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Abstract 

Historically, North American river otters (Lontra canadensis) were widely dispersed 

throughout the North American continent. Trapping pressures and urbanization have led to 

regional exclusion of North American river otter populations from historic habitats, leading the 

Association of Zoos and Aquariums to spearhead conservation and captive breeding efforts to 

maintain genetic diversity of the aquatic mustelid. Difficulties in consistently breeding captive 

North American river otters have spotlighted a need to understand how geography and life 

history of adult individuals influence reproductive events. This study analyzed the AZA 

studbook records for all litters born in captivity from 2008 to 2014 (N = 47) to assess whether 

any correlations existed between historical data and timing of parturition events. ANOVA tests 

found significant differences in mean parturition date between litters by dam origin region (F = 

6.09, p-value = 0.018) and by parturition location (F = 12.73, p-value = 0.001). A Mann-Whitney 

u test found a difference (p-value = 0.0365) between median parturition dates of litters born in 

the north and those born in the south regions. PCA testing showed that the data form independent 

groups by both dam and sire origin latitudes, confirming the existence of a significant 

relationship between latitude and the timing of reproductive events. However, this study did not 

conclusively determine which latitude (the origin of the dam, origin of the sire, or latitude at the 

time of breeding) has the most influence on reproductive events among the captive North 

American river otter population. Future work should strive to identify other variables related to 

physiological condition and/or genetic variation between North American river otter subspecies. 

These factors may lead to more discreet groups and will likely aid in the development of a 

predictive model of parturition timing among the captive population using known life history 

data.  
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Introduction 

Natural history of North American river otters 

 North American river otters (Lontra canadensis) are members of the Mustelidae family in 

the Carnivora order and belong to the suborder Caniforma. The Mustelidae family consists of 22 

genera and over 50 species and includes weasels, badgers, and otters. Fossils of the earliest 

known mustelids date back to the early Oligocene and were found in Eurasia. Mustelids are 

characterized by their prominent anal scent glands, as well as by their elongate body shape and 

short legs. Mustelids have well-developed carnassial teeth and all extant species have no more 

than one molar after the carnassial teeth. Most genera exhibit induced ovulation and delayed 

implantation during reproduction (Feldhamer et al., 2015b). Of the over 53 mammalian species 

known to exhibit delayed implantation, nearly half are mustelid species (Renfree & Shaw, 2000; 

Sandell, 1990). The Lutrinae is a recognized subfamily of the Mustelidae and encompasses the 

seven genera and twelve defined otter species (Feldhamer et al., 2015b). There are seven 

recognized subspecies of L. canadensis, although definitions of each vary (AZA Small Carnivore 

TAG, 2009).  

 

Morphology, behavior, and diet 

 North American river otters are streamlined, yet stocky, mustelids with a muscular form. 

The body shape is generally like that of a weasel, although the neck and head are of similar 

widths and the hips are the broadest point of the otter’s body (Larivière & Walton, 1998; 

Melquist et al., 2003). River otters have five toes with nonretractile claws on each foot and are 

highly dexterous with sensitive paws (Park, 1971). Their tapered tails are long, forming a third of 

an adult’s total body length, which may be between 98 and 113 cm (Lowery, 1974). Adult North 
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American river otters weigh between five and fourteen kilograms and males are up to 17% larger 

than females (Jackson, 1961; Melquist & Hornocker, 1983). The size of both sexes appears to 

vary among regional populations (Boyle, 2006).  

 The river otter is built for aquatic strength and speed, with short and muscular legs and 

fully webbed toes. The long tail acts as a source of both power and maneuverability in the water 

(Tarasoff et al., 1972). Their maximum reported diving depth is 20 meters, and swimming speeds 

of up to 11 kilometers per hour have been observed (Hamilton, 1943; Jackson, 1961). River 

otters have shortened tracheas and decreased lobulation in the lungs, most likely as adaptations 

for air exchange while diving (Tarasoff & Kooyman, 1973a; Tarasoff & Kooyman, 1973b). 

North American river otters can remain submerged for up to 4 minutes at a time while traveling 

underwater (Harris, 1968; Jackson, 1961).  

 River otters are typically considered top-order carnivores with no aquatic predators and 

little competition (Boyle, 2006). However, terrestrial predation upon river otters is somewhat 

common. Felids, canids, and birds of prey have all been observed consuming river otters (Mach, 

1985; Melquist & Dronkert, 1987; Melquist et al., 2003; Melquist & Hornocker, 1983; Route & 

Peterson, 1991).  

North American river otters are primarily ambush predators, but have been known to 

occasionally pursue prey (Park, 1971). Prey is consumed both at the surface of the water and on 

land, with individuals typically taking catches of larger fish onto land prior to consumption 

(Chanin, 1985; Park, 1971). Cooperative foraging has been observed, although this does not 

appear to fully replace solitary foraging behavior despite the resulting increased forage efficiency 

(Beckel, 1990; Blundell et al., 2002a; Serfass, 1995).  



 

3 
 

Fish make up the bulk of the North American river otter diet, although river otters are 

opportunistic foragers and will consume nearly anything available to them (Boyle, 2006; Greer 

1955; Melquist et al., 1981; Toweill, 1974). These supplemental prey sources include mollusks, 

insects, birds, fruits, crustaceans, amphibians and small mammals such as muskrats (Gilbert & 

Nancekivell, 1982; Hamilton, 1961; Knudsen & Hale 1968; Melquist et al., 2003; Melquist & 

Hornocker, 1983; Morejohn, 1969; Reid et al., 1994a; Verbeek & Morgan, 1978; Wilson, 1954). 

Crayfish replace fish as the mainstay of the North American river otter diet in areas where they 

are more abundant or more readily available (Grenfell, 1974; Malville, 1990; DePue, 2002). 

Preference for particular fish species appears to be related foremost to availability, followed by 

ease of capture (Toweill & Tabor 1982; Melquist & Hornocker, 1983). This has led to some 

observed selectivity in predation upon adult fish; due to their size, adult fish are less able to 

escape pursuant predators (Erlinge, 1968). In some cases, North American river otter individuals 

have been observed moving to streams or lakes during trout and salmon spawning runs, 

presumably to take advantage of the abundance of adult fish (Melquist & Hornocker, 1983; Reid 

et al., 1994b).  

 Compared to the majority of the mustelid taxa, river otters are fairly social animals. 

While individuals are often solitary in the wild, North American river otters do show social 

plasticity and will form cooperative groups for purposes of reproduction or improved foraging 

(Blundell et al., 2002b). These groups forage and travel together, sharing dens and latrine sites 

(Beckel, 1990; Shannon, 1989; Reid et al., 1994b). Typically, a cooperative unit consists of an 

adult female and her offspring born within the last year (Melquist & Hornocker, 1983). Males 

sometimes aggregate in groups of up to 21 individuals in coastal systems for the purposes of 

cooperative foraging on schooling fish (Blundell et al., 2002a; Shannon, 1989; Shannon, 1991). 
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Instances of males forming social groups in inland environments, as well as mixed-parentage 

groups of juveniles, have been reported (Larivière & Walton, 1998; Melquist & Hornocker, 

1983; Shannon, 1989).  

 

Range and habitat 

Historical records from trappers and naturalists indicate that the North American river 

otter once inhabited nearly every major watershed in Canada and the continental United States 

(Hall, 1981; Melquist et al., 2003). In particular, the species was abundant along the coast of the 

Pacific Northwest, in the marshes along the Atlantic coast, in the Great Lakes basin, and 

throughout New England (Melquist & Dronkert, 1987; Melquist et al., 2003). River otters also 

occupied most suitable habitats within the continental interior (Boyle, 2006). 

