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Abstract 

 

In the present research, 1-butyl-2,3-dimethyl-4-vinylimidazolium trifluoromethane sulfonate 

(triflate) was synthesized and polymerized. This is the first report of the synthesis and 

polymerization of this ionic liquid monomer. The resulting polymer was characterized by NMR, 

GPC and thermal analysis (DSC and TGA). The number average molecular weight of the polymer 

was 39,600 g/mol (PD = 1.75). The polymer was ion-exchanged to create the trifluoromethyl 

sulfonylimide (TSFI) and hexafluorophosphate (PF6
-
) polymer derivatives. Poly(1-butyl- 

2,3-dimethyl-4-vinylimidazolium triflate) and poly(1-butyl-2,3-dimethyl-4-vinylimidazolium TFSI) 

were characterized by TGA and all the three polymers were characterized by DSC. The TGA showed 

that poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate) and poly(1-butyl-2,3-dimethyl 

-4-vinylimidazolium TFSI) had the same decomposition temperature profiles, with mass loss 

beginning at 400
o 

C and ending at 510
o 

C. Glass transition characteristics were evaluated by DSC. 

Poly(1-butyl-2,3-dimethyl-4-vinylimidazolium hexafluorophosphate) exhibited the lowest onset 

glass transition temperature, 78
 o 

C, as compared to 94
 o 

C for poly(1-butyl-2,3-dimethyl-4- 

vinylimidazolium triflate) and 96
 o 

C for poly(1-butyl-2,3-dimethyl-4-vinylimidazolium TFSI). 
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Background 

Room temperature ionic liquids (RTILs) are ionic salts that melt near and below room 

temperature. Their low melting points are achieved by incorporating a bulky asymmetric cation and a 

large, charge-delocalized anion into the structure, which stops the ions from packing uniformly. Ionic 

liquids are typically comprised quaternary sulfonium, phosphonium, or ammonium cations paired 

with anions of low Lewis basicity (BF4
-
,PF6

-
, CF3SO3

-
, (CF3SO2)2N

-
,
 
etc.). Ionic liquids have 

attracted considerable attention in recent years due to their interesting and potentially useful 

physicochemical properties, including high ion conductivity, chemical stability, non-flammability, 

and near absence of vapor pressure.
[1,2]

 

The discovery, in the early 1990’s, of hydrolytically stable liquid, 1,3-dialkylimidazolium 

tetrafluoroborate and hexafluorophosphate salts
[3]

, led to an explosive growth in the number of 

publications relating to the synthesis, properties and applications of this unique class of materials that 

came to be known as room temperature ionic liquids (RTILs). Activity initially centered on the use 

of ionic liquids as battery electrolytes and the proposition that ionic liquids are “green” solvents and 

candidates to replace volatile organic compounds. Ionic liquids can be used in place of traditional 

solvent-based electrolytes which tend to promote corrosion, are prone to leak, are volatile, and are 

flammable. Ionic liquids have no volatile organic components and no significant vapor. Ionic liquids 

can act as solvents in which reactions can be performed; and, because the liquid is a molten ionic 

salt, such reactions often give distinct selectivity and reactivity when compared with reactions in 

more conventional organic solvents.  
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Today the focus has shifted to “task specific ionic liquids” 
[4,5] 

and studies of the utility of ionic 

liquids in advanced electrochemical devices
[6]

 ranging from lithium ion batteries
[7]

, to fuel cells
[8]

, 

capacitors
[9]

, solar cells
[10]

 and actuators
[11]

. Recently there has been growing interest in the 

polymeric forms of ionic liquids. Solid-state polymer electrolytes are believed to offer a means by 

which to eliminate the potential disadvantages of liquid electrolytes including leakage, flammability, 

toxicity, and instability. Because of the mobility of the anionic and cationic components of ionic 

liquids, the function of some devices would be improved if conventional ionic liquids could be 

replaced by film-forming ionic liquid/polymer gel electrolytes or ionic liquid polymers in which the 

mobility of the ions is constrained. 
[12] 

There are, effectively, two options for the realization of ionic 

liquid-based polymer electrolytes: 

1.) plasticization of a pre-formed non-ionic polymer with an ionic liquid
[13]

, or polymerization 

of a nonionic monomer in an ionic liquid to form “ion-gels,”
 [14,15]

 and; 

2.) synthesis of ionic liquid polyelectrolytes by quaternization of an ammonium polymer or 

synthesis and subsequent polymerization of an ionic liquid monomer
[16]

, which is being 

pursued in the present research.  

When polymer ionic liquids (ILs) are used as electrolyte materials, they have a significant 

deficiency in regards to their conductivity. Small molecular ionic liquids exhibit very high ionic 

conductivity. Ionic conductivity in poly(ionic liquids) is typically dramatically reduced. For example, 

the ionic conductivity of 1-ethyl-3-vinylimidazolium TFSI salt is around 10
-2

 S cm
-1

 at room 

temperature, it drops to about 10
-6

 S cm
-1

 after polymerization
 [29]

. This conductivity drop can be 

understood in terms of the decrease in mobility of ions in polymerized systems. Binding of ions in 

covalent bonds (polymerization) reduces the mobility of the tethered ionic unit and the mobility of 

the counter ion is limited by the glass transition temperature (Tg) of the polymer. Crosslinking also 
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lowers ion conductivity. 
[17]

 

In the 1970’s, the synthesis and polymerization of a series of 3-alkyl-1-vinylimidazolium salts, 

was reported by Salamone and his coworkers.
 [18,19]

 In that same time period, Salamone et al., 

published a series of papers on the synthesis and spontaneous polymerization of 4-vinylpyridinium 

salts.
[20,21]

 In the early 1990’s, Fife and coworkers reported the synthesis,
[22]

 polymerization
[23]

 and 

thermal properties
[24]

 of a series of isolable, storage stable, 4-vinyl-N-alkylpyridinium salts.
 
