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Abstract
Modelling of Information Flow and Resource Utilization

in the
EDGE Distributed Web System

Bryan Thomas Meyers

The adoption of Distributed Web Systems (DWS) into modern engineering design process

has dramatically increased in recent years. The Engineering Design Guide and Environ-

ment (EDGE) is one such DWS, intended to provide an integrated set of tools for use in the

development of new products and services. Previous attempts to improve the efficiency and

scalability of DWS focused largely on hardware utilization (i.e. multithreading and virtu-

alization) and software scalability (i.e. load balancing and cloud services). However, these

techniques are often limited to analysis of the computational complexity of the algorithms

implemented.

This work seeks to improve the understanding of efficiency and scalability of DWS

by modelling the dynamics of information flow and resource utilization by characterizing

DWS workloads through historical usage data (i.e. request type, frequency, access time).

The design and implementation of EDGE is described. A DWS model of an EDGE sys-

tem is developed and validated against theoretical limiting cases. The DWS model is used

to predict the throughput of an EDGE system given a resource allocation and workflow.

Results of the simulation suggest that proposed DWS designs can be evaluated according

to the usage requirements of an engineering firm, ultimately guiding an informed decision

for the selection and deployment of a DWS in an enterprise environment. Recommen-

dations for future work related to the continued development of EDGE, DWS modelling

of EDGE installation environments, and the extension of DWS modelling to new product

development processes are presented.
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Chapter 1

Introduction and Literature Review

The first section of this literature review discusses a variety of product development pro-

cesses used in modern commerce, and supported by the Engineering Design Guide and

Environment (EDGE). The second section defines the information management require-

ments common to product development processes, as well as the features of EDGE which

satisfy them. The third section reviews the approaches and challenges associated with mod-

elling and implementing EDGE as a modern Distributed Web System (DWS). The fourth

section discusses the use of parallelism in computer programming.

1.1 Product Development Process

Product development processes typically define the order in which the tasks of development

take place. A project manager may choose to follow a process which best suites the kind of

development to be performed. If the project represents one piece of a larger design effort,

this may lead to the execution of multiple development processes simultaneously. A DWS

intended to support product development efforts should support a variety of processes, and

allow for concurrent execution of disparate workflows. Common product development

processes are described here.

1.1.1 Sequential Non-iterative Processes

Waterfall The Waterfall process represents a basic strategy for executing product devel-

opment. In this process, each stage is carried out sequentially (Fig 1.1), with its influence

“trickling down” to each subsequent stage of development [7]. It is criticized as being one
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of many models which do not respond well to change, requiring considerable reworking of

previous stages [24]. Most modern implementations of Waterfall acknowledge the presence

of feedback loops between stages [7].

Requirements

Design

Implementation

Verification

Maintenance

Figure 1.1: Waterfall Process

Stage-Gate The Stage-Gate approach to product development improved upon the Water-

fall Model by introducing the idea of quality control checkpoints (Fig 1.2), also referred

to as “gates” [11]. These gates introduce and enforce validation of design decisions and

verification of expected outcomes between each stage of the process. Because each succes-

sive stage of the process is viewed as increasingly expensive, these gates provide feedback

which may prevent early transition to the next stage. The Stage-Gate process is intended

to reduce the overall cycle time for a given product by limiting iterations back to earlier

stages of design throughout the life of a project.

Requirements Design Implementation Verification MaintenanceGate
1

Gate
2

Gate
3

Gate
4

Figure 1.2: Stage-Gate
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1.1.2 Sequential Iterative Processes

Spiral The Spiral Model has been developed in response to experience gained while uti-

lizing the Waterfall Model [7]. It is depicted by polar graph with a single timeline, spiraling

outward about the origin (Fig 1.3). Each quadrant corresponds with an iterative phase of

the development process. The radial distance of the timeline indicates the cumulative cost

of the project to date. The arc length indicates the passage of time. A completed rotation is

followed by a review of all progress to date and marks the completion of an iteration cycle.

Real-world examples of the spiral process may include automotive year models and the

Lenovo ThinkPad line of laptops. Spiral processes focus on risk reduction, guiding toward

decisions that result in only acceptable consequences. It also allows for a project to easily

return to an earlier iteration or stage, which may be especially useful for “dead-end” lines

of inquiry.

Agile In software development, it is common for customers to make large changes to

requirements multiple times between inception and delivery. This is likely a side-effect of a

customer not knowing or understanding exactly what this product should be from the start.

As a result, software development firms cannot rely on processes which require detailed

planning or are resistant to adaptation, as they take too long to respond to requirements

changes [24]. The Agile family of development processes follows a core model in which

normal development is carried out over multiple shorter iterations with periods of reflection

and prioritization in-between (Fig 1.4). Each iteration is intended to produce a working

product with some level of the expected functionality. The project itself may continue for as

many iterations as the customer can afford or until they are satisfied that the implementation

is complete. Agile processes capitalize on the individual strengths of team members, while

expecting high levels of collaboration and the self-organization of task management [10].
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Figure 1.3: Spiral Process, reproduced from [7]

Figure 1.4: Agile Process, reproduced from [23]
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Systems Engineering V-Model The Systems Engineering approach might, at first glance,

be viewed as a non-iterative process (Fig 1.5). A development team first performs the De-

composition and Definition phase, followed by Implementation, and completes the work by

undergoing Integration and Verification [18]. However, this makes the assumption that all

tasks are performed nominally and that no problems arise in the Integration and Verification

phase of development. Each phase involves tasks which may undergo multiple iterations

before continuing onward (similar to Spiral). When problems occur in the Integration and

Verification phase, it is necessary to return to earlier tasks to rectify the problems [18]. The

later the problem occurs, the farther back it will be necessary to regress. The Systems Engi-

neering V-Model encourages developers to continuously monitor the relationship between

design and verification, in order to prevent the expensive and time consuming process of

having to go back later on.

Figure 1.5: V-Model Process, reproduced from [25]

1.1.3 Concurrent Processes

Concurrent Engineering While many design processes focus on the sequence or iterations

of design phases, Concurrent Engineering (CE) processes assume that most large problems
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consist of multiple smaller sub-problems which may be solved simultaneously [8]. Func-

tional, manufacturing, and structural teams should be able to work on different aspects of

the same product, while communicating changes to design parameters, as illustrated in Fig-

ure 1.6. Each team may choose the solution that best meets their own sub-problem, while

receiving feedback from other teams to allow for compatibility and optimization. Each

team may follow a different design process internally, but the overarching design process

is carried out concurrently. Solving these sub-problems simultaneously may reduce the

overall development timeline.

Figure 1.6: Concurrent Engineering Process, adapted from [8]

Set-based Concurrent Engineering One of the most prominent examples of Set-Based

Concurrent Engineering (SBCE) is the Toyota Product Development Process [42]. Con-

trary to CE, SBCE allows each development team to explore a wide solution space, instead

of focusing on a single proposed solution. Each sub-problem is evaluated separately, as in

CE. However, the distinguishing feature of SBCE is the simultaneous exploration of multi-

ple solutions to a given sub-problem. This allows an existing solution to be conservatively

improved generation to generation, while also allowing for the development of entirely

new and higher risk-bearing solutions (Fig. 1.7). At any point in time a new product can be

formulated by combining sub-problem solutions. This flexibility requires that the interface

between sub-problems be established ahead of time and may need to be treated as a set of
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sub-problems in a separate iteration of the design process.

Figure 1.7: Set-based Concurrent Engineering Process, adapted from [26]

1.2 Information Management in Product Development

Much of the information presented in this section has been reproduced from the previously

published conference paper [32]. It is included here in order to allow the thesis to act as a

stand-alone document.

Many tools exist to facilitate collaboration for various aspects of design. Wikipedia

[41] popularized a collaborative document editing environment which incorporated a sim-

ple syntax for document markup. This open source package, known as MediaWiki [31],

enables developers to build upon the concept of collaborative editing by extending its core

functionality with new and useful features. Google Docs [21] allows simultaneous editing

of files by multiple users. Cloud file-sharing services such as Dropbox [13] and OneDrive
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[35] synchronize files between collaborators. Several project management software pack-

ages such as Redmine [40] and Microsoft Project [34] permit users to perform task manage-

ment and Gantt charting. CAD packages often integrate version control systems for track-

ing changes to solid model and drawing files [39]. Software development packages such

as NetBeans [36] and Eclipse [14] provide an Integrated Development Environment (IDE)

for concurrently designing and developing software packages. Version control packages

such as CVS [44] and Subversion [33] permit developers to track the history of changes to

documents. Few tools integrate the majority of these valuable document management and

information flow capabilities into an integrated engineering design environment.

1.2.1 Document Management Systems.

Proper documentation is a critical component of any engineering design and product de-

velopment work-flow. It enables contributors not only to capture the progress of a project

through meeting minutes and request for change (RFC) documents, but also to organize

the artifactual documents produced during the various stages of the project. Software de-

velopers have a long history of performing document management as a companion tool to

a well-defined and cyclical software process [20]. Most traditional engineering disciplines

employ formalized document control and change management (revision control) processes

for critical documents such as design drawings. EDGE applies the concepts of document

management to all documents generated and used by a design team. Structured document

management procedures permit iterative changes to documents by multiple team members

working in a collaborative environment. An effective document management system must

incorporate at least three features: document storage, document change management, and

document version control.

1.2.2 Document Storage.

The storage of documents is often taken for granted. However, document storage may

be a complicated issue, particularly when multiple individuals must access and modify a
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single set of documents. Four important issues must be addressed in an effective document

storage system:

1. The location(s) of documents to be stored must be established. Examples of docu-

ment storage locations include stacks of papers on a desk, hanging folders in a file

cabinet, a formal library and archiving system, local electronic document storage, or

cloud-based storage.

2. The format(s) in which documents are to be stored must be agreed upon. The format

includes physical media such as paper, microfiche, optical disk or magnetic disks.

The format also includes the logical structure of documents, such as chapters and

sections, CAD file structures, and naming conventions.

3. Access to the storage location(s) by individuals must be authorized and authenticated.

Access control is necessary to prevent viewing, theft, or modification of documents

by unauthorized individuals. Authorization is the process of verifying that an indi-

vidual is permitted to have certain types of access (such as read, edit, destroy), while

authentication is the process of verifying that the person attempting the access is in-

deed who they say they are.

4. The storage system must include a mechanism for change to documents. This may

be as simple as replacing the document entirely, or more complicated, requiring a

document to be only partially modified to reflect changes.

1.2.3 Document Change Management.

Most organizations implement strict processes to be followed when altering design docu-

ments. Document change management consists of a set of tools for handling modifications

to documents. Consider an example whereby Person A begins to edit a document, and

she spends one hour writing. Five minutes after Person A begins editing, Person B makes

several minor editorial corrections to the document and saves his changes 30 minutes after
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Person A began editing. At this point, Person A has no knowledge of Person B’s changes.

After 60 minutes have passed, Person A finishes her work, and saves her own changes.

This means that Person B’s efforts will be completely written over by Person A’s efforts.

This is known as the “lost update” problem, and is one of the largest concerns in document

management. Change management solves this problem with a few simple rules:

1. An author must begin the editing process by first making a local copy of the document

to be edited.

2. The author may alter that file using the appropriate tools (word processor, CAD sys-

tem, etc.).

3. When done making changes, the first author must verify that no intervening changes

have been made by a second author to the original document.

4. If a second author has edited the document, the first author must merge the changes

of the second author into their local copy of the document.

5. The first author may return their local copy of the document to the storage location.

Because this process is performed iteratively, change management tools work to automate

the process, and only require user intervention for merging the two sets of changes.

1.2.4 Document Version Control.

A Version Control System (VCS) tracks the history of changes made to documents over an

interval of time. Each set of changes to a document or group of documents is assigned a

unique version number, in chronological order of modification. A VCS allows authorized

users to view any previous version of any document. Often, a difference, or “diff”, tool may

simplify the side by side comparison of differences between two versions of a document.

This can be useful for recovering old versions of content, or for looking at the evolution of

a document over time. Such revision history also permits a thorough understanding of the
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evolution of an engineering design over time. This information is particularly valuable for

product failure and product liability investigations.

1.3 Distributed Web Systems for Project Management

Early web environments relied upon monolithic web servers to perform simple tasks such

as email distribution or static web page serving [27]. At the time, the speed of available

network connections limited the growth of these systems. The advent of broadband com-

munications made it possible for much more information to be quickly transferred over

client connections. Multimedia served as one practical use for this bandwidth. This nur-

tured the adoption of the internet as a place for commerce and information sharing [27].

The internet grew from approximately 23,500 websites and 44.8 million users in 1995, to

an astounding 969 million websites and 2.93 billion users in 2014 [43].

It is no longer sustainable for the web to grow on the monolithic model. The inherent

reliability and performance limitations of single server environments necessitate the adop-

tion of infrastructure which relies upon thousands of servers just to provide a single service

[19]. This increase of scale has led to the rapid increase in the size and number of datacen-

ters across the globe. Concerns over the efficiency and limits of this degree of expansion

are growing in light of the rise of the “Internet of Things” (IoT) and so-called “Big Data”

storage networks [12]. A clear effort to model and predict the throughput, efficiency, and

scalability for DWS is necessary to ensure this expansion will remain sustainable.

1.3.1 REST

In an attempt to formalize the concept of the Internet, Roy Fielding published a doctoral

dissertation entitled “Architectural Styles and the Design of Network-based Software Ar-

chitectures” in the year 2000 [17]. This document described the distinct features of various

existing network architectures and defined a single model to describe the underlying archi-

tecture of the entire World Wide Web (WWW). He called it Representational State Transfer
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(REST), in which the WWW could be seen as a stateless protocol for the transmission and

translation of information across geographic and organizational boundaries.

REST relies upon three key requirements to allow the web to grow efficiently. First,

all REST content must be accessible through Uniform Resource Identifiers (URIs) which

specify a particular document based on its Location (URL) and its Name (URN) [6]. Sec-

ond, all REST interactions with WWW content must be performed using the HyperText

Transfer Protocol (HTTP). This stateless communication protocol allows requests related

to a URI to be processed and handled in a standardized method. HTTP provides semantic

commands to define these interactions. HTTP Methods allow clients to read (GET), create

(POST), update (PUT), or remove (DELETE) content [16]. Third, a REST environment

must employ the concept of “HyperMedia As The Engine Of Application State” (HA-

TEOAS), in which any request for a URI contains all client information required to handle

that request [48]. It is prohibited for a HATEOAS server to store information about a client

for use in future requests. Rather, the interlinking nature of HyperMedia documents may

be leveraged to assist clients in transitioning to other desirable states, often with regard to

workflow or process.

1.3.2 Virtualization

Before the Personal Computer (PC), the most powerful computer systems were main-

frames. A mainframe system used time-sharing to allow multiple users to use a single pow-

erful computer [9]. Such machines were popular in academic, corporate, and governmental

settings, but were cost prohibitive to consumers. The more cost-effective PC became the

defacto standard for home offices and classrooms. The idea of shared resources continued

to evolve and became the software mechanism known as threading. Through threading,

individual programs are able to time-share the compute resources of a single system. Chip-

level multiprocessing (CMP) took this to the next level by having several processors on a

single chip, capable of dynamic task switching and multiprogram execution [22].

With the rise in clockspeed and core counts of recent processor designs, it has become
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increasingly difficult to efficiently utilize large multicore processors [15]. It is well un-

derstood that having more cores on a single processor allows for a greater level of power

efficiency and speed than having multiple sockets filled with smaller processors, which

must use external buses to communicate [45]. But this leads to concerns of the safety and

security of programs sharing the same memory and processing elements. Further, relia-

bility comes in to question when a single program could cause an Operating System (OS)

failure and halt the execution of other programs.

These concerns ultimately lead to the development of virtualization, a technique which

allows multiple instances of an OS to execute on the same physical hardware. Early at-

tempts at virtualization focused on emulating a computer system in software [5]. The

“Guest” OS was provided a finite set of hardware resources and was unaware of being vir-

tualized. This approach was plagued with overheads from emulation, and relied upon a

“Host” OS executing in the background to guide and control the environment. One attempt

to reduce these overheads involved the creation of Hypervisors, specialized operating sys-

tems intended to reduce the cost of management activities [47]. The limitations of this

approach inspired CPU designers to further reduce these inefficiencies. By making the

“Guest” aware of its virtual environment, it could be given direct access to the physical

hardware and made aware of other “Guest” instances on the same hardware [46].

Virtualization allowed an order of magnitude improvement in server efficiency for un-

derutilized environments, subject to certain limitations. In High Performance Compute

(HPC) environments, there is little to no benefit to virtualization since the software execut-

ing in these systems is designed to fully utilize a single machine. Software for management

of large scale virtual environments can be extremely expensive, and a barrier to entry for

many firms. High Availability (HA) is a major concern when it comes to the uninterrupted

execution of mission-critical systems. If a Host server fails, there is a significant pause in

service while Guest instances are migrated and restarted on other available Host servers.
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1.3.3 The Cloud

IBM coined the term cloud computing to describe the movement of software and virtual

machines within these virtual computing environments. More recently, the cloud may refer

several things. At the infrastructure level, cloud refers to the software used to manage these

virtual environments, often responsible for ensuring the high availability of services and

the distribution of virtual machines [30]. At the OS level, cloud may refer to application

container environments. These software mechanisms allow multiple services to occupy the

same physical or virtual server, while maintaining a certain degree of isolation from each

other. At the application level, cloud typically refers to the frameworks used to build high

performance web systems [37]. These frameworks employ a compute cluster to distribute

requests to a web system, sometimes providing mechanisms for synchronizing server-side

representations of client state. Today, the consumer cloud almost exclusively refers to data

storage services hosted in these large virtual environments.

1.4 Parallelism in Computing

Prior to the 21st century, parallelism in software was achieved through clever program-

ming tricks, compiler optimizations, or hand-coded assembly. Data parallelism could be

leveraged to allow a single instruction to perform multiple simultaneous calculations or

comparisons. Special instruction set architectures (ISA) and vector processors were de-

signed to allow programmers to speed up algorithms in supercomputers. Instruction level

parallelism (ILP) became possible with the advent of superscalar architectures. Many func-

tional units work together on a superscalar processor to allow two or more instructions to

execute simultaneously. Compilers could then optimize the structure of a program to “pre-

schedule” sequences of instructions. Later, Tomasulo out-of-order execution engines would

perform these this scheduling while running a program. Thread-level parallelism first made

its appearance with Symmetric Multi-threading (SMT). A processor which supports SMT

is able to schedule instructions, from two or more executing programs, on the the same
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superscalar hardware. Eventually, chip multiprocessors (CMP) would utilize two or more

processor “cores” to execute instructions at the same time. These cores may also consist of

complete superscalar processors with dedicated Tomasulo engines and special instructions

for data parallel operations.

These advances in computer architecture allowed for significant performance improve-

ments in newer applications, but are only effective if the software supports thread level

parallelism. Parallel programming is an essential part of this process, and consists of four

major phases: Decomposition, Partitioning, Assignment, and Orchestration. The following

sections provide a high-level overview of each phase.

1.4.1 Decomposition

In the Decomposition phase, an algorithm or behavioral model of an application is broken

up into smaller pieces. Each piece, or Task, is a self-contained set of actions which repre-

sent the smallest meaningful units of work to be performed. If a task is too small, it may

not be able to leverage instruction level parallelism. If a task is too large, it may become

difficult to realize thread level parallelism in the next phase. Ultimately, it will be up to the

experience of the programmer to discern the right size for these tasks.

Having decided on an appropriate set of tasks, it is necessary to define the data depen-

dencies between tasks. Data dependencies serve to define the order of operations to be

followed by the resulting software. Some tasks may be performed on multiple occasions in

the same program. These temporal data dependencies can be easily resolved by replicating

the tasks and using data dependencies to connect these new tasks (Fig. 1.8). The resulting

task-dependency graph forms the basis of the parallel program.

1.4.2 Partitioning

In the Partitioning phase, tasks are grouped together to form processes (Fig. 1.9). Tasks

should be grouped by keeping tasks which are data dependent together. This reduces the

chance a task in one process will need to wait on another task in a different process to
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Figure 1.8: Decomposition Process

complete and communicate the result. Each of the processes can then be executed simul-

taneously and communicate results from one process to another less often. Simultaneous

execution of the processes allows for thread level parallelism. Efficient use of a thread par-

allel processor can be achieved when every process takes roughly the same amount of time

to execute.

