
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

8-15-2016 

LibDetector: Version Identification of Libraries in Android LibDetector: Version Identification of Libraries in Android 

Applications Applications 

Zhihao Mike Chi 
zc3896@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Chi, Zhihao Mike, "LibDetector: Version Identification of Libraries in Android Applications" (2016). Thesis. 
Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9211?utm_source=repository.rit.edu%2Ftheses%2F9211&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


ROCHESTER INSTITUTE OF TECHNOLOGY

MASTERS THESIS

LibDetector: Version Identification of
Libraries in Android Applications

Author:

Mike CHI

Supervisor:

Dr. Meiyappan NAGAPPAN

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science in Software Engineering

in the

Department of Software Engineering

B. Thomas Golisano College of Computing and Information Sciences

August 15, 2016

https://www.rit.edu
http://www.se.rit.edu/~mei/
https://www.se.rit.edu
https://www.rit.edu/gccis


i

The thesis “LibDetector: Version Identification of Libraries in Android Applica-

tions” by Mike CHI, has been examined and approved by the following Examination

Committee:

Dr. Meiyappan Nagappan

Thesis Committee Chair

Assistant Professor

Dr. Mehdi Mirakhorli

Assistant Professor

Dr. Scott Hawker

SE Graduate Program Director

Associate Professor



ii

To my family for their love and support, and making it possible
for me to follow my dreams.

To my friends for always believing in me and giving me the
strength to persevere.



iii

Acknowledgements

I would like to express my gratitude towards my thesis adviser Meiyappan Nagap-

pan for his guidance, support, consideration and patience in helping me navigate my

research. Despite your hectic schedule, you were always available and willing to help

with anything and everything. I am sincerely grateful for everything you have done

for me.

I would like to thank my amazing colleagues Craig Cabrey, Bushra Aloraini and

Joanna Cecilia Santos for helping me during the various stages of my work - your help

and contributions have been invaluable to me.

I would also like to thank Paul Hulbert, Austin Malerba and Matthew Mansor for

helping me overcome the challenges of crawling the Google Play store.



iv

Abstract

LibDetector: Version Identification of Libraries in Android Applications

by Mike CHI

Supervising Professor: Dr. Meiyappan NAGAPPAN

In the Android ecosystem today, code is often reused by developers in the form of

software libraries. This practice not only saves time, but also reduces the complexity of

software development. However, like all other software, software libraries are prone

to bugs, design flaws, and security vulnerabilities. They too undergo incremental up-

dates to not only add/change features, but also to address their flaws. Unfortunately,

the knowledge gap between consumers and maintainers of software libraries presents

a barrier to the timely adoption of important library updates.

Therefore we present Libdetector, a tool for identifying the specific version of Java

libraries used in Android applications. Using LibDetector, we perform a large empiri-

cal analysis of the current trends of library use in the Android ecosystem. We find that

a huge proportion of applications currently available on the Google Play Store use out-

dated libraries. We also explore the potential effects of this lax updating practice. In 2

of the 17 libraries we studied, apps that contain outdated versions of the library had

a significantly different average rating than apps that contain more recent versions of

the library. Finally, we find in a case study that a vulnerable version of a library is a

realistic threat to the security of apps consuming that version of the library.

http://www.se.rit.edu/~mei/


v

Contents

Dedication ii

Acknowledgements iii

Abstract iv

Table of Contents iv

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 RQ1: Do Android applications use outdated software libraries? . 4
1.3.2 RQ2: Does using outdated software libraries affect the rating of

an Android application? . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 RQ3: Are Android applications that use a vulnerable version of

a library vulnerable? . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Approach Overview 7
2.1 RQ1: Do Android Applications Use Outdated Software Libraries? . . . . 7
2.2 RQ2: Does Using Outdated Software Libraries Affect the rating of an

Android Application? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 RQ3: Are Android applications that use a vulnerable version of a li-

brary vulnerable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Crawling the Google Play Store 11
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Resulting Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 LibDiff: Towards a Corpus of Android Libraries and Their Change History 15
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Library Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Library Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



vi

4.2.3 Why Binary and Not Source? . . . . . . . . . . . . . . . . . . . . . 17
4.2.4 Optimizing the Libraries Whitelist . . . . . . . . . . . . . . . . . . 19
4.2.5 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.1 Artifact: The Android Libraries Whitelist . . . . . . . . . . . . . . 22
4.3.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 LibDetector: Identifying the Version of a Library Used in Android Applica-
tions 25
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 Extracting the Binary Code . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 Constructing the Class Signature . . . . . . . . . . . . . . . . . . . 26
5.2.3 Class Signature Comparison . . . . . . . . . . . . . . . . . . . . . 31
5.2.4 Library Version Identification . . . . . . . . . . . . . . . . . . . . . 31
5.2.5 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.6.1 RQ1: Do Android Applications Use Outdated Software Libraries? 35
5.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Impact of Outdated Library Use in Android Applications 45
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 App Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
RQ2: Does Using Outdated Software Libraries Affect the rating

of an Android Application? . . . . . . . . . . . . . . . . 46
6.3 App Exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.1 Case Study: Exploiting Applications Using Outdated Facebook
Android SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
RQ3: Are Android applications that use a vulnerable version of

a library vulnerable? . . . . . . . . . . . . . . . . . . . . 50
Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Related Work 52
7.1 Software Bertillonage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2 Clone Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3 Mobile Ad Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



vii

8 Conclusion 57
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 59



viii

List of Figures

2.1 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 LibDiff Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Javap Example Output for AppCall.class from Facebook SDK 4.11.0 . . . 28
5.2 Javap Output Stripped of White space and Ordered . . . . . . . . . . . . 29
5.3 Compiler Differences: Synchronized keyword . . . . . . . . . . . . . . . 30
5.4 Distribution of APK’s Using Versions of Acra . . . . . . . . . . . . . . . . 35
5.5 Distribution of APK’s Using Versions of Apache Commons HttpClient . 36
5.6 Distribution of APK’s Using Versions of Apache HttpComponents Http-

Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.7 Distribution of APK’s Using Versions of Apache Commons IO . . . . . . 38
5.8 Distribution of APK’s Using Versions of Facebook Android SDK . . . . . 39
5.9 Distribution of APK’s Using Versions of Google OAuth . . . . . . . . . . 39
5.10 Distribution of APK’s Using Versions of GSON . . . . . . . . . . . . . . . 40
5.11 Distribution of APK’s Using Versions of JSoup . . . . . . . . . . . . . . . 40
5.12 Distribution of APK’s Using Versions of Mopub . . . . . . . . . . . . . . 41
5.13 Distribution of APK’s Using Versions of Nostra13 ImageLoader . . . . . 41
5.14 Distribution of APK’s Using Versions of OkHttp . . . . . . . . . . . . . . 42
5.15 Distribution of APK’s Using Versions of Okio . . . . . . . . . . . . . . . . 42
5.16 Distribution of APK’s Using Versions of Picasso . . . . . . . . . . . . . . 43
5.17 Distribution of APK’s Using Versions of Google Protobuf . . . . . . . . . 43
5.18 Distribution of APK’s Using Versions of REtrofit . . . . . . . . . . . . . . 44
5.19 Distribution of APK’s Using Versions of Twitter4jCore . . . . . . . . . . . 44



ix

List of Tables

3.1 Google Play App Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Procyon Decompiler Performance . . . . . . . . . . . . . . . . . . . . . . 18
4.2 CFR Decompiler Performance . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Library Use Trends in Android Applications . . . . . . . . . . . . . . . . 34

6.1 Effect of Library Version on App Rating . . . . . . . . . . . . . . . . . . . 47



1

Chapter 1

Introduction

1.1 Background

Code reuse is a widespread software development practice which allows developers

to leverage existing code and use it for different purposes. It is a convenience which

enables developers to be more productive by focusing on the unique features of their

software rather than solving the same problems over and over again(Kapser and God-

frey, 2008)(Thummalapenta et al., 2010).

One major way in which code is reused today in software applications(apps for

short) is through the use of software libraries(Mojica Ruiz, Nagappan, Adams, and

Hassan, 2012; Li et al., 2016). By importing software libraries for use in their own

apps, software developers gain access to many useful functions and features provided

by the libraries that they would have otherwise needed to implement themselves. This

not only saves time, but reduces the complexity of software development.

For example, let us consider libraries for user authentication. These libraries are

tremendously useful in allowing software developers to consistently and reliably add

user login capability to their applications. If these libraries did not exist, any developer

who wanted a login feature in their application would need to develop the theory and

code for it from scratch. This involves a huge amount of additional development

effort. More importantly, it requires a significant amount of domain knowledge in

software security in order to implement correctly. If done incorrectly, there could be

severe consequences. For one, the privacy and security of the app’s users would be

jeopardized. Furthermore, it could be detrimental to the reputation of the developer

or organization responsible for the vulnerable software.



Chapter 1. Introduction 2

Therefore, it makes sense for developers to take advantage of proven libraries that

satisfy their requirements whenever possible. This is especially true for mobile ap-

plication development, where development cost and time to market are critical fac-

tors(Abrahamsson et al., 2004). In fact, Mojica Ruiz et al. have found that on average,

a staggering 84% of classes in Android applications are reused(Mojica Ruiz, Adams,

et al., 2014). Research by Linares-Vásquez et al. suggest that a big part of the reused

code is contributed by software libraries(Linares-Vásquez et al., 2014). This is consis-

tent with findings by Wang et al.(Wang et al., 2015) which reported that libraries are

responsible for over 60% of the code in an Android application.

1.2 Motivation

While there are concrete benefits of using software libraries, we must be aware of the

consequences. Like any other piece of software, software libraries undergo change

and increase in complexity over their lifetime(Lehman, 1980). They too are suscepti-

ble to design flaws, bugs, and security vulnerabilities(Constantin, 2014)(Constantin,

2015). In fact, over the years we have witnessed critical flaws in popular software li-

braries including the Apache Commons Collection(Arbitrary remote code execution with

InvokerTransformer 2015), Facebook Android SDK(The FAT Attack. Facebook Social Login

Session Hijacking Vulnerability 2014), OpenSSL(Vulnerabilities 2016), and many more.

The good news is that as bugs and vulnerabilities are discovered, software library

maintainers are able to efficiently release fixes to all applications via library updates.

To make things easier on developers, there are many powerful build tools available to-

day. Build tools help developers manage software library dependencies1 by installing

the necessary libraries before compiling2 the application. This ensures that whenever

an application is compiled, it includes all the code that it is supposed to include in

order to work as intended. Popular build tools in the Android ecosystem include

Maven3 and Gradle4.
1Software dependencies refer to components which an application relies on in order to function prop-

erly
2Software compiling refers to the process of converting source code - code that humans can easily

read and understand - into a form that can be read and processed by a machine
3https://maven.apache.org/
4https://gradle.org/whygradle-build-automation/

https://maven.apache.org/
https://gradle.org/whygradle-build-automation/


Chapter 1. Introduction 3

Despite the convenience of the build tools, research has shown that software de-

velopers do not regularly upgrade to the latest version of software libraries in their

application(Bavota et al., 2015). This is because software libraries are typically de-

veloped by a third party(developers from outside the organization) and shared with

other developers. We refer to these libraries as third-party or external libraries. As

a result, the developers using an external library are not intimately familiar with the

library or its changes and its flaws(Davies et al., 2013). In fact, this is precisely the

reason why developers often specify the exact working version of libraries as the de-

pendencies of their application. It guarantees that their app will build in the same

way each and every time and will work as intended. If instead they left the version

unspecified, the build tool would retrieve the latest version of the library when com-

piling the application. This introduces a temporal dependency where their application

might build differently just because it was compiled on a different date, which may

cause unforeseen problems with their application. For instance, should the library

introduce new changes to its application program interface(API5), it could mean that

their application becomes unstable or even stops working altogether. If this happens,

the developers would have to refactor their application to get it working once more

with the new version of the library(Robbes, Lungu, and Röthlisberger, 2012).