Thus, 

N-methyl-, ethyl-, butyl- hexyl- and dodecyl-4-vinylpyridinium triflates were synthesized by 

alkylation of 4-vinylpyridine with appropriate triflate esters. The N-methyl- and N-dodecyl- salts 

melted at 119°C and 62°C, respectively. The N-ethyl-, butyl-, and hexyl-4-vinylpyridinium triflates 

were viscous liquids at room temperature. All of these salts were readily polymerized free-radically, 

thermally, and anionically - with weakly basic nucleophiles. The most active current research group 

in the study of ionic liquid polymers is that of Hiroyuki Ohno at the Tokyo University of Agriculture 

and Technology. Ohno et al., have published on the preparation and polymerization of 

N-vinylimidazolium tetrafluoroborate,
[25]

 zwitterionic N-vinylimidazolium sulfonates
[26] 

and 

sulfonamides, ionic liquid monomer couples generated by neutralization of 1-vinylimidazole with 

vinylsulfonic acid or 3-sulfopropyl acrylate,
[27] 

1-ethyl-3-vinylimidazolium trifluoromethyl- 

sulfonylimide, 1-acryloyloxyalkyl-3-alkyl-imidazolium salts,
 [28,29,30,31]

 ion-gels comprised of 

copolymers of 1-acryloyloxy-3-ethylimidazolium salts with difunctional ionic liquid monomers in 

conventional ethylmethylimidazolium ionic liquids
[32]

 and hydroboration polymerization of 

1,3-diallyimidazolium bromide with subsequent ion exchange with lithium 

bis(trifluoromethylsulfonyl)-imide.
[33]

 The objectives of Ohno’s work in ionic liquid polymers have 
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been to maintain levels of ionic conductivity similar to that in the monomeric ionic liquids by 

synthesizing ionic liquid polymers having flexible spacer segments between the imidazolium cation 

and the vinyl group
[43]

 and to create compositions in which only the target ions (Li
+
, H

+
, I

-
, etc.) can 

migrate
[6]

. 

There are other groups that have been active in synthesizing and characterizing ionic liquid 

polymers. The group of Marcilla and Mecerreyes from the Centre for Electrochemical Technologies, 

Parque Tecnológico de San Sebastian and their coworkers synthesized and polymerized N-vinyl-3- 

alkylimidazolium halide monomers, ion exchanged the resultant polymers, and evaluated the 

solubility characteristics of the polymer families having Cl
-
, Br

-
, BF4

-
, PF6

-,
 CF3SO3

-
, (CF3SO2)2N

-
, 

(CF3CF2SO2)2N
-
 and ClO4

-
 anions.

 [34]
 Youquing Shen’s group at the University of Wyoming

[35,36]
 

has synthesized poly(ionic liquids) containing ammonium and imidazolium moieties and 

demonstrated that these polymers were capable of selectively absorbing and sequestering CO2. 

Shen’s group also worked on living (RAFT) polymerizations of ionic liquid vinylbenzyl 

monomers.
[37,38]

 

In 2009, Elabd, et al, synthesized 1-butyl-3-ethylmethacrylimidazolium bromide by the direct 

quaternization of 1-butylimidazole with 2-bromoethylmethacrylate, in a process similar to that of 

Ohno, et al.
 
The monomer was polymerized free-radically to form homopolymers and copolymers 

with hexyl methacrylate (HMA). The polymers were then evaluated for thermal properties, ion 

conductivity, and glass transition. In testing by DSC, only the poly(3-butyl-1-ethylmethacrylate 

imidazolium tetrafluoroborate) displayed a glass transition (71.5 C). It was also found that 

increasing the concentration of HMA decreased the glass transition temperature. The thermal 
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degradation was also higher with the TFSI
-
 than the BF4

-
, 373 C versus 322 C, respectively. Elabd 

also verified that the ion conductivity of the imidazolium polymer decreased by several orders of 

magnitude from the small molecule. The ion conductivity of the co-polymer increased as the HMA 

concentration increased and also, sharply increased when the co-polymer reached a 1:1 molar ratio, at 

100 C. 

In 2007, Vygodskii, et al,
 [39]

 synthesized a series of poly(3-ethyl-1-vinylimidazolium salts), 

which varied among Br-, (CF3SO2)2N
-
, (CN)2N

-
, and CF3SO3

-
. The monomers were synthesized by 

the reaction of 1-vinylimidazole with ethyl bromide to form 3-ethyl-1-vinylimidazolium bromide. 

The bromide salt was then used to create the derivatives with differing anions, by ion exchange with 

various silver and lithium salts. The monomers were subsequently polymerized using 

2,2’-azobisisobutyronitrile in flame sealed tubes. Vygodskii, et al, subjected this family of polymers 

to a series of thermal tests, including TGA and TMA. The most stable anion in Vygodskii’s set was 

the trifluoromethylsulfonylimide, which degraded over a temperature span of 325℃ to 485℃. 

Vygodskii, et al, also, for the first time, reported glass transition temperatures for these poly(ionic 

liquids) using the technique of thermomechanical analysis. The glass transition temperatures were 

found to range from 19 C for the dicyanamide polymer salt to 235 C for the bromide polymer salt.  

In exploratory research at RIT, Jun Wang
[40]

 and Darren Smith
[41]

 focused on 4- and 

5-vinylimidazolium salts and their corresponding polymers. Since the imidazolium moiety in these 

polymers is not covalently connected to the polymer backbone at one of the nitrogen atoms on the 

imidazole ring, the 1-methyl-3-alkylimidazolium group has more conformational degrees of freedom 

than does the imidazolium moiety in 1-vinyl-3-alkylimidazolium polymers. Jun Wang synthesized 
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poly(1-methyl-3-butyl-5-vinylimidazolium salts) by quaternization of poly(1-methyl 

-5-vinylimidazole), a polymer analogous reaction, and by polymerization of ionic liquid 

1-methyl-3-butyl-5-vinylimidazolium salts. The polymer obtained in the polymer analogous reaction 

was not fully quaternized. Direct alkylation of 1-methyl-5-vinylimidazole with n-butyl iodide 

produced a quantitative yield of 1-butyl-3-methyl-4-vinylimidazolium iodide. However, 

quaternization with n-butylchloride yields a quaternary monomer that polymerizes spontaneously. 

Since polymerization of the iodide salt does not yield high molecular weight polymer, Wang 

performed an ion exchange of the iodide salt with lithium hexafluorophosphate. This yielded 

1-butyl-3-methyl-4- vinylimidazolium  

NN

CHCH2

CH3
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CHCH2

CH3 (CH2)3CH3

+

.

.

