
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

6-2016

Android Malware Detection Using Category-Based Machine Android Malware Detection Using Category-Based Machine

Learning Classifiers Learning Classifiers

Huda Ali Alatwi
haa4070@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Alatwi, Huda Ali, "Android Malware Detection Using Category-Based Machine Learning Classifiers" (2016).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9069?utm_source=repository.rit.edu%2Ftheses%2F9069&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Rochester Institute of Technology

Masters Thesis

Android Malware Detection

Using Category-Based
Machine Learning Classifiers

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science in Computing Security

Supervised by

Tae Oh, Bill Stackpole, and Chaim Sanders

Department of Computing Security

B. Thomas Golisano College of Computing and Information Sciences

June 2016

Abstract

Android Malware Detection

Using Category-Based Machine Learning Classifiers

by Huda Ali Alatwi

Android malware growth has been increasing dramatically along with increasing the

diversity and complicity of their developing techniques. Machine learning techniques

are the current methods to model patterns of static features and dynamic behaviors

of Android malware. Whereas the accuracy rates of the machine learning classifiers

increase with increasing the quality of the features, we relate between the apps’ features

and the features that are needed to deliver its category’s functionality. Differently, our

classification approach defines legitimate static features for benign apps under a specific

category as opposite to identifying malicious patterns. We utilize the features of the

top rated apps in a specific category to train a malware detection classifier for that

given category. Android apps stores organize apps into different categories, for instance,

26 categories on Google Play Store. Each category has its distinct functionalities which

means the apps under a specific category are similar in their static and dynamic features.

In general, benign apps under a certain category tend to share a common set of features.

On the contrary, malicious apps tend to request abnormal features, less or more than

what is common for the category that they belong to. This study proposes category-

based machine learning classifiers to enhance the performance of classification models

at detecting malicious apps under a certain category. The intensive machine learning

experiments proved that category-based classifiers report a remarkable higher average

performance compared to non-category based.

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Preface 1

1.1 Introduction . 1

1.2 Motivations . 2

1.3 Scope . 3

1.4 Contribution . 3

1.5 Thesis Structure . 4

2 Background 5

2.1 Android Architecture . 6

2.2 Android Application Components . 8

2.3 Android Security Features . 8

2.4 Android Permission Model . 9

2.5 Android Permission Protection Level . 10

2.6 Android Malware . 11

3 Related Work 12

3.1 Static Analysis . 12

3.2 Dynamic Analysis . 15

4 Design & Methodology 17

4.1 Data Collection . 18

4.2 Reverse Engineering . 19

4.3 Features Parsing . 20

4.3.1 Permissions . 20

4.3.2 Broadcast Receivers . 22

4.3.3 APIs Classes . 23

4.4 Binary Vector Generation . 24

4.5 Features Selection . 25

4.6 Classification Models . 28

4.6.1 AdaBoost . 28

4.6.2 Support Vector Machines . 29

4.6.3 Random Forest . 30

ii

Contents iii

5 Experiments & Analysis Results 31

5.1 Experiments’ Environment . 32

5.2 Experiments’ Settings . 32

5.3 Evaluation Measurements . 32

5.4 Testing Apps from all categories with allCateg Classifiers 34

5.5 Testing Music Apps with musicCateg & allCateg Classifiers 36

5.5.1 Support Vectors Machine . 36

5.5.2 RandomForest . 36

5.5.3 AdaBoost . 36

5.6 Evaluating Performance of musicCateg & allCateg Classifiers 37

5.6.1 Proving Outperformance of Category-based Classifier ”musicCateg”
. 40

5.7 Testing Personalization Apps with personaCateg & allCateg Classifiers . . 41

5.7.1 Support Vector Machines . 41

5.7.2 RandomForest . 41

5.7.3 AdaBoost . 41

5.8 Evaluating Performance of personaCateg & allCateg Classifiers 42

5.8.1 Proving Outperformance of Category-based Classifier
”personaCateg” . 45

6 Conclusion 46

A Building Classification Models in -R- 48

Bibliography 52

List of Figures

2.1 Android’s Stack Structure . 7

2.2 AndroidManifest.xml file . 10

4.1 The framwork of the study . 18

4.2 Permissions Requested by Malware . 20

4.3 Top 10 Requested Permissions in ”allCateg” Dataset 21

4.4 Top 10 Requested Permissions in ”msicCateg” Dataset 21

4.5 Top 10 Requested Permissions in ”personaCateg” Dataset 22

4.6 Broadcasts Mechanism in Android . 22

4.7 Broadcasts Receivers requested by malicious apps 23

4.8 Top 10 Broadcast Receivers in ”allCateg” Dataset 23

4.9 Top 10 Broadcast Receivers in ”musicCateg” Dataset 24

4.10 APIs requested by malicious apps . 24

4.11 Top 10 Requested APIs in ”allCateg” Dataset 25

4.12 Top 10 Requested APIs in ”musicCateg” Dataset 25

4.13 Top 10 Requested APIs in ”personaCateg” Dataset 26

4.14 Apps’ Binary Vectors . 27

4.15 Features Selection Approaches . 27

4.16 AdaBoost . 28

4.17 Support Vector Machines . 29

4.18 Random Forests . 30

5.1 Accuracy of allCateg Classifiers . 34

5.2 Fmeasure allCateg Classifiers . 35

5.3 ROC curve for Testing all categories apps with allCateg-SVM classifier . . 35

5.4 Accuracy of ”musicCateg” &”allCateg” Classifiers 37

5.5 Fmeasure of musicCateg & allCateg Classifiers 37

5.6 ROC curve for Testing music apps with allCateg-SVM classifier 38

5.7 ROC curve for Testing music apps with allCateg-SVM classifier 38

5.8 t.test of F-measure of musicCateg-SVM & allCateg-SVM classifiers 39

5.9 t.test of F-measure of musicCateg-RF & allCateg-RF classifiers 39

5.10 t.test of F-measure of musicCateg-Ada & allCateg-Ada classifiers 39

5.11 Accuracy of ”personaCateg” &”allCateg” Classifiers 42

5.12 Fmeasure of ”personaCateg” &”allCateg” Classifiers 42

5.13 ROC curve for Testing personalization apps with allCateg-SVM classifier 43

5.14 ROC curve for Testing personalization apps with personaCateg-SVM clas-
sifier . 43

5.15 t.test of F-measure of personaCateg-SVM & allCateg-SVM classifiers . . . 44

iv

List of Figures v

5.16 t.test of F-measure of personaCateg-RF & allCateg-RF classifiers 44

5.17 t.test of F-measure of personaCateg-Ada & allCateg-Ada classifiers 44

List of Tables

2.1 Android Malware Families . 11

4.1 Datasets allCateg, musicCateg, personaCateg 19

4.2 Categories’ Descriptions . 19

4.3 Reverse Engineering Tools . 19

4.4 Numbers of Selected Features . 26

5.1 Experiments’ Environment . 32

5.2 Confusion Matrix . 33

5.3 Testing all categories app with allCateg classifiers 34

5.4 Testing music apps with musicCateg & allCateg SVM classifers 36

5.5 Testing music apps with musicCateg & allCateg RF classifiers 36

5.6 Testing music apps with musicCateg & allCateg adaBoost classifiers . . . 36

5.7 Testing personalization apps with personaCateg & allCateg SVM classifiers 41

5.8 Testing personalization apps with personaCateg & allCateg RF classifiers 41

5.9 Testing personalization apps with personaCateg & allCateg Ada classifiers 41

vi

Chapter 1

Preface

1.1 Introduction

According to International Data Corporation (IDC), Android OS is the most popular

smartphone platform with 82.2% of the market share of smartphones, while 13.9% for

iOS apple in the second quarter of 2015 [3]. Statistically speaking, it is also the first

targeted platform by malware authors seeking to take the control over millions of Android

smartphones over the world. Due to the popularity of Android’s smartphones, its apps’

security is a serious issue concerning 80% of smartphones users.

Android is an open source development environment that offers a rich SDK that

enables developers to deploy their own apps and distribute them through Android apps

centers. Android’s popularity is a result of being an open source, third-party distribution

centers, a rich SDK, and the popularity of Java as a programing language. Importantly,

due to this open environment, malaware authors can develop malicious apps that abuse

the features that the platform offers or pack a legitimate app with a piece of malicious

code; besides, exploiting vulnerabilities in the platform, hardware, or other installed

apps to lunch malicious behaviors. Mainly, malware authors seek access confidential

data of a device’s user, monetary benefits via premium SMS, or joining the device to a

botnet. Even legitimate apps introduce the risk of privacy-invading; Mcafee reported in

Q1 2014 that 82% of Android apps track user’s and 80% gather location data.

Research studies in the Android malware detection field work in three approaches

static, dynamic or hybrid. In static analysis, malware is disassembled into a source code

from where specific features are extracted. In dynamic analysis, malware is monitored

at run-time in a virtual environment. In the both approaches, machine learning algo-

rithms have been used to build classification models by training classifiers with datasets

1

Chapter 1. Preface 2

of mlaware features that collected from static or dynamic analysis. The learned clas-

sification models are then used to detect malicious apps and classify them into their

families.

In this study, we approach the problem differently by utilizing the features of be-

nign apps for malware detection. We relate between the features that the app requests

and the common features for its category. Android apps stores organize apps into dif-

ferent categories; for example, Google play store organizes apps in 26 categories such

as: ”Health & Fitness”, ”News & Magazine”, ”Books & References”, ”Music & Audio”,

etc. Each category has its distinct functionalities which means the apps under a certain

category share similar features. One group of these features are the permissions; per-

missions are the privileges that enable apps to access the system’s resources to perform

their functions. Each built-in permission is responsible for providing the capabilities to

execute a particular process. Apps belong to a specific category deliver the same func-

tionality as a result they require a common combination of permissions. For instance,

apps under ”Communication” category commonly request READ CONTACTS but it is un-

common if it is requested by apps under ”News & Magazines”. In general, benign apps

under a certain category tend to have a common set of features: permissions, intents

filters, hardware components, broadcast receivers, APIs, etc. On the contrary, mali-

cious apps tend to request abnormal features, less or more than what is common for the

category that they belong to. Repeatedly from that point of view, this study proposes

category-based machine learning classifiers to enhance the performance of classification

models at detecting malicious apps under a certain category. .

1.2 Motivations

Android malware growth has been increasing dramatically along with increasing of the

diversity and complicity of their developing techniques. According to F-Secure, a com-

puter security company, Android had the biggest share of smartphone malware by 97%

in 2014 [9]. Android global market share of smartphone industry is 78% which rep-

resents the biggest share among other smartphone platforms [3]. Statically speaking,

Android apps’ security concerns one billion of active users over the world [8]. Due to

the openness of Android environment, there is a remarkable increase in the number of

published Android apps. According to the statistics (staista), the number of available

apps to download in Google play stores was around 1,500,000 in 2014 [2].

