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Abstract

Homomorphic Encryption has been considered the ’Holy Grail of Cryp-

tography’ since the discovery of secure public key cryptography in

the 1970s. In 2009, a long-standing question about whether fully ho-

momorphic encryption is theoretically plausible was affirmatively an-

swered by Craig Gentry and his bootstrapping construction. Gentry’s

breakthrough has initiated a surge of new research in this area, one

of the most promising ideas being the Learning With Errors (LWE)

problem posed by Oded Regev’s. Although this problem has proved

to be versatile as a basis for homomorphic encryption schemes, the

large key sizes result in a quadratic overhead making this inefficient

for practical purposes. In order to address this efficiency issue, Oded

Regev, Chris Peikert and Vadim Lyubashevsky ported the LWE prob-

lem to a ring setting, thus calling it the Ring Learning with Errors

(Ring-LWE) problem.

The underlying ring structure of the Ring-LWE problem is Z[x]/Φm(x)

where Φm(x) is the mth cyclotomic polynomial. The hardness of this

problem is based on special properties of cyclotomic number fields. In

this thesis, we explore the properties of lattices and algebraic number

fields, in particular, cyclotomic number fields which make them a good

choice to be used in the Ring-LWE problem setting.

The biggest crutch in homomorphic encryption schemes till date is

performing homomorphic multiplication. As the noise term in the re-

sulting ciphertext grows multiplicatively, it is very hard to recover the

original ciphertext after a certain number of multiplications without

compromising on efficiency. We investigate the efficiency of an imple-

mented cryptosystem based on the Ring-LWE hardness and measure

the performance of homomorphic multiplication by varying different

parameters such as the cipherspace cyclotomic index and the under-

lying ring Zp.
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Chapter 1

Overview

The Ring Learning With Errors problem is based on the Learning With

Errors problem which was introduced by Oded Regev [28]. An informal

overview is given here. Let Φm(x) be the mth cyclotomic polynomial, R =

Z[x]/〈Φm(x)〉 be the ring of integers modulo Φm(x) and q be a prime such

that q ≡ 1 (mod m) be a large prime. Fix an error distribution over R, say

χ. For i ∈ N, let ei ∈ χ, let ai, si ∈ Rq be uniformly random ring elements.

Define bi = ais + ei. The goal is to distinguish a polynomial number of in-

dependent ‘random noisy ring equations’ from truly uniform pairs. In other

words

{ai, bi}poly(n)
i=1 ≈ {ai, ui}poly(n)

i=1

where ui’s are uniformly sampled from Rq.

Homomorphic encryption is a form of encryption that allows us to perform

computations on ciphertexts. In the past few years, many homomorphic en-

cryption schemes have been proposed, that have been based on the Ring

Learning With Errors problem. Unfortunately these encryption schemes are

yet to be used in industry mostly because of the amount of time it takes

to perform operations in such schemes. The biggest crutch is homomorphic
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multiplication. Since a message is encrypted with a small amount of noise,

every time a multiplication is performed, this noise grows multiplicatively.

Thus after a certain number of multiplications, the original encrypted plain-

text is lost because of the large error. Fortunately, there have been many

methods introduced such as key-switching to deal with this problem. This

work investigates the performance of homomorphic multiplication in the en-

cryption scheme implemented by Chris Peikert and Eric Crockett in their

Lattice Cryptography library called Λ ◦ λ [8].

The first four chapters develop the mathematical background required to

understand the Ring Learning With Errors problem and the efficient algo-

rithms implemented in [20]. Chapters 5 and 6 describe the Ring Learning

With Errors problem as well as the experiments performed on the homo-

morphic encryption scheme, we conclude with a summary of our results and

plans for future work.
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Chapter 2

Lattice Theory and Hard

Problems

2.1 Lattices

Lattices are regular arrangements of points in n-dimensional Euclidean space.

Definition 2.1.1. Let B = {b1,b2, . . . ,bk} be a set of linearly independent

vectors in Rn. The lattice L generated by B is

L(B) = {a1b1 + a2b2 + . . .+ akbk| a1, a2, . . . , ak ∈ Z}

The set B is called the basis of the lattice L(B). The integers n and k are

called the dimension and rank of the lattice. When n = k, L(B) is called a

full-rank lattice [24].

Definition 2.1.2. The span of the lattice L generated by a basis B = {b1,b2, . . . ,bk}

3



is defined as

span(L(B)) = span(B) =

{
k∑
i=1

aibi|ai ∈ R

}

We will focus on full-rank lattices for the rest of this discussion, but one

could easily extend these concepts to more general dimensions as well. Ob-

serve that the definition of a lattice looks very similar to that of a vector

space, except that a vector space would be defined by a linear combination

of vectors with real coefficients. An important consequence of this definition

is that lattices are discrete sets, that is, for every x ∈ L, there exists a neigh-

borhood N(x, ε) = {y ∈ Rn : ||x− y|| ≤ ε} such that N(x, ε) ∩ L = {x}. In

particular, lattices are discrete additive subgroups of Rn [15].

A simple example of a lattice is the integers, Z ⊂ R which forms a 1-

dimensional lattice, similarly Zn ⊂ Rn forms an n-dimensional lattice. The

set of even integers 2Z is a subgroup of R and thus forms a lattice. Figure

2.1 below illustrates the integer lattice of even numbers in two dimensions..

Although the set of odd integers is discrete, it does not form a lattice, since

it is not a subgroup of the real numbers.

The basis of a lattice is not unique and in fact any two bases of a lattice

are related by a matrix having integer coefficients and determinant is plus or

minus one (See Figure 2.2).

Definition 2.1.3. The fundamental domain of a lattice corresponding to the

basis B = {b1,b2, . . . ,bk} is the parallelopiped given by:

F (B) = {t1b1 + t2b2 + . . .+ tnbn : 0 ≤ ti < 1}

The fundamental domain defined by vectors b1 and b2 is shown by the shaded

region in Figure 2.2. We need this quantity to define the determinant of the

lattice, which is the volume of F (B). In other words detL = vol(F (B)).

4



b1 = (0, 2)

b2 = (2, 0)

b1 + b2

Figure 2.1: Lattice of even integers

Recall our previous remark about bases of the same lattice given by B and

B′ being related by a unimodular linear transformation U such thatB′ = BU .

Observe that

vol(F (B′)) = | detB′|

= | detBU |

= | detB|| detU |

= | detB|

= vol(F (B))

Thus every basis of a lattice L has the same volume, which means that the

determinant of the lattice is an invariant, independent of the fundamental

domain used to calculate it [15].

One of the fundamental problems associated with lattice theory is finding

the shortest vector in the lattice. An important quantity that we shall need

to understand this is the minimum distance of a lattice.
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b1

b2

b1 + b2

2b1 + b2

Figure 2.2: Different bases for the same lattice

Definition 2.1.4. The smallest distance between any two distinct lattice

points is given by λ1(L) = inf{||x− y|| : x,y ∈ L,x 6= y}.

The following result is Minkowski’s theorem is one of the most important

theorems in lattice theory [24].

Theorem 2.1.5. For any lattice L of rank n and any convex set S ⊂ span(L)

symmetric about the origin, if vol(S) > 2n det(L), then S contains a non-zero

lattice point v ∈ S ∩ L \ {0}.

Minkowski’s theorem (Theorem 2.1.5) relates the minimum distance of a

lattice to its determinant. Take S = N(0,
√
n det(L)1/n) ∩ span(L), which

is the open ball centered at the origin with radius
√
n det(L)1/n. Since S

contains an n-dimensional hypercube of length 2 det(L)1/n, we have that

vol(S) > 2n det(L). Thus by Minkowski’s theorem, S contains a non-zero

lattice point, in other words there exists a non-zero v ∈ L such that ||v|| <
√
n det(L)1/n. We can now state the following result:

Corollary 2.1.6. For any lattice L of rank n, we have λ1(L) <
√
n det(L)1/n.

Corollary 2.1.6 gives us a weak upper bound on the shortest distance of a
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vector in a lattice L [24]. Without loss of any generality, we will consider full

rank integer lattices for the rest of this discussion.

2.2 Worst Case Lattice Problems

Worst case lattice problems are commonly used as a security assumption for

cryptographic schemes since attacking lattice based systems would also entail

solving the underlying lattice problem which has been proven to be NP-hard

[23].

Shortest Vector Problem (SVP)

The shortest vector problem asks to find the shortest non-zero vector in a

lattice L given by basis B. This problem has a rich history which can be

traced back to Gauss and Hermite who studied an equivalent of the SVP

problem in the context of quadratic forms. Gauss even gave an algorithm

which solves this problem in two dimensions. Later Minkowski gave a tight

upper bound for the length of the shortest vector, we have seen this bound

in the previous section (Corollary 2.1.6).

Definition 2.2.1. Shortest Vector Problem (SVP)

Given a lattice basis B, find a non-zero vector v ∈ L(B) such that ||v|| =

λ1(L(B)).

Figure 2.3 illustrates this problem in two dimensions. Here the basis B =

{b1,b2} and the shortest vector is v. This problem is easy to solve in two

dimensions using Gauss algorithm but it becomes increasingly more difficult

in higher dimensions [24]. In cryptography, we are more interested in the ap-

proximation problem which can be defined with an approximation parameter

γ ≥ 1, which is usually a function of the rank of the lattice:

7



v

b2

b1

Figure 2.3: Shortest Vector Problem

Definition 2.2.2. Approximate Shortest Vector Problem (SV Pγ)

Given a lattice basis B, find a non-zero vector v ∈ L(B) such that ||v|| ≤
γλ1(L(B)).

We want to base our security assumption of a cryptographic scheme on a

problem that has been proven to be hard in the worst case. Till date, no

such proof exists for this version of the problem. But there are proofs for the

decision version of this problem [28].

Definition 2.2.3. Decisional Approximate Shortest Vector Problem

(GAPSV Pγ)

Given a lattice basis B and a positive integer d, distinguish between the cases

λ1(L(B)) ≤ d and λ1(L(B)) > γ · d.

The SVP problem was conjectured to be NP-hard by van Emde Boas in 1981

and later proved to be hard under randomized reductions by Ajtai in 1997

[1]. In 2001, Micciancio [23] gave the strongest NP-hardness result known till

date, he showed that SVP is NP-hard to approximate within any factor less

than
√

2.
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Closest Vector Problem (CVP)

A related lattice problem whose decision version is known to be NP-complete

is the Closest Vector Problem [24]. It is formally stated as follows:

Definition 2.2.4. Closest Vector Problem (CVP)

Given a lattice basis B and a target vector t, find x ∈ L(B) such that for all

y ∈ L(B), ||x− t|| ≤ ||y − t|| .

t
x

b2

b1

Figure 2.4: Closest Vector Problem

Figure 2.4 illustrates this problem in two dimensions where the basis B =

{b1,b2}, the target vector t is marked in red and the closest vector x is

marked in magenta.

The associated decisional approximation problem with the approximation

parameter γ is stated below [28]:

Definition 2.2.5. Decisional Approximate Closest Vector Problem

(GAPCV Pγ)

Given a lattice basis B, a target vector t and a parameter d > 0, a YES

instance is when ||x−t|| ≤ d, whereas a NO instance is when ||x−t|| > γ · d.

The NP-hardness of CVP was established by reducing it to the subset sum

problem [24], thus solving CVP would imply that P = NP . It can be shown

that SVP is no harder than CVP [14]. Note that the trivial reduction of

9



considering the target vector t = 0 does not work since the CVP oracle

would return the 0 vector as the closest vector to itself.

2.3 LLL Algorithm

The LLL-algorithm was developed by Hendrik Lenstra, Arjen Lenstra and

László Lovász in 1982. This was the first attack against the SVP discussed

in the previous section. Subsequent attacks are based on this one. The goal

of the LLL-Algorithm is to obtain a nearly orthogonal lattice basis. It ap-

proximates the SVP in polynomial time within a factor of (2/
√

3)n. An upper

bound for this problem is given by Hermite’s Theorem which can be related

to Corollary 2.1.6 and is stated as follows:

Theorem 2.3.1. (Hermite’s Theorem). Every lattice L of dimension n con-

tains a non-zero vector b ∈ L satisfying:

||b|| ≤
√
n(detL)

1
n

Intuitively it makes sense that the more orthogonal the vectors in the basis

are the shorter the distances between the vectors will be. The Hadamard

ratio of basis B = {b1,b2, . . . ,bn} is defined as

H(B) =

(
detL

||b1|| . . . ||bn||

) 1
n

,

where 0 < H(B) ≤ 1. The closer H(B) is to 1, the more orthogonal are the

vectors in the basis [15]. We can obtain an orthogonalized set of vectors from

a lattice basis B̃ using Gram-Schmidt Orthogonalization. The set B̃ need not

be a basis for the lattice L(B) because in Gram-Schmidt Orthogonalization,

the vectors are obtained by adding and subtracting non-integer multiples of

10



the basis vectors, as such the group law may not be preserved. Recall Gram-

Schmidt Orthogonalization as follows [3]:

For basis B = {b1,b2, . . . ,bn}, define the Gram-Schmidt Orthogonalized

basis as B̃ = {b̃1, b̃2, . . . , b̃n}:

b̃1 = b1

b̃2 = b2 − µ1,2b̃1

. . .

b̃j = bj −
∑
i<j

µi,jb̃i

where µi,j = 〈bj, b̃i〉/〈b̃j, b̃j〉.

Definition 2.3.2. A basis B = {b1,b2, . . . ,bn} is said to be LLL-reduced if

• Size Condition: |µi,j| ≤ 1
2
, for all 1 ≤ j < i ≤ n.

