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ROCHESTER INSTITUTE OF TECHNOLOGY

Abstract
Ernest Fokoué

School of Mathematical Sciences

Master of Science in Applied Statistics

An Empirical Demonstration of the Probabilistic Upper Bound of the
Adaptive Boosting Test Error

by Paige HOUSTON

Statistical machine learning uses data to model a relationship between
many parameters, or explanatory variables, and a response variable. The
adaptive boosting algorithm is a machine learning method that can be used
to model relationships of classification data. This method uses a weak base
learner to improve accuracy of predicting the correct response class from a
set of variables. Because of its learnability, adaptive boosting yields an ex-
ponentially decreasing empirical error. From this, an empirical error bound
can be derived from the boosting algorithm. This empirical error bound in-
spires us to see if there is a generalized error bound and what form it takes.
Evidence from boosting several real datasets will show that the generalized
error follows the same shape as the empirical error, thus suggesting that a
shift of the empirical error bound can create a generalized error bound. By
simulating datasets from random and varying their characteristics based on
criteria that seem to affect the shift, we can boost them and derive a function
by which to shift the empirical error bound. We will record the test error of
the boosted simulated datasets and build a regression model with that as
the response and the varying characteristics of the datasets as the explana-
tory variables. The final regression model gives us the predicted outcome
of the difference between the generalized error and the empirical error, thus
enabling us to derive the suggested generalized error bound.
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Chapter 1

Introduction

Statistical Machine Learning is used to construct a model or relationship
between a set of parameters, or predictor variables, and a response to be
able to predict results. First we must define a function space, F , where our
model lives. We never know the actual model, or relationship, between the
predictors and the response, so it is crucial to define a function space. It is
impossible to consider every function when looking for the "best" model,
so by defining a function space, we can narrow down our search for the
best model to just linear classifiers, polynomial classifiers, or kernels, etc.
(Fokoue, 2015a).

The way we determine what is the "best" model is by analyzing the risk
function. We essentially have two risk functions, the Theoretical Risk, or our
Generalization Error, denoted by R(f), and the Empirical Risk, or Training
Error denoted by R̂n(f) where f is a function in our function space F , or
f ∈ F (Fokoue, 2015a). The two functions are defined by the following:

R(f) = E[l(Y, f(X))]

R̂n(f) =
1

n

n∑
i=1

[l(Yi, f(Xi))],

where the function l is the loss function. The loss function can be defined
as the "disagreement between the image f(x) and the true image y"
(Fokoue, 2015a, p.6). In other words, it takes into account if the predicted
response, based on the model f , is the same as, or similar to, the actual
response (Fokoue, 2015a).

1



Chapter 1. Introduction

The best possible function to model our data is denoted by f ∗, and it is
the one that minimizes the risk:

f ∗ = argmin
f
{R(f)}.

In practice, f ∗ cannot be found, so we estimate it using f̂n. Since we cannot
simply choose a function with no background information that will
happen to be close to our best function f ∗, we, instead, look at all functions
f ∈ F , and choose the one that yields an empirical risk, R̂n(f), closest to
our theoretical risk, R(f). However, we never know what the true error is
in practice, so Vapnik and Chervonenkis derived an upper bound on the
theoretical risk. This way we can know, generally, how large the error will
be, instead of having no information on it at all. This theorem immediately
follows in Section 1.1 (Fokoue, 2015a).

1.1 Vapnik and Chervonenkis Bound

Vapnik and Chervonenkis (1971) derived a bound for the theoretical risk.
Their theorem is the following, as quoted directly from Fokoue, 2015a:

Theorem 1 (Vapnik and Chervonenkis Bound). Let F be a class of functions
implementing [some] learning machines, and let ζ = V Cdim(F ) be the VC di-
mension of F . Let the theoretical and empirical risk be defined as earlier and con-
sider any data distribution in the population of interest. ∀f ∈ F , the prediction
error (theoretical risk) is bounded by

R(f) 6 R̂n(f) +

√
ζ(log 2n

ζ
+ 1)− log η

4

n
,

with probability of at least 1− η. or

Pr

{
TestError 6 TrainError+

√
ζ(log 2n

ζ
+ 1)− log η

4

n

}
> 1− η

In other words, it is a probabilistic bound, and depending on ones defini-
tion of η, the probability that our theoretical risk is bounded by the empirical
risk plus a function of the dimension space and sample size is at least 1− η.

2



Chapter 1. Introduction

A question we can ask is the following: Is there a more general takeaway
from this theorem? Can we generate a probabilistic bound for the theoretical
error in the form of the following equation:

R(f) 6 R̂n(f) + φ(. . .)

The above equation suggests that our theoretical risk can be bounded by
a shift of the empirical risk by φ(. . .) which is simply a function based on
unknown parameters at this time.

Now we will revisit which function space, F to choose f from. As pre-
viously mentioned, F can be any of, but not limited to, the following:

• Linear Classifiers

• Kernel

• Ensembles

– Bagging

– Random Forest

– Boosting

This list is just to give an idea of how many options there are, and this
is not even a small fraction of all function spaces. However, in this thesis,
we will focus on the Adaptive Boosting Algorithm, and how its generalized
error can be bounded.

1.2 Adaptive Boosting

The Adaptive Boosting Algorithm is a classification method used in ma-
chine learning (Abney, Schapire, and Singer, 1999). The defined algorithm
can be seen in Algorithm 1.

In this thesis, the response variable takes on values of either 0 or 1, mean-
ing that a datum is classified in either Class 0 or Class 1. There are ways to
adapt the algorithm and adjust the code to take on a multi-class response, or
even multi-label data. By a multi-class response, we simply mean that there
are more than two groups in the response, and by multi-label we mean that

3



Chapter 1. Introduction

Algorithm 1 The Adaptive Boosting Algorithm

1: Let the following be defined as stated:

2: Training data: Dn = {(xi, yi) : xi ∈ X, yi ∈ {−1,+1}, i = 1, 2, . . . , n}.

3: Weak learners: ht(x) for t = 1, 2, . . . , T : X → {−1,+1}.

4: Error associated with the weak learners: εt for t = 1, 2, . . . , n.

5: Initialized weights: D1(i) =
1
n

for i = 1, 2, . . . , n.

6: Choose ht such that the error is minimized.

7: Choose αt = 1
2
log 1−εt

εt
.

8: Update for i = 1, 2, . . . , n,

Dt+1 =
Dt(i)

Zt
∗
{
eαt , if ht(xi) 6= yi
e−αt , if ht(xi) = yi

,

meaning that

Dt+1 =
Dt(i) exp

(
− αtyiht(xi)

)
Zt

,

where Zt is a normalization factor chosen so that Dt+1 is a distribution.

9: The final output is

H(x) = sign

(
T∑
t=1

αtht(x)

)
.

4



Chapter 1. Introduction

at least one datum can be classified in more than one group (Schapire and
Singer, 2000; Schapire and Singer, 1999; Abney, Schapire, and Singer, 1999).
However, we will be using single-label datasets with a binary response of 0
or 1.

Note that the algorithm states that the response takes on values −1 and
1. Since most of the datasets we worked with came with a response that
takes on values of 0 and 1, our adaptive boosting function in R converts
them to −1 and 1, respectively, so the algorithm supports our data.