N

N
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( )n

C
H

3 (C
H

2 )
3 I
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 (sealed tube)
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12 hrs
o 
C 
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o 
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.

.

N

N

CH3

(H2C)3

CH3

( )n
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I
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CHCH2

CH3 (CH2)3CH3

+

PF6
-

+

.

.

N

N
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( )n

PF6
-

NaPF6

NaPF6 auto- polymerization

 

Scheme1. Synthetic route of poly(1-methyl-3-butyl-5-vinylimidazolium salts) 

 

hexafluorophosphate, which was not able to be crystallized and had a monomeric Tg of -12 C. The 

problem with the ion exchange of the monomer in this way is that it has a similar reaction to that of the 

chloride, i.e., the monomer spontaneously polymerizes during a subsequent to the ion exchange. 
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Darren Smith built on the work of Wang to synthesize 1-alkyl-3-methyl-4- vinylimidazolium salts 

that can be polymerized in a controlled fashion. Smith synthesized 1-ethyl-3-methyl 

-4-vinylimidazolium triflate and polymerized it free-radically to yield poly(1-ethyl 

-3-methyl-4-vinylimidazolium triflate), which had a Mn = 13,088g/mol (PD = 1.11, in DMF), an 

onset decomposition temperature of 467
o
C and an onset glass transition temperature of 115

o
C. For 

comparison, Smith also synthesized poly(3-ethyl-1-vinylimidazolium triflate) which has a glass 

transition temperature of 127C (higher than poly(1-ethyl-3-methyl-4-vinylimidazolium triflate)). It 

was found that the 4-vinyl imidazolium polymer also has greater thermal stability than the 

1-vinylimidazolium polymer.  After the ion exchange of the polymers to dicyanamide, 

trifluoromethylsulfonylimide (TFSI), tetrafluoroborate, hexafluorophosphate, and 

hexafluoroarsenate, the resulting lowest glass transition temperatures are obtained with imidazolium 

trifluoromethylsulfonyl imide (TFSI) salt. 

The work of Darren Smith has provided an attractive option for poly( ionic liquid) membranes 

that can be used in lithium ion batteries and super capacitors, etc. However, the acidity of the proton 

at the 2-position of the imidazole ring is particularly problematic in that it can be the source of 

chemical and electrochemical instability. 2-methylimidazolium monomers mitigate this problem. 

The present research is particularly concerned with the synthesis, polymerization, and thermal 

characteristics of 1,3-dialkyl-2-methyl-4-vinylimidazolium salts and the polymers derived therefrom, 

as shown in Figure 1.  
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N
N

R1

R2

CH3

+

n

 

Figure 1. Structure of poly(2-methyl-1,3-dialkyl-4-vinylimidazolium salt), where R1 varies 

from methyl, ethyl and butyl and R2 varies from methyl and butyl. 
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Experimental 

Materials 

4-imidazoleacrylic acid (99%), butyllithium (1.6M solution in hexane), sec-butyllithium (1.4M 

solution in cyclohexane), 1,1,1,3,3,3-hexamethyl disilazane (99.9%), ethyl vinyl ether(≥98.0%), 

N,N’-Dimethylformamide(anhydrous, 99.8%), benzene (anhydrous, 99.8%), 1-Bromobutane (99%), 

methyl trifluoromethansulfonate (≥98%)， Bis(trifluoromethane)-sulfonimide lithium salt, Methyl 

sulfoxide (99.6+%), ammonium hexafluorophosphate (99.99%), were obtained from Sigma-Aldrich 

and used as received.  

4-tert-butylcatechol (99%), Potassium tert-butoxide (pure, 1M solution in THF, AcroSeal), 

triphenylmethyl chloride (98%), iodomethane (stabilized, 99%), methyl alcohol (reagent ACS, 

99.8%), tetrahydrofuran (stabilized, 99+%), ethanol (pure, denat, 95%, with 5% wood spirit), 

potassium carbonate (reagent ACS, anhydrous), ammonium sulfate (reagent ACS), sodium 

bicarbonate (p.a.), were obtained from ACROS Organics and used as received.  

Ethyl acetate (AR ACS, 99.5%), hydrochloric acid (AR ACS), chloroform (AR ACS), 

dichloromethane (AR ACS), were obtained from Mallinckrodt Chemicals and used as received.  

Diethyl ether (anhydrous) and acetone (certified ACS), were obtained from Fisher Scientific and 

used as received. 

Magnesium sulfate (Anhydrous Powder) and acetic acid (glacial) were obtained from J.T.Baker 

and used as received.  

Triethylamine (99%) was obtained from Lancaster Synthesis and used as received. 
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Acetonitrile (GR ACS) was obtained from EMD Chemicals and used as received.  

2,2’-azobisisobutyronitrile (AIBN, 98%, recrystallized from methanol). 

1-silyl-4-vinylimidazole was prepared by Darren Smith using a procedure analogous to that 

reported by Kawakami, et al. 
[42]

  

Instrumentation 

Proton NMR data was gathered using a Bruker 300Hz spectrometer with samples dissolved 

in chloroform-d (Aldrich, 99.8 atom % D, 0.05% v/v TMS)，methanol-d4(Aldrich, 99.96 atom % 

D) and (methyl-sulfoxide)-d6 (ACROS Organics, 99.9 atom % D).  

Thermal gravimetric analysis was carried out under nitrogen atmosphere with a TA Instruments 

TGA 2050. The temperature was increased from 25-600
o
C at 20

o
C/min under a nitrogen atmosphere, 

and then held at 600
o
C for 10 minutes under an air atmosphere. 

Glass transition data was gathered using a TA Instruments DSC 2010 with attached 

refrigerated cooling system under a nitrogen atmosphere. All samples were prepared, in an inert 

atmosphere, by placing the sample in an open aluminum pan and heated to 100
o
C for 15 minutes 

on a hot plate to remove moisture, then capped and sealed. Samples were ramped to 150
o
C then 

cooled to -50
o
C at a rate of 20

o
C/min. After that, the samples were ramped to 200

o
C then cooled 

to -50
o
C at a rate of 20

o
C/min. The temperature was held for 1 minute at the end of each heating 

and cooling cycle. Tg values are reported as Tg onset, Tg peak and Tg mid temperatures. An 

example of the 15-step analysis process is described below. 