• Lovász Condition: ||b̃i||2 ≥
(
δ − µ2

i,i−1

)
||b̃i−1||2 for all 1 < i ≤ n.

• We consider δ = 3
4
, but the algorithm works in polynomial time for

1
4
< δ < 1.

The algorithm works as follows:

Input: basis B = {b1,b2, . . . ,bn} for lattice L.

Output: LLL-reduced basis B.

1. Set k = 2 and b̃1 = b1.

2. While k ≤ n, loop:

(a) For j = 1, 2, . . . , k − 1:

Set bk = bk − bµk,jeb̃j. [Size Reduction]

(b) If ||b̃k||2 ≥
(

3
4
− µ2

k,k−1

)
|| ˜bk−1||2: [Lovász Condition]

Set k = k + 1

11



Else:

Swap bk−1 and bk

Set k = max(k − 1, 2)

3. End k loop

4. Return LLL-reduced basis B

The underlying idea behind the algorithm is to loop through the vectors

in the lattice basis B and check for the two conditions that will make the

basis LLL-reduced. Note that it is easy to form a basis that satisfies the Size

Condition, since we can do this for every bk by subtracting the appropriate

linear combinations of b1,b2, . . . ,bk−1. But in the LLL-algorithm, this size

reduction is done in stages, as the size reduction condition depends on the

ordering of the vectors. The most important step is checking the Lovász

Condition, which ensures that the length of the vectors do not decrease too

quickly.

Theorem 2.3.3. Given a basis B = {b1,b2, . . . ,bn} for lattice L, and sup-

pose

M = max{‖bi‖2 : i = 1, 2, . . . , n} ≥ 2

then the LLL algorithm finds a reduced basis L = L(B) using at most O(n5 log(M))

arithmetic operations.

The proof can be found in [16]. We will illustrate this algorithm using the

following example: Take b1 =

1

0

0

, b2 =

 4

2

15

, b3 =

0

0

3

 in Z3.

Note detL = | det[b1 b2 b3]| = 6.

1. Set k = 2.

2. Loop until k ≤ 3

3. Loop j = 1 to j − 1 = 2− 1 = 1:

12



(a)

b2 = b2 − bµ2,1eb̃1

=

 4

2

15

− 4 ·

1

0

0



=

 0

2

15



(b) Check ||b̃2||2 ≥ (3
4
− µ2

2,1)||b̃1||2 → TRUE → set k = 3.

4. For k = 3.

Loop j = 1 to j − 1 = 3− 1 = 2:

(a) j=1

b3 = b3 − bµ3,1eb̃1

=

0

0

3

− 0 ·

1

0

0



=

0

0

3
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(a) j=2

b3 = b3 − bµ3,2eb̃2

=

0

0

3

− ⌊ 45

229

⌉
·

1

0

1



=

0

0

3



5. Check ||b̃3||2 ≥ (3
4
− µ2

3,2)||b̃2||2 → FALSE → Swap b̃2 and b̃3, k =

3− 1 = 2.

6. k = 2.

b1 =

1

0

0

 ,b2 =

0

0

3


7. Loop j = 1 to j − 1 = 2− 1 = 1:

(a)

b2 = b2 − bµ2,1eb̃1

=

0

0

3

− 0 ·

1

0

0



=

0

0

3



(b) Check ||b̃2||2 ≥ (3
4
− µ2

2,1)||b̃1||2 → TRUE → set k = 2 + 1 = 3.

14



8. k = 3

Loop j = 1 to j − 1 = 3− 1 = 2:

(a) j=1

b3 = b3 − bµ3,1eb̃1

=

 0

2

15

− 0 ·

1

0

0



=

 0

2

15


(a) j=2

b3 = b3 − bµ3,2eb̃2

=

 0

2

15

− 5 ·

0

0

3



=

0

2

0



9. Check ||b̃3||2 ≥ (3
4
− µ2

3,2)||b̃2||2 → FALSE → Swap b̃2 and b̃3, k =

3− 1 = 2.

10. Set k = 2.

b1 =

1

0

0

 ,b2 =

0

2

0


11. Loop j = 1 to j − 1 = 2− 1 = 1:

15



(a)

b2 = b2 − bµ2,1eb̃1

=

0

2

0

− 0 ·

1

0

0



=

0

2

0



(b) Check ||b̃2||2 ≥ (3
4
− µ2

2,1)||b̃1||2 → TRUE → set k = 2 + 1 = 3.

12. For k = 3.

Loop j = 1 to j − 1 = 3− 1 = 2:

(a) j=1

b3 = b3 − bµ3,1eb̃1

=

0

0

3

− 0 ·

1

0

0



=

0

0

3
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(a) j=2

b3 = b3 − bµ3,2eb̃2

=

0

0

3

− 0 ·

0

2

0



=

0

0

3



13. Check ||b̃3||2 ≥ (3
4
− µ2

3,2)||b̃2||2 →TRUE → set k = 3 + 1 = 4. Stop

loop.

We get our reduced basis as:

b1 =

1

0

0

 ,b2 =

0

2

0

 ,b3 =

0

0

3


For a sanity check - detL = | det[b1 b2 b3]| = 6, we see that the determinant

of the new basis is equal to that of the old basis. Now let us check whether

the algorithm truly returns a more orthogonal basis than our original basis.

To do this we use the Hadamard ratio as follows:

• H(Boriginal) =
(

6√
255

) 1
3

= 0.7215

• H(Breduced) =
(

6√
14

) 1
3 ≈ 1

17



Chapter 3

Algebraic Number Fields

3.1 Preliminaries

For the purposes of this thesis, we will assume that the reader is familiar with

basic group, ring and field structures. Further reading about these topics can

be found in [10].

One of the main goals of algebraic number theory is to extend the rational

numbers to include complex solutions to certain polynomials in Q[x] which

have no rational roots. More formally,

Definition 3.1.1. A number α ∈ C is algebraic if it satisfies a polynomial

equation

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0

where ai ∈ Q for all i ∈ {0, 1, 2, . . . n− 1}.

From this definition we can intuitively think of the following concept,

Definition 3.1.2. A number α ∈ C is an algebraic integer if it satisfies a

polynomial equation

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0

18



where ai ∈ Z for all i ∈ {0, 1, 2, . . . n− 1}.

Q

Q(α)

C

Figure 3.1: Hasse diagram depicting an algebraic extension of Q

Let us consider an example of extending Q. Consider f(x) = x2 − 2, clearly

f(x) ∈ Q[x]. The equation f(x) = 0 has no roots in the rational numbers.

So we want to extend Q to a field and look for a ’new’ number α in this field

such that it is a root of f(x). Symbolically, we call α =
√

2 and say that α is

algebraic over Q. We can define K as the smallest subfield of C containing

both α and Q. Then K = Q(α) is a simple algebraic extension of Q depicted

in Figure 3.1.

Definition 3.1.3. If K is a subfield of C such that K = Q(ω) for some root

of unity ω, then K is called a cyclotomic field.

For example the roots of x3 − 1 ∈ Q[x] are 1, ω, ω2, where ω =
−1 +

√
−3

2
.

Thus Q(
√
−3) = {a+ b

√
−3|a, b ∈ Q} is a cyclotomic field, since Q(

√
−3) =

Q(ω). We will be investigating cyclotomic fields in more detail in later chap-

ters.

Let K be a subfield of C and α ∈ C be algebraic over K. Some important

definitions and properties of K(α) are described below [2] .

Definition 3.1.4. The unique monic polynomial p(x) ∈ K[x] such that

IK(α) = 〈p(x)〉

where IK(α) = {f(x) ∈ K[x]|f(α) = 0}, is called the minimal polynomial of

α over K and is denoted by irrK(α).
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Definition 3.1.5. The degree of α over K is defined by

degK(α) = deg(irrK(α))

Definition 3.1.6. The degree of the extension K(α) over K is defined by

[K(α) : K] = n

where n = deg(irrK(α)).

Theorem 3.1.7. The minimal polynomial irrK(α) is irreducible in K[x].

Definition 3.1.8. The conjugates of α over K are the roots in C of irrK(α).

Theorem 3.1.9. The conjugates of α over K are distinct.

It is easier to understand these properties with an example. Consider α =
1 + i√

2
∈ C. Then α is a root of x4 + 1 ∈ Q[x]. Since x4 + 1 is irreducible in

Z[x], by Gauss’ lemma we can conclude that it is irreducible in Q[x] [10].

This means that

irrQ

(
1 + i√

2

)
= x4 + 1, deg

(
1 + i√

2

)
= 4

We know that

x4 + 1 =

(
x− 1 + i√

2

)(
x− 1− i√

2

)(
x+

1 + i√
2

)(
x+

1− i√
2

)

Thus the conjugates of
1 + i√

2
over Q are

1 + i√
2
,
1− i√

2
,
−1 + i√

2
,
−1− i√

2

We want to study algebraic number fields, in particular the properties of

cyclotomic fields to understand why they are used as the underlying ring

structure of homomorphic encryption schemes. In order to define algebraic
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number fields in a simple manner, we need the following theorem about

multiple extensions.

Theorem 3.1.10. Let K be a subfield of C and α1, α2, . . . , αn ∈ C be alge-

braic over K. Then there exists α ∈ C that is algebraic over K such that

K(α1, . . . , αn) = K(α)

Q

Q(
√

2) Q(
√

3)

Q(
√

2 +
√

3)

Figure 3.2: Algebraic extension of
√

2,
√

3 over Q

As an example, consider Q(
√

2,
√

3), we want to express this as a simple

extension. The conjugates of
√

2 over Q are
√

2 and −
√

2, similarly the

conjugates of
√

3 over Q are
√

3 and −
√

3. The four combinations of these

conjugates are distinct:

√
2 +
√

3,−
√

2 +
√

3,
√

2−
√

3,−
√

2−
√

3

Thus we have Q(
√

2,
√

3) = Q(
√

2 +
√

3) (see in Figure 3.2).

Set α =
√

2 +
√

3. We want to show that α is an algebraic number. So we
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need to find a polynomial in Q[x] for which α is a root.

α2 = (
√

2 +
√

3)2

α2 = 5 + 2
√

6

α2 − 5 = 2
√

6

(α2 − 5)2 = (2
√

6)2

α4 − 10α2 + 25 = 24

α4 − 10α2 + 1 = 0

Thus α is a root of the monic quartic polynomial f(x) = x4−10x2 +1 ∈ Z[x],

which means that α is an algebraic number. In order for f(x) to be a minimal

polynomial over Q, we need to prove that it is irreducible in Z[x] and therefore

in Q[x].

Suppose that f(x) is reducible in Z[x], this means that f(x) is the product

of two polynomials

• Case 1: f(x) = (x3 + ax2 + bx+ c)(x+ d) or

x4 − 10x2 + 1 = (x3 + ax2 + bx+ c)(x+ d)

where a, b, c, d ∈ Z. Notice that the only constant term on the right

must be equal to the constant term on the left, in other words cd = 1.

But since both c, d ∈ Z, we have c = 1, d = 1 or c = −1, d = −1. This

means that the only possible linear factors for f(x) are x− 1 or x+ 1.

Now f(−1) = f(1) = −8 6= 0, therefore f(x) does not have any linear

factors.

• Case 2: f(x) = (x2 + ax+ b)(x2 + cx+ d). Then we have

x4 − 10x2 + 1 = (x2 + ax+ b)(x2 + cx+ d)

= x4 + (a+ c)x3 + (b+ ac+ d)x2 + (bc+ ad)x+ bd
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where a, b, c, d ∈ Z. Equating coefficients of like terms, we get

a+ c = 0

b+ ac+ d = −10

bc+ ad = 0

bd = 1

Solving these equations, we get b = d = ±1, so that b+ d = ±2, which

implies that a2 = 8 or 12, which is impossible. Thus f(x) is irreducible.

We have

irrQ(
√

2 +
√

3) = x4 − 10x2 + 1

and

[Q(
√

2,
√

3) : Q] = [Q(
√

2 +
√

3) : Q] = 4

Now we definine an algebraic number field as follows:

Definition 3.1.11. An algebraic number field is a subfield of C in the form

Q(α1, . . . , αn) where α1, . . . , αn are algebraic numbers.

The following theorem simplifies our representation of an algebraic number

field and is intuitive by combining the fact that any algebraic number is of

the form a/b where b is a non-zero ordinary integer and a is an algebraic

integer, with Theorem 3.1.10.

Theorem 3.1.12. If K is an algebraic number field then there exists an

algebraic integer θ such that K = Q(θ).

One of the main factors in studying these algebraic number fields is to explore

whether the properties of integers in the rational numbers could be mimicked

in these extensions. The most important property being unique factorization,

recall that Z is a unique factorization domain (UFD). Keeping this in mind

we define an analogy of the integers in general number fields as [22].

Definition 3.1.13. The set of all algebraic integers that lie in the algebraic
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number field K is denoted by OK and is called the ring of integers of K.

It is not surprising that the following statement is true

Theorem 3.1.14. Let K be an algebraic number field, then OK is an integral

domain.

Determining the ring of integers OK for an algebraic number field K is gen-

erally a difficult problem. But it has been classified for the case of K being

a quadratic field [2].