Our boosting algorithm uses unpruned classification trees as a base learner
to build an adaptive model which essentially learns from its mistakes over
the specified number of iterations. Throughout this thesis, unless otherwise
specified, we will use a range for the number of iterations (or the number of
trees boosted) from 1 to 50 (For more information on classification trees or
regression trees, see Loh, 2011 or James et al., 2013).

1.2.1 The Algorithm

Before applying the adaptive boosting algorithm, we take a 60% stratified
random sample on our dataset to get a training set. This means that we are
taking 60% of our dataset to be in the training set, but we are intentionally
taking 60% of the entries from Class 0 and 60% from Class 1 so we have the
same proportions of the response class in the training set as we do in the
original dataset. After the training set is determined, we apply the boosting
algorithm. The algorithm used in this thesis begins by bootstrapping 75% of
the training set. This means we are randomly selecting 75% of our dataset
with replacement. Each datum has the same chance of being chosen to be
in the subset during the first iteration. On that sample we will fit a classi-
fication model by, as previously stated, using unpruned classification trees
as a base learner. When the model is built, we will use it to get a predicted
class for all of the data in the original dataset. The first step is to make sure
we have a decent base learner. What we call a "decent base learner" must
predict the correct class of all the data points only slightly better than if we
randomly guessed each class. In other words, if the predicted proportion of
misclassification (error = εt) is just under 0.5, then it is a decent base learner
(Ohio, 2015; Fokoue, 2015b; Quinlan, 2006). In the case that it is not a decent

5



Chapter 1. Introduction

base learner, the algorithm repeats the bootstrapped sample and rebuilds a
model until it meets the decent base learner criteria (Ohio, 2015).

In the case that it is a decent base learner, or once the resampled data
yields a decent base learner, the Boosting Algorithm recalculates the weights
associated with each data point. The updated weights are based on the mis-
classified points from that iteration. First, recall that in the first iteration each
data point has an equal chance of being selected in the bootstrapped sam-
ple. This is because the weights are defaulted to 1

n
(See Algorithm 1, line

7). Now, if there were a total of 1000 data points and after the first iteration
400 points were misclassified, the sum of the weights on the misclassified
points would be ε1 = 400

1000
. The weight of the data points for the next iter-

ation begins getting updated by taking ε1 to calculate a value αt associated
with each data point (Ohio, 2015). The value of αt is determined by

αt =
1

2
log
(1− εt

εt

)
.

It is important to note that we know αt is always going to be greater than
0 because the algorithm does not continue on unless it is better than random
guessing, meaning εt < 1

2
. As long as εt < 1

2
, we can easily see that αt will

be greater than 0 (Ohio, 2015).
Next, a new weight is calculated and applied to the data points by the

following equation:
wt+1 = wte

αtI(ht(x)6=y).

The value of I(ht(x) 6= y) is 0 when the point is correctly classified and
1 when it is not, so it is important to note that the correctly classified data
points do not get an updated weight. When a point is correctly classified,
the exponential term in this equation becomes 1 which, in turn, outputs the
weight of the previous iteration, wt+1 = wt. On the other hand, the misclas-
sified data points get a larger weight so that they have a greater chance of
being selected for the next iteration. There is a restriction on these weights,
however. The weights must sum to 1, so that a consistently misclassified
point’s weight does not begin growing out of bound. Thus, after the new
weights are assigned, each one gets divided by the sum of all values wt for
t = 1, 2, . . . , T , and that value becomes the new associated weight to the data
points for that next iteration. In reference to Algorithm 1,

∑T
t=1wt = Zt, so

6



Chapter 1. Introduction

the new weights assigned are:

Dt+1 =
Dt(i) exp

(
− αtyiht(xi)

)
Zt

.

Then another bootstrapped sample takes place based on these weights,
and the entire loop repeats. This happens a chosen number of times, T ,
which, again, we are testing in the form of a range from 1 to 50 (Ohio, 2015).

During each of the T iterations, the base model and the α values for that
model are stored. When using the boosting algorithm to predict classifica-
tion, the list of α values act as a weight for each model. What this means
is the lower the ε for each model, the higher the weight, α. In the case of
predicting one point, the boosting algorithm takes a weighted majority of
the T iterations using α as the weight for each model. Predicting this way
makes the results much more accurate because the models with a smaller
error have a higher weight on the final outcome. Also, because this model
essentially learns from its mistakes, it is not surprising that the training er-
ror will continually decrease as the iterations carry on. This introduces the
idea of a bound on the training error.

1.2.2 The Boosting Function in R

The analysis for this thesis is done in The R Project for Statistical Comput-
ing R, 2016. We have two options for a boosting function inside R. The
first option is to use the boosting() function in the “adabag” package in-
side of R (Alfaro-Cortes et al., 2016; Alfaro et al., 2015). Second, we have a
handwritten boosting function (Fokoue, 2015b). This code was written in an
attempt to easily alter the base learner so error from different base learners
could be compared. Fokoue, 2015b’s function is called boosted.trees(),
which can be found in Appendix A. When these two functions run side
by side, they yield extremely similar results. The boosting() function
in R takes much longer to run; therefore, we are choosing to use Fokoue,
2015b’s function instead. Margineantu and Dietterich, 1997 state that en-
semble methods, such as Adaptive Boosting, require a lot of memory on a
computer (Refer to their report to see the exact number of Kbytes needed
per a specific amount of trees boosted (Margineantu and Dietterich, 1997)).
Since this is evidence that the required analysis for this thesis could take

7
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an incredibly long amount of time and memory, it supports our choice to
use Fokoue, 2015b’s boosting function over the one in the adabag package
(Alfaro-Cortes et al., 2016; Alfaro et al., 2015).

We ran T = 50 iterations of adaptive boosting using each function on
the dataset Ionosphere, and saved the test error that each method gener-
ated (Sigillito, 1989). The results were nearly always the same or close. In
fact, the mean difference between the two functions over each iteration is
0.00014. The average test error results of the 50 iterations for the R function
and Fokoue, 2015b’s written function were 0.06964539 and 0.06950355, re-
spectively. Also, Figure 1.1 shows the distribution of the training error from
all iterations of each boosting function with the number of base trees set to
50. Again, since they yield very similar results, and the boosted.trees()
function is more efficient, we have made the decision to use that boosting
function (Fokoue, 2015b).

FIGURE 1.1: Training Error from Both Boosting Functions

8



Chapter 1. Introduction

1.3 The Main Focus

In Chapter 2, we will explain and prove the Training Error Bound Theorem
in terms of Schapire and Freund, 2012, which is characterized in the form
of:

Pr
i∼D1

[H(xi) 6= yi] 6
T∏
t=1

√
1− 4γ2t 6 exp

(
− 2

T∑
t=1

γ2t

)
.

where Pri∼D1 [H(xi) 6= yi] is the specific empirical risk function for the
boosting algorithm equal to R1(H) and H is the chosen function/model.

The fact that there exists a training error bound prompts the following
question: What does the generalized error look like, and how can we model
it? Our empirical training and test error of various real datasets will sug-
gest there is a relationship between the training error and test error. More
specifically, there seems to be a shift between the two. The main problem
in this thesis is determining how we will model the test error. Based on the
empirical error results, we will simulate datasets from random that vary in
seemingly important characteristics to see exactly how each of these charac-
teristics impacts the test error. Some of the characteristics we are speaking
of are the sample size, the number of parameters, and their ratio. After
boosting the several simulated datasets, we will solve the main problem
in this thesis by performing Multiple Linear Regression to determine the
relationship between the characteristics of each simulated dataset and that
dataset’s average test error yielded by the adaptive boosting algorithm. This
will enable us to model the test error of datasets based on their specific sizes,
dimensions, and characteristics.