Static analysis can report a high accuracy rate in detection malware; and it is rel-

atively cheap compared to dynamic analysis in terms of effort, time, and computational

resources. Machine learning algorithms are the current methods for detecting malware

Chapter 1. Preface 3

on Android. In the both approaches, static and dynamic, they are used to model pat-

terns of static features and dynamic behaviors of malware. Mostly, the researches focus

on training supervised machine learning classifiers to detect, classify the malware to a

known malware family, or using semi-supervised learning to discover a new one. In fact,

machine learning techniques can report remarkable accuracy rates at detecting malicious

apps depending on the quality of the features that used for training the classifiers e.g how

specific they are. Whereas the accuracy rates of the classifiers increase with increasing

the quality of the features, we relate between the apps’ features and the features that

are needed to deliver its category’s functionality to detect malicious patterns. In other

words, we train a malware detection classifier for each category, separately.

1.3 Scope

This study is a static analysis that uses the features that can be extracted from the

source codes of the apps’ .apk files. We parsed three group of features from each

apps in our datasets: permissions, broadcast receivers, and APIs. Whereas we pro-

pose category-based classifiers to improve the performance of the classification models

at detecting malicious apps under a certain category, we worked on two categories on

the Google Play Store ”Music & Audio” and ”Personalization”. We built three datasets

of apps features: apps from all categories (allCateg), apps from ”Music & Audio”

category (musicCateg), and apps from ”Personalization” category (personaCateg); in

each dataset the benign apps were downloaded from the top rated apps on the Google

Play Store while malicious apps from virushare. For each dataset, we trained three ma-

chine learning classifiers: Support Vector Machines, RandomForest, and AdaBootsM.

We tested the classifiers with two datasets of apps from ”Music & Audio” and ”Personal-

ization” categories. By evaluating the performance of the classifiers, the category-based

classifiers reported a higher performance by 3.5-4.5% compared to non-category based.

1.4 Contribution

Mostly, research studies in Android malware detection focus on identifying the features

of malicious apps by using machine learning techniques to recognize and model the

malicious patterns of static features and dynamic behaviors of malware. Up to our

knowledge, no researches have worked on relating between the apps’ features and the

features of benign to distinguish benign form malicious ones in the same category. Dif-

ferently, our classification approach defines legitimate static features for benign apps

under a specific category as opposite to identifying malicious patterns. We utilize the

Chapter 1. Preface 4

features of the top rated apps in a specific category to define a profile of the common sets

of features for that category. In other words, to detect whether or not the app posses the

characteristics of benign, we relate between the app’s features and the features that are

needed to deliver its category’s functionalities. Android stores organize apps into differ-

ent categories; 26 categories on the Google Play Store, for example. In each category, the

apps deliver a similar functionality as a result the they tend to request a common set of

features like same permissions, APIs, hardware components, broadcast receivers, intents

filters,..etc. On the contrary, malicious apps tend to have abnormal features, less or

more than what is common for the category that they belong to. Whereas the accuracy

rates of the classifiers increase with increasing the quality of the features, we propose

category-based classifiers to enhance the performance of machine learning algorithms at

detecting malicious apps under a given category.

1.5 Thesis Structure

The structure of this thesis is organized in six chapters. Chapter 2 shows a brief back-

ground about Android OS which includes architecture, security features, application

components, permissions model, and permissions protection levels. Chapter 3 presents

related work has been done in static and dynamic malware detection in Android environ-

ment. Chapter 4 shows the implementation of this study which covers the framework,

used tools, datasets, extracting features, selecting features using features selection algo-

rithms, and training machine learning classifiers. Chapter 5 demonstrates the results,

the significant findings, and performance evaluation of the classifiers. Chapter 6 con-

cludes the study work, emphasizes our findings, and suggests further potentials for future

work for our proposed approach in this study.

Chapter 2

Background

Android is an open-source operating system for mobile phones, tablets, TVs, cars, em-

bedded and wearable devices. It was built based on Linux kernel, developed by Google

and released on September 23, 2008 . As a result of the open environment of Android,

many companies and manufacturers uses it as a platform for their products. Besides,

this environment allows companies to customize the Android system to fit with their

devices needs. Android offers a friendly development environment through a variety

of tools: Android SDK, Android NDK, Android Debug Bridge (ADB), and Android

Developer Tools (Eclipse). Android Software Development Kit (SDK) is updated with

every release of a new version of Android; it provides comprehensive packages of Java

framework classes, libraries, and debuggers for programmers. Also, the SDK offers An-

droid Emulator which enables developers to run and test their apps on different virtual

devices that run different versions of Android OS. Secondly, Android Native Develop-

ment Kit (NDK) is a set of libraries written in C, C++, and other languages can be

loaded into Java code through System.loadLibrary call. Android Debug Bridge (ADB)

is a command line tool in a client-server form that consists of three components: client,

server, and daemon. The client runs on the development machine where the daemon

runs in the background on each emulator or device instance and the server manages

communication between the client and the daemon. ADB enables developers to test

their apps for bugs by connecting the device running the software to a PC and using

terminal commands. Finally, Eclipse is the official Integrated Development Environment

(IDE) to develop Android apps. It provides many features through GUI or command

lines; it allows programmers to develop their apps with different programming languages:

JAVA is widely used for Android apps, C, C++. Google Play Store is the official dis-

tribution center for Android Apps which are developed by Google or third-parties. It

allows Android users to browse, install, and update the apps. Over 50 billion apps

were downloaded by Android users from Google Play Store in 2013 . Unsurprisingly,

5

Chapter 2. Background 6

the open development environment of Android encourages the developers and even the

attackers to deploy their own applications. Android markets follow specific procedures

that aim to detect and remove malicious apps. For instance, Google Play Store uses

a tool called Bouncer that scans the uploaded apps and applies security measurements

before publishing. The Google Bouncer is a dynamic analysis technique that tests apps

by running them in virtual environments to monitor automatically the app’s behavior.

Even with the security measurements that Google takes, the attackers find their ways

to pass their malicious apps through the scanning system by using hiding techniques

such as encryption and heuristic evasion. Security researchers from Columbia Univer-

sity have exploited vulnerabilities in Google’s Bouncer system. The vulnerabilities allow

the attackers to pass the malware apps to the Android market [6]. The team found

that the examined dynamic and static analysis tools were vulnerable to repackaged and

heuristic evasion based malware. Indeed, Android malware detection is a significant

issue for security researchers; also, it is a serious challenge for Android users’ privacy.

The following sections briefly cover basics of Android OS which include its architecture,

security features, apps components, permissions model and permission protection levels.

2.1 Android Architecture

As can be seen in the Figure 2.1, the Android stack consists of four layers that manage

the whole system starting from hardware sensors to the user’s high-level apps. Each

layer provides specific services and groups of programs that run similar functions. The

first layer, the Linux Kernel layer is the most important layer and located at the bot-

tom; it represents the heart of Android system. It provides the OS services and manages

the hardware’s functions such as memory, power, drivers, network stack, security set-

tings, shared libraries and hardware abstraction. The second layer, the native library

layer, provides native libraries which are a set of instructions that manage data pro-

cessing. The native layer provides the open source libraries, such as surface manager,

media framework, SQLite, Webkit, OpenGL—ES, FreeType, and SSL. In short, those

libraries do the following jobs: Surface manager library is for composing windows on the

screen; media framework library is for processing input and output of video and audio

data; SQLite library is for database operations; Webkit is for supporting web browsers;

OpenGL—ES is for supporting high performance 2D and 3D graphics; FreeType is for

fonts support; SSL library is for providing services of SSL and TLS protocols. This

layer also provides the Android runtime libraries which include the core libraries and

the Dalvik VM. The Core libraries are a group of Java core libraries for developing An-

droid apps. The Dalvik VM is the virtual environment for sandboxing the apps where

they are isolated and run separately in a way for securing and optimizing resources’

Chapter 2. Background 7

uses. The third layer, the Application Framework Layer, includes the Android APIs.

The APIs are classes and interfaces for Android apps’ development. This layer interacts

with the running apps and manages the basic functions on the device. The most impor-

tant programs in this layer are activity manager, content provider, telephony manager,

location manager, and resources manager. Each manager is responsible for managing a

specific function. For example, the the activity manager controls life cycle of the apps.

The content provider manages sharing data between the apps. The telephony manager

provides sevices regarding voice calls. The resources manager regulates resources that

are needed for running the apps. Finally, the Application Layer which is the topmost

layer where the phone’s functions are provided to the end-user. The application layer

provide functionalities that include making calls, managing contacts, sending messages,

and browsing web. In this layer, Android provides a set of core applications, such as

email client, calendar, browser, maps, contacts, SMS program, gallery, and etc.

Figure 2.1: Android’s Stack Structure

Chapter 2. Background 8

2.2 Android Application Components

In the development phase, an Android application consists of two folders and one file:

Class, Resources and AndroidManifest.xml, respectively. The Class folder contains the

apps’ source codes; the Resources folder contains the app’s multimedia; AndroidMani-

fest.xml is the app’s configuration file that lists essential information about the app for

the Android system. The information that is listed in the AndroidManifest.xml file is

as follows: Java package name, the app’s components, hosted processes, permissions,

instrumentation classes, and other libraries. During the compiling phase, tboth folders

and the AndroidManifest.xml file are bundled together to generate the executable file

of the application in .apk format. The structure of Android application consists of four

components: Activity, Service, BroadCastReceiver, and ContentProvider [4]. All those

components are defined by the app’s developer in the AndroidManifest.xml file.

• Activity: defines the user interface is triggered by the user when he interacts with

app’s interface components such as: buttons, menus, icons, checkboxes, etc.

• Service: defines the background processes such as downloading a file or playing

music after closing the app UI. Any component can start a service by calling one

of the two methods:

– StartService(): The service continues running till explicitly stopped.

– BinService(): The service is bound to the component. It continues running

as long as the component is running and stops when the component stops.

• BroadCastReceiver: used by the app as a mailbox to receive and respond to the

broadcast messages (intent) of other apps or the system, such as the message is

sent by the system when the battery reaches a low limit.

• ContentProvider: used to store the app’s data and to share it with other apps; it

provides database functions of inserting, deleting, and querying.