Theorem 3.1.15. Let K be a quadratic field and m be a unique squarefree

integer such that K = Q(
√
m). Then the set OK of algebraic integers in K

is given by

OK =


Z + Z

√
m, m 6≡ 1 (mod 4)

Z + Z
(

1+
√
m

2

)
, m ≡ 1 (mod 4)

Illustrating this theorem with an example, let us find OK for K = Q(
√
−5)

and K = Q(
√
−7). Using Theorem 3.1.15, we see that OQ(

√
−5) = Z+Z

√
−5

and OQ(
√
−7) = Z + Z

(
1+
√
−7

2

)
.

Recall that given an algebraic number field K of degree n and α ∈ K such

that K = Q(α), we defined the conjugates of α to be the roots of irrK(α).

What about the rest of the elements of K, do they also have conjugates

relative to K? For β ∈ K, let us express β as

β = c0 + c1α + . . .+ cn−1α
n−1

where c0, . . . , cn−1 ∈ Q. Intuitively we could define the conjugates of β relative

to K as

βk = c0 + c1αk + . . .+ cn−1αk
n−1

where k = 1, 2, . . . , n.

Definition 3.1.16. The set of algebraic numbers {β1 = β, β2, . . . , βn} is
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called a complete set of conjugates of β relative to K. Briefly, they are called

the “K-conjugates of β” or the “conjugates of β relative to K”.

Note [2] that the conjugates of β relative to K do not depend on the choice

of α such that K = Q(α). An important quantity related to the conjugates

of β relative to K is the field polynomial of β over K.

Definition 3.1.17. Let β ∈ K where K is an algebraic number field of

degree n. Suppose β1 = β, β2, . . . , βn are the K-conjugates of β. Then the

field polynomial of β over K is defined as

fldK(β) =
n∏
k=1

(x− βk)

Consider K = Q(α), where α =
√

2, we know α1 =
√

2 and α2 = −
√

2. Let

β ∈ K such that β = 1=α
2

. Then

fldK(β) =

(
x− 1 + α1

2

)(
x− 1 + α2

2

)
=

(
x− 1 + α

2

)(
x− 1− α

2

)
=

1

4
((2x− 1)− α)((2x− 1)− α)

=
1

4
((2x− 1)2 − α2)

=
1

4
(4x2 − 4x+ 1− 2)

=
1

4
(4x2 − 4x− 1)

Notice that fldK(β) ∈ Q[x]. This observation [2] can actually be made for

all algebraic numbers in K:

Theorem 3.1.18. Let K be an algebraic number field of degree n and β ∈ K,

then fldK(β) ∈ Q[x].
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3.2 Integral Basis of an Algebraic Number

Field

In order to define the notion of a basis over an algebraic number field we

need to define an important quantity called the discriminant.

Definition 3.2.1. Let K be an algebraic number field of degree n and ω1, . . . , ωn ∈
K. Suppose σk : K → C where k = 1, 2, . . . , n denote the n distinct monomor-

phisms. For i = 1, 2, . . . , n, let

ω
(1)
i = σ1(ωi) = ωi, ω

(2)
i = σ2(ωi), . . . , ω

(n)
i = σn(ωi)

denote the conjugates of ωi relative to K. Then the discriminant of {ω1, . . . , ωn}
is

D(ω1, . . . , ωn) =

∣∣∣∣∣∣∣∣∣∣
ω

(1)
1 ω

(1)
2 . . . ω

(1)
n

ω
(2)
1 ω

(2)
2 . . . ω

(2)
n

...
... . . .

...

ω
(n)
1 ω

(n)
2 . . . ω

(n)
n

∣∣∣∣∣∣∣∣∣∣
Definition 3.2.2. Let K be an algebraic number field of degree n and β ∈ K.

The discriminant of β denoted by D(β) is defined as

D(β) =
∏

1≤i<j≤n

(β(i) − β(j))2

where β(1) = β, β(2), . . . , β(n) are the conjugates of β with respect to K.

As an example, take K = Q(
√

2) and choose β =
√

2 then the conjugates of

β are β1 =
√

2 and β2 = −
√

2. We have

D(β) = (β1 − β2)2

= (2
√

2)2

= 8
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Now we can define a necessary and sufficient condition for an algebraic num-

ber field to be an extension of Q:

Theorem 3.2.3. Let K be an algebraic number field of degree n and β ∈ K.

Then K = Q(β) if and only if D(β) 6= 0.

It turns out that every ideal in the ring of integers OK is finitely generated,

in other words OK is a Noetherian domain [2]. This fact helps us define the

concept of a basis for an ideal

Definition 3.2.4. Let K be an algebraic number field of degree n. Let I be

a nonzero ideal of OK. If {η1, η2, . . . , ηn} is a set of elements of I such that

every element α ∈ I can be expressed uniquely in the form

α = x1η1 + . . .+ xnηn

where x1, x2, . . . , xn ∈ Z, then {η1, η2, . . . , ηn} is called a basis for the ideal

I.

Consider K = Q(
√

7), we already know that OK = Z+Z
√

7 (from Theorem

3.1.15). Let I be the principal ideal of OK generated by 2 +
√

7, then

I = {(a+ b
√

7)(2 +
√

7)|a, b ∈ Z}

= {(2a+ 7b) + (a+ 2b)
√

7|a, b ∈ Z}

= {(2(c− 2b) + 7b) + c
√

7|c, b ∈ Z}

= {3b+ c(2 +
√

7)|c, b ∈ Z}

= 3Z + (2 +
√

7)Z

Thus {3, 2 +
√

7} is a basis for I, note that {2 +
√

7, 7 + 2
√

7} is another

basis for I and that D({3, 2 +
√

7}) = D({2 +
√

7, 7 + 2
√

7}) = 252. This

observation brings us to the definition of the discriminant of an ideal [2]

Definition 3.2.5. Let K be a algebraic number field of degree n, I be a non-
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zero ideal of OK, and {η1, . . . , ηn} be a basis for I. Then discriminant of the

ideal I is given by

D(I) = D({η1, . . . , ηn})

Intuitively, a basis of the principal ideal of OK generated by 1, that is OK
itself can be called an integral basis for K.

Definition 3.2.6. A basis for OK is called an integral basis for K.

In light of this new notion, and Theorem 3.1.15, we can state the following:

Theorem 3.2.7. Let K be a quadratic field and m be a unique squarefree

integer such that K = Q(
√
m). Then the integral basis for K is {1,

√
m}

when m 6≡ 1 (mod 4) and is

{
1,

(
1+
√
m

2

)}
when m ≡ 1 (mod 4).

Similar to defining the discriminant of an ideal, we can define the discriminant

of an algebraic number field as follows

Definition 3.2.8. Let K be an algebraic number field of degree n and {η1, . . . , ηn}
be an integral basis for K. Then D(η1, . . . , ηn) is called the discriminant of

K and is denoted by d(K).

Ideally, it would be nice to have an integral basis for an algebraic number

field K of degree n which looks something like {1, η, η2, . . . , ηn−1} where every

element α ∈ K is a linear combination of 1, η, . . . , ηn−1, the field in which

this type of integral basis exists is called a monogenic number field [2].

Definition 3.2.9. For an algebraic number field K of degree n, if there exists

an element η ∈ OK such that {1, η, η2, . . . , ηn−1} is an integral basis for K,

then K is said to be monogenic and {1, η, η2, . . . , ηn−1} is called a power basis

for K.

It is clear to see that any quadratic number field is monogenic (from Theorem

3.2.7). But not every algebraic number field is monogenic. Dedekind showed

this by proving that the cubic field K = Q(θ) where θ is a root of x3 − x2 −
2x− 8 ∈ Z[x] does not have a power basis [9].

Let us describe the integral basis of a cyclotomic field. Recall that for a

28



positive integer n and a primitive nth root of unity ζn, the nth cyclotomic

number field is defined as Kn = Q(ζn). We can see that ζn is a root of

Φn(x) =
n∏

r=1,
(r,n)=1

(x− ζrn)

since Φn(x) ∈ Z[x] and is irreducible [10], we have that

irrQ(ζn) = Φn(x)

Observe that [Q(ζn) : Q] = φ(n). The following theorem is important to

remember for future sections [2]:

Theorem 3.2.10. The cyclotomic field Kn = Q(ζn) is monogenic for every

positive integer n.

Consider K3 = Q(ω), then

Φ3(x) =
3∏

r=1,
(r,3)=1

(x− ωr)

= (x− ω)(x− ω2)

=

(
x−

(
−1 +

√
−3

2

))(
x−

(
−1−

√
−3

2

))
= 1 + x+ x2 ∈ Z[x]

Observe that ω = −1
2
· 1 + 1

2
·
√
−3. It is clear that K3 = Q(

√
−3)and from

Theorem 3.2.7, the integral basis of K3 = {1,
√
−3}.

Two other important quantities associated with an algebraic number field K

are defined as follows:

Definition 3.2.11. Let K be an algebraic number field of degree n. Let α ∈
K. Let α1 = α, α2, . . . , αn be the K- conjugates of α. Then the trace of α is

29



defined as

tr(α) = α1 + α2 + . . .+ αn

and the norm of α is defined by

N(α) = α1α2 . . . αn

One very simple example that we have seen since our middle school days is

when K = Q(
√
m) is a quadratic field. Take α ∈ K such that α = a + b

√
m,

the K-conjugates of α are α = a+ b
√
m and α′ = a− b

√
m. The trace of α is

tr(α) = α + α′ = 2a

and the norm of α is

N(α) = αα′ = a2 − b2m

3.3 Dedekind Domain and Unique Factoriza-

tion

The motivation behind learning about Dedekind domains lies in the quest

for finding unique factorization in algebraic structures. Under certain con-

straints, Dedekind domains can achieve unique factorization, as we shall see

in this section.

Definition 3.3.1. An integral domain D that is a Noetherian domain, inte-

grally closed and in which every prime ideal of D is a maximal ideal is called

a Dedekind domain.

From the definition we can see that the following statement holds [2]:

Theorem 3.3.2. The ring of integers OK in an algebraic number field K is

a Dedekind domain.
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Interestingly enough, the development of Dedekind domains came from the

following result.

Proposition 3.3.3. For an algebraic number field K, every non-zero ideal

I in OK can be written uniquely as the product of powers of distinct prime

ideals

I = Pe1
1 Pe2

2 . . .Pen
n

where P1, . . . ,Pn are distinct prime ideals and ei ≥ 1 for i = 1, . . . , n.

This property of the ring of integers led Dedekind to define Dedekind domains

as any integral domain D in which every non-zero proper ideal I can be

written as a finite product of prime ideals [10]. Unique factorization of ideals

in Dedekind domains means that we can define a notion of divisibility [2].

Definition 3.3.4. If A and B are non-zero integral ideals of a Dedekind

domain D, we say that A|B if there exists an integral ideal C of D such that

B = AC.

Consider K = Q(
√
−5), the ring of integers OK = Z + Z

√
−5 is a Dedekind

domain. Observe that 6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5), where 2, 3, (1 +

√
−5), (1 −

√
−5) are irreducible in D. We illustrate how the use of prime

ideals can represent the ideal 〈6〉 with a unique factorization. Take

P1 = 〈2, 1 +
√
−5〉

P2 = 〈3, 1 +
√
−5〉

P3 = 〈3, 1−
√
−5〉

as three distinct prime ideals. Observe that P2
1 = 〈2〉, P2P3 = 〈3〉, P1P2 =

〈1 +
√
−5〉, P1P3 = 〈1−

√
−5〉. Then

〈6〉 = 〈2〉〈3〉 = 〈1 +
√
−5〉〈1−

√
−5〉 = P2

1P2P3

31



We can extend this concept of divisibility to fractional ideals, but first let us

formally define them [2]

Definition 3.3.5. Let D be an integral domain and K be the quotient field

of D, then a non-empty subset A of K with the following properties

1. α ∈ A, β ∈ A→ α + β ∈ A.

2. α ∈ A, r ∈ D → rα ∈ A.

3. there exists γ ∈ D with γ 6= 0 such that γA ⊆ D.

is called a fractional ideal of D.

Consider A = { n
25
|n ∈ Z}. For any n1, n2 ∈ Z we have n1

25
, n2

25
∈ A and

n1+n2

25
∈ A. For any r ∈ Z, rn

25
∈ A, since rn ∈ Z. Also 25A = Z. Thus A is a

fractional ideal of Z. Note that the quotient field of the ring of integers OK
is the algebraic number field K [10].

Observe that if A is a fractional ideal of D and γ ∈ D \ {0} is a common

denominator for A then γA is an integral ideal of D. We can define this

notion formally for a prime ideal P as follows

Definition 3.3.6. Let D be an integral domain and K be the quotient field

of D. For each prime ideal P of D, we define the set

P̃ = {α ∈ K : αP ⊂ D}

It is clear to see that P̃ is a fractional ideal of D.We get the following property

of a Dedekind domain from this observation:

Theorem 3.3.7. Let D be a Dedekind domain and P be a prime ideal of D.

Then PP̃ = D.