 Step 1 – Heat from 22
o
C to 150

o
C at 20

o
C/min 

 Step 2 – Hold 1 minute 
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 Step 3 – Cool from 150
o
C to -50

o
C at 20

o
C/min 

 Step 4 – Hold 1 minute 

 Step 5 – Heat from -50
o
C to 200

o
C at 20

o
C/min 

 Step 6 – Hold 1 minute 

 Step 7 – Cool from 200
o
C to -50

o
C at 20

o
C/min 

 Step 8 – Hold 1 minute 

 Step 9 – Heat from -50
o
C to 200

o
C at 20

o
C/min 

 Step 10 – Hold 1 minute 

 Step 11 – Cool from 200
o
C to -50

o
C at 20

o
C/min 

 Step 12 – Hold 1 minute 

 Step 13 – Heat from -50
o
C to 200

o
C at 40

o
C/min 

 Step 14 – Hold 1 minute 

 Step 15 – Cool from 200
o
C to -50

o
C at 5

o
C/min 

Molecular weight and polydispersity were determined using an Agilent 1100 series gel 

permeation chromatograph with two Agilent Zorbax PSM 60-S columns (in series). The 

sample was eluted at 35
o
C, using N,N’-dimethylformamide as the solvent.  

 

Synthesis of 4(5)-vinylimidazole 

4(5)-vinylimidazole was synthesized by decarboxylation of urocanic acid. The procedure 

employed was analogous to that of Overberger, et al
[43]

. Thus, urocanic acid (3.70 g, 26.8mmol) was 

charged to a 50 mL single-neck round bottom flask. The flask was then connected to an elbow and a 

50ml three-neck round bottom flask was connected to the other side of the elbow. The three-neck 

round bottom flask was immersed in a ice water bath during the reaction and also connected to a 

50ml two-neck round bottom flask , which was placed in a liquid-nitrogen bath. The system was 
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connected to the vacuum line through the two-neck round bottom flask. The single-neck flask was 

first heated in an oil bath at 120
o
C under vacuum (10µmHg) for 30 minutes and cooled to room 

temperature. Then it was heated again in the oil bath at 230
o
C under vacuum (10µmHg) for 2 hours 

until the residue in the flask all turned dark black. The yellow oil collected in the three-neck round 

bottom flask was crude 4(5)-vinylimidazole. The reaction vessel was allowed to cool down to room 

temperature and removed from the vacuum. The 4(5)-vinylimidazole was then cooled in refrigerator 

(5
 o
C) overnight to obtain a yellow crystalline material. Yield=1.46g, 58%. 

NH

N

O

OH

NH

N

230 °C

10 m Hg

 

Scheme 2. Synthesis of 4(5)-vinylimidazole 

1-trityl-4-vinylimidazole 

1-trityl-4-vinylimidazole was synthesized by a procedure analogous to that of Schiavone, et al.
 

[44]
 Thus, crude 4(5)-vinylimidazole (10g, 106.4mmol) and anhydrous N,N’-Dimethylformamide 

(200ml) were charged to a 500ml single neck round bottom flask. The flask was placed in ice water 

bath and triphenylmethyl chloride (32.6g, 117.0mmol) was added portionwise over a 15 minute 

period. Then triethylamine (25.8g, 255.3mmol) was charged to the solution. The flask was equipped 

with a reflux condenser and the reaction mixture was stirred under room temperature for 20 hours. 

The suspension was then poured into a 500ml solution of hydrochloric acid (12ml of 37%) and water 

and stirred vigorously for 10 minutes. The white precipitate was isolated by vacuum filtration, 
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washed with water and air dried overnight, resulting in a white, dry solid of 

1-trityl-4-vinylimidazole. Yield=36g, 100%.  

NH

N
+

Cl

N

N

25 °C

N(C2H5)3

 

Scheme 3. Synthesis of 1-trityl-4-vinylimidazole 

1-trityl-2-methyl-4-vinylimidazole 

The synthesis of 1-trityl-2-methyl-4-vinylimidazole was carried out by a procedure analogous to 

that reported by Schiavone et al.
[43]

 Thus, 1-trityl-4-vinylimidazole (12g, 35.7mmol) and dry 

tetrahydrofuran (600ml, dried from sodium and benzophenone) were charged to 1L three-neck round 

bottom flask. The flask was equipped with ground glass stopper, rubber serum cap, reflux condenser 

with gas inlet valve and magnetic stir bar. The flask was then placed in ice water bath and stirred 

under argon. Sec-butyl lithium (25.5ml, 36mmol, 1.4M solution in cyclohexane) was injected 

dropwise from a 50ml syringe, through the rubber serum cap and into the flask. The reaction 

mixture, which turned deep red upon addition of sec-butyl lithium, was stirred in an ice water bath 

for 15 minutes and for 2 hours at room temperature. Iodomethane (3ml, 46.4mmol) was then injected 

from a 5ml syringe through the rubber serum cap and into the flask by. The solution turned yellow 

and was stirred at room temperature for 30 minutes. Distilled water (100ml) was added to stop the 

reaction. THF was removed by rotary evaporation and the residue was partitioned between 

chloroform and water. The chloroform solution was dried over magnesium sulfate. The solution was 
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then filtered and the solvent was removed under reduced pressure, leaving a yellow solid of 

1-trityl-2-methyl-4-vinylimidazole. Crude yield=9.3g, 74.4%.  

+

N
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N

N

N

C
-

N

Li

Li
+

25  °C

dry THF
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Scheme 4. Synthesis of 1-trityl-2-methyl-4-vinylimidazole 

2-methyl-4-vinylimidazole 

The synthesis of 2-methyl-4-vinylimidazole was carried out by deprotection of 

1-trityl-2-methyl-4-vinylimidazole. In a typical procedure, 1-trityl-2-methyl-4-vinylimidazole (5.7g, 

16.4mmol) was charged to a 500ml single neck round bottom flask equipped with a reflux 

condenser. 200ml of a 5% acetic acid-methanol solution was then added to the flask. The reaction 

mixture was placed in a 75
 o 

C oil bath and refluxed for 40 minutes. The solvent was removed by 

rotary evaporation and 50ml of distilled water was added. A white precipitate formed immediately. 