A

B

D2

D1

C

Process 1

Process 2

Process 3

Figure 1.9: Partition Example
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1.4.3 Assignment

In the Assignment phase, one or more processes are allocated to a processor for execu-

tion (Fig. 1.10). Similar to grouping tasks, processes with immediate data dependencies

should be grouped closer together to reduce the need to communicate intermediate results

to other process groups. Allocating too few processes will lead to idle processor threads

and inefficient use of the hardware. Assigning too many processes to a single processor

forces the processor and operating system to frequently switch between running threads.

The overhead of switching decreases the throughput of a processor by reducing the use-

ful computational cycles. This can be remedied by either allocating fewer processes or by

creating larger group of tasks in the partitioning phase.

Process 1

Process 2

Process 3

CPU 1 CPU 2

Figure 1.10: Assignment Example

1.4.4 Orchestration

In the Orchestration phase, communication between process groups is coordinated (Fig.

1.11). In the case of a library like OpenMPI, orchestration is carried out automatically and a

developer need only make the program aware of the locations of different processors. Com-

munication mechanisms may be chosen by the orchestration library, or manually specified
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by the developer. For process groups in a shared memory environment (i.e. CMP), com-

munication is optimally carried out by sharing pointers to memory locations. For process

groups on on different computers, communication may be facilitated by specialized hard-

ware, or by leveraging an existing computer network. Infiniband is a specialized hardware

protocol which allows computers equipped with dedicated interface cards to communicate

via a low-overhead protocol which copies memory from one machine to another. A TCP/IP

interface may also be used to communicate between machines. This connection will have

higher latency and has significantly higher overhead for the communication itself. It may

also be necessary to build additional security around the protocol when communicating

between machines on different subnets or in different datacenters.

Switch

CPU1

CPU2

CPU3

CPU4

Figure 1.11: Orchestration Example

Summary With a growing reliance on the Internet for the collaboration of development

teams, web-based tools are becoming a core component to modern product development

processes. It is essential that these tools support a variety of development processes while

also achieving high levels of parallelism and low latency communication. This work seeks

to improve the understanding of performance in DWS in order to accelerate product devel-

opment processes.
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Chapter 2

Problem Statement

This work focuses on two parallel efforts related to EDGE development and academic

research.

Development Task This work seeks to modernize the existing EDGE 1.0 DWS into an

extensible REST framework in order to advance modern product development process.

Research Task This work seeks to improve our understanding of Distributed Web Systems

by developing a model which accurately simulates the behavior of the EDGE DWS. This

model is expected to provide feedback for the following metrics:

• Throughput (τ ) - the measure of tasks completed in a specific time period, for a

given DWS, discrete web service, or computational process,

• Utilization (ω) - the measure of throughput achieved relative to the ideal throughput,

• Efficiency (η) - the measure of throughput relative to the utilization of allocated re-

sources,

• Latency (λ) - the measure of the amount of time necessary to respond to a request,

and

• Scalability (ρ) - the measure of trade-off between latency and throughput.
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2.1 Hypothesis

The research task of this thesis is motivated by a single major premise and six supporting

minor premises. These motivating premises yield the research hypothesis for the proposed

thesis.

Major Premise Current approaches to modelling a DWS fail to accurately predict the

scalability, throughput, utilization, latency, and efficiency of realized systems.

Administration of a DWS is typically handled in a reactive approach, or at best using

a heuristic approach, for allocating resources. In reactive paradigms, a systems ad-

ministrator will manually increase or decrease resources for different web services in

response to observed shortcomings. This is typically performed by logging resource

utilizations and responding according to a surplus or deficit of resources. Heuristic

algorithms provide a degree of automation, permitting a resource to be dynamically

adjusted in response to changing system load. Neither approach provides a predictive

capability for DWS management.

Minor Premises

1. Standard metrics for THROUGHPUT of DWS need to be developed

Throughput can be measured in a variety of manners for a DWS. Coarse measure-

ments of requests per second fail to take into account the size of the request or its

response. The measurement of the movement of data in and out of a DWS can re-

solve this, but hides the semantic significance of this data. A set of metrics is needed

to provide relevant measures of throughput for different degrees of granularity and

for different types of DWS components.

2. Standard metrics for UTILIZATION of DWS need to be developed

It is necessary to identify the core aspects of a DWS for which utilization should be
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assessed. By understanding how much time a resource is IDLE, decisions related to

resource allocation and task assignment can be performed in a manner which reduces

waste and increases availability.

3. Standard metrics for SCALABILITY of DWS need to be developed

As throughput will be quantified for multiple levels of granularity, scalability must

also be measured as multiple quantities. The scalability of a system will be affected

by the assignment of resources, organization of program code, and the presence of

processing bottlenecks.

4. Standard metrics for EFFICIENCY of DWS need to be developed

Efficiency experiences a direct relationship with scalability, also requiring a number

of metrics to be developed. These may include utilization of network bandwidth,

CPU wait times, or queue exchange rates.

5. Standard metrics for LATENCY of DWS need to be developed

Two major measures of latency are of primary interest to a DWS administrator. User-

facing latency can be measured as the round-trip time required to satisfy a user’s

request with a server response. System latency can be measured as the time necessary

for system tasks to execute from start to finish.

6. It is necessary that DWS models be validated against empirical monitoring of

production environments

Traditional modelling practices usually make assumptions about model components

and their interactions. These assumptions may neglect the overhead of virtualization

or OS functions, scheduling algorithms used to allocate tasks, or contention for non-

compute resources such as network interfaces and links. Without such constraints,

a model may be prevented from predicting the true behavior of a system as it is

implemented. Validation of the model against an existing system may demonstrate

the limitations of the theoretical model, allowing for further refinement and improved
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prediction accuracies.

Hypothesis A static model of information flow and resource utilization can be used to

predict the efficiency, throughput, and scalability of a static DWS, in order to guide the

process of design, implementation, and deployment of a static or dynamic DWS.

2.2 Statement of Work

The objectives of this work are to:

1. Develop a dataflow model for DWS.

A dataflow architecture shall be developed to model the transfer of information and

processing delay of a DWS. Assumptions underlying the proposed dataflow architec-

ture model are:

(a) DWS elements have finite processing throughput,

(b) DWS elements have finite communication throughput,

(c) DWS elements have infinite energy scalability, and

(d) DWS elements have infinite memory scalability.

The model will be implemented in the Go programming language, which offers con-

currency modelling features to simulate resource contention. It will be demonstrated

that static models of DWS configurations may be used to predict 0th order perfor-

mance for use in pairwise comparison.

A static processing model will be developed to simulate the behavior of a chip-

multiprocessor (CMP). Execution of processing tasks is defined by task-dependency

graphs and performed by one or more processor cores. Execution time and utiliza-

tion for a given task-dependency graph follows the expected performance given by

Amdahl’s Law and Task-Level Parallelism. The proposed model will be limited to a



23

pre-defined static schedule, while dynamic scheduling may be implemented in order

to simulate OS scheduling algorithms (i.e. round-robin, preemption).

A communication model shall be developed to simulate the behavior of both a Net-

work Interface Card (NIC) and a Level-2 switching device. The NIC will be respon-

sible for delegation of access to a single network link for one or more concurrent

processes in a given instance of the processing model. Each NIC will interface with

the Level-2 switching device through a single network link. A bandwidth param-

eter will be used to approximate true transmission latency for data transfer across

this link. The switching device will allow packets to be routed between two NIC

instances. Routing will simulate link contention, allowing only a single packet to

be transferred for each of the uplink and downlink directions. Message fragmenta-

tion will be performed for transfers larger than a single Maximum Transmission Unit

(MTU), but will assume in-order arrival and zero packet loss.

2. Simulate the EDGE DWS using the developed dataflow model.

The processing and communication models will be used to simulate one production

EDGE system. Component models will be configured to reflect the properties and

limitations of their physical counterparts. These components will be assembled to

reflect the flow of information through a production EDGE system.

3. Validate the dataflow model against observed performance data in three sepa-

rate EDGE environments.

Validation of the dataflow model involves a three part approach. Part One involved

collecting logged traffic data from production EDGE servers. This traffic was cap-

tured for one year duration and stored in the Apache HTTPd Combined Log format.

Production access logs were captured for the following EDGE 1.0 deployments:

• Multidisciplinary Senior Design (edge.rit.edu)

– Purpose: collaboration on RIT Engineering student capstone projects
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– Primary Workload: web-facing design documentation and deliverables

– Projects: 1068

– Users: 3862

• Administration (InsideME.rit.edu)

– Purpose: collaboration on KGCOE internal documentation and student records,

by RIT Faculty and Staff

– Primary Workload: secure document management

– Projects: 182

– Users: 232

• Research (kgcoe-research.rit.edu a.k.a meresearch.rit.edu)

– Purpose: collaboration on research projects and student thesis/dissertation

work

– Primary Workload: version controlled research data and documentation

– Projects: 307

– Users: 418

Part Two will selectively use these logs to simulate exemplar workloads on the DWS

models of an EDGE system. The logs will be translated into a set of requests which

shall be used to recreate product development, administrative, and research work-

loads. Each type of request will be identified and decomposed into task-dependency

graphs to be executed by the dataflow model of each EDGE 1.0 deployment. These

workloads will then be simulated against two categories of performance metrics.

First, the utilization of a component resource can be observed in the form of con-

sumables such as CPUs, network links, RAM, disk, and energy. The second category

of metrics quantify information flow in a DWS, addressing both the transaction rates

and transaction sizes within a DWS.
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In Part Three, the simulated workloads from Part Two will be validated against the

throughput, utilization, scalability, and efficiency of an existing EDGE 1.0 server.

Inaccuracies will be used to guide the refinement of model designs at both the com-

ponent and architectural levels. The resulting model may be used to identify the

bottlenecks, suggest alternative DWS topologies, and predict the performance impact

of changes to existing environments.

2.3 Deliverables

The proposed research effort will result in several outcomes, including:

• The thesis document.

• A fully functional second generation EDGE DWS (EDGE 2.0), built on a foundation

of open-source software, as a REST compliant implementation.

• A dataflow model and simulator which predict the information flow and resource

utilization of a DWS.

• A conference paper was presented at the ASME 2015 International Mechanical En-

gineering Congress and Exposition (IMECE), documenting historical usage patterns

of EDGE by students in the Multi-disciplinary Senior Design (MSD) courses at RIT

[32].

• A conference paper documenting the dataflow model, its use in simulating DWS,

and its validation. The target conference for this paper is either ACM STOC’17 or

ACM/IEEE MODELS’17.

• A journal paper documenting the utility, information flow, and resource utilization

of the EDGE distributed web application system in academic and corporate settings.

The target for this publication is one of the following journals: Research in Engineer-

ing Design, Computer Aided Design, Journal of Computing and Information Science
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in Engineering, Artificial Intelligence in Engineering, Design and Manufacturing, or

the Journal of Mechanical Design.

2.4 Work Schedule

Initial investigation into developing the EDGE 2.0 DWS began in the Spring of 2012 and

was carried out during undergraduate study that led to the successful completion of a B.S.

in Computer Engineering in May 2014. The results of that investigative period were put

into practice with the development of the EDGE 2.0 DWS starting in August 2014 and

continuing until the final go-live in January 2016. During this time period a paper was

presented at the IMECE 2015 conference, outlining the fundamental requirements of the

EDGE system for product development process, and its usage for the RIT Multidisciplinary

Senior Design program (Fig. 2.2).

In January 2016, effort shifted toward development of a dataflow model for simulating

Distributed Web Systems (Fig. 2.1). Preliminary work has shown the implementation

of a rudimentary processing model for computational tasks which is able to accurately

simulate throughput, utilization, latency, and scalability for a CMP-style microprocessor.

A rudimentary model for network communication has been developed which is able to

accurately simulate link contention, bandwidth sharing, packet routing, and transmission

latency. Recent work focused on the integration of processing and network communication

models. Validation of the integrated model against the EDGE 1.0 production logs will be

presented.

2.5 Publication Schedule

Three publications will result from this work: a thesis document, conference publication,

and journal publication. The conference paper was presented at IMECE in November 2015

[32]. Work on the thesis proposal was completed in February 2016 (Fig. 2.2). Work on the

thesis document commenced in March 2016; a committee draft was completed in July and
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submitted to ProQuest for publication in August 2016. Work on a journal publication will

begin following the submission of the thesis document.

2.6 Required Resources

Production EDGE Systems Three EDGE 1.0 deployments have been in service for 5-10

years. The differing workloads from each server system may be used to validate the models

developed. Access to Apache HTTPd server logs will be necessary to recreate the requests

that occurred for the observation period. Capture of these logs required disk storage on

the order of 100GB. It may be desirable to use a logging solution (i.e. Graylog, Splunk,

Rsyslog) to facilitate the capture process. Further, access to the EDGE repositories will be

necessary to recreate load conditions related to SVN activities.

EDGE 2.0 System Deployment of the EDGE 2.0 environment required new virtual ma-

chine resources to be allocated. This initially required a single VM with 2-4 CPU cores

and 4-8 GB of RAM. However, this is expected to grow to 5-10 VMs for scalability testing.

Modelling Requirements Initial development of DWS models will rely upon the use of the

Go programming language on a workstation with 4 cores and 16GB of RAM.

Data mining of the production logs to generate workloads, and execution of model

simulations, may require greater resources than are available to the workstation computer.

If this occurs, the Research Computing Cluster at RIT may be leveraged (at no additional

cost) to meet higher computational demands.
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Chapter 3

REST Development of EDGE 2.0

The Engineering Design Guide and Environment (EDGE 1.0) was first developed over a

decade ago by engineering student Brian Sipos. It combines a PHP web-frontend with a

SQL relational database and Subversion repository system. This unique combination of

software has enabled the execution of hundreds of capstone projects, provided a collabo-

rative space for administrative procedures and curriculum development, and supported the

work of over a hundred MS Thesis students. Having established such a track record, it has

become increasingly important to plan for the future development of the EDGE system in

order to ensure its continued growth. The following section provides a detailed discussion

of the design of the EDGE system, the latest efforts in its development, and plans for future

expansion of its capabilities.

3.1 EDGE 1.0 System

The primary features of the EDGE system fall into three distinct categories. Document

management in EDGE provides a centralized location for the storage of product devel-

opment artifacts, complete with a suite of change management and version control tools.

EDGE supports project management through role-based project membership and the incor-

poration of project family trees. Web-based collaboration is made possible through online

editing, MediaWiki support, and document rendering. These tools work in concert to sup-

port a wide variety of product development processes.
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3.1.1 Document Management

It is well understood that product development efforts necessitate well-defined practices

for the management of project documentation. The compilation of detailed design history

can be invaluable in settling intellectual property disputes, analysis of project failure, and

the assessment of future endeavours. EDGE seeks to provide a complete set of tools that

may be used to properly support a product development effort through each stage of its

life-cycle. At its core, EDGE facilities document storage, change management, and artifact

version control.

Storage The main mechanism for information storage in the EDGE system is provided

by Subversion. An SVN repository is able to handle any form of electronic information.

Popular document formats include: MediaWiki, PowerPoint presentations, CAD drawings

and 3D models, simulation results from MATLAB or Ansys, microcontroller source code,

images of prototypes, and videos of product tests. All of this information is centrally

stored for each project and may be accessed over the internet. SVN allows a snapshot of

this repository to be stored on a developer’s computer for offline editing. The repositories

themselves can be stored on an EDGE server directly, or on a remote server. This enables

flexible deployment of the EDGE system while also allowing the implementation of data

backup and integrity checking to be utilized as necessary.

Version Control Subversion provides a suite of tools for handling multiple versions of

the same document. First, each new version of a file is assigned a revision number. This

number corresponds to every document that was submitted to the repository as part of a

change set. A revision is also timestamped, with a name for the author, and an optional

message indicating the work that was done. Second, Subversion can provide a historical

log of revisions for every file or directory in a repository. This history can be used to

examine the evolution of a file, to see who edited it last, or to find a specific revision for

use in change management. Lastly, SVN also provides a set of diff or difference tools
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which allow for comparison of different revisions of files.

Change Management EDGE employs a combination of project-based access control and

Subversion commands to facilitate the change management process. Subversion provides

functionality for reverting to older versions of artifacts and managing conflicting versions

of documents. In the case of the lost-update problem previously discussed, SVN users

must update to the newest revision before committing their changes. This forces a user

to merge the changes that would have been otherwise lost. Only then are they able to

update the central version of the document. Access control in EDGE requires a user to

have membership to a project before being able to make changes to documents. Further, a

specific role must be assigned to the user for each project before they are able to perform

any modifications.

3.1.2 Project Management

In addition to the document management capabilities of EDGE, project management activi-

ties are currently supported by two main features. Roles are used to delegate permissions to

specific project members. Project families can be used to relate separate projects to demon-

strate the continuity of efforts, the flow of information, and roadmap style dependencies.

Roles Each role in the EDGE system delegates a unique set of permissions with respect

to a project. Administration of a project is simplified through this lack of a permission hi-

erarchy. Names for the roles were chosen to directly convey what permissions they enable.

• Observer

Allows any user to become a member of a project, adding the project to a personal

list of projects, but does not delegating any permissions.

• Guest

Allows a user to see any non-public information in the SVN repository and permits

them to export a local copy of the repository.
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• Editor

Allows a user to create or edit documents within the repository.

• Curator

Allows a user to revert a document to an earlier revision.

• Admin

Allows a user to modify project information, add or remove memberships, and to

delegate roles to project members.

Project Families and Tracks Since it is common for projects to either share information

or belong to the same development roadmap, EDGE facilitates these relationships through

project families. Any project may be related to a parent project. This enables a parent

project to possess multiple child projects. A child project may represent an evolution of the

parent project or may be one of several sub-projects for a given development effort. Having

these relationships between projects makes it possible to have a central set of documenta-

tion which applies to all of the child projects, while also providing a means of tracing the

lineage of a particular development effort.

3.1.3 Web Collaboration

The EDGE system facilitates online collaboration through three main features. MediaWiki

has been incorporated into EDGE as the defacto standard for web-facing documentation.

An online editor has been written to support the editing of MediaWiki documents without a

dedicated editor program. In addition to MediaWiki, EDGE supports the display of several

multimedia formats inside of a web page, while also allowing for the downloading and

uploading of new documentation through the website.

MediaWiki MediaWiki has a well-documented history of being used successfully for on-

line collaboration, notably the WikiMedia Foundation. It uses a simple mark-up language
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to perform document formatting and linking. This plain text format also simplifies the pro-

cess of merging document changes. The EDGE version of MediaWiki has been augmented

to allow for per-project namespaces, image rendering, and interwiki links. Interwiki linking

is especially useful for referencing documentation in parent projects.

Online Editing In addition to support of the MediaWiki format, EDGE also features an

online editor for MediaWiki documents. This allows user to make modifications to doc-

uments without a local checkout of the repository or an editing program. The editor also

features a preview function that allows users to see what the modifications will look like, as

they appear from the web. When a user is done editing, they may save their changes as part

of a new commit, complete with a message indicating the work done. This new revision is

also attributed to the author of the changes.

Document Rendering Lastly, EDGE supports the rendering of various document types to

the web. MediaWiki files are translated into HTML pages which can be viewed with any

web browser. Images and tables may be embedded into these pages to be presented online.

HTML documents may also be viewed online. Any file may be referenced using a wiki

link and then downloaded for view by the appropriate software package.

3.1.4 EDGE 1.0 Architecture

The EDGE 1.0 system consisted of a monolithic computing environment, hosting an Apache

HTTPd 2.2 web server, a MySQL 5.3 database server, and a Subversion repository hosting

environment (Fig. 3.1). PHP was used to coordinate the display, modification, and creation

of documents within the Subversion repositories. MySQL was used to provide project and

user metadata, permissions and access control, system configuration, and FACETS data

storage. Mediawiki was chosen as the main document format and extended to provide

media handling, namespace for projects, and inter-project links.
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Figure 3.1: EDGE 1.0 Architecture

Pain Points for EDGE 1.0 While an EDGE system is not difficult to administer after de-

ployment, there are several issues with the EDGE 1.0 application. First, installation of an

EDGE server is performed manually and for a new system administrator can take upwards

of 2-3 hours to complete. Second, resource requirements for an EDGE system are difficult

to quantify. Normal EDGE operation does not require a large resource allocation. In the

case of the MSD coursework, however, it has been noted that services can become sluggish

or even unbearable due to user-facing latency. Third, attempts to integrate new FACETS

tools into the EDGE environment has demonstrated a lack of flexibility within the existing

architecture and slowed further development efforts. Lastly, open-source development of

the PHP dependencies of EDGE 1.0 has either slowed down or stopped entirely. Support

and patching of these libraries has seen a similar decline.