9



Chapter 2

Error Analysis for Adaptive
Boosting

2.1 Training Error Bound

Adaptive Boosting is known to improve data quality because the algorithm
was strategically created to choose the more difficult data points to be in
the training set. As discussed previously, the points associated with a larger
weight are the points that are continually misclassified, so, as a result, those
points have a greater chance of being selected to be in the training set (Ab-
ney, Schapire, and Singer, 1999). Because of this, the data becomes trained
rather quickly, without compromising on accuracy (Appel et al., 2013; Drucker,
Schapire, and Simard, 1993). This brings us to the training error bound.

Many researchers discuss the training error bounds of the boosting algo-
rithm (Schapire and Freund, 2012; Ohio, 2015; Freund and Schapire, 1996;
Drucker and Cortes, 1996). An “informal” way of thinking about the train-
ing error bound is if the final classification (based on the majority weight)
is incorrect, this would mean that the majority of the previous iterations
would have also misclassified this data point (Schapire and Freund, 2012, p.
54). Since it was consistently misclassified, the weight on this point would
be increasingly large. This is because, during boosting, points get an in-
creased weight for each iteration that they are misclassified. Since the sum
of the weights of all the points is 1, by definition, the number of data points
with extremely high weights would have to be limited. Thus, the number
of misclassified points will be decreasing with each iteration, meaning the
training error will be getting closer and closer to 0 (Schapire and Freund,
2012).

10



Chapter 2. Error Analysis for Adaptive Boosting

The Training Bound for Boosting Theorem, as stated by Schapire and
Freund, 2012, is the following:

Theorem 2 (Training Error Bound for Boosting). Given the notation for the
boosting algorithm stated in Algorithm 1 and Section 1.2.1, let γt=̇1

2
− εt, and let

D1 be an arbitrary initial distribution over the training set. Then the weighted
training error of the combined classifier H with respect to D1 is bounded as:

Pr
i∼D1

[H(xi) 6= yi] 6
T∏
t=1

√
1− 4γ2t 6 exp

(
− 2

T∑
t=1

γ2t

)
.

Note: γt is always positive because εt 6 1
2
.

Proof. Recall the following are defined as:

• Training data: Dn = {(xi, yi) : xiεX, yiε{−1,+1}, i = 1, 2, . . . , n}.

• Weak learners: ht(x) for t = 1, 2, . . . , T : X → {−1,+1}.

• Initialized weights: D1(i) =
1
n

for i = 1, 2, . . . , n.

• Choose ht such that the error is minimized.

• Choose αt = 1
2
log 1−εt

εt
.

• Update for i = 1, 2, . . . , n,

Dt+1 =
Dt(i)

Zt
∗

{
eαt , if ht(xi) = yi

e−αt , if ht(xi) 6= yi
,

meaning that

Dt+1 =
Dt(i) exp

(
− αtyiht(xi)

)
Zt

,

where Zt is a normalization factor chosen so thatDt+1 is a distribution.
The final output is

H(x) = sign

(
T∑
t=1

αtht(x)

)
.

• Let F (x) =
∑T

t=1 αtht(x).

11



Chapter 2. Error Analysis for Adaptive Boosting

Expanding the equation for DT+1 over the occurrences up to T + 1 in terms
of Dt, we get:

DT+1(i) = D1(i)×
exp

(
− α1yih1(xi)

)
Z1

×
exp

(
− α2yih2(xi)

)
Z2

× . . .

· · · ×
exp

(
− αTyihT (xi)

)
ZT

=
D1(i) exp

(
− yi

∑T
t=1 αtht(xi)

)∏T
t=1 Zt

=
D1(i) exp

(
− yiF (xi)

)∏T
t=1 Zt

.

Recall that H(x) = sign
(
F (x)

)
.

So, if H(x) 6= y, then yF (x) 6 0.

This means that e−yF (x) > 1.

It follows that 1{H(X) 6= y} 6 e−yF (x),

meaning 1 is less than the exponential of −yF (x), given that the response is
wrongly classified.
Now, the weighted training error becomes:

Pr
i∼D1

[H(xi) 6= yi] =
n∑
i=1

D1(i)1{H(xi) 6= yi} 6
n∑
i=1

D1(i) exp
(
− yiF (xi)

)

=
n∑
i=1

DT+1(i)
T∏
t=1

Zt.

Since DT+1 is a distribution,
∑n

i=1DT+1(i) = 1.

Thus,
n∑
i=1

DT+1(i)
T∏
t=1

Zt =
T∏
t=1

Zt.

12



Chapter 2. Error Analysis for Adaptive Boosting

Since Dt+1 =
Dt(i) exp

(
−αtyiht(xi)

)
Zt

and Zt is the normalizing factor, Zt must
make the following true:∑n

i=1Dt(i) exp
(
− αtyiht(xi)

)
zt

= 1.

Therefore,

Zt =
n∑
i=1

Dt(i) exp
(
− αtyiht(xi)

)
.

Since both yi and ht(xi) take on the values {−1,+1}, when ht misclassifies,
yiht(xi) = −1, and when it correctly classifies, yiht(xi) = +1. Therefore, we
can break the above equation down to:

zt =
∑

i:yi=hi(xi)

Dt(i)e
−αt +

∑
i:yi 6=hi(xi)

Dt(i)e
αt .

The second part of this equation can be recognized as the error multiplied
by eαt , and the first part is 1 minus the error multiplied by e−αt , so it
simplifies to:

zt = e−αt(1− εt) + eαtεt.

And we know that εt = 1
2
− γt, so it follows that

zt = e−αt
(1
2
+ γt

)
+ eαt

(1
2
− γt

)
.

Since we are strategically taking αt = 1
2
log 1−εt

εt
, the above equation

simplifies to:

e
− 1

2
log

1−εt
εt

(1
2
+ γt

)
+ e

1
2
log

1−εt
εt

(1
2
− γt

)
.

Again, from the fact that εt = 1
2
− γt, we can write

zt =

(
1
2
+ γt

1
2
− γt

)− 1
2(

1

2
+ γt

)
+

(
1
2
+ γt

1
2
− γt

) 1
2(

1

2
− γt

)

=

(
1
2
− γt

1
2
+ γt

) 1
2(

1

2
+ γt

)
+

(
1
2
+ γt

1
2
− γt

) 1
2(

1

2
− γt

)
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=

(
1

2
− γt

) 1
2
(
1

2
+ γt

) 1
2

+

(
1

2
+ γt

) 1
2
(
1

2
− γt

) 1
2

=

[(
1

2
− γt

)(
1

2
+ γt

)] 1
2

+

[(
1

2
+ γt

)(
1

2
− γt

)] 1
2

= 2

[(
1

2
− γt

)(
1

2
+ γt

)] 1
2

2

(
1

4
− γ2t

) 1
2

= 2

√
1

4
− γ2t =

√
4
(1
4
− γ2t

)
=
√

1− 4γ2t .

Now, we have proven that Pri∼D1 [H(xi) 6= yi] 6
∏T

t=1

√
1− 4γ2t .