The precipitate was centrifuged down and the water layer was decanted to another 200ml single neck 

round bottom flask. The water was ultimately removed in vacuo, yielding 2-methyl-4-vinylimidazole 

as a clear yellow oily residue. Yield = 0.45g, 25%.  

N

N

NH

N

1. HCl

2. Workup

 

Scheme 5. Synthesis of 2-methyl-4-vinylimidazole 

The reaction was then increased in scale to prepare 25.5g of crude1-trityl-2-methyl-4-vinylimidazole.  
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Recrystallization of 2-methyl-4-vinylimidazole 

10.5g of crude 2-methyl-4-vinylimidazole was charged to a 250 ml Erlenmeyer flask and was 

dissolved in a minimum amount of ethyl acetate. The solution was cooled under room temperature 

for 1 hour and then stored in a refrigerator over weekend. Needle-like white crystals were formed in 

the solution and were collected by vacuum filtration. Yield=8.65g, 82.4%. 

1-trimethylsilyl-2-methyl-4-vinylimidazole 

The synthesis of 1-trimethylsilyl-2-methyl-4-vinylimidazole was carried out in a procedure 

analogous to that used by Kawakami and Overberger
[42]

 to prepare 1-trimethylsilyl-4-vinylimidazole. 

Thus, 2-methyl-4-vinylimidazole. (1.0g, 6.0 mmol), 1,1,1,3,3,3-hexamethyldisilazane (1.1g, 6.0 

mmol), acetonitrile (50 mL), ammonium sulfate (catalytic amount), and 4-tert-butyl catechol 

(catalytic amount) were charged to a 100 mL single neck round bottom flask. The flask was 

equipped with a reflux condenser, gas inlet valve and a magnetic stir bar. The reaction mixture was 

blanketed with argon, heated, and stirred in an oil bath at 95
o
C for 20 hours.  The reaction mixture 

was then allowed to come to room temperature and the solvent was removed by rotary evaporation. 

The resulting clear yellow oil was 1-trimethylsilyl-2-methyl-4-vinylimidazole. Yield=0.75g, 70%. 

NH

N

N

N

Si

Si
NH

Si

+
95 °C, Ar(g)

CH3CN

 

Scheme 6. Synthesis of 1-trimethylsilyl-2-methyl-4-vinylimidazole 
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1,2-dimethyl-5-vinylimidazole 

The synthesis of 1,2-dimethyl-5-vinylimidazole was carried out, in low yield - as described 

below, by methylation and hydrolysis of 1-trityl-2-methyl-4-vinylimidazole. 

1,2-dimethyl-5-vinylimidazole was also obtained by methylation and hydrolysis of 

1-trimethylsilyl-2-methyl-4-vinylimidazole. 

Methylation and hydrolysis of 1-trityl-2-methyl-4-vinylimidazole 

In a typical procedure, 1-trityl-2-methyl-4-vinylimidazole (2g, 5.7mmol), nitromethane (25ml) and 

iodomethane (0.45ml, 6.3mmol) were charged to a glass pressure vessel. The vessel was capped with 

a crown cap, placed in a 65
 o 

C water bath and heated overnight. The solution turned brown. The 

supernant solvent was removed and the dark brown residue was dissolved in 100ml of 

dichloromethane. 100ml of a 5% acid-water solution was added and the mixture was stirred 

vigorously for 2 hours. Sodium carbonate was added to neutralize the excess acid and the aqueous 

solution was extracted exhaustively with three 100ml aliquots of dichloromethane. The 

dichloromethane was dried over magnesium sulfate and filtered. The solvent was then removed by 

rotary evaporation, yielding a yellow oily residue of 1,2-dimethyl-5-vinylimidazole.  Yield=0.26g, 

37.4%.  
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+
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N
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N

+
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-
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-

 

Scheme 7. Synthesis of 1,2-dimethyl-5-vinylimidazole(1) 
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Methylation and hydrolysis of 1-trimethylsilyl-2-methyl-4-vinylimidazole 

1-trimethylsilyl-2-methyl-4-vinylimidazole (0.36g, 2mmol), acetonitrile (30ml) and iodomethane 

(0.125ml, 2mmol) were charged to 100ml single neck round bottom flask equipped with magnetic 

stir bar and reflux condenser. The solution was stirred in a 50 C oil bath for 20 hours. In order to 

hydrolyze the trimethylsilyl group, 25ml of a 5% acid-water solution was poured into the reaction 

mixture and stirred vigorously for 1 hour. The reaction mixture was neutralized by sodium 

bicarbonate. After acetonitrile was substantially removed in vacuo , the aqueous layer was extracted 

with 3 aliquots of diethyl ether and the ether layer was dried over magnesium sulfate. The solution 

was then filtered and the solvent removed by rotary evaporation, resulting in a yellow oily residue of 

1,2-dimethyl-5-vinylimidazole. Yield=0.244g, 53.3%. 
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Scheme 8. Synthesis of 1,2-dimethyl-5-vinylimidazole(2) 

1-butyl-2-methyl-4-vinylimidazole 

Crystalline 2-methyl-4-vinylimidazole (2.15g, 19.7mmol) and 20ml of tetrahydrofuran were 

charged to a 150ml round bottom flask, equipped with Y-tube, rubber stopper, reflux condenser with 

gas inlet, and magnetic stir bar. Under an argon blanket, the suspension was allowed to stir and the 

vessel was immersed in ice bath. Then potassium tert-butoxide (39.5ml, 39.5mmol) was injected into 

the flask through rubber stopper on one neck of the Y-tube by syringe. The reaction mixture, which 

turned milky white, was allowed to stir for 15 minutes. The vessel was cooled in a cold water bath 
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while n-butyl bromide (2.55ml, 23.7mmol) was added drop-wise. The mixture was stirred under Ar 

at room temperature overnight. Then the solvent was evaporated under reduced pressure and the 

yellow oily residue was dissolved in 50 ml of diethyl ether. The solution was added to 100mL of 

dilute hydrochloric acid (5%) and stirred vigorously. The mixture was then transferred to a 500mL 

separatory funnel and shaken vigorously. After the separation, potassium carbonate was added to the 

aqueous layer until the pH value of the solution increased to 11. The aqueous layer was then 

extracted three times with 100 mL aliquots of diethyl ether and the organic layer was dried over 

magnesium sulfate. The organic layer was filtered and the solvent was removed via rotary 

evaporation to yield a light yellow oil, yield = 0.8 g, 25%.  
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N
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Scheme 9. Synthesis of 1-butyl-2-methyl-5-vinylimidazole 

Crude 1-butyl-2-methyl-4-vinylimidazole (1.50 g, 9.15mmol) was charged to a 10mL 

single-neck round bottom flask, equipped with a short path distillation apparatus. The vacuum was 

pulled down to 50 µmHg. The flask was immersed in an ice bath and the cow-type receiver was 

immersed in liquid nitrogen. The clear colorless product was stored at 0
 o
C. Yield=0.84g, 56.0%.  

