
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-18-2016

Development of a Data Management System for Grape Breeding Development of a Data Management System for Grape Breeding

Programs Programs

Connor Fortin
chf3908@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Fortin, Connor, "Development of a Data Management System for Grape Breeding Programs" (2016).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9074?utm_source=repository.rit.edu%2Ftheses%2F9074&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Development of a Data Management System for Grape Breeding

Programs

by

Connor Fortin

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Masters of Science in Bioinformatics

College of Science

Thomas H. Gosnell School of Life Sciences

Rochester Institute of Technology

Rochester, NY

May 18, 2016

i

Committee Members:

Michael Osier

Lance Cadle-Davidosn

Gregory Babbitt

Rajendra Raj

ii

Abstract

Grape production is a significant industry in the U.S. and abroad, and is negatively impacted by

diseases such as powdery mildew and downy mildew. Selecting vines that are disease resistant

and have good fruit quality requires organized record-keeping and the ability to find useful

trends in the data. In the Cornell Grape Breeding Program, and many others, data is stored in

outdated systems, excel spreadsheets, and paper books; the need for a new data management

system specific to grapes is prevalent. The Breeding Management System (BMS) is a crop

breeding data management system that is well suited for the organization and storage of breeding

data. The use of the BMS for grape breeding was explored, and several extensions to the

functionality of the BMS were developed. The most significant extension is the design of a

graphical search tool, allowing users to search for vines based on the name of the vine, parents of

the vine, experiments in which the vine appears, and observed values in experiments. An

ontology was defined to organize the experimental data collected, and a pipeline was created to

allow researchers to record data in an audio format, which will be converted into an excel

spreadsheet. The development of the system is successful because it centralizes data storage into

a common format and system, allows for the extraction of relevant experimental and vineyard

data, and allows for the identification of well performing vines over single and multiple traits.

iii

1

Table of Contents

Section Page Number

Introduction 4

Economic Impact of Grape Production 4

Powdery Mildew and its Impact on Grape Production 4

Previous Powdery Mildew Resistance Research Efforts 5

Currently Available Plant Breeding Management Tools 5

Breeding Management System at a High Level 8

Breeding Management System Benefits and Usage 10

Methods 21

 Uploading Data to the BMS 21

 Vine search tool 24

 Search Types in Detail 26

 Trait Filter Processing 29

 Information Management Window 33

 Options Menu 34

 Vine Name Synonyms 35

2

 Report Formatting 37

 Voice-to-spreadsheet 40

 Scripts for Fieldbook Printing 44

Results 45

 BMS Data Upload 45

 Vine Search Tool 47

 Report Formats 57

 Voice-to-spreadsheet 60

 Scripts for Fieldbook Printing 60

Discussion 63

 Graphical Search Tool 63

 Voice-to-spreadsheet 66

 Ontology 67

 Data Entry 69

Citations 71

Appendices 75

3

4

Introduction

Economic Impact of Grape Production

According to a study by the MKF Research Institute, table grapes, wine, and other grape

products contributed 162 billion dollars to the U.S. economy in 2007. This number was reached

by calculating the total revenue from the sale of wine and other grape products and adding this to

the total wages made by those in the grape and wine industry in the same year (MKF Research

LLC). Worldwide, 75,866 square kilometers are used for grape production. Most of this land is

dedicated to wine production, some is used for the production of table grapes, and a small

percentage is used to produce raisins and juice. The area used to grow grapes increases

worldwide by about 2% every year (Tonietto, Jorge, and Alain Carbonneau, 2004). The UN

Food & Agriculture Organization reports that the U.S. passed Italy in 2012 to become the second

highest producer of grapes in the world. China currently leads the world in grape production as

of 2012 with 9,600,000 metric tons of grapes produced in that year (Production of Grape by

countries, 2014).

Powdery Mildew and its Impact on Grape Production

Erysiphe necator is the fungus that causes powdery mildew on all green parts of a grape vine.

Vines infected with the fungus do not produce marketable fruit. Thus, grape breeders and

vineyard managers have an interest in preventing the fungus from infecting vines. Currently, the

most effective way to reduce powdery mildew growth in vineyards is the spraying of fungicides

including sulfur and other chemicals (Bowen, 2014). About 30 million pounds of sulfur are used

by grape growers every year in the United States (USDA-NASS, 2006). Currently, most grape

5

vines that grow market quality fruit have little to no host resistance to the fungus; Vitis vinifera,

the most common species for grape breeding and production because of its high fruit quality, is

very susceptible to fungus and other pests (Alleweldt, G., and J.v. Possingham, 1988).

Previous Powdery Mildew Resistance Research Efforts

Breeding of disease resistance into a grape cultivar is a time consuming process for several

reasons. Because powdery mildew resistance exists primarily in wild Vitis spp. and fruit quality

is best in domesticated V. vinifera, interspecific cross-hybridization is needed to combine

resistance and quality. Breaking the linkage drag between resistance and negative fruit quality

may require several generations. Grapes also have a long generation time of up to several years

between when a grapevine seed is planted and when it will produce seeds for further

propagation. Furthermore, the evaluation of some traits and resistances may take several years

(Dalbo, Weeden, Wilcox, Reisch 2001, Fisher et al. 2004) and require specific expertise and

equipment. For these reasons it is helpful to develop genetic markers associated with disease

resistance and other desirable traits, as well as negative traits, to select elite offspring for further

evaluation as soon as enough plant material exists for genotyping.

Over the past few years, research has been done on several fronts using modern techniques to

identify sources of resistance and susceptibility in grapes to the fungus. Fung et al. showed that

vines susceptible to powdery mildew undergo defense-related changes in the transcriptome when

infected; resistant vines do not undergo these changes (Fung et al., 2008). Several other groups

have used genetic mapping to identify trait loci involved with resistance to various fungi

including powdery mildew (e.g., Welter et al., 2007; Murat et al., 2007). The identification of the

REN4 locus for powdery mildew resistance was published by members of the VitisGen project in

6

2011 (Mahanil et al., 2011). Vines carrying this resistance locus support no development of

powdery mildew regardless of race or tissue type (Ramming et al., 2011). Researchers in the

VitisGen project are using high throughput genotyping by-sequencing techniques to identify new

genetic markers associated with powdery mildew resistance and other traits. In addition they are

using simple sequence repeat markers linked with known resistance loci to select disease

resistant parents and progeny. They hope to use these techniques to develop cultivars that

produce market quality fruit, and have a high natural resistance to powdery mildew (Barbra,

2014).

The identification of multiple resistance sources with different mechanisms, and breeding several

of these loci into a cultivar is important for the long term durability of the resistance genes.

Powdery mildew can adapt within a few years to the resistance of a single locus, creating a

virulent strain of the fungus, and reducing the efficacy of the individual resistance gene (Gohre

and Robaztek, 2008).