Let us illustrate this theorem with the following example. Suppose D =

Z + Z
√

6. D is the ring of integers of K = Q(
√

6) and the quotient field of
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D is K. Take the prime ideal P = 〈2,
√

6〉, then

P̃ = {α ∈ K|αP ⊆ D}

= {x+ y
√

6|x, y ∈ Q, (x+ y
√

6)〈2, 6〉 ⊆ Z + Z
√

6}

= {x+ y
√

6|x, y ∈ Q, 2(x+ y
√

6) ∈ Z + Z
√

6,
√

6(x+ y
√

6) ∈ Z + Z
√

6}

= {x+ y
√

6|2x ∈ Z, 2y ∈ Z, x ∈ Z, 6y ∈ Z}

= {x+ y
√

6|x ∈ Z, 2y ∈ Z}

=

{
a+

b

2

√
6|a, b ∈ Z

}
=

{
2a+ b

√
6

2
|a, b ∈ Z

}
=

1

2
{2a+ b

√
6|a, b ∈ Z}

=
1

2
(2Z + Z

√
6)

=
1

2
P

Returning to the notion of defining divisibility for fractional ideals in a

Dedekind domain, suppose A is a fractional ideal in a Dedekind domain

D and α, β ∈ D \ {0} are common denominators, then

〈α〉A = B, 〈β〉A = C

where B and C are integral ideals of D. We know that 〈α〉 =
∏n

i=1 P
ri
i ,

〈β〉 =
∏n

i=1 P
ti
i , 〈B〉 =

∏n
i=1 P

si
i , 〈C〉 =

∏n
i=1 P

ui
i , where P1, . . . ,Pn are

distinct prime ideals and ri, si, ui, ti are nonnegative integers (i = 1, 2, . . . , n).

Since

〈α〉C = 〈α〉(〈β〉A) = 〈β〉(〈α〉A) = 〈β〉B

we have
n∏
i=1

Pri+ui
i =

n∏
i=1

Psi+ti
i
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then

ri + ui = si + ti

where i = 1, 2, . . . , n. Now we can define the prime ideal factorization of the

fractional ideal A as
∏n

i=1 P
si−ri
i , and this representation is unique [2]. This

representation of fractional ideals lets us define the concept of an “inverse of

an ideal”. For any prime ideal P of D, since PP̃ = 〈1〉, we have P̃ = P−1.

This means that we can define the inverse of any nonzero ideal I of a Dedekind

domain. It turns out that the nonzero ideals of a Dedekind domain D form

a multiplicative abelian group [2]. The following statement is a result of this

fact:

Theorem 3.3.8. Let K be an algebraic number field and OK be the ring

of integers of K. The set of all nonzero ideals of OK forms a multiplicative

abelian group I(K).

Now that we have an algebraic structure with unique factorization and divisi-

bility, we can try to replicate other properties of the integers in this structure.

One of the most important theorems that carry over is the Chinese Remain-

der Theorem [10]:

Theorem 3.3.9. Suppose D is a Dedekind domain, P1, . . . ,Pn are distinct

prime ideals in D and r1, r2, . . . , rn are positive integers then

D/Pr1
1 . . .Prn

n ' D/Pa1
1 ×D/Pa2

2 × . . .×D/Prn
n

Equivalently for elements α1, . . . , αn ∈ D, then there exists α ∈ D then

α ≡ αi (mod Pri
i )

where i = 1, 2, . . . , n.

More generally, if I1, . . . ,In are pairwise relatively prime ideals of D and
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α1, . . . , αn ∈ D, then there exists α ∈ D such that

α ≡ αi (mod Ii)

where i = 1, 2, . . . , n.

3.4 Tensor Products

The tensor product representation of the mth cyclotomic number field K =

Q(ζm) is used extensively to make homomorphic operations more efficient in

the encryption schemes. In this section we will cover the basics of modules

and tensor products to gain a very general understanding of these structures.

For more details, the reader is referred to [10].

Definition 3.4.1. Let R be a commutative ring with unity. An R-module is

an abelian group M with an action R×M →M , written as rv where r ∈ R
and v ∈M which satisfies the following conditions:

1. 1v = v, ∀v ∈M

2. (rs)v = r(sv), ∀r, s ∈ R, ∀v ∈M

3. (r + s)v = rv + sv, ∀r, s ∈ R, ∀v ∈M

4. r(v + w) = rv + rw, ∀r ∈ R, ∀v, w ∈M

A submodule N ⊂ M is an abelian group which is closed under the scaling

operation. N almost behaves like an ideal of a ring - given r ∈ R, rv ∈ N
if v ∈ N . Keeping this in mind, one can define M/N to be the set of cosets

of N in M with the R-action defined as r(v + N) = (rv) + N , which shows

that M/N is also an R-module.

An example that we are familiar with from linear algebra is when R is a field,

then the R-module is just a vector space over R. Any additive abelian group

A is a Z-module where the R-action can be defined as the map (n, a)→ na
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from Z× A→ A.

For R-modules M and N , their tensor product M ⊗R N is an R-module

spanned by all symbols m⊗ n where m ∈ M and n ∈ N and these symbols

satisfy the following laws:

1. (m+m′)⊗ n = m⊗ n+m′ ⊗ n, m⊗ (n+ n′) = m⊗ n+m⊗ n′.

2. r(m⊗ n) = (rm)⊗ n = m⊗ (rn).

The essence of these two conditions is captured in the definition of bilinearity

as follows:

Definition 3.4.2. Let M,N and P be R-modules, a map B : M × N → P

is R-bilinear if

• B(m1 +m2, n) = B(m1, n) +B(m2, n), and B(rm, n) = rB(m,n).

• B(m,n1 + n2) = B(m,n1) +B(m,n2), and B(m, rn) = rB(m,n).

For example, the dot product of two vectors v ·w is a bilinear map Rn×Rn →
R given by

• (v1 + v2) ·w = v1w + v2w, and (rv) ·w = r(v ·w).

• v · (w1 + w2) = vw1 + vw2, and r(v) ·w = r(v ·w).

The tensor product has what is called the universal mapping property. Infor-

mally this means that for R-modules M and N , their tensor product M⊗RN
is a universal object that turns bilinear maps on M × N into linear maps.

We can define the tensor product more formally as follows:

Definition 3.4.3. Let M and N be R-modules, their tensor product M⊗RN
is an R-module equipped with the bilinear map

M ×N ⊗−→M ⊗R N

such that for any bilinear map M × N
B−→ P there is a unique linear map

M ⊗R N
L−→ P making the following commute
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M ⊗R N

M ×N

P

⊗

B
L

Figure 3.3: Universal Mapping Property of M ⊗R N

Let us see some simple examples of tensor products. Consider Z/2Z⊗Z/3Z.

Since 3a = a for all a ∈ Z/2Z, we have

a⊗ b = 3a⊗ b = a⊗ 3b = a⊗ 0 = 0

Thus Z/2Z⊗ Z/3Z = 0. Note that a⊗ 0 = a⊗ (0 + 0) = a⊗ 0 + a⊗ 0, thus

a⊗ 0 = 0.

Now consider Z/2Z⊗ Z/2Z, this is generated by 0⊗ 0 = 1⊗ 0 = 0⊗ 1 and

1 ⊗ 1, note that 1 ⊗ 1 6= 0 since we can find a non-zero bilinear map from

Z/2Z×Z/2Z→ Z/2Z defined by (a, b)→ ab. Also 2(1⊗1) = 2⊗1 = 0⊗1 = 0,

which implies that 1⊗ 1 is of order 2. Thus Z/2Z⊗ Z/2Z ' Z/2Z.

The following theorem is one that is used later in representing a cyclotomic

number field as a tensor product of its sub-fields [30].

Theorem 3.4.4. For ideals I and J in R, there is a unique R-module iso-

morphism

R/I⊗R R/J ' R/(I + J)

where x̄⊗ ȳ → xy.
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3.5 Lattices and Minkowski Theory

This section combines the concepts we learned in Chapters 2 and 3 by ap-

plying lattice theory to number fields K/Q of degree n. We can think of the

number field as an n dimensional vector space and we will see that OK forms

a lattice in this vector space.

Suppose K is a number field and [K : Q] = n, then we have n embeddings

τi : K → C for all i ∈ {1, 2, . . . , n}. Consider the mapping

j : K → KC

where KC :=
∏

τi
C, in other words KC is the direct product of the image

of K under each embedding. This mapping is often called the Minkowski

embedding and is defined as follows

a→ ja = (τ1a, τ2a . . . , τna)

where τ1, . . . , τn are the n embeddings. Note that the usual inner product

definition holds on KC [25]:

〈x, y〉 =
∑
τ

xτ ȳτ

The goal of this section is to somehow relate K to a Euclidean space so

that we can define a lattice structure on it. In order to do this, observe that

the real embeddings of K already map into R, so our only concern is the

complex embeddings which can be thought of as embeddings into R2, by

splitting them into their real and imaginary components. Finally, note that

the complex embeddings are in pairs of complex conjugates. Thus we can

ignore half of the complex embeddings and still retain all the information

about our n embeddings. This leads us to the description of the Minkowski
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space [25],

KR = {(zτ ) ∈ KC|zρ ∈ R, zσ̄ = z̄σ}

where ρ1, . . . , ρr are the real embeddings and σ1, σ̄1, . . . , σs, σ̄s are the complex

embeddings such that n = r+ 2s. The Minkowski space allows us to think of

K as an n-dimensional Euclidean space, and the following proposition allows

us to interpret the ring of integers of K and its ideals as lattices [25].

Proposition 3.5.1. Let K be a finite extension of Q and a a non-zero ideal

of OK. Let j be the map from K into the Minkowski space KR. Then T = ja

is full-rank lattice in KR and its fundamental domain has volume

vol(T) =
√
|d(K)|(OK : a)

Let us illustrate these concepts with an example. Take K = Q( 3
√

2), the

minimal polynomial is given by x3 − 2 so [K : Q] = 3 and we have three

embeddings of K into C which we can denote by τ1, τ2 and τ3 and are defined

as:

τ1(
3
√

2) =
3
√

2

τ2(
3
√

2) =
3
√

2

(
−1

2
+

√
3

2
i

)

τ3(
3
√

2) =
3
√

2

(
−1

2
−
√

3

2
i

)

Note that τ1 is a real embedding and τ2 = τ̄3. Then the map j : K → KR

gives us

j(
3
√

2) =

(
3
√

2,−
3
√

2

2
,

3
√

2
√

3

2

)
Recall that for quadratic number fields are monogenic, so a Z basis for OK
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is given by {1, 3
√

2, ( 3
√

2)2}. We can define a basis for our lattice as

j(1) = (1, 1, 1)

j(
3
√

2) =

(
3
√

2,−
3
√

2

2
,

3
√

2
√

3

2

)

j((
3
√

2)2) =

(
(

3
√

2)2,−( 3
√

2)2

4
,
3( 3
√

2)2

4

)
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Chapter 4

Galois Theory

In the previous chapter, we studied how the Q can be extended to a field

which includes roots of polynomials that have no rational roots and the

properties of these algebraic extensions. In this chapter we will delve into

the main theory of understanding roots of polynomials in different number

fields, and cyclotomic number fields in particular. Our main purpose is to

understand how different properties of cyclotomic number fields and their

Galois groups help prove the hardness of Ring-LWE in a subsequent chapter.

4.1 Splitting Fields

We define the notion of a splitting field as the following

Definition 4.1.1. Let f ∈ F [x] have degree n > 0. Then an extension L of

F is a splitting field of f over F if

1. f = c(x− α1)(x− α2) . . . (x− αn) where c ∈ F and αi ∈ L

2. L=F (α1, α2, . . . , αn)
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Note that not all algebraic extensions of f over F can be splitting fields, for

example, consider Q ⊂ Q( 4
√

2), its minimal polynomial is x4 − 2, but Q( 4
√

2)

is not the splitting field of x4− 2 over Q. In fact, Q(i, 4
√

2) is a splitting field

of x4 − 2 over Q.

Splitting fields of a given polynomial f ∈ F [x] are not necessarily unique.

For example Q(
√

2) and Q[t]/〈t2 − 2〉 are both splitting fields of x2 − 2 over

Q. But they are isomorphic to each other [7].

Theorem 4.1.2. Given f1 ∈ F1[x] and an isomorphism Ψ : F1 ' F2, there

is an isomorphism Ψ̄ : L1 ' L2 such that Ψ = Ψ̄|F1.

L1 L2

∪ ∪

F1 F2

Ψ

Ψ

Figure 4.1: Diagram depicting Theorem 4.1.2

An important concept that follows from Theorem 4.1.2 is the following:

Proposition 4.1.3. Let L be a splitting field of a polynomial in F [x] and

suppose that h ∈ F [x] is irreducible and has roots α, β ∈ L. Then there is a

field isomorphism σ : L→ L that is the identity on F and takes α to β.

L L

∪ ∪

F (α) F (β)

σ

Figure 4.2: Diagram depicting Proposition 4.1.3

As an example, consider L = Q(
√

2) a splitting field of x2 − 2 over Q. We

can easily check that x2 − 2 is irreducible over Q and has roots ±
√

2 ∈ L.

Then by Proposition 4.1.3, there is an isomorphism σ : L → L such that

σ(
√

2) = −
√

2.

Proposition 4.1.3 becomes very useful when constructing elements of Galois
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groups. We will see how in the next section. The rest of this section is devoted

to studying important properties of splitting fields.

Definition 4.1.4. An algebraic extension L of F is normal if every irre-

ducible polynomial in F [x] that has a root in L splits completely over L.

The following theorem relates normal extensions to splitting fields [7]:

Theorem 4.1.5. Suppose that F ⊂ L. Then L is the splitting field of some

f ∈ F [x] if and only if the extension L is normal and finite.

We consider a polynomial to be separable if it has distinct roots. More for-

mally:

Definition 4.1.6. A polynomial f ∈ F [x] is separable if it is nonconstant

and all its roots in a splitting field are simple.

We can extend the concept of separability to algebraic extensions:

Definition 4.1.7. Let F ⊂ L be an algebraic extension.

1. α ∈ L is separable over F if its minimal polynomial over F is separable.