1-butyl-2,3-dimethyl-4-vinylimidazole 

Freshly distilled 1-butyl-2-methyl-4-vinylimidazole (0.84g, 5.12mmol) and 8ml dichloromethane 

was charged to a 50ml single neck round bottom flask, equipped with Y-tube, rubber stopper, reflux 

condenser with gas inlet, and magnetic stir bar. The vessel was immersed in ice bath. Under an argon 
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blanket, methyl trifluoromethansulfonate (0.69ml, 6.14mmol), which was dissolved in 10ml of 

dichloromethane, was added drop-wise by 20mL syringe. The reaction mixture was stirred at 0
o
C for 

2 hours. Then the Y-tube and reflux condenser were removed while the distillation apparatus was set 

up. The reaction vessel was still immersed in the ice bath and the receiver was immersed in liquid 

nitrogen. The vacuum was pulled down to remove dichloromethane and unreacted methyl 

trifluoromethane sulfonate, resulting in a white crystalline solid of product. Yield=1.68g, 100%. 

MP=45
 o
C, 760mmHg.  
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Scheme 10. Synthesis of 1-butyl-2,3-dimethyl-5-vinylimidazolium triflate 

 

Polymerization of 1-butyl-2,3-dimethyl-4-vinylimidazolium trifluoromethane sulfonate 

1-butyl-2,3-dimethyl-4-vinylimidazolium trifluoromethane sulfonate (1.68g, 5.80mmol) was 

dissolved in ethyl acetate (8mL) and ethanol (2mL) and transferred to a polymerization tube at 0
o
C. 

A solution was made of AIBN (0.02 g, 0.122 mmol) by dissolution in ethyl acetate (10mL).  The 

AIBN solution (1mL) was added to the polymerization tube and mixed thoroughly.  The solution 

was then degassed by three freeze-thaw cycles by freezing the contents in liquid nitrogen. The tube 

was then flame sealed and immersed in a water bath at 65
o
C for 20 hours. A viscous polymer 

solution formed as a result of the polymerization process. The resulting polymer solution was 

uncapped and transferred to a 500ml Erlenmeyer flask and 300ml of diethyl ether was added. The 
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solution was shaken vigorously and a white polymer precipitate formed. The suspension was 

centrifuged, decanted, and combined, resulting in a white fluffy polymer. The polymer turned hard 

plastic-like after further drying in the glove box with inert atmosphere. Yield=1.68g, 100%. Mn = 

39,637 g/mol and Mw = 69,371 g/mol with a poly-dispersity of 1.75.   
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Scheme 11. Polymerization of 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate 

Anion exchange of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium trifluoromethane sulfonate) 

A “stock solution” with a concentration of 0.02 g/mL of 

poly(1-butyl-2,3-dimethyl-4-vinylimidazolium trifluoromethane sulfonate) in methanol was used for 

the anion exchange. 

Poly(1-butyl-2,3-dimethyl-4-vinylimidazolium trifluoromethylsulfonylimide) 

10 mL (0.69mmol) of the above stock solution was added to a centrifuge tube, to which 10 mL of 

lithium trifluoromethylsulfonylimide (0.87mmol) in methanol was added.  The solution was shaken 

vigorously and a precipitate formed.  The suspension was centrifuged, decanted, and rinsed twice 

with methanol to remove excess LiTFSI. In order to prevent hydration of the polymer, the tube was 

transferred to a glove box with inert atmosphere for further drying. 

Poly(1-butyl-2,3-dimethyl-4-vinylimidazolium hexafluorophosphate) 



21 

 

10 mL (0.69mmol) of the stock solution was added to a centrifuge tube, to which 10 mL of 

ammonium hexafluorophosphate (0.92mmol) in methanol was added.  The solution was shaken 

vigorously and a precipitate formed.  The suspension was centrifuged, decanted, and rinsed twice 

with methanol to remove excess NH4PF6. In order to prevent hydration of the polymer, the tube was 

transferred to a glove box with inert atmosphere for further drying. 
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Results and Discussion 

The objectives of the present research were to synthesize monomeric 1,3-dialkyl-2-methyl 

-4-vinylimidazolium salts (the alkyl group could be methyl, ethyl or butyl), the corresponding 

polymers and copolymers and to ion exchange these polymers to yield derivatives with different 

anions. The characterization of the thermal and electrical properties of these polymers was a primary 

objective. Several approaches were considered as potential routes to synthesize the target monomers.  

The first approach starts with crude 4(5)-vinylimidazole, and is outlined in Scheme 12.  
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Scheme 12. Option 1 – Quaternization of 1-trityl-2-methyl-4-vinylimidazole  

The 1-position of 4(5)-vinylimidazole is first blocked by the trityl group. Then the 

1-trityl-4-vinylimidazole is treated with n-butyllithium and iodomethane to methylate the 
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2-position.These two steps are analogous to those in the procedure that published by Schiavone, et al.
 

[43]
 for methylation of 4(5)-vinylimidazole at the 2 position. The quaternization of this molecule can 

be achieved by adding another equivalent of iodomethane to alkylate the 3-position. After that, the 

trityl group will be removed in an acidic condition so that the 1-position can be alkylated by another 

alkylation reagent (ethyl triflate or butyl iodide). This route has been put into practice and the yield 

was quantitative in the first two steps. When n-butyl lithium was added in the second step, a scarlet 

color was observed in the reaction mixture, indicating that the 2-lithio imidazole anion was formed. 

The color of the reaction mixture turned into pale yellow as soon as iodomethane was injected.  