Currently Available Plant Breeding Management Tools

Currently, the methods for recording data pertinent to grape breeding, especially phenotypic

data, are unique to each breeder. Breeders may submit excel spreadsheets formatted differently,

have different names for certain traits, use different scales for measuring traits, submit text

documents, and in some cases submit hand written phenotypic data to the VitisGen project. Much

of the phenotypic data remains in the format it was originally submitted in, making organization,

comparison, and analysis of the data very difficult. In order to effectively utilize and curate the

data, the data must be converted to a common format, and stored in a system that has the

following important properties: easy to enter new germplasm and fieldmaps but maintain

7

historical records of germplasm and plantings, easy to update existing records, easy to ensure

integrity of data and restrict access, easy to generate reports of existing vines, fieldmaps, and

reports based on trait and genotype data, and the ability to export data in a format that facilitates

statistical or genetic analysis (The IBP, 2015).

The most popular commercially available breeding software available today is Agrobase. Listed

on its website as supported crops are sorghum, sunflowers, groundnuts, potatoes, canola, cotton,

forages, vegetables, flowers, and oil palm, though it mentions other breeders use the software for

other crops. Agrobase organizes data into plant research trials, and statistical analysis can be

performed on each trial, and on multiple trials together. There are currently many optional

analysis modules available to suit a large variety of needs. Agrobase is built using a MySQL

architecture, and users interact with it through a graphical user interface. Data can be exported

into Microsoft Excel spreadsheets, ASCII plaintext, and a variety of other formats.

Unfortunately, this system does not support grape breeding, and thus is not suitable for our use

(Mulitze, 1990).

Project Unity, a breeding management system developed by Phenome Networks, provides

another potential platform to store, retrieve, and analyze plant breeding data. This software

solution is unique in that it encourages users to release their data to all other users of the software

for browsing and analysis, though it expects typical users to share data only after they publish

their findings. Unfortunately, Phenome does not and cannot guarantee the integrity of data from

other users, which may limit its usefulness unless the data comes from known high quality

sources. The software, including each breeder’s data, is hosted online, thus no software needs to

be installed; all interaction with Project Unity is through a web browser. Data is stored in

Amazon’s cloud environment. An internet connection is required to access data and analysis

8

tools, which in most cases will not be an issue. Unfortunately, many researchers and companies

are unwilling to store their data on servers that they do not control, even though Phenome

pledges absolute data privacy and claims no ownership of your data (Unity Project, 2004).

E-Brida may be one of the more basic breeding management tools available online. Unlike most

other published breeding management tools, it includes no data analysis support. It specializes in

pedigree and ancestor data storage, viewing and retrieval. E-Brida does not appear to offer

support for the storage of genetic data. This limits E-Brida’s usefulness for many breeding

programs who want to track genetic data, and do not want to spread the data out over multiple

pieces of software, or require breeders to learn to use multiple breeding management tools (E-

Brida).

Breeding Management System at a High Level

Participants on the VitisGen project have elected to manage data using the Breeding

Management System (BMS). The BMS is “a web-based solution for crop breeders, where

registered users can access purpose-built tools to manage their plant breeding projects, obtain

support and consulting services, find new knowledge, access training resources and discuss

pertinent issues with their peers in various communities of practice.” This system, initially

funded by the Bill and Melinda Gates Foundation, has buy-in from a diverse group of breeders

who are committed to using the software, which is currently in development, for the future of

their breeding programs. The system is built on a MySQL architecture and currently only

supports local hosting. The BMS allows for thorough definition of trait ontologies, and when

exporting trait data, a metadata tab is generated, populated with useful details of the trait

9

collection, units, description, and collection method. Built in data analysis tools allow for easy

computation to be performed with data in the BMS.

The BMS comes with built-in support for a variety of crops including chickpeas, wheat, maize,

and groundnuts. The built-in support includes pre-built variable lists and ontologies relevant to

each crop, pre-built template files for importing germplasm lists and nurseries, and access to

publically available germplasm records. Grape breeding does not have built-in support from the

BMS. This means that variable lists and ontologies must be custom-built, and template files must

be built manually by the user, or borrowed from other crops. Additional complexities may arise

from grapevine being a woody perennial subject to different breeding practices than the built-in

crops, which are all annuals.

Understanding the general structure of data in the BMS is important to understanding how it can

be used in a breeding program. The BMS is installed locally on a computer; the BMS does not

current support connection over a network. The BMS runs in a web browser, and accesses a

MySQL database which serves as the model. To gain access to the BMS through the webpage, a

user must create an account with a username and password. Anyone with access to the computer

can create an account. Users with an account can create breeding programs in the BMS (Fig. 1).

Breeding programs contain all of the variables, experimental data, vine information, and other

data. The creator of the program can specify other users to have access to read and write data in

the program. A user can have access to any number of programs in the BMS.

10

Figure 1: BMS Home Screen

Image of the Home Screen of the BMS. Users can select which program they would like to work with, provided they

have the proper permissions.

All of the data uploaded to the BMS must be entered via excel spreadsheets. When uploading

experimental data, a template spreadsheet can be exported from the BMS into which the

experimental data can be pasted. This spreadsheet is then uploaded to the BMS which populates

the MySQL database with data from the spreadsheet. When uploading information about vines,

there are template files that come with the software, and can be downloaded from the BMS

website.

Breeding Management System Benefits and Usage

The BMS has several advantages over other data management systems. Updates, patches, and

product support will be ongoing, which is not the type of support that would be available had an

independent system been developed from scratch for the Cornell Grape Breeding Program.

Secondly, the detailed trait ontology and variable management system (Fig. 2) built into the

11

BMS will be useful for standardizing the data collection process across public grape breeding

programs.

Figure 2: BMS Variable and Ontology Management Screen

Shown below is the BMS screen to create or edit ontology variables. Entered are the details of the BERRY_pH

variable. The ontology location is selected in the section labeled “Properties and Trait Classes”. The specific trait for

the variable is denoted in the section labeled “Property”. The method and scale of the variable can be seen in the

section labeled “Methods and Scales”. The “Role” dropdown list tells the BMS where to store the variable in the

MySQL database, and the “Data Type” and “Valid Values” boxes allow specifications for the types of data

expected.

The trait ontology is part of a larger variable management system which allows breeders to

specifically define the measurements they are recording for their breeding programs. Each

variable has three primary components: a trait to be measured, a method for measuring the trait,

12

and a scale on which the measurement is taken. A variable is defined by a unique combination

of these characteristics. For example, one could define a variable for measuring grape berry

weight to be the weight of twenty dry berries on the gram scale. A separate variable could put the

same trait and method on the ounce scale.

The concept of defining variables in this fashion addresses a deeper data collection problem that

occurs in breeding programs. There is great overlap in the types of traits that breeders are

interested in measuring, such as disease resistance, cold tolerance, and taste, but there are

differences in the way each breeder measures and codifies the data they collect. Consider the

following two data scales. Cornell codifies powdery mildew infection ratings on a five-point

scale wherein 1 = no infection and 5 = full infection. On occasion, Cornell uses a four point scale

for powdery mildew infection. Another breeding program uses a seven-point scale for the same

trait where 1 = no and 7 = full infection. Additionally, the different breeders may consider

different grape tissues in their infection rating; Cornell may only consider the leaves and berries,

where another program may consider the leaves, berries, and rachis. There are examples of these

differences over many other traits that are evaluated by the breeding programs. Combining data

from many programs to gain new insights into disease resistance and other traits is a primary

goal of the VitisGen project, but the combination of different methods of rating and different

rating scales makes comparison of data difficult or inappropriate.