The North American river otter appears to be capable of occupying all aquatic habitats 

with permanent access to freshwater and fish or crustacean prey stocks. Today, river otters are 

found throughout the North American continent, including in marine coastal areas, marshes, and 

streams spanning a range of ecosystems, from arid scrubland to subalpine forests (Toweill & 

Tabor 1982, Larivière & Walton, 1998). Regardless of habitat location or type, North American 

river otter populations appear heavily reliant on high water quality (Boyle, 2006). A survey of 

wild populations in west central Idaho defined a statistical preference for valley and stream 

habitats, rather than mountainous or pond-like areas (Melquist & Hornocker, 1983). In general, 

river otter populations are at their most dense in coastal habitats and low streams with little 

human disturbance and an abundance of food (Melquist & Dronkert, 1987; Melquist et al., 

2003). Inland areas tend be more densely populated in lowlands and valleys with complexes of 

interconnected waterbodies (Melquist & Hornocker, 1983; Reid et al., 1994b). Urbanization and 



 

5 
 

human activity have a strong dampening effect on river otter density in otherwise desirable 

habitats (Melquist et al., 2003). 

North American river otters also require riparian vegetation and structures such as rocks 

or fallen trees as part of their habitat. These items provide protective cover and shelter while also 

increasing bank stability, aquatic nutrients, and prey populations (Boyle, 2006; Melquist & 

Dronkert, 1987). These complexities in the surrounding terrestrial environment are also critical 

for the establishment of latrine sites, which are used for scent marking and communication 

among individuals occupying overlapping ranges (Melquist & Hornocker, 1983; Newman & 

Griffin, 1994). In addition, wild otters rely on existing dens or natural shelters for breeding 

(Melquist & Hornocker, 1983). Beavers, through their own activities, provide many of the 

structures required for river otters to successfully occupy an area and, where the ranges of the 

two species overlap, river otters prefer habitats with beaver populations over those without 

(Liers, 1951; Malville, 1990; Melquist & Hornocker, 1983; Reid et al., 1994b). In regions where 

inland water bodies freeze, winter ice leads to severe restriction of North American river otter 

home ranges and increased dependence on beaver-constructed dams and dens (Hamilton, 1943; 

Reid et al., 1994b).  

 River otters are non-migratory, but can disperse for wide-ranging distances in search of 

food or more desirable habitat (Larivière & Walton, 1998; Jackson, 1961). Dispersal patterns for 

the species have not been related to population density (Melquist & Hornocker, 1983). On a 

daily basis, river otters may travel up to five kilometers, although in some cases individuals have 

covered distances of up to 42 km in a single day (Melquist & Hornocker, 1983; Reid et al., 

1994b). Individuals establish non-discrete home ranges on a yearly basis, with males claiming 

larger ranges than females. Adult females may occupy 30 to 58 km of waterway compared to 
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home ranges of 50 to 80 km of waterway claimed by each adult male (Melquist & Hornocker, 

1983). Average home range size appears to be highly variable by region and season, with some 

individuals occupying ranges as small as just five km (Mack, 1985; Malville, 1990). In addition, 

less overlap in territory is observed through the winter months (Bowyer et al., 1995; Mack, 1985; 

Reid et al., 1994b). 

North American river otter individuals typically are most active at night, although they 

have been shown to exhibit more diurnal behavioral patterns in the winter months, regardless of 

prey availability (Larivière & Walton, 1998; Mack, 1985; Melquist & Hornocker, 1983). 

However, this shift in activity level may be limited to populations in the Rocky Mountains, 

which in some cases are considered a subspecies (Hamilton, 2013; Mack, 1985; Melquist & 

Hornocker, 1983).  

 

Reproduction 

Female North American river otters typically become sexually mature at around fifteen 

months of age, although most do not breed until two years of age. Males also reach breeding 

maturity at two years, but often do not breed until older. (AZA Small Carnivore TAG, 2009; 

Hamilton & Eadie, 1964). At a range-wide level, river otters breed from December to April 

(Larivière & Walton, 1998). However, breeding of any individual population typically peaks 

over the course of 2 to 3 months within that timeframe (Fitzgerald et al., 1994; Melquist & 

Hornocker, 1983). River otters are polygynous, with each male tracking the scent trails of 

females in heat and attempting to mate with several throughout the breeding season (Fitzgerald et 

al., 1994). The estrus cycle lasts for 42 to 46 days, but females may have several days of reduced 
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receptivity to copulation within that timeframe (AZA Small Carnivore TAG, 2009; Hamilton & 

Eadie, 1964; Hamilton and Sullivan, 2015).  

To mate, male otters approach females and attempt to mate while holding the female by 

the scruff of the neck and trying to pin her (Liers, 1951; Towell & Tabor, 1982). Copulation may 

take anywhere from 16 to 73 minutes and has been reported to occur both in water and on land 

(Liers, 1951; Shannon, 1991). An observational survey of wild Eurasian river otters (Lutra lutra) 

revealed a marked preference for copulation in the water, suggesting to Kruuk (2006) that, while 

otters are capable of copulating on land as they frequently do in captivity, they may only do so 

when there is insufficient aquatic space. Kruuk (2006) also observed an instance of courtship 

feeding, a behavior that may merit further assessment in North American river otters as such 

behavior may contribute to increased familiarity between individuals and increased female 

receptivity of a potential mate.  

Implantation of an embryo is not immediate in North American river otters, as embryonic 

diapause is typical and generally considered a key element of their reproductive cycle (Boyle, 

2006; Hamilton & Sullivan, 2015). However, some southern populations have been reported to 

breed without delayed implantation (Melquist & Dronkert, 1987). Gestation lasts around 60 days 

after implantation; delayed implantation results in parturition taking place 10 to 12 months after 

copulation (Hamilton & Eadie, 1964; Liers, 1951). Females typically seek out isolated and 

cryptic locations within their home range to give birth, often choosing dens made by other 

animals within a few hundred feet of a body of water (Boyle, 2006; Melquist & Dronkert, 1987; 

Melquist & Hornocker, 1983).  

Litters typically consist of one to three pups in late winter or early spring, although litters 

of up to five pups have been recorded (Docktor et al., 1987; Hamilton & Eadie, 1964; Hamilton 
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and Sullivan, 2015; Park, 1971; Serfass & Polechla, 2008; Tabor & Wight, 1977). Pups are born 

blind and toothless, although they have full pelts, and are nursed for the first 12 weeks (Boyle, 

2006; Larivière & Walton, 1998; Shannon, 1989; Liers, 1951). Females are the sole caregivers 

and will care for their offspring until the pups are approximately 38 weeks of age, during which 

time the pups are taught how to forage and survive on their own (Shannon, 1989; Shannon, 

1991). Pups may remain with their family groups for the first 12 to 13 months before dispersing 

up to 200 km, and as little as 15 km, from their birth dens over the next three months (Blundell et 

al., 2002b; Melquist & Hornocker, 1983). 

 

Delayed implantation 

 Delayed implantation is a variation of reproduction in which the development of the 

offspring is halted after the zygote cleaves into a blastocyst. The blastocyst remains suspended in 

the reproductive tract until conditions become favorable for implantation, at which point 

development continues as normal. This process is obligate in some species and facultative in 

others and occurs in a wide variety of taxa (Feldhamer et al., 2015a). Delayed implantation 

increases the time between mating and parturition and is typically seasonal, resulting in 

implantation occurring at approximately the same time in all females of a population (Mead, 

1989; Sandell, 1990). Photoperiod is thought to be the primary environmental factor cuing 

implantation among the majority of species that exhibit this phenomenon (Mead, 1989). 