2.3 Android Security Features

Android security aims to protect user’s data and phones’ hardware. system, and soft-

ware. The main foundations of the Android’s security are the following: relying on

Linux kernel, applications sandboxing, applications signing, and application-defined and

user-granted permissions. The Linux kernel is commonly trusted to be used in highly

sensitive-security environments. Due to its open environment, Linux security is con-

stantly enhanced by security specialists, developers who fix and patch security bugs,

Chapter 2. Background 9

and attackers who find vulnerabilities to be exploited. It also offers the ability to re-

move the unnecessary and insecure parts from the kernel. The apps sandboxing feature

isolates the apps’ processes and data from others under a unique UID. In the kernel,

Android gives each app a distinct Linux user ID at installation time. In other words,

each app has a constant unique UID for whole the duration of its life. The same app may

have a different UID on other devices what matters is that two different apps cannot be

assigned with one UID. Because each app has its own UID, they cannot run in the same

process instead they need to run separately under its UID. That isolates the running

process to secure apps from each other. Also, the data of any app is stored under its

UID and is inaccessible by the other apps. The application signing feature, requires that

any apps’ .apk file must be signed by the developer’s certificate to identify the app’s au-

thor. This feature enables the apps to share one UID if they were signed by the same

certificate. It also allows the system to grant or deny the signature-level permissions;

the system grants the signature-level permissions to the requested app, if it is signed

with the same certificate of other apps that declared the permissions. Finally, the per-

mission model that is adopted by Android protects the phone’s resources and functions

be making them accessible only to the apps that are granted with the appropriate priv-

ileges. By default, no apps have permissions to handle the phone’s hardware, software,

functions and data. The apps’ developers need to declare required permissions for the

app’s functionality. At installation time, the users need to grant requested permissions

otherwise the installation is terminated by the system. The next section illustrates the

Android permission model in more detail.

2.4 Android Permission Model

The permissions model is the main security concept that Android security relies on.

Android runs applications separately in sandboxes. Each app is run in an isolated en-

vironment where it has no access to the system’s resources. The permissions must be

given to the app to be able to access and use system resources that are required for its

functionality. All the permissions that must be declared in the AndroidManifest.xml

file by the developer in the development phase. These permissions also must be granted

by the system or the user at the installation time; once they are granted they could

not be changed unless the application is uninstalled by the user. The permissions can

be declared in one or more <permission>tags in the AndroidManifest.xml file; they

also must be defined with required and optional attributes. The <label>and <descrip-

tion>attributes are the strings that are displayed to the user at installation time. These

attributes must be clearly defined to help the user in understanding the privileges that

the permission indicates. The <permissionGroup>attribute is optional and used by

Chapter 2. Background 10

the system to display the category of the permission to the user. The <protection-

Level>attribute is required to identify the security level of the permission; it defines

the criticality of the app privileges. The figure below shows the DEADLY ACTIVITY

permission along with its attributes.

Figure 2.2: AndroidManifest.xml file

The permissions model uses the two <uses-permission>and <permission>tags to

govern apps’ access to the system resources and other app’s data, respectively. The

<uses-permission>tag defines the permissions that the app needs to access specific

data, hardware, software and other system resources. On the other hand, the <per-

mission>tag defines the permissions that other apps need to have access to the app’s

data and components. In other words, it defines how the app’s components can be

accessible by the other apps.

2.5 Android Permission Protection Level

Android has more than 130 built-in permissions; it also allows developers to declare

new permissions for their apps called dynamic permissions. The built-in permissions

are classified into four security levels: normal, dangerous, signature, and signature or

system.

• “normal”: a low risk permission that enables the app to access to the least critical

system resources; it is automatically granted by the system without notifying the

user.

• “dangerous”: a high risk permission that enables the app to access the user’s

private data and the phone’s hardware, system and software. The dangerous per-

mission is shown on the screen at installation time to the user who is responsible

Chapter 2. Background 11

for granting this kind of permission. The user has to grant the requested permis-

sions under his understanding and acceptance of the consequences, otherwise the

installation process is terminated by the system.

• “signature”: a permission granted by the system only if the app requests a per-

mission that is declared by another app and both apps are signed with the same

certificate. This permission is granted automatically by the system without noti-

fying the user if tboth apps have the same certificate.

• “signtureorsystem”: a permission granted by the system only if the apps are in the

Android system image or signed with the same certificate of the app that declared

the permission. This permission is granted automatically by the system without

notifying the user.

2.6 Android Malware

The table below briefly lists most common Android malware types and its characteristics

Type Definition Example

Trojan Masquerades as a benign app to hide its mali-
ciousness identity. It offers useful functionalities
to the user but performs malicious activities in
the background without knowledge of the user.

FakeNetFlix, Zsone,
Zitmo, Spitmo,
Fakeplayer,
Android.Foney,

Backdoor Enables remote access to the system and by-
passes system’s authentication mechanism. It
usually exploits vulnerabilities in the system to
take root’s privileges; it has ability to itself and
remain undetected.

Basebridge, KMin,
Obad.

Worm Copies and spreads itself over a network’s node
without need to be launched by a system’s user.

Android.Obad.OS

Bot Enables an attacker to remotely control the de-
vice from a server called Bot-master. The at-
tacker commands the system other infected ones
to launch an attack such as: DDoS.

Geinimi, Beanbot,
Anserverbot,

Spyware Sends user’s data such as: contacts, messages,
location, and other confidential data to a remote
server. and activities on the device and collects

Nickyspy, GPSSpy.

Adware Sends personalized advertisements based on a
user’s collected data such as location.

Plankton

Ransomware Locks the system to make it inaccessible until
some ransom is paid by the user.

FakeDefender

Table 2.1: Android Malware Families

Chapter 3

Related Work

In this chapter, we survey some research studies in detection malware in Android envi-

ronment. There are mainly two approaches are used to detect malware: static analysis

and dynamic analysis. Static analysis technique examines the app’s source code with-

out executing it to detect malicious patterns; the executable app is disassembled to the

source code files from where many features are extracted such as: permissions, hardware

components, broadcast receivers, APIs, intents, data flow, control flow, etc. On the other

hand, dynamic analysis examines the app in a run time environment and monitors the

app’s dynamic behavior and the system’s responses; dynamic features are monitored like

network connections, system calls, resources’ usage, etc. Commonly, in both approaches,

the data is collected to train machine learning classifiers to build a separation modeling

between benign and malicious characteristics of the apps. The following sections show

in details some research studies have been conducted in the both approaches.

3.1 Static Analysis

(Seo, Gupta, Sallam, Bertino, & Yim, 2014) proposed (DroidAnalyzer) that uses per-

missions, dangerous APIs and keywords associated with malicious behaviors to detect

potential malicious scripts in Android apps [26]. Lists of common malicious APIs and

keywords were collected by static analysis from a large dataset of Android malware.

These lists are used in the algorithm of DroidAnalyzer which depends on keywords

searching technique. The lists define suspicious keywords are used in malicious actions

such as root exploiting, leakage user private data, cost money through sending SMS or

calling premium numbers. Malware from different families were analyzed to build up

those lists of malicious and suspicious keywords, API, and commands. For instance,

the monetization malware usually contain sendsms() and ocalContentResolver2.delete()

12

Chapter 3. Related Work 13

APIs. In case of spyware, that gather user’s SMS, they contain APIs such as getMes-

sageBody(), getOriginatingAddress(), getDateTimeinstance(). The tool mainly takes

the app’s disassembled code as an input and infers the risky APIs and their suspicion

level as an output. The tool scans the apps’ code for matches with the lists; then, it

reports 4 suspicion levels: R, RS, S and C. The level R indicates surely rooting or root

exploit app. The level RS indicates a suspicious as rooting app or for rooted phones.

The level S indicates a suspicious malware without rooting exploit. The level C indicates

a safe app without suspicious APIs nor keywords.

(Arp, Spreitzenbarth, Hubner, Gascon, & Rieck, 2014) proposed (DERBIN) a

lightweight static analysis framework that extracts a set of features from the app’s An-

droidManifest.xml (hardware components, requested permissions, App components, and

filtered intents) and disassembled code (restricted API calls, used permissions, restricted

API calls, network addresses) to generate a joint vector space [11]. Support Vector Ma-

chines (SVM) was applied on the dataset to learn a separation between the two-classes

of apps (benign and malicious). The system was tested with 123,453 benign and 5,560

malware; it reported successfully 94% of the malware with a false positive rate of 1%.

The system also gives explanations to the user with identifying the suspicious properties

and the malicious patterns of the detected malware in meaningful descriptions.

(Wu, Mao, Wei, Lee, & Wu, 2012) proposed (Droidmat) that detects malware

through analyzing AndroidManifest.xml and tracing systems calls [29]. Droidmat de-

pends on static analysis of the apps’ permissions, components, intent messages, and

API calls. In the first, Droidmat extracts different features from the apps’ Android-

Manifest.xml such as: permissions and intention messages. Then, it marks the app’s

components: activity, service, and receiver as initial points to trace the API calls that

are related to the permissions. The features were collected are: permissions, components

(activity, receiver, and service), intents, and usage of the API calls with what kind of

components. Next, it applies K-means algorithm to model malware while the number

of clusters are determined by singular value decomposition (SVD).

(Sanz, Santos, Laorden, Ugarte-Pedrero, & Bringas, 2012) proposed a machine

learning method for automatic Android apps categorization and malware detection [25].

The method analyzes different sets of the apps’ features are extracted from the An-

droidManifest.xml file, the source code files (the frequency of occurrence of the printable

strings), and Android market (permissions, rating, and number of ratings).The machine

learning algorithms were applied: Decision Trees (DT), K-Nearest Neighbour (KNN),

Bayesian Networks (BN), Random Forest (RF) and Support Vector Machines (SVM).

For the results, BN was reported as the best classifier while RF as the second, and DT

as the worst.

Chapter 3. Related Work 14

(Sahs, & Khan, 2012) built up a system uses the extracted permissions and the

control flow graphs from benign apps to train one-class Support Vector Machines (SVM)

classifier [22]. The classifier was trained to give always positive for the trained data and a

negative for the tested data that is adequately different from the trained ones. The team

used kernels over binary vectors, strings, sets of features, non-standard permissions, and

apps. The Bit-vector classifies apps based on the requested permissions; it was able

to report all the malware but also reported falsely half of benginin as malicious. The

string kernel reported mostly all the sample as malware. On the other hand, the graph

kernel had a higher false positive rate (benign classified as malware) than true negative

(malware classified as benign) rate.

(Vidas, Christin, & Cranor, 2011) proposed Permission Check Tool to assist An-

droid developers in declaring the least privilege permissions that are required for the

app’s functionality [28] . The tool automatically analyzes the app’s code and derives the

minimum set of permissions that are needed to be run.

(Fuchs, Chaudhuri, & Foster, 2009) proposed (SCandroid) that analyzes data flow

in Java codes of Android apps by using a modular that traces data movement across

the app’s components [18]. The idea of SCandroid is based on the common structure of

basic components that the apps follow and intercommunication between them.

(Enck, Ongtang, & McDaniel, 2009) proposed (Kirin) that applies a set of pre-

defined security rules at installation time to detect any match between the app and

templates of malicious patterns [15]. Kirin declares a specific combination of permis-

sions could be dangerous and used to launch malicious actions. The system consists

of three components: installer, security service, and database of security rules. The

installer extracts the security configuration from the app’s AndroidManifest.xml file.

Next, the security service applies the security rules against the extracted configuration;

if there is a match then the app fails in passing validation process; in this case, the sys-

tem provides two choices either terminating the installation or providing the results of

analyzing the risk of granting the required permissions to the user to make his decision.

On the drawbacks side, Kirin functions only at installation time and doesn’t provide

any support at runtime. Also, it is limited to the available information in the package’s

AndroidManifest.xml file.

