentrations of bismuth in the sheared surface 

which can be seen in the EDS micrograph. The crack surface is 100% bismuth which evident from 

the EDS micrograph in Figure 29. With the low temperature process, the bismuth platelets can be 

seen clearly in Figure 26. This is because at low temperature profile there is no proper dissolution of 

SnBi paste and the ball, so the SnBi paste with high concentration of bismuth remains on the pad 

surface. A cross section was prepared following shear testing to further inspect the crack propagation 

path. It can be seen clearly that the crack is propagating transgranularly along the weak Bi rich phase 

near the Cu pad intermetallic which can be seen in Figure 27. There is no tin in the crack surface 

because there is more bismuth phase near the tin copper interface which gives a continuous interface 

for cracks to propagate which can seen in Figure 27. As a result of high concentration of bismuth in 

the pad surface, all of the failure modes for the low temperature reflow process are brittle defects 

which can be seen in Figure 28 as bismuth is said to have brittle mechanical property. 
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.  

Figure 25 - Low Magnification Image of L27+SAC305/Low Temp Profile/Aged  

 

Figure 26 - Sheared Surface of L27+SAC305/Low Temp Profile/Aged 

In the low temperature profile, the paste at 

bottom and solder ball at top can be seen 

clearly in the lower magnification image.   

Bi platelets are evident from the 

sheared pad surface 



 

59 
 

 

Figure 27 - Crack Propagation post Shear Test of L27+SAC305/Low Temp profile/Aged 

 

Figure 28 - L20+SAC305/Low Temp profile - Brittle Failure Mode 

 

Primary crack path through Bi phase.   

Secondary crack path at 

Cu6Sn5 IMC boundary.   
Bi Phase 

Cu6Sn5 

Cu Pad 

The sheared pad surface of low temperature 

reflow profile sample is analyzed in the 

optical microscope.  Looking into the 

surface, we can say that the failure mode is 

brittle IMC failure (70%-100% IMC). The 

three types of failure modes were discussed 

earlier in the shear test section in 

experimental approach chapter 2.   
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Figure 29 - EDS Analysis of L27+SAC305/Low Temp profile/Aged condition 

 In order to study the distribution of various elements in the solder substrate interface and in 

the bulk solder, elemental mapping analysis was carried out using SEM. The Figure 30 below shows 

the elemental mapping of L27+SAC305/low temperature reflow profile, aged at 125ᵒC for 200 hrs. 

Looking into the microstructure of the cross sectioned sample, the concentration of tin, bismuth and 

copper are high on the board side. This is because of the surface finish (copper) and the L27 paste 

composition (tin and bismuth). With low temperature profile there is no proper dissolution of paste 

and ball, and as a result the high concentration of tin, bismuth and copper are evident. 

From the EDS micrograph of the sheared 

pad surface, high concentration of 

bismuth on the pad surface is evident.   
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Figure 30 - Elemental Mapping of L27+SAC305/Low Temp profile/Aged 

 The figures shows the SEM images of L27+SAC305/High Temperature reflow profile, aged 

at 125ᵒC for 200 hrs. The Figure 31a shows the low magnification image of the sample and it is 

evident that the SnBi paste and ball has completely dissolved. It can be seen that, with the high 

temperature reflow process, the concentration of bismuth on the surface of the pad is low. With peak 

temperature of 217ᵒC, the SAC ball is able to dissolve well into the L27 paste. With this better 

coalescence, the shear strength is higher than the low temperature reflow process. Moreover, after 

the shear test, the fractured surfaces were examined in SEM which is shown in Figure 31a(low 

magnification) and Figure 32(high magnification). The sheared surface has high concentration of tin 

Elemental mapping of low temperature 

reflow profile sample shows high Bi 

concentration near the solder substrate 

interface.   
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and copper with very small percentage of bismuth. The crack propagation is in the tin copper 

intermetallic and Bi does not existent in the sheared surface.  

 

  

Figure 31 - a) Low Magnification Image of L27+SAC305/High Temp/Aged  

                    b) Sheared Surface of L27+SAC305/High Temp/Aged 

 

Figure 32 - Sheared Surface of L27+SAC305/High Temp profile/Aged 

In the high temperature reflow profile, the paste 

at bottom and solder ball at top cannot be seen. 

Paste and ball are completely dissolved.   
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 The Figure 33 below shows the elemental mapping of L27+SAC305/High temperature reflow 

profile, aged at 125ᵒC for 200 hrs. Looking into the microstructure of the cross sectioned sample, the 

concentration of tin and copper are high on the board side and Bi is not present on the board side.   

 

 

    

Figure 33 -Elemental Mapping of L27+SAC305/High Temp profile/Aged  

 Looking into the failure modes for the high temperature reflow profile process, almost 15 to 

25% of the sheared surface are dual failures and rest was all brittle failures. For the SAC305 process, 

Elemental mapping of high temperature 

reflow profile sample shows very low Bi 

concentration near the solder substrate 

interface.    
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40% to 60% of pad cratering defects were seen in high temperature reflow profile process. This is 

because, with high temperature reflow process the SAC305 balls are able to melt completely and 

dissolve with the SnBi paste whereas with the other two cases, the Sn100C and Sn99CN the melting 

temperature is 227ᵒC so the ball does not melt to the extent as it did for SAC process. Therefore, at the 

high-speed shear force the crack is able to propagate through the resin material and create pad-

cratering failure. The Figure 34a shows the L23+Sn99CN/High temperature profile involving dual 

failure (IMC+bulk Solder) and Figure 34b shows L27+SAC305/High temperature profile involving 

pad-cratering failure. The failures modes are almost the same in the as soldered and aged condition. 