Selecting a trait from the trait ontology is part of the variable definition process in the BMS.

When creating a new variable, you may select an existing trait or create new trait. Creating a new

trait involves describing what trait is being created, and where in the trait ontology it will exist.

This organizes variables so that they are easy to find and allows users to easily find similar traits

that they may want to evaluate.

13

There are several other features of a variable that need to be defined as well. A general name and

description of the variable is required. We have tried to incorporate the trait, method, and scale

into the name of the variable. The format of data being stored in the variable, such as text,

numbers, and dates must also be defined. Minimum and maximum values can be specified, or a

set of exact values to choose from. New methods and scales that do not exist in the BMS can be

created as needed.

There are three main data structures for storing data in the BMS. A list, nursery, and trial are

used to store breeding program data. The most basic of the data structures is the list (Fig. 3),

which is simply a list of vines. Lists are commonly uploaded from an excel spreadsheet, and can

be used to store the vines that are in a vineyard, to store vines for which data was collected in a

certain experiment, or to store any grouping of vines however concrete or abstract. Every nursery

and trial must have an associated list of vines in the nursery or trial. This relationship is enforced

and is the primary use of lists.

14

Figure 3: Vine List Example

This image shows the single-dimensional nature of a vine list.

The second data structure to consider is a nursery (Fig. 4). A nursery allows a breeder to specify

a location in which the vines are stored, environmental information about the location (e.g.,

weather and soil conditions), and other location descriptors. A nursery must also have a list of

germplasm associated with it, most typically selected from an existing list in the BMS, described

15

above. Typically, each nursery has a unique list of vines for which observations will be taken.

This can be uploaded from an excel spreadsheet.

Figure 4: BMS Nursery Example

Shown here is an example data sheet for a nursery in the BMS. “ENTRY_NO” and “PLOT_NO” are assigned by the

BMS, and are uninteresting. “DESIGNATION” holds the name of the vine and “CROSS” holds the parental

information for the vine. “VINE_ROW” and “VINE_”NUMBERS” hold the location data for each vine. The overall

format of a nursery is not different from an excel spreadsheet. Note that the traits observed here are traits that require

only one observation.

The nursery data structure allows for the specification of multiple traits to be collected for the

vines listed. There are several variable types. The most common variable is the observation

variate, which is observed in the nursery. These variables can be selected by searching for the

name of the trait that the variable is designed to describe, or by browsing the ontology to find the

16

specific trait with which the variable is associated. The other common type of trait is the

germplasm descriptor. This type of trait may be an accession number for the vine, an alternate

name for the vine, or other such descriptor. Because germplasm descriptors are stored in a

different location in the MySQL database, extracting the information is more complicated than

an observation variate.

The most restrictive feature of a nursery is the lack of support for observation replications. Each

vine is permitted only one observation per variable. A researcher could not use a nursery to store

disease ratings for a vine for different times in the growing season. Instead, nurseries store

vineyard records and traits that require only one observation, such as the location of the vines in

a vineyard, vine accession numbers, genetic information for the vine, and the color of the berries.

When creating a nursery, an existing nursery in the BMS can be selected as a template. This will

copy all variables, environment, and location information from the existing nursery into the new

nursery. Data from the existing nursery will not be copied, but the list of variables for which to

collect data will be copied; the list of vines will also not be copied from the existing nursery.

After updating the location of the nursery, the vine list and observation data can be added. This

approach greatly reduces the time to create a nursery, and ensures uniform information and

format across all nurseries.

The final data structure is the trial (Fig. 5). A trial is very similar to a nursery in that it allows for

the specification of location and environmental factors, requires that a list of vines be associated

with it, and requires that certain variables be collected in it. As with nurseries, it is rare to re-use

a list from a previous trial, as each trial typically has a different list of vines.

17

Figure 5: BMS Trial Example

Shown here is an image of a BMS Trial measurements screen. This is similar to a nursery; the primary difference is

the presence of the “REP_NO” column, which allows for multiple observations of a trait for each vine in the trial.

The overall format is not different from an excel spreadsheet. Note that the traits observed here are traits that can

have multiple observations, and are not static for a vine.

A trial allows for the specification of replication numbers for an experiment. The replication

number indicates how many observations of each variable will be collected for each vine. This

distinguishes a trial from a nursery, and makes trials the more appropriate data structure for

storing experimental data that require multiple observations. All experimental data are stored in

trials.

18

Like nurseries, trials permit the specification of an existing trial as a template. This will copy all

of the location information, environmental information, and variables from the previous trial into

the newly created trial. Like the nursery, the data and vine list will not be copied from the

template trial. This is useful in many situations as experiments for disease ratings, cold tolerance,

and other traits are repeated each year, and the same variables are assessed. This allows easy

creation of a new trial from an existing one to maintain consistency between the type of

information collected and the format of the trial.

Nurseries and trials are organized into folders, which allow organization by year or other

parameter. Nurseries and trials are browsed for separately, but the folders are visible in either

browsing view. This is analogous to only being able to see excel sheets when browsing the file

system from Microsoft Excel, and only seeing Word documents when browsing the file system

in Microsoft Word.

Breeding Management System Shortcomings

There are numerous shortcoming to the BMS that the usefulness of the software, and need to be

addressed. The major shortcoming of the BMS is the lack of a good search and reporting feature.

A search feature does exist in the BMS and allows for the searching of vines by certain traits.

However, the search is not functional when the BMS is configured for a general crop (i.e., not a

built-in crop), which is the case with here. The BMS can be configured with a choice of several

different databases specific to certain crops such as corn, groundnuts, and squash which contain

breeding methods, and other such information specific to that crop. In the case that there is no

specific database for a crop, a general crop database can be chosen. The search feature is not

functional when the BMS is configured with a general crop database.

19

Even if the search function was operational for a general crop, it would not be sufficient; the

breeders have desired functionality that is not met by the BMS search tool. The searching

capabilities provided by the BMS do not provide the user with a way to identify all of the

nurseries trials in which the vine can be found. There is no way to identify all of the vines with a

certain parent or set of parents. There is no way to correct naming irregularities (misspellings,

improperly formatted names), and there is no way to limit the existing search feature to a certain

range of years. The years with which one pulls data from for the search is important, and

environmental conditions change from year to year, and trait evaluation practices change over

time. The breeding team at Cornell expressed a strong desire to be able to limit their searches to

certain ranges of years. This is to control for climate change over several years, and the fact that

for certain traits older data may not be as reliable as more recent data.

Additionally, there is no way to generate a report from the searches than can be conducted in the

BMS. The trait search supported by the BMS returns a list of vines satisfying the specified

criteria, but there is no way to export the information for the listed vines. The only way to export

data from the BMS is by navigating to each trial or nursery, and exporting the excel sheet that

represents that dataset. The breeders at Cornell have expressed a strong desire to be able to

export all of the data, or data across multiple nurseries and trials for given vines. This

functionality is not supported by the BMS. The trial and nursery reports generated by the BMS

are well designed for extracting the data from a specific dataset, but not for consolidating

information from multiple datasets.