Chapter 3. Related Work 15

3.2 Dynamic Analysis

(Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012) proposed Artificial Neural Networks

(ANNs)-based system to detect unknown Android malware through analyzing the apps’

permissions and system calls [27]. Two types of ANN were used: Feedforward Neural

Networks (FNN) and Recurrent Neural Networks (RNNs). The Feedforward Neural

Networks were used for training the model with the requested permissions to build dis-

tinguishable patterns between goodware and malware. The Recurrent Neural Networks

(RNNs) were used for training the model with the system calls of the benign apps’

execution behaviors.

(Zhou, Wang, Zhou, & Jiang, 2011) proposed (DroidRanger) to detect known and

unknown malware using two approaches: permission-based and heuristics-based [31].

DroidRanger basically consists of two engines: footprint-based and heuristic-based. The

footprint-based detection engine uses permission-based filtering and behavioral footprint

matching to detect known malware. While, the heuristic-based engine is used to detect

zero-day malware. The permission-based filtering filters out the apps that do not request

malicious permissions that are essential for malware’s functionality. After that, the

behavioral footprint matching tries to matches between the app and other malware’s

behaviors could be found in the AndroidManifest.xml, byte code, APIs, and structural

layout of the application. On the other hand, the heuristics-based filtering monitors

automatically specific malicious actions such as: dynamic loading for a new code or

native Linux system calls; it also analyzes the logged system calls to detect malicious

behaviors.

(Ongtang, McLaughlin, Enck, & McDaniel, 2009) proposed Secure Application In-

teraction (SAINT), an infrastructure to control granting the permissions to the app at

the install-time [15]. Also, SAINT controls how the app uses the permissions at run-

time for interaction with other interfaces of other apps, PKI, and the Android system.

The SAINT was proposed as an extended policy infrastructure for the Android’s poli-

cies. SAINT works by applying three groups of policies: install-time policy, run-time

policy, and administrative policy. At installation time, SAINT’s installer extracts the

requested permissions from the app’s AndroidManifest.xml; then, it inquiries the App-

Policy provider for each permission to match it with a set of predefined rules. Then,

the AppPolicy returns the decision of proceeding the installation or terminating it. The

SAINT’s install-time policy consists of three components: label, owner, and conditions;

the label declares the permission to be granted; the owner declares the app that requests

the permission; the conditions are a set of checks are applied on the app’s attributes.

At run-time, SAINT allows IPCs between the apps when both the caller and the callee

are passed the checking process by AppPolicy provider: if the conditions of IPC are

Chapter 3. Related Work 16

not satisfied, it is blocked otherwise the IPC is directed to the Android permission

checks which allows IPC to continue based on the Android’s policy. SAINT applies

two types of policies at run-time: access policy and expose policy. The access policy

governs applying the security measurements on the caller that initiates the IPC and

the IPC. While, the expose policy governs applying the security measurements on the

callee which receives the IPC. SAINT’s architecture consists of three components: in-

staller, mediator, and AppPolicy Provider. The SAINT’s installer is a modified version

of the Android’s installer that parses the package to extract its configurations to be

examined by the run-time policy. The SAINT’s policy is implemented in xml format

to match with the app’s AndroidManifest.xml: the installer matches between the app’

configurations and its corresponding permission-granting policy that are retrieved from

the AppPolicy provider: if there is no conflict the app’s installation is processed, other-

wise it is terminated. The SAINT’s mediator enforces the runtime policy and governs

interaction between the components such as: starting a new activity, accessing content

providers, binding components to services and receiving broadcast intents. The App-

Policy Provider is a SQLite database where the install-time and run-time policies are

stored; the AppPolicy Provider’s datbase is stored in the system directory/data/system.

Many tools of dynamic detection use various techniques and features to detect ma-

licious apps; Virusmeter measures high power consumption [21], pB-MDS uses a user’s

inputs and system calls [30], Crowdroid applies k-means on vectors of the system’s calls

[13], AntiMalDroid applies SVM algorithm on vectors of logged behavior sequences [31].

AppInspector and TaintDroid track the flow of sensitive data between third-party apps

[14]. A host-based malware system monitors: CPU consumption, number of sent packets

through the Wi-Fi, number of running processes, Keyboard/Touch-screen pressing and

Application startup [27].

Chapter 4

Design & Methodology

In this chapter, we discuss the methodology of this study which covers the framework,

the apps sample, reverse engineering the apps, extracting and preprocessing features,

selecting the best subset of features using features selection algorithms, and building the

classification models.

This study lays out detection Android malware as a machine learning problem. As

a result, the work flow of this study can be basically divided into two distinct phases:

training phase and classification phase. In the training phase, a set of features (Per-

missions, Broadcast Receivers, API Classes) are parsed from the source codes of a large

sample of malware and benign apps; the extracted features are represented in a binary

vector format; the features then are filtered with using attribute selection algorithms

to end up with the best subset of the most significant and relevant features that define

the characteristics of goodness or maliciousness of the apps; three machine learning al-

gorithms (Support Vector Machines, Random Forests, and Adaboost) are trained with

the datasets to build classification models. In the classification phase, the same set of

features are extracted from a sample of benign and malware to be tested and classified

by the learned models from the training phase.

This study as mentioned before aims to enhance the performance of machine learn-

ing classifiers by relating between apps’ features and the category that they belong to.

Good applications under a specific category tend to have a common set of features while

the malicious apps tend to have abnormal, less, or more features compared to the good

apps in the same category. To achieve the goal of this study, we use machine learn-

ing algorithms to train and build three groups of classification models: (allCateg),

(musicCateg), and (personaCateg). The (allCateg) classifiers are trained with the

features of the top rated apps on Google Play Store and malware from all categories.

The (musicCateg) classifiers are trained with the features of the top rated apps on

17

Chapter 4. Design & Methodology 18

Google Play Store and malware from ”Music & Audio” category. The (personaCateg)

classifiers are trained with the features of the top rated apps on Google Play Store and

malware from ”Personalization” category.

Figure 4.1: The framwork of the study

The framework of this study, as shown in the above figure, consists of six compo-

nents. The first component is a module to reverse engineer the apk files into source code

in forms of AndroidManiFest.xml and java classes. The second component is a module

to parse three group of features: permissions, broadcast receivers, and APIs. The third

module is to transform the extracted features from each app into a binary vector that

can be applicable for machine learning algorithms; each app is represented as a single

instance with binary vector of features and a class label indicates whether the app is

benign or malicious. The last component is modeling the classifiers by training three

machine learning algorithms: Support Vector machines, Random Forests and Adaboost

with the binary vectors of the apps in our sample. The learned models are used to detect

whether a given app is malicious or benign. The next follow sections explain in details

the implementation of this study which cover the datasets, the used tools, the features

of our main interest, and the machine learning algorithms.

4.1 Data Collection

For the first part of the study which is building classification models for apps from all

categories, we train the models with features of 4063 malicious apps and the top 1000

rated apps from all the 26 categories on Google Play Store.

The second part of our study mainly focuses on relating between the app’s features

and a common set of features for the category that belongs to. In this study, we chose

to work on two categories of apps: “Music and Audio” and ”Personalization”. The

Chapter 4. Design & Methodology 19

All Categories Music & Audio Personalization
Benign 1000 854 732
Malware 4063 1336 942
Total 5063 1990 1674

Table 4.1: Datasets allCateg, musicCateg, personaCateg

data is collected from each dataset, separately to train two groups of malware detec-

tion classifiers one for music apps and the another one for personalization apps. The

(musicCateg) dataset contains 855 apps from the top rated apps from “Music & Audio”

category on the Google Play store and 1136 malicious apps from the same category. The

(personaCateg) dataset contains 732 apps from the top rated apps from “Personaliza-

tion” category on the Google Play store and 942 malicious apps from the same category,

as well.

Category Description Sub-Categories
Music & Audio Apps enable the user to play audio files, mu-

sical instruments, or listen to radio
Radio, Tuners, chords & scores, Live music &
event tickets, Karaoke, singing & lyrics, Gui-
tar, Audio & podcasts.

Personalization Apps enable the user to customize the device
or enjoy some of its features.

Home screen customization, Emojis, themes,
smileys, Live wallpapers, Ringtone makers,
Weather widgets.

Table 4.2: Categories’ Descriptions

4.2 Reverse Engineering

The apps’ ”apk” files were decompiled into their source codes from where specific group

of features were parsed into a corresponding profile for each app. This process was

automated by scripting and integrating multiple reverse engineering tools in Santoku,

a customized Linux system for mobile security, to transform the .apk files into source

codes in formats of AndroidMainfest.xml and .java files. The table below shows the

tools were used in the Reverse Engineering phase.

Tool Use
APKTool Decodes .apk files into nearly the original forms (.xml, .png, .dex).
dex2jar Converts .dex files into .jar files.
jd Converts .jar files into .java files.

Table 4.3: Reverse Engineering Tools

Chapter 4. Design & Methodology 20

4.3 Features Parsing

Malware detection using data mining techniques require feeding machine learning algo-

rithms with a dataset of instances and variables to learn patterns and build classification

models. The features (Permissions, Broadcast Receivers, APIs) are parsed from

the source codes by a python module; the extracted features are used to construct a

binary vector for each app in our sample. If a specific feature, like READ PHONE STATE

permission, is requested by the app, it represented by 1 in its binary vector while it

is represented by 0 if it is not requested. The next sections explain the investigated

features.

4.3.1 Permissions

Figure 4.2: Permissions Requested by Malware

The Android system runs apps in sandboxes on the virtual environment(Davik

VM) where apps are isolated from direct interfering with the system’s resources and

other apps’. Android regulates apps access to the resources of hardware, OS, and other

installed apps through the Permissions model; the apps need to be granted with the

appropriate permissions to perform any kind of privileged processes on the system. The

app’s developer needs to declare the required permissions for the app in the AndroidMan-

ifest.xml file; and the user needs at installation time to grant the requested permissions

to proceed installation or otherwise the installation process is terminated.

The permissions are the most important and common features that have been used

in detecting malware in the Android environment. We here also considered them as long

as other groups of static features. Many studies in the field have worked on building

Chapter 4. Design & Methodology 21

models of permissions that are requested by malicious apps to define sets of permissions

that if they are granted that enable apps to launch malicious activities. In our study,

we relate between the permissions that are requested by an app and a common set of

permissions for the category that the app belongs to by training classification models

with the permissions of the top rated apps in the same category. Undoubtedly, that

the functionalities of a specific category require a set of permissions while if the app

requests uncommon or overprivileged permissions compared to the benign apps in the

same category that can indicate a malicious intention.