When we consider the complexity of many modern day software applications,

constantly having to resolve these dependencies could be extremely disruptive to soft-

ware development and entail an enormous cost in time and effort(Dig and R. Johnson,

2006). Furthermore, a library can depend on other libraries, making it exponentially

more difficult to manage and resolve all of an application’s external dependencies as

its dependencies grow. For these reasons, it is not surprising that developers tend

to be slow to embrace library updates. This is especially relevant in the case of An-

droid app developers, who Mojica-Ruiz et al. have found to heavily leverage software

libraries(Mojica Ruiz, Adams, et al., 2014).

If the updates for a library consist only of minor bug patches or feature changes,

then not adopting the changes in a software application is of little to no consequence.

As we have seen however, updates can contain security patches as well. In this worst-

case scenario, failing to update the library means that the vulnerability lingers in the

5The API specifies how to interact with and consume the software component



Chapter 1. Introduction 4

app and leaves it open to exploitation. This puts the integrity of the app and the

security of its users at risk.

Herein lies the problem and main motivation for our work. Our goal is to present

a solution which allows all stakeholders6 to easily identify the libraries being used in

an application, whether or not the versions used are out of date, and the degree to

which they are outdated7. We will be focusing on mobile applications due to their

characteristically high dependence on third-party libraries. More specifically, we fo-

cus on apps in the Android ecosystem due to its popularity and proliferation in the

mobile market. After establishing an effective method for identifying versions of li-

braries used in Android apps, we aim to explore the current trends of library use in the

Android ecosystem. Finally, we wish to determine whether or not there are tangible

consequences of using outdated software libraries(libraries where the version used is

not the most current) in Android applications.

1.3 Research Questions

During the course of our research, we aim to address the following research questions:

1.3.1 RQ1: Do Android applications use outdated software libraries?

This is the main motivating force behind our work, and presents the bulk of our re-

search effort. The goal is to identify the versions of libraries being used in a large set of

Android applications so that we can get a clear picture of current practices in library

change adoption in the Android ecosystem.

1.3.2 RQ2: Does using outdated software libraries affect the rating of an

Android application?

Mojica Ruiz et al. found that including certain ad libraries in an Android application

negatively impacted the ratings of the application(Mojica Ruiz, Nagappan, Adams,

Berger, et al., 2014). These results prompted us to examine whether or not using out-

dated software libraries would have an effect on an app’s rating.

6Everyone who has a vested interest in the application, including but not limited to its developers,
investors, and users

7Refers to the number of versions released between the target version and the most recent version



Chapter 1. Introduction 5

1.3.3 RQ3: Are Android applications that use a vulnerable version of a li-

brary vulnerable?

However, we wanted to examine whether or not known vulnerabilities in certain ver-

sions of libraries persist in Android applications. We believe that when a vulnerability

is discovered, it is reasonable to expect developers to try to address the vulnerability.

Perhaps developers who consume a library are aware of the vulnerabilities, and have

designed their app to prevent any exploitation. Moreover, mobile software and hard-

ware evolve rapidly. It is possible that the threats that people have previously found

have been mitigated in other ways and are no longer an issue. Therefore, we want to

address the question of whether or not libraries with previously identified vulnerabil-

ities continue to be a real, tangible threat to the security of Android applications.

1.4 Contributions of the Thesis

• We propose a novel approach for generating and comparing the signatures of

Java class files.

• The LibDiff tool which allows for the automatic parsing of differences between

consecutive versions of an Android library given the compiled library files as

input.

• The LibDetector tool which automates the process of identifying specific ver-

sions of libraries used in Android applications given the diff files generated by

LibDiff and the APKs for analysis as input.

• An empirical analysis of 21,524 Android applications for the presence of 442

versions of libraries across 17 different libraries, with all of our research data

made publicly available on GitHub8.

• An exploratory study on how outdated library use in Android applications may

affect its stakeholders.
8https://github.com/zchi88/LibDetector

https://github.com/zchi88/LibDetector


Chapter 1. Introduction 6

1.5 Thesis Organization

In this first chapter, we provided the background and motivation for our work and

summarized our contributions to the software community. The rest of this thesis is

organized as follows:

• Chapter 2 provides a general overview of the proposed approach for addressing

our three research questions.

• Chapter 3 details our strategy for collecting our data set of Android APKs.

• Chapter 4 details our strategy for collecting our data set of external Android

libraries. We also explain our approach to creating the LibDiff tool, which we

use to calculate the change history between versions of a library.

• Chapter 5 details our strategy for generating class signatures and how LibDe-

tector uses these signatures to determine matches to a version of a library in an

Android application.

• Chapter 6 explores how using outdated libraries in Android applications might

impact its stakeholders. We first look at whether or not using outdated libraries

can affect the rating of an app. We also look at whether or not using a vulnerable

version of a library can affect the security of an app.

• Chapter 7 presents the related works to our research.

• Chapter 8 summarizes our findings, and presents directions for future work.



7

Chapter 2

Approach Overview

In this chapter, we outline our proposed approach to addressing each of our three

research questions.

2.1 RQ1: Do Android Applications Use Outdated Software Li-

braries?

Before we can address this question, we first need a set of Android applications on

which to test our approach and perform our analyses on. We aim for a large, randomly

selected set of apps to ensure that they are representative of all the apps on the Google

Play store(also known as the Android market). We explain in greater detail how we

gathered the set of Android apps for our study in the following chapter(chapter 3).

Next, we need a way of identifying the versions of libraries contained in a given

Android app. The technique we propose is based on Software Bertillonage which is

inspired by Davies and colleagues(Davies et al., 2013). In Software Bertillonage, the

purpose is to narrow the list of potential candidates(also known as the search space)

of software components. The idea is to automatically filter out impossible candidates.

This drastically reduces the number of manual comparisons that must be made in or-

der to identify the best match in a target software system. However, an important

distinction is that our goal is not only to reduce the search space, but also to automat-

ically determine the best matching version of any third party library if it exists in the

Android app without additional manual effort. There are two main requirements for

implementing Software Bertillonage:



Chapter 2. Approach Overview 8

1. We must establish a corpus of all potential candidates. This simply means that

we need to collect all of the libraries that an Android application might be using.

For our research, we refer to this as the Android libraries whitelist. This is the

main topic covered in chapter 4.

2. We must devise a strategy for uniquely characterizing each software library. This

is so we can qualitatively compare libraries and distinguish between different

libraries or different versions of the same library. Since Java libraries are funda-

mentally a collection of Java class files, Davies et. al proposed that we charac-

terize a Java library by profiling each class that is contained within the library -

they refer to this as the "class signature". In order to construct the class signature,

they first record information about a class like its fully qualified name1, its return

type, its methods and method parameters, its fields, and its class, method and

field modifiers. The final class signature is simply a SHA-1 hash value computed

given this information. Using a hash value allows them to quickly and efficiently

determine if classes in a library are the same as or different from a class in an

app. In fact, by comparing classes in this manner, Davies and colleages were of-

ten able to determine the best library match in an application. This is because it

is highly improbable for two different libraries(or different versions of the same

library) to share the exact same class signatures across all of their classes. We

follow a similar approach which we cover in greater detail in Chapter 5.

Figure 2.1 illustrates the overview of our approach for detecting the libraries being

used by Android applications and identifying their version. We elaborate on Step One

in chapter 4, and address Steps Two and Three in chapter 5.

Finally, given our set of Android apps and having established a method for iden-

tifying the versions of libraries in an app, we observe the trends in library use across

all of the apps in section 5.4 and reach a conclusion to RQ1 in section 5.5.

1Describes the name of the class and the package that it belongs to



Chapter 2. Approach Overview 9

2.2 RQ2: Does Using Outdated Software Libraries Affect the

rating of an Android Application?

For each library, we will be creating two groups. The "Recent" group will represent the

ratings of apps that use more recent versions of the library. The "Outdated" group will

represent the ratings of apps that use older versions of the library. Since we cannot

assume a normal distribution for app ratings(and in fact they are often skewed), we

require a non-parametric test to compare the two groups and determine whether or

not there is a statistical difference between the two. For this, We propose the Mann-

Whitney U test. We elaborate on this in section 6.2.

2.3 RQ3: Are Android applications that use a vulnerable ver-

sion of a library vulnerable?

We select apps using various versions of a library. We then attempt to exploit the apps

using a known and documented vulnerability in the library, and assess whether or

not the apps using vulnerable versions of the library inherit the vulnerability. This is

covered in greater detail in section 6.3.



Chapter 2. Approach Overview 10

FIGURE 2.1: Proposed Approach for Identifying Versions of Libraries
in Android Apps



11

Chapter 3

Crawling the Google Play Store

3.1 Motivation

In order to conduct our research, we first need a sample set of Android apps. This

set has to be sufficiently large and randomly selected so that it is representative of the

apps available to the typical Android user. We consider only apps from the Google

Play store, the official marketplace for distributing Android apps. Android applica-

tions are available from the store in the Android Application Package(APK1) format.

Therefore when we refer to an APK, we are referring to a single version out of poten-

tially multiple versions of an app.

Unfortunately, Google does not provide an official utility for users to download

APKs on the Google Play store in bulk. In fact, Google does not provide any way

for users to download APKs to non-Android devices. While there are third-party so-

lutions for this such as APKPure.com2, they require us to manually download each

APKs individually. This might be sufficient for a few apps, but it is extremely imprac-

tical for collecting a large number of apps. What we need is a program to crawl the

Google Play store and automatically download APKs for us.

Luckily, there are a few open source crawlers available on GitHub. The crawler we

use for our work was originally created by Ali Demiroz3. This crawler works by em-

ulating an Android device(Samsung GT-I9300), and requesting to download an app

from the Google Play store like a real device might. The version of the crawler we

1The Android Application Package is the file format used by the Android operating system for the
distribution and installation of applications

2https://apkpure.com
3https://github.com/Akdeniz/google-play-crawler

https://github.com/Akdeniz/google-play-crawler


Chapter 3. Crawling the Google Play Store 12

use has been previously modified by other researchers for their work. These mod-

ifications include minor updates to the crawler(since it had not been maintained for

nearly 3 years), integrating it with a MySQL database to record downloaded app meta-

data(e.g. upload date, average rating, number of ratings, etc.), and error logging.

3.2 Methodology

As we previously stated, our sample set of apps has to be sufficiently large for us

to be able to make any meaningful generalizations to all Android apps. Currently,

the number of apps available on the Google Play store is estimated to be around 2

million(Number of available applications in the Google Play Store from December 2009 to

February 2016 2016). With this in mind, we chose to gather roughly 20,000 apps for

analysis. We believe this is sufficient because it allows us to report our results with a

confidence level of 99% and a confidence interval of 0.91%.

In order for the crawler to work, we need to specify the apps we want it to down-

load from the Google Play Store - it is not capable of browsing and downloading APKs

on its own. We took the following steps to ensure that we randomly sampled roughly

20,000 apps from 24 app categories:

1. We obtained a list of the top 100 apps in each of the 24 app categories(business,

sports, games, etc.) from AppAnnie(Top Apps on Google Play, United States 2016).

This set of 100 apps across each of the app categories served as our seed to find

other apps.