3.1.5 Product Development Toolkits — FACETS

FACETS is a collection of collaborative engineering design tools that has been developed to

integrate with EDGE. Each of the FACETS Toolboxes is designed to supplement a different

aspect of engineering design process (Table 3.1). FACETS Tools operate in concert by

coordinating the flow of information inside the EDGE system. These tools do not enforce a
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specific development process. Instead, these tools are intended to enrich and facilitate any

process by supporting common aspects of design.

Table 3.1: FACETS Toolboxes
Early Design Tools Late Design Tools
Needs Assessment Engineering Models

Concept Development DFx: Detailed Design
Feasibility Assessment Production Planning
Engineering Analysis Pilot Production

Tradeoff Analysis Commercial Production
Design Synthesis Product Stewardship

Each of the FACETS Tools utilize one or more SQL tables to store related informa-

tion. Information stored in these databases is generated and displayed by interactive web

applications built on top of the EDGE environment. In 2012, it was observed that even a

small number of users (< 30) were able to tax an EDGE system consisting of a dual-core

processor and 8GB of RAM. The concern over the performance requirements necessary to

support the FACETS environment for larger numbers of users led to the need to re-evaluate

the framework provided by EDGE.

Software Engineering Development Teams Development of the FACETS Tools has been

carried out by four Software Engineering Senior Design projects at the Rochester Institute

of Engineering. Each team performed development tasks over 22 week periods, taking

place from Winter 2007 to Fall 2009. FACETS Team F1 was responsible for the initial

development of support for FACETS in the EDGE environment during Winter 2007 and

Sprint 2008. In addition, the team began development of the Brainball tool. FACETS Team

F2 developed the Affinity Diagram, Brainstorm, and Objective Tree tools during the Winter

of 2008 and Spring of 2009. FACETS Team F3 was responsible for the implementation of

the House of Quality and Function Tree tools during the Winter of 2009 and Spring of

2010. FACETS Team F4 modified the existing FACETS tools to allow for the development

of Android versions of the Affinity Diagram, Brainstorm, and House of Quality tools during

the Summer and Fall of 2009.
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3.2 Design Goals for EDGE 2.0

The EDGE system has already proven to be a successful development effort. Like any piece

of software, however, there is always a need for improvement and the implementation of

new functionality. In 2012, a new development effort began with the goal of designing and

implementing a next-generation EDGE system. This new system would be able to support

larger numbers of users, be built on modern web technologies, improve the installation and

maintenance practices, and also allow for easier development of new tools to aid in product

development process. The following sections discuss the goals for the EDGE 2.0 system,

with respect to user feedback and evaluation of the existing code base.

3.2.1 Modern Web Technologies

When EDGE 1.0 was first developed, the predominant web technologies used for interac-

tive web environments were Java, PHP, and SQL Relational Databases. PHP was a logical

choice for generating dynamic web pages. PHPs native support for HTML templating,

string manipulation, and handling form submission data provided a strong foundation for

EDGE. When combined with several useful open-source libraries for PHP, it became triv-

ial to communicate with a SQL database, Subversion repositories, and the MediaWiki lan-

guage. MySQL was chosen as for the relational database due to a wealth of developer

documentation, compatibility with PHP, lack of commercial licensing, and supportability

on non-Unix platforms. WebDAV access to SVN repositories brought web-based access to

revision histories, version differences, and file tree browsing.

In the years following the release of EDGE 1.0, much of the software development

community began to focus on a web-based user experience. This led to the creation of a

multitude of new tools for the creation of rich internet applications. Java gained many new

libraries to move beyond Applets to full-blown server backends. Fledgling languages like

Ruby and Javascript followed a similar trend as many developers sought out alternatives to
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an aging PHP community, becoming the preferred choice for this new generation of web-

based software. Markdown and other new mark-up languages become viable alternatives

to the long-established MediaWiki. Alternatives to SQL databases were developed to han-

dle alternative data formats, such as XML or JSON. HTML and CSS underwent sizeable

upgrades while becoming HTML5 and CSS3, respectively. Even Subversion began to see

a large percentage of their user base moving to the newly developed Git VCS.

The design of EDGE 2.0 required significant research to evaluate a multitude of new

tools and technologies. This work began in the Spring of 2012 with the investigation of

the open-source project management suite known as Redmine. Analysis of the Redmine

source code revealed the reliance on a complete Ruby on Rails stack, using Ruby ERB

as a web templating language, ActiveRecord for database manipulation, and jQuery for

user-interaction with the web interface.

3.2.2 Extensibility

The EDGE 1.0 system has reached the maintenance phase of its development. Nearly all of

the development efforts have been focused on maintaining its functionality with newer ver-

sions of server software, PHP, and its dependent libraries. Because of the majority of time

being spent on maintaining a functional EDGE 1.0 environment, it has not been feasible to

continue introducing new features. Further, EDGE 1.0 relies on a highly monolithic soft-

ware environment. It is expected that the MySQL database, SVN repositories, and Apache

HTTPd web server all exist on the same physical machine. This prohibits the modular de-

ployment of EDGE services in a distributed environment. Services cannot be deployed to

optimized hardware platforms which efficiently handle database or web-serving workloads.

EDGE 2.0 development seeks to tip the balance back towards lower maintenance and

consistent introduction of both new and improved functionalities. Extensibility of the

EDGE 2.0 system will be built upon the REST services model for software, in which each

component provides a unique service and may be deployed anywhere in the distributed

environment. Services can then be composed to perform complex workloads and may be
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iteratively replaced with improved versions by maintaining a consistent API. This modular-

ity has the added benefit of allowing services to be allocated to optimized server hardware

or for tightly coupled services to exist on the same server. Reliability is gained as a side-

effect of this distribution as well.

3.2.3 Improved Performance

With EDGE 1.0, performance is bottlenecked by both software and hardware. From the

hardware side, disk access serves as the single largest limiting factor. Both the database

and SVN repositories rely on frequent access to storage to serve user requests. While this

could be solved by purchasing a faster storage backend (e.g. SSD), this goes against the

philosophy of allowing EDGE to be flexibly deployed by any organization. Dealing with

the software bottlenecks may serve to remedy the issue. For example, in EDGE 1.0 every

read operation to a repository requires a local checkout by made. This checkout may persist

on for a duration of time, but too many persistent checkouts will lead to high demand for

local disk space. In addition, access to an EDGE repository is either largely random (web

traffic) or throughput oriented (checkout). Instead of keeping local checkouts, EDGE might

use the svn cat command to only access a single file at a time from a repository. These

files may be cached to further improve access times. Instead of using the stateless WebDAV

protocol for SVN client access to EDGE repositories, the stateful svnserve utility may

be used to improve throughput for users.

3.2.4 Easier Deployment

Any web application requires a fair amount of initial setup before it can be used. Installa-

tion of an OS, software packages, and additional software libraries serve provides the foun-

dation of the application. The application code itself is then unpacked onto the prepared

system. A web server, database, and additional datastores will then need to be configured

for use. Finally, the application itself may need to be configured for use. Performed manu-

ally, this process make take hours for an experienced administrator, or days for a first time
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deployment.

Many tools exist to simplify this process. Scripting languages can be used to guide the

installation process, possibly from start to finish. However, it may be difficult to script the

installation for many different systems. A Linux package might be created for a subset of

distributions, but there will likely not be a “one size fits all” approach to these packages.

This process becomes further complicated when trying to support Windows servers. Design

of the EDGE 2.0 system should make every effort to simplify the installation process to a

few hours or even minutes.

3.3 Evaluation of Software Tools

With significant software development effort in industry being targeted at web-based ap-

plications, new tools and even whole languages have have been created to aid developers.

Work on the design of EDGE 2.0 began with the evaluation of alternatives to the software

and libraries in use for the EDGE 1.0 system. The following core comparison factors were

instituted to limit the scope of this search:

• Open-Source

Closed source tools suffer from multiple problems, including: license terms, available

support, and visibility for debugging. Open-source tools are available at typically no

additional cost, provide direct access to developers for support, and allow access to

the source for debugging. Additionally, it also becomes possible to submit bug fixes

and functionality upgrades for inclusion in later versions of the tools.

• Well-Documented

Documentation is critical for the implementation of software around existing tools.

Having a well-documented tool reduces the time to integration, demonstrates the

quality of the software, and allows end-users to access additional support for the

tools which they directly interface with.
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• Active Developer Community

An active developer community is critical to the future of a software tool. It ensures

that bugs and security holes can be fixed, that new functionality will be developed,

and that existing functionality can be improved. Lack of such a community reduces

supportability of software during maintenance periods and may lead to a tool being

replaced completely.

• Developer Adoption

It is one thing for developers to be excited about the potential of the latest and greatest

software tool, it is another thing entirely for them to adopt that tool into their appli-

cations. Strong developer adoption usually indicates that a tool works as advertised

and that it was the solution to an important development problem. The adoption of

an open-source tool also means a larger number of people to find and fix problems

inside the tool itself.

• Learning Curve

Developers should be able to quickly integrate a software tool into their application.

This is only possible if the tool does not require a significant investment by the de-

veloper to not only learn how it works, but also how to leverage its functionality in

practice. While some tools may require more effort than others, it should be recog-

nized that requiring additional knowledge will mean either requiring a developer to

already have experience with the tool or to invest a developer’s time in training.

These factors were selected based on their importance to future development efforts for

EDGE. The selected components must be able to withstand the test of time while also not

requiring extensive knowledge for a developer to begin using them for new implementation

efforts. This will ensure that EDGE is able to inherit these qualities.
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3.3.1 Languages

Computer science has a long history of developing new languages in response to the grow-

ing needs of developers. In order to provide richer user interaction with early websites,

Common Gateway Interface (CGI) scripts were used to process form information or to dy-

namically generate web pages. PHP naturally arose out of the CGI era, allowing for greater

programmability for this type of dynamic page generation. Quickly becoming a developer

favorite, PHP represents one of the first true “web” languages as it was designed from the

ground up with the HTML developer in mind. Java appeared a year later, in 1996, as a

language designed with a singular goal of “Write Once, Run Anywhere”. Web developers

saw the portability of Java programs and it quickly was adopted into web browsers in the

form of “Applets”. A Java Applet can be written to provide application-like functionality

in the web browser. This would ultimately lead to Java Servlets which provided PHP like

functionality for server-side software. Meanwhile, the Ruby language was under develop-

ment in Japan as an alternative to the other object-oriented languages of the time. It was

not until 2005, that Ruby gained attention in the Web community with Ruby on Rails. The

Rails framework provided Ruby developers with a wide range of tools for performing the

same server-side interactions as PHP and Java.

With EDGE, the choice of language was the first major topic of discussion. Now 2012,

the landscape of web development had changed greatly and languages like PHP, Java, and

Ruby had established thriving communities. Experiences with keeping EDGE 1.0 func-

tional under PHP had led to questions of its usefulness in future development projects.

In addition to the developer-centric factors previously mentioned, the following secondary

comparison factors were adopted for evaluation of web languages.

• Backward Compatibility

Programming languages are often developed with version numbers, as they are also

supported by software tools (i.e. compilers, interpreters, debuggers, IDEs). A new
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version of the language typically means improved performance, new language fea-

tures, and a more comprehensive set of core libraries. However, existing source code

should not suffer from compatibility issues with new versions of a language. Compi-

lation or interpretation of the existing code should not end in failure or break existing

functionality.

• Available Libraries

The existence of software libraries for a language has significant ramifications on

the development of new applications. A library may provide useful functionality

and access to other software tools. This allows a developer to expend less effort on

implementing the core functionality of a program and turn their focus to providing

richer feature sets, a pleasant user experience, or greater performance and reliability.

• Support for HTML5, CSS3, and Unicode

A web programming language must grow to support newer versions of core internet

technologies. HTML5, CSS3, and Unicode are critical technologies to building web

applications which support a wide range of multimedia, are visually appealing, and

are able to be used by an international community.

PHP At first, PHP sounded like the logical choice. The existing source for EDGE 1.0

was written for PHP 5.1, and had been successfully upgraded to function with PHP 5.5 and

the newer versions of libraries from the PHP Pear package repository. However, by March

2010 the PHP project had abandoned efforts to bring unicode support to PHP in version

6.0 [28]. Many developers saw this as a sign that PHP was on the decline and chose to

migrate to other, more stable, languages. As a result, many of the libraries used in EDGE

1.0 saw little to no further development and ceased to function with later versions of PHP.

It was not until December 2015 that the next major release of PHP (7.0) was released with

support for Unicode and HTML5 [29].
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Ruby Between 2006 and 2012, the Ruby language was in use by 2% of the developers

surveyed by the TIOBE index [3]. This consistency serves as an indicator of the stability

of the language and its community. As a language, Ruby has full support for Unicode,

has advanced capabilities for handling strings, and is easily extended through dynamic pro-

gramming. Domain Specific Languages (DSL) in Ruby allow developers to create reduced

syntax languages which can be targeted at simplifying complicated tasks and reducing

boiler-plate code. Ruby has extensive core libraries which bring support for serialized

data types (i.e. JSON, XML, YAML), IETF communications protocols (i.e. HTTP, FTP,

RSS), and even a built-in web server called WebBrick. The Ruby packaging format, Gem,

provides developers with simple mechanisms to share specific versions of their libraries

through Gem repositories (i.e. RubyGems.org). The Bundler tool greatly simplifies the pro-

cess of requesting dependencies for a development effort by retrieving Gems and installing

them. These Gems bring libraries that aid in building REST APIs (i.e. Sinatra), templating

web pages (i.e. ERB, HAML, Liquid), and working with SQL relational databases (i.e.

ActiveRecord, DataMapper, Sequel).

Java Java Applets have been used to augment the user-experience on web-pages for over

a decade. However, Java has significantly more to offer. Java Server Pages (JSP) provide

support for HTML templating. Server-side handling of web applications can be performed

through Java Servlets. The Java Database Connectivity (JDBC) libraries provide a uniform

interface to SQL relational databases. The Apache Tomcat Web Server allows a developer

to tie all of these technologies together to create dynamic websites. Tomcat’s Web Appli-

cation Archive (WAR) file format allows an entire application to be bundled together into

a single, portable container for deployment. Unicode support has existed in Java since ver-

sion 1.1 [1] and was brought into Unicode 6.0 compliance with Java 1.7 in 2011 [2]. Java

also has extensive support for internationalization and locale handling.
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Decision Ultimately, Ruby was selected for the implementation of EDGE 2.0. With the

future of PHP remaining uncertain, its development community had begun to atrophy and

this could best be seen in compatibility issues with existing PHP libraries. Java has poten-

tial as a general purpose language, but suffers from very verbose application code and a

lack of libraries for web-centric technologies. Development using Java would mean being

forced to use the technologies provided by Oracle and following their “one-size-fits-all”

mentality. Ruby, on the other hand, has continued to show a large growth in the number

of tools available and even provides alternate implementations of the same technologies.

Coupled with a strong developer community, wealth of developer documentation, and a

terse programming grammar, Ruby represents the greatest promise and the least amount of

risk.

3.3.2 Frameworks

With the decision to use the Ruby language for EDGE development, investigation shifted

to the available frameworks for building web applications. A framework, in this context, is

either a collection of tools that are used in concert to create an application or an existing

application which may be built upon. Redmine was considered for its existing capabilities

as a web-based project management tool. It provides a wiki, file storage, access to VCS

repositories, and a rich task management system. Ruby on Rails serves as the framework

for Redmine. By sacrificing the existing functionality of Redmine, Rails could allow for

increased flexibility in the implementation of EDGE, already being built upon a robust set

of Ruby libraries. Sinatra can be thought of as the “anti-Rails” by comparison. It is a

Ruby Domain Specific Language (DSL) for building REST APIs and has strong support

for HTML templating through the Tilt Gem.

For the framework selection process, the following new comparison factors were intro-

duced:

• Modular Implementation



46

Modularity is a key component of reliable and bug-free software. It allows the func-

tionality of a program to be broken up into separate systems, which may be imple-

mented independently. A developer can then narrow their scope to a subset of features

and spend significantly less time searching for the source of a bug. Modular software

can be deployed flexibly according to the needs of an organization. Distributed Web

Systems require modularity in order to promote scalability.

• Minimal Boilerplate Code

A framework should augment the functionality of a program without dictating its

implementation. It should not be the case that a framework requires a significant

amount of code to access its functionality. Nor should a framework be so complete

that a developer has little to no say in how their application is written.

• HTML Templating Support

Templating support should be inherent in a web framework. This reduces the burden

on the developer to incorporate a particular templating language into their application,

increases productivity, and shortens time to market.

Redmine Redmine provides a solid core for software development efforts. It streamlines

access to VCS repositories, includes a task tracking system, and facilitates workflow de-

sign for role-based design processes. Several plugins have been written to supplement

Redmine’s functionality. For example, the AgileDwarf plugin simplifies task management

for an individual by creating a “dashboard” where they can see assigned tasks, move tasks

to different stages of the workflow, and record the time spent on a task. Through this ex-

tensibility, it would be possible to implement EDGE as a set of plugins for the Redmine

environment, eliminating the need to develop the infrastructure for EDGE, while focusing

on user-facing functionality.



47

Ruby on Rails Rails was investigated due to being the framework used by the Redmine

project. An application built on Rails consists of three sets of components: the Model,

View, and Controller. The Model is a representation of application data described through

a Ruby Object. This object itself may represent entries in a CSV file, individual files located

in a folder, entries in a SQL database, or even data from an external REST service. The

View consists of one or more ERB templates for displaying information found in the Model.

These templates are not only used to generate HTML, but also serialized data structures

like XML and JSON. The Controller ties the Model and View together, implementing the

interface to Rails, while performing application logic like Authorization, handling of URL

query parameters, or parsing the body of a POST request and applying changes to the

Model.

Sinatra Sinatra is a Ruby DSL for implementing REST services. Unlike Rails, Sinatra

does not impose any restrictions on the developer. It processes a request received by a Rack

compatible web-server, parsing any query parameters and routing the request to a registered

REST endpoint. Implementation of an endpoint consists of mapping an HTTP Method and

URI to a specific block of code. The developer can then implement any code necessary

to satisfy that request. Sinatra also provides helpful utility functions for generating error

pages, rendering templates to HTML, and performing user authorization.

Decision Redmine brings a lot of functionality to the table, but suffers from a lack of in-

ternal developer documentation. This makes it fairly difficult to use the Redmine API and

to incorporate new functionality into the system. Further, being built on Ruby on Rails

brought along another set of difficulties. Rails forces a developer to pick from a limited

subset of the available Ruby libraries when writing software. It also strongly encourages

developers to write in the MVC software pattern, introducing a large percentage of boiler-

plate code. It was decided to develop EDGE on top of the Sinatra DSL. Building APIs and

rendering content is made trivial through the built in functionality of Sinatra. Additionally,
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the developers of Sinatra have made every attempt to not limit a developer’s set of choices

for supporting libraries.

3.3.3 Version Control System

Document storage in EDGE first relied on the Concurrent Versions System (CVS). With

its popularity declining and its last version released in 2008, CVS was ultimately replaced

by Subversion. This led to improved performance, a greater number of GUI clients, and

continued support from the SVN developers. Around the same time, the Git Source Con-

trol Management toolchain started to gain popularity after its adoption by the Linux Kernel

Project. Git’s support for distributed repositories, local commits, and strong merging capa-

bilities have made it the defacto standard for open-source software development.

The following additional comparison factors were introduced for the evaluation of VCS

systems:

• Multiple OS Support for Clients

Version controlled documents may need to be edited on a local workstation and pos-

sibly requiring the use of specialized software. Additionally, a user will likely have

a preferred operating system. In order for a VCS to be successful for a variety of

workflows, it will be necessary that client software be available for the most common

operating systems (i.e. Windows, Mac OSX, Linux).

• Multiple Format Support

A VCS should not impose a subset of document formats on a user. This only serves

to prevent developers from using their preferred tools and may lead to additional

software costs. Support for a wide variety of document types is necessary to avoid

imposing restrictions of users.

• Centralized Repositories

VCS software should always allow for a centralized repository. This creates a sin-

gle location for developers to access authoratative versions of documents, while also
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transferring the risk of data loss from the end-user to the service provider. Secure

access to the documents is easily accomplished with a centralized system, while not

being feasible to enforce when delegated to the end-user.

CVS The Concurrent Versions System (CVS) was used in the early versions of EDGE

and is considered for that reason. CVS features a centralized repository with access control,

and can store most data formats. Following a commit, CVS does not store the differences

between versions, it stores the entire file. No metadata can be stored for a given file (i.e.