Figure 4.3: Top 10 Requested Permissions in ”allCateg” Dataset

Figure 4.4: Top 10 Requested Permissions in ”msicCateg” Dataset

Chapter 4. Design & Methodology 22

Figure 4.5: Top 10 Requested Permissions in ”personaCateg” Dataset

Figure 4.6: Broadcasts Mechanism in Android

4.3.2 Broadcast Receivers

Android allows apps to interact with the system and other apps by sending and lis-

tening to broadcasts that are sent across the system and the installed apps. An-

droid announces systems events in broadcast messages that can be received by other

apps that listen to specific kind of events such as (BOOT COMPLETED, SMS RECEIVED,

Chapter 4. Design & Methodology 23

CONNECTIVITY CHANGE, etc...). Apps also can send broadcasts to other apps to trigger

some actions such as an app needs to open a web page so any installed web browser can

response. Broadcast receivers can be registered statically in the AndroidManifest.xml

file or dynamically in the code. In our study, we mainly focus on the broadcast receivers

that listen to the Android system events. We relate between the app’s broadcast re-

ceivers and the Android broadcast events that the top rated apps in the same category

they listen to.

Figure 4.7: Broadcasts Receivers requested by malicious apps

Figure 4.8: Top 10 Broadcast Receivers in ”allCateg” Dataset

4.3.3 APIs Classes

APIs are classes and interferes that enable apps to interact and lunch functionalities of

the underlying Android system. Android platform provides a hierarchical structure of

classes based on the targeted version of the Android system which specified by the API

level. The framework API level 23 provides a core set of 232 packages and hundreds of

classes and interfaces. We use the APIs as features to identify the processes that the

app wants to execute; malicious apps call sensitive APIs that enable lunching malicious

Chapter 4. Design & Methodology 24

Figure 4.9: Top 10 Broadcast Receivers in ”musicCateg” Dataset

activities such as loading external jar files by calling loadClass() or collecting device’s

info by calling getDeviceId(). Apps are under a certain category call a certain set of

APIs that are needed for providing the category’s functionalities. We relate between the

APIs requested by the app’s and the common set of APIs that requested by the benign

apps in the same category.

Figure 4.10: APIs requested by malicious apps

4.4 Binary Vector Generation

Each app in the sample was represented as a single instance with binary vector of features

and a class label indicates whether the app is benign or malicious. The figure 4.14 shows

the instances of the dataset; if the feature is present in the app it is represented by 1, if

it is not present in the app, it is represented by 0.

Chapter 4. Design & Methodology 25

Figure 4.11: Top 10 Requested APIs in ”allCateg” Dataset

Figure 4.12: Top 10 Requested APIs in ”musicCateg” Dataset

4.5 Features Selection

This step aims to reduce the high-dimensional of the variables space in the datasets by

identifying subsets of features that are the best predictors for the class labels. Generally,

features selection enhances the generalization of the learned models by reducing over-

fitting, increases the classification accuracy, and reduces the training and classification

times, produces simplified interpreted models. Typically, features selection techniques

are divided into three main approaches: filters, wrappers, and embedded. Wrappers

firstly search the variables space for subsets of features and then they evaluate the

selected features by applying the machine learning algorithms. Filters use statistical

Chapter 4. Design & Methodology 26

Figure 4.13: Top 10 Requested APIs in ”personaCateg” Dataset

analysis to rank each feature based on the statistical properties of the dataset; the

features then kept or filtered out based on their score; the drawback of this technique

that features are selected without involving the machine learning algorithm in the process

of selecting the features. Embedded techniques selects and builds learned models at the

same time, one example of this technique is Random Forests algorithm.

Before applying features selection algorithms, we cleaned the datasets; the features

are provided by the Android platform were the most important for our consideration

in filtering out or keeping a certain set of features for applying the features selection

algorithms. For each machine learning algorithm, we used different features selection

algorithm.

Groups of Features All Categories Music & Audio Personalization
Permissions 142 57 56
Broadcast Receivers 136 84 92
APIs Classes 2497 2284 1767

Table 4.4: Numbers of Selected Features

Chapter 4. Design & Methodology 27

Figure 4.14: Apps’ Binary Vectors

Figure 4.15: Features Selection Approaches

Chapter 4. Design & Methodology 28

4.6 Classification Models

4.6.1 AdaBoost

Adaboost, short for ”adaptive Boosting”, is an ensemble technique and a metaheuristic

machine learning algorithm. It is used conjointly with other machine learning algorithms

to boost their performance. The algorithm sequentially builds a model based on the

errors of previous models by learning a simple classifier and focusing on getting the

misclassified data points to be classified correctly in the next round. Weak classifiers

like decision trees are used to explore the data points and train a model for the easy

to be predicted points, Adaboost then works to get the misclassified data points to

be classified correctly by giving them higher weights. The errors of the early experts

indicate the hard to be predicated data points. Adaboost improves weak learners and

converts them from simple into complex classifiers. Adaboost is prone to overfitting

because of its sensitivity to noisy data, but in some problems it can be less susceptible

to overfitting compared to other classifiers. It is an efficient classifier for very high

dimensional variables space problems; it selects the predictors features and discards the

irreverent ones which increases the accuracy of the learned model.

Figure 4.16: AdaBoost

Chapter 4. Design & Methodology 29

4.6.2 Support Vector Machines

Support Vector Machines (SVM) and also called Support Vector Networks (SVN) are

supervised machine learning methods to analyze, detect and match patterns of data for

classification and regression purposes. SVM is a non-probabilistic binary linear classifier

that assigns training data into one category or more. It also can be used efficiently for

nonlinear classification problems using Kernel Trick. Kernel Trick is a class of SVM

algorithms that maps the input features into a very high dimensional output space in

a simple and cheaper computational way. SVM is a representation of training data as

points in the space that conglomerate based on their category in form of groups that are

separated by a clear distinct gap called a hyperplane. In the training phase, SVM builds

up a model of patterns from the training data which is used as a space for classification

phase. In the classification phase, the new input points are mapped into the trained

space and categorized based on which side of the gap they fall on. In the figure below a

straight line separates between two classes, the new data are mapped into the space if

they up the line will be categorized into otherwise into. Hyperplane is a subspace less by

one dimension than its ambient space; it is 2-dimensions in 3D space, and a 1-dimension

in 2D space. SVM forms a hyperplane or set of hyperplanes for data classification and

regression. For more confidence and less generalization error, the hyperplane must be

selected by functional margin that makes the distance between the nearest training data

points in any class as much larger as possible. We selected SVM because its resistance

to over-fitting even in the very high dimensional variables space like our datasets. SVM

is the best choice for binary classification problems like ours.

Figure 4.17: Support Vector Machines

Chapter 4. Design & Methodology 30

4.6.3 Random Forest

Random forest is an ensemble algorithm that constructs a collection of decorrelated

decision trees. The algorithm uses bagging technique to sample the randomly the in-

stances and features, and then learns a decision tree classifier for each subset of the

data. The algorithm grows number of classification trees, for a new input vector to be

classified the algorithm puts the input vector down in each classification tree. Each tree

gives a prediction class for the input vector, the algorithm decides the class label based

on the majority of the votes from all the decisions trees. Random Forests by selecting

repeatedly a random subset of features and data, they increase the generalization of the

classification models and decrease over-fitting. So, compared to other algorithms, they

build high accurate, robust and reliable classification models. They also work efficiently

with very large instances and high dimensional features spaces. They learn models and

select the best features at the same time; they estimate the importance of the features

at training time, in each round the algorithm dominates the most important features

that can split the data points into classes to be the root and in the highest levels of the

tree while the least important become the leaves of the tree.

Figure 4.18: Random Forests

Chapter 5

Experiments & Analysis Results

In this chapter, we discuss the results of the experiments, evaluate the performance of

the classification models, and demonstrate our findings. The first section explains the

terminology of the metrics that we used in measuring the performance of the classifiers.

The second section shows the results of testing three datasets: apps from all cate-

gories with allCateg classifiers, apps from ”Music & Audio” category with allCateg

and musicCateg classifers, respectively and apps from ”Personalization” category with

allCateg and personaCateg classifiers, as well. In the last section, we compare the per-

formance of the non-category and the category-based classifiers at detecting malicious

and benign apps from the two categories: ”Music & Audio” and ”Personalization”.

This study aims to improve the performance of the classification models by enhanc-

ing the quality of the selected features for training the classifiers. Each category has

a distinct functionality from another one; benign apps under a certain category have

a common set of features; in contrast, malicious apps tend to request abnormal, less,

or more features compared to benign apps in the same category. To detect malicious

apps, we relate between the apps’ features and the features that are needed to deliver

the category’s functionality that the app belongs to. To achieve this goal, we prepared

three datasets that contain binary vectors of benign and malicious features of: apps

from all categories (allCateg), apps from ”Music & Audio” category (musicCateg),

and apps from ”Personalization” category (personaCateg). In the training phase, for

each dataset, we built three classification models using: Support Vector Machines, Ran-

dom Forests, and adaBoost. The classifiers were trained with three groups of features:

permissions, broadcast receivers, and APIs. In the testing phase, to validate our ap-

proach, music apps were tested with allCateg and musicCateg classifers, respectively

and personalization apps were tested with allCateg and personaCateg classifiers, as

well. The experiments were repeated 50 times and in each round all the three datasets

31

Chapter 5. Experiments & Analysis Results 32

were shuffled randomly where 70% of the dataset was used for training and 30% for

testing.

5.1 Experiments’ Environment

Due to the large number of the datasets’ instances and its high-dimensional features

space that require powerful computational resources for applying variety of machine

learning algorithms, we did carry out our experiments on a virtual machine on AWS

with the characteristics that are shown in the table below.

vCPUs 2 vCPUs, 2.5 GHz, Intel Xeon Family
Memory 16 GiB
OS Ubuntu
Data Mining Tool Rstudio

Table 5.1: Experiments’ Environment

5.2 Experiments’ Settings

For the three datasets: allCateg, musicCateg and personaCateg, 70% of the dataset

was used for training the classifier, and 30% used was for testing. The datasets were

randomly shuffled in each round of the 50 iterations that we used to average the perfor-

mance of the classifiers. The R code of implementing the experiments is shown in the

Appendix A.

5.3 Evaluation Measurements

In order to evaluate the performance of the classification models, we used the metrics

as the following:

• Accuracy: The proportion of the total number of the apps that are correctly

classified whether as benign or malicious.

Accuracy =
tp+ tn

tp+ tn+ fp+ fn

• Precision: The proportion of the actual malicious apps are correctly classified to

the total of all apps that are classified as malicious.

Precision =
tp

tp+ fp

Chapter 5. Experiments & Analysis Results 33

• Recall: The proportion of the malicious apps that are classified correctly to the

total number of the malicious that are classified correctly as malicious or incorrectly

as benign.

Recall =
tp

tp+ fn

• F-Measure: The harmonic mean of precision and recall. This value tells how

much the model is discriminative.

F-Measure = 2 · precision · recall

precision + recall

• ROC Area: The probability that a given malicious app will be correctly classi-

fied as malicious is higher than classified as benign. This metric is calculated by

combining FPR and TPR. Generally, the higher the ROC value is, the higher

accurate predictions that the classification model gives.

• Confusion Matrix: shows the number of the apps that are classified correctly

(the prediction class value matches the actual class value) or incorrectly (the pre-

diction class value doesn’t match the actual class value). In our experiment, the

malicious apps are labeled as positive while the benign apps as negative. The

matrix confusion shows the detection results in 4 terms:

– True Positive (TP): The number of the malicious apps that are correctly

classified as malicious.