 The adaptive function of delayed implantation is poorly understood and may vary among 

taxa. Five main hypotheses have been proposed: mating is constrained to a specific season due to 

food resources and a normal gestation period would result in offspring being born in a season 

with poor food resources such that offspring survival would be nearly impossible (Fries, 1880); 
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parturition timing is fixed to allow offspring maximum developmental time prior to 

overwintering, leading to mating taking place in winter and reducing reproductive success due to 

reduced physiological condition of the parents (Prell, 1930); delayed implantation has no 

adaptive function (Hamlett, 1935); delayed implantation evolved to limit population size by 

reducing the number of potential litters born annually in species that otherwise might deliver 

multiple litters in a year (Heidt, 1970) (although this hypothesis is largely discarded as a possible 

explanation as it has not held up to deeper research (Williams, 1966)); and delayed implantation 

evolved in carnivores such that mating occurs when animals are at their physiological prime and 

parturition occurs when resources for rearing offspring are at maximum (Mead, 1989; Sandell, 

1990). Understanding the role of delayed implantation is further complicated because of its 

patchy occurrence within taxa. Even closely-related, ecologically-similar species may not both 

exhibit delayed implantation (King, 1984; Mead, 1981; Sandell, 1984). Studies of evolution of 

delayed implantation in caniform carnivores generally support a basal position of the trait and 

subsequent losses as fecundity costs for individual species became too much to maintain delayed 

implantation (Lindenfors et al., 2003). Phenotypic plasticity of the trait has also been indicated as 

some mustelid fertilized eggs have been able to survive lab-induced delayed implantation 

(Foresman & Mead, 1978). 

  

Development and maintenance in mustelids 

 Work assessing the evolution of delayed implantation within the Mustelidae supports the 

idea that, among closely related species, delayed implantation is more common in seasonal 

climates and long-lived species (Thom et al., 2004). Interestingly, the results of Thom et al.’s 

study (2004) support multiple instances of evolution for delayed implantation, conflicting with 
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Lindenfor et al.’s study (2003). However, Thom et al.’s (2004) data utilized only the Mustelidae, 

while Lindenfor et al. (2003) looked at the entirety of the caniforms.  

 In general, the proximate benefits of delayed implantation are thought to be species-

specific while the overall adaptive value is likely linked to the resulting time separation in 

mating and parturition such that food resources are at peak availability for both events (Thom et 

al., 2004). 

 

AZA husbandry guidelines for captive North American river otters 

 The AZA Otter Care Manual is used as a guide for standard care among all AZA-

affiliated institution and was formed through the review of research of in situ and ex situ animals 

(AZA Small Carnivore TAG, 2009). Thus, any study of the AZA captive river otter population 

can assume that all study individuals were kept under the same range of conditions outlined here.  

 

Habitat and diet 

 Outdoor North American river otter habitats should include covered areas to protect 

animals from the sun and indoor habitats should be kept between 10 and 24°C (AZA Small 

Carnivore TAG, 2009; Reed-Smith, 2004a; Wallach & Boever, 1983). Dry land and well-

ventilated nest sites are also an important part of creating a healthy captive habitat (AZA Small 

Carnivore TAG, 2009). AZA-approved habitats consist of a variety of substrates, primarily 

natural, that allow captive otters to engage in natural activities such as digging and grooming 

(AZA Small Carnivore TAG, 2009). Indoor areas should utilize an artificial light-cycle that 

mimics the natural photoperiod of the area where each holding institution is set to preserve 

natural behaviors (AZA Small Carnivore TAG, 2009; Bateman et al., 2009).  
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Space allotment for captive individuals should consist of a ratio of 4:1 land/water area, 

although a 3:1 ratio is adequate if the exhibit is large with structures of varying heights and 

hardness (AZA Small Carnivore TAG, 2009; Reed-Smith, 2001; Reed-Smith, 2004a). The 

minimum area allotment is 150 square meters for a pair of otters, with 25 square meters of land 

and 10 square meters of water needed per additional animal (Duplaix-Hall, 1975; Reed-Smith, 

2004a). 

Captive river otters should be provided with meals at least three times a day and up to 

five times daily. Some portion of the food should be placed throughout the exhibit to encourage 

natural foraging behaviors. A mix of freshwater fish species, prepared feline diet, carrot, and 

animal bones are some of the recommended elements of a complete otter diet (AZA Small 

Carnivore TAG, 2009). 

 

Breeding 

All births of North American river otter individuals in AZA-institutions are reported to 

the studbook keeper, currently David Hamilton, General Curator at the Seneca Park Zoo. The 

document also contains all known information regarding pedigree, origin, transfers, and health of 

each captive individual. This data is used to monitor the genetic diversity of the captive 

population and to make breeding and transfer recommendations to institutions that currently 

have, or are looking to have, a North American river otter exhibit (AZA Small Carnivore TAG, 

2009). If a breeding recommendation requires the movement of individuals between institutions, 

it is suggested that transfers occur one year prior to breeding efforts. This is meant to address the 

possibility that latitude impacts the timing of reproductive events (AZA Small Carnivore TAG, 

2009; Bateman et al., 2009). 
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In mixed-sex captive groups, contraception is recommended when breeding is not 

desired. When breeding is desired, the pair are to be kept together after successful introduction 

and provided with adequate cover and time without disturbance. The Otter Care Manual notes 

that copulation may take up to 60 minutes and will most frequently take place in the water. 

Copulation should not be interrupted to increase the likelihood of successful fertilization (AZA 

Small Carnivore TAG, 2009). A pair may attempt copulation multiple times while the female is 

in estrus (Reed-Smith, 2004b).  

Due to delayed implantation, female behavioral changes and differences in appetite may 

be the only indicators of an approaching parturition event. In the days prior to parturition, 

females often show increased aggression towards any males in their enclosure. This aggression 

typically continues for a short time after the pups are born. The AZA recommends that pairs be 

separated and that any transfer between indoor and outdoor exhibit areas occur such that neither 

individual can see the other (AZA Small Carnivore TAG, 2009). It is considered valuable to 

understand when females may be approaching their respective parturition dates such that 

husbandry practices may be adapted to minimize stress for all otters in shared exhibit spaces. 

 

Research of reproductive events 

Captive research studies on North American river otters have found that geographic 

latitude influences progesterone levels in females and may have an impact on testosterone 

concentrations in males (Bateman et al., 2008). Later studies have indicated that no correlation 

exists between the timing of progesterone increases in North American river otter females and 

the latitude during the pregnancy, but a slight correlation exists with the latitude at which the 

female was born. Male testosterone spikes peak based on the latitude of their current location, 
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but seem more directly related to photoperiod (AZA Small Carnivore TAG, 2009). This may 

impact translocations and reintroductions among wild populations as a genetic component to 

reproductive timing may cause females to have reduced fitness if they are delivering pups at a 

disadvantageous point in the season for resource support. To date, no overarching study 

assessing reproductive success in captive or reintroduced populations has been published. 

 

North American river otter conservation 

North American river otters have historically been a species of concern due to significant 

population declines and regional disappearances from a combination of heavy trapping pressures, 

habitat destruction, and poor water quality (Serfass & Polechla, 2008). By the early 20th century, 

extirpations had occurred throughout much of the historical North American river otter range 

(Lariviere & Walton, 1998; Melquist & Dronkert, 1987; Melquist et al., 2003; Nilsson, 1980; 

Raesly, 2001; Stevens et al., 2011). 