2. We wrote a python script to crawl the Google Play store for apps similar to the

current app in a breadth-first fashion. Given our initial seed, this returned the

names of approximately 600,000 apps in total.

3. From the list of 600,000 apps, we randomly select roughly 20,000 for the study.

The final step was to simply run the Google Play crawler, giving it the list of 20,000

apps as an input so that it knows which apps to crawl for. We started the crawler

on May 5th, 2016. Whenever the crawler encountered a new APK or an updated

APK, it recorded any meta-data associated with the app in a MySQL database and

downloaded the APK file. APKs that the crawler has already visited are skipped.



Chapter 3. Crawling the Google Play Store 13

TABLE 3.1: Number of Apps in Each Google Play Store Category

App Category # Apps

BOOKS AND REFERENCE 1,720
BUSINESS 1,263
COMICS 31
COMMUNICATION 476
EDUCATION 2,791
ENTERTAINMENT 1,293
FINANCE 746
GAMES 2,849
HEALTH AND FITNESS 762
LIBRARIES AND DEMO 40
LIFESTYLE 1,587
MEDIA AND VIDEO 251
MEDICAL 444
MUSIC AND AUDIO 1,067
NEWS AND MAGAZINES 848
PERSONALIZATION 1,800
PHOTOGRAPHY 347
PRODUCTIVITY 875
SHOPPING 398
SOCIAL 335
SPORTS 605
TOOLS 1,849
TRANSPORTATION 472
TRAVEL AND LOCAL 1,097
WEATHER 130

Total: 24,076

3.2.1 Hardware

The crawler was run on a single Linux-based server located at the Rochester Institute

of Technology(RIT).

3.3 Resulting Artifacts

After randomly paring down the list of 600,000 apps, we ended up with a total of

24,076 apps. Table 3.1 shows the category distribution of this list of apps.

Out of the 24,076 apps that we crawled for, we were able to successfully download

19,395 of them in the span of the month of May 2016. During this time, some of these

apps were updated, and so we had multiple versions of an app(i.e. one app might

have one or more associated APKs). We ended up with 21,692 APKs across 19,395



Chapter 3. Crawling the Google Play Store 14

apps. This sample of 21,692 APKs is the data set that we work with throughout the

course of our research.

We also generated a MySQL app metadata table with 27,913 total entries and 24,076

unique app entries. Note that there is a discrepancy between the number of APKs we

were able to download and the number of entries in the table. This is due to the fact

that APKs that we visit but could not download are still recorded to the database in

order keep track of the APKs that we have already encountered.

3.4 Limitations

Due to the lack of maintenance on the Google Play crawler in conjunction with API

changes in the Google Play Store during that time, almost 5,000(20%) of the apps could

not be downloaded. There are two main types of errors thrown when the crawler

failed to download the app:

1. The first is a very generic and unhelpful error, which simply states that there

was an error when trying to download the app. We were unable to determine

the root cause for this error.

2. The second is a more specific device incompatibility error. We believe that one of

the reasons for this error is due to an incompatible configuration in the emulated

Samsung GT-I9300 device. What this means is that the hardware/firmware re-

quirements for some apps are not met by our device configuration, and so the

app could not be downloaded. Another reason is that our method for retrieving

a list of 600,000 apps sometimes returned foreign apps that are not available to

users in the United States. We were unable to resolve this error despite our best

efforts.



15

Chapter 4

LibDiff: Towards a Corpus of

Android Libraries and Their

Change History

4.1 Motivation

In the last chapter, we detailed the approach we took to gathering our set of apps

for analysis. Our task now is to devise a technique for detecting software libraries in

these apps. Therefore, in this chapter we aim to fully address the first requirement for

implementing Software Bertillonage - building the libraries whitelist. We also set up

to address the second requirement in the following chapter.

4.2 Methodology

4.2.1 Library Selection

Prior research has shown that it is possible to duplicate the entire Maven Repository1

to generate a corpus of all available Java libraries on Maven(Davies et al., 2013; Ishio

et al., 2016). For our research, we select only a few of the most popular Java libraries

to include in our libraries whitelist. This is because the focus of our research is to

present an approach for the identification of specific versions of libraries in an Android

application, not to determine an exhaustive list of all libraries in the app. Furthermore,

1http://mvnrepository.com/

http://mvnrepository.com/


Chapter 4. LibDiff: Towards a Corpus of Android Libraries and Their Change

History
16

by looking at only a select handful of libraries, we are able to perform our analyses

with only very average machines.

We based our list of popular libraries on the "Popular" category from the Maven

Repository(Top Projects 2016) and from PrivacyGrade(Lin, Amini, Luan, et al., 2014).

Doing so, we ended up with the following list of 17 libraries which we select for our

research:

1. Acra

2. Apache Commons HttpClient

3. Apache Commons IO

4. Apache HttpComponents HttpClient

5. Facebook Android SDK

6. Google aoauth client

7. Google Protobuf

8. Gson

9. Jsoup

10. Mopub

11. Nostra13

12. Okhttp

13. Okio

14. Paypal core

15. Picasso

16. Retrofit

17. Twitter4j core

Note that at the time of writing this thesis, the Apache Commons HttpClient has

already long been deprecated. In fact, the last released version (version 3.1) was in Au-

gust of 20072, and since then this library has been succeeded by the new Apache Http-

Components HttpClient. Although HttpComponents HttpClient is still being main-

tained, Android has already stopped supporting Apache HttpClient in its SDK. This

change took place in Android 6.0 Marshmallow, which was released in October of

2015(Android 6.0 Changes 2015). For these reasons, we were especially interested in

analyzing whether or not these libraries continue to be used by developers in their

Android applications.
2http://mvnrepository.com/artifact/commons-httpclient/commons-httpclient

http://mvnrepository.com/artifact/commons-httpclient/commons-httpclient


Chapter 4. LibDiff: Towards a Corpus of Android Libraries and Their Change

History
17

4.2.2 Library Collection

We downloaded all the binary versions of the 17 Java libraries from the Maven Repos-

itory available in May 2016. While the Maven Repository is not a comprehensive

source of all Java libraries that developers use and might not even contain all versions

of a given library, it is the most comprehensive source of Java libraries that we are

aware of(Davies et al., 2013). On Maven, there are three possible forms in which the

code for a Java library are made available:

1. sources.jar: The Java Archive(JAR3) file format is used to aggregate one or more

Java files into a single compressed file - the JAR. The sources.jar is simply the

aggregation of all the original source(.java) files of the library.

2. jar: Compiling Java source code converts it into binary code, with the corre-

sponding .java files being converted into one or more .class files. The "jar" ver-

sion of the library on Maven is typically a JAR aggregating the compiled .class

files of the library.

3. aar: The Axis Archive(AAR4) file format is a newer file format specification. It

is a zip file format which actually contains within it a JAR of the binary library

code.

For our research, we consider only libraries in their binary form(AAR’s and binary

JAR’s).

4.2.3 Why Binary and Not Source?

While ideally we would like to collect the original source code for libraries and com-

pare it to the original source code of an Android application, in reality this is not

practical for two main reasons:

1. The source code for an Android application on the Google Play store is rarely

accessible to anyone other than the developers.

3https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
4http://filext.com/file-extension/AAR

https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
http://filext.com/file-extension/AAR


Chapter 4. LibDiff: Towards a Corpus of Android Libraries and Their Change

History
18

TABLE 4.1: Procyon Decompiler Performance

Library Extracted From Failed Classes Failed Files Total Files

Facebook 4.11.0 Test App JAR 23 11 173
Facebook 4.11.0 Maven JAR 0 0 172
GSON 2.6.2 Test App JAR 0 0 63
GSON 2.6.2 Maven JAR 0 0 63

2. It is much more common for library developers to upload the binary form of

their library code, thereby making the binary form of the library more accessible

than the source form (Davies et al., 2013).

However, besides simply being more accessible, there is one major advantage to

performing our analysis with only binary libraries - we are able to take full advantage

of Oracle’s5 own class file dissassembler, Javap6.

We believe that this is a huge improvement over many other works in Software

Bertillonage on Java projects. We observed that a common decompiler used by those

researchers is Apache BCEL7, which we have found to be quite unwieldy. However,

other open source decompilers exist and have been used as well. In fact, in our initial

approach we too used an external Java decompiler.

The problem is that among these external Java binary decompilers, even the most

powerful often cannot guarantee a 100% decompiling rate. That is, it is hard for ex-

ternal Java decompilers to completely reverse engineer the code and reconstruct the

source code from the binary. We know this because when the decompilers fail, they

log the failure in the body of the method that could not be decompiled. To illustrate

this, we present the following results from the initial stages of our research when we

were evaluating the performance of two Java decompilers for decompiling the Face-

book Android SDK library and GSON library - Procyon8 and CFR9:

As shown in tables 4.1 and 4.2, different decompilers have different strengths and

return different results. While Procyon only failed to decompile files in 1 of the 4 cases,

it also produced almost 3 times as many failures as CFR for the Facebook 4.11.0 library

5Oracle is the parent company of Sun Microsystems(the creators and maintainers of the Java lan-
guage)

6http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javap.html
7https://commons.apache.org/proper/commons-bcel/
8https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler
9http://www.benf.org/other/cfr/

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javap.html
https://commons.apache.org/proper/commons-bcel/
https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler
http://www.benf.org/other/cfr/


Chapter 4. LibDiff: Towards a Corpus of Android Libraries and Their Change

History
19

TABLE 4.2: CFR Decompiler Performance

Library Extracted From Failed Classes Failed Files Total Files

Facebook 4.11.0 Test App JAR 8 8 173
Facebook 4.11.0 Maven JAR 0 0 172
GSON 2.6.2 Test App JAR 2 2 63
GSON 2.6.2 Maven JAR 0 0 63

which was extracted from our test Android application. It is interesting to note that

both decompilers perform perfectly on the original binary libraries. While we do not

know for sure which compiler compiled the original JAR’s, we see that the compiler

included with Android Studio tends to give external decompilers more difficulty.

Finally, we often do not need to reconstruct the complete source code. We only

need important identifying information of a class files such as the package and class

name, method declarations, and field declarations in order to generate a class signa-

ture. For all of the above reasons, we believe that:

• it is sufficient to analyze only binary Java code

• it is reasonable to assume that Javap will give us the most accurate class signa-

ture for characterizing Jar files to use in Software Bertillonage

4.2.4 Optimizing the Libraries Whitelist

After collecting our set of libraries, we devised a method to calculate the version dif-

ferences between successive versions of a library. The purpose of this is to further

narrow down the search scope and reduce the amount of comparisons to determine

if a software library matched a software component in the target application. This is

a departure from the work by Davies et al., which indexed all of the class files of a

library JAR in order to generate a characteristic profile for each version of a library.

Since our goal is to construct a change history for a library, we needed a way of

automatically figuring out the chronological order of a library. One possible way is to

consider the version code of a library. Many developers today follow a best practice for

the versioning of their software, also known as semantic versioning(Preston-werner,

2016). In semantic versioning, we describe the version of a software application in the

form of X.Y.Z, where "X" is the application’s major version, "Y" is its minor version,



Chapter 4. LibDiff: Towards a Corpus of Android Libraries and Their Change

History
20

and "Z" is its patch version. For software applications that follow semantic versioning,

it is often very trivial to determine their chronological release order. For example, we

can tell that Library-2.0.1 is a more recent release than Library-1.0.1 since its major

version is bigger. However, Library-2.0.1 is an older version than Library-2.0.2 since

its minor version is smaller.