– False Negative (FN): The number of the malicious apps that are incorrectly

classified as not malicious (benign)

– True Negative (TN): The number of the benign apps that are correctly

classified as not malicious (benign).

– False Positive (FP): The number of the benign apps that are incorrectly

classified as malicious.

Predicated as (Malicuios) Predicated as (Benign)
Actual (Malicious) True Positive False Negative
Actual (Benign) False Positive True Negative

Table 5.2: Confusion Matrix

The next sections show the average performance of 50 iterations of testing the

learned classifiers. In each round, the datasets were randomly shuffled: 70% for training

and 30% for testing the classifier.

Chapter 5. Experiments & Analysis Results 34

5.4 Testing Apps from all categories with allCateg Classi-

fiers

Metric allCateg-SVM allCateg-RF allCateg-AdaBoost
Accuracy 0.9903 0.9881 0.9743
Precision 0.9799 0.9967 0.9762
F-Measure 0.9707 0.9631 0.9179
Recall 0.9671 0.9318 0.8674
FPR 0.0039 0.0005 0.0043
TPR 0.9671 0.9318 0.8674
FNR 0.0382 0.0681 0.1325
TNR 0.9960 0.9994 0.9956
Specificity 0.9960 0.9994 0.9956
Sensitivity 0.9617 0.9318 0.8674

Table 5.3: Testing all categories app with allCateg classifiers

Table 5.3 shows the average performance of testing a random dataset of apps from

all categories over 50 iterations with three classifiers: Support Vector Machines, Random

Forests, and Adaboost.

Figure 5.1: Accuracy of allCateg Classifiers

Figure 5.1 shows the variation of the classifiers’ accuracy over 50 iterations of shuf-

fling the dataset randomly for training and testing. As can be seen, the allCateg-SVM

classifier reports the highest average accuracy, allCateg-RF as the second, and lastly

allCateg-Ada. The classifiers report average accuracy as following: 0.9903, 0.9881,

0.9743 for SVM, RF, and Ada, respectively.

Chapter 5. Experiments & Analysis Results 35

Figure 5.2: Fmeasure allCateg Classifiers

Figure 5.2 shows the variation of the classifiers’ F-Measure over 50 iterations of shuf-

fling the dataset randomly for training and testing. As can be seen, the allCateg-SVM

classifier reports the highest average F-Measure, allCateg-RF as the second, and lastly

allCateg-Ada. The classifiers report average F-Measure as following: 0.9707, 0.9631,

0.9179 for SVM, RF, and Ada, respectively.

Figure 5.3: ROC curve for Testing all categories apps with allCateg-SVM classifier

Figure 5.3 shows that the Area under the ROC curve for the allCateg-SVM model

on allCateg.csv [test] is 0.9989.

Chapter 5. Experiments & Analysis Results 36

5.5 Testing Music Apps with musicCateg & allCateg Clas-

sifiers

5.5.1 Support Vectors Machine

Metric musicCateg-SVM allCateg-SVM
Accuracy 0.9872 0.9458
Precision 0.9777 1
F-Measure 0.9886 0.9547
Recall 0.9999 0.9134
FPR 0.0286 0
TPR 0.9999 0.9134
FNR 0.0002 0.0865
TNR 0.9713 1
Specificity 0.9713 1
Sensitivity 0.9999 0.9134

Table 5.4: Testing music apps with musicCateg & allCateg SVM classifers

5.5.2 RandomForest

Metric musicCateg-RF allCateg-RF
Accuracy 0.9899 0.9754
Precision 0.9855 0.9994
F-Measure 0.9911 0.9789
Recall 0.9968 0.9593
FPR 0.0187 0.0008
TPR 0.9968 0.9593
FNR 0.0031 0.0406
TNR 0.9812 0.9991
Specificity 0.9812 0.9991
Sensitivity 0.9968 0.9593

Table 5.5: Testing music apps with musicCateg & allCateg RF classifiers

5.5.3 AdaBoost

Metric musicCateg-ada allCateg-ada
Accuracy 0.9925 0.9852
Precision 0.9895 0.9997
F-Measure 0.9933 0.9872
Recall 0.9972 0.9751
FPR 0.0136 0.0003
TPR 0.9972 0.9751
FNR 0.0027 0.0248
TNR 0.9863 0.9996
Specificity 0.9863 0.9996
Sensitivity 0.9972 0.9751

Table 5.6: Testing music apps with musicCateg & allCateg adaBoost classifiers

Chapter 5. Experiments & Analysis Results 37

5.6 Evaluating Performance of musicCateg & allCateg Clas-

sifiers

Figure 5.4: Accuracy of ”musicCateg” &”allCateg” Classifiers

Figure 5.4 shows the variation of the classifiers’ accuracy over 50 iterations of

shuffling the datasets randomly for training and testing. As can be seen, the musicCateg

classifiers report average accuracy higher than allCateg classifiers at detecting malicious

and benign apps in ”Music & Audio” Category. The musicCateg classifiers report

average accuracy 0.9872, 0.9891, and 0.9934 for SVM, RF, and Ada, respectively. While

the allCateg classifiers report average accuracy as following: 0.9458, 0.9795, and 0.9852.

Figure 5.5: Fmeasure of musicCateg & allCateg Classifiers

Chapter 5. Experiments & Analysis Results 38

Figure 5.5 shows the variation of the classifiers’ F-Measure over 50 iterations. As

can be seen, the musicCateg classifiers report average F-Measure higher than allCateg

classifiers. The musicCateg classifiers report average F-measure 0.9886, 0.9904, and

0.9925 for SVM, RF, and Ada, respectively. While allCateg classifiers report average

accuracy as following: 0.9547, 0.9761, and 0.9872.

The boxplots of accuracy and f-measure of the classifiers in Figure 5.5 and Fig-

ure 5.4 show noticeable differences in the average performance of category-based ”mu-

sicCateg” and non-Category based ”allCateg” classifiers at detecting malicious music

apps. Notably, Support Vector Machines reports huge variations in accuracy and f-

measure between ”musicCateg” and ”allCateg”.

Figure 5.6: ROC curve for Testing music apps with allCateg-SVM classifier

Figure 5.6 shows that the area under the ROC curve for the ksvm model on mu-

sicAgainstAllCateg.csv is 0.9968.

Figure 5.7: ROC curve for Testing music apps with allCateg-SVM classifier

Figure 5.7 shows that the area under the ROC curve for the ksvm model on music-

Categ.csv is 0.9997 which bigger than the AUC of testing music apps with the allCateg-

SVM classifier.

Chapter 5. Experiments & Analysis Results 39

Figure 5.8: t.test of F-measure of musicCateg-SVM & allCateg-SVM classifiers

Figure 5.8 shows that T.test function produces 3.39% a mean of the differences

which indicates that musicCateg-SVM outperforms allCateg-SVM at detecting malicious

apps in ”Music & Audio” category.

Figure 5.9: t.test of F-measure of musicCateg-RF & allCateg-RF classifiers

Figure 5.9 shows that T.test function produces 1.08% a mean of the differences

between musicCateg-RF and allCateg-RF.

Figure 5.10: t.test of F-measure of musicCateg-Ada & allCateg-Ada classifiers

Figure 5.10 shows that T.test function produces 0.61% a mean of the differences

between musicCateg-Ada and allCateg-Ada.

Chapter 5. Experiments & Analysis Results 40

5.6.1 Proving Outperformance of Category-based Classifier ”music-

Categ”

Null Hypothesis: There are no significance differences between the classifiers’ perfor-

mance of category-based musicCateg and non-category allCateg at detecting malicious

and benign in ”Music & Audio” category.

Alternative Hypothesis: There are significance differences between the classi-

fiers’ performance of category-based musicCateg and non-category allCateg at detect-

ing malicious and benign in ”Music & Audio” category.

H0 : µFmeasure
musicCateg ≤ µFmeasure

allCateg

Ha : µFmeasure
musicCateg > µFmeasure

allCateg

50 replication of calculations of F-measures under both conditions on the same

replicate of dataset.

Hence: the use of a Paired t.test and from the boxplots in Figure 5.5, our assump-

tion gaussianity is clearly plausible.

Empirically: µFmeasure
musicCateg − µFmeasure

allCateg = 3.4%

Informally, µFmeasure
musicCateg > µFmeasure

allCateg

Theoretical by inference:

p− value ' 0 rejects H0, concludes Ha :µFmeasure
musicCateg > µFmeasure

allCateg

µFmeasure
musicCateg − µFmeasure

allCateg ε [3.25, ∞]

LB95%(µFmeasure
musicCateg − µFmeasure

allCateg) = 3.25%

Chapter 5. Experiments & Analysis Results 41

5.7 Testing Personalization Apps with personaCateg & all-

Categ Classifiers

5.7.1 Support Vector Machines

Metric personaCateg-SVM allCateg-SVM
Accuracy 0.9855 0.8947
Precision 0.9833 1
F-Measure 0.9736 0.9318
Recall 0.9651 0.8726
FPR 0.0006 0
TPR 0.9651 0.8726
FNR 0.0348 0.1273
TNR 0.9934 1
Specificity 0.9934 1
Sensitivity 0.9651 0.8726

Table 5.7: Testing personalization apps with personaCateg & allCateg SVM classifiers

5.7.2 RandomForest

Metric personaCateg-RF allCateg-RF
Accuracy 0.9424 0.8749
Precision 0.9552 08642
F-Measure 0.9603 0.9190
Recall 0.9661 0.9845
FPR 0.1188 0.4072
TPR 0.9661 0.9845
FNR 0.0338 0.0157
TNR 0.8811 0.5927
Specificity 0.8811 0.5927
Sensitivity 0.9661 0.9845

Table 5.8: Testing personalization apps with personaCateg & allCateg RF classifiers

5.7.3 AdaBoost

Metric personaCateg-Ada allCateg-Ada
Accuracy 0.9597 0.9424
Precision 0.9904 0.9552
F-Measure 0.9726 0.9603
Recall 0.9559 0.9845
FPR 0.0257 0.1188
TPR 0.9559 0.9552
FNR 0.0440 0.0338
TNR 0.9742 0.8811
Specificity 0.9742 0.8811
Sensitivity 0.9559 0.9845

Table 5.9: Testing personalization apps with personaCateg & allCateg Ada classifiers

Chapter 5. Experiments & Analysis Results 42

5.8 Evaluating Performance of personaCateg & allCateg

Classifiers

Figure 5.11: Accuracy of ”personaCateg” &”allCateg” Classifiers

Figure 5.11 shows the variation of the classifiers’ accuracy over 50 iterations. As can

be seen, the personaCateg classifiers report average accuracy higher than allCateg clas-

sifiers at detecting malicious or reporting benign apps in ”Personalization” category. The

personaCateg classifiers report average accuracy as following: 0.9855, 0.9424, 0.9597

for Support Vector Machines, Random Forests, and Adaboost, respectively. While

allCateg classifiers report average of accuracy as following: 0.8947, 0.8749 and 0.9924.