 

Protection and management of wild populations 

The Clean Water Act of 1972 and the establishment of trapping limits and bans have led 

to widespread wild recovery of wild populations (Melquist et al., 2003 Raesly, 2001;). In 2008, 

North American river otters (Lontra canadensis) were declared to be of least conservation 

concern by the International Union for Conservation of Nature (IUCN). Modern management 

practices as well as reintroductions and habitat restoration had increased the overall population to 

stable levels (Melquist et al., 2003; Polechla, 1990; Serfass & Polechla, 2008). The total wild 

population in North America likely is in excess of 100,000 individuals based on the reported size 

of trapping harvests in the last few decades (Boyle, 2006; Melquist et al., 2003). Still, some 
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state- and municipal-level populations of North American river otter are of interest to 

conservation programs and the wisdom of reintroductions in light of the currently stable genetic 

structures in many populations has been questioned (AZA Small Carnivore TAG, 2009; Serfass 

& Polechla, 2008). 

To date, reintroduction efforts have been undertaken in 22 states and one Canadian 

province, with general success (Melquist et al., 2003; Raesly, 2001; Spinola et al., 2008). Of the 

22 participating states, 14 used North American river otters captured from Louisiana populations 

due to the high population density at the time the programs began (Melquist et al., 2003; Raesly, 

2001). However, recent research using multiple genetic markers has identified three 

subpopulations within Louisiana that group by occupied region (Latch et al., 2008). Latch et al. 

noted that breeding seasons differed between the subpopulations, which may be a result of 

differences in diet by proximity to the coast or strictly by population access to freshwater (2008). 

It has been suggested that these differences, having not been considered originally, may impact 

the success of reintroduction and captive breeding programs, as well as species-level genetic 

diversity, over generations (Brandt et al., 2014).  

There is evidence that among carnivores, such as the North American river otter, the 

reintroduction of wild-caught individuals has significantly higher success in terms of survival 

rate than the reintroduction of captive-born individuals (Jule, Leaver, & Lea, 2008). Currently, 

the AZA supplements the captive breeding population with wild-caught individuals, particularly 

rescued pups from rehabilitators and nuisance animals, to maintain healthy diversity as the 

captive population reproduces unpredictably (Hamilton, 2013). However, if improvements to 

captive breeding programs could be made to increase and maintain a predictable level of 

reproductive success, the captive population may be able to maintain genetic diversity without 
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relying on introduction of wild-born individuals. These wild-born individuals may then better 

serve conservation goals through carefully considered rehabilitation and translocation to support 

threatened wild populations.  

 

AZA Species Survival Plan 

In February of 2000, the Association of Zoos and Aquariums (AZA) established a 

Population Management Plan (PMP) and began keeping a studbook for North American river 

otters. This program later developed into a Species Survival Plan (SSP), including breeding 

recommendations for maintenance of the captive population. The North American river otter 

population is currently managed as a Green-level SSP, meaning the population is 

demographically sustainable for more than 100 years or 10 generations. The captive population 

reached green status in 2011. As of 2015, the SSP included 282 individual otters at 111 

participating AZA-member or affiliated institutions. In the first fourteen years after the studbook 

was begun, just 47 individuals, less than one-fifth of the captive population, had been 

successfully bred (Hamilton and Sullivan, 2015).  

Recent research indicates that geographic latitude may influence the timing of breeding 

behaviors in North American river otters, with more southern populations breeding in winter 

while northern populations breed later in the spring season (AZA Small Carnivore TAG, 2009; 

Bateman et al., 2008). Differences among populations as a result of geography may occur at a 

very small scale, as three unique populations were observed to have distinctive breeding seasons 

just within the state of Louisiana (Latch et al., 2008). Current attempts to account for these 

variations in breeding practices sometimes involve transferring individual otters from different 

latitudes one season prior to any breeding attempts (AZA Small Carnivore TAG, 2009). 
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Research goals 

In developing plans for a healthy and stable captive population, as well as management of 

wild populations of North American river otters, geographical differences and potential 

subspecies classifications need to be carefully considered. It is critical that any variables with 

significant influence on reproductive fitness and timing be understood and accounted for in 

making breeding, transfer, and relocation recommendations. Knowledge of these variables and 

their relative impacts upon the reproductive cycles of river otter populations can then be used to 

improve upon current husbandry and wildlife management practices. 

This study focused on a statistical analysis of historical birth records to assess whether or 

not latitude has a significant influence on parturition timing or litter demographics in the AZA’s 

captive population of North American river otters. The latitudes of record examined included the 

latitude of origin for each dam and sire, as well as the latitude at which each parturition event 

occurred during the study period. Other factors thought to relate to reproductive fitness, as 

described in Table 1, were studied to identify any potential correlations within the studbook. 

These included the sex ratio of resulting pups and survivorship of pups to sexual maturity. Had 

any of these additional variables been found to correlate to each other or to the timing of 

reproductive events, valuable research questions would have been identified for future work. 

Based upon previous research, I hypothesized that the birth latitude of the dams would be the 

most significant factor influencing parturition date and predicted that parturition date would 

change along a latitudinal gradient of the dams’ birth latitudes, with more southern-born dams 

having earlier parturition dates than their northern counterparts.  

The results of this research may better inform management and husbandry practices 

among AZA institutions by investigating suspected relationships between latitude and the timing 
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of reproductive events in North American river otters (Bateman et al., 2008). Such knowledge 

would assist the AZA in management of a genetically diverse captive population independent of 

future additions of wild-caught individuals. Identification of significant factors influencing 

reproductive success and parturition timing among captive North American river otters will have 

the potential to change how breeding and transfer recommendations are made and should lead to 

more successful mate pairings in the future. This research also has the potential to change how 

future reintroduction efforts are managed. If geographic origin is found to be related to 

parturition timing, it is likely that wild populations experience differences in survivorship among 

litters as an effect of when they are born. This may be the result of differences in resources or 

threats and, regardless of causation, would make the appropriate selection of captive individuals 

to recolonize depopulated areas critical for ensuring the long-term success of future populations. 
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Methods 

Data collection 

 The study assessed the official AZA Studbook records for all North American river otter 

captive-bred births, as well as intakes of wild-born pups, from the 2008 breeding season through 

the season of 2013, as provided by the AZA Species Survival Plan Coordinator and Studbook 

Keeper, David Hamilton. Studbook records were accessed through PopLink, a Dbase software, 

and formatted for analysis using a Pearl script to extract data from the standard PopLink reports. 

To accurately compare differences in parturition dates across the multi-year study, and to capture 

early-winter litters in the same breeding year as pups born in spring of the same breeding season, 

parturition dates were converted to a Julian day count, with October 1 of the previous year as the 

first day of the breeding season. For example, litters considered part of the 2014 breeding season 

were all litters with parturition dates from October 1, 2013 to September 30, 2014. The birthdates 

of both the dams and sires were similarly converted to a day count from October 1 of the 

previous year. 

 The dataset consisted of 46 litters, with 32 dams and 30 sires. Origin data was 

unavailable for six dams and nine sires, including the case of one litter captured as pups. In 

addition, one female captured during the study period was pregnant at the time of capture. Data 

regarding transfers was only available for 13 dams and 14 sires. As it is not yet fully understood 

which variables are relevant to determination of parturition timing, each variable listed in Table 

1 was assessed for each parturition event. Survivorship of offspring one and two years after 

parturition was assessed to confirm the assumption that survivorship would not vary significantly 

among captive populations due to the use of standardized care across all AZA institutions.  
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 In cases where a parent or litter was wild-caught, the latitude of origin was recorded as 

the first AZA institution recorded, provided that institution was in the same state where the 

capture occurred. In cases when the institution of record was outside the state of capture, the 

latitude for the center point of the state of capture was used as the best approximation available 

for the latitude of origin. 

