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Abstract 
 

The Kate Gleason College of Engineering 
Master of Science 

 
 

Structuring Statistical Tests for Validating Encryption: 
An Array-based Approach 

 
by Kevin Hoyt 

 
 

The technological advancements made in recent years regarding the transfer of personal 

data have brought along an imperative need for increased security and encryption capabilities. 

Information sent across these electronic platforms is most often intended to be delivered to and 

received by specific individuals. However, the notion that these selected individuals are the only 

people that are able to come into contact with the information is flawed. A more realistic 

assumption, and the assumption that is currently demonstrated, is that the information sent can 

and will be intercepted. This means that successful encryption of the data is an invaluable part of 

the transfer process. For this reason, the study of encryption and the validation of cryptographic 

functions are topics that computer scientists continually work to improve. Current practice for 

determining the success of cryptographic functions tends to consist of various statistical tests 

conducted on random outputs from the algorithm. In this thesis, we propose an array-based 

structure to validate not only the output from an cryptographic function, but the cryptographic 

function itself. In using an array-based structure such as this, we do not limit ourselves to only 

detecting output that suggests a failure for the encryption function. With this structure we allow 

an opportunity to detect specific contributors to the failure within the algorithm. 
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1. Overview and Organization 
 

1.1 Overview of the Project 
 

 This project began as an investigation of statistical testing for encryption in the field of 

computer science. To gain necessary insight on the overall process of encryption, research was 

conducted to become better familiarized with the basic encryption process. However, micro-level 

research regarding the development and implementation of cryptographic functions and 

algorithms was left to those in computer science. Of such research was Dr. Alan Kaminsky’s 

recent contribution to the field of computer science with the development of the Coincidence 

Test, a Bayesian application of statistical randomness testing for block ciphers and message 

authentication codes (MACs) [1]. To better understand the process, his test was dissected at the 

statistical level to determine how the errors within the test behaved and how they could be 

controlled, if at all possible. The results of the initial investigation led to the analysis of the 

power of the Coincidence Test, which is a metric that could then be compared to other tests.  

It was then decided that the development of an alternate testing scheme may assist in 

controlling errors, while also detecting components of the cryptographic functions that contribute 

to failures in the test. This testing scheme, which we title “array-based”, was established on a 

factorial design structure, which is the foundation for the theory of experimental design. To 

investigate the structure, a binomial distribution was used, where the proportion of “1”s within a 

sequence of “0”s and “1”s as obtained from an encryption method was hypothesized and tested. 

This allowed to further investigate the nature of the test as it related to the array-based scheme, 

where multiple testing could be conducted and compared analytically and through simulations. 
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Further examination was then necessary, specifically regarding the binomial test, due to the 

discreteness of the data in the simulations as they compared to the normal-approximation to the 

binomial distribution for the analytical results. Finally, since the simulations best represent the 

output from an actual encryption process, it was then necessary to further delve into the 

simulations and the errors derived from the test. 

 

1.2 Thesis Organization 
 

 In Chapter 2, we introduce the basic research conducted to better understand the process 

of encryption. Chapter 3 focuses on different types of statistical errors regarding hypothesis 

testing. We also introduce the connection between statistical errors the power of the tests 

conducted. Chapter 4 first describes Dr. Alan Kaminsky’s Coincidence Test and then 

demonstrates the underlying distribution of the test and the power of the test under various 

scenarios. In Chapter 5 we introduce our array-based testing scheme and the multiple tests that 

can be arranged from such a structure. Chapter 6 first briefly explains the binomial test and then 

follows with describing the necessary error adjustments needed for multiple testing. Chapter 7 

describes the three basic models that are available to test using the array-based testing structure. 

It then demonstrates the application of the Normal-approximation to the binomial distribution to 

obtain analytical results for the power of the tests used for the three models. In Chapter 8 we 

demonstrate the simulated results from the three models and make comparisons to the analytical 

results. Chapter 9 describes the discreteness dilemma that is apparent in the simulations, and the 

treatment of the errors in such cases. Finally, Chapter 10 concludes the paper by describing 

possible tests that could be used in future work. 
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2. Encryption Overview 
 

The application of cryptography, or at least its relationship to the science of encryption, is 

not new [2]. For centuries, the transfer of surreptitious information has been critical to the 

success of empires and businesses throughout the world. From ancient communications 

regarding military warfare processes to today’s current need for online security, cryptography 

has played a major role in allowing crucial information to be passed from sender to recipient 

without much fear of extraction from those able to intercept it. Recently, with growth in the field 

of computer science, success of encryption has become increasingly desirable as much 

communication regarding the personal and financial information of individuals continues to shift 

toward a wireless realm.  Along with this ever evolving need for superior encryption techniques 

comes also a demand for methods of testing the success or validity of the encryption process. It 

is often the case that computer scientists gauge the success of an encryption technique with the 

output that comes from the encryption system.  