Next, we must prove that

Pr
i∼D1

[H(xi) 6= yi] 6
T∏
t=1

√
1− 4γ2t 6 exp

(
− 2

T∑
t=1

γ2t

)
, for anyγ > 0.

We start by applying the following approximation:

1 + x 6 exfor all real x.

We must show that the condition:

εt 6
1

2
− γ for γ > 0 for each tth round ,

implies the following inequality:√
1− 4γ2t

T
6 e−2γ

2T .

Since we know that 1 + x 6 ex, if we set x = −2γ2t , then for each γi for
i ε {1, 2, . . . , T}, it follows that 1− 2γ2t 6 e−2γ

2
t . This holds because all

γi ∈ R, for i ε {1, 2, . . . , T}. Now, since we are dealing with positive
quantities, we have the following:√

(1− 2γ2t )
2 6 e−2γ

2
t →

√
1− 4γ2t + 4γ4t 6 e−2γ

2
t .

Since γt > 0, we can say that√
1− 4γ2t 6

√
1− 4γ2t + 4γ4t 6 e−2γ

2
t .
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Therefore,
√

1− 4γ2t 6 e−2γ
2
t .

Since this holds true for each individual γi, it also holds for the sums over
all i ε 1, 2, . . . , T .

Hence, we can write
∏T

t=1

√
1− 4γ2t 6

∏T
t=1 e

−2γ2t .

Lastly, this simplifies to
∏T

t=1

√
1− 4γ2t 6 e(−2

∑T
t=1 γ

2
t ).

We can conclude, then, that

Pr
i∼D1

[H(xi) 6= yi] 6
T∏
t=1

√
1− 4γ2t 6 exp

(
− 2

T∑
t=1

γ2t

)
.

(Schapire and Freund, 2012).

We can see now that the training error bound has a decreasing exponen-
tial shape. Should we expect the generalized error to take that same form?
In Section 2.2, we will show the boosting test and training error plots for 10
real datasets. These plots will suggest that the generalized error does have
the same decreasing exponential form as the training error.

2.2 Empirical Demonstration of the Training Er-

ror

Using 10 datasets of various dimensions, we will run 100 iterations of the
boosting function to have an empirical look at how the test and training
error behave when ranging the number of base trees from 1 to 50. The 10

datasets analyzed are the following:

• Ionosphere (Sigillito, 1989)

• Breast Cancer (Lichman, 2013b)

• Crash (Lucas et al., 2013)
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• Dermatology (Lichman, 2013a)

• Letter Recognition (Slate, 1998)

• Colon Cancer (Alon et al., 1999)

• Lung Cancer (Institute, 2016)

• Lymphoma (Fokoue, 2016a)

• Lymphoma 2 (Fokoue, 2016a)

• Prostate Cancer (Fokoue, 2016b)

The lymphoma dataset was subset in two separate ways to create two
datasets, which we call Lymphoma, and Lymphoma 2.

The first 5 datasets on the list are ones with the sample size larger than
the number of parameters, denoted by n > p, and the second 5 datasets
are ones with a larger number of parameters than sample size, denoted by
p > n (see Table 2.1).

Table 2.1 shows the dimensions of each dataset analyzed, as well as the
balance of the response classes. The reason we chose to note these character-
istics of the datasets is because datasets with a large number of parameters
and small sample sizes tend to be more unstable, thus yielding a larger er-
ror. Also, Mazurowskia et al., 2008 found that the error tends to increase
when the classes are imbalanced in the training set. What we mean by class
imbalance is the response in the training set having more data classified as
one group over another. An example of this would be if a training set had
more data being classified as 0 than 1. In this case, the model will have
more information on Class 0, and the out-of-sample predictions might gen-
erate more Class 0 than Class 1. If the actual response happens to be more
commonly Class 1, then there will be a higher rate of misclassification, and
thus a higher test error (Mazurowskia et al., 2008) (For more information
on addressing the issue of imbalanced classes, see Longadge, Dongre, and
Malik, 2013).

Now we can analyze the error results from boosting these 10 datasets.
More specifically, we will look to see what shape the generalized error has.
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Dataset n p Ratio n/p Class 0 Class 1 Ratio 0/1

Ionosphere 351 32 10.97 126 225 0.56
Breast Cancer 699 10 69.90 241 458 0.53

Crash 540 18 30.00 46 494 0.09
Dermatology 358 34 10.53 247 111 2.23

Letter Recognition 1573 16 98.31 786 787 1.00
Colon Cancer 62 2000 0.03 40 22 1.82
Lung Cancer 197 1000 0.20 139 58 2.40
Lymphoma 180 621 0.29 93 87 1.07

Lymphoma 2 93 621 0.15 51 42 1.21
Prostate Cancer 79 500 0.16 37 42 0.88

TABLE 2.1: Dimensions and Class Balance/Imbalance for the
Various Datasets

Does it have the same decreasing exponential form as the training error?
The error results for the 10 datasets are shown in Figures 2.1 and 2.2.

The first noticeable aspect of the results is that the error flattens out rel-
atively quickly in all cases. What this means for the boosting algorithm is
that we do not need to select a large number of trees to boost to get an accu-
rate result. In both Figures 2.1 and 2.2, we can see the training and test error
begin to flatten around T = 20 trees. This means that whether we boost 20
or 50 trees, we are going to get very similar error results. It is better to use
fewer trees for the sake of memory usage and efficiency. On the other hand,
if one wanted to be as accurate as possible and was not worried about the
amount of time it takes the code to run, he or she could use 50 trees because,
with boosting, we do not have to be concerned about over fitting our data
(Margineantu and Dietterich, 1997; Schapire, 1999).

Next, it is interesting to note that the test error does have a similar de-
creasing exponential shape as the training error (Schapire and Singer, 1999).
This is evidence that we will be able to model a generalized bound similar
to the Vapnik and Chervonenkis bound in Theorem 1. We are speculating
that our bound will be of the form:

R(H) 6 R̂n(H) + φ(. . .)

What we do not know, though, is what φ is. We are modeling φ to be the
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difference between the theoretical risk and empirical risk. Since the empiri-
cal risk, or training error, plateaus at 0, all we must do to model the differ-
ence, is model the test error. That brings us to the question: What causes the
test error to be larger in some datasets in comparison to others? In Chapter
3, we will share some conjectures inspired by the empirical demonstrations
that may answer our question.

FIGURE 2.1: Training and Test Error on Large n Small p
Datasets
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FIGURE 2.2: Training and Test Error on Large p Small n
Datasets

2.3 Existing Bounds

In this section we will state some existing generalized error bounds that are
highly sophisticated and quite technical. First, we have a generalized error
bound from Schapire and Ene, 2006. This bound is as follows:

R(H) 6 R̂n(H) +O

(√
T log |H|+ T log n

T
+ log 1

η

n

)
.

In this equation, H , T , and n are defined as in Algorithm 1, and η is defined
as in Theorem 1. This bound is quite involved and contains many different
factors (For more information on this bound, see Schapire and Ene, 2006).

The next bound is one by Vaughan et al., 2006. This bound is defined as:

R(H) 6 R̂n(H) + Õ

(√
Tζ

n

)
.