Thus, 1-trityl-2-methyl-4-vinylimidazole was successfully made. The quaternization and 

deprotection processes were carried out sequentially without isolation of the quaternary 

dimethyltritylimidazolium iodide. However, the 
1
H NMR spectra did not show a positive result for 

the anticipated 1,2-dimethyl-5-vinylimidazole. According to the NMR spectra and TLC results, there 

were at least two kinds of imidazole compounds in the product, which indicated that some unknown 

unexpected reactions were happening during the quaternization. These products could not be 

separated by column chromatography. The speculation is that the iodide removed some of the trityl 

groups before hydrolysis and quaternized product was formed during work up. Thus, an alternative 

non-nucleophilic alkylation reagent--dimethyl sulfate was used to do the quaternization. The product, 

however, was not improved. Therefore, the synthetic direction has been switched to the second route.  

Another option which was attempted was to methylate 1-trimethylsilyl-4-vinylimidazole at the 

2-position. As compared to the trityl group, the trimethylsilyl group is easier to remove and separate 
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from the imidazole product. The resulting 2-methyl-4-vinylimidazole would subsequently be 

alkylated and quaternized to yield the desired molecule.  
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Scheme 13. Option 2 - Attempted lithiation and alkylation of 1-trimethylsilyl-4-vinylimidazole 

An effort was made to methylate 1-trimethylsilyl-4-vinylimidazole; however, when treated with 

n-butyllithium 1-trimethylsilyl-2-lithio-4-vinylimidazole was not formed. The failure of the reaction 

was evidenced by the absence of the characteristic scarlet color for the 2-imidazole anion.  

A third option was to remove the trityl group in 1-trityl-2-methyl-4-vinylimidazole prior to 

alkylation. The resultant 2-methyl-4(5)-vinylimidazole could then be alkylated in either one step to 

give the symmetrical 1,3-disubstituted-2-methyl-5-vinylimidazolium salt or in two steps, using two 

different alkylating agents, to yield asymmetric structured monomers, as shown in Scheme 14.  
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Scheme 14. Option 3 - Alkylation of 2-methyl-4(5)-vinylimidazole 

In the present research, pure crystalline 2-methy-4-vinylimidazole was prepared by a procedure 

analogous to that of Schiavone. Instead of using hydrochloric acid water solution to cleave the trityl 

group, the 2-methyl-1-trityl-4-vinylimidazole was directly dissolved in 5% acetic acid methanol 
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solution and refluxed. Methanol, being more volatile than waster, was easily removed in vacuo. The 

crude product was obtained as a yellow oily liquid at ambient temperature. The 
1
H NMR of 

2-methyl-4-vinylimidazole is shown in Figure 2. 

 

Figure 2. 
1
H NMR of 2-methyl-4-vinylimidazole 

Ha and Hb are in different chemical environments and they are coupled with each other and with Hc 

to yield split doublets. Hc is also a pair of split doublets, a result of coupling to both Ha and Hb. Hd 

on the imidazole ring shows a singlet at 6.97ppm and the methyl hydrogens at the 2-position exhibit 

a chemical shift of 2.38ppm. The sharp singlet at around 1.9ppm may come from residual 

cyclohexane, which was the solvent of n-butyl lithium.  

The alkylation of 2-methyl-4-vinylimidazole was carried out under strongly basic conditions in 

tetrahydrofuran. The alkylation agent, n-butyl bromide was added to the potassium salt of 

2-methy-4(5)-vinylimidazole, formed by reacting 2-methyl-4(5)-vinylimidazole with potassium 

tert-butoxide; and the mixture was stirred at room temperature for 12 hours. After removal of THF in 
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vacuo, the product was dissolved in ether, extracted into 5% aqueous HCl, neutralized with 

potassium carbonate, extracted into diethyl ether which was dried over anhydrous MgSO4. Removal 

of the ether yielded a light yellow oil. The 
1
H NMR of 1-butyl-2-methyl-4-vinylimidazole is shown 

in Figure 3. 

 

Figure 3. 
1
H NMR of 1-butyl-2-methyl-4-vinylimidazole 

The two possible products in this reaction are shown in Figure 4. 
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N

N

N
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Figure 4. Structures of the two possible products 

Compound (1) was expected to be the major product due to the steric hindrance to alkylation 

between the 2-methyl group and the vinyl group. The NMR spectrum verifies the formation of 
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compounds (1) and (2). However, the fraction of compound (2) in the product mixture is very small.  

Given this outcome, the quaternization reaction was carried out on the mixed product.  

The vacuum-distilled monomer mixture described above was quaternized by reaction with 

methyl trifluoromethansulfonate in dichloromethane. After addition of a trace amount of 4-tert-butyl 

catechol and removal of the solvent and unreacted materials in vacuo at 0C, a white crystalline solid 

was obtained. To avoid polymerization, the monomer was stored at 0C. The 
1
H NMR of 

1-butyl-2,3-dimethyl-4-vinylimidazolium triflate is shown in Figure 5. The 3-position methyl 

hydrogen has a chemical shift of 3.73ppm. Hf is more up field than Hg because hydrogens on the 

methyl group are shielded by the cone of the pi-cloud of the vinyl group. 

 

Figure 5. 
1
H NMR of 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate 

The triflate monomer was dissolved in ethyl acetate with ethanol as a co-solvent and polymerized 

free-radically using AIBN in classic sealed Carius tubes, which had been degassed in three 

freeze-thaw cycles prior to being flame sealed and heated at 65C for 20 hours to yield polymer 
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which was precipitated from diethyl ether and was isolated and dried to give a white hard plastic.  

The 
1
H NMR of poly(1-ethyl-3-methyl-4-vinylimidazolium triflate) can be seen in Figure 6. It is 

significant to note that, as compared to the 
1
H-NMR spectrum of the monomer, the chemical shift of 

the methyl hydrogens, He, in the polymer now appear down field from the methylene hydrogens, Hf,  

attached at the 1-position of the imidazole ring.  This is a result of the fact that, in the polymer, 

there is no shielding cone from a vinyl group. 

 

Figure 6. 
1
H NMR of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate) 

Anion Exchange of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium) salts 

Poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate) was ion-exchanged with (CF3SO2)2N
- 
and 

PF6
-
. Separate solutions of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate), lithium TFSI, 

lithium PF6
-
 in methanol were prepared. A stoichiometric excess of the respective salt solutions was 

mixed with the triflate polymer solution, resulting in the formation of 

poly(1-butyl-2,3-dimethyl-4-vinylimidazolium TFSI
-
) and poly(1-butyl-2,3-dimethyl-4-viny- 



29 

 

limidazolium PF6
-
) which precipitate from the mixed methanol solutions. The precipitated polymers 

were washed with methanol and dried in the vacuum anti-chamber of a glove box. 