2. F ⊂ L is a separable extension if every α ∈ L is separable over F .

It turns out that f ∈ F [x] is separable only when it is a product of irreducible

polynomials, each of which is separable and no two of which are multiples

of each other. The following proposition gives us an easy way of determining

when an irreducible polynomial is separable.

Proposition 4.1.8. Let f ∈ F [x] be an irreducible polynomial of degree n.

Then f is separable if either of the following conditions is satisfied.

1. F has characteristic 0, or

2. F has characteristic p > 0 where p is prime and p 6 |n.
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4.2 The Galois Group

It is fairly straightforward to define a vector space on a field extension, and

although this measures the size ( the degree of [L : F ] is given by the dimen-

sion of L considered as a vector space over F ), it does not tell us anything

deeper about the structure. Galois associated the roots of any polynomial

with the permutation of its roots. This group is now called the Galois group

in his honor and is formally defined as follows.

Definition 4.2.1. Let F ⊂ L be a finite extension. Then Gal(L/F ) is

{σ : L→ L|σ is an automorphism and σ(a) = a ∀a ∈ F}

Gal(L/F ) consists of all the automorphisms of L that “fix” the elements of

F . This forms a group under composition [31].

Proposition 4.2.2. If L is the splitting field of a separable polynomial in

F [x] then the Galois group of F ⊂ L has order |Gal(L/F )| = [L : F ].

For example, consider the complex numbers, where C = R(i). We know C is

the splitting field of the polynomial x2 + 1 in R[x]. Let σ ∈ Gal(C/R). Since

σ(r) = r for all r ∈ R, σ(i) = ±i. In other words,

σ1 : x+ iy → x+ iy

σ2 : x+ iy → x− iy

It can be easily shown that both σ1 and σ2 are indeed automorphisms of C,

and also σ2
2 = σ1. Thus Gal(C/R) = {1C, σ2} forms a cyclic group of order

2. It follows that Gal(C/R) ' Z/2Z. Note that |Gal(C/R)| = [C : R] = 2.

Now we can finally come to the main point that Galois associated polynomi-

als and their roots with many years ago. For a splitting field L of a separable

polynomial of degree n, f ∈ F [x], the Galois group Gal(L/F ) forms a sub-
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group of Sn [7]. When regarding Galois groups in terms of permutations, it

is natural to ask how these permutations relate to the corresponding field

extension. Let us define a term that will help us in this regard:

Definition 4.2.3. A subgroup H ⊂ Sn is transitive if for every pair of ele-

ments i, j ∈ {1, . . . , n}, there is a τ ∈ H such that τ(i) = j.

Note that not all subgroups of Sn are transitive. Consider {e, (12), (34), (12)(34)} ⊂
S4. Since no element of the subgroup takes 1 to 3, this is not transitive.

How does transitivity relate to Galois groups and their corresponding field

extension? The following very important result was proved by Camille Jordan

[7]:

Proposition 4.2.4. Let L be the splitting field of a separable polynomial

f ∈ F [x] of degree n. Then the subgroup of Sn corresponding to Gal(L/F ) is

transitive if and only if f is irreducible over F .

This property is also important with regard to our Ring-LWE discussion later

on.

4.3 The Galois Correspondence

Associating the automorphisms on the roots of a polynomial with the permu-

tation group is only scratching the surface of Galois Theory. In this section,

we will cover the fundamental properties of the Galois correspondence be-

tween a field extension and its Galois group. But first we need to establish

some more terminology:

Definition 4.3.1. Suppose that we have a finite extension F ⊂ L with Galois

group Gal(L/F ). Given a subgroup H ⊂ Gal(L/F ), we define the fixed field

of H as

LH = {α ∈ L|σ(α) = α for all σ ∈ H}

Now we are ready for our first important theorem in this section [7].
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Theorem 4.3.2. Let F ⊂ L be a finite extension. Then the following are

equivalent

1. L is the splitting field of a separable polynomial in F [x].

2. F is the fixed field of Gal(L/F ) acting on L.

3. F ⊂ L is a normal separable extension.

This theorem lets us make the following definition

Definition 4.3.3. An extension F ⊂ L is called a Galois extension if it is a

finite extension satisfying any of the equivalent conditions of Theorem 4.3.2.

For example, the extension R ⊂ C is Galois, since C = R(i) is the splitting

field of x2 + 1 over R (by part 1 of Theorem 4.3.2). The following case is one

where being a Galois extension is straighforward.

Proposition 4.3.4. Suppose that F ⊂ L is a Galois extension and that we

have an intermediate field F ⊂ K ⊂ L. Then K ⊂ L is a Galois extension.

In order to understand the fundamental theorem of Galois Theory, we need

to understand the relation between normal subgroups and normal extensions.

Let us cover some terminology in this regard

Definition 4.3.5. Suppose that we have finite extensions F ⊂ K ⊂ L. Then

for an automorphism σ ∈ Gal(L/F ), we define a conjugate field of K as

σ(K) = {σ(α)|α ∈ K}

Now we can state the main theorem relating normal subgroups to normal

extensions [7].

Theorem 4.3.6. Suppose we have the fields F ⊂ K ⊂ L where F ⊂ L is a

Galois extension. Then the following conditions are equivalent:

1. K = σ(K) for all σ ∈ Gal(L/F ).

2. Gal(L/K) is a subgroup of Gal(L/F ).
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3. F ⊂ K is a Galois extension.

4. F ⊂ K is a normal extension.

In group theory, we learned that normal subgroups are important because

we can form quotient groups - recall that if G is a group and N is a normal

subgroup, then G/N forms a quotient group. The above theorem shows that

normal subgroups occur naturally in Galois theory and we can take full ad-

vantage of their properties. We can now state the fundamental theorem of

Galois Theory as follows:

Theorem 4.3.7. Let F ⊂ L be a Galois extension.

1. For an intermediate field F ⊂ K ⊂ L, its Galois group Gal(L/K) ⊂
Gal(L/F ) has fixed field

LGal(L/k) = K

Furthermore |Gal(L/K)| = [L : K] and [Gal(L/F ) : Gal(L/K)] = [K :

F ].

2. For a subgroup H ⊂ Gal(L/F ), its fixed field F ⊂ LH ⊂ L has Galois

group

Gal(L/LH) = H

Furthermore [L : LH ] = |H| and [LH : F ] = [Gal(L/F ) : H].

3. The maps between intermediate fields F ⊂ K ⊂ L and subgroups H ⊂
Gal(L/F ) given by

K → Gal(L/K)

H → LH

reverse inclusions and are inverses of each other. Furthermore if a sub-

field K corresponds to a subgroup H under these maps then K is Galois
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over F if and only if H is normal in Gal(L/F ). When this happens

there is a natural isomorphism

Gal(L/F )/H ' Gal(K/F )

Let us illustrate these concepts with an example. Consider Q ⊂ Q(ω, 3
√

2)

which is a splitting field of x3−2 over Q. The intermediate fields are shown in

Q

Q(ω) Q( 3
√

2) Q(ω 3
√

2) Q(ω2 3
√

2)

Q(ω, 3
√

2)

Figure 4.3: Structure of Q(ω, 3
√

2) and its sub-fields.

Figure 4.3. Observe that there are automorphisms σ, τ ∈ Gal(Q(ω, 3
√

2)/Q)

such that

σ(ω) = ω, σ(
3
√

2) = ω
3
√

2

τ(ω) = ω2, τ(
3
√

2) =
3
√

2

Let us label the roots of x3 − 2 as α1 = 3
√

2, α2 = ω 3
√

2 and α3 = ω2 3
√

2. It is

easy to see that

σ → (123), τ → (23)

Since these permutations generate S3, we can conclude thatGal(Q(ω, 3
√

2)/Q) '
S3 and that σ and τ generate Gal(Q(ω, 3

√
2)/Q). Now σ has order 3, so

〈σ〉 = {e, σ, σ2}, similarly it is easy to check that 〈τ〉, 〈σ2τ〉 and 〈στ〉 are

subgroups of order 2. This gives rise to the structure shown in Figure 4.4.

From Theorem 4.3.7, and our discussion above, we can see the Galois cor-

respondence between the subgroups of Gal(Q(ω, 3
√

2)/Q) (shown in Figure
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e

〈σ〉 〈τ〉 〈σ2τ〉 〈στ〉

Gal(Q(ω, 3
√

2)/Q)

Figure 4.4: Structure of Gal(Q(ω, 3
√

2)/Q) and its sub-groups.

4.4) and the subfields of Q(ω, 3
√

2) (shown in Figure 4.3). Note that Theorem

4.3.7 tells us that Figure 4.4 shows us all subgroups of Gal(Q(ω, 3
√

2)/Q) and

Figure 4.3 shows us all the subfields of Q(ω, 3
√

2) containing Q.

4.4 Galois Group of a Cyclotomic Extension

Recall that given:

xn − 1 =
n∏
r=0

(x− ζrn)

we define the nth cyclotomic polynomial Φn(x) to be the product

Φn(x) =
n∏

r=1,
(r,n)=1

(x− ζrn)

Let us look at some examples of cyclotomic polynomials. For n = 2, we know

that Φ2(x) = x − (−1) = x + 1. When n = 4, the fourth roots of unity

whose powers are relatively prime to n are i and i3 = −i, thus Φ4(x) =

(x − i)(x − (−i)) = (x − i)(x + i) = x2 + 1. An elementary property of

cyclotomic polynomials is stated as follows [7]:

Proposition 4.4.1. The nth cyclotomic polynomial Φn(x) is a monic poly-

nomial with integer coefficients and has degree φ(n). Furthermore, these poly-
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nomials satisfy the identity

xn − 1 =
∏
d|n

Φd(x)

In this section, we are particularly interested in computing the Galois group

Gal(Q(ζn)/Q). In order to do this, we need to know the minimal polynomial

of ζn over Q. Intuitively we would think that Φn(x) would be the minimal

polynomial, but in order to conclude this, we need the following theorem [10]:

Theorem 4.4.2. The cyclotomic polynomial Φn(x) is irreducible over Q.

This implies that Q(ζn) is the splitting field of Φn(x) over Q and

[Q(ζn) : Q] = φ(n) which also means Q ⊂ Q(ζn) is a Galois extension (Theo-

rem 4.3.2). Equipped with these tools, we can now understand how the Galois

group of a cyclotomic extension is given by the following [7]:

Theorem 4.4.3. There is an isomorphism Gal(Q(ζn)/Q) ' (Z/nZ)∗ such

that σ ∈ Gal(Q(ζn)/Q) maps to [l] ∈ (Z/nZ)∗ if and only if σ(ζn) = ζ ln.

4.5 Cyclotomic Polynomials modulo a Prime

In a characteristic 0 field, the minimal polynomial of a primitive dth root of

unity in C is the cyclotomic polynomial Φd(x). But what happens when we

are working in a field of characteristic p, where p is a prime? Recall that in

Z[x], Φd(x) has the factorization

xn − 1 =
∏
d|n

Φd(x)

In studying the reduction of Φd(x) modulo p, we will restrict ourselves to the

case when (d, p) = 1 [7].

Proposition 4.5.1. Let F be a field of characteristic p and let α ∈ F be a
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root of unity, then there exists a d ≥ 1 relatively prime to p such that α is a

dth root of unity.

Recall that a dth root of unity α is primitive if d is the smallest positive

integer such that αd = 1. The roots of Φd(x) can be described as follows [7]:

Theorem 4.5.2. If (d, p) = 1 and q = pn then the following are equivalent:

1. q ≡ 1 (mod d).

2. Φd(x) splits completely in Fq.

3. Φd(x) has a root in Fq.

Furthermore when these conditions are satisfied, the roots of Φd(x) in Fq
consist of the primitive dth roots of unity.

In order to compute the irreducible factors of Φd(x), observe that since

(d, p) = 1, then [p] ∈ (Z/dZ)∗. Suppose m is the order of [p] in this group,

then [p]m = [1] or pm ≡ 1 (mod d). Thus m is the smallest positive integer

such that d|pm − 1. Formally stated [7]:

Theorem 4.5.3. Given d, let m be the order of [p] in (Z/dZ)∗. Then Φd(x)

is the product of φ(d)/m irreducible polynomials in Fp[x] of degree m.

Let us illustrate this concept with an example. Consider p = 2 and d = 5.

It is easy to check that the order of [2] in (Z/5Z)∗ is 4, thus m = 4. Using

Theorem 4.5.3, Φ5(x) is the product of φ(5)/4 = 1 irreducible polynomials of

degree 4 in F2[x]. Thus we can conclude that Φ5(x) = x4 + x3 + x2 + x+ 1 is

irreducible in F2[x]. By Theorem 4.5.2, the roots of Φ5(x) are the primitive

5th roots of unity in F16.

4.6 Prime Splitting

In this section, we discuss how to factor ideals in rings of integers of number

fields. This section overlaps considerably with the previous section but it is
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important to understand this concept from an algebraic number theory point

of view. Hence this overlap is a small consequence. Suppose we have number

fields K ⊆ L (OK ⊆ OL), for an ideal a of OK, we want to know how aOL

factors in OK . In particular, we are interested in the case when a is prime

and K is a cyclotomic number field in K/Q.

Proposition 4.6.1. Let K be a number field and p be a non-zero prime ideal

of OK. Then p contains a rational prime.

From the above proposition [32] and our knowledge of ideals, we can conclude

that all non-zero primes ofOK divide an ideal of the form pOK for some prime

p ∈ Z. This tells us that we can determine all primes of OK by determining

the factorization of the ideals pOK .