Here, H , T , and n are also defined as in Algorithm 1, and ζ is defined as in
Theorem 1. The term Õ(.) denotes that the log terms are removed from that
part of the equation (See Vaughan et al., 2006 for more information on this
bound).
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Lastly, Koltchinskii, Panchenko, and Lozano, 2001 have a paper on a
generalized error bound, as well. This bound is the most complex of the
bounds listed in this section. Koltchinskii, Panchenko, and Lozano, 2001
derive bounds using the VC dimension, and other calculated constants that
may be difficult to comprehend (For more information on this bound and
to see it stated explicitly, see Koltchinskii, Panchenko, and Lozano, 2001,
Section 2).

These and other generalized error bounds are very complex and beyond
the scope of this thesis. Accordingly, we will move on with our research to
find a more functional bound, with easier terms to understand.
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Empirical Demonstration of the
form of Generalization Error of
Boosting

3.1 Conjectures Gathered from Real Datasets

In reference to Figures 2.1 and 2.2, we can now discuss conjectures we have
about which characteristics of our dataset, if any, are affecting our test error
results. First, we note, in general, how much larger the test error is in the
cases with large p small n datasets versus the small p large n datasets. Since
all of the graphs are plotted on the same scale, we can easily see that the test
error in Figure 2.2 is generally greater than that in Figure 2.1. The datasets in
Figure 2.2 that stand out are the Colon Cancer and Prostate Cancer datasets
(Alon et al., 1999; Fokoue, 2016b). These two dataset yield the largest test
error out of all of the datasets tested. Referring back to Table 2.1, we can
see that the Colon Cancer and Prostate Cancer datasets have the smallest
sample sizes out of all of the datasets at 62 and 79, respectively. On the
contrary, looking at Figure 2.1 we can see that the Letter Recognition dataset
clearly has the smallest test error (Slate, 1998). This is the dataset with the
largest sample size that was tested, at 1573 observations, it is more than
double the sample size of the second largest dataset tested.

Based on these three examples, it would appear that sample size must
have a huge effect on the test error. Whether or not this conjecture is correct,
the Dermatology dataset, which can be seen in Figure 2.1, yields counter
intuitive results (Lichman, 2013a). This dataset shows the second lowest
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test error to the Letter Recognition dataset. From the previous conjecture,
we would assume that the sample size for the Dermatology dataset must be
relatively large, but in reality, it is not. This dataset has 358 observations,
one of the smallest sample sizes in the n > p category. From our general
results, it appears that sample size is an important factor in what affects test
error, but this leads us to believe something else must also play a crucial
role.

Perhaps the number of parameters could also affect the test error. We
took subsets of the Lymphoma dataset to create two different p > n datasets.
We can then directly compare the results of two datasets since they have
the same number of parameters but different sample sizes (Fokoue, 2016a).
(Note: We may only be able to generalize this to p > n datasets). From
Figure 2.2, it seems as though the Lymphoma 2 dataset yields a larger er-
ror than the first Lymphoma dataset. The only difference in dimensions is
the sample size. Lymphoma 2 has a sample size of 93, whereas Lymphoma
(yielding a smaller test error) has a sample size of 180, almost double that
of Lymphoma 2. Also, as previously stated, the Colon Cancer Dataset and
Prostate Cancer dataset both have extremely small sample sizes, but their
number of parameters differ greatly with Colon Cancer having 2000 param-
eters and Prostate Cancer having 500. Although both datasets yield a rel-
atively large test error, the Prostate Cancer dataset’s test error is evidently
larger than the Colon Cancer dataset’s test error. This may suggest that the
greater the number of parameters, the lower the error. We cannot make any
conclusions just yet, but this is a good place to start.

Next, we will consider the class balance versus imbalance. Here, we will
focus on the column titled "Ratio 0/1" in Table 2.1. As previously stated, it
could be assumed that with a more balanced class ratio (i.e. with the ratio
closer to 1), the test error would be minimized. If we have equal information
on both classes, it is easier to correctly classify a test set, even if the majority
of the test set is truly one group over the other. In Table 2.1, it is readily
apparent that the Letter Recognition dataset has almost exactly balanced
data. As mentioned previously, this dataset yields the smallest test error.
We were originally attributing its low test error to the large sample size, but
perhaps it is due to the balanced classes of the response. The Lymphoma
dataset also has a 0 to 1 ratio close to 1 and yields one of the lowest test
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error of the p > n datasets. The Lymphoma 2 and Prostate Cancer datasets
both have a similar ratio of slight imbalance (with one slightly over 1 and
the other slightly under), yet they produce very different test error results.
This leads us to believe that if class imbalance is important, its results may
vary based on the previous factors mentioned, or even the ratio of n to p,
which is also displayed in Table 2.1. Lastly, the ratio of Class 0 to Class 1 in
the Dermatology dataset and the Prostate Cancer dataset are very similar at
2.23 and 2.40, respectively. Their results are also interesting because, even
though the Dermatology dataset has n > p and the Prostate Cancer dataset
has p > n, they both yield some of the lowest test error results of the other 4
datasets in their respective categories.

In conclusion, it is apparent that sample size, number of parameters,
and class imbalance are important factors in the test error outcome but
how and in what way, cannot be defined in a simple rule that applies to
all datasets. This does, however, give us enough information to simulate
multiple datasets of varying sizes for the purpose of applying the boosting
algorithm in the same matter as earlier. Since we have evidence that the
generalized error of the adaptive boosting algorithm will have the same de-
creasing exponential shape as the training error, we will derive a multiple
linear regression model, φ, using these mentioned factors as the parameters
with the averaged test error as the response. The function φ will then be
added to our empirical risk to create a theoretical risk bound similar to the
VC Bound in Theorem 1.

3.2 Simulated Datasets

Since the existing bounds discussed in Section 2.3 are too technical and so-
phisticated for use in this study, we will go on to create strategically simu-
lated datasets of various characteristics that the empirical demonstration in
Figure 2.1, Figure 2.2, and Section 3.1 showed may be affecting the gen-
eralized error. Simulated datasets are a good tool to use when analyz-
ing a theory or conjecture. In the case of simulated datasets, we know
the truth because we created the datasets, they are available in any quan-
tity, and we know the format will be exactly how we want it (Observational
Medical Outcomes Partnerships 2013). There are multiple ways to simulate
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datasets in R. Melnykov, Chen, and Maitra, 2012a use the R function called
simdataset() from the MixSim package to simulate datasets (Melnykov,
Chen, and Maitra, 2012b; Melnykov et al., 2015). Another helpful tool for
simulating datasets is the sim.item() function from the psych package
in R (Revelle, 2006; Revelle, 2015). However, we are using a function created
by Ramos, 2016 called simclass(). This function enables us to generate
datasets of any dimensions. The underlying relationship between the vari-
ables and the response can be seen within the function in Appendix A. We
kept this underlying relationship constant for all of the simulated datasets.
This relationship could effect our results, so by keeping it constant here, we
are able to attribute the changes in our results to only the characteristics we
are purposly changing. Ramos, 2016’s function uses the calculated response
as a probability in the random binomial R function, rbinom() to make the
response either a 1 or 0 to give us our binary response (R, 1993b).

The idea in this chapter is to take what we learned from our empirical
test error results and simulate datasets to test our conjectures. We will study
a range of:

• Sample size

• Number of parameters

• Class imbalance/balance

to strategically construct simulated datasets. We will apply the adaptive
boosting algorithm to each dataset, ranging the number of trees from 1 to
50 and replicate that 100 times. The results can be seen in Section 3.3, where
there is an analysis of the test and training error plots.