 

Statistical Testing 

Statistical tests were performed using Minitab 17.0 and followed the conceptual approach 

as discussed by Pagano and Gauvreau (2000). Principal components analyses were performed 

using the analytic process explained by Harlow (2014) and were produced through Minitab 17.0. 

All variables in Table 1 were tested for normality using the Anderson-Darling normality 

test. All but three variables were found to follow a non-normal distribution: latitude of the dam’s 

birth site (p-value = 0.349), latitudinal distance from the dam’s birth site to the parturition site (p-

value = 0.117), and the day count since the sire’s last transfer (p-value = 0.064). Due to the non-

normal nature of the majority of the dataset, a Spearman’s rho matrix was used to determine if 

any variables had significant monotonic relationships to each other.  

A principal components analysis was created using a Varimax orthogonal rotation from a 

correlation matrix, as described by Harlow (2014). The PCA was run with two principal 

components after review of the eigenvalues for each component (Table 3) and the scree plot 

(Figure C-1). While the first three components had eigenvalues greater than 1.0, a leveling off in 

eigenvalue occurred after the second component (Figure C-1), making it reasonable to exclude 

the third component from analysis (Harlow, 2014). All variables in the dataset with eigenvectors 

of at least |0.30| along one or more components were used: season day count of parturition, 
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season day count of dam’s birth, dam’s birth latitude, sire’s birth latitude, season day count of 

sire’s birth, latitude of parturition, proportion of males born, and litter count at birth (Table 4).  

Due to records with missing data for one or multiple studied variables, the sample size for 

the PCA was 33 litters. All litters were assigned a unique identifier based upon the origin latitude 

of the dam. These identifiers ranged from “A-Z”, followed by “a-t”, with the litter birthed by the 

dam from the southernmost latitude assigned “A” and the litter birthed by the dam from the 

northernmost latitude assigned “t” (see Table A-1 for a complete list of litters by code). 

The data were further tested using assigned groups. Parturition events were grouped three 

unique times as either “North” or “South” by sire’s birth latitude; dam’s birth latitude; and 

parturition event latitude. The threshold latitude for assigning regions was 37.00°N; all latitudes 

equal to or greater than 37.001°N were assigned to the North category, all latitudes less than 

37.00°N were assigned to the South. The threshold latitude was chosen after results of the first 

PCA indicated independent grouping of the data followed divisions at or near this value. Cases 

where the latitudinal origin of at least one parent was unavailable were excluded from analysis in 

the PCAs. The assigned groups were used in Mann-Whitney U tests for differences in median 

season day count of parturition, ANOVA tests for differences in mean season day count of 

parturition when the data followed a normal distribution, and in Kruskal-Wallis H tests for 

differences in the median survival ratios two years after parturition.  
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Results 

Spearman’s Rho Testing 

The Spearman’s rho test was used to identify significant monotonic relationships (p-value 

< 0.05) in the dataset. Table 2 summarizes the rs and p-values for significant results related to the 

season day count of parturition, dam’s birth, and sire’s birth for each litter. Each of the identified 

relationships were positive in nature with rs of at least 0.3. The relationship between the season 

day count of the sire’s birth and the latitude of the sire’s birth site was strong (rs = 0.667; p-value 

= 0.000), while the relationship between the distance from the dam’s last transfer site to the 

season day count of parturition was very strong (rs = 0.812; p-value = 0.001). It is interesting to 

note that the Spearman’s rho matrix did not identify a significant relationship between the season 

day count of parturition for litters born during the study period and the latitude at which these 

litters were born (p-value = 0.993).  

The proportion of males born in each litter was found to be related (rs = 0.554; p-value = 

0.40) to the distance from the sire’s last location (when not the sire’s origin location) and the 

parturition event. A weak relationship (rs = 0.350; p-value = 0.027) existed between the 

proportion of males born in each litter and the distance between the dam’s origin and the 

parturition site. Lastly, the survival ratios of litters one year and two years after parturition were 

found to have a very strong relationship, with a rs value of 0.933 and a p-value of 0.000.  

For the complete matrix of results, see Tables B-1 through B-6. 

 

Principal Components Analyses 

 The two principal components assessed in the PCA accounted for 59.7% of the total 

variance in the dataset. Along the first component, sire birth latitude and parturition latitude were 
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the most influential factors (Figure 1). The second component was primarily driven by the 

proportion of male pups born in each litter (Figure 1). Grouping among the litters by parental 

origin is clearly seen in Figure 2, where litters with both parents originating from northern 

latitudes grouped to the right of the y-axis. Litters with a northern dam and a southern sire 

grouped below the x-axis and tended to group further to the right than litters with two southern 

parents. Litters B and D sorted the furthest left out of all the litters with two southern-born 

parents, although only litter j was an outlier (Figure C-2). 

 

Mann-Whitney U Testing 

As the data did not follow a normal distribution but shared a similar negative skew, a 

Mann-Whitney U test was used to compare the median season day count of parturition between 

litters with dams originating in the North and South regions, litters sired by males originating in 

the North and South regions, and litters born in the North and South regions.  

The difference in median season day count of parturition was significant between litters 

with dams from the North and litters with dams from the South (NNorth = 27, NSouth = 13, p-value 

= 0.01). The point estimate of difference was 22 days, with a 95% confidence interval for the 

population difference of 5.00 to 39.99 days. There was also a significant difference between 

litters sired by males from the North and those sired by males from the South (NNorth = 18, NSouth 

= 19, p-value < 0.00). The point estimate of difference, by sire’s region of origin, in median 

season day count of parturition was 31.50 days. The 95% confidence interval for the estimated 

population difference in median day count of parturition was 20.00 to 48.01 days.  

The difference in median parturition day count was also significant when comparing 

litters based upon where parturition took place (NNorth = 42, NSouth = 4, p-value = 0.02). The point 
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estimate of the difference in median parturition day count was 57.50 days. While the 95% 

confidence interval for the population difference in median season day counts of parturition was 

17.00 to 86.01 days.  

 

ANOVA Testing 

 Prior to utilizing the one-way ANOVA test, equal variances were tested using multiple 

comparison intervals for the season day count of parturition by dam region of origin, sire region 

of origin, and parturition region, as assigned by this author. The dam region of origin and the 

parturition region were found to have equal variances (a test of difference in variance resulted in 

p-value = 0.839 and p-value = 0.658, respectively). However, the season day count of parturition 

as grouped by the sire’s assigned region of origin was found to have unequal variance, with a p-

value of 0.028. Thus, differences in median season day count of parturition by sire region of 

origin was tested using a Kruskal-Wallis H test.  

 An ANOVA test for differences in mean season day count of parturition between dam’s 

originating in the north or south regions found a significant difference (F1,38 = 6.09, p-value = 

0.018). A second ANOVA test for differences in mean season day count of parturition between 

parturition regions was also significant (F1,44 = 12.73, p-value = 0.001). Figure 3 shows the mean  

season day count of parturition and standard deviation for each group. 

 

Kruskal-Wallis H Testing 

 As noted earlier, the difference in median season day count of parturition by sire origin 

region was tested using the non-parametric Kruskal-Wallis H test. A significant difference in 

parturition timing was found (H1 = 18.77, p-value = 0.00) by sire origin. 
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A Kruskal-Wallis H test was also used to compare the median survival ratios of litters 

two years after parturition by whether litters were born in the assigned regions of North and 

South, whether the dams were born in the North or South regions, and by whether the sires were 

born in the North or South regions. When adjusted for ties, the results of each test were 

insignificant (H1 = 0.09, p-value = 0.769; H1 = 0.00, p-value = 0.976; and H1 = 2.59, p-value = 

0.107, respectively). 
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Discussion 

Does parturition timing vary by parental origin or present location? 