MIME-Type, locks, owners). Active development of CVS ceased in 2008 and no official

plans for newer releases exist.

Subversion Subversion (SVN) was incorporated into recent releases of EDGE as a re-

placement for CVS. SVN provides several important features missing in CVS. Metadata

storage allows a user or application to store any additional information for a file that might

be desired. In this way, SVN is also easily extended by other software. EDGE utilizes the

metadata capability to store MIME-Types for files. Locks allow a user to prevent alteration

of a file by other users. This is useful for preventing merge conflicts, and also for preventing

unauthorized modification of files or directories in a repository. A commit only stores the

differences between versions of a file. This has the benefit of reducing the storage size of a

repository, at the expense of increased computational time when committing or retrieving

a file. Local checkouts of a version of the repository contain all of the repository metadata,

but only the most recent revision of the files.

Git Git was developed for the Linux Kernel Project as a replacement for the commercial

BitKeeper SCM. Unlike SVN and CVS, Git is a distributed version control system in which

every checkout contains a full history of all changes prior to the checkout. This allows any

copy of the repository to act as a both a source and a backup of the repository contents.

Further, users may continue to commit changes locally without sending those changes to
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a centralized repository. This allows a user to continue working completely offline and

while still being able to access earlier versions of a document. Once online, a user may

“push” these changes to one or more repositories. In the case of strict change management,

it may be necessary for an authorized user to “pull” these changes into one or more author-

itative repositories. In either case, all other users may then update their local copy of the

repository.

Decision With CVS development ground to a halt, this only leaves Subversion and Git

as contenders for the underlying VCS of EDGE. The decision was made to continue de-

velopment around SVN, while providing the extensibility for Git integration in the future.

Subversion allows development efforts to preserve how EDGE interacts with version con-

trol. It provides continued support for existing repositories, without requiring migration

to a new repository format. Git may be introduced in the future to provide greater flex-

ibility in the product development process. Widespread adoption of Git for open-source

software projects demonstrates the presence of developer needs not currently addressed by

Subversion.

3.3.4 Persistent Relational Datastore

Persistent information in web applications has, until recently, mainly relied upon relational

database models. This allows information to be broken up categorically into tables. Ta-

ble entries can then be related to one another through unique identifiers. Structured Query

Languages (SQL) can then we used to access and filter the information for use. Newer

data formats like XML and JSON have led to the creation of many document-based per-

sistence tools. In these systems, an entry is assigned a unique identifier which may be

used to retrieve or modify its contents. Documents may also contain the identifiers of other

documents, which can be used to create relationships between documents.

The following comparison factors were used to evaluate the different persistent datas-

tores:
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• Query and Filter Support

With a large dataset, it is important to be able to limit the number of results that must

be processed by the web application. Query and Filter mechanisms allow a developer

to programmatically reduce the number of entries in a datastore that are considered,

by reducing the number of entries which are returned by a request and by reducing

the number of necessary requests.

• Transactional Safety

Modifications to the information in a datastore should not affect simultaneous re-

quests for information. Each request should be handled based on the currently avail-

able information and neglecting any information that was entered during the request.

Further, transactional safety prevents changes from being finalized until all actions

are completed successfully. A single request may involve modifying several differ-

ent entries in the datastore. A transaction allows all changes to be reverted if any

one change fails. This also prevents ongoing requests from accessing incomplete or

incorrect information.

• Available Ruby Libraries

Library support of a datastore eliminates the need for a developer to implement the

code necessary to interact with it. This not only reduces development time, but allows

domain experts to correctly implement a robust, reliable, and performant interface to

an underlying datastore.

MySQL MySQL was first released in 1995. One of the first open-source relational database

management systems (RDBMS), MySQL stores information according to a tabular data

format. These tables are defined my a schema which declares the name, data-type, and

properties of each column. Entries in these tables are manipulated using a Structured Query

Language (SQL) dialect. A query may be used to create, read, modify, or delete rows in

each table. In 2005, MySQL gained transactional safety with the release of version 5.0.
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Unicode support introduced to MySQL in 2010. Numerous libraries exist for MySQL in

Ruby and several of them use native C libraries for improved performance.

Postgres PostgreSQL, or Postgres, was first released in 1996. It supports all of the same

features as MySQL, including transactions and unicode support. Where MySQL tradi-

tionally focused on performance, Postgres emphasizes enterprise stability and reliability.

Postgres features full compliance with the SQL 2011 standard and has been shown to be

fully ACID compliant for data integrity. Strong security and access control are built into the

Postgres engine. Postgres authentication goes beyond local usernames and passwords, be-

ing able to integrate with external authentication sources (i.e. LDAP, Kerberos, RADIUS).

Authorization is supported through role and group-based permission sets. These can be

further customized on a per-database basis.

CouchDB CouchDB was released in 2005 and is one of many so-called “NoSQL” database

engines. Unlike SQL databases, CouchDB diverges from a tabular data format and instead

stores information in a document format. CouchDB utilizes JSON to represent informa-

tion as nested sets of key-value pairs. Relationships are implemented through numerical

identifiers or URI references to other documents. While many libraries exist for accessing

CouchDB, it also has a REST compliant web API which can be accessed with an HTTP

client. Access control is implemented similarly to a VCS, where authorship and group

membership are used to limit permissions.

BaseX BaseX was released in 2007. Like CouchDB, BaseX is a document-based datas-

tore. However, BaseX relies on the XML data format for document storage. These docu-

ments may be validated against an XML schema definition (i.e. DTD, XML Schema, Re-

laxNG), much like a SQL schema. Querying of documents is possible through the XPath

and XQuery languages. BaseX has a native REST interface with HTTP and WebDAV
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support. Administrative actions and document manipulations are performed over this in-

terface. The modular design of BaseX allows for extension of existing functionality and is

used to implement extended functionality. It is possible to configure BaseX to operate as a

stand-alone web application, complete with HTML rendering functionality.

Decision The ability to quickly query a dataset has been leveraged heavily in the develop-

ment of EDGE and the FACETS tools. This requirement eliminates CouchDB as an option.

BaseX relies heavily on XML related technologies. This is fine for development that relies

on XML, but means a developer will need to learn to define schemas and queries for XML.

Postgres and MySQL share many features. The similarities between their SQL dialects

makes it feasible to use them interchangeably and to plan for an eventual migration from

one to the other. Postgres has promising enterprise features, but significant investigation

is needed to leverage them in practice. For EDGE it was decided to use MySQL as the

relational datastore. This allows design efforts to borrow aspects of the EDGE 1.0 schema

design, and simplifies the migration from the EDGE 1.0 schema to a new EDGE schema.

3.3.5 Templating

Templating is a key component of dynamic websites. It allows a developer to define a con-

sistent look and feel while allowing for a modular approach to building web pages. A tem-

plating language allows templates to go beyond “find and replace” functionality by allow-

ing code execution inside the template itself. XSLT was originally developed to combine

XML documents and to translate between XML Schema. The advent of XHTML made it

possible for an XSLT to convert an XML document into an XHTML web page. ERB has

a long history of being used in Rails projects to generate HTML pages. An ERB template

combines static HTML elements with Ruby code to allow for conditional and loop-based

generation of page content. HAML provides a reduced syntax for HTML which greatly

reduces the number of characters needed to describe the elements of a document. Further,

it also allows Ruby code execution to provide ERB like functionality.
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The following additional criteria were used in the evaluation of templating languages:

• Readability

It should be readily understood what HTML will be generated by a template. This re-

duces the likelihood of generating incomplete or incorrect web pages and the amount

of time necessary to make modifications to existing templates.

• Programmability

A template should act as more than a stencil for the layout of a web page. It must

allow the developer to dynamically change what HTML is generated based on state

information from a request and the specific content being rendered. This cannot be

achieved without support for conditional rendering, template parameters, and iterative

generation.

• Brevity

Templating languages should allow for clear and concise declaration of HTML struc-

tures. Having a brief syntax which requires minimal code to generate a useful web

page, allows a developer to quickly implement new templates and reduces the amount

of time spent fixing rendering errors.

XSLT Paired with an XML database or XML compatible API, eXtensible Stylesheet Lan-

guage Transformations (XSLT) offer a way of converting XML to other formats. An XSLT

is written entirely in XML, allowing a developer to use the same language to define both

a data storage format and its web representation. This is also made possible by the XML

grammar for HTML, XHTML. XSLT supports conditional statements and uses a func-

tional approach to handle arrays of data. Rendering is accomplished by applying an XSLT

to XML documents. However, XSLT documents are fairly verbose compared to templates

from other languages. This is largely due to the repetition present in XML tags, but is also

encouraged by the functional programming paradigm.
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ERB Embedded Ruby (ERB) is a templating language which allows developers to place

Ruby code into an HTML document. Developers start by designing a web page using the

usual HTML and CSS practices. Information is supplied to the template as variables which

may be accessed and manipulated through Ruby code. Conditional and iterative rendering

are supported by the same mechanism. In this way, ERB effectively extends HTML through

the use of Ruby code to guide mark-up generation.

HAML The HTML Abstraction Mark-up Language (HAML) relies heavily on the “Don’t

Repeat Yourself” (DRY) principle. HAML leverages a nested tree format to eliminate the

need to express both starting and ending tags. These trees consist of the HAML domain

specific language, which provides keywords that eliminate the verbosity necessary to de-

scribe HTML. Ruby code may be evaluated throughout the DSL to populate attribute val-

ues, provide content, and for performing conditional and iterative generation. Of the three

proposed templating languages, HAML is the most terse, at the expense of not being easily

read by new developers.

Decision More than a third of the existing EDGE codebase consists of HTML templates.

This meant that EDGE 2.0 would require a similar amount of effort for templating and

that effort should be made to improve templating speed and efficiency. ERB provides no

additional benefit over raw HTML, with the exception of limited programming inside the

template. XSLT suffers from the same problem, while also introducing the need to learn

an entirely new programming syntax. HAML was chosen for two main reasons. First,

programmability in HAML is achieved using the Ruby language, requiring no additional

developer knowledge. Second, HAML significantly reduces the amount of code neces-

sary to represent HTML in a template. These two factors serve to reduce the amount of

time spent developing the structure and generation of the web pages, allowing front-end

development efforts to focus on the usability, accessibility, and aesthetics of EDGE.
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3.3.6 Mark-up Language

Support of a mark-up language allows EDGE users to develop web content quickly. Gen-

eration of a web-page from a mark-up language eliminates a certain degree of human error,

while also providing for a consistent look and feel for the EDGE environment. Further, a

mark-up language allows for comparison of documents in plaintext and without additional

tools. This greatly reduces the effort of merging changes from intermediate commits.

The following additional comparison factors were used to evaluate mark-up languages:

• Readability

Much like the developer requirements for template readability, a mark-up language

should convey how content will be translated into HTML as intuitively as possible.

This allows a document author to spend less time focusing on formatting and render-

ing, and more time developing quality content.

• Extensibility

A mark-up language should allow for the introduction of syntax specific to where it is

being used. This allows developers to incorporate new functionality into the language

to assist authors in creating rich content.

• Multimedia Support

The Internet relies heavily on multimedia to convey information to its consumers.

A mark-up language which is used to generate HTML should provide substantial

support for the inclusion of multimedia into the final document. At a minimum this

should include audio, images, and streaming video.

• Available Editors

Authors should be able to edit a mark-up document both offline and online. Web-

based editors with integrated preview capability are necessary to support editing of a

document from a web-browser. Most mark-up languages can be edited by any mod-

ern text editor. However, language specific editors allow previewing of the resulting
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document, syntax highlighting and validation, and tools for generating specific docu-

ment structures (i.e. tables and figures).

MediaWiki EDGE 1.0 utilizes MediaWiki as a mark-up language for its wide feature set,

extensibility, and overall readability. It remains one of the most used mark-up languages in

the world, and its functionality has continued to grow in order to support newer multimedia

formats. Unfortunately, much of this new functionality relies heavily on the MediaWiki

engine and not the HTML renderer. This greatly increases the difficult of extending the

functionality of the language for future projects. The main online editor for MediaWiki,

VisualEditor, has remained largely unchanged and provides no help with mark-up keywords

and directives. There have been a few attempts to develop offline editors for MediaWiki,

but none of these have gained notable popularity.

HTML While verbose, HTML is the the most flexible of the mark-up languages. An

author has full control over the structure and appearance of the resulting HTML. They

also have direct access to the extended multimedia capabilities of HTML5 and animation

functionality of CSS3. HTML has the added benefit of many online and offline editors

which provide full support for the language, previews, and even WYSIWYG editing. In

practice, however, HTML can require a significant amount of knowledge on the part of the

author and even experienced authors see the advantage of a simpler mark-up language like

MediaWiki.

Markdown The Markdown language was first introduced in 2004 as an alternative to

pre-existing solutions. Its syntax emphasizes strong readability in its textual form. A

Markdown document should be equally readable in plaintext and HTML forms. Mark-

down supports common HTML structures like headers, lists, and links. However, it lacks

a standardized syntax for tables and multimedia. This lead the Github project to adapt the

syntax into so-called “Github Flavored Markdown” shortly after adopting Markdown as



58

their preferred document format. Despite these inadequacies, there are dozens of online

and offline editors available for Markdown, and in most cases an author can be productive

with a simple text editor.

Decision Of all the design decisions, mark-up language support is one of the most impor-

tant to the users of the EDGE system. It is not necessary to eliminate rendering of a markup

language so long as a renderer is available for the Ruby language. To this end, this decision

is actually a declaration of which language will be modified to meet the needs of the EDGE

system. For example, in EDGE 1.0 augmentation of MediaWiki was necessary to allow for

inter-project linking and better support for the embedding of multimedia files. MediaWiki

was ultimately selected as this language for EDGE 2.0. This preserves compatibility with

documents written with the previous “EDGE Flavored MediaWiki”, while allowing for the

continued evolution of the markup syntax. HTML and Markdown support will also exist in

EDGE to provide flexibility to document authors, while sacrificing the readability and/or

evolved features of the extended MediaWiki grammar.

3.3.7 Summary

EDGE will be developed using the Ruby programming language. REST functionality will

be built on top of the Sinatra DSL. Document management will continue to be provided by

Subversion, with the possibility for support of Git in the future. Relational data will con-

tinue to be stored in a MySQL database, utilizing an improved schema for the contained

tables. HAML will be used for templating each type of page presented to an EDGE user.

Rendering support for HTML, Markdown, and MediaWiki will be implemented. How-

ever, MediaWiki will be augmented to provide extended functionality that is specific to the

EDGE system.
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3.4 Implementation

Development of the EDGE 2.0 system began in the the Summer of 2014. EDGE 2.0 was

launched in January 2016. The functionality of EDGE was divided across multiple new

REST services (Fig. 3.2). These services leverage HTTP to communicate intermediate

results. While no code is shared between EDGE 1.0 and 2.0, URI compatibility was a high

priority for site content. Access to project content follows the EDGE 1.0 URI scheme. New

URI and services were created for the administration of the environment. A new database

schema was developed in order to improve system performance, while also preserving

existing metadata. Visual aspects of EDGE were updated to meet the expectations of a

modern look and feel, while also improving usability (Fig. 3.3). Work on EDGE 2.0 was

completed on January 10th, 2016.
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Figure 3.2: EDGE 2.0 Architecture

The following sections recount the development effort over this 18 month period. First,

there will be a discussion of the efforts made to ensure REST compatibility in EDGE. This

is followed by a discussion of the implementation of the core framework of EDGE, known
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Figure 3.3: UI Examples for EDGE 1.0 (Left) and EDGE 2.0 (Right)

as Wire. The subsequent sections discuss the functionality of the REST endpoint services in

EDGE, the schema for the relational database, and its integration with Subversion. Design

and implementation of the web front-end is then described. Lastly, a brief overview of the

open-source software used to build EDGE and the mechanism for deploying a new system

are discussed.

3.4.1 REST Compatibility

In order for EDGE to be REST compatible, it must meet three main requirements. First, a

REST capable protocol must be used for all high-level communications. Second, it must

make proper use of Uniform Resource Identifiers. Third, it must make use of Hyperme-

dia as the Engine of Application State (HATEOAS) the following section discusses the

implementation decisions which enable EDGE to have full REST compatibility.

Protocols High-level communications inside of EDGE occur between a client and the

REST endpoints, as well as between the distributed services that make up the DWS envi-

ronment. These communications are performed via the HTTP protocol. HTTP is already
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a REST compliant protocol, requiring no additional developer effort for these communica-

tions to be REST compliant. However, it is necessary for REST services in EDGE to use

HTTP when communicating with one another. EDGE makes this possible by forcing ser-

vices to use an HTTP client to send requests to each of the services. Services are required

to only accept requests via HTTP. Communication with the REST endpoints already meets

this requirement when using an HTTP web browser.

URI REST compliance for URIs falls into two categories. First, each REST endpoint and

service within the DWS must possess a unique Uniform Resource Locator (URL). Services

and endpoints in EDGE meet this requirement by being assigned a URL that describes its

purpose (i.e. /db, /history, /edge). Second, specific data representations that are produced

by a service or endpoint must be further identified by a unique Uniform Resource Name

(URN). Service and endpoints in EDGE meet this requirement by assigning a URN when a

representation is first created (i.e. /db/users/1234). Meeting these two requirements allows

a REST client to request that an action be performed for a specific representation within

the DWS.

HATEOAS In order to be REST compliant for HATEOAS, all client-server communica-

tions are forbidden from relying on information stored about the client by a server. For the

client, this means that all information necessary to complete a request must be sent as part

of the request itself. For the server, this means that it must never store information about

a client for the handling of future requests. EDGE meets the client requirement by using

cookies to store information about a client’s current session. These cookies are stored on

the client and can later be transmitted with a request. EDGE meets the server requirement

through a development contract which explicitly prohibits the storage of client state server

side. This constraint is enforced by other developers through code review and stated best

practices.
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3.4.2 REST Framework — Wire

Ruby’s Sinatra framework provides the tools to quickly build APIs that meet an applica-

tion’s specific needs. However, functionality in EDGE is built by composing REST services

on top of one another. This modularity allows the code base to be reduced significantly by

reusing core functionality whenever possible. Therefore, it was decided to build a core set

of reuseable services on top of the Sinatra DSL to serve as the foundation of EDGE. This

framework would later be referred to as Wire.

The name Wire came about as part of an analogy of a DWS. In a DWS, multiple REST

services work together to satisfy a client request. This composition of services works a

lot like how a network administrator would set up a computer network. Each server is

connected to the others through electrical or fiber optic “wires”. Wire is a framework

which networks multiple REST services together (Closet), configures those services to

perform specific tasks (Applications), providing each service with a uniform request format

(Context), and supplies an additional layer of security in the form of Authorization.

Closet The Closet is the single most important component in Wire. Much like an actual

networking wire closet, the Closet is responsible for orchestrating the connections between

REST services. Client requests are translated into a uniform request Context, routed to their

respective Application based on URI, and then processed by the Application itself. Wire

uses its own Ruby Domain Specific Language to configure the Closet and the Applications

running inside of it. Configuration manages the dependencies between services, specific

options for individual services, and also data dependencies for layout templates.

Context Ruby Rack provides a common interface which developers can use to build web

services. This allows new web servers to be written for Rack without breaking compatibil-

ity for services built on top of Rack. The Closet is an implementation of the Rack interface.

When receiving a request from a Rack-compatible web server, the Closet transforms the
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Rack request format into a easier to use internal format called a Context. A Context con-

tains all of the information from the Rack request, as well as meta-information about the

Closet’s configuration and the Application that will handle the request.

Applications A Wire Application is a REST service that is accessed by URI. Applica-

tions may be instantiated as many times as necessary and may have unique configurations.

Several useful core Applications exist as part of the framework to bootstrap the develop-

ment process. Authorization for an Application can be performed use one of the built in

mechanisms (i.e. any, read-only, user-specific) or by implementing a custom authorization

handler. Successfully authorized requests are assigned a subset of CRUD actions which are

allowed for the current request.

3.4.3 REST Endpoints — Applications

The Wire framework provides a standard set of Applications for developers to use to jump-

start a new project. Each Application serves a purpose which is distinct from the others.

These Applications are meant to provide basic functionality and may be replaced by newer

versions or supplemented by the custom Applications that are needed for a particular DWS.

The following descriptions outline the basic functionality of each of the provided applica-

tions.