3.2.1 Creating Imbalanced Simulated Datasets

We began by using Ramos, 2016’s function called simclass() and con-
structed 5 datasets of each of the varying sizes and dimensions given by:

• n = 250, p = 17

• n = 80, p = 17

• n = 250, p = 1200
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• n = 80, p = 1200

The largest sample size we chose to work with is 250, while the smallest is
80. We did not want to construct datasets that were much too large for the
machine to handle, and a sample size of 250 compared to 80 should show
the contrast in results that we are looking for without it being
unmanageable. Also, the largest number of parameters we chose to
simulate is 1200 while the smallest is 17. This is a large range and seems to
be realistic based on the real datasets we were working with. Since we
simulated 5 of each size and dimension, we now have 20 datasets, and as
seen from the list, 10 of these datasets are of the type small p large n, and
the other 10 data sets are of the type large p small n.

It became apparent that, by default, this function yields an imbalanced
class result, meaning the number of data points in Class 0 was much smaller
than the number of data points in Class 1. In fact, the ratio of data points
in our datasets classified as Class 0 to those classified as Class 1 ranged
anywhere from 0.20 to 0.60. One conjecture discussed is that the ratio of
data points in Class 0 to those in Class 1 could alter our test error results,
so we altered the function to create datasets with a balanced response, as
well (i.e., the ratio of Class 0 to Class 1 is exactly 1). This function, called
simclasseven(), can also be found in Appendix A. We then used this
altered function to create 20 more datasets of the same varying size and
dimension as the previous 20 datasets.

3.2.2 Creating Balanced Simulated Datasets

The way we generated simclasseven() came directly from Ramos, 2016’s
simulation function simclass(). The reason simclass() was returning
imbalanced results is because it uses the R function rbinom() to calculate
the response of our simulated data (R, 1993b; Ramos, 2016). We altered the
code to use the R function median() to calculate the response (R, 1993a).
This way, the function takes the calculated relationship between the vari-
ables and the response pii and classifies anything below the median of
pii as 0 and anything above the median as 1. Now, we have a balanced
response every time.
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Next, we will apply the adaptive boosting algorithm to each of the 40

simulated datasets, ranging the number of trees from 1 to 50 and replicating
that 100 times. The results can be seen in Figures 3.1 through 3.8, and the
trends will be discussed in Section 3.3.

FIGURE 3.1: Training and Test Error on Imbalanced Datasets
of Size 250 X 17
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FIGURE 3.2: Training and Test Error on Imbalanced Datasets
of Size 80 X 17

FIGURE 3.3: Training and Test Error on Imbalanced Datasets
of Size 250 X 1200
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FIGURE 3.4: Training and Test Error on Imbalanced Datasets
of Size 80 X 1200
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3.3 Trends

The results for the imbalanced datasets of the sizes 250 X 17, 80 X 17, 250 X
1200, and 80 X 1200 can be found in Figures 3.1, 3.2, 3.3, and 3.4, respectively;
the results of these four sizes of balanced datasets are in Figures 3.5, 3.6, 3.7,
and 3.8, respectively.

We can see many trends in each of these figures, including the following:

• The datasets of size 250 X 17 in Figures 3.1 and 3.5 have a smaller test
error than the others.

• The test error varies greatly in the datasets with a sample size of 80.

• Some of the datasets with the same attributes yield different results.

In regards to the last bullet point, reference Figure 3.2. The second graph
(in the middle of the top row) shows a smaller error than the other graphs.
This is very interesting because the 5 plots in this figure come from datasets
with the same characteristics, so it is important to note the variability among
datasets. These findings for the simulated datasets may help to explain later
results; however, our conclusions will be drawn from the Multiple Linear
Regression that will be done in Section 3.4.

FIGURE 3.5: Training and Test Error on Balanced Datasets of
Size 250 X 17
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FIGURE 3.6: Training and Test Error on Balanced Datasets of
Size 80 X 17

FIGURE 3.7: Training and Test Error on Balanced Datasets of
Size 250 X 1200
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FIGURE 3.8: Training and Test Error on Balanced Datasets of
Size 80 X 1200
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3.4 Modeling the Test Error

3.4.1 The Variables

Now we will perform Regression Analysis on the simulated datasets. The
data we are using to build this model come directly from the simulated
datasets. Our response will be the average test error of each dataset after
the "elbow," or after the error begins to flatten. To calculate this response
value, we are averaging the mean errors over 20 replications of the boosting
process explained at the end of Section 3.2. For these 20 replications, we
only studied the number of trees up to T = 30. As mentioned in Section 2.2,
it is evident that the test and training error flatten out closer to T = 20, so
instead of requiring much more time and memory to boost the trees until
T = 50, we stopped at T = 30 for these replications. Thus, the response
variable we are using for this Regression Analysis is the average test error
of each simulated dataset over all 20 replications, from T = 20 to T = 30.
The explanatory variables also come from each of the simulated datasets;
they are as follows:

• Sample Size, denoted as n

• Number of Parameters, denoted as p

• Ratio of Sample Size to Number of Parameters, denoted as np

• Number of Data Points in Class 0, denoted as z

• Number of Data Points in Class 1, denoted as o

• Ratio of Data Points in Class 0 to Data Points in Class 1, denoted as zo

Note: Since we use a stratified random sample in the training/test set split,
the number of data points in Class 0 and Class 1 will be the same for each
individual replication.

Our regression model will take the following form:

log(Ys) = β0 + β1Xs1 + . . .+ βmXsm + εs.

In this model,
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• Ys is the predicted average test error for simulation s;

• Xs1 throughXsm are the values that them significant explanatory vari-
ables take on from simulation s;

• β0 through βm are the calculated coefficients for our model;

• εs is the error, or noise, of the model for simulation s.

3.4.2 Multiple Linear Regression Models

We constructed several Multiple Linear Regression models before choosing
the one that would reveal our test error. The four models are listed below:

• Full multiple linear regression (MLR) model on all 6 parameters

• Bidirectional stepwise regression, using the Bayesian Information Cri-
terion (BIC), on the full MLR model

• Full MLR model on all 6 parameters with a logarithmic transformation
on the response

• Bidirectional stepwise regression, using BIC, on the full MLR model
with a logarithmic transformation on the response

The model that best fits our data, is the last one, namely the bidirectional
stepwise regression on the full MLR model with a logarithmic transforma-
tion on the response. Our MLR model based on the simulated data is the
following:

log(Ys) = −1.268 + 0.0003683ps − 0.009514zs + εs

The only significant variables are the number of parameters, p, and the
number of data points classified in group 0, z. Also, we can see that the
variable z has a greater affect on the test error outcome than the variable
p because the coefficient is larger. These are interesting results because, as
mentioned in Section 3.1, we were confident at that time that the sample
size, nwould be a significant variable; however, our results show otherwise.
This could be due to the fact that our range of sample sizes for simulating
datasets (i.e. 80 and 250) was not large enough to show an effect.
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Since this model was derived with a logarithmic transformation on the
response, we must exponentiate our model to return the predicted average
test error instead of the log of the predicted average test error. Recall from
Section 2.2 that we are modeling our test error for each simulation, Ys to
build our function φ. Thus, φ, for our case can be defined as:

φ(ps, zs) = Ys = exp(−1.268 + 0.0003683ps − 0.009514zs + εs).