Unfortunately, discerning the version order is not always so straightforward. For

example, in some situations developers may want to try out experimental versions of

their application. These versions may be referred to as release candidates(RC), beta,

alpha, and so on. Semantic versioning does not provide any guideline for these type

of releases. Because of this, we end up with library versions with names like acra-

4.7.0 and acra-4.7.0-RC.1. Without a release history available, determining the correct

version order of libraries versioned in this manner may be near impossible. In order

to address this issue, we present a simple heuristic based on the assumption that the

creation date of library JAR’s should correlate with its chronological release order.

Having decided on our strategy for estimating the version order of a library, we

can constructed a change history between successive versions. We start by extracting

the class files from their binary JAR files. AAR files required an additional step -

extracting the JAR file contained within the AAR first. Afterward, the same process is

applied to extract the class files from that JAR.

Next, we perform an MD5 hash of each class file in each version of each library.

Hashing functions have been proven to a very quick and efficient method for deter-

mining file similarity or difference(Davies et al., 2013)(Ishio et al., 2016). When two

files have different hash codes, we know for certain that they are different, since hash

functions are designed to always return the same hash code for the same input. In the

case that two files return the same hash code, it is very likely that they are identical in

content. However, there is a small chance that their content is actually different, and

that they hashed to the same value by chance. The chance that this occurs is astronom-

ically low, and so we do not consider this scenario. Therefore, by directly comparing

the hash values of a class in one version of a library with the hash value of a class with

the same name in the successive version of that library, we can determine whether

or not a class has been changed from one version to the next. Given two libraries,

"Library-1.0.0" and "Library-2.0.0", and a class file "Example.class" we summarize and



Chapter 4. LibDiff: Towards a Corpus of Android Libraries and Their Change

History
21

classify the 4 scenarios that may occur:

• Deletion: Example.class is present in Library-1.0.0 but not in Library-2.0.0

• Addition: Example.class is present in Library-2.0.0 but not in Library-1.0.0

• Modification: Example.class is present in both libraries, but have differing hash

values

• No Change: Example.class is present in both libraries, and share the same hash

value

We designed our tool, LibDiff, to sequence the versions of libraries based on our

heuristic and perform the MD5 hashing and comparison of classes for us. By perform-

ing this comparison for all classes of two adjacent versions of a library10, we effectively

construct our version history of each library. In the case where a library is the very

first version created, all of its classes are classified as additions, since they are all new.

We store the results of the change history between two adjacent versions in a "diff.txt

file". The structure of the directory for our libraries whitelist files and the diff.txt file

is shown in figure 4.1.

4.2.5 Hardware

LibDiff was run on a 64-bit Windows 10 machine with 12.0 GB of RAM, an Intel i7-2600

processor clocked at 3.40GHz, and a 1.5 GB 7,200 RPM SATA hard drive.

4.3 Results

We observed that out of the 17 libraries we gathered for our study, 8 of the libraries

contained at least one version where they deviated from the semantic versioning scheme.

There were: Acra, Apache Commons HttpClient, Apache Commons IO, Google OAuth,

Google Protobuf, Apache Components HttpClient, Retrofit, and Mopub. However, in

the case of Google Protobuf, the developers were faithful to the concept of semantic

versioning, which allowed us to discern the intended version order of their library

despite not fully conforming to semantic versioning. An example of this can be seen

10We define adjacent versions as being versions of libraries where one is the predecessor of the other



Chapter 4. LibDiff: Towards a Corpus of Android Libraries and Their Change

History
22

FIGURE 4.1: LibDiff Directory Structure.

in two versions of protobuf: protobuf-java-3.0.0-alpha-2.jar and protobuf-java-3.0.0-

alpha-3.1.jar. Although this clearly does not conform to the semantic version model, it

is clear and obvious that protobuf-java-3.0.0-alpha-2.jar preceeds protobuf-java-3.0.0-

alpha-3.1.jar.

4.3.1 Artifact: The Android Libraries Whitelist

The resulting libraries whitelist for the 442 library JAR files across 17 libraries after

running LibDiff expands to 84,344 .class files and 442 diff.txt files. It occupies 520 MB

of disk space.

4.3.2 Performance

LibDiff took 1,827,520 milliseconds, or roughly 30 minutes and 27 seconds on our

machine to process 442 unique binary library JAR files distributed across 17 different

Java software libraries. This equates to roughly 4.072 seconds to unpack the class files



Chapter 4. LibDiff: Towards a Corpus of Android Libraries and Their Change

History
23

of a single binary library JAR, then calculate and log the version changes with respect

to its previous version in the "diff.txt" file.

4.4 Validation

We validated the diff files generated by LibDiff which detail version-to-version dif-

ferences in the binary files of a library by manually comparing several diff files in

Facebook and GSON against their source file change history in the Facebook An-

droid SDK11 and GSON12 GitHub repositories, respectively. We confirmed that classes

that are reported by LibDiff as being added, modified or deleted coincides with their

GitHub commit history.

4.5 Limitations

The heuristic we use for determining the intended version order of a library is not

perfect. While developers often release the versions in the order they are intended

chronologically, this is not always the case. For example, future versions of a library

might be released either early or concurrently with the main version for beta testing.

Another limitation is that we are often limited to the versions of libraries hosted on

Maven. While this is a very extensive collection, it is far from being complete. Many

older versions of a library are routinely removed from the repository, making them

unavailable for us to download. It is certainly possible for applications to contain

older versions of those libraries which are no longer available on Maven if they were

installed before being removed.

4.6 Threats to Validity

A big part of the LibDiff tool depends on our ability to correctly identify successive

versions of a library in order to construct our version change history. Currently, this

process relies on a simple heuristic that is not perfect, and does not always correctly

identify the intended order of the versions of a library. The result is that where the

11https://github.com/facebook/facebook-android-sdk
12https://github.com/google/gson

https://github.com/facebook/facebook-android-sdk
https://github.com/google/gson


Chapter 4. LibDiff: Towards a Corpus of Android Libraries and Their Change

History
24

versions are incorrectly ordered, we get a distorted change history. This could affect

the internal validity of our library version identification in Android applications.



25

Chapter 5

LibDetector: Identifying the

Version of a Library Used in

Android Applications

5.1 Motivation

In the last chapter, we detailed our approach to constructing our libraries whitelist, as

well as a Software Bertillonage optimization to avoid having to compare an unknown

software component in an Android app against every class file of a given software

library. With the whitelist of libraries, the diff.txt files which describe their version

change history, and our set of 21,692 Android APK’s, we are prepared to address the

second requirement for Software Bertillonage and realize our goal of identifying ver-

sions of libraries used in Android applications.

5.2 Methodology

5.2.1 Extracting the Binary Code

The first step in our approach is to extract the binary code from an APK file. In every

APK file, there is at least one ".dex"(short for Dalvik Executable) file. The dex format is

simply compiled Android application code that Android devices can understand and

execute. In order to convert these .dex files into the desired binary JAR’s, we require



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
26

the use of the dex2jar1 tool. We observed that in some rare cases, an application con-

tained more than one .dex file. For example, com.glu.deerhunt16 contained 3 .dex files

- classes.dex, classes2.dex, and classes3.dex. We made sure that LibDetector checks for

those situations, and aggregates the fragmented JAR files that are extracted from each

of the .dex files when this occurs.

In some cases the class files for an APK failed to extract, so we skip the APK. This

is due to the fact that we were trying to extract them on a Windows machine and the

name of the class file contained special reserved keywords of the Windows OS, such

as "con" or "aux". In total, 168 of our 21,692 APK’s failed to extract, leaving us with a

new working set of 21,524 apps.

5.2.2 Constructing the Class Signature

The next step is to formulate the strategy for generating our class signature for com-

paring classes in the APK to classes in the library. Unfortunately, we cannot reuse the

same strategy for comparing library versions using an MD5 hash. The reason for this

is that there exist many compilers, and each compiles the code in slightly different

manner. With hash functions, even a change as minor as a single whitespace charac-

ter can completely change the hash value of a file, rendering it completely useless for

comparison of files where we cannot expect consistent formatting. Furthermore, we

saw in chapter 3 that different compilers can in fact produce very different code.

When working with different versions of a given library, it is safe to assume that

the library is being developed within the same environment. Therefore, we can as-

sume that the same compiler is being used to compile the library code and would not

expect major code differences to be introduced by the compiler. However, there are

a variety of development environments available to Android app developers such as

Android Studio2, Eclipse3 and NetBeans4. Many of these development environments

integrate a different compiler, and we do not know which environment a developer is

1https://github.com/pxb1988/dex2jar
2https://developer.android.com/studio/index.html
3https://eclipse.org/home/index.php
4https://netbeans.org/

https://github.com/pxb1988/dex2jar
https://developer.android.com/studio/index.html
https://eclipse.org/home/index.php
https://netbeans.org/


Chapter 5. LibDetector: Identifying the Version of a Library Used in Android
Applications

27

using. This means that we often do not know which compiler has been used to com-

pile an APK. Without this information, we cannot accurately compare library code

from an APK against the code from the original library using an MD5 hash.

The solution we arrived at is to calculate a class signature with the same elements

as the signature described in the work by Davies et al.(Davies et al., 2013). However,

instead of decompiling the binary code of the APK and then parsing for the class

name and method and field declarations, we use Javap, Oracle’s own Java class file

disassembler. We believe it is reasonable to assume that this approach will produce

superior results since we avoid decompiler and parsing error. Furthermore, in our

approach we do not need to worry about inner classes. When we examine source

code, a single .java file might contain several classes besides the main class. However,

the compilation process creates a .class file for each of the inner classes, so we can

execute Javap on them individually.

To use Javap, we simply make a call to it and pass it the path to the class file we

wish to analyze as an argument. By default Javap returns only the package, protected

and public classes and members of a class. We want all of the classes and members,

so we pass in the "-private" flag as a parameter as well. Figure 5.1 shows the output

of Javap when run on the same class extracted from the library versus extracted from

an APK. We observe that there is also a huge amount of difference between the two

classes.



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android
Applications

28

FIGURE 5.1: Javap Example Output for AppCall.class from Facebook
SDK 4.11.0

However, upon closer inspection we notice that most of the difference is not in the

content, but rather their order. Therefore, we propose a few transformations to help

normalize and control for these order differences introduced by the compiler. The first

transformation we need is to strip all trailing and leading whitespace from each line

of the output. Second, we sort each line alphabetically. Figure 5.2 shows the result of

performing these two transforms on the Javap output.



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
29

FIGURE 5.2: Javap Output Stripped of White space and Ordered

After these two transforms, we see that the difference between the two files has

decreased significantly. However, there are still some compiler differences we need

to account for. In the AppCall.class file extracted from the library, we see that its

compiler has injected a line describing which .java source file was compiled to produce

the .class file. We found this information to be extraneous, so we removed it. Finally,

we see that the Android studio compiler tends to remove the synchronized keyword

from the method signature. This may seem like an odd behavior at first, since this

removal could drastically alter the behavior of the software. However, we discovered

that what ends up happening is that the sychronized methods are being converted by

the compiler to equivalent synchronized statements. Figure 5.3 shows an example of

this in a decompiled method of the AppCall.class file.



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
30

FIGURE 5.3: Compiler Differences: Synchronized keyword

Because the Android Studio compiler was moving the synchronized keyword into

the body of a method which we do not consider as part of the class signature, we

decided to ignore any occurrences of the synchronized keyword. With these final two

transformations, we resolve all of the differences between the classes in the binary

code of the libraries and in the binary code of the APK’s, and the output of Javap for

the same classes become identical. In summary, the class signature in our Software

Bertillonage technique is constructed as follows:

1. For a given class, call Javap with the -private flag and the path to the class as

a parameter to retrieve the fully qualified class name and all of its method and

field declarations.