The general idea of encryption is fairly basic, though the underlying processes and 

techniques used by those in the computer science field are advanced and are beyond the scope of 

this paper. In short, the idea is often explained using an example with arbitrary participants Alice 

(the sender), Bob (the recipient), and Eve (the interceptor) of a particular message [2]. 

	  

Figure 1: Basic overview of encryption 

c 

m, c:= E(Ke, m) c, m:= D(Ke, c) 

Alice 

Eve 

Bob 
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Here we can see that Alice has a message m, also known as the plaintext, which she 

would like to send to Bob. The drawback is that Eve may be receiving the message as well.  In 

order to protect from the possibility of Eve obtaining the message directly, an assumption is 

made that Eve, as well as Bob, will be receiving anything that is sent on the channel. Alice can 

then create a ciphertext c from an encryption function E(Ke, m) by using a key Ke that is only 

shared with Bob.  This ciphertext is then sent along the channel, where it is assumed that both 

Bob and Eve receive it.  Since Bob has Ke, and Eve does not, Eve has no means of revealing the 

plaintext message, she can only view the ciphertext created by Alice’s and her encryption 

function.  However, Bob can use a decryption function D(Ke, c) to decrypt the ciphertext and 

obtain the plaintext m. In the field of computer science, encryption is considered successful in 

the event that Bob can determine a plaintext sent from Alice while Eve cannot.  

This focus contributes to many of the advancements within the field. Though it would be 

really simple if we could assume that an individual or more realistically, a machine, intercepting 

a ciphertext could not determine the plaintext without the given key, this is not nearly the case. 

Cryptographic functions that use weak keys or struggle encrypting specific key and plaintext 

combinations are susceptible to attacks from interceptors, which can detect patterns in the 

ciphertexts to establish the plaintexts without the key.  In computer science, encryption 

algorithms create ciphertext strings consisting of binary sequences of specific bit lengths. 

Theoretically, in order to be successful, these ciphertexts would then appear to be strings of 

completely random binary bits. That is, the binary sequences would not have detectable patterns 

that the interceptors would be able to use to decrypt the messages. The behavior of the bits 

within the ciphertexts created is something that computer scientists investigate in the quest for 

successful cryptographic functions. Tests are often conducted on samples of the output created 
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by the algorithms and these samples are then used to determine the validity of the encryption 

techniques in their regard to this success. These sample-based tests are worthy of determining the 

randomness of the outputs, however there lies an issue with the effectiveness of the 

cryptographic function, and more importantly the performance of the function with specific keys 

and/ or plaintext. There are possibilities for outputs to appear random, when in fact they are 

developed from the combination of random plaintexts and weak keys. An operational way to 

determine the ineffectiveness of the cryptographic function with particular keys and/or plaintext 

encrypted within the algorithm is to create an array-based test, to focus on the combinations of 

plaintexts and keys, and thus the overall success of the cryptographic function. To note, for the 

remainder of this paper, the use of “validation of encryption” or “encryption algorithm” is done 

regarding the validation of the specific cryptographic function that would be the receiving the 

statistical testing, not generalized encryption methods. 
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3. Outline of Statistical Errors and Power of the Tests 
 

 Statistical hypothesis testing can be applied to the testing of the success of the encryption 

algorithms. This can be done by using a variety of tests from different origins, each with 

different detection capabilities.  Traditionally, frequentist testing has assumed fixed parameters 

to see if the data provided fit the parameters.  More recently, Bayesian testing has assumed fixed 

data to see if the parameters are reasonable for that data.  Both forms of testing are valid, 

however, with any statistical testing, it is important to know that there are also possibilities for 

errors within the tests, and that these errors contribute differently within the testing scheme. 

 Hypothesis testing consists of either providing statistical evidence for the rejection of a 

null hypothesis H0, in favor of an alternative hypothesis HA, or not providing statistical evidence, 

and therefore not rejecting H0. Though the statistical evidence will vary by the test, the way in 

which errors can be committed for the testing does not vary. For each of these errors it is also 

important to know that when we use a test, the reality is that either H0 is or is not in fact true. 

 

• Type I Error 𝛼 : The probability of rejecting H0, in the event that H0 is actually true. 

• Type II Error 𝛽 : The probability of not rejecting H0, in the event that H0 is actually 

false. 

 

 Both of these errors have different levels of importance based on the test conducted and 

the relevant hypotheses. These levels of importance are taken into consideration when deciding 

acceptable probabilities for the errors.  It is obvious that we would never want to make errors 
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when conducting a test, but inference is hindered when acceptable error rates are not taken into 

careful consideration. 

 Lastly, when considering our tests, we are interested in knowing their power. 

 

• Power of the test 1− 𝛽 : The probability of rejecting H0, in the event that H0 is actually 

false. 