To reiterate,

• Ys is the predicted average test error for simulation s;

• ps is the number of parameters for simulation s;

• zs is the number of data points in class zero for simulation s;

• εs is the noise of the model for simulation s.

Recall that our intent is to use the basis of the Vapnik Chervonenkis bound
to create a generalized bound for the theoretical risk of the adaptive boost-
ing algorithm in the form of:

R(H) 6 R̂n(H) + φ(. . .).

We now have an estimated model, φ, said to be:

φ(p, z) = Y = exp(−1.268 + 0.0003683p− 0.009514z),

and we have bounded the empirical risk by the following decreasing
exponential function:

R̂n(H) 6 exp
(
− 2

T∑
t=1

γ2t

)
.

Based on the data, we hope to conclude that the generalized error is
bounded above by:
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R(H) 6 exp
(
− 2

T∑
t=1

γ2t

)
+ exp(−1.268 + 0.0003683p− 0.009514z).

A benefit of this generalized error bound in comparison to the bounds in
Section 2.3 is that the terms in the function φ are more comprehensive. We
can see from the bound that as the number of parameters increases, we can
expect our generalized error to increase as well. In other words, this bound
can give more information to one who was interested in collecting data for
a study. He or she can calculate what the structure of the data should be to
lower the test error bound.

In Chapter 4, we will see how this bound performs on the real datasets
discussed in Section 2.2.
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Chapter 4

Application to Real datasets

In this section, we will apply the generalization bound to the real datasets
presented in Section 2.2. Recall that we are estimating our bound to be:

R(H) 6 exp
(
− 2

T∑
t=1

γ2t

)
+ exp(−1.268 + 0.0003683p− 0.009514z + ε),

and the real datasets to which we are applying the bound are the following:

• Ionosphere (Sigillito, 1989)

• Breast Cancer (Lichman, 2013b)

• Crash (Lucas et al., 2013)

• Dermatology (Lichman, 2013a)

• Letter Recognition (Slate, 1998)

• Colon Cancer (Alon et al., 1999)

• Lung Cancer (Institute, 2016)

• Lymphoma (Fokoue, 2016a)

• Lymphoma 2 (Fokoue, 2016a)

• Prostate Cancer (Fokoue, 2016b)

Figures 4.1 and 4.2 are almost identical to Figures 2.1 and 2.2. The only
difference is that Figures 4.1 and 4.2 contain the generalized error bound.
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Keep in mind that this bound is based on the Vapnik Chervonenkis Bound
in Section 1.1, so it is probabilistic, and the projected generalization error
may not always bound the test error.

FIGURE 4.1: Large n Small p Real Datasets with Generaliza-
tion Error Bound

We can see from these figures that in most cases, the generalization er-
ror bound is greater than our empirical test error. The one case among
our examples where the generalized error fails to bound the test error is in
the Prostate Cancer dataset. These results are shown in the bottom middle
graph of Figure 4.2.

Although it is hard to tell, the theoretical error in the Letter Recognition
dataset, located in the bottom middle graph of Figure 4.1, is bounding the
test error. The calculated theoretical error plateaus at 0.00321, and the em-
pirical error plateaus around 0.00244. For the other eight datasets, it is easy
to tell that the generalized error is bounding our empirical results.
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FIGURE 4.2: Large p Small n Real Datasets with Generaliza-
tion Error Bound
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Chapter 5

Conclusion

5.1 Restating The Problem

The main focus of this thesis is to model the generalized error. As previously
stated in Section 1.3, our goal is to be able to suggest a bound for the gen-
eralized error of the Boosting Algorithm. We first boosted ten real datasets
of different sizes and characteristics with a binary response, and plotted the
error from each dataset.

By studying and analyzing the empirical demonstrations of the ten datasets,
we gathered some conjectures about which characteristics of the datasets
seemed to be causing the changes in test error results. We concluded that it
appears that the following characteristics are important:

• Sample size

• Number of parameters

• Ratio of sample size to number of parameters

• Number of data points in Class 0

• Number of data points in Class 1

• The ratio of data points in Class 0 to data points in Class 1

We strategically simulated datasets by varying the above-listed characteris-
tics, so we can collect more information on exactly what alters the test error
and by how much.

After that, we boosted those 40 datasets with 20 replications and used
that data to build a regression model for the test error. Our bidirectional
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stepwise multiple linear regression of the 6 parameters with a logarithmic
transformation of the response pointed to two significant variables. The
significant variables are the number of parameters in the dataset and the
number of observations in the dataset that had an observed classification as
Class 0.

This model, explicitly stated, is:

φ(p, z) = Y = exp(−1.268 + 0.0003683p− 0.009514z + ε),

where:

• Y is the predicted average test error;

• p is the number of parameters;

• z is the number of data points in class zero;

• ε is the noise of the model.

After following the basis of the Vapnik Chervonenkis bound in Theo-
rem 1, we derived our proposed generalized error bound of the Boosting
Algorithm. It is as follows:

R(H) 6 exp
(
− 2

T∑
t=1

γ2t

)
+ exp(−1.268 + 0.0003683p− 0.009514z + ε).

5.2 Impact of the Generalized Error Bound

As explained in Section 2.3, the existing generalized error bounds are quite
technical. The variables used in these bounds are in-depth and can be hard
to understand. For example, the VC dimension defined by ζ can get very
complex depending on the function space defined. In the case of the gener-
alized error bound derived in this thesis, the variables (i.e., the number of
parameters in the dataset that is being boosted, and number of observations
classified in Class 0) are easy to comprehend. This is beneficial because if
one were conducting a study, he or she will know to limit the number of pa-
rameters used in the research because our bound shows that increasing the
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number of parameters is going to increase the upper bound of the boosting
algorithm’s test error.

5.3 Future Results

If one were inclined to continue research to make this test error bound more
accurate, we would suggest simulating more datasets of different sizes. We
used 4 sizes of data sets: 250 X 17, 80 X 17, 250 X 1200, and 80 X 1200. We
simulated 5 datasets of each size with an imbalanced binary response and
5 datasets of each size with a balanced binary response. Had we had more
resources, we could have simulated datasets with a larger sample size. The
largest sample size of the real datasets that were studied is n = 1573. If a
larger range of sample sizes had been covered, we may have been able to
get even more generalizable results without extrapolation.