2. Strip any trailing and leading whitespace in the output

3. Remove the "compiled from" line in the output

4. Remove the synchronized keyword from the output

5. Order the output alphabetically line by line



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
31

5.2.3 Class Signature Comparison

With our class signature defined, we next need to specify how we will compare the

similarity between two classes should their signatures differ. Davies et al. proposed

hashing this signature and storing it in a table for efficient comparison. We propose

the use of the Levenshtein Distance (also known as edit distance) instead. The way the

Levenshtein distance works is that it calculates the least number of changes required

to transform one string to another. For example, consider the two strings "cat" and

dog". In order to transform "cat" into "dog", two edits are needed - "c" -> "d" and "a"

-> "o". Therefore, the Levenshtein Distance is 2.

The main advantage of using the edit distance over the hashing approach is that

we can explore the degree to which two classes are similar or different. With hash

values, we can only determine if two class signatures are the same or not, with no

room for error. Although this would more or less eliminate the possibility of a false

positive match, it is extremely inflexible in dealing with situations where the code

may have been slightly altered by the compiler, or has been obfuscated. By using

the Levenshtein Distance to compare signatures, we design for some flexibility in the

signature matching.

Furthermore, we propose keeping track of the degree of similarity between com-

ponents in the APK and a version of a software library via a Levensthein Ratio metric.

The Levenshtein Ratio normalizes the edit distance with respect to the size of the sig-

natures being compared. This is important because on its own, the edit distance is

not very useful. For example, in a class signature with 20 characters, an edit distance

of 20 that the two classes under comparison are completely different. However, an

edit distance of 20 where the class signature contains 100 characters means that the

two classes are roughly 80% identical. To calculate the Levenshtein Ratio, we simply

divide the Levenshtein Distance by the longer length of the two class signature strings

being compared.

5.2.4 Library Version Identification

To identify the version of a library in an APK, we first iterate through each library in

reverse chronological order, starting with the most recent version and working our



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
32

way towards the oldest version. We first reduce the search space by filtering out all

libraries where we expect a file to be deleted but is present in the APK, or where

the file should exist but is not present in the APK. This leaves us with a subset of

libraries which are potential matches. For these libraries, we only have to compare

the class signatures of the modified class files reported in the diff.txt files against the

class signatures of the class files present in the APK. By keeping track of an aggregated

Levenshtein ratio for a library during this analysis, we are able to determine the best

match and its degree of similarity to the unknown component in the app. We continue

this process for every version of every library until one of three situations occur:

1. The initial filtering based on presence/absence of files leaves zero candidates,

which means the APK does not use any versions of the library

2. The files in a version of a library is a perfect match to the files in the APK with a

total Levenshtein Ratio of 0, at which point we can stop and declare that version

as the best match

3. We compare the files in the APK with each relevant file in every version of the

library, and went through all the candidates without finding a perfect match. We

report the match (or matches) with the lowest Levenshtein Ratio.

The results of the LibDetector analysis is stored in an individual "libraryMatchRe-

sults.txt" file in a directory named after the APK that was analyzed.

We split our data set of apps into 2 subsets of roughly the same size(about 10,500).

This was done in order to decrease the computation time required to analyze the ver-

sions of libraries used in all 21,524 apps. Half of the results were computed on a

Windows machine, while the other half was computed on a Linux machine.

5.2.5 Hardware

LibDetector was run on a 64-bit Windows 10 machine with 12.0 GB of RAM, an Intel

i7-2600 processor clocked at 3.40GHz, and a 1.5 GB 7,200 RPM SATA hard drive(as

used for LibDiff in chapter 4). We also leveraged several Linux-based servers for parts

of our research computation.



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
33

5.3 Evaluation

We evaluated LibDetector by using it to analyze a simple Android test application

created in Android Studio. We specified the dependencies of our application to be

Facebook Android SDK 4.11.0, GSON 2.6.2, and Twitter4jcore 4.0.4. The results are

promising, with all three of the libraries identified with a Levenshtein Ratio of 0.0

(meaning a perfect match), and no false positives or false negatives. Since we correctly

identified 3 out of 442 possible versions of libraries, we have a true positive of 3/3 and

a true negative of 439/439. This means that for our test app, LibDetector performed

with a precision of 100% and recall of 100%.

5.4 Results

Both machines ran LibDetector and completed their analysis in roughly the same

amount of time - 3 days. Therefore, the total amount of time required to analyze

21,524 apps was roughly 6 days, which comes out to less than half a minute to analyze

a single APK for the inclusion of 442 versions of software libraries.

Since we examined over 20,000 APKs, we are not able to provide our full set of

results in this paper. However, everything is made available on our GitHub page5.

Our results are documented in the following files on our GitHub page:

• The "LibDetector Results Per App.zip" file contains the direct output from the

LibDetector tool.

• "APKLibUse.xlsx" combines the individual LibDetector results with the recorded

metadata for each APK into an excel spreadsheet.

• "LibVersionUseFrequency.xlsx" breaks down the results by each library, and

shows the trends in library use among the APKs.
5https://github.com/zchi88/LibDetector/tree/master/LibDetector%20Results

https://github.com/zchi88/LibDetector/tree/master/LibDetector%20Results


Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
34

TABLE 5.1: Library Use Trends in Android Applications

5.5 Analysis

Before we analyzed our results, we first filtered out multiple versions of an app, leav-

ing us with only 19,395 APKs which are the most recent version of each app. This is is

prevent any one app from having more influence on our results than other apps.

Table 5.1 shows the number of apps that use each of the 17 libraries we looked at.

Our results show that for any given library, it is not uncommon for apps to be using

an outdated version of the library. In fact, in 11 of the 17 libraries we looked at, the

proportion of apps using a version of the library that is at least one minor version

behind exceeded 90%.

More importantly, for 10 of the 17 libraries we looked at, we saw that there were

apps that used a version that was behind by at least one major version. In the case of

Google Protobuf, as many as 98.61% of the apps containing that library was using a

version that was a major update behind. Note that the Paypal Core library was not

found in any of the apps we examined with LibDetector.

Figures 5.4, 5.5, 5.7, 5.8, 5.9, 5.10, 5.6, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19

provide a more detailed breakdown of the number of apps using the various version



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
35

of each library.

,

FIGURE 5.4: Distribution of APK’s Using Versions of Acra

Based on the results, it is evident that many Android developers use outdated

versions of Java libraries in their applications. This is consistent with the research

findings by Bavota et al. (Bavota et al., 2015). Interestingly, even the very outdated and

deprecated Apache Commons HttpClient library continues to exist a a dependency for

some apps.

5.6 Summary

In the last 3 chapters (chapters 2, 3, 4) we detailed our approach to identifying not

only the library being used in an Android application, but the specific version of the

libraries as well. Based on the results of our LibDetector tool, we arrive at the follow-

ing conclusion to our first research question:

5.6.1 RQ1: Do Android Applications Use Outdated Software Libraries?

Based on the results shown in table 5.1 and in figures 5.4, 5.5, 5.7, 5.8, 5.9, 5.10, 5.6,

5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, we conclude that Android apps do

commonly use outdated software libraries.



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
36

FIGURE 5.5: Distribution of APK’s Using Versions of Apache Commons
HttpClient

5.7 Limitations

A key component of our approach is the libraries whitelist. However, it is impossible

to gather all of the software libraries that may be used by mobile applications. There

are two main reasons for this:

1. Maven Repository, the most comprehensive collection of Java libraries we know

about, is incomplete and does not contain all libraries. In many cases, the li-

braries that it does host are incomplete since older versions of a library periodi-

cally get removed.

2. Not all libraries are made publicly available. Developers may use in-house li-

braries(software libraries that are developed for use within the same organiza-

tion) which are never shared with the public. Our assumption is that with in-

house libraries, developers are more aware of their evolution and that there is a

lower barrier to adoption, therefore making the accurate identification of these

libraries less of a concern than external software libraries. However, the fact re-

mains that these libraries will typically not be available for a libraries whitelist.



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
37

FIGURE 5.6: Distribution of APK’s Using Versions of Apache HttpCom-
ponents HttpClient

Because it may be impossible to ever compose a complete libraries whitelist, it

would be impossible to identify any version of any library in a given application with

100% accuracy using our approach.

5.8 Threats to Validity

One of the biggest threats to validity was the small scale of our proof of concepts. We

tested our proposed approach on only a very small sample.

For example, we tested LibDetector on just one very simple Android application

developed in Android Studio to evaluate its accuracy. This does not consider or ac-

count for differences in APKS built using for example Eclipse or NetBeans. When we

tested our approach to generating class signatures, we only looked at one distinct li-

brary version of two libraries - Facebook Android SDK and Gson. Because we did not

do more thorough testing, there may be things that we failed to consider and account

for in the design of our study, thereby reducing the internal validity of our findings.

As we mentioned in chapter 2, the crawler was unable to download nearly 20%

of the apps that we instructed it to crawl for. We also had to remove another 168

apps from our analysis due to our inability to extract their byte code onto a Windows



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
38

FIGURE 5.7: Distribution of APK’s Using Versions of Apache Commons
IO

machine. It is possible that there is a systematic difference between these apps that dif-

ferentiate them from the apps that we studied, thereby reducing the external validity

of our findings.



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
39

FIGURE 5.8: Distribution of APK’s Using Versions of Facebook Android
SDK

FIGURE 5.9: Distribution of APK’s Using Versions of Google OAuth



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
40

FIGURE 5.10: Distribution of APK’s Using Versions of GSON

FIGURE 5.11: Distribution of APK’s Using Versions of JSoup



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
41

FIGURE 5.12: Distribution of APK’s Using Versions of Mopub

FIGURE 5.13: Distribution of APK’s Using Versions of Nostra13 Im-
ageLoader



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
42

FIGURE 5.14: Distribution of APK’s Using Versions of OkHttp

FIGURE 5.15: Distribution of APK’s Using Versions of Okio



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
43

FIGURE 5.16: Distribution of APK’s Using Versions of Picasso

FIGURE 5.17: Distribution of APK’s Using Versions of Google Protobuf



Chapter 5. LibDetector: Identifying the Version of a Library Used in Android

Applications
44

FIGURE 5.18: Distribution of APK’s Using Versions of REtrofit

FIGURE 5.19: Distribution of APK’s Using Versions of Twitter4jCore



45

Chapter 6

Impact of Outdated Library Use in

Android Applications

6.1 Motivation

The results we gathered using our LibDetector tool show that many applications on

the Google Play Store today do in fact continue to use outdated versions of libraries. In

many cases, this is true even when newer libraries are available to the applications’ de-

velopers at their time of release or update. In this chapter, we perform an exploratory

study of whether or not this behavior impacts the apps.

6.2 App Rating

Mojica Ruiz et al. found that including certain ad libraries in an Android application

negatively impacted the ratings of the application(Mojica Ruiz, Nagappan, Adams,

Berger, et al., 2014). Therefore, we were interested in seeing whether or not the same

holds true for Android applications that use significantly outdated versions of li-

braries.

Methodology

Our hypothesis is that there is a difference between the ratings of apps that use more

recent versions of libraries versus those that use more outdated versions of libraries.

Therefore, the null hypothesis is as follows:

H0: There is no difference between the ratings of apps that use more recent ver-

sions of libraries versus those that use more outdated versions of libraries.



Chapter 6. Impact of Outdated Library Use in Android Applications 46

To test our null hypothesis, we first filter out all apps with less than 10 ratings

from our results. We do this filtering in order to reduce rating bias. This is because the

fewer the ratings there are, the more likely it is for biased ratings to skew the average,

resulting in an rating that is unrepresentative of the actual rating of the app.