 

 This is especially important in comparing different tests to each other for their detection 

capabilities. That is, if a null hypothesis is indeed false, we would like for our test to able to 

detect it and provide evidence so that we can correctly reject it. For this reason, the power of the 

tests will be a focus of the remainder of the paper. 
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4. Analytical Power of Kaminsky’s Coincidence Test 
 

 Many frequentist-based statistical test suites exist within the field of computer science to 

evaluate randomness of encryption mapping. The statistical test suite provided by the National 

Institute of Standards and Technology (NIST) is one such suite comprised of 15 individual 

statistical tests for randomness of outputs of the encryption algorithm when used as pseudo-

random number generators (PRNGs) [3]. These NIST tests make randomness assessments on 

entire strings of bits or blocks of the strings, depending on the particular test used. In general, 

this package of tests is considered the basis for statistical randomness testing for computer 

science, though performance of NIST is not considered robust in cases where block ciphers or 

message authentication codes (MACs) are used [1]. Progress was made in regard to this issue by 

Alan Kaminsky in 2013, with the development of the Coincidence Test, which implements 

Bayesian statistical techniques specifically for block ciphers and MACs [1]. 

 The Coincidence Test, as described and defined by Kaminsky, assesses the randomness 

of the mapping of a (plaintext, key) to ciphertext for block ciphers. To complete this task, the test 

utilizes a comparison of groups of output bits G, where g = |G| is the total number of bits in the 

group, from an output value for a block cipher V with a ciphertext output C created by the 

encryption of a plaintext P with key K. Coincidences occur in cases where the corresponding 

group of output bits selected G, match for both V and C. The test completes n Bernoulli trials 

with a single randomly chosen P along with n different randomly selected K values and 

determines the frequency of coincidences k that occur. If the aforementioned mapping is indeed 

random, the probability of the occurrence of a coincidence for a Bernoulli trial is p = 2- g. The 

test then makes the decision between two possible binomial models:  
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• H1: a model with the probability of success equal to p = 2- g, and  

• H2: a model with a probability of success other than p = 2- g.  

 

 The following figure taken from Kaminsky’s paper illustrates the idea of a coincidence as 

previously defined. 

	  

Figure 2: Kaminsky's block cipher coincidence test [1] 

 

 The criteria for choosing the binomial model as previously mentioned comes from the 

utilization of the posterior odds ratio, Bayes factors and prior odds ratios adapted from a ratio of 

the respective applications of Bayes theorem: 

 

𝑝𝑟 𝐻 𝐷 =   
𝑝𝑟 𝐷 𝐻 ∙ 𝑝𝑟(𝐻)

𝑝𝑟(𝐷)
 

 

The posterior odds ratio is then the product of the Bayes factor and the prior odds ratio:  



P a g e 	  |	  10	  

	  

𝑝𝑟(𝐻!|𝐷)
𝑝𝑟(𝐻!|𝐷)

=
𝑝𝑟(𝐷|𝐻!)
𝑝𝑟(𝐷|𝐻!)

∙
𝑝𝑟(𝐻!)
𝑝𝑟(𝐻!)

 

 

Since H1 is a model with the probability of success of each Bernoulli trial equal to p, we have a 

binomial distribution for H1 where 

 

𝑝𝑟 𝐷 𝐻! = !!
!! !!! !

𝑝!(1 − 𝑝)!!! , [1]. 

 

Also, since H2 is a model with the probability of success of each Bernoulli trial equal to 

something other than p, this probability is denoted as θ.  Thus,  

 

𝑝𝑟 𝐷 𝐻! = !!
!! !!! !

𝜃!(1 − 𝜃)!!!𝑑𝜃!
! = !

!!!
 , [1]. 

 

It then follows that the Bayes factor is 

 

!"(!|!!)
!"(!|!!)

= !!
!! !!! !

𝑝!(1 − 𝑝)!!! ∙ (𝑛 + 1)  , [1] 

 

and in the effort to save computational resources, the log is then taken to be 

 

𝑙𝑜𝑔 !"(!|!!)
!"(!|!!)

= 𝑙𝑜𝑔Γ 𝑛 + 1 − 𝑙𝑜𝑔Γ 𝑘 + 1 − 𝑙𝑜𝑔Γ 𝑛 − 𝑘 + 1 + 𝑘𝑙𝑜𝑔𝑝 + 𝑛 − 𝑘 log 1 − 𝑝 +

log  (𝑛 + 1), [1] 
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with application of the gamma function substitution for the factorial. This is then, as described 

by Kaminsky, equal to the log posterior odds ratio when multiple runs of the test are completed, 

with an assumption that pr(H1) = pr(H2).  

 Finally, the log posterior odds ratio is then the sum of all log Bayes factors and the data is 

said to support H1 when the sum of the log Bayes factors is greater than 0, and H2 otherwise. 

 To demonstrate this, the possible log Bayes factors as a function of k are exhibited in 

figure 3. In this example, we can see that when the test completes n = 100 independent Bernouilli 

trials, and the underlying probability p = 0.5, the data supports H1 when 40 ≤ 𝑘 ≤ 60. However, 

when 𝑘 < 40  𝑜𝑟  𝑘 > 60, H1 is rejected and the data is said to support H2. 

 

	  

Figure 3: Example of Kaminsky's Coincidence Test H1 distribution 

 

 This simple example is meant only to show the basic principles of the coincidence test. 