File The File Application can be used to serve any file “as-is”. No rendering or transfor-

mations will be applied to the file or its contents. A best-effort attempt will be made to

identify the MIME Type of the file and report this in the HTTP Content-Type header

of the response. This Application will most likely be used to handle static assets such as

site logos, fonts, and JavaScript. Additionally, the File Application functions as a read-only

service that will never modify the files being served.
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DB The DB Application can be used to communicate with any database supported by

the Ruby DataMapper library. It provides a basic CRUD interface (Create, Read, Update,

Delete) to the database. Each table in the database is specified by assigning a sub-URL

and a DataMapper Model. For read operations, the DB Application will return one or more

results as a well-formed JSON document. For write operations, the DB Application only

accepts JSON documents.

Render Render is a collection of Applications which transform between data represen-

tations. The supported CRUD actions are defined according to the functionality of the

renderer. These Applications are intended to provide a complete set of tools for handling

user facing content. The following Applications are available in Render:

• Document

The Document renderer will request a document from another service and render the

response according to the MIME Type. If no renderer is found for that MIME Type,

the response will contain the unaltered document. One or more MIME Types may be

assigned to a document renderer inside the Closet.

• Editor

The Editor renderer will request a document from another service and place the re-

sponse into an editor template based on the MIME Type. If no editor template is

found for that MIME Type, the response will indicate that no editor was found. One

or more MIME Types may be assigned to an editor template inside the Closet.

• Error

The Error renderer relays a request to another service. If the response has a status

code other than HTTP 200 Success, it will attempt to find an error template to render

instead. If a template cannot be found, the response is simply forwarded. One or

more error codes may be assigned to an error template inside the Closet.
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• Instant

The Instant renderer only accepts an HTTP Post request. Instant shares its configura-

tion with the Document renderer. It will attempt to match the MIME Type indicated

by the request URI with a document template. If a template is found, it renders the

content of the request into the template and returns the response. The practical appli-

cation of Instant is to provided previews for renderable documents.

• Page

The Page renderer forwards a request to another service and then renderers the re-

sponse into a page template. Optionally, a global template may be defined to use as

a layout for a Page renderer. Use of this global layout can be enabled or disabled on

a per Application basis. The Page renderer will likely be used to produce the final

HTML document to be viewed by a web browser.

• Partial

The Partial renderer functions similarly to the Page renderer, but is intended to per-

form an intermediate transformation before rendering the final page. It can be used

in conjunction with a Page renderer to render information from several different ser-

vices.

• Style

The Style renderer transforms a SASS or SCSS stylesheet into minified CSS to be

used by a web browser. A single Style renderer may serve one or more stylesheets.

Styles are rendered only once, when the Closet is first initialized.

Repo Repo is a collection of Applications which provide a CRUD interface to version-

controlled repositories. Currently, only Subversion is supported. A Repo Application will

respond to a GET request with the latest version of a document with the MIME Type set.

If the document is a directory, it will render a directory listing with links to the files and

higher-level directories.
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History History is a collection of Applications which provide a read-only interface to the

revision logs of version-controlled repositories. Currently, only Subversion is supported. A

History Application will respond to a GET request with the full history log for the reposi-

tory, directory, or file specified.

Login The Login Application forces a client to temporarily redirect to another URI. This

can be used to force a client to authenticate before continuing. Its only purpose is to perform

this redirection.

Cache The Cache Application provides a LMDB-based cache for responses from another

service. For a read operation, the Cache looks for a cached copy of the response. If none

exists, it forwards the request to the service. For write operations, the Cache forwards

the write request to the service. Upon completion, it requests a new version of the read

response for that URI, replacing the representation in its cache and then returns the original

response to the client.

3.4.4 Database Schema

Project documentation in EDGE is stored solely in a Subversion repository. Information

about a project or an EDGE installation (metadata) is stored in an SQL relational database.

EDGE makes use of relational data to support user-specific settings, administration, project

management, and security. The core of EDGE relies on seven primary tables for operation

(Fig. 3.5). EDGE interacts with the database through the Ruby Gem, DataMapper. The

DataMapper Gem acts as an Object Relational Model (ORM), capable of translating be-

tween the database tables and native Ruby Objects. This greatly simplifies the task of

manipulating database entries and automates the process of creating and upgrading the

database schema. It is not necessary for a developer to have any SQL knowledge to use

DataMapper. Further, DataMapper does not require a specific SQL database, supporting a

wide range of SQL databases servers. The following sections discuss the schema chosen
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Admin

+id: Serial
+start: DateTime
+end: DateTime
+user: User

Membership

+id: Serial
+start: DateTime
+end: DateTime
+project: Project
+roles: List[Role]
+user: User

Project

+id: Serial
+name: String
+description: Text
+public rev: Integer
+default node: String
+children: List[Project]
+parents: List[Project]
+tracks: List[Track]
+memberships: List[Membership]

Role

+id: Serial
+name: String
+description: Text

Track

+id: Serial
+name: String
+description: Text
+projects: List[Project]
+users: List[User]

User

+id: Serial
+username: String
+first: String
+last: String
+start: DateTime
+end: DateTime
+disciplines: List[Discipline]
+memberships: List[Membership]
+tracks: List[Track]

Discipline

+id: Serial
+codename: String
+longname: String

*1
1

*

1+ 1*

parents, children

1
*

*

*
**

*

1

Figure 3.5: EDGE 2.0 Database Schema

for the EDGE system.

User Users are anyone who is able to log in to the EDGE system. Each user is uniquely

identified by a single username. Optionally, a user may enter their first and last names to

further clarify who they are. A start and end date are used to limit access for a user. When

the end date has passed, a user is no longer able to perform EDGE tasks. At this time, the

end date may be moved into the future, or a new record may be created in order to preserve

an audit trail. A User may belong to one or more Disciplines, Projects, or Tracks.

Admin The Admin object is used to grant access to administrative functionality in EDGE.

An Admin record specifies a user to elevate to Administrator. Each record features a start
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and end date for granting this access. When the end date has passed, a user is no longer able

to perform administrative tasks. At this time, the end date may be moved into the future, or

a new record may be created in order to preserve an audit trail.

Discipline A Discipline is used to define an organizational unit that a user might belong to.

Definition of a Discipline is performed by assigning a codename (e.g. ME) and a longname

(e.g. Mechanical Engineering). In this case, users belonging to the ME Discipline might

include practicing Mechanical Engineers, technicians, or support staff. Users may belong

to more than one discipline.

Track Tracks are common themes or focus areas that help to group and describe develop-

ment efforts. A Track is defined by a short name (e.g. Healthcare) and a longer description.

One or more Users or Projects may be assigned to a Track based on their focus area.

Project Projects exist for any development effort carried out by EDGE Users. A Project

is defined by an identifier (e.g. P14452), a long name (e.g. Dresser-Rand Compressor

Wired Data Recorder), and a lengthier description. The public rev field is used to

indicate which revision of the repository to show for publicly viewable documents. The

default node field indicates which document to use as the public homepage of the

project. Projects may be assigned to one or more Tracks, and have no limit to the number

of Memberships. Additionally, a Project may have one or more Parent or Child Projects as

part of a family tree.

Role Roles are used to assign subsets of permissions to a User for a given Project. A Role

is defined by a short name (e.g. Editor) and a lengthier description. Delegation of EDGE

permissions to a Role currently takes place in the authorization logic for EDGE and is not

configurable.
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Membership Memberships allow a User to be assigned to a Project, with a subset of

Roles. Each Role grants the User a subset of permissions with respect to the Project.

Memberships have both a start and end date which can be used to limit a User’s access

to the Project. When the end date has passed, a User is no longer able to perform Project

tasks. At this time, the end date may be moved into the future, or a new record may be

created in order to preserve an audit trail.

3.4.5 Subversion Integration

The Ruby language does not have any native client support for Subversion. In order to inte-

grate SVN with EDGE, it was necessary to develop a library to interface with the command-

line utilities svn and svnadmin. Several of the supported operations for these tools do

provide XML as an alternative output format for the results of operations. This was lever-

aged in order to eliminate the need for string parsing or regular expression matching of

command line results. The resulting SVN library was implemented to be compatible with

the software interface defined by the Repo and History Applications provided by the Wire

framework.

Create In order to create a new SVN repository, the svnadmin create command is

leveraged. This command creates a new empty SVN repository whenever a new Project is

first created. The command will fail gracefully if a repository already exists.

Read Reading a document from the repository is performed whenever it is rendered,

edited, or downloaded by a user. In the previous version of the EDGE system, the whole

repository would first need to be checked out to a temporary destination. The MIME-Type

of the file was then determined, and the server would return the requested file. Periodi-

cally, a CRON task would then clean-up the repository checkouts. This workflow suffered

from long checkout times for repositories with large histories or big files. It also required a

sizeable amount of temporary space to handle multiple checkouts. In EDGE 2.0, this was
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remedied through the use of the svn cat command. This command returns the binary

content of the file directly, without the intermediate checkout. The svn propget com-

mand was then used to determine the MIME-Type for the file. This resulted in much faster

read operations and a decrease in the required disk space.

Update Any time a document is created or modified through the web front-end, it is nec-

essary to follow the same sequence of operations that a user would perform locally. First,

the repository is checked out to a temporary directory using svn checkout. Then the

file is written to the appropriate directory in the repository. If the file did not exist, the

svn add command is used to add it to the list of tracked files. Next, the change is com-

mitted by calling svn commit with a change message provided by the request. Because

the change was performed on the behalf of the user, it is necessary to modify the revision

record to reflect the appropriate author. This action is performed using the svn propset

--revprop command. Lastly, the temporary checkout is removed from disk.

Delete Deletion of a repository or individual file is expressly forbidden through the web

front-end. This serves to prevent accidental data loss due to user error. Instead, a user must

perform a file or directory deletion in a local checkout and then committing the changes.

Because this action requires additional thought and effort, it mitigates the risk of a file or

directory being accidentally removed while a user does not have access to a full SVN client.

History The revision history of an SVN repository may be accessed using the svn log

command. EDGE executes this command with the --xml flag in order to retrieve an XML

representation of the revision history. The resulting XML is then converted into a JSON

representation to be consumed by other REST services. Revision history may be accessed

for a single file, directory, or the entire SVN repository.
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3.4.6 Web Front-End

Apart from Wire, the web front-end for EDGE represents the bulk of the software. The

front-end was built around modern HTML5, CSS3, and Javascript technologies. It relies

on several well-known web libraries: Foundation and SASS (CSS), Dojo and DataTables

(JS), and HAML (HTML). The front-end exists as multiple distinct views which share a

common layout and are served by REST service endpoints. The following is a discussion

of the implementation of the EDGE web front-end, with respect to the technologies used

and the functionality provided.

Technologies With web development gaining major support from the open-source soft-

ware community, there are many libraries which can be used to accelerate the development

process. EDGE relies on HAML for authoring layouts and views for each part of the web

front-end. Styling of these views is performed by leveraging CSS3. A mobile-friendly

look and feel was built on top of the Zurb Foundation CSS library. Additional styling is

performed using Syntactically Awesome Stylesheets (SASS), a reduced grammar and tem-

plating language for CSS3. The Font-Awesome icon library is used as a uniform icon set

across the EDGE front-end. A JavaSript library (SimplyForms) was written, using the Dojo

JavaScript Toolkit, to allow HTML forms to be submitted directly to a REST endpoint us-

ing JSON as the exchange format. The DataTables JavaScript library was also used, in

order to enable sorting, paging, and searching for HTML tables. Working in concert, all of

these tools work together to provide a modern web experience and rich user interactivity.

Rendering and Editing Documents from an SVN repository may be rendered using three

different views:

1. /edge

The EDGE view renders mark-up files, audio and video players, and images from an

SVN Repository to HTML and then places this HTML is the global EDGE layout.
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This is the primary view for rendering documents to the web.

2. /content

The Content view renders documents the same way as the EDGE view, except that

it ignores the global layout. This view is especially useful for embedding rendered

documents in other HTML pages or content management systems like the RIT my-

Courses service.

3. /repos

The Repos view performs no rendering of any kind on a document, sending the entire

file to a web client. It is up to the client to either render the document or download it

to a file for local viewing.

Views

• Dashboard

The Dashboard provides a “one stop shop” for EDGE users. Here they can quickly

navigate to their project and update their personal information. DataTables is used to

allow a user to sort and search for any project where the have membership. They can

also view the roles assigned to them for each of the projects. Users can modify their

personal information to include a first and last name, the tracks they belong to, and

contact information.

• Project Info

Each EDGE Project has its own unique Project Info page. It provides a quick overview

of useful information for a project including: a description, the tracks it belongs to,

useful links (i.e. SVN Repository URL, Public Homepage), and a complete list of

memberships.

• Track Info
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Each EDGE Track has its own unique Track Info page. It provides a quick overview

of useful information for a track including the description and a complete list of

Projects belonging to the Track.

• Administration

The Administration view allows an EDGE Admin to view information about the ver-

sion of EDGE, its configuration, and each of the tables in the SQL database. Admins

can use this interface to create new Projects, Memberships, Disciplines, and Tracks.

Here, they can also edit these objects and set the access restriction dates for Users

and Memberships.

3.4.7 Deployment

Installation of the previous EDGE system required a significant amount of time for a system

administrator. First, the administrator would have to manually install an Ubuntu Server OS.

Second, they would then checkout the EDGE source from SVN. Third, they would then

install all OS packages necessary to support EDGE. Then they could configure MySQL

and Apache, create repository locations, and configure EDGE to connect to the MySQL

server. Finally, they would be able to enable the EDGE website for access. This whole

process could take a half hour for an experienced administrator and upwards of three hours

for a beginning administrator.

Every effort was made to simplify this process as much as possible for EDGE 2.0.

Installation of the Host OS is taken care of by an automated install script. Packages, source

code, and configuration are completely automated through the Ansible provisioning tool.

An administrator need only initiate a network boot to start the installation process, create

the Ansible variables required for provisioning, and start the provisioning process. The

rest of the installation is performed entirely automatically and requires no intervention

by an administrator. EDGE 2.0 also leverages DataMapper to perform the initialization

of a schema and content for the SQL database. Further, EDGE 2.0 has full support for
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connecting to remote database servers, eliminating the need to install one locally.

3.4.8 Summary of Open-Source Software Used in EDGE

EDGE 2.0 made extensive use of dozens of open-source software projects for its design,

implementation, and deployment. The Open-Source applications used in the installation,

execution, and administration of EDGE are listed in Table 3.2. The Open-Source libraries

used by the EDGE application are listed in Table 3.3. The Open-Source applications used

in the development and testing of EDGE are listed in Table 3.4.

Table 3.2: Open-Source Applications
Name Version License Purpose URL
Ansible 1.9.4 GPL 3.0 Provisioning Link
Apache HTTPd 2.4.7 Apache 2.0 Web Server Link
Bundler 1.10.6 MIT Gem Management Link
Gem 2.4.5.1 MIT Gem Installation Link
MySQL 5.5.49 GPL 2.0 Relational DB Link
MyWebSQL 3.6 GPL 3.0 DB Administration Link
Puma 2.15.3 BSD 3-Clause Ruby Rack Server Link
Ruby 2.2.4 BSD 2-Clause Ruby Interpreter Link
Subversion 1.8.8 Apache 2.0 Version Control Link
Ubuntu Server 14.04 Commercial Operating System Link

https://www.ansible.com
https://httpd.apache.org
http://bundler.io
https://rubygems.org
http://www.mysql.com
http://mywebsql.net
http://puma.io
https://www.ruby-lang.org
https://subversion.apache.org
http://www.ubuntu.com
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Table 3.3: Open-Source Libraries
Name Version License Purpose URL
cLogger 2.0.2 GPL 2.1 Logging Link
DataMapper 1.2.0 MIT ORM Link
DataTables 1.10.7 MIT Interactive Tables Link
Docile 1.1.5 MIT Ruby DSL Builder Link
Dojo 1.10.7 BSD 3-Clause JavaScript Framework Link
Font-Awesome 4.3.0 MIT/Mixed Icon Theme Link
HAML 4.0.7 MIT HTML Templating Link
jQuery 2.1.4 MIT JavaScript Framework Link
LMDB 0.9.8 OpenLDAP PL Persistent Cache Link
mysql2 0.4.3 MIT SQL Queries Link
Rack 1.6.4 MIT Ruby Server Interface Link
REST-Less 0.1.3 MIT HTTP Client Link
SASS 3.4.21 MIT CSS Preprocessor Link
Tilt 2.0.2 MIT Document Rendering Link
Wiki-This 0.1.4.7 MIT MediaWiki Rendering Link
Wire 0.1.4.26 MIT Ruby REST Framework Link
Zurb Foundation 5.5 MIT CSS Framework Link

Table 3.4: Open-Source Development Tools
Name Version License Purpose URL
Firefox 47 Mozilla PL 2.0 Validation Link
Git 1.9.1 MIT Source Control Link
GitHub n/a n/a Public Source Hosting Link
GitLab n/a n/a Private Source Hosting Link
GNU nano 2.2.6 GPL 2.0 Test Editor Link
Google Chrome 47 Commercial Validation Link
Graphviz 2.38.0 Eclipse PL Documentation Link
JetBrains Rubymine 7.0.0 Commercial Ruby IDE Link
YardDoc 0.8.7.6 MIT Documentation Link

http://clogger.bogomips.org
http://datamapper.org/
https://datatables.net/
https://github.com/ms-ati/docile
https://dojotoolkit.org/
http://fontawesome.io/
http://haml.info/
https://jquery.com/
https://symas.com/products/lightning-memory-mapped-database/
https://github.com/brianmario/mysql2
http://rack.github.io/
https://github.com/DataDrake/rest_in_peace
http://sass-lang.com/
https://github.com/rtomayko/tilt
https://github.com/DataDrake/wiki-this
https://github.com/DataDrake/wire-framework
http://foundation.zurb.com/
https://www.mozilla.org/en-US/firefox/new/
https://git-scm.com/
https://github.com
https://about.gitlab.com/
https://www.nano-editor.org/
https://www.google.com/chrome/browser/desktop/
https://www.graphviz.org
https://www.jetbrains.com/ruby/
http://yardoc.org/
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3.5 Extensibility

Every effort was made to make EDGE as extensible as possible. The Wire framework

serves as a strong foundation of tools for building new applications and orchestrating the

deployment of EDGE. The design philosophies of modularity, REST, and reusability enable

the introduction of new features to the EDGE DWS in the form of new web applications,

support for new document formats, alternative forms of document storage, integration with

external service providers, and increased security.

Applications The most important concept of DWS and REST design is the idea of com-

position. No one application is built upon a single monolithic program. Instead, it is built

upon smaller reusable services that each perform a particular function, such as manipulat-

ing a database, rendering a document format, communicating with an external service, or

even reconfiguration of the DWS. Composition of a DWS application is the act of connect-

ing instances of reusable services together. New applications may be composed of existing

services or require the creation of new services to provide non-existent functionality. This

allows the development effort to center around building rich web interfaces for interacting

with these services.

In the event that a new Wire Application needs to be developed a developer need only

implement a single function to satisfy the interface. The invoke() function takes in the

list of CRUD operations resulting from an authorization process and a Wire Context (Fig.

3.6). The Context contains all of the information from a REST request and information

about configuration for an instance on the application. Extension of the Wire DSL allows

developers to provide configuration information for the creation of a Context. The response

for a Wire Application must be in the form of a Rack triplet: a three item array containing

Response headers, the body of the response, and an HTTP status code. Wire Applications

may perform any functionality desired, so long as this interface is followed.
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# Proxy method used when r o u t i n g
# @param [ Array ] a c t i o n s t h e a l l o w e d a c t i o n s f o r t h i s URI
# @param [ Hash ] c o n t e x t t h e c o n t e x t f o r t h i s r e q u e s t
# @return [ Response ] a Rack Response t r i p l e t , or s t a t u s code
def s e l f . i nv ok e ( a c t i o n s , c o n t e x t )

case c o n t e x t . a c t i o n
when : c r e a t e

d o c r e a t e ( c o n t e x t )
when : r e a d

i f c o n t e x t . u r i [ 3 ]
d o r e a d ( c o n t e x t )

e l s e
d o r e a d a l l ( c o n t e x t )

end
when : u p d a t e

d o u p d a t e ( c o n t e x t )
when : d e l e t e

d o d e l e t e ( c o n t e x t )
e l s e

403
end

end

Figure 3.6: Example Wire::App Implementation
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Document Rendering EDGE document rendering is handled by Ruby libraries. Each ren-

derer is associated with one or more MIME Types for it to handle. If a renderer gains

support for a new MIME Type a simple configuration change is all that is required to en-

able it. New renderers may be incorporated into EDGE by configuring them for supported

MIME Types. If a renderer does not exist for a particular MIME Type, it will be treated as

downloadable content or it will be necessary to develop a suitable Ruby library. In the case

of EDGE, it was decided to implement a custom MediaWiki renderer to allow developers

to integrate new mark-up features not supported by the core MediaWiki dialect. Figure 3.7

shows how Wire handles the configuration for a renderer.

r e n d e r e r : image do
p a r t i a l ’ v iews / p a r t i a l s / image . haml ’
mime ’ image / bmp ’
mime ’ image / g i f ’
mime ’ image / j p e g ’
mime ’ image / png ’
mime ’ image / svg+xml ’
mime ’ image / t i f f ’

end

Figure 3.7: Example Renderer Configuration

Document Storage Wire provides a common interface for adapting a repository system

into a REST service through the Repo Application. This application implements all of the

web-facing functionality, only requiring a developer to implement the following functions

for a new repository type:

do create file()

Satisfies an HTTP POST request by creating a new repository or file.

do read file()

Satisfies an HTTP GET request when the requested item is a file.

do read listing()
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Satisfies an HTTP GET request when the requested item is a directory.

do read info()

Retrieves metadata for the requested file or directory.

do read mime()

Retrieves MIME Type for the requested file or directory.

do update file()

Satisfies an HTTP PUT request by updating an existing repository or file.