One of the features that the breeding team likes the most is the metadata sheet that is exported in

the report. This sheet contains all of the environmental and location data specified for the nursery

or trial, and contains details for each variable collected in the nursery or trial. The variable

20

information includes the description, trait being assessed, scale, method, and valid values if

applicable.

There were a number of technical problems with the BMS that have been addressed in software

releases since this project was initiated in June 2013. First, it was previously impossible to delete

a trial or nursery. If a mistake was made, one solution was to move the trial or nursery into a

mistakes folder. A software update allowed for the deletion of trials and nurseries, but the name

for the trial or nursery was not freed in the MySQL database. If a mistake was made in the trial

or nursery, a new one had to be made with a slightly different name. Recently, it is now possible

to fully delete a trial or nursery.

The need for a voice-to-spreadsheet software arises from a desire from the breeders to be able to

record data on a medium that is not paper. Recording data on paper can be difficult in inclement

weather. Additionally, a considerable amount of time must be spent recording the observations

on paper and then transcribing the observations to a spreadsheet or other electronic medium, a

process that is error-prone. Other data recording options were considered, but it was determined

that audio recording would be the easiest to implement and most convenient method of data

recording. The voice-to-spreadsheet software would also provide a convenient method to digitize

paper records. The voice-to-spreadsheet software can be used to create spreadsheets in a format

which can be easily uploaded to the BMS, with the goal of saving time and improving accuracy

when compared to hand-entering data into a spreadsheet.

The development of scripts to create fieldbooks was a key component of a data system being

developed for the breeders. Fielbooks contain information about each vine planted in a vineyard,

and can be used to record notes about vines. Should the audio recording of notes fail to work, the

21

fieldbooks will serve as an important backup as a data recording medium. The use of the BMS to

store vineyard information will render previous scripts to produce the fieldbooks useless; the

development of new scripts to produce fieldbooks from data stored in the BMS is a necessary

component of the new data system. These scripts can be produced from either the search tool, or

by directly retrieving data via the BMS user interface.

Methods

Uploading Data to the BMS

The process of entering data into the BMS starts by creating a trial or nursery. An existing trial

or nursery can be used as a template assuming the type of experiment already exists as a trial or

nursery in the BMS. Next a vine list must be created to associate with the study. The easiest way

to do this is to navigate to a list already in the BMS and export it. This will create an excel

representation of the list in the computer’s download folder. The information in the excel sheet

can simply be deleted to create a template file. This includes the names of vines, ID numbers,

parental information, and metadata about the list such as name and description. Next, the names

of the vines in the study need to be copied into the excel sheet in the correct column. The

parental information for the vines must be pasted into the spreadsheet in the format “[female

parent]/[male parent]”. This may require the concatenation of columns if the parental

information is stored separately, or a search-and-replace operation of the delaminating character

is not a forward slash (/). The Entry column must be filled with incrementing numbers starting at

1, and the GID column should be populated with zeros. The name and description for the list

must be specified in the metadata tab; the name must not be already in use by a list previously

existing in the BMS. The list can then be saved and uploaded to the BMS.

22

Once the list for the trial or nursery has been saved, a fieldbook for the dataset can be exported.

The fieldbook contains a metadata tab and a data tab. The fieldbook data tab has the variables

across the top row of the sheet, and the names of the vines descending down the left column.

Sorting by the name of the vine in the fieldbook data tab, and in the sheet containing the data will

sort the vines in a matching order. The data can then be pasted into the fieldbook, saved, and

uploaded to the BMS. The trial or nursery can then be saved in the appropriate folder.

The following MySQL (Fig. 6) query was run to assess how many studies have been uploaded to

the BMS.

select COUNT(DISTINCT REPLACE(REPLACE(name, '-PLOTDATA', ''), '-

ENVIRONMENT', '')) as 'STUDY_NAME' from project;

Please note that each study has three entries in the table “project”, two of which have “-

PLOTDATA” or “-ENVIRONMENT” appended on the end. Furthermore, each folder has two

entries in the list, and these counts were subtracted by hand.

The following query was used to count how many unique vines have been uploaded to the BMS.

select COUNT(DISTINCT desig) from LISTDATA;

A method in the vine search tool below was adapted to also report the total number of

observations uploaded to the BMS.

The following query was used to extract all variables in the BMS:

select stdvar_name as 'NAME', stdvar_definition as 'DEFINITION', property as 'PROPERTY',

method as 'METHOD', scale as 'SCALE' from standard_variable_details;

23

The results of this query combined with ontology definitions in a separate spreadsheet were used

to calculate the total amount of defined variables and variables with observations or the BMS..

Please note the distance between certain tables such as “germplasm”, where information about

each vine is stored, and “phenotype” where information about each observation is stored.(Fig 6.)

The motivation for a graphical interface for the search tool (Fig. 7) was to create a user-friendly

way to search the data in the Breeding Management System.

24

Vine search tool

Figure 6: General BMS Schema

Shown here is the general schema for the BMS. Some tables have been ommitted, but all major tables are included.

Note the large number of tables that must be joined to gather information for a vine (GERMPLASM table), an study

(PROJECT, PROJECTPROP tables), a measurement (PHENOTYPE table), and the trait observed (CV_TERM

table). The complexity of the schema results in long wait times for queries to return results.

25

Figure 7: Search Tool General Workflow

Shown here is an image of the general program flow of the search tool. Users can toggle between Text Search Mode

and Trait Search Mode. A search can be conducted from Text Search Mode by the name, parents, or studies a vine

appears in. A list of vines is retrieved from the database based on the search criteria. The list of vines is given to the

Information Management Window where users can specify information to include in the report, including vines not

returned from the initial query. A second query is used to extract relevant information for each vine; this information

is passed to the report formatting script, which outputs a tab-delimited file with the desired information and proper

format.

Trait Search mode allows for the specification of filters to search against. These filters are processed, and then a vine

26

list is generated by querying the database. This vine list is passed to the Information Management Window

.

The trait search window allows users to create filters by which to search for traits. In this version

of the search tool, the user can supply two extra options to a given filter. First, the user can

supply a year range. When supplied, only values that come from studies that fall within the year

range will be considered. If the year range specified is 2012-2015, only values from the years

2012, 2013, 2014, and 2015 will be considered. The user can select the type of filter from two

options: Single Value and Average Value. Single value filters can be passed by any single value

that meets the filter requirements. Average Value filters consider the average value of a vine for

a given trait. The average value must pass the filter requirements.

A general message method is called to handle most exceptions. This will create a window to

display the message to the user. There is a console that opens with the program, and minimal

standard output is produced there. This output informs the user of what query is running, and the

completion percentage of report generation.

Search Types in Detail

The specifics of each search type are documented in the technical documentation (Appendix 23),

but they will be reviewed in a general sense here.

Name Search is one of the primary search methods supported by the tool. When a name is

entered, two variations of the name are generated: one with periods, and one with underscores to

addresses the naming convention irregularities. These strings are passed through a function to

27

remove any MySQL wildcard characters. The WHERE clause of the MySQL uses a “like”

operator, and appends the “%” wildcard character to the end of the string to find all names that

begin with the string the user provided. What is returned is a list of all vines that match the

search criteria, along with their internal ID numbers. The list of vines is used to populate the list

of vines in the Information Management Window.