Unlike frequentist-based testing, we are not in control of the type I errors (𝛼) committed in the 
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same manner with this test. As we can see in the figure, if H1 were in fact true, and 𝑘 < 40  𝑜𝑟  𝑘 >

60, then we would commit an error. In a traditional sense, we would set the value for 𝛼, which 

would then provide critical values for k (something that will be demonstrated later). This is not to 

say that by utilizing the log Bayes factors, control is entirely lost. On the contrary, by assuming a 

cutoff value of 0, there is governance in the considerations for model selection, and thus the 

errors committed by the test, but in a slightly different way. In fact, for the example shown in 

figure 3, the calculation of the type I error is 𝛼 = 0.0352002.  

 As with any underlying discrete distribution, the true acceptable type I errors will be 

dependent on integer-based critical values. Thus varying values of n within the test will lead to 

differing 𝛼 values. To demonstrate this, figure 4 compares the power of the coincidence test at 

varying values, 𝑛 = 10!, 10!  𝑎𝑛𝑑  10!. What is clear from the plot is that as n increases, the test is 

better able to detect slight differences from the assumed probability of H1, though careful 

comparisons with equal type I errors are not feasible due to the discrete nature of the test. 



P a g e 	  |	  13	  

	  

	  

Figure 4: Power of coincidence test with varying n-values 
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5. Array-based Testing Structure 
  

 As previously discussed, a randomness principle exists in the fact that evidence of 

randomness in the outputs is not necessarily proof that there exists randomness of the 

cryptographic function. There lies an essential issue with tests such as those within the NIST 

suite for this reason.  These tests are susceptible to the randomness principle since they can be 

used as ways to identify randomness in sequences of the outputs, however understanding the 

randomness capabilities of the cryptographic function is not even a possibility. The testing of 

randomness from the outputs is an inefficient way to conduct these tests because these tests will 

make conclusions that either randomness exists, or non-randomness exists.  In an event that the 

test shows that randomness exists, we are still hindered by the randomness principle, and we 

really still know nothing about the cryptographic function that was used to produce the output. 

On the other hand, if the test shows that there is non-randomness lurking in the output, we then 

know that there is insufficiency in the cryptographic function, but the likeliness of non-

randomness occurring for a random combination of plaintext and key is extremely low, so we do 

not really learn anything about the underlying issues. To combat this and attempt to focus on the 

randomness of the cryptographic function, we introduce an arrangement for testing non-random 

combinations of plaintexts and keys in the form of an array. 

 A common practice in experimental design is to test all combinations of factors within a 

process to determine the factor levels that produce the most desired results. In doing so, 

discoveries can be made in regards to the most optimal levels for each individual factor that may 

otherwise be missed if the combinations were not investigated in such an organized and 
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controlled manner. Though the analysis is technically different, this same procedure can be used 

for testing randomness in cryptographic functions. 

 

	  

Figure 5: Array-based testing structure 

  

 By investigating the ciphertexts produced by non-random combinations of plaintexts and 

keys, we can determine if the cryptographic function struggles with particular keys, or if certain 

plaintexts are difficult for a number of keys to properly encrypt. In this way we do not only have 

an outcome from the test of random or non-random, but we will be able to determine specific 

keys or plaintexts that are leading to the failure of randomness within the algorithm if that is the 

case.  
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 The structure for such testing is what we refer to as array-based, since the outputs created 

from the encryption function by each combination of plaintext and key are stored dimensionally 

as an extension of the cell that contains the plaintext/ key combination. Here we can see in figure 

5, that for our testing, the array is three-dimensional, with definitions of plaintext m, key k, and 

bit n.  

 Many of the statistical tests that are currently used in practice can then be applied to this 

structure. Tests can then be performed on any meaningful combination of the bits produced. For 

example, using the test of our choice we can assess the randomness of the string consisting of all 

𝑛𝑘𝑚  bits that were produced, investigate the randomness of the bits created 𝑘𝑛  for only one 

particular plaintext, or look at other combinations as they are deemed necessary.  In this way we 

control the testing, which gives us more opportunity to detect faulty contributors to the 

encryption function and not only the non-randomness in the output. 
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6. Binomial Test and Error Correction 
	  

One simple, yet very important test that should be applied to our aforementioned array-

based structure is the exact binomial test. The exact binomial test, is a frequentist-based exact 

hypothesis test used to determine if a random variable X follows the binomial distribution where 

the probability mass function is shown to be: 

 

𝑃 𝑋 = 𝜔 = 𝑛
𝜔 𝑝𝜔 1 − 𝑝 !!𝜔	  

	  

 We see that the distribution, which is modeling the number of successes 𝜔, in a sequence 

of trials, is parameterized by the number of independent Bernoulli trials n, and the probability in 

which a success occurs for each trial p.  For our application we can define X to be the total 

number of “1”s that occur in a sequence of n bits. If the probability of each “1” occurring is p, 

then it is expected that np “1”s would occur in the string of bits tested. However, since natural 

variation from the mean exists by chance, we understand that although a random variable 

following the binomial distribution may have the highest probability at np successes, the random 

variable can take on values that differ from this mean. For an example, in figure 6 we can see 

that a random variable following the binomial distribution with n = 100 and p = 0.5 shows the 

probability is highest for  𝜔 = 50.  However, the probability that 𝜔 = 49 or 𝜔 = 51 differs only 

slightly.  This means that in regards to hypothesis testing, we need to carefully determine critical 

values for the number of successes so that we can control our type I error 𝛼  which will allow us 
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to assign a level of confidence that the random variable in question does indeed follow the 

binomial distribution. 