A full explanation of the Repo interface can be found in Appendix A.3.

Wire also provides a common interface for accessing the history of a repository system,

via a REST service, through the History Application. This application implements all of

the web-facing functionality, only requiring a developer to implement a single function.

The get log() function retrieves the history for a specific file or directory. The History

Application then utilizes a HAML template to render this information to HTML. A full

explanation of the History interface can be found in Appendix A.4.

External Services One of the commonalities of most modern REST systems is the use of

HTTP as an application protocol. This means that while HTTP itself may be a communi-

cation protocol, it is possible to build robust and powerful functionality around it. HTTP

URIs can be used to identify specific services and functionality. HTTP methods may be

used to perform semantic actions of these URI. URI may also be linked together to build

complex workflows, interactive wizards, or stateful applications.

For a DWS a protocol like HTTP is the glue that holds everything together. It allows ser-

vices to communicate inside of an application or, more interestingly, with external services.

The Wire framework makes use of the rest-less HTTP client to communicate between

services. Rest-less provides a single function which allows a request to be made to any

service, internal or external. This makes it possible to author new Wire Applications which
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serve as “abstraction layers” for external web service APIs, providing a Wire compatible

interface to other services in the application. The end result being a trivial mechanism for

incorporating external services into a Wire-powered DWS.

Security EDGE 2.0 does not provide an internal mechanism for authentication. While

many libraries exist for Ruby that allow interaction with one or more authentication sources,

it was decided that the administrator be given as much flexibility as possible when select-

ing an authentication source. At RIT, authentication for EDGE is handled by the Apache

HTTPd web server. This allowed administrators to pick and choose from the large number

of authentication modules for Apache to configure an authenticated proxy for the Puma

Rack server. It is only necessary that the proxied request have the HTTP Remote-User

header set to the authenticated user’s username.

Authorization in EDGE is handled by the Wire::Auth module. While developers may

choose to use one of the existing authorization schemes, it is also possible to implement a

application-specific scheme through the Wire::Auth interface. This requires a developer to

implement a single method called actions allowed(). This function is provided the

context for the current request and is expected to return a list of the allowed CRUD opera-

tions. The list of actions is then passed to the invoke() method for the Wire Application.

Figure 3.8 describes the authorization interface.

# Get t h e a c t i o n s t h a t are p o s s i b l e f o r t h e c u r r e n t r e q u e s t
# @param [ Wire : : C o n t e x t ] c o n t e x t t h e c o n t e x t f o r t h i s r e q u e s t
# @return [ Array ] t h e p r i v i l e g e s f o r t h i s u s e r
def a c t i o n s a l l o w e d ( c o n t e x t )

Figure 3.8: Wire Authorization Interface
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Chapter 4

Dataflow Model: Theory and Development

The term dataflow can refer to several concepts. For this work, a dataflow model is a

description of concurrent processes in which one process is connected to another by one

or more directional links used to communicate information. A dataflow architecture is a

physical system which operates according to the behavior of a dataflow model. Processes

in a dataflow model may depend on information in order to perform their specific function.

If a process cannot perform work without receiving information from another process, this

communication is referred to as blocking. Work which can be performed without receiving

information from another process is referred to as non-blocking.

Dataflow models can be decomposed into the following components: computational

units, network communication links, network interface units, and network routing devices.

Computational units perform processes which generate or transform information. Network

interface units arbitrate the use of a single network communication link by one or more

computational units. Network routing devices facilitate the transfer of information from

one network interface unit to another. A network communication link allows information

to be transferred between a network routing device and a network interface unit. Operating

in concert, these computation and communication components provide services to client

devices, and make it possible to model DWS as dataflow architectures.

Translating a DWS into a dataflow architecture is a two phase process. First, the com-

putational processes must be decomposed into discrete tasks, assigned a cost based on the

time required to compute a result, and associated through task-dependency graphs. Tasks

requiring information produced by other tasks are referred to as dependent tasks. Second,
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the task dependencies between computational devices are translated into communication

tasks. Each network link will be assigned a capacity reflective of their bandwidth and will

be assigned to a network routing device. A network routing device will also be assigned

a capacity for its peak internal bandwidth. The resulting decomposition represents a com-

plete DWS, statically assigned resources for each of its components.

This chapter will cover three topics. First, assumptions and limitations of the dataflow

model are discussed. Second, the implementation of the dataflow simulator, DWSim,

are described with respect to its computational model, networking model, configuration,

datasets, and metric collection. Third, automated testing and verification of DWSim are

discussed.

4.1 Assumptions and Limitations

This section describes the assumptions made in the dataflow model, an in-depth discussion

of the practical limitations of what the model is capable of simulating, and the limitations

imposed upon the design of DWSim.

4.1.1 Assumptions

Several assumptions underlie the dataflow model. Each assumption describes a physical

limitation of real computer systems that was explicitly relaxed in the behavior of the model.

These assumptions serve to limit the scope and duration of this work, but are acknowledged

as non-trivial factors in real-world scenarios.

DWS elements have finite processing throughput. Processing elements employ a variety of

features which impact their achievable throughput. These features may include: the scaling

of operating frequency to reduce heat production or energy consumption, dynamic clock

scaling is response to processing demand, “turbo” modes which allow higher throughput for

a single hardware thread in the absence of other active hardware threads, and the hardware
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implementation of the device. This work makes the assumption that processing throughput

capacity is finite and fixed for the duration of the simulation.

DWS elements have finite communication throughput. Communication devices employ a

variety of features which impact their achievable throughput. These features may include:

spectrum contention for wireless networks, traffic congestion management and Quality of

Service, data consumption limits, and traffic priority mechanisms. Communications net-

works may also experience localized failures which reduce the available throughput for

a network. This work makes the assumption that communications throughput capacity is

finite and fixed for the duration of the simulation.

DWS elements have infinite energy scalability. Every element of a computing environment

consumes power when in use. Processors manage a limited power budget through the

management of clock speed, disabling of unused processing elements, and the use of low-

power idle modes. Network devices may vary their output power in response to line noise,

signal attenuation, or reduced traffic flow. Real-word systems may also have to account for

loss of power and the retasking of functionality among the remaining functional devices.

This work makes the assumption that energy is infinitely available for the duration of the

simulation.

DWS elements have infinite memory scalability. Every element of a computing environ-

ment requires the use of memory for operation. Processor performance may be impacted

by the size of memory buffers, hardware caches, or the availability of RAM for storing

application data. Network throughput may be impacted by the size of packet buffers in

interface cards and switches. All computing elements are limited by the throughput allow-

able by the interfaces to memory devices. This work makes the assumption that memory

devices possess infinite capacity and interface bandwidth.
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4.1.2 Limitations

In addition to the aforementioned assumptions, several limitations exist in the dataflow

model and DWSim application. These limitations were either imposed on the design of

DWSim to limit the scope of the work or exist due to practical considerations for the use of

DWSim.

Imposed The following limitations were imposed on the design of DWSim and its dataflow

model:

• Single Client Request Limit

At any given time, a Client may only perform a single request. If a request is currently

waiting on a response, no further requests may be made by the Client. If a request

is completed before the end of a timestep, the Client may not initiate another request

until the following timestep.

• Single Task Limit

During each timestep, a single request may be handled by each core of each CPU

element. If the request is completed before the timestep is over, it will not be supple-

mented by other pending tasks.

• Single Packet Limit

During each timestep, a network link may only process a single packet for a given

link direction (i.e. uplink, downlink). If transmission of a packet is completed before

the timestep is over, it will not be supplemented by other pending packets.

Practical The following practical limitations exist in DWSim and the dataflow model, due

to a lack of information available from the previously captured Apache HTTPd web server

logs:
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• Constant Execution Time

It is not possible to log the execution time necessary to complete a given request. As

a result, computational times for the handling of a request are assumed to be constant

quantities, based on the average time required to handle that kind of request.

• Constant Message Size

It is not possible to log the size of both a request and a response packet. As a result,

message size remains constant for every request and response related to an initial

client request.

• Request Start Times

It is not possible to log the time the initial request was received. As a result, DWSim

uses the completion time of a request as the start time of a request during simulation.

• Constant Link Characteristics

It is not possible to determine the bandwidth and latency of a network link between

client and server. As a result, client bandwidth and latency were determined experi-

mentally and assumed to be constant quantities.

4.2 Implementation

DWSim was written entirely in the Go programming language. Go was selected for its ease

of use, performance as a compiled language, and powerful parallelization features. It is

composed of five major subsystems: processing, networking, configuration, data input, and

metric gathering. The processing subsystem is responsible for simulating the execution of

arbitrary task graphs against multiple processors to simulate the handling of web-oriented

computation. The networking subsystem is responsible for simulating a the infrastructure

necessary to allow computational elements to communicate. The configuration subsystem

is responsible for setting up the processing and networking subsystems at runtime. The
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data input subsystem is responsible for replicating a captured workload during a running

simulation. The metric gathering subsystem is responsible for reporting and storing the

performance values observed during a simulation.

4.2.1 Processing

The DWSim processing model consists of three components: Tasks, CPUs, and Requests.

Tasks are used to perform computation and communication for a particular REST service.

CPUs execute Tasks in response to client Requests. A Request specifies the Tasks that a

CPU must execute to complete a transaction. The following section discusses these com-

ponent models.

Tasks A Task represents computation or communication to be performed by a CPU. A

task may be dependent on the completion of one or more other tasks before executing.

These dependencies are established through task-dependency graph in the DWSim config-

uration. DWSim supports three kinds of tasks. A TimedTask represents computation that

requires a certain amount of time to complete processing. TaskGroups are collections

of one or more tasks that must be completed one at a time before continuing. RESTTasks

are communication tasks which require that a request be made to another service and a

response to be received before continuing. Through TaskGroups and task replication it is

possible to represent any task dependency graph in DWSim (Fig. 4.1).

CPU A CPU is able to receive a request and execute a task-dependency graph to create

a response. DWSim supports two CPU models. Single is a model of a single-core

CPU which is only able to handle one request at a time. CMP is a model of a multi-core

processor in which one or more requests may be handled at a time, up to the number of

available cores (Fig. 4.2). These CPU models are assigned task-dependency graphs for the

REST endpoints they service by the configuration of DWSim. Each processor possesses a

NIC for communication with the network model. A work queue is also available for the
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Figure 4.1: Example Task Dependency Graph

storage of pending requests.

Requests and Responses A Request is a Packet which has both a URI and destination

address for a particular CPU. The URI indicates which task-dependency graph to execute

to generate a response. The destination indicates which CPU should handle this request.

Requests are received by the NIC and then either assigned to an idle CPU core or placed

into a work queue for later processing. Upon the completion of a Request, a Response

packet is generated. This packet is placed in the NIC’s transmission queue to be sent to the

source address of the Request. Upon being received at its destination, a Response is passed

to the core which is executing the RESTTask with the same identifier. The RESTTask is

then allowed to complete execution.

4.2.2 Networking

It is necessary to simulate the communication between client and server devices. The

communication model focuses on four high-level components: Packets, NIC, network link,

and Level-2 Switch (Fig. 4.3).

Packets A packet in DWSim serves the same purpose as its counterpart in a physical

network. Each packet has a unique identifier linked with the request that created it. A
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source and destination are used to specify which hosts to route the packet between. A URI

is assigned to indicate the REST endpoint that will handle the request. A size is used to

indicate the amount of data the packet contains. These attributes collectively perform the

same functionality as a packet in a physical system.

NIC A single NIC is allocated to each CPU to allow communication to other devices. Us-

age of the NIC is limited to a single executing task at a time. A single request or response

may be processed during each timestep for both the downlink and uplink. Additional pack-

ets are placed in an internal FIFO to be handled in the next timestep. This allows the NIC

to be utilized by other tasks while a response is being generated by either a local or remote

process. Each task is given the opportunity to place a packet into the transmit queue and to

read a packet from the receive queue during a timestep.

Links A network link is used to connect a NIC to a Level-2 Switch. Each link is assigned

a finite bandwidth and a transmission distance. This allows for latency to be calculated

according to both the amount of information transmitted (transmission delay) and the dis-

tance which that data must travel (propagation delay) (Fig. 4.4). It is important that the

network link allow for more than one transmission to occur simultaneously as the propaga-

tion delay may allow further transmissions to take place. This is determined by calculating

the Bandwidth-Delay Product. For example, round-trip transmission across a 1m copper

cable takes approximately 10ns. If that network link has a bandwidth of 100Mbps its

Bandwidth-Delay Product is 1.0, indicating that no more than one bit exists on the line at

any given moment. However, if this distance is increased to 100m and the bandwidth to

10Gbps, the line may hold up to 10, 000 bits of information. With a standard MTU of 1500

bits, this would mean that at any given time up to 6.67 packets may be in transit.

Switch A Level-2 Switch allows for messages to be transferred between network links.

The switch model allows for perfect cross-section bandwidth of the switch, meaning that
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the switches internal capacity is equal to the total bandwidth of all of its links. Because a

link is allowed to be used for transmission and reception simultaneously, it is possible to

transmit and receive one packet, in either direction, during a timestep. A switch is assumed

to allow an infinite internal buffer capacity for messages, to be sent in FIFO order. The

switch itself is assumed to have negligible routing delay. Instead, bandwidth limitations in

the network links are used to introduce realistic transmission latency in the form of packet

delays.

4.2.3 Configuration

Initialization of the DWSim environment requires the use of three input files. The Orches-

tration file defines the physical characteristics of the processors, network links, and switch.

The Assignment file defines the computational processes and their allocation to specific

processors. The Configuration file is used to specify the aforementioned files, as well as
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external datasources and simulation characteristics. The following section describes the

usage and implementation of each of these files.

Assignment Assignment is performed through the use of the DOT graphing language. A

subset of the DOT language features have been chosen to form the grammar of an assign-

ment file. DOT subgraphs are used to represent processors. Nodes indicate the name, type,

and characteristics of a computational task. Nodes declared inside of a subgraph are as-

signed to that processor. Dependencies between processes are indicated by DOT graph

edges. Edges that cross between subgraphs indicate a remote data dependency and instruct

the DWSim environment to treat this dependence as a REST operation. Use of the DOT

language also allows for visual confirmation of the assignment through the generation of

a graphical representation (Fig. 4.5). Lastly, a single Client node must be declared in the

root graph (Fig. 4.6). Edges from the Client node indicate the REST entry-points for the

DWS and will be used later to route requests for a simulation workload.

Orchestration Like the Assignment file, an Orchestration file uses the DOT graph lan-

guage. As demonstrated with the Assignment file, the DOT grammar of the Orchestration

file may also be used to generate a graphical representation of the system (Fig. 4.7). A

different grammar is used in order to simplify orchestration of DWSim (Fig. 4.8). Nodes

are used to declare the processors, as well as their type and any physical parameters. A

single Switch node is used to declare the model and attributes of the Level-2 switch. Edges

are used to define the network links between processors and the switch by specifying the

ink bandwidth and latency. While these two files may have been combined from a technical

standpoint, the process of manual verification is greatly simplified if the graphical forms

are kept separate.

Configuration File The Configuration file provides all of the information necessary to

begin the initialization of a DWSim environment, in the form of a YAML (Yet Another
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Figure 4.5: Generated EDGE 1.0 Assignment Graph
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d i g r a p h {
node [ shape = r e c o r d ] ;
r a n k d i r =LR ;
s u b g r a p h c l u s t e r A p a c h e {

l a b e l =”CMP0 | 2 ” ;
”” [ l a b e l = ” / | 0 . 0 1 ” , t y p e =TimedTask ] ;
c o n t e n t [ l a b e l = ” / c o n t e n t | 0 . 0 2 ” , t y p e =TimedTask ] ;
” edge ” [ l a b e l = ” / edge | 0 . 0 2 ” , t y p e =TimedTask ] ;
f a c e t s [ l a b e l = ” / f a c e t s | 0 . 0 3 ” , t y p e =TimedTask ] ;
s t a t i c [ l a b e l = ” / s t a t i c | 0 . 0 2 ” , t y p e =TimedTask ] ;

}
s u b g r a p h c l u s t e r D B {

l a b e l =”CMP1 | 2 ” ;
db [ l a b e l = ” / db | 0 . 0 5 ” , t y p e =TimedTask ] ;
d b f a c e t s [ l a b e l = ” / db−f a c e t s | 0 . 0 7 ” , t y p e =TimedTask ] ;

}
C l i e n t ;
C l i e n t −> ” ” ;
C l i e n t −> c o n t e n t ;
C l i e n t −> ” edge ” ;
C l i e n t −> f a c e t s ;
C l i e n t −> s t a t i c ;
”” −> ” edge ” ;
c o n t e n t −> db ;
” edge ” −> db ;
f a c e t s −> db ;
f a c e t s −> d b f a c e t s ;

}

Figure 4.6: EDGE 1.0 Assignment Dot File
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Figure 4.7: Generated EDGE 1.0 Orchestration Graph
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d i g r a p h {
node [ shape = r e c o r d ] ;
r a n k d i r =LR ;

Swi tch [ l a b e l =” S impleSwi t ch | 1500” , shape = c i r c l e ] ;

Apache [ l a b e l =”CMP0 | 2 ” ] ;
DB [ l a b e l =”CMP1 | 2 ” ] ;

Apache −> Swi tch [ l a b e l =”100M | 5m” ] ;
DB −> Swi tch [ l a b e l =”100M | 5m” ] ;

}

Figure 4.8: EDGE 1.0 Orchestration Dot File

Markup Language) document. File paths are provided for the locations of the assignment

and orchestration dot graphs, as well as the output files for simulation results (Fig. 4.9).

The Results file contains a log of the completion of each client request, for verification pur-

poses. The Latency, Throughput, and Validation files will contain the metric observations

collected by DWSim. One or two databases may be used to provide client request work-

loads for the simulation. The ability to utilize two databases is provided mainly to eliminate

the need to merge separate logs for HTTP and HTTPS traffic. Lastly the Configuration file

may be used to specify the time interval between simulation steps, and the start and end

timestamps for the simulation. This range of time is intended to allow inspection of multi-

ple durations for a given workload, each potentially being assigned a different timestep for

control of measurement granularity.

4.2.4 Datasources

DWSim makes use of the Apache Combined Log Format to simulate a workload for a

DWS. Before these logs can be used as input, however, multiple steps must be performed.

First, the logs must be combined into a single file. Second, those logs must be imported into

a SQL database. Third, performance characteristics for client devices must be estimates and

stored in the database. The following section describes the processes necessary to perform
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a s s i g n m e n t : ” . / a s s i g n m e n t . d o t ”
o r c h e s t r a t i o n : ” . / o r c h e s t r a t i o n . d o t ”
w o r k l o a d h t t p : ” s q l i t e : / / / a c c e s s . db ”
w o r k l o a d h t t p s : ” s q l i t e : / / / s s l a c c e s s . db ”
r e s u l t s : ” . / o u t p u t / r e s u l t s . c sv ”
l a t e n c y : ” . / o u t p u t / l a t e n c y . csv ”
t h r o u g h p u t : ” . / o u t p u t / t h r o u g h p u t . c sv ”
u t i l i z a t i o n : ” . / o u t p u t / u t i l i z a t i o n . csv ”
t i m e s t e p : 0 . 0 1
s t a r t : ”2006−01−02 15:00 :00−07:00”
end : ”2006−03−05 16:30 :00−07:00”

Figure 4.9: Example DWSim Configuration File

these steps.