For each library, we split the APKs consuming the library into two groups. We put

the APKs that contain a more recent version of the library in the "Recent" group, and

APKs that contain a more outdated version of the library in the "Outdated" group. We

tried to split the APKs in half based on the version of the library they were using. In

the event that an APK is using a version that falls between the two groups, it is placed

into the group that results in the groups being most equal in size. This is because it

does not make sense for different apps using the same version of the same library to

be place into different groups.

Results

Table 6.1 shows the results of the Mann Whitney test comparing the ratings of apps in

the Recent versus the Outdated group. We see that in 14/16 of the libraries, there is no

statistically significant difference between the two groups. However, for Retrofit and

OkHttp, there was a significant difference. Interestingly, for Retrofit the Recent group

had a significantly lower rating than the Outdated group. For OkHttp, the opposite

was true.

RQ2: Does Using Outdated Software Libraries Affect the rating of an Android Ap-

plication?

Based on the results of table 6.1, we are able to reject our null hypothesis that there

is no difference between the ratings of apps that use more recent versions of libraries

versus those that use more outdated versions of libraries. We conclude that in some

cases, including outdated versions of certain libraries in an app can affect the rating of

the app.



Chapter 6. Impact of Outdated Library Use in Android Applications 47

TABLE 6.1: Mann-Whitney Test for Ratings of Apps Using Newer vs
Older Versions of a Library

6.3 App Exploitation

We have seen several reports and instances where well known and trusted libraries are

found to have sever security flaws that put the security of their users at risk(Constantin,

2014; Constantin, 2015; Arbitrary remote code execution with InvokerTransformer 2015;

The FAT Attack. Facebook Social Login Session Hijacking Vulnerability 2014; Vulnerabili-

ties 2016). However, the mobile software domain is a rapidly evolving one. Perhaps

the flaws and vulnerabilities that once posed a threat to the security of mobile soft-

ware have been mitigated. Another possibility is that app developers are responsibly

using vulnerable software libraries and designing with the exploits in mind. In this

section, we perform a case study on the apps using the Facebook Android SDK to ex-

amine whether or not apps are inheriting vulnerabilities from vulnerable versions of

the Facebook SDK.



Chapter 6. Impact of Outdated Library Use in Android Applications 48

6.3.1 Case Study: Exploiting Applications Using Outdated Facebook An-

droid SDK

Methodology

Due to the Facebook vulnerability reports by Mi3Security, we are aware of a security

vulnerability with Android applications that use the Facebook SDK 3.15.0 and earlier

(The FAT Attack. Facebook Social Login Session Hijacking Vulnerability 2014). Given our

LibDetector results, we have already determined the apps that contain a version of

Facebook Android SDK. We see that in total, there are almost 300 apps that contain a

version of the Facebook Android SDK version 3.15.0 and earlier.

To test whether or not these apps are exploitable because of this documented flaw

in the Facebook Android SDK library, we recruited the help of a PhD student(we will

refer to this student as the evaluator) from RIT specializing in mobile security.

In order to minimize any biases in the evaluation of the app for vulnerabilities,

we did not tell the evaluator any details about the research. The request made to

the evaluator was simple: given a set of apps known to be using a vulnerable ver-

sion of Facebook SDK, try to exploit the app using the exploit method described by

Mi3Security.

We randomly selected 28 apps that are potentially vulnerable because of the Face-

book library they use, and ask the evaluator to try to break into them given the method

described by Mi3Security. We also randomly selected 30 apps using Facebook An-

droid SDK version 4.x, and gave the evaluator the same instructions.

Results

A few of the apps were indeed exploitable because of the security flaw that is intro-

duced by Facebook. More specifically, 5 out of the 28 apps using Facebook Android

SDK version 3.14.1 were able to be exploited. The results for the rest of the 23 apps are

as follows:

• 11/28 contained Facebook SDK but made no calls to it

• 7/28 were vulnerable, but not because of Facebook

• 3/28 required an update upon startup



Chapter 6. Impact of Outdated Library Use in Android Applications 49

• 2/28 were unresponsive

The results for the 30 apps that using version 4.x of the Facebook Android SDK are

as follows:

• 0/30 were vulnerable because of outdated Facebook

• 13/30 contained Facebook SDK but made no calls to it

• 13/30 had no vulnerability detected

• 2/30 were unresponsive

• 1/30 were vulnerable, but not because of Facebook

• 1/30 crashed upon logging in via Facebook

Discussion

It is possible that software libraries will never be completely free of vulnerabilities

and that we might never find all of the ways in which a library is vulnerable. In fact,

understanding that software flaws are sometimes inevitable despite our best efforts,

some organizations like Facebook and Google have even started bug bounty programs

to award people for actively searching for and reporting bugs and security vulner-

abilities in their software(Facebook Bug Bounty Program 2016; Google Security Reward

Programs 2016).

However, we think it is reasonable to assume that the older a library is, the more

exposure the public has had with it. This means it is more likely that an older version

of a library will have more known vulnerabilities associated with it. Therefore, we

make the argument that the more outdated the version of a library in an app is, the

more vulnerable it is. This is consistent with our results which show that for a known

vulnerability, only the older versions of the library are vulnerable. None of the apps

using the updated Facebook Android SDK version 4.x were found to be vulnerable

by the exploit identified in our study. However, without more empirical data, this is

purely conjecture at this time. It is possible that for example Facebook Android SDK

version 4.0.0 is the version that contains the largest number of vulnerabilities, but that

we do not know about them. What our results do show at this time is that for the 5



Chapter 6. Impact of Outdated Library Use in Android Applications 50

apps that not only contain a vulnerable version of Facebook Android SDK but also

actually make calls to its Login API, all 5 became vulnerable. Therefore, apps with

vulnerable versions of a library can very well inherit the vulnerability.

Interestingly, many of the apps that LibDetector identified as using the Facebook

Android SDK library did not seem to actually implement any of the library’s function-

ality in their app. To the user, it looked like there was no integration with Facebook

whatsoever. We double checked the apps by decompiling their source code, and saw

that they did in fact contain the code for the Facebook library. We think the explana-

tion for this is that some app developers are using a templating strategy or automatic

tool to set up their app, but do not use all of the libraries included in that template.

Considering how popular Facebook integration is, it would not be surprising that such

a template would provide the Facebook library by default.

RQ3: Are Android applications that use a vulnerable version of a library vulnera-

ble?

The results of our small case study show that apps that apps using a vulnerable ver-

sion of a library can very well inherit the vulnerability and become exploitable.

Threats to Validity

One major threat to the validity of this case study is that we rely exclusively on one

person’s ability to evaluate the exploit-ability of an Android app. While this person

was chosen because of their domain knowledge in mobile security, there is nonetheless

room for human error which could affect the validity of the results. Unfortunately,

we did not have other evaluators which would have helped to minimize error and

improve our confidence in the results.

6.4 Summary

In summary for this chapter, we conclude that in some cases including outdated ver-

sions of certain libraries in an app can affect the rating of the app. However, their

causality and the direction of the relationship is still unclear at this time.



Chapter 6. Impact of Outdated Library Use in Android Applications 51

We also conclude that apps using vulnerable versions of a library do become ex-

ploitable. In fact, 5/5 apps that contain a vulnerable version of Facebook Android

SDK and actually made calls to it were exploitable.



52

Chapter 7

Related Work

There are three main areas of research that our work is closely related to. They are

Software Bertillonage, code clones, and mobile ad libraries.

7.1 Software Bertillonage

Davies et al. pioneered the idea of Software Bertillonage(Davies et al., 2013), which

our work is most closely related to and draws inspiration from. The idea of Software

Bertillonage is to narrow down the search space when trying to match a software

component against a large number of possible candidates. Their motivation was to

be able to determine artifact provenance, or the origin of a software component, in

any given application. For their work, Davies et al. focused specifically on software

libraries in Java applications.

In order to implement Software Bertillonage, Davies and colleagues had to first

devise a strategy for measuring the components so that they can be compared. The

technique they proposed was to measure and compare the class files using an "an-

chored class signature". To construct the signature, they modify the java compiler

javac to extract method and field declarations in a class file. In order to make com-

parison of these class signatures more efficient, they use an SHA1 hash function to get

the hash value of the class, instead of comparing whole string literals. They found

that this method was effective in narrowing down the potential library matches in a

target system to a manageable number of candidates, which could then be manually

inspected to determine the best match.

Ishio et al. extended the work by Davies et al. by introducing a greedy algorithm

to identify the best library version match in a software systen(Ishio et al., 2016). Their



Chapter 7. Related Work 53

work is based on the assumption that the best library JAR match should be the one

that contains as many of the same classes that the target system has as possible. For

example, imagine that a target system contains class files A, B, C, and D. Now con-

sider two libraries - library 1 contains an match to class files A and C, while library

2 contains an exact match to class files A, C and D. In Davies et al.’s approach, both

library 1 and library 2 would be reported as potential matches, and it would be up to

the person interpreting the results to determine which library is actually used in the

target system. However, Ishio et al. propose that we can avoid this extra effort. They

postulate that the clear match here is library 2 since it accounts for a greater proportion

of the class files found in the target system.

Although we also employ a Software Bertillonage technique towards identifying

the versions of libraries being used in software systems, our research differs from the

work by Davies et al. and Ishio et al. in a few major ways. First, we focus on An-

droid applications. Secondly, we use Javap to extract a class signature directly from

binary code instead of using Java decompilers to decompile the binary code and parse

through the decompiled source code. This is not only more efficient, but also avoids

introducing potential code anomalies during the decompiling and parsing process.

Finally, we propose using edit distance instead of signature hashing to compare the

similarity of two classes. While hash comparisons are very efficient for determining

whether two files are the same or not, it is very sensitive to minor code alterations.

There are several factors that can contribute to code differences. For example, dif-

ferent compilers optimize code differently, resulting in code that looks different but

behaves the same. Code obfuscation can also drastically alter the code while preserv-

ing the functionality of a class. By using edit distance, we ensure that our technique

is flexible in dealing with code alterations. Furthermore, it serves as a good metric of

how dissimilar two libraries are if there are differences in them.

7.2 Clone Detection

Although researchers have identified many ways for code clones to be created, the

term "code clone" typically refers to code that has been copied and pasted in a soft-

ware system, with or without minor modifications(Roy and Cordy, 2009). Therefore,



Chapter 7. Related Work 54

code clones are essentially another means of code reuse. Over the years, researchers

have actively studied code clones and produced a wide variety of strategies for de-

tecting them in a software system. Here, we present a summary of some of the most

influential works in code cloning research.

One of the first approaches proposed for clone detection is the textual approach.

This approach is very direct and straightforward - the source code of a system is taken

as-is for analysis and comparison. In some cases, the source code may be transformed

to normalize the code and aid with text comparison. For example, the leading and

trailing white space in lines of code might be removed. Johnson et al. were one of

the earliest pioneers of textual clone detection(J. H. Johnson, 1993). More recently Roy

presented NiCad, a textual clone detector to find near miss clones(clones with minor

to significant modifications)(Roy, 2009). To detect near miss clones, NiCad imple-

ments a longest common sub-sequence algorithm. It also takes advantage of flexible

pretty printing to pre-process the code and ensure consistent formatting. This helps

to minimize the effect of structural differences in clones.