Figure 5.12: Fmeasure of ”personaCateg” &”allCateg” Classifiers

Figure 5.12 shows the variation of the classifiers’ accuracy over 50 iterations. As

can be seen, the personaCateg classifiers report average fmeasure higher than allCateg

classifiers. The personaCateg classifiers report average fmeasure as following: 0.9736,

Chapter 5. Experiments & Analysis Results 43

0.9603, 0.9726 for Support Vector Machines, Random Forests, and Adaboost, respec-

tively. While allCateg classifiers report average of fmeasure as following: 0.9318, 0.9190

and 0.9603.

The boxplots of accuracy and f-measure of the classifiers in Figure 5.11 and Fig-

ure 5.12 show noticeable differences in the average performance of category-based ”per-

sonaCateg” and non-Category based ”allCateg” classifiers at detecting malicious music

apps. Notably, Support Vector Machines reports huge variations in accuracy and f-

measure between ”musicCateg” and ”allCateg”.

Figure 5.13: ROC curve for Testing personalization apps with allCateg-SVM classifier

Figure 5.13 shows that the area under the ROC curve for the ksvm model on

personaAgainstallCateg.csv is 0.9924

Figure 5.14: ROC curve for Testing personalization apps with personaCateg-SVM
classifier

Figure 5.14 shows that the area under the ROC curve for the ksvm model on

musicCateg.csv is 0.9940 which bigger than the AUC of testing personalization apps

with the allCateg-SVM classifier.

Chapter 5. Experiments & Analysis Results 44

Figure 5.15: t.test of F-measure of personaCateg-SVM & allCateg-SVM classifiers

Figure 5.15 shows that T.test function produces 4.18% a mean of the differences

which indicates that personaCateg-SVM outperforms allCateg-SVM at detecting mali-

cious apps in ”Personalization” category.

Figure 5.16: t.test of F-measure of personaCateg-RF & allCateg-RF classifiers

Figure 5.16 shows that T.test function produces 1.08% a mean of the differences

between personaCateg-RF and allCateg-RF.

Figure 5.17: t.test of F-measure of personaCateg-Ada & allCateg-Ada classifiers

Figure 5.17 shows that T.test function produces 1.95% a mean of the differences

between personaCateg-Ada and allCateg-Ada.

Chapter 5. Experiments & Analysis Results 45

5.8.1 Proving Outperformance of Category-based Classifier

”personaCateg”

Null Hypothesis: There are no significance differences between the classifiers’ perfor-

mance of category-based personaCateg and non-category allCateg at detecting mali-

cious and benign under ”Personalization” category.

Alternative Hypothesis: There are significance differences between the classi-

fiers’ performance of category-based personaCateg and non-category allCateg at de-

tecting malicious and benign under ”Persoalization” category.

H0 : µFmeasure
personaCateg ≤ µFmeasure

allCateg

Ha : µFmeasure
personaCateg > µFmeasure

allCateg

50 replication of calculations of F-measures under both conditions on the same

replicate of dataset.

Hence: the use of a Paired t.test and from the boxplots in Figure 5.12, our assump-

tion gaussianity is clearly plausible.

Empirically: µFmeasure
personaCateg − µFmeasure

allCateg = 4.18%

Informally, µFmeasure
personaCateg > µFmeasure

allCateg

Theoretical by inference:

p− value ' 0 rejects H0, concludes Ha :µFmeasure
personaCateg > µFmeasure

allCateg

µFmeasure
personaCateg − µFmeasure

allCateg ε [3.55, ∞]

LB95%(µFmeasure
personaCateg − µFmeasure

allCateg) = 3.55%

Chapter 6

Conclusion

In our study, we propose category-based machine learning classifiers to improve the

performance of the classification models. In static analysis of Android malware, machine

learning algorithms have been used to train classifiers with features of malicious apps to

build models that capable of detecting malicious patterns. Differently, our classification

approach defines legitimate static features for benign apps as opposite to identifying

malicious patterns. We utilize the features of the top rated apps in a specific category

to define a profile of the common sets of features for that category. In other words, to

detect whether or not the app posses the characteristics of benign, we relate between the

app’s features and the features that are needed to deliver the category’s functionality

that the app belongs to. Android stores organize apps into different categories; 26

categories on the Google Play Store, for example. In each category, the apps deliver

a similar functionality as a result the they tend to request a common set of features

like same permissions, APIs, hardware components, broadcast receivers, intents filters,

etc. On the contrary, malicious apps tend to have abnormal features, less or more than

what is common for the category that they belong to. Malicious apps can be identified

by comparing between the features they request to the features that are requested by

benign apps in the same category. For example, malicious apps, compared to the benign

apps in the same category, tend to request over-privileged permissions, listen to specific

events that broadcast by the Android system, or using unneeded APIs for the app’s

category functionality that can be used to lunch malicious behaviors.

We compare the performance of category-based and non-category based classi-

fiers at detecting malicious apps under a specific category. To achieve this comparison,

we built three datasets of apps’ features: apps from all categories (allCateg), apps

from ”Music & Audio” category (musicCateg), and apps from ”Personalization” cate-

gory (personaCateg). For each dataset, we trained three machine learning classifiers:

46

Chapter 6. Conclusion 47

Support Vector Machines, Random Forests, and AdaBoost; the classifiers were trained

with three group of features: permissions, broadcast receivers, and APIs. For testing,

apps from ”Music & Audio” category were tested with (musicCateg) and (allCateg)

classifiers, respectively; and apps from ”Personalization” category were tested with

personaCateg and allCateg classifiers, as well. The category-based classifiers reported

a higher performance compared to the non-category based at detecting malicious and

benign in the two categories of our study: ”Music & Audio” and ”Personalization”.

Our future work will consider three aspects. First, including other static features

such as: functions calls in building the classification models to get a better understanding

of the processes that apps may lunch in a way to increase the detection accuracy of the

classifiers. Second, implementing the proposed solution on a large-scale level by building

profile models for other categories and sub categories. Third, testing the feasibility of

integrating our solution with dynamic detection techniques by profiling dynamic features

for each category; dynamic features like system calls, network connections, resources’

usage, and etc.

Appendix A

Building Classification Models in

-R-

library(e1071)

library(randomForest)

library(adabag)

library(ROCR)

###

Measures of goodness in binary classification

###

measures <- function(label , response)

{

n<-length(label)

confmat <- table(label , response)

Accuracy <- sum(diag(confmat))/n

FPR <- confmat [1 ,2]/ rowSums(confmat)[1]

TPR <- confmat [2 ,2]/ rowSums(confmat)[2]

FNR <- confmat [2 ,1]/ rowSums(confmat)[2]

TNR <- confmat [1 ,1]/ rowSums(confmat)[1]

Precision <- confmat [2,2]/ colSums(confmat)[2]

Recall <- TPR

Specificity <- TNR

Sensitivity <- TPR

F.measure <- 2*(Precision*Recall)/(Precision+Recall)

measured <-list(Accuracy=Accuracy ,

Precision = Precision ,

F.measure = F.measure ,

Recall=Recall ,

FPR=FPR , TPR = TPR ,

FNR=FNR , TNR = TNR ,

Specificity=Specificity ,

Sensitivity=Sensitivity)

return(measured)

48

Appendix A. Building Classification Models in -R- 49

}

###

reading the data

###

allcategories <- read.csv(" allCateg.csv")

music_allcategories <- read.csv(" musicgainstAllCateg.csv")

names(music_allcategories) <- names(allcategories)

music <- read.csv(" musicCateg.csv")

#get the ids for all categories data

benA <- which(allcategories$class ==’benign ’)

malA <- which(allcategories$class ==’malicious ’)

#get the ids for music all categories data

benB <- which(music_allcategories$class ==’benign ’)

malB <- which(music_allcategories$class ==’malicious ’)

met.svm.music <- matrix (0,50,10, byrow=T)

met.svm.all <- matrix (0,50,10, byrow=T)

met.rf.music <- matrix (0,50,10, byrow=T)

met.rf.all <- matrix (0,50,10, byrow=T)

met.ada.music <- matrix (0,50,10, byrow=T)

met.ada.all <- matrix (0,50,10, byrow=T)

for(i in 1:50){

#sampling rows for data with all categories

trainA <- allcategories[c(sample(benA ,length(benA)*0.7 , replace = F),

sample(malA ,length(malA)*0.7, replace = F)),]

#sampling rows for data with music all categories

s <- c(sample(benB ,length(benB)*0.7 , replace = F),sample(malB ,length(malB)*0.7, replace = F))

trainB <- music_allcategories[s,]

stack music all categories and all categories for training

train <- as.data.frame(rbind(trainA ,trainB))

select in music the same ids from music all categories

trainC <- music[s,]

built the test data

test_musicallcategories <- music_allcategories[-s,]

test_music <- music[-s,]

###

train SVM

###

svm.music <- svm(class~.,data=trainC ,scale=F)

svm.allcategories <- svm(class~.,data=train ,scale=F)

getting the predictions

pred.svm.music <- predict(svm.music ,test_music)

pred.svm.allcategories <- predict(svm.allcategories ,test_musicallcategories)

Appendix A. Building Classification Models in -R- 50

#finding the metrics

met.svm.music[i,] <- unlist(measures(pred.svm.music ,test_music$class))

met.svm.all[i,] <- unlist(measures(pred.svm.allcategories ,test_musicallcategories$class))

###

#train random forest

###

rf.music <- randomForest(class~.,data=trainC ,ntree =100)

rf.allcategories <- randomForest(class~.,data=train ,ntree =100)

getting the predictions

pred.rf.music <- predict(rf.music ,test_music)

pred.rf.allcategories <- predict(rf.allcategories ,test_musicallcategories)

#finding the metrics

met.rf.music[i,] <- unlist(measures(pred.rf.music ,test_music$class))

met.rf.all[i,] <- unlist(measures(pred.rf.allcategories ,test_musicallcategories$class))

###

#train adaBoosted trees

###

adaB.music <- boosting(class~.,data=trainC , mfinal = 100)

adaB.allcategories <- boosting(class~.,data=train , mfinal = 100)

getting the predictions

pred.ada.music <- predict(adaB.music ,test_music)

pred.ada.allcategories <- predict(adaB.allcategories ,test_musicallcategories)

#finding the metrics

met.ada.music[i,] <- unlist(measures(pred.ada.music$class ,test_music$class))

met.ada.all[i,] <- unlist(measures(pred.ada.allcategories$class ,

test_musicallcategories$class))

}

###

#column names: Accuracy ,Precision ,F.measure ,Recall ,FPR ,TPR ,FNR ,TNR ,Specificity ,Sensitivity

Accuracy boxplots

boxplot(met.svm.all[,1],met.svm.music [,1])

boxplot(met.rf.all[,1],met.rf.music [,1])

boxplot(met.ada.all[,1],met.ada.music [,1])

F.measure boxplots

boxplot(met.svm.music[,1],met.svm.all[,1], names = c(" musicCateg ","allCateg"),

col = c("blue","orange "))

boxplot(met.rf.music[,1],met.rf.all[,1], names = c(" musicCateg ","allCateg"),

col = c("blue","orange "))

boxplot(met.ada.music[,1],met.ada.all[,1], names = c(" musicCateg ","allCateg"),

col = c("blue","orange "))

average of the columns

avg.metr.svm.music <- apply(met.svm.music ,2,mean)

avg.metr.svm.all <- apply(met.svm.all ,2,mean)

Appendix A. Building Classification Models in -R- 51

avg.metr.rf.music <- apply(met.rf.music ,2,mean)

avg.metr.rf.all <- apply(met.rf.all ,2,mean)

avg.metr.ada.music <- apply(met.ada.music ,2,mean)

avg.metr.ada.all <- apply(met.ada.all ,2,mean)

allmetric.avg <-rbind(avg.metr.svm.music ,avg.metr.svm.all ,avg.metr.rf.music ,

avg.metr.rf.all ,avg.metr.ada.music , avg.metr.ada.all)

saving the avgs to a file

write.table(allmetric.avg ,"avg.csv",row.names=F)

Bibliography

[1] Androguard usage. https://code.google.com/p/androguard/wiki/Usage. Ac-

cessed April 24, 2015.