Log Preprocessing Apache stores its logs into one or more files, based on a format speci-

fied by the Apache VirtualHost configuration. In order to gather the information necessary

to run a simulation, the Combined log format was used to provide as much information

as possible (Fig. 4.10). Additionally, the size of this log can become unmanageable over

time. This led the administrator to rely on tools like Logrotate to periodically compress

portions of the complete log into separate files. The first step of DWSim preprocessing

involves unpacking the compressed logs. Next, these logs are combined into a single file

in chronological order. The resulting file is then compressed to save disk space.

1 2 7 . 0 . 0 . 1 − f r a n k [ 1 0 / Oct / 2 0 0 0 : 1 3 : 5 5 : 3 6 −0700]
”GET / a p a c h e p b . g i f HTTP / 1 . 0 ” 200 2326
” h t t p : / / www. example . com / s t a r t . h tml ”
” M o z i l l a / 4 . 0 8 [ en ] ( Win98 ; I ; Nav ) ”

Figure 4.10: Example of Combined Log Format for Apache HTTPd

Database Generation The compressed log file is then fed into ApacheLog2DB tool. Cre-

ated specifically for DWSim, this program imports the logs into a SQL database (Fig. 4.11).

It splits us each log entry into multiple pieces to consolidate duplicate information. The
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1 *

1 *

* 1
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Figure 4.11: ApacheLog2DB SQL Schema

destinations table stores each of the URI used found in the log. The sources table

stores each unique IP address used to access the system. The users table stores each of

the unique usernames that were logged. The useragents table stores the unique User-

Agent strings that were also logged. The txns table stores all of the transactions from

the log with references to the fields found in the other tables and the remaining informa-

tion from the log (i.e. timestamps, HTTP methods, protocol versions, etc.). The resulting

database can later be used as the direct input for DWSim.

Network Performance With the logs successful imported, all of the unique source IP ad-

dresses have been identified. However, the logs do not store the characteristics of the net-

work link used by each IP address. In order to recover this information, it was necessary to

perform a non-invasive estimation of the bandwidth to the clients. The ApacheLog2DB IPStats

was written in order to measure the bandwidth and latency for each client. Estimation is

performed by requesting multiple ICMP Timestamp requests to the client IP. This involved

collecting 40 measurements for each packet size from 100B to 1500B in increments of

100B. A Least-Mean Squares approximation (Fig. 4.12) is used to perform a linear fit

of the relationship between packet size and observed latency. While this approach origi-

nally used a linear fit to the minimum sample values and maximize estimated bandwidth

[38], this work utilizes an average fit provide a more conservative approximation .The y-

intercept of this line provides an estimate of the propagation delay for the connection. The
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inverse of the slope of the line provides an approximation of the available bandwidth be-

tween the client and server. In cases where the client was unreachable, it was necessary to

estimate these quantities based on the successful connections. This was performed by cal-

culating the average latency and bandwidth for each unique network for the subnet masks

255.255.255.0, 255.255.0.0, and 255.0.0.0 as well as all captured values. Values were then

filled in favoring the closest match to the IP address of the missing record. All of these

bandwidth and latency values were then stored in a separate ipstats table in the log

database.

Figure 4.12: LMS Bandwidth Approximation, reproduced from [38]
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4.2.5 Metrics

Multiple performance metrics can be evaluated for components of the system (Table 4.1). A

Resource Unit (RU) is defined as the unit of production or consumption of a given resource

for each component. The RU of a CPU could be measured in instructions, while an RU

for a Network might be bytes transferred (Table 4.2). Throughput gives us the rate of

production or consumption of RUs for a component. Web services exhibit a throughput

which is characterized by the number of client requests handled during a discrete time

interval. Utilization measures the ratio between the theoretical maximum throughput of

a component and observed throughput. Efficiency characterizes a component by relating

useful throughput to the total observed throughput. Latency characterizes the time from

request to completion for processing of a work unit. If latency is too high, work units

may no longer be useful upon completion. Extremely low latency may indicate that too

many resources have been allocated and that they suffer from poor utilization. Latency is a

primary concern for users, while efficiency in a primary concern for DWS managers.

Table 4.1: Proposed Metrics
Symbol Metric Description Units
RUP Processing RU — Instruction
RUC Communication RU — Byte
RUS Memory RU — Byte
RUE Energy RU — Joule

τo Ideal Throughput maximum theoretical throughput of a component RU/s
τg Gross Throughput total observed throughput of a component RU/s
τn Net Throughput total useful throughput of a component RU/s

ωg Gross Utilization observed utilization of a component %
ωn Net Utilization total useful utilization of a component %

η Efficiency ratio of useful work to observed work %
1 − η Waste ratio of unused work to observed work %

λ Instantaneous Latency instantaneous RTT for a Request/Response s
λ̄ Mean Latency observed average RTT for a Request/Response s

λ̃ Median Latency observed median RTT for a Request/Response s

κ Speedup improvement in Latency for different configurations —
γ Sizeup improvement in Throughput for different configurations —

ρ = ∆κ/∆γ Scalability the slope of Speedup to Sizeup —

Other metrics enable pair-wise comparisons of component and system configurations.

Speedup measures the relationship between the latency of a previous configuration to that
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of a new configuration. Sizeup demonstrates the change in throughput resulting from a

change in configuration. Scalability measures the ratio between a change in speedup and

change in sizeup. The throughput of a DWS may increase in relation to the number of

processing units. However, having too many processors may lead to an uplift in proces-

sor failure, possibly causing throughput to reduce. Similarly, having too few processors

prevents throughput from meeting client demand.

Table 4.2: Example DWS Quantities
Metric Service Processing Memory Communication Energy

RU Request Instruction Byte Byte Joule
Throughput Req/s I/s B/s B/s J/s (W)

Net and Gross Utilization are defined as the ratio of Net or Gross Throughput to the

Ideal Throughput of a component respectively (Eqn. 4.1 & 4.2). The result is a fraction

between 0 and 1.0.

ωg =
τg
τo

(4.1)

ωn =
τn
τo

(4.2)

Gross Utilization examines the total work performed, while Net Utilization examines the

useful work performed.

Efficiency is calculated as the ratio of Net Throughput to Gross Throughput (Eqn. 4.3).

η =
τn
τg

(4.3)

Mean Latency can be calculated as the average of N samples of task completion times

(Eqn. 4.4).

λ̄ =

N∑
i=1

ti,f − ti,s

N
(4.4)

For mean user-facing latency, task completion time denotes the time from first requesting

information up to the time when the information has been completely received. For mean
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system-latency, task completion time denotes the time from starting a task up to the time in

which the task finishes execution.

Having measures for mean latency, Speedup can be calculated as the ratio of previously

observed Mean Latency to the Mean Latency observed after a system modification (Eqn.

4.5).

κ =
λ̄old
λ̄new

(4.5)

Sizeup compares the throughput of a system, before and after a system modification (Eqn.

4.6).

γ =
τo,new
τo,old

(4.6)

Scalability characterize the relationship between Latency and Throughput as the gradient

of Speedup with respect to Sizeup (Eqn. 4.7).

ρ =
δκ

δγ
(4.7)

Ideal Throughput may be defined as the theoretical maximum throughput of a device.

However, multiple throughputs may exist for a single component (Table 4.3). It is pos-

sible for throughput to both reflect the consumption of a resource and the production of

another. For example, a CPU consumes energy in order to execute instructions, which

in turn consume user inputs and produce useful outputs. A network interface card (NIC)

may use part of its bandwidth to receive incoming information, simultaneously using ad-

ditional bandwidth to transmit information to a networked device. A server power supply

converts AC electricity into DC to provide energy for the server’s component parts. Table

4.3 provides examples of consumption and production throughputs for common computing

devices. Throughput quantities described as infinite have no impact on the performance of

the associated device in the DWSim model.

In many cases, the resources allocated to a device may not be sufficient to achieve its



102

Table 4.3: Example Resource Throughputs
Device Processing (I/s) Storage (B/s) Communication (B/s) Power (J/s)

CPU Worker 50 ∞ ∞ 60
NIC ∞ ∞ 10M 10

Switch ∞ ∞ 100M 200
Harddrive ∞ 100M ∞ 15

ideal throughput. A CPU may need to reduce clockspeed, sacrificing instruction through-

put, to lower power consumption, while increasing user latency. A harddrive may “spin

down” to reduce idle power consumption, but this will also lead to higher latency for data

transactions when returning to full power. The limited bandwidth of a network link or

storage device may prevent a computational process from executing at full speed by intro-

ducing access delays. High ambient temperature may require a cooling system to reduce

its thermal delta in order to avoid using large amounts of power during grid peak hours.

Instrumentation Each component within DWSim is capable of providing metric values

for utilization, latency, and throughput. A uniform interface requires that each component

implement three functions: Util(), Latency(), and Throughput(). The values

for each metric are returned as an array, regardless of whether the device is capable of

performing more than one action at a time. This uniformity simplifies the programming

necessary to collect metric quantities from multiple devices.

Collection Each component within DWSim is capable of providing metric values for its

sub-components. A CPU will collect these values for each of its cores. A Network Link

will collect the values for its uplink and downlink. A Switch will collect these values for

all of the links connected to it. Clients also provide insight into these metrics. The main

DWSim component collects all of these values together and provides an interface for the

main executable and for use in other libraries. These metrics may be accessed as raw

numerical quantities at runtime or exported to CSV files for later review.
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Representation Utilization is provided as a continuous quantity, and is not contingent on

the assignment of work. A value between zero and one is used to indicate the percent uti-

lization of a device relative to its ideal capacity. Throughput and latency are only reported

as non-zero values when a related task is completed (i.e. completion of a task, reception

of a packet, completion of a request). Throughput may take on a positive value greater

than one to indicate the total work performed by the device. Latency is represented as a

positive value signifying the time required to complete an action. Latency and throughput

are always non-zero at the same time.

4.3 Functional Testing

Testing of the DWSim program was performed in three stages. In the first stage, Unit

Testing of individual functions was performed to establish their correct functionality. In

the second stage, the processing and networking models were tested separately against the

expected performance for a real system. In the third stage, the processing and network were

integrated and tested against a trivial workload. This section discusses each of these stages

in depth.

4.3.1 Unit Testing

Unit Testing is the practice of evaluating the functionality of individual functions within

a piece of software. This consists of devising a test which adequately explores each of

the possible behaviors for a particular function, writing the software to execute this test,

and then running the tests to verify correct functionality. Additionally, more sophisticated

testing environments monitor the code during a test in order to determine which lines of

code were evaluated. Known as a “coverage report”, this feedback allows a developer to

adapt existing tests to address the conditions of execution that were not already tested.

In Go, the standard libraries possess a simple, but effective, set of functionality for han-

dling these tests. A developer is able to create test cases by writing functions that follow
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a particular naming scheme and interface. Functions must begin with the word Test and

accept the parameter t *testing.T . The Go toolchain also possesses tools for au-

tomating the execution of these tests and reporting the effective Coverage. The go test

tool searches for all test function in a given directory and executes them, reporting any

failed assertions. The -cover flag can also be added in order to enable coverage report-

ing for the evaluated tests. In addition, the Go plugin for JetBrains WebStorm provides

graphical feedback of these coverage results in the code editor.

Best effort was made to achieve full coverage for the DWSim code base. A few code

sections were not testable as their usage of the panic() function does not allow the testing

environment to continue execution. Table 4.4 provides a summary of the coverage reported

when unit testing was performed for DWSim.

Table 4.4: Unit Testing Results for DWSim
Package Coverage
kgcoe-git.rit.edu/btmeme/DWSim/config 86.5%
kgcoe-git.rit.edu/btmeme/DWSim/environment 95.8%
kgcoe-git.rit.edu/btmeme/DWSim/net 99.3%
kgcoe-git.rit.edu/btmeme/DWSim/processing/cpu 94.1%
kgcoe-git.rit.edu/btmeme/DWSim/processing/tasks 100.0%
Overall 95.0%

4.3.2 Component Verification

Processing Model The preliminary processing model was verified for an exemplar work-

load (Fig. 4.13). The workload consisted of 14 requests, each resulting in the execution of

a single TimedTask with a cost of 5s. A CMP was instantiated and configured to have

one to eight cores, in powers of two. Execution of the workload was performed for each of

the numbers of cores, calculating the values of the following metrics: Latency, Through-

put, Utilization, Efficiency, and Speedup. Figure 4.14 provides an example of the expected

utilization for a quad-core CMP, denoting the separate tasks by color.

Latency was calculated according to the time necessary to complete the entire workload,
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Figure 4.13: Exemplar Workload for CMP, colors indicate task
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Figure 4.14: Exemplar Utilization for CPU, colors indicate task
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and throughput was calculated according to the number of requests completed per second

(Table 4.5). For each of the CMP configurations, latency was found to be consistent with

real-world parallel execution.

Two sets of utilization metrics were captured. First, time-dependent measurements of

utilization were captured for each of the CMP configurations. This allowed for verification

of static scheduling, by demonstrating the change in utilization as tasks were assigned to

cores. The single core results show execution for only one core at an given time (Fig. 4.15).

Results for the 2, 4, and 8-core configurations indicate the correct scheduling of multiple

cores, by leveraging as many cores as possible at any given time (Figs. 4.16, 4.17, 4.18).

Second, average utilization was calculated for each of the configurations. Net and gross

utilization were identical, as this test assumes zero overheads. Overall, average utilization

was shown to decrease in response to an increase in CMP core counts (Table 4.5). This is

consistent with the underutilized cores when work is not available to be executed.

Table 4.5: Metric Summary
Cores λ τo τg τn ωg ωn η

1 70 0.200 0.200 0.200 1.000 1.000 1.0
2 36 0.400 0.389 0.389 0.973 0.973 1.0
4 21 0.800 0.667 0.667 0.833 0.833 1.0
8 12 1.600 1.167 1.167 0.729 0.729 1.0
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Figure 4.15: Processor Utilization (ωg): 1 Core
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Figure 4.16: Processor Utilization (ωg): 2 Cores
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Figure 4.17: Processor Utilization (ωg): 4 Cores
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Figure 4.18: Processor Utilization (ωg): 8 Cores
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Accurate scaling of processor cores was further reinforced by the results of the speedup

calculations. Figure 4.19 compares ideal speedup with the speedup exhibited by the model.

Speedup was found to be consistent with the expected performance given by Amdahl’s law

(Eqn. 4.8) where F is the fraction of time spent executing the parallel task group, and K is

the number of cores of the configured CMP [4].

Speedup =
1

(1− F ) + F/K
(4.8)
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Figure 4.19: Processing Speedup
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4.3.3 Simulator Integration Testing

After verifying the basic functionality of the CPU model, a small DWSim simulation was

performed. This simulation utilized a single client to transmit a single request and wait for

the response (Fig. 4.20). This request would require the execution of timed computation

and a REST request to a database server. Through this simulation, every component of the

dataflow model is utilized and the entire DWSim can be verified as functioning correctly.
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Figure 4.20: Exemplar Client Workload for Test, τn[Requests/s],∆t = 1[s], [08:41 to 08:45]

Figure 4.21 shows an annotated form of the metric results created by DWSim. A

heatmap is used to show the metric values for each component over time. Network and

CPU components are grouped according by processor in order to improve readability of

the figure.
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Figure 4.21: Annotated Heatmap Component Utilization, ω[Binary/s],∆t = 10[ms]

Figure 4.22 provides a graphical representation of the utilization of each component

that was instantiated for the simulation. First, the client (129.21.171.72) reads a request

from the workload database and begins transmission to the Apache server. The Apache

server receives the request from the client and then proceeds to transmit a request to the

DB server. The DB server receives this request, performs computation, and transmits a

response to the Apache server. The Apache server receives the response, performs timed

computation, and then transmits the response to the client. Lastly, the client receives the

response and begins the process over again with a new request. Figures 4.23 and 4.24

provide a graphical representation of the resulting latency and throughput, respectively.
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Figure 4.22: Heatmap of Component Utilization, ω[Binary/s]∆t = 10[ms]
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Figure 4.23: Heatmap of Component Latency, λ[s],∆t = 10[ms]
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Figure 4.24: Heatmap of Component Throughput, τn[Binary/10ms],∆t = 10[ms]

The fine-grained detail provided by the raw form of the metric data is useful for the

purposes of verification. However, a more coarse grained figure may be useful for identify-

ing bottlenecks, poor load distribution, or under-utilized resources. By re-sampling the raw

data to produce a lower resolution “overview” of a DWS, these features are more readily

visible. Figure 4.25 demonstrates a re-sampling of the utilization results in Figure 4.22 to

a period of 100ms representing the average of 10 samples

Closing Unit testing of the DWSim source demonstrated correct functionality of individ-

ual functions. Verification of the processing and networking models individually yielded

the expected behavior of real-world components. Simulation of an exemplar workload pro-

duced behavior and performance consistent with an actual DWS, within the limits of the

assumptions and limitations of the dataflow model and DWSim application.
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Figure 4.25: Heatmap of Average Component Utilization, ω̄[−/100ms],∆t = 10[ms]
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Chapter 5

Dataflow Model: Verification Results

5.1 Workload Characterization

The workload for a DWS may consist of hundreds of thousands of client requests over an

annual period. Analysis was performed for the characterization of the client requests for

production EDGE systems. Characterization of client connections and observed throughput

for the KGCOE-Research EDGE server. The following sections discuss the DWSim results

of statistical and graphical analysis of the workloads used in simulation.

5.1.1 EDGE 1.0 Request Characterization

The following section characterizes the requests made to the production EDGE 1.0 environ-

ments at the Rochester Institute of Technology. Statistical analysis was performed for both

the HTTP Methods and REST Endpoints involved in the requests received over a single

academic year, beginning in August of 2015 and ending in June of 2016.

HTTP Methods HTTP Methods are a useful descriptor of the interactions at users have

with a web system. Methods like GET are focused on the consumption of web content,

while other methods focus on creating and modifying content (e.g. PUT, POST). Web

indexing services may make use of methods like OPTIONS and HEAD to guide the process

of collecting metadata. Content authors may also make use of WebDAV oriented methods

when using software other than a web browser (e.g. TortoiseSVN). Figure 5.1 provides a

distribution of these HTTP methods for the EDGE servers. For both HTTP and HTTPS

traffic, GET is the most frequently used HTTP Method. This may either indicate that a
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large percentage of client requests are focused on consumption (HTTP) or the frequent use

of WebDAV clients to view and modify content (HTTPS). The high percentage of requests

involving OPTIONS, PUT, and unlisted methods for HTTPS traffic, serves to demonstrate

that a fair number of users make use of a WebDAV client.
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Figure 5.1: Distribution of HTTP Methods for EDGE Hosts for 2015-08-01 through 2016-06-01

REST Endpoints Client accesses to REST endpoints provide insight into which features

of a DWS are used the most often and may identify which functionality is no longer worth

supporting. With EDGE, REST endpoints are identified as the first “level” of a URI. Fig-

ure 5.2 shows the frequency of accesses to endpoints for each of the EDGE production

systems. Overall, there are few requests to “/” which is consistent with the number of ac-

cesses to “/edge” where it redirects. The majority of non-secure HTTP requests for the

EDGE systems are for “/edge” URI. This is expected as most documents are rendered to

this view for public consumption. HTTPS requests for “edge.rit.edu” are frequently for this

URI as project teams use this to share documents and collaborate. The “/content” endpoint

serves as the secondary rendering mechanism and also experiences significant numbers of

requests. The “/static” endpoint provides assets such as CSS stylesheets, JavaScript source,



117

and EDGE-specific logos and images. Since these files do not change often, they are very

likely to be cached by a client program. The “/dav” endpoint is only accessed through

HTTPS requests as it also requires user authentication. Both of the InsideME and KGCOE

Research servers see the largest amount of traffic for “/dav”. This is consistent with Web-

DAV clients being used as the primary request source for both of these servers. Changes to

version-controlled documents are primarily performed through the “/dav” endpoint.
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Figure 5.2: Distribution of URI Requests for EDGE Hosts for 2015-08-01 through 2016-06-01

5.1.2 KGCOE-Research Client Characterization

The following section characterizes the clients which accessed the “kgcoe-research.rit.edu”

EDGE environment. Geolocation data was used to better understand the origin of client

requests. The results of bandwidth and latency estimation are also presented.