Parental Search mode allows users to search for vines by the names of their parents. Parental

information is coded as “[female parent]/[male parent]” in a single column of a MySQL table.

Users can enter the full parentage in the same format, or enter a whole or partial parent name. In

the case of full parentage being supplied, only vines which parentage matches the entire

parentage entered will be returned. In the case of a single parent or partial parent being supplied,

vines that have a parent that matches the full or partial parent as either a male or female parent

will be returned. The result of the search is a list of vines which satisfy the requirements of the

parental search. These vines are used to populate the list of vines in the Information Management

Window.

The Vineyard Search mode allows for the searching of vines based on the trials and nurseries in

which the vines appear. Users can select which trial or nursery to search for by specifying the

name of the study from a list. The list of studies in the BMS is retrieved from a query that is

executed when the program is launched. Users can then start to enter the name of a study. As

more characters are entered, the possible studies in the drop-down list is reduced to only those

studies that start with the characters entered by the user. The first characters of most studies

reflect the year in which they were conducted. The expected functionality is that the user will

enter these characters first, and the contents of the drop-down list will be reduced to only studies

in the year entered. From there, the user can select the appropriate study.

28

Once a study is selected from the list or manually entered in full, the user can search for the

study. This will prompt the program to will retrieve all vines from the database that occur in the

selected study. These vines will populate the vine list window in the Information Management

Screen.

Filters are created in the Trait Search mode. Each filter has an operator, value, trait, and type.

Optionally, a range of years can be specified. When a filter is created, there are several checks to

ensure that the filter is valid. First, all four mandatory fields (trait, operator, value, type) must be

defined. Second, the operator type is checked to ensure that it is one of the valid operators from

the dropdown list. This check is a holdover from when the search tool was run on the command

line and the user could, in theory, enter any set of characters for the operator. Since the operator

is selected from a dropdown list now, there is likely no way to fail the check. The contents of

each field are checked for MySQL wildcard characters, and will be rejected if they match the

specified characters. The trait must be an existing trait in the database. The software maintains a

list of all existing traits in the database; this list is retrieved from a query that is performed when

the program is launched. If the trait does not exist in this list, the filter will be rejected. If the

content of the value entry box is not recognized as a number, it must be surrounded in quotes.

The reasoning behind this is to force users to acknowledge that they entered characters that are

not numbers into the value box to help prevent them from creating un-passable filters (e.g.

Height < i). If the operators “like” or “not like” are selected, the value must be text. Finally, the

year range must be in the format ####-#### where the year on the left is less than or equal to the

year on the right. Each of the above checks will produce a specific error message to help the user

fix the problem.

Trait Filter Processing

29

The processing of the filters (Fig. 8) was designed carefully to allow for any combination of

filters and for minimum time to return results. The first step of processing occurs by simply

splitting all of the filters entered into two groups: simple filters which are of type “Single_Value”

and have no year specifications and complex filters which are of type “Average” and/or have a

year specification. The simple filters are processed first.

30

Figure 8: Trait Filter Processing Flow

Shown here is the trait filter processing flow. Filters are initially sorted into complex and simple filters by several

attributes. Simple filters are organized into groups so that no group contains a duplicate trait type. Simple filter

groups are then converted into MySQL queries, and run in the database. A list of vines is calculated that passed all

simple filters. Complex filters are processed on the vines that passed the simple filtering. Each complex filter

requires its own database query. If there are no simple filters, complex filters will be processed against every vine in

the database. A final list of vines that passed all filters is returned.

31

In order to understand how simple filters are processed, it is necessary to understand how the

MySQL query for the simple filters works. The WHERE clause of the query is constructed from

the filter details. Many filters can be part of the same WHERE clause. The filters are linked by

“or” operators, thus an observation of a trait can pass any one of the filters. The query then

counts the number of unique traits with an observation that passed a filter for each vine. Each

row of the query results contain the name of the vine and the number of unique traits with an

observation that passed a filter. If a vine passed all filters, the number of unique traits that passed

a filter will be equal to be total number of filters. If the number of unique traits is less, the vine

did not pass.

With the above algorithm, there is no way to determine which filter a trait passed if there are

multiple filters for the same trait, as only the unique traits that pass a filter are counted. For

example, if there are two filters for the notes trait, a vine can have observations of notes which

satisfy both filters, but this will only be counted once by the query, and the vine would ultimately

fail the set of filters.

The solution is to create groups of filters with unique traits. Before adding a filter to a group, the

program checks that no filters exist in the group with the same trait. If there are none, the filter is

added to the group. If there is a duplicate, the filter is considered for the next group. If there are

no groups remaining, a new group is created and the filter is added to it. Each group is processed

as its own query, and the number of passed filters is summed from all groups processed. The sum

of filters passed from all groups must be equal to the total number of simple filters to pass. If the

sum from all groups is less, it indicates the vine one or more filters, and is not returned from the

trait query. The list of vines that passed all simple filters is used to expedite the process of the

complex filters.

32

The complex filters are of Average type and/or have a year range specification. The Average

type indicates that the average value of the trait in question will be taken for all observations of

the trait for each vine, and then compared to the operator and value. This takes a considerable

amount of time. To expedite the process, the average value will only be taken for vines that pass

the simple filters. This may reduce the number of vines for which an average needs to be taken

from thousands to less than a dozen in some cases – a huge increase in speed for the query. The

average will still be taken for all vines if no simple filters are created. For this reason it is

recommended that an analogous simple filter be created for every average filter. The purpose of

the simple filter is to eliminate all vines that have no possibility of passing the average filter

before the average is taken. A filter that removes all vines that have zero observations of the trait

exceeding the average value desired cannot pass the average filter, and time should not be wasted

computing their average value for the trait in question. The program will detect if a user has

created an average filter with no analogous simple filter, and will ask the user if one should be

created automatically; in almost all cases the user should answer in the affirmative.

Filters which are of type “Single_Value” but have a year range are considered complex filters

because they cannot be grouped into the MySQL queries with filters that have no year

requirement. The year requirement is not part of the MySQL query for the filter. For these filters,

all observations that pass the trait, operator, and value requirements are returned along with the

name of the study from which they occur. The year is extracted from the name of the study, and

must be within the year range supplied. The average is then computed from the remaining values

if the filter is of Average type, or any of the values that pass the filter requirements will pass a

“Single_Value” filter.

The complex filters are processed individually. If a vine does not pass a complex filter, it is

33

removed from consideration and is not processed in the remaining complex filters. Vines that

pass all complex filters must have also passed all existing simple filters. These vines populate the

vine list in the Information Management Window.

Information Management Window

The information management window is created after all search types. All search types produce

a list of vines which satisfy the search, and are used to populate the vine list on the left side of

the information management window. Originally, this window was only available after a Trait

Search, but it seemed natural and useful for all searches to produce this window, and each search

method was adapted to do so. There are several options for including or excluding data in the

report and specifying formatting options for the report here.