Although the sample size was not a significant variable in the final model
of the test error, perhaps analyses involving a larger range of sample sizes
might reveal that sample size is indeed significant. Still, a moderate range
of sample sizes were covered and results of the shift portrayed in Figures
4.1 and 4.2 in Chapter 4 show that our probabilistic bound still captures our
test error in 9 out of the 10 real examples. Since the generalization error is a
probabilistic bound, we are confident about the results.
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R Functions

winds <− function ( nrow , ncol , maxsize =6 , aryx =1 ,
cex . lab = 1 . 2 , cex . axis = 1 . 2 , t i t l e =FALSE ,

mars=c ( 3 , 3 . 2 , 1 , 1 ) + . 1 , omas=c ( 0 , 0 , 0 , 0 ) ,
mgps=c ( 2 , 0 . 7 , 0 ) , m a r 3 t i t l e P l u s =2 ,
byrow=TRUE)

{
graph . ar <− aryx∗nrow / ncol
i f ( graph . ar > 1) { r s i z e <− maxsize ;

c s i z e <− maxsize / graph . ar } e lse
{ c s i z e <− maxsize ;

r s i z e <− maxsize∗graph . ar }
windows ( cs ize , r s i z e )
i f ( byrow ) par ( mfrow=c ( nrow , ncol ) ) e lse

par ( mfcol=c ( nrow , ncol ) )
par ( mar=c ( mars [ 1 ] , mars [ 2 ] , i f e l s e ( t i t l e ,

mars [ 3 ] + m a r 3 t i t l eP l u s ,
mars [ 3 ] ) , mars [ 4 ] ) ,

mgp=mgps , oma= i f ( length ( omas)==1)
c ( 0 , 0 , omas , 0 ) e lse i f ( length ( omas)==2)
c ( omas [ 1 ] , 0 , omas [ 2 ] , 0 ) e lse omas ,

cex . lab=cex . lab , cex . axis=cex . axis )
i n v i s i b l e ( )

}

boosted . t r e e s <− function ( xy , nbase )
{
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Y <− xy$Y
n <− nrow ( xy )
m <− round ( 0 . 7 5 ∗n )
p <− ncol ( xy)−1
T <− nbase

alpha <− numeric ( T )
eps i lon <− numeric ( T )
weight <− rep (1 / n , n )
h <− NULL

for ( t in 1 : T )
{

decent . base . l e a r n e r <− 0
while ( ! decent . base . l e a r n e r )
{

boost . id <− sample ( 1 : n , m,
replace=T , prob=weight )

base . l e a r n e r <− r p a r t ( as . f a c t o r (Y) ~ . ,
data=xy , subset=boost . id )

yhat <− predic t ( base . learner ,
xy [ ,− (p + 1 ) ] , type= ’ c l a s s ’ )

eps i lon . candidate <− e r r o r . weighted (Y ,
yhat , weight )

i f e l s e ( eps i lon . candidate ==0 ,
eps i lon . candidate <− 0 . 0 0 0 1 ,
eps i lon . candidate <− eps i lon . candidate )

decent . base . l e a r n e r <− ( eps i lon . candidate < 0 . 5 )
}
eps i lon [ t ] <− eps i lon . candidate
alpha [ t ] <− (1 / 2) ∗ log ((1− eps i lon [ t ] ) / eps i lon [ t ] )
weight <− weight∗exp ( alpha [ t ] ∗ i n d i c a t o r (Y ! =yhat ) )

weight <− weight / sum( weight )
h <− c ( h , l i s t ( base . l e a r n e r ) )
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}
return ( l i s t ( alpha=alpha , h=h , weight=weight ) )

}

predic t . boosted . t r e e <− function ( h , alpha , xnew )
{

T <− length ( h )
nnew <− nrow ( xnew )
h . t . x <− NULL
for ( t in 1 : T ) { h . t . x <− cbind ( h . t . x ,

pm( predic t ( h [ [ t ] ] , xnew ,
type= ’ c l a s s ’ ) ) ) }

m. alpha <− matrix ( rep ( alpha , nnew ) ,
byrow=T , nrow=nnew)

return ( i f e l s e ( rowSums (m. alpha∗h . t . x ) < 0 . 5 , 0 , 1 ) )
}

e r r o r . weighted <− function ( y , yhat , weight )
{

e r r <− i f e l s e ( y ! =yhat , 1 , 0 )
return (sum( e r r ∗weight ) )

}

i n d i c a t o r <− function ( p r e d i c a t e )
{

return ( i f e l s e ( predicate , 1 , 0 ) )
}

pm <− function ( y )
{

uy <− s o r t ( unique ( y ) )
return ( i f e l s e ( y==uy [ 1 ] , −1 , +1 ) )

}

measures <− function ( l a b e l , response )
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{
n <− length ( l a b e l )
confmat <− table ( l a b e l , response )
Accuracy <− sum( diag ( confmat ) ) / n
FPR <− confmat [ 1 , 2 ] / rowSums ( confmat ) [ 1 ]
TPR <− confmat [ 2 , 2 ] / rowSums ( confmat ) [ 2 ]
FNR <− confmat [ 2 , 1 ] / rowSums ( confmat ) [ 2 ]
TNR <− confmat [ 1 , 1 ] / rowSums ( confmat ) [ 1 ]
P r e c i s i o n <− confmat [ 2 , 2 ] / colSums ( confmat ) [ 2 ]
Recall <− TPR
S p e c i f i c i t y <− TNR
S e n s i t i v i t y <− TPR
F . measure <− 2∗ ( P r e c i s i o n ∗Recall ) / ( P r e c i s i o n +Recall )
measured <− l i s t ( Accuracy=Accuracy ,

P r e c i s i o n = Prec i s ion ,
F . measure = F . measure ,
Recall=Recall ,
FPR=FPR , TPR = TPR ,
FNR=FNR, TNR = TNR,
S p e c i f i c i t y = S p e c i f i c i t y ,
S e n s i t i v i t y = S e n s i t i v i t y )

return ( measured )
}

e x t r a c t<−function ( measure )
{

v <− numeric ( 1 0 )
v [ 1 ] <− measure$Accuracy
v [ 2 ] <− measure$ P r e c i s i o n
v [ 3 ] <− measure$ Recall
v [ 4 ] <− measure$F . measure
v [ 5 ] <− measure$FPR
v [ 6 ] <− measure$TPR
v [ 7 ] <− measure$FNR
v [ 8 ] <− measure$TNR
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v [ 9 ] <− measure$ S p e c i f i c i t y
v [ 1 0 ] <− measure$ S e n s i t i v i t y
return ( v )

}

s imc lass <− function ( n=300 ,p=10 , seed=NULL)
{

s e t . seed ( seed )
mu <− round ( runif ( p , 0 , 1 ) , 2 )
sigma <− round ( runif ( p , 1 , 3 ) , 2 )
sigma .m <− ‘ diag <− ‘ ( matrix ( 0 , p , p ) , 1 ) ∗sigma
X <− mvrnorm ( n ,mu, sigma .m)
y <− X[ , 1 ] +X[ , 4 ] +X [ , 5 ]
p i i <− 1 / (1+ exp(−y ) )
y . c <− rbinom ( n , 1 , p i i )
table ( y . c )
sim . dat . c <− data . frame ( cbind ( y . c , X ) )
names ( sim . dat . c ) [ 1 ] <− "Y"
return ( sim . dat . c )

}

s imclasseven <− function ( n=300 ,p=10 , seed=NULL)
{

s e t . seed ( seed )
mu <− round ( runif ( p , 0 , 1 ) , 2 )
sigma <− round ( runif ( p , 1 , 3 ) , 2 )
sigma .m <− ‘ diag <− ‘ ( matrix ( 0 , p , p ) , 1 ) ∗sigma
X <− mvrnorm ( n ,mu, sigma .m)
y <− X[ , 1 ] +X[ , 4 ] +X [ , 5 ]
p i i <− 1 / (1+ exp(−y ) )
y . c <− i f e l s e ( p i i <=median ( p i i ) , 0 , 1 )
table ( y . c )
sim . dat . c <− data . frame ( cbind ( y . c , X ) )
names ( sim . dat . c ) [ 1 ] <− "Y"
return ( sim . dat . c )
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}

(Voelkel, 2014, Fokoue, 2015b, Ramos, 2016).
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