Another popular approach that has been proposed for clone detection is the lexi-

cal(also known as the token-based) approach. Like NiCad, the main purpose of this

approach is to allow for the detection of code clones where the clone has been slightly

altered. However in the lexical approach, a lexical parser is first used to parse the

source code, apply necessary transformations, and convert the code into a stream of

tokens that represents the code. Baker was one of the first to present an effective token-

based clone detector with Dup(Baker, 1995). Since then, Kamiya et al. have developed

CCFinder, one of the most influential token-based clone detectors to date(Kamiya,

Kusumoto, and Inoue, 2002). They use a suffix tree algorithm with tokens as nodes

on the tree to represent the entire application. This allows them to compare suffix

trees of different software systems. Wherever segments of the suffix trees match, they

conclude that the segment is a code clone snippet.

The major distinction between our work and code clone detection is that our tech-

nique is optimized for detecting libraries in mobile applications. Furthermore, our

technique does not operate on the entire source code. In order to generate the class

signature which we use to compare classes in a library against classes in an app, we

only really care about its method and field declarations. We do not need to consider



Chapter 7. Related Work 55

the code that is inside the method body at all. In fact, unlike clone detection tech-

niques, our approach does not even require us to have source code. This saves a lot

of computational effort since the amount of information we need to compare is dras-

tically reduced. This is a huge advantage since the scalability of clone detection tools

has always been a challenge due to the amount of processing and parsing they often

need to perform on the entire source code(Sajnani, 2016). Not requiring source code

is also very beneficial when we consider the fact that we will likely not have access to

the source code of Android apps.

Of notable mention is the CloneTracker tool developed by Duala-Ekoko and Ro-

billard for the purposes of simplifying the process of code clone maintenance(Duala-

Ekoko and Robillard, 2007). This is a tool that applies clone detection in order to help

developers track and maintain code clones in their software, which is along the same

veins as our research goals. In order to use CloneTracker, developers must first use

any clone detection tool to find clones within their project. The code clone output from

the clone detection tool is then fed into CloneTracker, and developers select the code

clones that they are interested in tracking. When any of the clones are modified, the

developers receive a notification. This allows them to decide whether or not the same

modifications should be made to all the clones. With this process, CloneTracker is

able to ease the maintenance of code clones within a project. However, while these re-

searchers developed CloneTracker as a means for keeping track of code that is cloned

internally within a project, our focus is on code being reused in Android applications

in the form of external third party libraries.

7.3 Mobile Ad Libraries

Ad libraries are a subset of software libraries. They have been extensively researched

due to the unique privacy and security concerns that they present. Most of the research

on ad libraries examines how these libraries affect user privacy. This is because ad

libraries often require access to personal data in order to serve targeted ads to its users.



Chapter 7. Related Work 56

Recently, Lin et al. proposed a crowd-sourcing approach to determine which sen-

sitive resources an app should have access to(Lin, Amini, Hong, et al., 2012). By lever-

aging Amazon’s Mechanical Turk system, they were able to survey over 5,000 par-

ticipants about the resource access that the participants expect an app to have. This

helped to reveal odd/suspicious access to resources in apps that a user would not

expect, such as a simple flashlight app requiring access to Network Location informa-

tion. The same researchers followed up on this work with Privacygrade, where they

used static code analysis with Androguard to determine the libraries being used by

apps(Lin, Amini, Luan, et al., 2014). By identifying which libraries are in an app and

mapping that to the permissions that the libraries require, they were able to deduce

many of the resource permissions that the app will require. When combined with

their crowd-sourcing technique for determining the expected resource permissions,

they are able to determine the degree of discrepancy between the expected and actual

resource permissions in a mobile application. However, they are not concerned with

the version of the library being used, which is a main focus in our research.

Researchers have also looked at how ad libraries may affect user acceptance and

satisfaction of apps by looking at the app rating as an approximate indicator. Mojica

Ruiz et al. found that unsurprisingly, more intrusive ad libraries tend to cause more

user dissatisfaction and lower ratings for the app(Mojica Ruiz, Nagappan, Adams,

Berger, et al., 2014). The results from this study inspired us to examine whether or not

the version of a library has an effect on the ratings of an application.



57

Chapter 8

Conclusion

8.1 Summary

In this thesis, our main goal was to inform Android stakeholders of the library de-

pendencies of Android applications and to explore the current trends in Java library

use. Our work culminated in the creation of the LibDiff and LibDetector tools, which

present an automated solution towards the efficient and accurate identification of spe-

cific versions of libraries being used by Android apps.

We found that many applications that are available on the Google Play Store do in

fact use outdated versions of libraries. Next, we saw that in some cases the version of a

library used by an Android app can affect the rating of the app. Finally, we empirically

validated that there are tangible security consequences to using vulnerable versions of

a library.

8.2 Future Research Directions

Due to the small scale and exploratory nature of much of our work, we would like

to extend it by performing our evaluation and analyses on a much larger sample to

mitigate the threats to validity that we have identified.

Furthermore, given our findings one very important area of research would be

whether or not we can map changes to libraries, especially security fixes, to the ver-

sions of the library. When used in conjunction with LibDetector’s ability to identify

versions of libraries in Android applications, it would help to bridge the knowledge



Chapter 8. Conclusion 58

gap between software library developers and the consumers of the libraries. We be-

lieve that this would be prove to be extremely beneficial in helping developers manage

their software dependencies and prioritizing their effort.



59

Bibliography

Abrahamsson, Pekka et al. (2004). “Mobile-D: An Agile Approach for Mobile Ap-

plication Development”. In: Companion to the 19th Annual ACM SIGPLAN Con-

ference on Object-oriented Programming Systems, Languages, and Applications. OOP-

SLA ’04. Vancouver, BC, CANADA: ACM, pp. 174–175. ISBN: 1-58113-833-4. DOI:

10.1145/1028664.1028736. URL: http://doi.acm.org.ezproxy.rit.

edu/10.1145/1028664.1028736.

Android 6.0 Changes (2015). Android Developers. URL: https://developer.android.

com/about/versions/marshmallow/android- 6.0- changes.html#

behavior-apache-http-client (visited on 02/16/2016).

Arbitrary remote code execution with InvokerTransformer (2015). Apache Commons Col-

lections. URL: https://issues.apache.org/jira/browse/COLLECTIONS-

580 (visited on 06/20/2016).

Baker, B. S. (1995). “On finding duplication and near-duplication in large software

systems”. In: Reverse Engineering, 1995., Proceedings of 2nd Working Conference on,

pp. 86–95. DOI: 10.1109/WCRE.1995.514697.

Bavota, Gabriele et al. (2015). “How the Apache community upgrades dependencies:

an evolutionary study”. In: Empirical Software Engineering 20.5, pp. 1275–1317. ISSN:

1573-7616. DOI: 10.1007/s10664-014-9325-9. URL: http://dx.doi.org/

10.1007/s10664-014-9325-9.

Constantin, Lucian (2014). Flaws in third-party software libraries often find their way into

products, a problem that will occupy developers and sysadmins next year. URL: http:

//www.computerworld.com/article/2864053/hey- devs- those-

software-libraries-arent-always-safe-to-use.html (visited on

06/19/2016).

— (2015). Developers often unwittingly use components that contain flaws. URL: http://

www.itworld.com/article/2936575/security/software-applications-

http://dx.doi.org/10.1145/1028664.1028736
http://doi.acm.org.ezproxy.rit.edu/10.1145/1028664.1028736
http://doi.acm.org.ezproxy.rit.edu/10.1145/1028664.1028736
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-apache-http-client
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-apache-http-client
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-apache-http-client
https://issues.apache.org/jira/browse/COLLECTIONS-580
https://issues.apache.org/jira/browse/COLLECTIONS-580
http://dx.doi.org/10.1109/WCRE.1995.514697
http://dx.doi.org/10.1007/s10664-014-9325-9
http://dx.doi.org/10.1007/s10664-014-9325-9
http://dx.doi.org/10.1007/s10664-014-9325-9
http://www.computerworld.com/article/2864053/hey-devs-those-software-libraries-arent-always-safe-to-use.html
http://www.computerworld.com/article/2864053/hey-devs-those-software-libraries-arent-always-safe-to-use.html
http://www.computerworld.com/article/2864053/hey-devs-those-software-libraries-arent-always-safe-to-use.html
http://www.itworld.com/article/2936575/security/software-applications-have-on-average-24-vulnerabilities-inherited-from-buggy-components.html
http://www.itworld.com/article/2936575/security/software-applications-have-on-average-24-vulnerabilities-inherited-from-buggy-components.html
http://www.itworld.com/article/2936575/security/software-applications-have-on-average-24-vulnerabilities-inherited-from-buggy-components.html


BIBLIOGRAPHY 60

have- on- average- 24- vulnerabilities- inherited- from- buggy-

components.html (visited on 06/19/2016).

Davies, Julius et al. (2013). “Software Bertillonage”. In: Empirical Software Engineering

18.6, pp. 1195–1237. ISSN: 1573-7616. DOI: 10.1007/s10664-012-9199-7. URL:

http://dx.doi.org/10.1007/s10664-012-9199-7.

Dig, Danny and Ralph Johnson (2006). “How do APIs evolve? A story of refactoring”.

In: Journal of Software Maintenance and Evolution: Research and Practice 18.2, pp. 83–

107. ISSN: 1532-0618. DOI: 10.1002/smr.328. URL: http://dx.doi.org/10.

1002/smr.328.

Duala-Ekoko, E. and M. P. Robillard (2007). “Tracking Code Clones in Evolving Soft-

ware”. In: 29th International Conference on Software Engineering (ICSE’07), pp. 158–

167. DOI: 10.1109/ICSE.2007.90.

Facebook Bug Bounty Program (2016). Facebook. URL: https://www.facebook.com/

whitehat (visited on 04/20/2016).

Google Security Reward Programs (2016). Google Application Security. URL: https:

//www.google.com/about/appsecurity/programs-home/ (visited on

04/20/2016).

Ishio, Takashi et al. (2016). “Software Ingredients: Detection of Third-party Compo-

nent Reuse in Java Software Release”. In: Proceedings of the 13th International Con-

ference on Mining Software Repositories. MSR ’16. Austin, Texas: ACM, pp. 339–350.

ISBN: 978-1-4503-4186-8. DOI: 10.1145/2901739.2901773. URL: http://doi.

acm.org.ezproxy.rit.edu/10.1145/2901739.2901773.

Johnson, J. Howard (1993). “Identifying Redundancy in Source Code Using Finger-

prints”. In: Proceedings of the 1993 Conference of the Centre for Advanced Studies on

Collaborative Research: Software Engineering - Volume 1. CASCON ’93. Toronto, On-

tario, Canada: IBM Press, pp. 171–183. URL: http://dl.acm.org/citation.

cfm?id=962289.962305.

Kamiya, Toshihiro, Shinji Kusumoto, and Katsuro Inoue (2002). “CCFinder: A mul-

tilinguistic token-based code clone detection system for large scale source code”.

English. In: IEEE Transactions on Software Engineering 28.7. Copyright - Copyright

Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2002; Last updated

http://www.itworld.com/article/2936575/security/software-applications-have-on-average-24-vulnerabilities-inherited-from-buggy-components.html
http://www.itworld.com/article/2936575/security/software-applications-have-on-average-24-vulnerabilities-inherited-from-buggy-components.html
http://www.itworld.com/article/2936575/security/software-applications-have-on-average-24-vulnerabilities-inherited-from-buggy-components.html
http://dx.doi.org/10.1007/s10664-012-9199-7
http://dx.doi.org/10.1007/s10664-012-9199-7
http://dx.doi.org/10.1002/smr.328
http://dx.doi.org/10.1002/smr.328
http://dx.doi.org/10.1002/smr.328
http://dx.doi.org/10.1109/ICSE.2007.90
https://www.facebook.com/whitehat
https://www.facebook.com/whitehat
https://www.google.com/about/appsecurity/programs-home/
https://www.google.com/about/appsecurity/programs-home/
http://dx.doi.org/10.1145/2901739.2901773
http://doi.acm.org.ezproxy.rit.edu/10.1145/2901739.2901773
http://doi.acm.org.ezproxy.rit.edu/10.1145/2901739.2901773
http://dl.acm.org/citation.cfm?id=962289.962305
http://dl.acm.org/citation.cfm?id=962289.962305


BIBLIOGRAPHY 61

- 2011-07-20; CODEN - IESEDJ, pp. 654–670. URL: http://search.proquest.

com.ezproxy.rit.edu/docview/195579324?accountid=108.