 

	  

Figure 6: Probability mass function for binomial distribution 

 

For any individual hypothesis test, we have a null hypothesis that is or is not true.  In the 

event that the null hypothesis is true we set the significance level 𝛼, which is an acceptable 

probability for wrongfully rejecting the null hypothesis, or committing a type I error, based on 

the test that is used.  When set fairly low, the probability of not rejecting a true null hypothesis, 

or not committing a type I error, is then 1 − 𝛼. We would like to have the probability of not 

committing a type I error as close to 1 as possible, however when we conduct a series of t 

individual independent tests, this probability is:  
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𝑃 𝑛𝑜𝑡  𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑖𝑛𝑔  𝑎  𝑡𝑦𝑝𝑒  𝐼  𝑒𝑟𝑟𝑜𝑟 = 1 − 𝛼 = (1 − 𝛼)!
!

!!!

 

 

With that,  

lim!→!(1 − 𝛼)! = 0, 𝑓𝑜𝑟  0 < 𝛼 < 1, 

 

which is a major concern. 

 To correct this issue, we assume that each individual test conducted is independent and 

we use the Sidak correction for multiple comparisons. Under this assumption we can determine 

individual test significance levels 𝛼! to be a function of the overall family significance level 𝛼! 

and the number of tests to be conducted t: 

 

𝛼! = 1 − 1 − 𝛼!
!
!  

 

Then when a series of t tests are conducted, we have overall significance for the series of tests if 

any individual test is significant at the 𝛼! level. 

For our situation and its relation to the binomial test, we assume that within the binary 

sequences of ciphertext created by the encryption function, the proportion of “1”s in each 

individual sequence should be p0.  In other words, our hypotheses are: 

 

𝐻!:𝐹𝑜𝑟  𝑒𝑎𝑐ℎ  𝑏𝑖𝑛𝑎𝑟𝑦  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  𝑜𝑓  𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑝 = 𝑝! 

𝐻!:𝐹𝑜𝑟  𝑒𝑎𝑐ℎ  𝑏𝑖𝑛𝑎𝑟𝑦  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  𝑜𝑓  𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑝 ≠ 𝑝!. 
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To test these hypotheses, we can begin by selecting an acceptable overall error-rate 𝛼!, 

which we can use to make a determination for 𝛼! by incorporating Sidak corrections. Also, since 

𝐻! specifically suggests that 𝑝 ≠ 𝑝!, we have a two-tailed test, which means that: 

 

𝛼!
2 =

!! !!!!
!
!

!
. 

 

Since we assume that X follows a binomial distribution, the cumulative distribution is 

 

𝐶𝐷𝐹 = 𝑃 𝑋 ≤ 𝑎 = 𝑛
𝜔 𝑝! 1 − 𝑝 !!!!

!!! , 

 

where n is the total number of bits in the sequence, 𝜔 is the number of “1”s, and p is the 

probability of success p0.  Also, a is the value that X, the random variable can take on, such that 

the probability is the sum of a discrete cases. Then we can obtain the critical values for each 

individual test using the CDF and 𝛼!. Again, if any individual test fails at that level, then we can 

say that non-randomness exists with confidence at the 1 - 𝛼! level. 
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7. Application of Array-based Binomial Tests 
	  

 To demonstrate the importance of the array-based testing structure, we introduce three 

models for non-randomness in the encryption function as applied to the binomial test.   

 

• Model 1: 𝑝 ≠ 𝑝! for all kmn bits within the testing structure 

• Model 2: 𝑝 ≠ 𝑝! for the kn (or mn) bits of a fixed plaintext (or key) 

• Model 3: 𝑝 ≠ 𝑝! for the n bits of a fixed plaintext and key combination 

 

To test these models and to better visualize the testing that occurs, Figure 7 is shown to represent 

the compression of an array to a 𝑘×𝑚 matrix, where each cell 𝑘,𝑚  contains the total number of 

“1”s, denoted as 𝜔!,!  , that are present in that particular sequence of n bits. 