The list of vines that will be included in the report can be altered by using the drop-down box in

the “Select Vines for Report” Box. The contents of the drop-down list will be reduced to reflect

the characters the user enters into the box. The user can then specify to add or remove a vine

from the list. Removing a vine that is not in the list or adding a vine that is already in the list will

have no effect. Users may want to add vines to the list to compare against vines that were

returned from the search.

Users can then specify which studies and traits to include in the report (Both images). From the

trait selection window, users can add or remove specific traits from the list, add all traits to the

list, or remove all traits from the list. Only traits listed in this window will be included in the

report, so users can specify exactly what traits they would like information for. The study

window functions in the exact same way with one exception. The entries in the study list which

are only numbers are folders in the BMS. Including a folder will include all studies that are

34

located in the folder. The software maintains a list of traits and studies to include in the final

report. These are written to temporary files for the report-making script. Traits or studies which

do not occur in these files will not be included in the final report.

Users have the options to specify the format of the final report. By selecting the check-boxes

labeled “Averages Only” and/or “Analysis Format” they can decide select the format they desire.

The format requested is passed as an option to the report making script.

When the “Save” button is clicked, the user will be able to specify a file in which to save the

final report. The program then processes the list of vines selected for the report. All information

for each vine is pulled from the database, and the raw MySQL is written to a temporary file for

the report formatting script to use. The file name, formatting options, and traits and studies to

include are passed to the report formatting script which constructs the report.

Retrieving the data for each vine is the bottleneck in the search process. Originally, this retrieval

was done before the generation of the Information Management Window; for large queries, this

left users waiting an unreasonable amount of time to even see what vines were returned from the

search. Instead, users should know exactly what vines and information would be included in the

report before most of the computation is performed.

Options Menu

From the options menu, a user can specify database connection information, update the trait

values information, and manage vine name synonyms. Specifying database connections involves

altering the hostname, port, username, and database name which the software uses to connect to

the BMS’s MySQL database. These values are written to a file when they are saved, and are read

in from the file when the program is launched. The most common item a user may wish to

35

change is the database name, as this will allow them to search through the data of another

breeding program in the BMS. Note that there is no password field, as none is required by the

BMS. A password requirement could be easily created if the permissions change. In this case, the

password would be stored in memory for a given program session, and not written to a file under

any circumstance. The user would have to enter the password each time a connection setting is

changed.

The “Update Trait Info” button will prompt the program to re-calculate the values in the “Trait

Values” window on the Trait Search Screen. This information includes the average value of the

trait for all vines, the standard deviation, minimum and maximum values observed, the number

of vines with an observation, and the total number of observations in the database. In the case

that observations are stored as text rather than numbers, examples of observations are displayed

instead of statistical information. This data is stored in a text file, and loaded into memory when

the program is launched. Calculating this information takes a considerable amount of time, and

would lead to user frustration if the calculation occurred every time the program was launched,

or every time a trait was selected in the Trait Search window. For this reason, the user can decide

when the update occurs. The user is recommended to update the information after data is entered

into the BMS.

Vine Name Synonyms

Vine Synonyms are a solution to a naming problem common in grape breeding. Vines may be

assigned a new name if the variety is released for public use or over time as one commercial

variety is disseminated and marketed under various names. Additionally, extra information may

be appended to names during data uploads, such as a specific clone (sport) of the vine or passport

36

information reflecting its source. In any of these cases, the different names represent the same

genotype, and all data under synonymous names should be considered for searches and outputted

to reports when necessary. The name of the vine is assumed by the BMS and by the program

described here to be a unique indicator of genotype. In these special cases, this assumption is

broken and must be manually corrected by the user.

To create a synonym, the user must specify the undesirable name as the Hidden Name. The

correct name is specified by the Shown Name. Adding the flag “---“ at the end of a Hidden

Name tells to program to ignore all characters at the end of a name. The Synonym relationship

represents a many-to-one relationship between hidden names and shown names. That is, many

hidden names can be mapped to the same shown name, but one hidden name cannot be mapped

to multiple shown names. These relationships are saved in a text file, and loaded when the

program is launched. When a synonym is created or removed, the “Current Synonyms” pane on

the left is updated to reflect the current synonyms that the program recognizes. The synonyms

are sorted alphanumerically on the hidden name.

These synonyms are used to correct the names of vines in multiple locations in the program’s

functionality. First, the name for all data checked in the trait search is checked against a list of

hidden names. If the name associated with the data is a hidden name, it is corrected to the shown

name so that the shown name is returned from the search. In this way, all data under all names

can be used to pass trait filters. The Information Management Window checks to make sure that

no hidden names are displayed in the vine name window. Any hidden name passed to it will be

replaced with the correct shown name. When adding vines in the “Select Vines for Report” Box,

if a hidden name is selected to be added from the list, the shown name will be added instead.

Similarly, if a hidden name is selected to be removed from the list, the shown name that actually

37

exists in the list will be removed. Finally, when the user decides to create the report, the list of

vines is passed to a function to retrieve all data for the vines. This function adds necessary

hidden names or shown names to the list of vines to conduct queries so that all information is

retrieved for the report. The report making script corrects all hidden names to shown names as

well.

The Search Tool eliminates the possibility of cycles by only looking one step forward or

backwards in the relationship. For example, if a hidden name is encountered, data for the shown

name, and other hidden names that point to the shown name will be drawn. If a shown name is

encountered, all date from all hidden names will be drawn. In no case will the program check to

see if a shown name is also a hidden name, thus the possibility of chaining synonyms is

eliminated.

Report Formatting

Formatting the output (Fig. 9) became an important issue as the raw MySQL results were not

readable or useful for a breeder. The first iteration of the formatting was to organize the report in

the same way that the BMS stores data. This involves grouping all observations with the same

“RELATED_IDENTIFIER” onto the same line in the report. This would later become a

selectable format for the reports. Using this format is recommended only when the results of a

single nursery or trial are being reported. Otherwise, breeders desire a format which shows well-

organized data for each individual vine.

38

Figure 9: Report Formatting Program Flow

Shown here is the program flow for the report making script. The script takes a number of inputs which include raw

MySQL output, a list of studies to include in the report, a list of traits to include in the report, and formatting

options. First the raw MySQL output is read in and organized in program memory. Data is filtered by the study and

trait it appears in. Averages are calculated across vines and traits if specified in the formatting options. Data is then

organized and converted into strings in different ways depending on whether normal or analysis format was

specified. The strings are then printed to a file as the final output.

39

The report is broken up into sections for each vine, and subsections for each trial or nursery the

vine appears in. For each trial or nursery, the variables collected are listed across a row. The

variables are first sorted by numeric or text based information, with a notes column always

appearing as the last variable (the length of the notes section can be very long). Each group of

variables is alphabetized. Observations for each variable appear in the column below the

variable. The subsections for trials and nurseries are sorted based on the data in which they

occur; the date is extracted from the name of the study. At the end of the report, the variables that

appear in the report are listed. The variables are sorted by type and alphabetized as before. The

description and scale of the variable are also listed to provide the reader with more information

about each variable.