Kapser, Cory J. and Michael W. Godfrey (2008). ““Cloning considered harmful” con-

sidered harmful: patterns of cloning in software”. In: Empirical Software Engineering

13.6, pp. 645–692. ISSN: 1573-7616. DOI: 10.1007/s10664-008-9076-6. URL:

http://dx.doi.org/10.1007/s10664-008-9076-6.

Lehman, M. M. (1980). “Programs, life cycles, and laws of software evolution”. In:

Proceedings of the IEEE 68.9, pp. 1060–1076. ISSN: 0018-9219. DOI: 10.1109/PROC.

1980.11805.

Li, Li et al. (2016). “An Investigation into the Use of Common Libraries in Android

Apps”. In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution,

and Reengineering (SANER). Vol. 1, pp. 403–414. DOI: 10.1109/SANER.2016.52.

Lin, Jialiu, Shahriyar Amini, Jason I. Hong, et al. (2012). “Expectation and Purpose:

Understanding Users’ Mental Models of Mobile App Privacy Through Crowd-

sourcing”. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing. Ubi-

Comp ’12. Pittsburgh, Pennsylvania: ACM, pp. 501–510. ISBN: 978-1-4503-1224-0.

DOI: 10.1145/2370216.2370290. URL: http://doi.acm.org/10.1145/

2370216.2370290.

Lin, Jialiu, Shahriyar Amini, Song Luan, et al. (2014). PrivacyGrade: Grading The Pri-

vacy Of Smartphone Apps. URL: http://www.privacygrade.org/ (visited on

06/01/2016).

Linares-Vásquez, Mario et al. (2014). “Revisiting Android Reuse Studies in the Con-

text of Code Obfuscation and Library Usages”. In: Proceedings of the 11th Work-

ing Conference on Mining Software Repositories. MSR 2014. Hyderabad, India: ACM,

pp. 242–251. ISBN: 978-1-4503-2863-0. DOI: 10.1145/2597073.2597109. URL:

http://doi.acm.org.ezproxy.rit.edu/10.1145/2597073.2597109.

Mojica Ruiz, I. J., B. Adams, et al. (2014). “A Large-Scale Empirical Study on Software

Reuse in Mobile Apps”. In: IEEE Software 31.2, pp. 78–86. ISSN: 0740-7459. DOI:

10.1109/MS.2013.142.

Mojica Ruiz, I. J., M. Nagappan, B. Adams, T. Berger, et al. (2014). “Impact of Ad

Libraries on Ratings of Android Mobile Apps”. In: IEEE Software 31.6, pp. 86–92.

ISSN: 0740-7459. DOI: 10.1109/MS.2014.79.

http://search.proquest.com.ezproxy.rit.edu/docview/195579324?accountid=108
http://search.proquest.com.ezproxy.rit.edu/docview/195579324?accountid=108
http://dx.doi.org/10.1007/s10664-008-9076-6
http://dx.doi.org/10.1007/s10664-008-9076-6
http://dx.doi.org/10.1109/PROC.1980.11805
http://dx.doi.org/10.1109/PROC.1980.11805
http://dx.doi.org/10.1109/SANER.2016.52
http://dx.doi.org/10.1145/2370216.2370290
http://doi.acm.org/10.1145/2370216.2370290
http://doi.acm.org/10.1145/2370216.2370290
http://www.privacygrade.org/
http://dx.doi.org/10.1145/2597073.2597109
http://doi.acm.org.ezproxy.rit.edu/10.1145/2597073.2597109
http://dx.doi.org/10.1109/MS.2013.142
http://dx.doi.org/10.1109/MS.2014.79


BIBLIOGRAPHY 62

Mojica Ruiz, I. J., M. Nagappan, B. Adams, and A. E. Hassan (2012). “Understanding

reuse in the Android Market”. In: Program Comprehension (ICPC), 2012 IEEE 20th

International Conference on, pp. 113–122. DOI: 10.1109/ICPC.2012.6240477.

Number of available applications in the Google Play Store from December 2009 to Febru-

ary 2016 (2016). Statista. URL: http://www.statista.com/statistics/

266210/number-of-available-applications-in-the-google-play-

store/ (visited on 06/23/2016).

Preston-werner, Tom (2016). Semantic Versioning 2.0.0. URL: http://semver.org/

(visited on 03/12/2016).

Robbes, Romain, Mircea Lungu, and David Röthlisberger (2012). “How Do Develop-

ers React to API Deprecation?: The Case of a Smalltalk Ecosystem”. In: Proceedings

of the ACM SIGSOFT 20th International Symposium on the Foundations of Software En-

gineering. FSE ’12. Cary, North Carolina: ACM, 56:1–56:11. ISBN: 978-1-4503-1614-9.

DOI: 10.1145/2393596.2393662. URL: http://doi.acm.org.ezproxy.

rit.edu/10.1145/2393596.2393662.

Roy, Chanchal K. (2009). Detection and analysis of near-miss software clones. English.

Copyright - Database copyright ProQuest LLC; ProQuest does not claim copy-

right in the individual underlying works; Last updated - 2016-05-29. URL: http:

//search.proquest.com.ezproxy.rit.edu/docview/762330560?

accountid=108.

Roy, Chanchal K. and James R. Cordy (2009). “A survey on software clone detection re-

search”. English. In: Science of Computer Programming 74.7, pp. 470–495. URL: http:

//search.proquest.com.ezproxy.rit.edu/docview/1776183909?

accountid=108.

Sajnani, Hitesh (2016). Large-Scale Code Clone Detection. English. URL: http://search.

proquest.com.ezproxy.rit.edu/docview/1776183909?accountid=

108.

The FAT Attack. Facebook Social Login Session Hijacking Vulnerability (2014). Mi3Security.

URL: https://www.mi3security.com/the- fat- attack- facebook-

social-login-session-hijacking/ (visited on 06/15/2016).

http://dx.doi.org/10.1109/ICPC.2012.6240477
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://semver.org/
http://dx.doi.org/10.1145/2393596.2393662
http://doi.acm.org.ezproxy.rit.edu/10.1145/2393596.2393662
http://doi.acm.org.ezproxy.rit.edu/10.1145/2393596.2393662
http://search.proquest.com.ezproxy.rit.edu/docview/762330560?accountid=108
http://search.proquest.com.ezproxy.rit.edu/docview/762330560?accountid=108
http://search.proquest.com.ezproxy.rit.edu/docview/762330560?accountid=108
http://search.proquest.com.ezproxy.rit.edu/docview/1776183909?accountid=108
http://search.proquest.com.ezproxy.rit.edu/docview/1776183909?accountid=108
http://search.proquest.com.ezproxy.rit.edu/docview/1776183909?accountid=108
http://search.proquest.com.ezproxy.rit.edu/docview/1776183909?accountid=108
http://search.proquest.com.ezproxy.rit.edu/docview/1776183909?accountid=108
http://search.proquest.com.ezproxy.rit.edu/docview/1776183909?accountid=108
https://www.mi3security.com/the-fat-attack-facebook-social-login-session-hijacking/
https://www.mi3security.com/the-fat-attack-facebook-social-login-session-hijacking/


BIBLIOGRAPHY 63

Thummalapenta, Suresh et al. (2010). “An empirical study on the maintenance of

source code clones”. In: Empirical Software Engineering 15.1, pp. 1–34. ISSN: 1573-

7616. DOI: 10.1007/s10664-009-9108-x. URL: http://dx.doi.org/10.

1007/s10664-009-9108-x.

Top Apps on Google Play, United States (2016). AppAnnie. URL: https://www.appannie.

com/apps/google-play/top/ (visited on 03/01/2016).

Top Projects (2016). Maven Repository. URL: http://mvnrepository.com/popular

(visited on 04/09/2016).

Vulnerabilities (2016). OpenSSL. URL: https://www.openssl.org/news/vulnerabilities.

html (visited on 06/21/2016).

Wang, Haoyu et al. (2015). “WuKong: A Scalable and Accurate Two-phase Approach

to Android App Clone Detection”. In: Proceedings of the 2015 International Sym-

posium on Software Testing and Analysis. ISSTA 2015. Baltimore, MD, USA: ACM,

pp. 71–82. ISBN: 978-1-4503-3620-8. DOI: 10.1145/2771783.2771795. URL:

http://doi.acm.org.ezproxy.rit.edu/10.1145/2771783.2771795.

http://dx.doi.org/10.1007/s10664-009-9108-x
http://dx.doi.org/10.1007/s10664-009-9108-x
http://dx.doi.org/10.1007/s10664-009-9108-x
https://www.appannie.com/apps/google-play/top/
https://www.appannie.com/apps/google-play/top/
http://mvnrepository.com/popular
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html
http://dx.doi.org/10.1145/2771783.2771795
http://doi.acm.org.ezproxy.rit.edu/10.1145/2771783.2771795

	LibDetector: Version Identification of Libraries in Android Applications
	Recommended Citation

	Dedication
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Research Questions
	RQ1: Do Android applications use outdated software libraries?
	RQ2: Does using outdated software libraries affect the rating of an Android application?
	RQ3: Are Android applications that use a vulnerable version of a library vulnerable?

	Contributions of the Thesis
	Thesis Organization

	Approach Overview
	RQ1: Do Android Applications Use Outdated Software Libraries?
	RQ2: Does Using Outdated Software Libraries Affect the rating of an Android Application?
	RQ3: Are Android applications that use a vulnerable version of a library vulnerable?

	Crawling the Google Play Store
	Motivation
	Methodology
	Hardware

	Resulting Artifacts
	Limitations

	LibDiff: Towards a Corpus of Android Libraries and Their Change History
	Motivation
	Methodology
	Library Selection
	Library Collection
	Why Binary and Not Source?
	Optimizing the Libraries Whitelist
	Hardware

	Results
	Artifact: The Android Libraries Whitelist
	Performance

	Validation
	Limitations
	Threats to Validity

	LibDetector: Identifying the Version of a Library Used in Android Applications
	Motivation
	Methodology
	Extracting the Binary Code
	Constructing the Class Signature
	Class Signature Comparison
	Library Version Identification
	Hardware

	Evaluation
	Results
	Analysis
	Summary
	RQ1: Do Android Applications Use Outdated Software Libraries?

	Limitations
	Threats to Validity

	Impact of Outdated Library Use in Android Applications
	Motivation
	App Rating
	Methodology
	Results
	RQ2: Does Using Outdated Software Libraries Affect the rating of an Android Application?


	App Exploitation
	Case Study: Exploiting Applications Using Outdated Facebook Android SDK
	Methodology
	Results
	Discussion
	RQ3: Are Android applications that use a vulnerable version of a library vulnerable?
	Threats to Validity


	Summary

	Related Work
	Software Bertillonage
	Clone Detection
	Mobile Ad Libraries

	Conclusion
	Summary
	Future Research Directions

	Bibliography