Geolocation Many analytics tools for web traffic make use of geolocation data to map

where client requests are coming from. This information may be used to focus efforts for

content translation or to guide the topic selection for future content. In the case of EDGE

geolocation data provides insight into the kinds of audience the content might have. When

examining the traffic for “kgcoe-research”, it is apparent that clients are largely located in
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the Eastern United States and Western Europe (Fig. 5.3). However, some visitors are from

as far away as Japan, South Africa, or Russia.

Figure 5.3: Map of IP Sources for kgcoe-research.rit.edu [2015-08-01 to 2016-01-07]

Link Characteristics The properties of the network connections used by clients may be

used plan the deployment of a DWS. Measurement of client bandwidth allows an adminis-

trator to set the level of data compression and content quality for a given DWS deployment.

Low speed connections benefit from higher compression and smaller file sizes, while high

speed connections allow for improved quality and the opportunity to reduce compression

overheads. For “kgcoe-research”, the majority of the clients surveyed fell into two cate-

gories. Low-bandwidth clients were shown to have connection speeds of less than 10Mbps,

whereas high-speed clients generally fell in the 50 to 60Mbps range (Fig. 5.4). Client la-

tency may indicate a need to move servers geographically closer or the use of high latency

internet connections (e.g. satellite). From an administrative standpoint, connection latency
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serves to guide the decision of how to reduce the latency of handling requests. For “kgcoe-

research” the majority of clients experienced a round-trip latency of 150ms or less (Fig.

5.5). With such low latency it may be advisable to delay the handling of some requests in

order to keep average latency low or to reduce the power consumption of servers.

Figure 5.4: Client Bandwidth Distribution (τ̄g) for kgcoe-research.rit.edu [2015-08-01 to 2016-01-
07]

5.1.3 KGCOE-Research Workload Timelines

Log capture for “kgcoe-research” resulted in the collection of over 100 thousand client

requests during a 5 month period beginning in August 2015 and ending in January 2016,

before the migration to EDGE 2.0. Simulation periods were chosen based on graphical

analysis of request timelines for multiple time-scales. Figure 5.6 shows the aggregate re-

quests per week for the entire data capture period. The large spike in requests during

October 2015 presented the possibility for studying the behavior of the dataflow model un-

der the conditions of high load. Further investigation identified October 14th as a day of

particularly high load. Figure 5.8 reveals a period of increased activity between 12:00 on

the previous day and 12:00 hours, with a peak in activity between 00:00 and 01:00 hours.
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Figure 5.5: Client Latency Distribution (λ̄g) for kgcoe-research.rit.edu [2015-08-01 to 2016-01-07]

Further investigation of 00:00 to 01:00 hours revealed the presence of two major spikes of

activity centered around 00:37 and 00:49 hours (Fig. 5.9). The period of time between

00:40 and 00:45 hours was selected as the simulation period to illustrate DWSim operation

and results. The timestep of each simulation is specified in the caption of each figure as

∆t, for example: ∆t = 10[µs].
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Figure 5.6: Apache Request Throughput for kgcoe-research, τn[requests/week],∆t = 10[µs],
[2015-08-01 to 2016-06-01]
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Figure 5.7: Apache Request Throughput for kgcoe-research, τn[requests/day],∆t = 10[µs],
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Figure 5.8: Apache Request Throughput for kgcoe-research, τn[requests/hr],∆t = 10[µs], [2015-
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Figure 5.9: Apache Request Throughput for kgcoe-research, τn[requests/min],∆t = 10[µs],
[00:00:00 to 00:01:00] on 2015-10-14
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5.2 Dataflow Simulation Results

A simulation was performed for “kgcoe-research” over a five minute time interval from

2015-10-14 00:40:00 to 2015-10-14 00:45:00, with a 10µs timestep. During this period of

time, a total of 9743 Apache requests were logged for the production system. The recorded

throughput for this time period has been graphically represented in Figure 5.10. Through-

put for the server sustained an average of 30 − 35 requests per second, with intermittent

periods of much higher activity.
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Figure 5.10: Apache Log Request Throughput for kgcoe-research, τn[request/s], [00:00:40 to
00:00:45] on 2015-10-14

Figure 5.11 shows a heatmap of the per component utilization as measured during sim-

ulation. The Apache HTTPd server experienced the highest levels of activity, while the DB

server demonstrated much lower activity.



124

00:40 00:41 00:42 00:43 00:44

Time [hh:mm]

129.21.22.149

129.21.22.149:Up

129.21.22.149:Down

Apache0

Apache1

Apache:Up

Apache:Down

DB0

DB1

DB:Up

DB:Down

.
C

o
m

p
o
n
e
n
ts

0 0.2 0.4 0.6 0.8 1

Figure 5.11: DWSim Mean Utilization Heatmap for kgcoe-research, ω̄n[%/s],∆t = 10[µs],
[00:00:40 to 00:00:45] on 2015-10-14

Figure 5.12 plots the Client request throughput observed through the Apache logs

against the simulation throughput. The simulation throughput appears to be not only more

stable than that of a production system, but fails to account for all of the requests made

during this period. Further investigation of this trend revealed that only 9691 of the 9743

requests were actually handled during this period of time. By plotting the cumulative re-

quests over time, it was discovered that the simulation throughput appears to lag the ob-

served log data (Fig. 5.13). While this trend is partly caused by the constant execution time

assumption, a more likely explanation would be the use of the Apache logged completion

time as the transmission time for clients.
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Figure 5.12: Apache Client Requests vs. DWSim Throughput for kgcoe-research,
τn[request/s],∆t = 10[µs], [00:00:40 to 00:00:45] on 2015-10-14
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Figure 5.13: Cumulative Apache Client Requests vs. DWSim Throughput for kgcoe-research,
Στn[requests],∆t = 10[µs], [00:00:40 to 00:00:45] on 2015-10-14
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Figure 5.14 shows the mean latency for Client requests as observed during simulation.

The observed latency hovers around the duration of a timestep, caused by extended periods

in which latency is reported as 0s, resulting in an observed average below what was ex-

pected. A better representation of latency involved averaging only non-zero latency values,

shown in Figure 5.15. This reveals two levels of latency observed during simulation: a

latency of 11ms indicating requests only handled by the Apache HTTPd server and a la-

tency of 32ms for requests requiring a second request to the DB server. The additional of

20ms between levels is consistent with the configured RTT for packets travelling between

Apache and DB servers. During the two major periods of low latency starting at 00:40:45

and 00:40:50, a corresponding increase in average throughput was observed. Further inves-

tigation of the simulation workload during these periods revealed a large number of invalid

requests, consistent with a minor security attack on the Apache server.
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Figure 5.14: DWSim Client Request Mean Latency Bar Graph for kgcoe-research, ᾱ[s],∆t =
10[µs], [00:00:40 to 00:00:45] on 2015-10-14
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Figure 5.15: DWSim Client Request Mean Latency Bar Graph (Revised) for kgcoe-research,
ᾱ[s],∆t = 10[µs], [00:00:40 to 00:00:45] on 2015-10-14

Closing DWSim has been verified as producing valid simulations results, within the limi-

tations of its implementation. The effects of constant time execution had the greatest impact

on simulation results. Further improvement of the DWSim dataflow model is necessary,

with initial results showing promise for its application in future work.
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Chapter 6

Conclusions and Recommendations for Future
Work

6.1 Conclusions

A static model of information flow and resource utilization has been demonstrated to pre-

dict the utilization, latency, and throughput of a static DWS. Further investigation is neces-

sary to determine the efficacy of using the dataflow model to predict efficiency and scala-

bility. Standardized metrics for DWS environments were described and then demonstrated

through the use of the dataflow model. A second-generation EDGE DWS was designed

and implemented successfully with the deployment of a new “kgcoe-research” server. A

dataflow model for simulation of DWS environments was successfully completed, vali-

dated, and used to produce exemplar simulations of a production DWS. It has been demon-

strated that the model shows promising results, which may improve with further enhance-

ment and testing. Estimates of throughput and utilization produced by DWSim appear to

show excellent agreement with the observed production system.
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6.2 Future Work

6.2.1 Future Research

• Use the dataflow model to predict and compare the performance of disparate

DWS orchestrations.

A DWS may be configured and deployed in various ways. DWSim offers promise as

a tool for determining the benefit of one DWS configuration over another. A next-

generation DWSim tool may permit a-priori design of optimal or near-optimal con-

figurations for DWS hardware resources. Further effort is necessary to evaluate the

use of DWSim for comparative analysis and design of DWS configurations. Future

efforts should also examine the use of DWSim to guide the optimization of a DWS

configuration for factors such as hardware availability, high throughput, low latency,

and low power operation.

• Use the dataflow model to illustrate the potential of EDGE to accelerate time to

market for new product development.

EDGE was developed to support product development efforts. The current set of

tools focus on supporting the implementation of a design process and do not pro-

vide feedback to inform design process execution and evolution. The dataflow model

developed for DWS makes it feasible to explore the behavior of task-dependency

graphs. The similarities between manufacturing, design, and computing processes

suggests that it may be possible to adapt the dataflow model to simulate the interac-

tions between the participants in a product development process. Such a simulation

could be used to provide predictions of project outcomes and time to market, as well

as the scalability and efficiency of new product development teams.



130

6.2.2 Future Development

• Integrate FACETS 2.0 into EDGE 2.0 to accelerate new product development

It will be necessary to migrate existing FACETS 1.0 tools to the new EDGE 2.0

system. These FACETS will be made to use the Wire Framework and its existing

applications, and their database schemas will be improved according to the design of

the EDGE 2.0 schema. Additional FACETS tools may then be developed by using

these migrated tools as reference implementations. The incorporation of FACETS

into the EDGE 2.0 environment presents significant opportunities to accelerate prod-

uct development efforts and to enrich the documentation for the resulting projects.
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Appendix A

Code Listings

Listing A.1: ”Example Wire Configuration”
require ’wire’
require ’wiki-this’
require ’timbertext’
require_relative ’edge’
require_relative ’env/production’

use Rack::Session::Cookie, key: ’session’, secret: ’super_secret_token’
use Rack::Deflater
Rack::Utils.key_space_limit = 10240000

use Clogger, format: :Combined ,
path: ’/var/log/rack/access.log’, reentrant: true

closet = Wire::Closet.build do

app ’admin’ , Render::Page do
auth :app do

handler EDGE::Auth::Admin
end
template ’views/admin.haml’ do

use_layout
end
remote ’localhost:9292’ , ’admin-partial’

end

app ’admin-partial’ , Render::Partial do
auth :app do

handler EDGE::Auth::Admin
end
resource ’about’ do

all ’views/admin/about.haml’
end
resource ’global’ do

all ’views/admin/global.haml’
end
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resource ’admins’ do
use_forward
multiple ’views/lists/admins.haml’
single ’views/forms/admin.haml’
extra :users, ’db-cache/users’

end
resource ’memberships’ do

use_forward
multiple ’views/lists/memberships.haml’
single ’views/forms/membership.haml’
extra :projects, ’db-cache/projects’
extra :roles, ’db-cache/roles’
extra :users, ’db-cache/users’

end
resource ’projects’ do

use_forward
multiple ’views/lists/projects.haml’
single ’views/forms/project.haml’
extra :tracks, ’db-cache/tracks’

end
resource ’roles’ do

use_forward
multiple ’views/lists/roles.haml’
single ’views/forms/role.haml’

end
resource ’tracks’ do

use_forward
multiple ’views/lists/tracks.haml’
single ’views/forms/track.haml’

end
resource ’users’ do

use_forward
multiple ’views/lists/users.haml’
single ’views/forms/user.haml’
extra :tracks , ’db-cache/tracks’

end
remote ’localhost:9292’ , ’db-cache’

end

app ’content-page’ , Render::Page do
auth :app do

handler EDGE::Auth::Repo
end
template ’views/content.haml’ do

source :project, ’db-cache/projects’ do
key :resource

end
source :tracks , ’db-cache/tracks’
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source :user ,’db-cache/users’ do
key :user

end
end
remote ’localhost:9292’, ’render’

end

app ’dashboard’ , Render::Page do
auth :app do

handler EDGE::Auth::Dashboard
end
template ’views/dashboard.haml’ do

use_layout
source :memberships , ’db-cache/memberships’
source :roles , ’db-cache/roles’
source :tracks , ’db-cache/tracks’

end
remote ’localhost:9292’ , ’db-cache/users’

end

app ’render’ , Render::Document do
auth :app do

handler EDGE::Auth::Repo
end
remote ’localhost:9292’ , ’error’

end

app ’error’ , Render::Error do
auth :app do

handler EDGE::Auth::Repo
end
error 401 , ’views/errors/401.haml’
error 404 , ’views/errors/404.haml’
remote ’localhost:9292’ , ’repos’

end

app ’db-cache’ , Cache::Memory do
auth :any
remote ’localhost:9292’ , ’db’

end

app ’db’ , DB do
auth :any
db $environment[:database][:namespace],

$environment[:database][:connection]
model ’admins’ , EDGE::Admin
model ’disciplines’ , EDGE::Discipline
model ’memberships’ , EDGE::Membership
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model ’projects’ , EDGE::Project
model ’roles’ , EDGE::Role
model ’tracks’ , EDGE::Track
model ’users’ , EDGE::User

end

app ’edge-page’ , Render::Page do
auth :app do

handler EDGE::Auth::Repo
end
template ’views/edge.haml’ do

use_layout
source :project, ’db-cache/projects’ do

key :resource
end
source :tracks , ’db-cache/tracks’

end
remote ’localhost:9292’ , ’render’

end

app ’assets’ , Static do
auth :read_only
local ’fonts’ , ’./public/fonts’
local ’js’ , ’./public/js’
local ’css’ , ’./public/css’
local ’img’ , ’./public/img’

end

app ’instant’ , Render::Instant do
auth :any
template ’views/instant.haml’ do

source :project, ’db-cache/projects’ do
key :resource

end
source :tracks , ’db-cache/tracks’

end
end

app ’edit’ , Render::Page do
auth :app do

handler EDGE::Auth::Repo
end
template ’views/edge.haml’ do

use_layout
source :project, ’db-cache/projects’ do

key :resource
end
source :tracks , ’db-cache/tracks’



139

end
remote ’localhost:9292’ , ’editors’

end

app ’login’, Login do
auth :any

end

app ’projects’ , Render::Page do
auth :read_only
template ’views/project-info.haml’ do

use_layout
source :memberships , ’db-cache/memberships’
source :roles , ’db-cache/roles’
source :tracks , ’db-cache/tracks’

end
remote ’localhost:9292’ , ’db-cache/projects’

end

app ’tracks’ , Render::Page do
auth :read_only
template ’views/track-info.haml’ do

use_layout
source :projects , ’db-cache/projects’

end
remote ’localhost:9292’ , ’db-cache/tracks’

end

app ’editors’ , Render::Editor do
auth :app do

handler EDGE::Auth::Repo
end
remote ’localhost:9292’ , ’repos’

end

app ’edge’, EDGE::Redirect do
auth :any
remote ’localhost:9292’ , ’edge-page’

end

app ’content’, EDGE::Redirect do
auth :any
remote ’localhost:9292’ , ’content-page’

end

app ’repos’ , Repo::SVN do
auth :app do

handler EDGE::Auth::Repo
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end
listing ’views/lists/dav.haml’
repos ’testing/repos’
web_folder ’web’

end

app ’history’, Render::Page do
auth :app do

handler EDGE::Auth::History
end
template ’views/edge.haml’ do

use_layout
source :project, ’db-cache/projects’ do

key :resource
end
source :tracks , ’db-cache/tracks’

end
remote ’localhost:9292’ , ’log’

end

app ’log’ , History::SVN do
auth :app do

handler EDGE::Auth::History
end
log ’views/lists/log.haml’
repos ’testing/repos’
web_folder ’web’

end

app ’profiles’, Render::Page do
auth :read_only
template ’views/profile.haml’ do

use_layout
source :memberships , ’db-cache/memberships’
source :tracks , ’db-cache/tracks’

end
remote ’localhost:9292’ , ’db-cache/users’

end

app ’styles’ , Render::Style do
auth :read_only
style ’admin’ , ’views/sass/admin.sass’
style ’kgcoe-research’ , ’views/sass/admin.sass’
style ’edge’ , ’views/sass/edge2.sass’
style ’communications’ , ’views/sass/communications.sass’
style ’energy’ , ’views/sass/energy.sass’
style ’foundation’ , ’views/sass/foundation.scss’
style ’healthcare’ , ’views/sass/healthcare.sass’
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style ’transportation’ , ’views/sass/transportation.sass’
end

app :global , Render::Page do
template ’views/layout.haml’ do

source :admins, ’db-cache/admins’
source :project, ’db-cache/projects’ do

key :resource
end
source :track, ’db-cache/tracks’ do

key :resource
end
source :tracks , ’db-cache/tracks’

source :user ,’db-cache/users’ do
key :user

end
end

end

editor ’views/editors/wiki.haml’ do
mime ’text/wiki’
mime ’text/timber’

end

renderer :audio do
partial ’views/partials/audio.haml’
mime ’audio/mpeg’
mime ’audio/ogg’
mime ’audio/wav’
mime ’audio/x-wav’

end
renderer :image do

partial ’views/partials/image.haml’
mime ’image/bmp’
mime ’image/gif’
mime ’image/jpeg’
mime ’image/png’
mime ’image/svg+xml’
mime ’image/tiff’

end
renderer :ml do

partial ’views/partials/ml.haml’
mime ’text/html’
mime ’text/xhtml’
mime ’text/xml’
mime ’application/xml’

end
renderer :wiki do
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partial ’views/partials/wiki.haml’
mime ’text/wiki’
mime ’text/timber’

end
renderer :video do

partial ’views/partials/video.haml’
mime ’video/mp4’
mime ’video/ogg’
mime ’application/ogg’
mime ’video/webm’

end
end

run closet

Listing A.2: ”Wire Environment Fields
$environment = {

host: ’{host}’,
port: 9292,
edge_user: ’{user}’,
database: {

namespace: :default,
connection: ’mysql://{user}:{pass}@{host}/{db_name}’

},
dav_acl: ’{svn_repos}/{svnserve_authz_db}’,
repos: ’{svn_repos}’,
repos_user: ’{edge_svn_user}’,
repos_password: ’{edge_svn_password}’

}
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Listing A.3: ”Repo Interface”
module TestRepository

extend Wire::App
extend Wire::Resource
extend Repo

# Make a new repo
# @param [String] path the path to the repositories
# @param [String] repo the new repo name
# @return [Integer] status code
def self.do_create_file(path, repo)

//code for repository creation
end

# Read a single file
# @param [String] rev the revision number to access
# @param [String] web the subdirectory for web content
# @param [String] path the path to the repositories
# @param [String] repo the new repo name
# @param [String] id the relative path to the file
# @return [String] the file
def self.do_read_file(rev, web, path, repo, id)

// code for reading a file
end

# Read a directory listing
# @param [String] web the subdirectory for web content
# @param [String] path the path to the repositories
# @param [String] repo the new repo name
# @param [String] id the relative path to the file
# @return [Array] the directory listing
def self.do_read_listing(web, path, repo, id = nil)

// code for creating a directory listing
end

# Read Metadata for a single file
# @param [String] rev the revision number to access
# @param [String] web the subdirectory for web content
# @param [String] path the path to the repositories
# @param [String] repo the new repo name
# @param [String] id the relative path to the file
# @return [Hash] the metadata
def self.do_read_info(rev, web, path, repo, id)

// code for collecting metadata
end

# Get a file’s MIME type
# @param [String] rev the revision number to access
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# @param [String] web the subdirectory for web content
# @param [String] path the path to the repositories
# @param [String] repo the new repo name
# @param [String] id the relative path to the file
# @return [String] the MIME type
def self.do_read_mime(rev, web, path, repo, id)

// code for retrieving a MIME-Type
end

# Update a single file
# @param [String] web the subdirectory for web content
# @param [String] path the path to the repositories
# @param [String] repo the new repo name
# @param [String] id the relative path to the file
# @param [String] content the updated file
# @param [String] message the commit message
# @param [String] mime the mime-type to set
# @param [String] user the Author of this change
# @return [Integer] status code
def self.do_update_file(web, path, repo, id, content,

message, mime, user)
// code for modifying a file

end

end
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Listing A.4: ”History Interface”
module TestHistory

extend Wire::App
extend Wire::Resource
extend History

# Get the log information for any part of a Repo
# @param [String] web the web path of the repo
# @param [String] repo the name of the repository to access
# @param [String] id the sub-URI of the item to access
# @return [Hash] the history entries
def self.get_log(web, repo, id = nil)

// code for retrieving the log
end

end
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