	  

Figure 7: Compressed array-based testing structure 
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Then for each of the aforementioned models, the corresponding tests, (where failure of any 

single test demonstrates non-randomness) are: 

 

1. Test 1: Apply one standard binomial test to the entire 𝑘×𝑚 matrix 

2. Test 2: Apply k (or m) binomial tests to each row (or column) in the matrix 

3. Test 3: Apply km binomial tests to each individual cell in the matrix 

 

It is important to note that because Test 2 and Test 3 exercise multiple testing, the Sidak 

corrections for multiple comparisons as previously described are required. Also, as formerly 

mentioned, the discrete nature of the binomial distribution complicates the comparisons of the 

tests conducted as they relate to acceptable type I errors. Because the critical values of the tests 

are restricted to integers, it is the case that the exact 𝛼! cannot be obtained in some cases. To 

alleviate this, the normal approximation to the binomial distribution is applied, which then 

allows for all real critical values, and thus an exact 𝛼!. Here, the power of each individual 

binomial test can be approximated by: 

 

1 − Φ Δ +
𝑐
𝜎
+ Φ Δ −

𝑐
𝜎

 

where 

Δ =
𝑝! − 𝑝
𝜎

,                  𝑐 = −𝜎! ∙Φ!! 𝛼!
2    

and 

𝜎! =
𝑝! 1 − 𝑝!

𝑛
,                        𝜎 =

𝑝 1 − 𝑝
𝑛
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which allows for more thorough comparisons of the tests. 

  As an example, the following analytical results of these three tests are provided with k = 

100, m = 100, n = 64, p0 = 0.5 and an acceptable type I error rate of 𝛼! = 0.05. That is, our array 

will consist of 10,000 sequences of 64 bits obtained from the encryption of 100 different 

plaintexts by 100 different keys. It is assumed that the probability of “1” occurring in the 

sequence is 0.5. This allows us to demonstrate how the power of the binomial tests differ from 

test to test as well as practical applications in a computer science setting. 

	  

Figure 8: Power of tests applied to Model 1 

  

 It is clear from the graph that when Model 1 is evaluated, Test 1 is the most powerful of the three. 

This is evident because with only slight change in true probability from 𝑝 = 0.5, Test 1 will make a 

proper rejection. Test 2 does not perform as well as Test 1, however, it does not take much more change 

from the true probability to make the desired rejection. Finally, relative to the other two tests, Test 3 does 
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not perform very well at all. It takes more than ±0.075 change in true probability before the test will 

consistently make the correct rejection. These results are as expected since detection for this particular 

model is truly dependent on the vast differences of the sample sizes of the tests. 

	  

Figure 9: Power of tests applied to Model 2 

  

 For Model 2, in the event that we have a week key supplying bit sequences with 𝑝 ≠ 0.5, 

the test that will best make a detection is Test 2. We can see that the test will make the detection 

in cases with the least variation from 𝑝 = 0.5 of the three. This is also as we would expect 

because this testing is conducted on rows in our array-based testing structure represented by 

keys. This allows us to make the distinction between keys that perform well and those that do 

not. The other tests are not designed in such a way and the detection capabilities are clearly at a 

lower level. It is evident that Test 1 and Test 3 are fairly inadequate relative to Test 2. 
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Figure 10: Power of tests applied to Model 3 

 

 Finally, when a particular plaintext/key combination produces a ciphertext with 𝑝 ≠ 0.5, 

as is the case in Model 3, Test 3 is the only test that can sufficiently make the detection. 

However, the detection is only consistently made when the change from 𝑝 = 0.5 is around ±0.3. 

With a requirement for the difference from   𝑝 = 0.5 at such a large level, this test is the least 

powerful of those required to make meaningful detections of all the models. Although, it is a 

necessary test for this particular model since Test 1 and Test 2 are incapable of making any 

significant detections. 

 It is apparent from the results that each individual test has capabilities that correspond to 

the respective models. In a case where it is unknown which model may underlie within the array-

based testing structure, all three tests should be conducted to improve the chances for identifying 

these differences from the original assumptions in H0. It is also important to note that the 
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presentation of tests was done using arbitrarily selected values for k, m, n, and p0. These 

parameters can easily be changed to meet the needs of those interested in conducting tests with 

this structure. In fact, as is known, increasing the sample size for the tests results in more 

powerful testing for these models. This will be demonstrated more in-depth with comparisons of 

simulated data. However, with more powerful testing comes the trade-off for computational 

time, and this is something that needs to be investigated prior to establishing this array-based 

testing structure. 
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8. Simulated Results for Array-based Tests 
 

 To further assess these analytical results and attempt to tie these principles to practical 

application, we create simulations of the binomial data that follow the arrangements of the three 

models investigated. In order to begin, we determine an acceptable precision for the simulations, 

and in turn, an acceptable replication size. Since the standard error of the proportion is: 

𝑆𝐸!"#!#"$%#& =   
𝜃 1 − 𝜃

𝑁
 

where 𝜃 is the proportion presented and N is the replication size, the margin of error, with 95% 

confidence, for the worst case, when 𝜃 = 0.5 is demonstrated in the  

following figure. 

	  

Figure 11: Precision for proportion = 0.5 
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 For this worst case, we can obtain a precision of  ±0.02 with 2500 replications. If 

precision of ±0.02 is considered acceptable at this level, (which with computing time in 

consideration, we will), simulations will be presented with 𝑁 = 2500. 