Feedback to this style of report indicated that the high number of observations reported for each

vine can make identifying important trends difficult. For this reason, a final averages format was

created, which also contains sections for each vine as before. In this report though, there are no

subsections for trials and nurseries. Instead, the average value of each variable is calculated for a

vine, and displayed in the report. When a text-based variable is encountered, an observation from

the most recent study available is used. The order of the variables is determined through the

same sorting that has been described above. Appended at the end of the name of each variable is

the number of observations that were used to calculate the average value. The purpose of the

report is to show the general performance for each vine over the variables that have been

observed for it.

When the analysis and average report options are both specified, the vines are displayed

descending in the left-most column of the excel sheet. All of the variables across all vines are

sorted according to the previously stated rules and displayed across the top row of the sheet. The

40

average value of each variable for each vine is displayed in the appropriate cell. The number of

observations that were used to calculate each average value is not displayed.

The report formatting script is called by the graphical search tool. Once the user decides to save a

report, a raw MySQL report is saved in a temporary file for the report-making function. The list

of studies and traits to include in the report are also included in temporary files, and the

formatting options are specified on the command-line. The search tool will remove the

temporary files once the report is made, or when the program is launched.

Voice-to-spreadsheet

The voice-to-spreadsheet pipeline (Fig. 10) allows data recorded in an audio format to be

converted to an excel spreadsheet. The pipeline was developed with the use of Dragon Software,

though any voice-to-text software could be used.

The first step in the pipeline is the audio recording of data. This must be done in a structured

manner so that the resulting text can be parsed by software. The requirements for this pipeline

are that the name of the vine, location, or some other identifying information about a sample be

spoken to identify the sample. Next, the name of the trait being observed should be spoken, as

well as a value for the trait. The pipeline works best when numerical scales are used for traits,

though there is support for binary traits and notes fields. The speaker should speak slowly and

clearly for the best translation to text.

The audio can be recorded on any recording device. A cellphone and USB microphone were

used in testing. Higher quality recording equipment may produce better results. This may be

desired for noisy environments; wind, mechanical background noise, and other interference are

41

likely to limit the ability of Dragon to translate the recording. A key component of the recording

device is the ability to transfer the audio files to a computer for Dragon to use.

Once the audio file has been uploaded to the computer, Dragon can be used to translate the audio

into text. The result is a large block of text. This will be converted to a spreadsheet by the

software described here.

Figure 10: Text-to-spreadsheet workflow

Shown here is the workflow of the Text-to-spreadsheet program. First a configuration file is read in which specifies

expected traits and behaviors when they are encountered in the text block. The text block is then read in by the

program, and broken into tokens. The tokens are then processed according to actions specified in the configuration

file, and by determinations made by the program about what each type of token is (trait or value). The data is then

organized into a spreadsheet format and printed to produce the final spreadsheet output.

The text-to-

42

spreadsheet software needs a configuration file to interpret the text it is given. The configuration

file contains lines defining expected traits. Each line has several components: 1) the name of the

trait as it will appear in the raw text, 2) the name of the trait as it should appear in the

spreadsheet, and 3) flags to declare special behavior.

The flag “-l” indicates the start of a new entry. This flag should be associated with the

identifying information of each individual. There can be traits with this flag. A new entry will

not be created unless another trait has been observed that does not have this flag. This eliminates

a situation where “row” and “plot” both have this flag, both traits are read in, and two entries are

created. One entry would contain only “row” and the value, the other entry would contain the

other information for the vine.

The “-N” flag indicates a notes field. This indicates that all data after this point should be

considered a note. This allows users to make arbitrary comments that will be included in the

spreadsheet.

The “-n” flag indicates the end of a notes field. Notes fields will continue until a trait with this

flag is encountered. It is recommended to record notes as the last trait for each individual, and

add the “-n” flag to traits with the “-l” flag. Thus the notes section ends with the start of the next

individual. This will prevent runaway notes fields as well.

The “-w” flag indicates that there will be no value associated with the trait. This can be used for

traits which only the presence/absence of is important.

The text-to-spreadsheet program begins operation by reading in the configuration file specified

by the user. Known tokens are created based on the traits specified in the configuration file, and

43

value specified in a pre-loaded dictionary. The text (Fig. 11) is then parsed according to the traits

in the configuration file. There are several warnings and errors that can occur during processing.

First, if a trait does not exist in the configuration file, a warning will appear. The surrounding

text around the unknown trait is supplied so users can easily find the trait in the text file. The trait

will be included in the resulting spreadsheet despite the fact that it was not recognized.

If a trait does not have a value afterwards, a warning will be produced (this warning will not

occur if the trait has the “-w” flag). The cell where the value should exist is blank in the resulting

spreadsheet.

If a value is not recognized by the program, a warning will be produced. The program recognizes

all numbers as values, as well as a prebuilt dictionary of common numbers and homonyms, such

as “one”, “won”, “two, “too”, “to”, “tew”, “for, “four“, “twenty”, “hundred”, “thousand”. If a

value is not a valid number, or a recognized number in the dictionary, this error will be produced.

The script then organizes the data into a tab-delimited series of strings representing the rows of a

spreadsheet. The result of the script is a tab separated file that can be opened in excel. Across the

top row of the sheet are the variables that were present in the input text. Below is an example of

text that was transcribed from audio to by Dragon software. The final transcription to a

spreadsheet was performed by the software described above and can be seen in the results

section.

44

Figure 11: Sample Text Block

Shown here is a sample text block produced by Dragon software. This is converted by the Text-to-spreadsheet

program into a spreadsheet.
seedling 26 runt downy mildew 1 seedling three downy mildew three seedling seven runt downy

mildew to seedling 1 downy mildew for seedling 15 note dead seedling 19 downy mildew 1 seedling

27 runt downy mildew 1 seedling eight downy mildew three seedling 12 downy mildew for seedling 16

downy mildew three seedling 28 runt downy mildew 1 seedling 24 note dead seedling 30 downy mildew

three seedling 34 downy mildew to seedling 38 downy mildew for seedling 42 downy mildew three

seedling 46 runt downy mildew for seedling 50 runt downy mildew for seedling 51 downy mildew for

note defoliant is likely due to downy mildew no sporulation seedling 47 downy mildew for seedling

43 downy mildew for seedling 39 downy mildew to seedling 35 runt downy mildew 1 note accidentally

uprooted seedling 31 runt downy mildew 1 seedling 52 downy mildew for seedling 49 downy mildew to

note small leaves seedling 40 downy mildew to note extensive necrosis could be downy mildew

seedling 44 note dead seedling 45 downy mildew to seedling 32 downy mildew seedling 36 downy

mildew for seedling 41 downy mildew three seedling 37 downy mildew 1 seedling 33 downy mildew

three seedling 76 downy mildew to seedling 73 downy mildew for seedling 69 downy mildew three

seedling 72 downy mildew 1 seedling 65 downy mildew 1 seedling 68 downy mildew to seedling 61

downy mildew 1 seedling 57 runt downy mildew 1 seedling 75 downy mildew 1 note tiny leaves

seedling 74 downy mildew 1 seedling 71 downy mildew to seedling 64 downy mildew for seedling 60

downy mildew three seedling 56 downy mildew for seedling 70 downy mildew three seedling 67 downy

mildew for seedling 63 downy mildew for seedling 66 downy mildew for seedling 62 downy mildew 1

seedling 59 downy mildew three seedling 58 downy mildew three seedling 54 downy mildew for

seedling 55 downy mildew three

Scripts for fieldbook printing

One of the primary requirements for my system is the ability to print fieldbooks for the breeders

in the two formats shown in appendix. There are two methods to generate these reports. First, a

user can go directly to the nursery in the BMS and export the excel sheet. After navigating to the

second tab, the user can save the sheet as a comma-separated file (.csv). This file can be

specified for one of the two scripts to generate the files. The name and year of the vineyard must

be specified on the command line for both scripts. The result is a file of the same name as the

input, with “_2ndTestFormat” or “_SeedlingFormat” appended to the end of the filename.