[2] Android - statistics & facts — statista. http://www.statista.com/topics/876/

android/. Accessed April 19, 2015.

[3] Android and ios continue to dominate the worldwide smartphone market with an-

droid shipments just shy of 800 million in 2013, according to idc. http://www.idc.

com/getdoc.jsp?containerId=prUS24676414. Accessed April 19, 2015.

[4] Application fundamentals — android developers. http://developer.android.com/

guide/components/fundamentals.html. Accessed April 19, 2015.

[5] Are — download/installation. https://redmine.honeynet.org/projects/are/

wiki. Accessed April 28, 2015.

[6] Dynamic analysis tools for android fail to detect malware with

heuristic evasion techniques. http://thehackernews.com/2014/05/

dynamic-analysis-tools-for-android-fail.html. Accessed April 19, 2015.

[7] ”global smartphone sales exceed 1.2b units in 2014.” gfk - we see the big

picture. http://www.gfk.com/news-and-events/press-room/press-releases/

pages/global-smartphone-sales-exceed-1-2b-units-in-2014.aspx. Accessed

April 19, 2015.

[8] Google: We have 1 billion monthly active an-

droid users. http://www.businessinsider.com/

google-we-have-1-billion-monthly-active-android-users-2014-6. Accessed

April 19, 2015.

[9] Report: 97- forbes. http://www.forbes.com/sites/gordonkelly/2014/03/24/

report-97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe/

.. Accessed April 19, 2015.

52

https://code.google.com/p/androguard/wiki/Usage
http://www.statista.com/topics/876/android/
http://www.statista.com/topics/876/android/
http://www.idc.com/getdoc.jsp?containerId=prUS24676414
http://www.idc.com/getdoc.jsp?containerId=prUS24676414
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
https://redmine.honeynet.org/projects/are/wiki
https://redmine.honeynet.org/projects/are/wiki
http://thehackernews.com/2014/05/dynamic-analysis-tools-for-android-fail.html
http://thehackernews.com/2014/05/dynamic-analysis-tools-for-android-fail.html
http://www.gfk.com/news-and-events/press-room/press-releases/pages/global-smartphone-sales-exceed-1-2b-units-in-2014.aspx.
http://www.gfk.com/news-and-events/press-room/press-releases/pages/global-smartphone-sales-exceed-1-2b-units-in-2014.aspx.
http://www.businessinsider.com/google-we-have-1-billion-monthly-active-android-users-2014-6.
http://www.businessinsider.com/google-we-have-1-billion-monthly-active-android-users-2014-6.
http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe/..
http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe/..
http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on-android-this-is-the-easy-way-you-stay-safe/..

Bibliography 53

[10] Smartphone os market share, q4 2014. http://www.idc.com/prodserv/

smartphone-os-market-share.jsp. Accessed April 19, 2015.

[11] Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K., and Siemens,

C. (2014). Drebin: Effective and explainable detection of android malware in your

pocket. In Proc. of NDSS.

[12] Aung, Z. and Zaw, W. (2013). Permission-based android malware detection. Inter-

national Journal of Scientific and Technology Research, 2(3):228–234.

[13] Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. (2011). Crowdroid: behavior-

based malware detection system for android. In Proceedings of the 1st ACM workshop

on Security and privacy in smartphones and mobile devices, pages 15–26. ACM.

[14] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P., Jung, J.,

McDaniel, P., and Sheth, A. N. (2014). Taintdroid: an information-flow tracking sys-

tem for realtime privacy monitoring on smartphones. ACM Transactions on Computer

Systems (TOCS), 32(2):5.

[15] Enck, W., Ongtang, M., and McDaniel, P. (2009). On lightweight mobile phone

application certification. In Proceedings of the 16th ACM conference on Computer

and communications security, pages 235–245. ACM.

[16] Felt, A. P., Greenwood, K., and Wagner, D. (2011). The effectiveness of applica-

tion permissions. In Proceedings of the 2nd USENIX conference on Web application

development, pages 7–7.

[17] Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., and Wagner, D. (2012).

Android permissions: User attention, comprehension, and behavior. In Proceedings

of the Eighth Symposium on Usable Privacy and Security, page 3. ACM.

[18] Fuchs, A. P., Chaudhuri, A., and Foster, J. S. (2009). Scandroid: Automated secu-

rity certification of android applications. Manuscript, Univ. of Maryland, http://www.

cs. umd. edu/avik/projects/scandroidascaa, 2(3).

[19] Grace, M. C., Zhou, W., Jiang, X., and Sadeghi, A.-R. (2012). Unsafe exposure

analysis of mobile in-app advertisements. In Proceedings of the fifth ACM conference

on Security and Privacy in Wireless and Mobile Networks, pages 101–112. ACM.

[20] Hein, C. L. P. M. (2014). Static based malware detection framework for android

application. signature, 1(1).

[21] Liu, L., Yan, G., Zhang, X., and Chen, S. (2009). Virusmeter: Preventing your

cellphone from spies. In Recent Advances in Intrusion Detection, pages 244–264.

Springer.

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

Bibliography 54

[22] Sahs, J. and Khan, L. (2012). A machine learning approach to android malware de-

tection. In Intelligence and Security Informatics Conference (EISIC), 2012 European,

pages 141–147. IEEE.

[23] Saint, N. 50send it to advertisers. http://www.businessinsider.com/

50-of-android-apps-that-ask-for-your-location-send-it-to-advertisers-2010-10.

Accessed April 19, 2015.

[24] Saint, N. The hidden risks of mobile applications. http://www.

cybersecuritysummit.org/2014/pastevent/documents/Cyber%20Security%

20Summit%202013%20-%20Jim%20Stickley.pdf. Accessed April 19, 2015.

[25] Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., and Bringas, P. G. (2012). On

the automatic categorisation of android applications. In Consumer Communications

and Networking Conference (CCNC), 2012 IEEE, pages 149–153. IEEE.

[26] Seo, S.-H., Gupta, A., Sallam, A. M., Bertino, E., and Yim, K. (2014). Detecting

mobile malware threats to homeland security through static analysis. Journal of

Network and Computer Applications, 38:43–53.

[27] Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., and Weiss, Y. (2012). “andro-

maly”: a behavioral malware detection framework for android devices. Journal of

Intelligent Information Systems, 38(1):161–190.

[28] Vidas, T., Christin, N., and Cranor, L. (2011). Curbing android permission creep.

In Proceedings of the Web, volume 2.

[29] Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., and Wu, K.-P. (2012). Droidmat:

Android malware detection through manifest and api calls tracing. In Information

Security (Asia JCIS), 2012 Seventh Asia Joint Conference on, pages 62–69. IEEE.

[30] Xie, L., Zhang, X., Seifert, J.-P., and Zhu, S. (2010). pbmds: a behavior-based

malware detection system for cellphone devices. In Proceedings of the third ACM

conference on Wireless network security, pages 37–48. ACM.

[31] Zhao, M., Ge, F., Zhang, T., and Yuan, Z. (2011). Antimaldroid: An efficient

svm-based malware detection framework for android. In Information Computing and

Applications, pages 158–166. Springer.

http://www.businessinsider.com/50-of-android-apps-that-ask-for-your-location-send-it-to-advertisers-2010-10
http://www.businessinsider.com/50-of-android-apps-that-ask-for-your-location-send-it-to-advertisers-2010-10
http://www.cybersecuritysummit.org/2014/pastevent/documents/Cyber%20Security%20Summit%202013%20-%20Jim%20Stickley.pdf
http://www.cybersecuritysummit.org/2014/pastevent/documents/Cyber%20Security%20Summit%202013%20-%20Jim%20Stickley.pdf
http://www.cybersecuritysummit.org/2014/pastevent/documents/Cyber%20Security%20Summit%202013%20-%20Jim%20Stickley.pdf

	Android Malware Detection Using Category-Based Machine Learning Classifiers
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	1 Preface
	1.1 Introduction
	1.2 Motivations
	1.3 Scope
	1.4 Contribution
	1.5 Thesis Structure

	2 Background
	2.1 Android Architecture
	2.2 Android Application Components
	2.3 Android Security Features
	2.4 Android Permission Model
	2.5 Android Permission Protection Level
	2.6 Android Malware

	3 Related Work
	3.1 Static Analysis
	3.2 Dynamic Analysis

	4 Design & Methodology
	4.1 Data Collection
	4.2 Reverse Engineering
	4.3 Features Parsing
	4.3.1 Permissions
	4.3.2 Broadcast Receivers
	4.3.3 APIs Classes

	4.4 Binary Vector Generation
	4.5 Features Selection
	4.6 Classification Models
	4.6.1 AdaBoost
	4.6.2 Support Vector Machines
	4.6.3 Random Forest

	5 Experiments & Analysis Results
	5.1 Experiments' Environment
	5.2 Experiments' Settings
	5.3 Evaluation Measurements
	5.4 Testing Apps from all categories with allCateg Classifiers
	5.5 Testing Music Apps with musicCateg & allCateg Classifiers
	5.5.1 Support Vectors Machine
	5.5.2 RandomForest
	5.5.3 AdaBoost

	5.6 Evaluating Performance of musicCateg & allCateg Classifiers
	5.6.1 Proving Outperformance of Category-based Classifier "musicCateg"

	5.7 Testing Personalization Apps with personaCateg & allCateg Classifiers
	5.7.1 Support Vector Machines
	5.7.2 RandomForest
	5.7.3 AdaBoost

	5.8 Evaluating Performance of personaCateg & allCateg Classifiers
	5.8.1 Proving Outperformance of Category-based Classifier "personaCateg"

	6 Conclusion
	A Building Classification Models in -R-
	Bibliography