 For Model 1, we simulate the power of the tests for k = 100, m = 100, n = 64, comparing 

the values of p = 0.480, 0.485, 0.490, 0.495, 0.500, 0.505, 0.510, 0.515, 0.520 to those acquired 

analytically. The following figure demonstrates this comparison. 

	  

Figure 12: Comparison of analytical and simulated results for Model 1, 64-bits 

 

 What is clear from the results of the simulation for Model 1 is that although Test 1 and 

Test 2 appear to demonstrate similar values for the corresponding analytical results, Test 3 does 

not appear to perform as expected. In fact, the simulated power values for Test 3 are consistently 

lower than the analytical results. Upon further investigation of Test 3 it is clear that based on this 
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simulation criteria, the 95% CI error bars surrounding the simulated values do not contain the 

analytical results calculated by the normal-approximation to the binomial. 

	  

Figure 13: Test 3 Simulation errors and analytical results for Model 1 

 

 This is a pattern that is also evident with k = 100, m = 100, n = 64 in the simulations for 

Model 2 where p = 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70 and Model 3 where p = 0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, shown in figures 14 and 15 respectively, at least with values 

of p that result in simulated values well below 1. 
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Figure 14: Comparison of analytical and simulated results for Model 2, 64-bits 

	  

Figure 15: Comparison of analytical and simulated results for Model 3, 64-bits 
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Figure 16: Test 3 simulation errors and analytical results for Model 2 

	  

Figure 17: Test 3 simulation errors and analytical results for Model 3 
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 Since Sidak corrections for multiple testing were utilized with 𝛼! = 0.05, it is expected 

that both our analytical and simulated results coincide for p = 0.5 at a probability of rejection 

𝛼! = 0.05. That is, in our example of 2500 replications, if the 10,000 bit sequences, each of 

length 64, actually were generated with a true probability of 0.5 for the “1”s in each bit sequence, 

we would expect that at least 1 test, within that family of 10,000 tests, to incorrectly fail at a 

theoretical rate of 0.05 (or 125 of the 2500 replications). For Test 1 and Test 2, this appears to be 

the case. However, Test 3 consistently fails at a much lower rate. This result brings about the 

question of how much the discreteness and bit-length of the sequence play in the role in properly 

making the necessary rejections for that test. 
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9. Investigations of Discreteness and Bit-length for Binomial Testing 
 

 As previously discussed in chapter 7, the discreteness of the bit sequences in the three 

binomial test applications led to the utilization of normal-approximation to the binomial for the 

calculations of our analytical results. For Test 1 and Test 2, these results appeared to agree with 

the simulated results. However, for Test 3 this was not the case. For simulations, across all 

models, we consistently witnessed simulated values significantly lower than those values which 

we were able to acquire analytically. In one regard, we have an interest in demonstrating that this 

can be attributed solely to the discreteness of the data. That is, critical values can only take on 

integers and therefore there is a finite set of possible values which our test statistic can take on. 

When we increase the bit-length, we provide more opportunities for critical values to take on 

integers below or above our confidence level. Without diving too deep into the underlying 

distribution, this assumption would explain the reason that Test 1 and Test 2 perform correctly, 

while Test 3 underperforms in practice. However, this is not at all the case.  

To better understand what is going on, we further investigate Test 1,  Test 2, and Test 3 at 

p = 0.5, for n = 32, 33, …, 300. We can view the probability of rejection from the exact binomial 

test at p = 0.5, because we know that across all tests, we expect the probability of rejection to be 

0.05, which is exactly what we were able to demonstrate analytically. However, we know that 

because the binomial test is discrete, the probability of rejection will most likely not be an exact 

match. So we have two options for comparison. We can select a critical value a, such that: 

1. 𝑀𝑖𝑛 𝑃 𝑋 < 𝑎 − 𝛼! 2  

2. 𝑀𝑎𝑥[𝑃 𝑋 < 𝑎 ≤ 𝛼!
2]  
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In Figure 18 we can see the probability of rejection using option 1. Also, n = 64, 128, and 

256 are highlighted with boxes to demonstrate their connection to bit-length in computer science. 

	  

Figure 18: Exact binomial power calculations, Option 1 
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In Figure 19 we can see the probability of rejection using option 2. Again, n = 64, 128, and 

256 are highlighted with boxes. 

	  
Figure 19: Exact binomial power calculations, Option 2 
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 From Figure 18, we can see that the exact binomial calculations, at n = 64 for both Test 1 

and Test 2, are values that compare nicely with our analytical power value of 0.05. These values 

are so close to our analytical value that it appears that these calculations could demonstrate our 

simulated results from chapter 8. However unlike our simulations, the power for Test 3 is near 

0.07, which was not at all the case with our simulated values. 

 In Figure 19, again we can see that the exact binomial calculations, at n = 64 for both Test 

1 and Test 2, appear to be values close to what were acquired through simulations and values that 

are close to our analytical results. However for Test 3, at n = 64 we see a value that is 

significantly lower than our analytical power value of 0.05. This mirrors the results that we 

obtained from the simulations in chapter 8 and explains why our simulations appeared so low for 

Test 3 since the underlying method of our simulations used the principles of option 2. 