 Despite the suspected relationship between the origin of a North American river otter 

litter’s dam and that litter’s parturition date, this study did not find any significant linear 

relationship between these variables in the studbook records. However, significant monotonic 

relationships were found to exist among the dataset. It is important to note that in the case of 

each parent, a stronger relationship was found to exist between their birth latitudes and their own 

season day counts of birth than was found to exist among those same factors and their offspring. 

This may have resulted from the uneven latitudinal distribution of AZA facilities that 

successfully bred North American river otters during the study period. A majority of captive-

born litters were born north of 35°N, while the distribution of breeding males and females during 

the study period were more evenly spread across a latitudinal gradient. Repetition of this study 

with a larger dataset, such as one with AZA facilities outside of North America (should they 

exist) or with additional years of studbook records, would likely minimize this problem. At this 

time, there were insufficient data to develop a useable model for predictions of parturition timing 

in the captive population.  

Efforts to identify distinctive regional differences in parturition dates did reveal some 

differences in parturition timing. The mean parturition dates of each litter varied significantly by 

the origin region of the dams, as well as by the region in which parturition occurred, while the 

median parturition dates were significantly different by sire origin region. Mann-Whitney U tests 

revealed further differences between median parturition dates by sire origin, dam origin, and 

parturition location. These results provide further support for the idea that the latitudinal origins 

of individual female river otters have major impacts on the timing of reproductive events within 
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the species (Bateman et al., 2008). Such a relationship may be explained by a genetic component 

to the timing of implantation among river otters, which may exist as a result of differential 

reproductive fitness among females by parturition date in various parts of the species’ range 

(Mead, 1989; Sandell, 1990). It has also been suggested that variations in diet and habitat among 

wild populations may influence the timing of reproductive events and should be further 

investigated on a regional scale (Latch et al., 2008). 

While this study has contributed to the body of evidence tying North American river otter 

reproduction to geography, I was unable to conclusively determine which geographical data has 

the greatest influence on parturition timing. The use of artificially designated categories for 

comparing regional differences, rather than the use of subspecies classifications made it 

impossible to determine whether a genetic component is driving the perceived differences.  

 

Do any recorded factors influence litter survivorship? 

Survivorship of litters both one and two years after parturition were found to be strongly 

correlated, indicating that once a litter makes it through the first year, survivorship until sexual 

maturity is not of further significant concern. As expected, there was no significant difference 

among mean ranks of survival ratios for litters one year after birth between regions. This 

supports the idea that consistent husbandry practices across all North American AZA institutions 

have resulted in equal survivorship of NARO pups, regardless of birthplace.  

While survivorship had no influence on the PCA, the second principal component was 

most strongly driven by the proportion of males born in each litter (Table 4 and Figure 1). It 

would be interesting to study how the physiological fitness of captive-born offspring may relate 

to each of these factors tied into the second principal component. Body weight or size, as well as 



 

27 
 

growth rate, of offspring are all valuable factors that may affect parturition timing or be 

indicative of parental health at the time of breeding. In the absence of such physical data, 

survivorship and sex ratio were used to approximate these metrics of health. Thus, it can be 

concluded that survivorship for assessing the quality of captive care is not a concern, but the use 

of survivorship data in determining breeding success may yet have both academic and practical 

value. 

 

Do the data form independent groups? 

 The PCA included in this study was run using unassigned groups and later given symbols 

to denote the origins of the parental pairings. As shown in Figure 2, litters formed complex 

groups based upon the interaction of each parent’s origin. Litters with two southern-born parents 

grouped towards the lower end of the first component, while those litters with two northern-born 

parents grouped towards the higher end of the first component. The eigenvectors of each variable 

included in the PCA (Table 4) suggest the size of each litter and the timing of each parent’s birth 

may have a greater influence than has been previously speculated on in the current literature. 

While the data do form independent groups, the driving force behind the sorting of the 

data remains unclear as these independent groups are not fully exclusive to each other. Genetic 

diversity, subspecies classifications, or environmental impacts on reproductive development are 

all possible explanations for the phenomena and further research into each of these is needed to 

understand what is likely a complexity of interactions. 
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Limitations of the data 

 Limitations of the dataset likely had a large impact on the outcome of statistical testing. 

Of 46 litters analyzed, only four were born at latitudes below 37.00° N. Out of the 32 dams, 14 

gave birth multiple times during the study period. Dam 2054 was the most prolific, giving birth 

to four litters. Only 11 dams were born south of 37° N, accounting for just over one-third. Of the 

30 sires in the study, 14 were born south of 37° N, accounting for slightly less than one-half of 

all sires. Sires 2147 and 2149 each sired 4 litters during the study period. Origin data were 

missing from three dams and eight sires, limiting the sample size.  

 In addition, none of the data included in this study carried a physiological fitness 

component beyond age. Health of an individual animal would likely have influence over litter 

size and may have some influence on parturition timing. Weight, size, and even body fat 

percentage are all variables likely to have some influence on reproductive hormone 

concentrations, gamete numbers, and the ability of females to successfully carry multiple fetuses 

to term. Inclusion of such data could only improve the monitoring of captive breeding programs 

and increase the likelihood of developing useful models to predict the timing of key reproductive 

events, such as peak sperm production, ovulation, and parturition. 

 

Future research 

It would be of great future interest to identify the degree of genetic variance among the 

subspecies of North American river otter. This may prove to be a more precise and consistent 

predictor of parturition timing than latitude and could be used to vastly improve analysis of data 

using assigned categories.  
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Future work should strive to quantify the differences in reproductive success between 

breeding pairs based upon where both the male and female were born and have since been kept. 

While the results of this study indicate that no harm is being done to captive breeding efforts by 

transporting individuals for recommended pairings in the form of either changes to parturition 

timing or sex ratios and survivorship of resulting litters, understanding how the 

recommendations themselves influence reproductive success would be immensely valuable.  
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Conclusion 

 Results of this study add to the body of evidence that latitude influences parturition 

timing, especially the latitude at which the dam was born. Future efforts expanding on this body 

of work will be critical to developing a more complete understanding of river otter reproduction 

physiology and behavior. More research will provide insight into how current practices may be 

adapted to improve the likelihood of successful breeding efforts with the AZA’s captive 

population of North American river otters.  

While this study did not succeed in development of a predictive model for parturition 

timing based on AZA records for North American river otters, several factors have been 

suggested as having influence on the timing of reproductive events among the captive 

population. The timing of implantation, and thus parturition, is unlikely to be solely driven by 

geography. Differences in the health and body composition of each parent, as well as in the diet 

of breeding females from the breeding season through gestation, likely have some influence on 

the timing of these events. Tracking these variables is therefore of great value to future 

researchers and may greatly contribute to the development of a model for improving husbandry 

practices at AZA institutions participating in North American river otter breeding programs. 
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Tables 

 
Table 1. Study variables. The table lists all variables contained within the dataset for AZA North 

American river otter breeding recommendations and resulting litters for the 2008-2014 breeding 

seasons. 