Thermal gravimetric analysis of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium) salts 

Thermal gravimetric analysis of the poly(1-butyl-2,3-dimethyl-4-vinylimidazolium salts) showed 

that the triflate polymer and the TFSI polymer have nearly identical thermal stability behavior. 

Under nitrogen, they both suffered extensive mass loss from 440
o
C to 500

o
C. 

 

Figure 7. TGA of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate) and 

poly(1-butyl-2,3-dimethyl-4-vinylimidazolium TFSI) 

 

Glass transition of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium) salts 

The DSC thermogram for poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate) is shown in 

Figure 8. 
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Figure 8. DSC scan of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate) 

from -50
o
C to 200

o
C 

 

A typical DSC thermogram of a glassy polymer exhibits a step change in heat capacity of the heating 

or cooling cycle, like that shown in Figure 9.  

 

Figure 9. Typical DSC thermogram of a glassy polymer (heating cycle) 
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However, the heat capacity change around glass transition temperature for 

poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate) and the other two salts in this group of 

2-substituted imidazolium polymers exhibits an unexpected peaked shape normally seen in aged 

polymer glasses.  This excess enthalpy peak is a result of densification of the aged glass.  The 

extremely rapid aging of the 2-substituted imidazolium polymers is unprecedented and one might 

speculate that it is related to the ionic liquid character of these polymers. In the heating cycle, the 

onset, mid and peak glass transition temperatures (Tg) are 94℃, 98℃ and 102℃. The peak and min 

Tg of triflate polymer measured in cooling cycle are 91℃ and 83℃,respectively. The thermograms 

for the TFSI and hexafluorophosphate polymer salts are displayed in Figure 10 and 11, respectively. 

 

 

Figure 10. DSC scan of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium TFSI)  

from -50
o
C to 200

o
C 
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Figure 11. DSC scan of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium 

hexafluorophosphate) from -50
o
C to 200

o
C 

They also showed the peak behavior at glass transition temperatures. The baseline in the heating 

cycles is relatively flat. The baseline in the cooling cycles, however, is anomalous exhibiting 

numerous fluctuations in heat capacity of unknown origin.  

The TFSI salt exhibited a Tg of 96
o
C-102

o
C in the heating cycle and 92

 o
C-84

 o
C in the cooling 

cycle. The hexafluorophosphate anion is less solvating and smaller than TFSI-, yet it exhibits a 

somewhat lower Tg than that of the TFSI- salt. The glass transition characteristics of the three 

polymer salts are summarized in Table 1 

Table1: Heating and cooling cycle scan, glass transition temperatures for 

poly(1-butyl-2,3-dimethyl-4-vinylimidazolium salts) 

Salt triflate TFSI PF6 

heating onset 94℃ 96℃ 78℃ 

heating mid 98℃ 99℃ 84℃ 

heating peak 102℃ 102℃ 90℃ 

cooling min 83℃ 84℃ 70℃ 

cooling peak 91℃ 91℃ 75℃ 
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The surprising feature of the data in the above table is the lack of any significant or systematic 

variation of the glass transition with change of anion in and poly(1-butyl-2,3-dimethyl-4-vinyl 

-imidazolium salts). 

In Table 2, the glass transition temperatures of the triflate, TFSI and PF6
-
 salts of the 

1-ethyl-3-methyl-4-vinylimidazolium polymer and the 1-butyl-2,3-dimethyl-4-vinylimidazolium 

polymer are compared. 

Table2. Comparison Glass Transition temperatures* of  

P23DM4VIm
+
 polymers and P4VIm

+
 polymers 

Polymer 

composition 

Triflate TFSI PF6
-
 

P23DM4VIm
+
 P4VIm

+
 P23DM4VIm

+
 P4VIm

+
 P23DM4VIm

+
 P4VIm

+
 

Heating cycle 

onset Tg 
94℃ 145℃ 96℃ 72℃ 78℃ 187℃ 

Heating cycle 

mid-point Tg 
98℃ 153℃ 99℃ 88℃ 84℃ 200℃ 

*Heating cycle, glass transition temperatures 

The glass transition temperatures of P4VIm
+
 polymers drops significantly as the size of the counter 

anion is increased. P23DM4VIm
+
 polymers did not follow this pattern. The triflate, TFSI and PF6

-
 

salts of P23DM4VIm
+
 had very similar glass transition temperatures. It is speculated that since the 

cation of P23DM4VIm
+
 is bulkier, with the 2-position substituted, the motion of the cation tethered 

to the polymethylene chain and the motion of the anion are largely decoupled. Thus, their Tg did not 

vary significantly with change in the size of the anions. The structures of the P23DM4VIm
+
 and 

P4VIm
+
 polymers are shown in Figure 13.  
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Figure 12. Structure of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium salts)  

and poly(1-ethyl-3-methyl-4-vinylimidazolium salts) 
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Conclusions  

In this thesis work, three possible route for synthesis of 1-butyl-2,3-dimethyl-4-vinylimidazolium 

triflate were explored and the target monomer was successfully synthesized by the third route. The 

quaternized monomer, 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate was free-radically 

polymerized to yield poly(1-butyl-2,3-dimethyl-4-vinylimidazolium triflate), which had a Mn = 

39,637g/mol (PD = 1.75, in DMF) and an onset decomposition temperature of 440
o
C. 

The polymer was ion-exchanged with TFSI and PF6
-
 and the glass transition temperatures of the 

three polymers were measured by differential scanning calorimetry. 

Poly(1-butyl-2,3-dimethyl-4-vinylimidazolium hexafluorophosphate) exhibited the lowest onset 

glass transition temperature of 78
 o

C (heating cycle). As compared to 

1-ethyl-3-methyl-4-vinylimidazolium polymer salts, the glass transition temperature of 

poly(1-butyl-2,3-dimethyl-4-vinylimidazolium salts) did not vary significantly when ion-exchanged 

with anions of differing size.  
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