 To tie these options into practical applications, it is important to remember that we first 

mentioned acceptable errors in chapter 2, and that throughout this paper we have been 

demonstrating results based on 𝛼! = 0.05. The importance lies with what we can truly proclaim 

our confidence to be. At the 𝛼! = 0.05 level we can be 95% confident in our results. 

Importantly, we make initial acceptance that we will wrongly reject H0 at the 𝛼! = 0.05 level 

and that is something which our results must reflect. More importantly, if we make this claim 

and we demonstrate results at or less than this level, we are still correct and are not falsely 

providing evidence for our case. It is when our findings do not support our claim that we 

contradict ourselves. This is demonstrated in these two options and is especially evident in 

comparing the values from Test 3. These results are clearly validated in Table 1.  
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Exact Binomial 
Value at p = 0.5 
 

 
Absolute Difference 
from 𝛼! = 0.05 
 

 
Option 1 

 
0.06825409 
 

 
0.01825409 
 

 
Option 2 

 
0.018633842 
 

 
0.03136616 
 

	  

Table 1: Comparison of option 1 and option 2 for 64-bits 

 

 From Table 1, we can see that the exact binomial value for option 1 is 0.06825409, while 

option 2 is 0.018633842. This means that technically using option 1 gives a value that is closer to 

our analytical result of 0.05 (absolute difference of 0.01825409) compared to option 2 (absolute 

difference of 0.03136616). However, if we want to back up our claim that we are willing to 

accept 𝛼! = 0.05, our evidence is flawed in reporting values using option 1. We are only truly 

correct if at p = 0.5 we can show values at or below 𝛼! = 0.05, and this will always be the case 

with option 2. For this reason, option 2 is the best method for providing results from discrete 

distributions. This is also the reason that simulations were calculated in the same manner. 

 As for the role of bit-length, it is clear that there is convergence to a power value of 0.05 

at p = 0.5 for Test 3 in both option 1 and 2. This is shown in Figure 20 and Figure 21 

respectively, where again p = 0.5, but in an effort to save computational time n = 100, 200, 300, 

… , 640,000. 
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Figure 20: Exact binomial power calculations, Test 3, option 1 

	  

Figure 21: Exact binomial power calculations, Test 3, option 2 
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 However, this is unrealistic in a computer science setting. Ciphertexts from encryption 

algorithms do not require bit sequences of such massive length, nor would they be viable. 

Therefore, we can see that the least powerful of these tests is indeed Test 3. In a general sense, 

increases of the bit-length will make overall trend of the test more powerful, but the local 

variation resulting from these increases does not technically allow for us to improve this power 

in an applicable way. 
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10. Conclusion and Future Applications 
 

 In this thesis, we investigated many nuances of statistical randomness testing applicable 

to the field of computer science. This project initially began as a statistical investigation of the 

Coincidence Test and the way in which testing errors within the test are produced. This quickly 

led us to examining the potential for an array-based testing structure. We were able to determine 

that there are indeed benefits to using such a structure, but with these benefits also comes 

complications, which is something that needs to be understood prior to any implementation. 

 First, we understand that computing storage is a main drawback to this technique. There 

are too many combinations of plaintexts and keys to store all possible outcomes from 

encryptions. Therefore we recommend creating this test array using random subsets of plaintexts 

and keys which are feasible to encrypt and store. The main benefit for this structure is that there 

is no requirement for all possible ciphertexts to gain valuable insight on the encryption function. 

Using these random subsets will suffice, as long as all combinations of the selected subset are 

captured. Obviously, the more data that can be analyzed the better the test will be, but the storage 

of these ciphertexts must be taken into consideration and simply adding another key the array 

can quickly add thousands and thousands of bits that must be properly stored.  

Secondly, we understand that as this type of testing applies to computer science, the tests 

will be conducted on discrete data. Therefore when deciding a confidence level for the test, 

careful consideration must be made regarding the determination of significance and critical 

values. As shown in Chapter 9, there is importance in deciding significance and using proper 

techniques for reporting valid conclusions. 
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Lastly, we reported the results of our array-based testing structure using the three testing 

options (Test 1, Test 2 and Test 3) of the binomial test. Though this is a crucial test, and is one 

that is often used, this testing structure is capable of so much more. Essentially, any statistical 

test which used entire strings of bits can benefit from this structure. For example, the same 

process described in this paper can be applied to the Wald-Wolfowitz runs test [4], to determine if 

the exchange from “0” to “1” (or “1” to “0”) within the string occurs more or less often than 

expected. The limit is only on the number of relevant tests available. 

Creating a collection of these types of tests and applying them to the array-based 

structure can assist in validating the underlying encryption function, not only the encryption 

output, which again is beneficial in understanding the encryption process. At the end of the day, 

this is of the most importance and this testing structure should be added to the arsenal of other 

statistical tests in the quest for understanding the randomness of encryption for the future. 
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