 

Latitude Variables Time Variables Litter Variables 

Latitude of dam’s birth site Season day count of 

dam’s birth 

Litter size at parturition 

Latitude of sire’s birth site Season day count of 

sire’s birth 

Sex ratio of litter at time 

of parturition 

Latitude of parturition site Season day count of 

parturition event 

Survivorship of litter one 

year after parturition 

Latitudinal distance from sire’s birth site 

to parturition site 

Day count since sire’s 

last transfer 

Survivorship of litter two 

years after parturition 

Latitudinal distance from dam’s birth 

site to parturition site 

Day count since dam’s 

last transfer 

 

Latitudinal distance from sire’s prior 

location (when not birth site) to 

parturition site 

Age of dam at time of 

parturition 

 

Latitudinal distance from dam’s prior 

location (when not birth site) to 

parturition site 

Age of sire at time of 

parturition 
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Table 2. Spearman’s rho results of interest. The table shows all significant monotonic 

relationships found to exist between season day counts of parturition, dam’s birth, and sire’s 

birth for each litter and the variables from Table 1 in white cells. Gray cells contain insignificant 

results. 

 

 
Day Count of 

Parturition 

Day Count of 

Dam’s Birth 

Day Count of 

Sire’s Birth 

Latitude of parturition site 
rs 0.001 0.405 0.266 

p-value 0.993 0.006 0.097 

Latitude of dam’s birth 

site 

rs 0.400 0.591 0.128 

p-value 0.011 0.000 0.464 

Latitude of sire’s birth site 
rs 0.564 0.069 0.667 

p-value 0.000 0.685 0.000 

Distance from dam’s last 

transfer to parturition site 

rs 0.812 0.588 0.450 

p-value 0.001 0.035 0.123 

Dam’s age at parturition 

rs 0.331 0.009 -0.117 

p-value 0.026 0.955 0.471 
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Table 3. Eigenvalues of components in PCA. The table shows the eigenvalues for each of six 

components assessed by the correlation matrix PCA, as well as the percentage of total variance 

accounted for in each component. As indicated by the cumulative percentage of variance 

column, the two-component PCA accounted for 59.7% of the total variance within the dataset. 

 

Component Eigenvalue % of Total Variance Cumulative % Variance 

1 3.1170 39.0 39.0 

2 1.6557 20.7 59.7 

3 1.0591 13.2 72.9 

4 0.7875 9.8 82.7 

5 0.6813 8.5 91.3 

6 0.4398 5.5 96.8 

7 0.1635 2.0 98.8 

8 0.0960 1.2 100.0 
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Table 4. Eigenvectors of variables included in PCA. The table shows the eigenvectors for each 

factor in the two principal components assessed as part of the PCA. The first component is 

associated with the x-axis, while the second component is associated with the y-axis. These 

relationships are visualized in Figure 1 as the loading plot. 

 

Variable Component 1 Component 2 

Season Day Count of Parturition 0.337 0.230 

Season Day Count of Dam’s Birth 0.391 -0.412 

Dam Birth Latitude 0.406 -0.350 

Sire Birth Latitude 0.441 0.266 

Season Day Count of Sire’s Birth 0.405 0.292 

Latitude of Parturition 0.441 -0.146 

Proportion of Males Born -0.013 -0.590 

Litter Count at Birth 0.129 0.360 
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Figures 

 

 

Figure 1. Loading plot of two-component PCA. The above figure shows the loadings for the 

factors influencing each of the two components in a Varimax orthogonal rotation. For a 

quantitative assessment of the influence of each factor on each component, in the form of the 

eigenvectors, see Table 4. 
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Figure 2. Score plot of two-component PCA. The above figure shows the score plot for the PCA, 

with each litter record (n = 33) coded according to Table A-1. Categorical groupings were 

assigned to each parents’ origin region using a threshold value of 37.0°N. Parents originating 

from latitudes less than 37.0°N were considered to be from the “South” region and those from 

37.0°N and above were considered to be from the “North” region. The litters were then each 

assigned a symbol corresponding to the origin of both parents, as explained in the legend.  
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Figure 3. Mean season day count of parturition by assigned groups. The chart shows the mean 

season day count for each of the following groups: litters with dams from the north (n = 27), 

litters with dams from the south (n = 13), litters born in the north (n = 42), and litters born in the 

south (n=4). The bars denote the mean ± 1 standard deviation for each group. A significant 

difference was found to exist in mean season day count of parturition by region for both dam 

origin and parturition location.  
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Appendix A: Coded Birth Records 

 

Table A-1. Coded birth records. The table lists all North American river otters born in AZA-

affiliated institutions between 2008 and 2014. Litters were assigned an identification letter based 

upon the origin latitude of the dam of record where “A” represents the litter with the 

southernmost dam and “t” represents the litter with the northernmost dam. These identifiers were 

used in the PCA. The dam and sire IDs listed below are unique codes assigned by the AZA to 

each river otter within the captive population for management purposes. Notations of “Absent” 

indicate missing knowledge of one or both parents’ identities.  

 

Litter ID Parturition Date Dam ID Sire ID Litter ID Parturition Date Dam ID Sire ID 

A 2/16/2014 2504 2506 W 3/1/2014 2226 2304 

B 12/23/2009 1999 2169 Y 2/17/2009 2428 2429 

D 12/8/2008 2317 2316 Z 3/1/2014 2300 1904 

C 1/13/2014 2317 2349 a 3/25/2010 2300 1904 

E 2/25/2014 2267 2071 d 2/24/2013 2306 2242 

G 3/22/2009 1893 1720 c 2/18/2012 2306 2242 

F 1/9/2010 2376 2375 b 2/15/2011 2306 Absent 

H 2/11/2012 2370 2071 f 3/26/2009 2246 2130 

I 3/3/2014 2455 Absent e 3/20/2010 2246 2130 

J 3/2/2011 2249 2310 g 3/5/2013 2416 2257 

K 2/26/2012 2503 2506 h 2/15/2014 2407 2149 

M 2/19/2013 2231 2170 j 11/8/2013 2358 2390 

L 1/31/2014 2231 2170 i 1/28/2013 2358 2390 

R 3/9/2010 2216 2149 m 4/2/2014 2209 2254 

Q 3/5/2009 2216 2149 l 3/27/2011 2209 2254 

P 3/19/2009 1940 2230 k 3/20/2012 2209 2254 

O 2/9/2013 2120 2386 n 3/18/2014 2178 Absent 

N 2/28/2011 2216 2149 t 3/30/2012 2054 2147 

S 3/2/2010 2155 2011 s 3/26/2009 2054 2147 

T 2/26/2014 2431 2239 r 3/21/2010 2054 2147 

U 3/19/2010 2131 1766 q 3/20/2011 2054 2147 

V 3/19/2014 2441 Absent p 3/11/2013 2384 2385 

X 3/9/2014 2225 2304 o 2/23/2009 Absent Absent 
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Appendix B: Complete Spearman’s Rho Correlation Matrix 

 

Table B-1. Spearman’s rho matrix, part one. The table below contains the first of six tables 

containing the complete results of the Spearman’s rho matrix. Gray cells indicate blank cells in 

the matrix. 

 

 Day Count of 

Parturition 

Dam’s Age at 

Parturition 

Latitude of 

Dam’s Birth 

Site 

Day Count of 

Dam’s Birth 

Dam’s age at parturition 
rs 0.331  

  
p-value 0.026  

  
Latitude of dam’s birth 

site 

rs 0.400 -0.036  
 

p-value 0.011 0.823  
 

Day count of dam’s birth 
rs 0.070 0.009 0.591  

p-value 0.646 0.955 0.000  

Distance from dam’s birth 

site to parturition site 

rs 0.212 0.102 0.710 0.244 

p-value 0.189 0.532 0.000 0.130 

Day count since dam’s last 

transfer 

rs 0.093 0.637 -0.074 -0.102 

p-value 0.557 0.000 0.662 0.520 

Distance from dam’s last 

location to parturition site 

rs 0.812 0.017 0.741 0.588 

p-value 0.001 0.957 0.022 0.035 

Latitude of sire’s birth 
rs 0.564 0.109 0.452 0.069 

p-value 0.000 0.520 0.008 0.685 

Day count of sire’s birth 
rs 0.256 -0.117 0.128 0.115 

p-value 0.110 0.471 0.464 0.478 

Sire’s age at parturition 
rs 0.160 0.181 -0.045 -0.135 

p-value 0.325 0.263 0.798 0.405 

Distance from sire’s birth 

site to parturition site 

rs -0.041 -0.019 -0.235 -0.127 

p-value 0.819 0.914 0.212 0.473 

Day count since sire’s last 

transfer 

rs 0.172 0.043 -0.003 -0.244 

p-value 0.338 0.810 0.989 0.171 

Distance from sire’s last 

location to parturition site 

rs -0.308 0.233 0.083 0.382 

p-value 0.284 0.423 0.779 0.178 
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Table B-2. Spearman’s rho matrix, part two. The table below contains the second of six tables 

containing the complete results of the Spearman’s rho matrix.  