We want to focus on K being the mth cyclotomic number field. But before

we can discuss this case, we must become familiar with some definitions and

notations. For a number field of degree n, if p is a prime ideal of OK and

p is a rational prime, we say that p lies above p, if p ∩ Z = pZ (see Figure

4.5). Recall that the residue field is the quotient of a commutative ring by a

p ⊂ OK ⊂ K

pZ ⊂ Z ⊂ Q

Figure 4.5: Depiction of p lying above p

maximal ideal, thus in this case, the residue field of pZ is Fp = Z/pZ. We are

interested in the residue field OK/p, it can be shown that this is an Fp-vector

space of finite dimension [32].

Definition 4.6.2. Let p be a prime of OK lying above p ∈ Z. We define the

ramification index e(p/p) to be the exact power of p dividing pOK.

Definition 4.6.3. The dimension of the Fp-vector space OK/p is called the
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inertial degree f(p/p)

fp = dimFp(OK/p)

The factorization of pOK can thus be written as [17].∏
p∩Z=pZ

pe(p/p)

It is useful to have a notion of size when dealing with these ideals. For a in

OK , we can define the ideal norm to be NK/Q(a) = |OK/a|. For a prime ideal

p, we have NK/Q(p) = |OK/p| = |F
dimFp (OK/p)
p | = |Fp|f(p/p) = pf(p/p). Like the

regular norm, the ideal norm is also multiplicative. The following gives us

the fundamental relationship between the ramification index, inertial degree

and degree of a number field [17]:

Proposition 4.6.4. Let K be a number field of degree n and p be a rational

prime such that

pOK = pe11 . . . perr

is the prime factorization of pOK in OK where ei = e(pi/p). Let fi = f(pi/p).

Then
r∑
i

eifi = n

Even though it might be difficult to write down the explicit factors, we can

now describe a good way of factorizing cyclotomic polynomials. One of the

main results is that the mth cyclotomic polynomial is the “universal” poly-

nomial for testing if an element of a field is a primitive mth root of unity

[32].

Proposition 4.6.5. Let m be a positive integer and let K be a field of char-

acteristic not dividing m. Let α be an element of K. Then Φm(α) = 0 if and

only if α is a primitive mth root of unity.

Let K = Q(ζm) and p be a rational prime. Suppose p is a prime ideal of

53



OK = Z[ζm] lying above p. We want to determine e and f for this particular

case. Since K is a Galois extension of Q, the following proposition is useful

[32]:

Proposition 4.6.6. Let K ⊂ L be a Galois extension of degree n and let p

be a prime of OK. Let

pOL = Pe1
1 . . .Per

r

be the factorization of p in OL where ei = e(Pi/p). Let fi = f(Pi/p). Then

f1 = f2 = . . . = fr

e1 = e2 = . . . = er

In particular, reifi = n for all i.

It follows that Φm(x) factors in Fp[x] as

Φm(x) = (g1(x) . . . gr(x))e

where deg(gi) = f for all i and efr = φ(m).

Let us consider the case that p - m, recall that xm − 1 =
∏

d|m Φd(x). Since

xm − 1 does not have any repeated roots in Fp[x], xm − 1 does not have any

repeated roots either. Specifically e = 1. Now we have to determine f and r.

We will focus on the special case of f = 1, then NK/Q(p) = p and OK/p ' Fp
which means that Φm(x) has roots in Fp. By Proposition 4.6.5, this means

that Fp has primitive mth roots of unity. Since Fp is a cyclic group of order

p− 1 , it has elements of exact order m− 1 if and only if p− 1 ≡ 0 (mod m).

Thus we have shown that a rational prime p splits Q(ζm) if and only if p ≡ 1

(mod m). The general case is covered in [32]. We obtain the result that we

have already seen in Theorem 4.5.3 but restated in terms of ramification

theory:

Proposition 4.6.7. Let p be a rational prime such that p - m and let p be

a prime ideal of Z[ζm] lying over p. Then e(p/p) = 1, f(p/p) is the order of
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p in (Z/mZ)∗ and there are exactly φ(m)/f(p/p) primes of Z[ζm] lying over

p.

Let us consider the following example where K = Q(ζ5). The behavior of

a rational prime in OK is determined by the residue class of p in (Z/mZ)∗.

If p ≡ 1 (mod 5), then p splits completely in OK . Consider p = 11 ≡ 1

(mod 5). We know that Φ5(x) = x4 + x3 + x2 + x+ 1, thus in modulo 11, we

have

x4 + x3 + x2 + x+ 1 = (x+ 2)(x+ 6)(x+ 7)(x+ 8) (mod 11)

so

(11) = (11, ζ5 + 2)(11, ζ5 + 6)(11, ζ5 + 7)(11, ζ5 + 8)
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Chapter 5

Ring Learning With Errors

5.1 The LWE Problem

The Learning With Errors (LWE) problem was first introduced by Oded

Regev [28]. This was a huge breakthrough in cryptography, since crypto-

graphic constructions could now be based off the hardness of this problem

which was proven to be as hard as worst-case lattice problems. Given q ≥ 2

and n ∈ Z+, the LWE problem can be simply stated as recovering s ∈ Znq
from a sequence of “approximate” linear equations. If the equations were

exact, this problem could be solved very easily in polynomial time, using

Gaussian elimination. Stated formally [29]:

Define a probability distribution χ on Zq. Let As,χ be the probability distribu-

tion on Znq × Zq, obtained by choosing a vector a ∈ Znq uniformly at random

and e ∈ Zq according to χ. An algorithm solves the LWE problem if for any

s ∈ Znq , given a set of independent samples from As,χ, it outputs s with a

high probability.
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Definition 5.1.1. We denote poly(n) as

poly(n) = {f |f ∈ O(nc), for some c > 0}

Alternatively, the LWE problem can be stated as, given a set of samples

(polynomial in n), to determine whether they originated from the As,χ oracle

for some s or whether they follow the uniform distribution on Znq × Zq. The

decision version of the LWE problem (DLWE) is the problem of distinguishing

between LWE samples from the As,χ oracle and samples taken from a uniform

distribution [5]:

{ai, 〈ai · s〉+ ei}poly(n)
i=1 ≈ {ai, ui}poly(n)

i=1

where ui ∈ Zq is drawn uniformly at random. For a number q which is poly-

nomial in n and a normal distribution we can show that there is a reduction

from LWE to DLWE. One way to do this is to guess each coordinate of

s individually. Let s1 be our guess for the first coordinate of s, (a, b) be

our LWE pair and r drawn uniformly at random from Zq. We can send

(ã, b̃) = (a + (r, 0, . . . , 0), b+ rs1) to the decision oracle. Note that

b = 〈a · s〉+ e1

= 〈(a1, . . . , an) · (s1, . . . , sn)〉+ e1

= a1s1 + . . .+ ansn + e1

so we have,

b̃ = 〈ã · s〉+ e1

= 〈(a1 + r, a2, . . . , an) · (s1, . . . , sn)〉+ e1

= a1s1 + . . .+ ansn + e1 + rs1

= b+ rs1
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Now, if s1 is correct then the sample originated from the As,χ oracle, if it is

incorrect, then the sample originated from a uniform distribution. Thus we

can find the correct s1 after at most q attempts. This process can be repeated

n times to recover all the coordinates of s.

The best known algorithm for solving LWE is given by Blum, Kalai and

Wasserman [4] which requires 2O(n) samples and time. For cryptographic

applications, the modulus q is typically taken to be polynomial in n. The

hardness of LWE for polynomial moduli q is based on the fact that GAPSVP

or SIVP are hard to approximate to within polynomial factors even with a

quantum computer [29].

5.2 Probability Distributions

In this section we will provide a brief overview of the probability distribu-

tions used and their role in Learning With Errors, but for further details,

the reader is directed to [28]. The Gaussian distribution is the continu-

ous probability distribution on R given by the probability density function
1

σ
√

2π
exp

(
−(x−µ)2

2σ2

)
. When µ = 0, we have the density function 1

σ
√

2π
exp

(
−x2
2σ2

)
.

Since we are dealing with lattices, we want to define a normal distribution

on vectors.

Recall that the sum of two independent normal variables with mean 0 and

variances σ2
1 and σ2

2 is also a normal variable with mean 0 and variance

σ2
1 + σ2

2. Then for a vector x and s > 0 we define the Gaussian function over

Rn by

ρs(x) = exp(−π‖x/s‖2).

Note that

∫
x∈Rn

ρs(x) dx = sn. We can then define the n dimensional prob-

ability density function of this distribution as:

νs = ρs/s
n
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We now have all the necessary tools to define a discrete Gaussian probability

distribution.

Definition 5.2.1. Given a countable set A ⊂ Rn and a parameter s > 0, the

discrete Gaussian probability distribution DA,s for all x ∈ A is defined as

DA,s(x) =
ρs(x)

ρs(A)
,

where ρs(A) =
∑

y∈A ρs(y)

For a probability density function φ on T, where T is the segment (0, 1] with

addition modulo 1, we can define the distribution on Znp × T (denoted by

As,φ) as the following: choose a vector a ∈ Znp uniformly at random, choose

e ∈ T according to φ and output (a, 〈a, s〉/p+ e).

Relating this back to the LWE problem: For an integer p ≥ 2, define χ : Zp →
R+ to be some probability distribution on Zp and for an integer n, let s ∈ Znp .

The discrete Gaussian distribution on Znp × Zp, denoted by As,χ is obtained

by choosing a ∈ Znp uniformly at random, choosing e ∈ Zp according to χ

and outputting (a, 〈a, s〉+ e). Here, additions are performed in Zp.

5.3 Classical and Quantum Reductions of LWE

In Chapter 1, we learned about two worst case lattice problems - the Shortest

Vector Problem (SVP) and the Closest Vector Problem (CVP). The classical

and quantum reductions of LWE rely heavily on the following variations of

these problems:

Definition 5.3.1. For λ1 ≥ 1, the γ-approximate Shortest Independent Vec-

tors Problem (SIV Pγ), given a basis B of an n-dimensional lattice L =

L(B), asks to find linearly independent vectors v1,v2, . . . ,vn ∈ L such that

maxi ||vi|| ≤ γλ1(L), where λ1 is the smallest positive real r such that N(0, r) =

{x : ||x|| ≤ r} of radius r centered at the origin contains at least n linearly
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independent vectors.

Definition 5.3.2. GAPSV Pγ, given a basis B of an n-dimensional lattice

L = L(B) and a positive real d, asks to determine if λ1(L) ≤ d or λ1(L) > γd.

Definition 5.3.3. GAPSV Pζ,γ, for ζ(n) ≥ γ(n) ≥ 1, given a basis B and d

which satisfy the following conditions:

• B is a basis of an n-dimensional lattice L for which λ1(L) ≤ ζ(n)

• mini ||b̃i||

• 1 ≤ d ≤ ζ(n)/γ(n)

asks to determine if λ1(L) ≤ d or if λ1(L) > γ(n) · d.

The following lattice problem is similar in nature to CVP:

Definition 5.3.4. BDDα, given a basis B of an n-dimensional lattice L =

L(B) and a vector t such that dist(t, B) < αλ1(B), find the lattice vector

v ∈ L closest to t.

The dual of the lattice is a very important concept that is also used in defining

the Ring Learning with Errors (RLWE) later in the chapter.

Definition 5.3.5. L∗ is the dual of the lattice L, defined as the set of all

vectors y such that 〈x,y〉 ∈ Z for all vectors x ∈ L.

Definition 5.3.6. The smoothing parameter ( ηε(L)) for an n dimensional

lattice L and positive real ε > 0 is defined as the smallest s such that ρ1/s(L
∗\

0) ≤ ε.

Definition 5.3.7. A negligible function denoted by negl(n), is an f(n) such

that f(n) = o(n−c) for every fixed constant c.

We can define a Gaussian distribution on L as DL,r that assigns mass pro-

portional to exp(−π||x/r||2) to each point x ∈ L. Samples from DL,r are

lattice vectors of norm roughly
√
nr. Note that if r is too small, DL,r would

essentially be a deterministic distribution on the origin, thus we require r to

be not too small (specific lower bounds on r are given in [29]). Gentry et al.
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, showed how to sample from a discrete Gaussian distribution over a lattice

L using the following proposition [13]:

Proposition 5.3.8 (Theorem 4.1). There exists a probabilistic polynomial-

time algorithm that, given an n-dimensional lattice L = L(B) and r ≥
maxi ||b̃i|| ·ω(

√
log n) outputs a sample that is within negligible statistical dis-

tance of DL,r.

The core of the LWE hardness result lies in the proposition that assuming we

have access to an LWE oracle with modulus q and error α, and the following

inputs: lattice L, a polynomial number of samples from a discrete Gaussian

distribution DL∗,r, and a point x within distance αq/(
√

2r) of any point in

L, solving LWE can be reduced to solving the BDDα problem in polynomial

time.

Regev [26] gave a quantum reduction from worst-case GAPSV P and SV P

to LWE. This result holds as long as there is no quantum algorithm that

solves GAPSV P or SIV P , thus in a way, this is weaker than a classical

reduction. Peikert showed that the LWE problem can be reduced classically

to a variant of GAPSV Pγ, namely GAPSV Pζ,γ. This variant is equivalent

to GAPSV Pγ for large values of ζ, and occurs when q is exponential in n.

In order to achieve this, he used the classical part of Regev’s reduction [28]:

Lemma 5.3.9. Let ε(n) be a negligible function, q(n) ≥ 2 be an integer

and α(n) ∈ (0, 1) be a real number. Given a polynomial number of samples,

assume that we have access to an oracle W that solves LWEq,Ψα. Then there

exists a constant c > 0 and an efficient algorithm R that given as input: basis

B of a lattice L, a parameter r ≥
√

2q · ηe(L∗) and nc samples from DL∗,r,

solves BDDαq/
√

2r.