The Figure 35 shows fraction of various failure mechanisms observed after the ball shear test in as-

soldered condition. 

  

Figure 34 - a) L23+Sn99CN/High temperature profile - Dual Failure Mode b) L27+SAC305/High 

temperature profile - Pad Cratering Failure 

The sheared pad surface of high temperature reflow profile 

sample is analyzed in the optical microscope. Looking into the 

surface, we can say that the failure mode is dual failure (30% to 

70% IMC). The three types of failure modes were discussed 

earlier in the experimental approach chapter 2.  From this we can 

say that there is an improvement in the failure mode with the high 

temperature reflow process. 

Pad cratering defect 
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Figure 35 - Failure modes after reflow 

 The IMC growth evaluation along the solder substrate interface was also carried out on some 

set of cross-sectioned samples which are displayed in the Table 17 below. IMC growth thickness was 

using the ImageJ software. 

 In the after reflow condition, the IMC growth of the high temperature reflow process tends to 

be higher than the low temperature reflow process which is because the high temperature reflow 
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profile has higher zone temperatures than the low temperature reflow profile. As discussed earlier, the 

IMC grows faster in the higher temperature process than with the lower temperate process. Whereas in 

the aged condition, the IMC growth tends to be higher for the low temperature reflow process than for 

the high temperature reflow process which may be because of the homologous temperature. As the 

aging temperature of 125ᵒC is relatively close to the melting temperature of SnBi paste 138ᵒC, it has a 

significant impact on the IMC growth thickness.  

 As-soldered Condition Aged Condition 

Low Temp 

Process (µm) 

High Temp 

Process(µm) 

Low Temp 

Process(µm) 

High Temp 

Process(µm) 

L20+SAC305 0.76 1.40 2.34 2.09 

L23+Sn100C 0.79 1.60 2.01 1.83 

L27+Sn99CN 0.78 1.50 3.26 1.85 

Table 17- IMC growth comparison between as-soldered condition and aged condition 
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4.0 Chapter 4 - Conclusion 

 From the ball shear test, the high temperature reflow profile process resulted in a greater strength than 

low temperature reflow profile process. With the low temperature reflow process, the peak temperature 

(177ºC) is insufficient to melting and dissolve the lead free ball. The solder ball alloys used in the study 

have a melting point range from 215ºC to 227ºC. Incomplete mixing creates a high concentration of Bi 

precipitates in the high stress region of the shear test resulting in weak solder joint. Whereas with the 

high temperature reflow profile process, (peak reflow temperature 217ºC), the lead-free balls are able to 

more completely melt and coalesce with the SnBi paste (excluding Sn100C).  

From the cross sectional analysis, for the low temperature reflow profile process there is no proper 

dissolution between the paste and ball, whereas with the high temperature reflow profile process, the 

paste and the ball are completely dissolved. The reason for this is the higher peak temperature in the 

high temperature reflow process. With L23 + Sn100C process, there is partial dissolution between the 

paste and the ball as the pasty range of L23 is very high and the Ag content in the ball tend to affect the 

dissolution.  

From this study, a consistent improvement in high temperature assembly process is observed with the 

SAC305 solder paste.  In addition, the results show a tighter distribution of the data for this alloy.  

Although an improvement in the Sn99CN and Sn100C was observed, its standard deviation of the 

results indicates a non-repeatable result and overlap in strength between the two processes.   

Micro-alloying improvements in strength for the Sn99CN and Sn100C alloys seems to be limited.  

Addition of Cu and Ni in the L27 solder paste does not appear to have a comparable increase in strength 

as compared to SAC305.  In fact, L23 (addition of 1wt%Ag) appears to provide the highest strength for 

the Sn99CN and Sn100C alloys in the high temperature process prior to and following aging.  
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 From SEM/EDS analysis, for the low temperature process, high concentration of bismuth was 

found on the sheared surface. In the low temperature profile, the bismuth does not dissolve and the 

crack propagates through the weaker Bi grain boundaries and hence most of the defects are brittle IMC 

defects. Whereas for the high temperature reflow profile process the sheared surface has high 

concentration of tin, copper with very few percent of bismuth precipitates. Therefore, with the high 

temperature process the bismuth is able to dissolve well into the tin and give better strength.  

  The IMC growth thickness in the as-soldered condition is high for high temperature process 

than the low temperature process whereas in the aged condition the IMC growth is high for the low 

temperature process. This is because the aging temperature is relatively close to melting temperature 

of the SnBi paste. Therefore, the homologous temperature has an impact on the IMC growth thickness 

during aging condition. 

 Overall, from this investigation, some of the reasons for considering high temperature reflow 

profile process are improved shear strength, improved failure mode, slow IMC growth and less 

sensitivity to alloy variation. Thus, with the high temperature reflow process for the mixed solder alloy 

combinations, we can reduce the assembly processing temperature by which warpage can be reduced 

which improves yield, and we can improve the economic and environmental factors related to 

electronics assembly process. 

 Thus, this paper describes that by generating a robust high temperature reflow assembly 

process for SnBi low temperature solder paste, the cost can be reduced, failure modes can be improved 

and the shear strength can be increased, which may improve product yield in production. 
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