 

 Day Count of 

Parturition 

Dam’s Age at 

Parturition 

Latitude of 

Dam’s Birth 

Site 

Day Count of 

Dam’s Birth 

Latitude of parturition site 
rs 0.001 -0.218 0.400 0.405 

p-value 0.993 0.151 0.011 0.006 

Proportion of male pups 

born 

rs -0.105 -0.202 0.150 0.077 

p-value 0.488 0.183 0.354 0.614 

Litter size at parturition 
rs 0.014 0.022 -0.146 0.015 

p-value 0.927 0.888 0.367 0.921 

Survivorship of litter one 

year after parturition 

rs -0.215 -0.118 0.034 0.227 

p-value 0.151 0.440 0.837 0.134 

Survivorship of litter two 

years after parturition 

rs -0.105 -0.104 0.143 0.197 

p-value 0.487 0.498 0.380 0.194 
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Table B-3. Spearman’s rho matrix, part three. The table below contains the third of six tables 

containing the complete results of the Spearman’s rho matrix. Gray cells indicate blank cells in 

the matrix. 

 

  Distance from 

dam’s birth site to 

parturition site 

Day count 

since dam’s 

last transfer 

Distance from 

dam’s last location 

to parturition site 

Latitude of 

sire’s birth 

Day count since 

dam’s last transfer 

rs 0.099  
  

p-value 0.560  
  

Distance from 

dam’s last location 

to parturition site 

rs 0.638 0.076   

p-value 0.065 0.806   

Latitude of sire’s 

birth 

rs 0.160 0.111 0.366  

p-value 0.373 0.532 0.219  

Day count of sire’s 

birth 

rs -0.095 -0.263 0.450 0.667 

p-value 0.589 0.116 0.123 0.000 

Sire’s age at 

parturition 

rs -0.149 0.144 -0.504 -0.174 

p-value 0.393 0.395 0.079 0.303 

Distance from sire’s 

birth site to 

parturition site 

rs 0.124 0.243 0.426 0.078 

p-value 0.515 0.180 0.167 0.661 

Day count since 

sire’s last transfer 

rs 0.069 0.108 -0.268 0.142 

p-value 0.708 0.570 0.520 0.454 
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Table B-4. Spearman’s rho matrix, part four. The table below contains the fourth of six tables 

containing the complete results of the Spearman’s rho matrix.  

 

 

 Distance from 

dam’s birth site to 

parturition site 

Day count 

since dam’s 

last transfer 

Distance from 

dam’s last location 

to parturition site 

Latitude of 

sire’s birth 

Distance from sire’s 

last location to 

parturition site 

rs 0.458 0.233 0.355 -0.435 

p-value 0.099 0.423 0.490 0.120 

Latitude of 

parturition site 

rs -0.203 -0.187 0.137 0.148 

p-value 0.208 0.236 0.655 0.383 

Proportion of male 

pups born 

rs 0.350 -0.022 0.341 -0.224 

p-value 0.027 0.889 0.255 0.182 

Litter size at 

parturition 

rs -0.085 0.026 -0.141 0.072 

p-value 0.604 0.872 0.646 0.671 

Survivorship of 

litter one year after 

parturition 

rs -0.076 -0.061 -0.342 -0.210 

p-value 0.641 0.700 0.253 0.212 

Survivorship of 

litter two years after 

parturition 

rs 0.029 0.001 -0.266 -0.126 

p-value 0.859 0.995 0.380 0.457 
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Table B-5. Spearman’s rho matrix, part five. The table below contains the fifth of six tables 

containing the complete results of the Spearman’s rho matrix. Gray cells indicate blank cells in 

the matrix. 

 

 

 
Day count of 

sire’s birth 

Sire’s age at 

parturition 

Distance from 

sire’s birth site to 

parturition site 

Day count 

since sire’s 

last transfer 

Sire’s age at parturition 
rs -0.293    

p-value 0.067    

Distance from sire’s birth 

site to parturition site 

rs 0.098 -0.102   

p-value 0.641 0.567   

Day count since sire’s last 

transfer 

rs -0.115 0.662 -0.021  

p-value 0.524 0.000 0.919  

Distance from sire’s last 

location to parturition site 

rs -0.190 0.184 0.580 0.244 

p-value 0.516 0.529 0.038 0.401 

Latitude of parturition site 
rs 0.266 -0.204 -0.538 -0.529 

p-value 0.097 0.206 0.001 0.002 

Proportion of male pups 

born 

rs -0.209 -0.250 -0.018 -0.900 

p-value 0.196 0.120 0.920 0.618 

Litter size at parturition 
rs 0.054 0.170 0.021 0.245 

p-value 0.741 0.295 0.904 0.170 

Survivorship of litter one 

year after parturition 

rs -0.110 0.069 0.134 -0.032 

p-value 0.501 0.672 0.450 0.858 

Survivorship of litter two 

years after parturition 

rs -0.113 0.129 0.086 0.058 

p-value 0.487 0.428 0.628 0.750 
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Table B-6. Spearman’s rho matrix, part six. The table below contains the last of six tables 

containing the complete results of the Spearman’s rho matrix. Gray cells indicate blank cells in 

the matrix. 

 

 

 Distance from 

sire’s last location 

to parturition site 

Latitude of 

parturition 

site 

Proportion of 

male pups born 

Litter size at 

parturition 

Latitude of 

parturition site 

rs -0.651    

p-value 0.012    

Proportion of male 

pups born 

rs 0.554 -0.037   

p-value 0.040 0.808   

Litter size at 

parturition 

rs -0.438 -0.127 0.026  

p-value 0.118 0.399 0.863  

Survivorship of litter 

one year after 

parturition 

rs 0.427 0.066 0.113 -0.163 

p-value 

0.128 0.663 0.455 0.280 

Survivorship of litter 

two years after 

parturition 

rs 0.370 0.048 0.129 -0.253 

p-value 

0.193 0.753 0.394 0.090 
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Appendix C: Supporting Material for Principal Components Analyses 

 

 

Figure C-1. Scree plot of PCA. The figure shows the resulting scree plot for a correlation matrix 

PCA using season day count of parturition, season day count of dam’s birth, dam birth latitude, 

season day count of sire’s birth, sire birth latitude, latitude of parturition, proportion of males in 

the litter, and the size of the litter at birth. While components one through three had eigenvalues 

greater than 1.0, a clear leveling-off occurred after component two.  
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Figure C-2. Outlier plot of PCA. The figure shows each of the litters used in the second 

correlation matrix PCA (n = 33) and their Mahalanobis distance from the mean of the data 

distribution. Litter j is the only outlier among the dataset used to create the PCA. The litters are 

coded according to Table A-1. 
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