Here Ψα is a discrete Gaussian distribution, ηε is the smoothing parameter.

The main theorem is the following [26]:

Theorem 5.3.10. Suppose α(n) ∈ (0, 1) and γ(n) ≥ n/(α
√

log n). Let

ζ(n) ≥ γ(n) and q(n) ≥ ζ(n) ·ω(
√

(log n)/n). Then there is a probabilis-

tic polynomial-time reduction from solving GAPSV Pζ,γ in the worst case to
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solving LWEq,Ψα using poly(n) samples.

In order to efficiently generate samples from a Gaussian distribution that is

within a fixed statistical distance in Regev’s quantum reduction part, lattice

reduction algorithms like the Lenstra-Lenstra-Lovasz (LLL) are used [19].

This approximation algorithm outputs a short vector, not necessarily the

shortest vector and a whole reduced basis. As seen in chapter 1, LLL can

approximate SVP within a factor of O((2/
√

3)n).

The Blockwise Korkine-Zolotarev (BKZ) Algorithm is the best lattice reduc-

tion algorithm known in practice [6]. It outputs a BKZ-reduced basis with

blocksize β ≥ 2 and reduction factor ε > 0, from an input basis B of a lattice

L. It starts by LLL-reducing the basis B, then iteratively reduces each local

block to make sure that the first vector of each such block is the shortest in

the projected lattice. No good upper bound is known for the time complexity

of this algorithm.

5.4 The Ring-LWE Problem

Although the Learning With Errors (LWE) problem has been used in many

cryptographic applications due to its strong security assumptions, these ap-

plications are relatively inefficient due to requiring at least n vectors. This

leads to key sizes of order n2 which means there is an inherent quadratic

overhead. In order to produce an alternative that improves upon this effi-

ciency, the Ring-LWE problem was introduced [21].

Let K = Q(ζm) where ζm ∈ C is a primitive mth root of unity, define

R = OK = Z[ζm] as its ring of integers. Let q ≡ 1 mod m be a prime that is

polynomial in n. Then, informally, the ring-LWE problem can be described

as follows:

Assuming that the search version of SVP is considered to be hard to approx-

imate by polynomial time quantum algorithms in the worst case on ideal
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lattices in R to within a fixed poly(n) factor, then any poly(n) number of

samples drawn from the Ring-LWE distribution are pseudorandom to any

polynomial time (possibly quantum) attacker.

The proof for this statement is done in two components, the first compo-

nent is a quantum reduction from the worst-case SVP on ideal lattices to the

search version of Ring-LWE. Assuming that the search version of Ring-LWE

is hard, the authors then prove that the Ring-LWE distribution is indeed

pseudorandom. In this section, we discuss the mathematical tools and prop-

erties used by the authors to achieve this [21]. In the next section we focus

on the properties of cyclotomic number fields that make them a good fit for

this proof.

Duality. For any lattice L in K, i.e, for the Z-span of any Q-basis of K, its

dual is defined by

L∗ = {β ∈ K : tr(βL) ∈ Z}

Error Distribution. Although the error distribution is an essential part

of this proof, we will not go into its discussion in great detail. The reader

is advised to look at [21] for further clarifications. Recall that in the LWE

problem, the Gaussian distribution used was one-dimensional, in the Ring-

LWE problem, the error is an n-dimensional Gaussian where n is the degree

of the mth cyclotomic number field K. The error is chosen according to a

discretized Gaussian with respect to a special basis of the space in which R

is embedded using the Minkowski embedding. In this way, an n dimensional

Gaussian distribution is simply represented by n parameters.

The Ring-LWE problem is associated with the Ring-LWE distribution which

is parameterized by a number field K with ring of integers R = OK and a

rational integer modulus q ≥ 2. Let R∗ denote the dual of R. The number

field K is mapped to Cn using the Minkowski embedding that we saw in

Chapter 3. Recall that the resulting vector space Cn endowed with a stan-

dard inner product. The discretized Gaussian distribution T = KR/R
∗ is the
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spherical Gaussian with respect to this inner product, discretized to R∗ [11].

The Ring-LWE distribution is formally defined as [21]:

Definition 5.4.1. For secret s ∈ R∗q and error distribution ψ over the

Minkowski space KR, a sample from the ring-LWE distribution As,Ψ over

Rq × T is generated by choosing a ← Rq uniformly at random, choosing

e← ψ, and outputting (a, b = (a · s)/q + e (mod R∗)).

For cryptographic applications, we are interested in the average case decision

version of the Ring-LWE problem whose hardness means that the ring-LWE

distribution is pseudorandom.

Definition 5.4.2. Let Υ be a distribution over a family of error distribu-

tions, each over KR. The average case decision version of the ring-LWE

problem denoted by R-DLWEq,Υ is to distinguish with non-negligible advan-

tage between arbitrarily many independent samples from As,ψ for a random

choice of (s, ψ)← U(R∗q)×Υ and the same number of uniformly random and

independent samples from Rq × T.

The main theorem is stated as follows [21]:

Theorem 5.4.3. Let K be the mth cyclotomic number field having dimension

n = φ(m) and R = OK be its ring of integers. Let α = α(n) > 0 and

let q = q(n) ≥ 2, q = 1 (mod m) be a poly(n)-bounded prime such that

αq ≥ ω(
√

log n). Then there is a polynomial-time quantum reduction from

Õ(
√
n/α)-approximate SIVP (or SVP) to R-DLWEq,Υα.

5.5 Cyclotomic Number Fields

Let K = Q(ζm) where m is a primitive root of unity which has a minimal

polynomial Φm(x) of degree n = φ(m) and R = OK = Z[ζm] is its ring of

integers. Many properties of cyclotomic number fields are useful both in the

proof to show that the Ring-LWE distribution is pseudorandom as well as

to perform efficient computations in the number field. We have seen most of
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these properties in previous chapters, in this section we will summarize the

properties that are used in proving the pseudorandomness of Ring-LWE in a

concise manner. The properties of cyclotomic fields pertaining to efficiency

will be discussed in the next chapter.

Galois extension. From Theorem 4.4.3, we know that Q(ζm) is a Galois

extension of Q, more precisely

Gal(Q(ζm)/Q) ' (Z/mZ)∗

where each σ ∈ Gal(Q(ζm)/Q) maps to [k] ∈ (Z/mZ)∗ if and only if σ(ζm) =

ζkm. Thus there are n = φ(m) automorphisms σk given by the above. Since

Φm(x) is irreducible (Theorem 4.4.2), the transitive property applies (Theo-

rem 4.2.4) to the permutation group corresponding to Gal(Q(ζm)/Q).

Prime splitting. Given a prime q ≡ 1 (mod m), from Theorem 4.5.3, we

know that q splits Φm(x) completely into linear factors which can be written

as Φm(x) =
∏

i∈Z∗m
(x−ωi). In Chapter 3.6, we have seen that the ideal q lying

above q can be factored in K as q =
∏

i∈Z∗m
qi where qi = 〈q, ζm − ωi〉 where

NK/Q(q) = q. The above properties are heavily relied upon when proving the

search-to-decision reduction in Ring-LWE [21].
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Chapter 6

Efficiency of Homomorphic

Operations

This chapter exploits the Ring-LWE hardness problem in a cryptographic

setting and shows experimental results for measuring the performance of

homomorphic multiplication by varying the different parameters associated

with the cipherspace ring in this cryptosystem.

6.1 Homomorphic Encryption System

The following encryption scheme has been described in [20] with some changes

regarding Key Switching and Ring Tunneling introduced in [8]. The reader

is advised to read [8] for a more detailed discussion. The main parameters in

this cryptosystem are the rings of integers of Q(ζm) and Q(ζm′), denoted by

R = Z[ζm] = Om and R′ = Z[ζm′ ] = Om′ where m|m′, making R a subring

of R′. Thus we can embed R into R′ by identifying ζm with ζ
m′/m
m′ . In the

reverse direction we can ‘twace’ from R′ to R. The “twace” is an R linear

function that fixes R pointwise.
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The dual ideal is the principal fractional ideal R∗ = (gm/m̂)R where m̂ =

m/2 if m is even and m̂ = m otherwise. The special element gm ∈ R is

defined as follows:

• when m = pe for prime p and e ≥ 1, we have

gm =

gp = 1− ζp, p is odd

gp = 1, p = 2

• when m =
∏

lml where ml are powers of distinct primes, we have

gm =
∏

l gml .

This is used for managing error terms in the following encryption system.

Although the secret s is sampled from R∗ to prove the Ring-LWE hardness,

it is more convenient to use R for practical purposes when sampling s. This

can be done without any loss in security or efficiency [8] by working with an

equivalent “tweaked” form of the problem, which is obtained by multiplying

the noisy products bi by a certain factor t = tm ∈ Rm for which t ·R∗ = R.

The new noisy products are now

b′i = t · bi = ai · (t · s) + t · ei mod qR

The error term t · ei now comes from the “tweaked” distribution t ·ψ.

• Key Space, Plaintext Space, Ciphertext Space

The secret key s is an element of R′. For a small positive integer p

that is coprime with every prime factor of m′, the plaintext space is

defined as Rp = R/pR. For an integer modulus q ≥ p that is coprime

to p, we define the ciphertext space as R′q = R′/qR′. Note that al-

though the Ring-LWE hardness was initially proven for prime q ≡ 1

(mod m), recent developments [26] show that the hardness can be ex-

tended to any integer q [20]. For an (unknown) secret key S, consid-
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ered an indeterminant, we can think of a ciphertext as a polynomial

c(S) ∈ R′q[S]. An alternate way to think of c(S) is as a vector of coef-

ficients (c0, c1, . . . , cd) ∈ (R′q)
d+1, where d is the degree of c(S). Addi-

tionally a ciphertext is parameterized by a non-negative integer k and

a factor l ∈ Zp.

• Encryption

In order to encrypt a message µ ∈ Rp under a secret key s ∈ R′, sample

an error term e ∈ µ + pR′, a uniformly random element c1 ← R′q and

output c(S) = (e − c1 · s) + c1 ·S ∈ R′q[S] with k = 0 and l = 1. Note

that this particular form of c(S) is called the LSD (Least Significant

Digit) form. Formally, a ciphertext in LSD form satisfies

c(s) ≡ c0 + c1s+ . . .+ cds
d ≡ e (mod qR′)

for some sufficiently small error term e ∈ R′ such that

e ≡ l−1 · gkm′ ·µ (mod pR′)

An alternate form that is more convenient for homomorphic operations

is the MSD (Most Significant Digit) form defined by

c(s) ≈ q

p
· (l−1 · gkm′µ) (mod qR′)

A ciphertext can be converted from LSD to MSD form and vice-versa

in linear time.

• Decryption

Decrypting the LSD-form ciphertext c(S) ∈ R′q[S] under the secret key

s ∈ R′ involves evaluating c(s) ∈ R′q first and then lifting the result

to R′ in order to recover the error term e ≡ l−1 · gkm′ ·µ (mod pR′).

Computing l · g−km′ · e (mod pR′) yields the embedding of the message µ

which is recovered in Rp by taking the twace [27].
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• Homomomorphic Addition and Multiplication

If k and l of two ciphertexts are the same, then the homomorphic addi-

tion simply involves converting both to the same form (LSD or MSD)

and then adding their polynomials. If the k and l values are different,

then they are adjusted as needed by multiplying the polynomial by an

appropriate factor which only slightly increases the error.

The more complicated operation is homomorphic multiplication. Con-

sider two messages µ1 and µ2 encrypted as ciphertexts c1(S) and c2(S)

in LSD form with auxiliary values k1, l1 and k2, l2 respectively. Recall

that the LSD form of the ciphertexts are c1(s) = e1 (mod qR′) and

c2(s) = e2 (mod qR′). Then the multiplication is performed as follows:

c1(s) · c2(s) · g′m ≡ e1 · e2 · g′m (mod qR′)

We know e1 = l−1
1 · gk1m ·µ1 and e2 = l−1

2 · gk2m ·µ2, then

e1 · e2 · g′m ≡ (l1l2)−1 · gk1+k2+1
m′ · (µ1, µ2) (mod pR′)

Since the error term e = e1 · e2 · gm′ satisfies the invariant, we can con-

clude that the LSD-form resultant ciphertext is given by

c(S) = c1(S) · c2(S) · gm′ ∈ R′q[S]

In other words, c(S) encrypts µ1µ2 ∈ Rp with auxiliary values k =

k1 + k2 + 1 and l = l1l2 ∈ Zp.
In order to handle the increase in the degree of the ciphertext poly-

nomial with every homomorphic multiplication, a method called Key

Switching is performed. This method allows us to convert the cipher-

text under one secret key to another secret key (may or may not be

different) while preserving the secrecy of the messages and the keys and

also reducing the degree of the ciphertext, typically back to linear [27].

69



6.2 Efficiency of Cyclotomic Number Fields

As seen in the previous chapter, cyclotomic number fields offer very nice

properties that help prove the pseudorandomness of the Ring-LWE distribu-

tion. In this section, we highlight the properties of cyclotomic number fields

that make homomorphic multiplication more efficient. Keep in mind that

although we may denote the ring of integers as R and the cyclotomic index

as m for ease of notation, these properties are mainly pertaining to the cy-

clotomic index m′ where R′ = Om′ , since R′q is where all the operations on

ciphertexts occur.

Tensor Product Representation. In Chapter 2.4 we learned about ten-

sor products over R-modules. Since K = Q(ζm) is a field extension of Q, it

behaves as a vector space over Q. If m =
∏

lml is the prime power decom-

position of m, then

K ' Q[X1, X2, . . .]/(Φm1(X1),Φm2(X2), . . .).

Extending Theorem 3.4.4 to l ideals (Φml(Xl)), we have

Q[X]/(Φm(X)) ' ⊗lQ[Xl]/(Φml(Xl)).

Equivalently we can write

K ' ⊗lKl.

This decomposition allows for efficient algorithms by modularly reducing op-

erations in K to their prime-power-indexed cyclotomic counterparts in Kl.

This method altogether avoids working with polynomials modulo Φm(X)

which might lead to slower computations depending on m.

Choice of cipherspace modulus. Although [21] requires q ≡ 1 (mod m)

for proving the hardness of Ring-LWE, the pseudorandomness can now be

shown for any q by using modulus switching techniques [26]. Thus this re-
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striction is not imposed in the paper that describes efficient algorithms [20].

It is still desirable, however to choose prime q ≡ 1 (mod m) in order to make

operations more efficient. This is because for q ≡ 1 (mod m) we know that

f(q/q) = 1, and by Proposition 4.6.7 there are φ(m) primes of R lying over

q. In other words

R/(q) '
∏
i∈Z∗m

(R/qi)

where qi’s are the prime ideals in R above q and R = Om. This special case

supports efficient operations in R/qR.

Discrete Fourier Transform. In order to understand fast polynomial mul-

tiplication algorithms, we will use the concept of a Discrete Fourier Transform

(DFT). For a commutative ring R and primitive mth root of unity ω,

Definition 6.2.1. • The R-linear map

DFTm :

Rm → Rm

f → (f(1), f(ω), f(ω), . . . , f(ωm−1))

which evaluates a polynomial at the powers of ω is called the Discrete

Fourier Transform (DFTm). Here f =
∑

0≤j<m

fjx
j ∈ R[x] of degree less

than n with its coefficient vector (f0, f1, . . . , fm−1) ∈ Rm.

• The convolution of two polynomials f =
∑

0≤j<m

fjx
j and g =

∑
0≤k<m

gkx
k

in R[x] is the polynomial

h = f ∗m g =
∑

0≤l<m

hlx
l ∈ R[x]

where

hl =
∑

j+k≡l (mod m)

fjgk =
∑

0≤j<m

fjgl−j for 0 ≤ l < m
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If we regard the coefficients as vectors in Rm then h is called the cyclic

convolution of the vectors f and g.

This idea of convolution is equivalent to polynomial multiplication in the ring

R[x]/〈xn − 1〉, and this relationship is exploited to obtain fast polynomial

multiplication algorithms. The DFT is a special multipoint evaluation at

the powers of 1, ω, ω2, . . . , ωm−1. It can be shown that both the DFT and

its inverse (the interpolation at the powers of ωn) can be computed with

O(n log n) operations in R, as opposed to the naive polynomial multiplication

which is O(n2). An important algorithm that computes the DFT is the Fast

Fourier Transform (FFT) [12].

Theorem 6.2.2. Let R be a commutative ring which has a primitive nth root

of unity where n = 2k for some k ∈ N. Then convolution in R[x]/〈xn−1〉 and

multiplication of polynomials f, g ∈ R[x] with deg(fg) < n can be performed

using 3n log n additions in R, 3
2
n log n+n−2 multiplications by powers of ω, n

multiplications in R and n divisions by n, in total 9
2
n log n+O(n) arithmetic

operations.

The case where m = 2k, such that k ∈ N is a special case. This is because

using the FFT algorithm makes multiplication in R′ significantly faster (The-

orem 6.2.2). Note that even though in principle, all cases of m can be imple-

mented in O(n log n), the generic algorithms that can achieve this have large

constants hidden in the O( · ) notation [20]. This special power-of-two case

has been exploited by previous work done in this area [18]. In order to make

efficient algorithms that perform polynomial multiplication in O(n log n) for

any cyclotomic index, the tensor decomposition of DFTm is taken advantage

of:

DFTm = ⊗lDFTml

Let ml be a power of some prime p, using the Cooley-Tukey decompostion,

DFTml can be reduced to ml/p parallel applications of DFTp where each

DFTp takes O(p log p) time. The total runtime can be applied in O(n log n)
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time where n = φ(m).

In [20], the authors also use the definition of DFTm to define the Chinese

Remainder Transform (CRTm) obtained by restricting the rows of DFTm

matrix to those indexed by Z∗m and columns indexed by [φ(m)].

CRTm = ⊗lCRTml

Applying this tensor decomposition reduces to φ(m/ml) parallel applications

of CRTml . Each CRTml can be done in O(ml logml) time, thus making the

total runtime O(m logm).

Powerful Basis. Recall from Theorem 3.2.10 that cyclotomic number fields

are monogenic. This means that K has an integral basis of the form p =

{1, ζm, ζ2
m, . . . ζ

φ(m)−1
m }. p is often called the power basis ofK. For prime power

m, the power basis coincides with the definition of the powerful basis. For an

arbitrary m having prime power factorization m =
∏

lml the powerful basis

is defined to be p = ⊗lpl where pl is the power basis of each Kl = Q(ζml).

A strong property of the powerful basis is that its elements are close to

orthogonal. This helps in making the algorithms that use Gram-Schmidt

orthogonalization of the powerful basis for sampling from discrete Gaussians

over R execute in substantially less time [20].

6.3 Experiments

Homomorphic multiplication has always been the crutch of homomorphic en-

cryption schemes, since multiplying two ciphertexts increases the noise mul-

tiplicatively which gets out of hand after a certain level of mutliplicaitons,

making it impossible to recover the original plaintext from the resulting ci-

phertext. Homomorphic addition on the other hand is not a big issue since

the error terms grow at a smaller rate with each addition, and it is easy
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to handle this error growth. This section describes the different experiments

performed using the library for ring-based lattice cryptography ( Λ◦λ ). The

experiments test the performance of homomorphic multiplication by varying

different parameters associated with this operation including the cyclotomic

index m′ and the cipherspace modulus q.

6.3.1 Criterion Package

The Criterion Package is used to benchmark the multiplication of two cipher-

texts. Instead of recording the raw timings of each multiplication performed,

this package gives an indication of which times occur more frequently. More

specifically, it uses a boxplot technique to develop a quick sense of the qual-

ity of the timing data. One of the interesting features of this package is that

Criterion figures out how many times it needs to evaluate a given function

in order to get the most accurate performance measurements by characteriz-

ing the system’s clock and figuring out how expensive it is to use the clock.

Another important feature is its use of bootstrapping to perform some sta-

tistical analysis to report the mean and standard deviation of our data along

with the 95% confidence intervals for those values. Most importantly, it re-

ports outliers in our measurements and tells us whether they are relevant. In

other words, when running performance benchmarks, if there are other pro-

cesses running at the same time, these processes can affect the results of our

benchmark. The bootstrap feature tells us whether our results are relatively

accurate or completely insignificant.

6.3.2 Experiment One

The first experiment tests the performance of homomorphic multiplication

when the cyclotomic index m′ falls under three test cases - m′ being prime,

prime square and composite. Each test case has ten sample points which
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are “comparable” in magnitude to the sample points in the corresponding

test cases (see Table 6.1). The benchmark for homomorphic multiplication

is run with the m′ values given as below and fixed tensor RT , plaintext ring

cyclotomic index m = m′ as well as plaintext ring modulus p = 2. The

modulus for the ciphertext ring q is chosen by a function goodQs that takes

a lower bound and m′ and produces an infinite list of primes which satisfy

q ≡ 1 (mod m′). Because we are not concerned about the security in this

experimentg, we set the lower bound to be m′ as well.

Primes Prime Squares Composites
1 47 49=72 45 = 5 · 32

2 127 121=112 125 = 53

3 167 169=132 171 = 32 · 19
4 293 289 = 172 291 = 3 · 97
5 359 361 = 192 365 = 5 · 73
6 523 529 = 232 531 = 32 · 59
7 839 841 = 292 845 = 5 · 132

8 967 961 = 312 965 = 5 · 193
9 1367 1369 = 372 1371 = 3 · 457
10 1693 1681 = 412 1683 = 32 · 11 · 17

Table 6.1: Sample values for m′ in Experiment 1

Figure 6.1 shows that homomorphic multiplication where the cyclotomic in-

dex is a large prime takes much longer time than a prime square or a com-

posite of comparable magnitude. Since the tensor decomposition of a prime

m′ is just R′q itself, this means that polynomial multiplication is done naively

O(n2), where n = φ(m′), as opposed to the fast polynomial multiplication

that is done when m′ is a composite or a prime power. For the prime square

and composite case, the library uses the tensor decomposition R′q ' ⊗lZq[ζm′l ]
where m′ =

∏
lm
′
l to run parallel computations on its corresponding base

rings, therefore making this operation more efficient.
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Figure 6.1: Experiment One Results

6.3.3 Experiment Two

Recall that when m′ = 2k where k is a positive integer, the ability to compute

polynomial multiplications using Fast Fourier Transforms makes the set-up

very efficient. The homomorphic multiplication is thus tested on cases of m′

where it is either a power of two or composite (See Table 6.2). Figure 6.2

shows that the performance of homomorphic multiplication increases linearly

with increase in cyclotomic index for the power of two case. It also shows

that the power of two case is on average faster than the composite case. This

is because for the power of two case (m′ = 2k), the tensor decomposition

of R′q ' ⊗Zq[ζ2k ], as opposed to the composite case (m′ =
∏

lml) where

R′q ' ⊗lZq[ζml ] and each ml could be a power of 2 or a power of a prime that

is greater than 2.

Notice that the performance is affected by both the size of each prime, say

pl where pkll = m′l and the magnitude of the power kl where m′ =
∏

lm
′
l

in R′q ' ⊗lZq[ζm′l ]. In Experiment 1, consider line 10 of Table 6.1, although
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Power of Twos Composites
1 32=25 35 = 5 · 7
2 64=26 62 = 31 · 2
3 128=27 130 = 5 · 13 · 2
4 256 = 28 253 = 11 · 23
5 512 = 29 518 = 2 · 7 · 37
6 1024 = 210 1025 = 52 · 41
7 2048 = 212 2050 = 2 · 52 · 41
8 4096 = 213 4100 = 22 · 52 · 41
9 8192 = 214 8200 = 23 · 52 · 41
10 16384 = 215 16376 = 23 · 23 · 89

Table 6.2: Sample values for m′ in Experiment 2

Figure 6.2: Experiment Two Results

412 = 1681 < 1683 = 32 · 11 · 17, the performance with the latter is better

than the former (See Figure 6.1). A similar observation can be made about

the 10th entry of Table 6.2, although 213 ≤ 16376 = 23 · 23 · 89 ≤ 215, we

see that the performance of homomorphic multiplication with m′ = 16376 is

considerably higher than with m′ = 215 (See Figure 6.2). These experimental
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results indicate that the magnitude of the prime affects the performance more

than the power of the prime. Theoretically, since each CRTm′l can be done

in O(m′l logm′l) = O(pkll log pkll ) = O(pkll · kl log pl) , for cyclotomic indices of

comparable magnitude, the trade-off is between the relatively bigger power

kl, but smaller log pl of a smaller prime and the relatively smaller kl, but

bigger log pl of a bigger prime.

6.3.4 Experiment Three

In order to ensure that the choice of the modulus q did not affect the per-

formance of homomorphic multiplication, we ran an experiment in which we

fixed the cyclotomic indices to be the power of two case as before (see Table

6.2) and varied q by using some of the elements of the potentially infinite list

generated by the function goodQs, where our choice was n = 1, 10, 50, 500.

Recall that given a lower bound and a cyclotomic index m, goodQs generates

an infinite list of primes q above the lower bound which satisfy the condition

q ≡ 1 (mod m). Figure 6.3 shows that the change in q does not affect the

performance of homomorphic multiplication significantly.
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Figure 6.3: Experiment Three Results
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Chapter 7

Conclusions

The main goal behind this work was to explore the mathematical properties

offered by cyclotomic number fields that make them the ideal candidate for

the underlying plaintextspace and ciphertextspace in current homomorphic

encryption schemes. The main questions that we wanted to answer was -

Why use cyclotomic number fields? How do they contribute to the efficiency

of such schemes?

Although we have answered these questions to a certain extent, there is plenty

more to investigate in this regard. From a theoretical standpoint, the use of

Gaussian distributions and how they tie into the rest of the components

can be explained in much more detail than in this work. From the efficiency

standpoint, the performance of key-switching and ring tunneling needs to be

investigated by varying the cyclotomic index and modulus.

There are two main factors that affect the performance of homomorphic

multiplication when changing the underlying cyclotomic index m′ of the ci-

pherspace ring R′q - the magnitude of each prime and the power of the prime

in the prime power of factorization of m′ =
∏

lml. Our experiments indicate

that the magnitude of the prime affects the performance more than the power

of the prime in cyclotomic indices of comparable magnitude.
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The homomorphic encryption scheme used in our experiments (from Λ ◦ λ
library) is not recommended for use in production because it may be prone

to timing or side-channel attacks. Although the library implements fast al-

gorithms for sampling from Gaussian distributions as described by the liter-

ature, their current implementation is not very exact in terms of precision

and the repercussions of this imprecision in terms of security is yet to be

analyzed [8].
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