The second method to produce the books is to use the vine search tool, though this method takes

considerably longer. Users can search for a specific vineyard using the vineyard search mode. In

the information management window, they can specify to only include data from the vineyard

desired. The report should be formatted in “Analysis Format” only. This file can be fed to either

script to produce the fieldbook.

45

For both fieldbook formats, the script must determine what row the vines are in, and create a

page-break every time a new row is started. When plots are grouped together (e.g. 11-13,15), a

descending list of numbers must be printed to represent the plots that the vines occupy. This is

accomplished by splitting the group of numbers on commas. This produces a series of tokens. A

token that is a single number represents a single plot. A token that contains two numbers

separated by a hyphen represents a range of numbers. A token that contains a number followed

by just a hyphen (12-) represents a single plot, and is the product of a formatting error.

Results

BMS Data Upload

181 different nurseries (Fig. 12) and trials have been created in the BMS and populated with

data. Data uploaded to the BMS dates back to 1992. There is currently a gap where years 2011-

2014 are missing from the BMS. This data currently exists only in hard copy breeding notebooks

and has never been entered into any electronic system.

46

Figure 12: Nursery Browsing in the BMS

Shown here is an image of the nursery browsing screen in the BMS. Here, users can navigate through a file system

that contains the vineyards of the breeding program, organized by year.

1806 genotypes have been uploaded to the BMS. This number is larger than the total unique

genotypes in the BMS. As discussed earlier, there are sometimes multiple names for the same

genotype.

There have been a total of 6,157,071 unique observations of variables (Fig. 13) uploaded to the

BMS.

47

Figure 13: Ontology Documentation

Shown here is a snapshot of the spreadsheet that is maintained to track ontology variables that have been defined.

All aspects of a variable that can be defined in the BMS are tracked in the spreadsheet. Fields highlighted in yellow

are those that have been marked for review. This spreadsheet is maintained separately from the BMS, and is used for

the records of the breeding program.

171 unique ontology variables have been described for use, and 69 variables have at least one

observation in the BMS.

Vine Search Tool

The Text Search screen is shown below (Fig. 14). The radio buttons at the bottom of the screen

allow the user to toggle between Name Search mode, Parental Search mode, and Vineyard

Search mode. Pressing the button labeled Trait Search (Fig. 15) will open the trait search

window.

48

Figure 14: Text Search Screen

An image of the Text Search Screen. This screen is produced when the program is started.

Filters are created in the above screen by entering/selecting a trait from the dropdown list labeled

“Trait”; selecting a trait will update the information in the “Trait Values” box. The type of filter

can be selected from the dropdown list labeled “Type”. The operator can be selected from the

dropdown list labeled “Operator”. The value for the filter can be entered into the field labeled

“Value”. The optional year restriction can be entered into the box labeled “Year Range”.

Clicking “Add” will add the filter to this list in “Current Filters”. Filters can be removed by

entering the filter index (seen on the far left-hand side of the “Current Filters” list) into the box

labeled “Filter number to remove”. All of the filters will be removed by pressing “Clear All

Filters”.

49

Figure 15: Trait Search Mode

An image of the Trait Search screen. Filters are entered to search for vines with an average low temperature

exotherm below -26, and an average Downy Mildew rating less than 2 for the years 2010-2014.

The results of all search types will result in the Information Management Screen (Fig. 16). From

this screen, users can add or remove vines from the report as they choose, specify which traits

and studies will be included in the report, and specify formatting options for the report. Saving

the report will write a temporary file with the raw MySQL output which is then processed by the

report maker script to produce the desired report.

50

Figure 16: Information Management Window

An image of the Information Management Window. This window is produced after every search. Users can specify

information for the report in this window.

Trait and Study Select Windows:

The trait selection window (Fig. 17) allows users to specify which traits should appear in the

final report. Users can add individual traits from the top drop-down bar. Users can remove

specific traits from the report by selecting them from the lower drop-down bar. The contents of

the lower drop down bar reflect the traits that appear in the “Selected Traits” list. Users can also

add or remove all traits from the report with the appropriate buttons.

51

Figure 17: Trait Selection Window

This is the Trait Selection Window. Users can specify which traits should be included in the report here. This

window is accessed from the Information Management Window.

The study selection window (Fig. 18) allows users to specify which studies should appear in the

final report. Users can add individual studies from the top drop-down bar. Users can remove

specific studies from the report by selecting them from the lower drop-down bar. The contents of

the lower drop down bar reflect the studies that appear in the “Selected Studies” list. Users can

also add or remove all studies from the report with the appropriate buttons.

52

Figure 18: Study Selection Window

This is the Study Selection Window. Users can specify which studies should be included in the report here. This

window is accessed from the Information Management Window.

From the Text Search screen, a name search (Fig. 19) can be conducted when the “Name” radio

button is selected.

Text Search Example:

Figure 19: Name Search Example

An example of a Name Search being conducted

53

Parental Search Example:

The parental search mode (Fig. 20) allows for the searching of vines by their parental

information. Parental search mode can be selected by selecting the “Parental” radio button from

the list of radio buttons in the Text Search screen.

Figure 20: Parental Search Example

An example of a Parental Search being conducted

Vineyard Search Example:

Vineyard search mode (Fig. 21) can be selected by clicking the radio button labeled “Vineyard”

on the Text Search screen. When this radio button is clicked, the search bar that is displayed for

the name and parental search types is replaced by a fill-in list. The drop-down list is populated

with the names of all studies in the BMS.

Figure 21: Vineyard Search Example

An example of a Vineyard Search being conducted.

The expected format of a study name is [year] [study type]. It would be helpful to be able to

enter the study type into the dropdown list, and reduce the contents of the list to only those

studies of the same type. This functionality proved difficult to implement, and is ultimately not a

54

part of the current search tool.

Report results of the vine search tool and report making function. Seen below are snapshots of

reports in the four different report configurations. The full reports can be seen in appendix X and

XI. All reports were generated from the same trait query with a single filter of DTA < -27

Single_Value. Concord was removed from the vine list in the Information Management Window.

All studies and traits were included in the reports.

Options Menu Screen:

The options menu (Fig. 22) allows users to perform several different actions. First, database

connection settings can be specified through the four fields at the top of the screen. The Database

Name can be selected from a drop-down list. Entering a value and pressing “Set” will change the

value for the current program session. A window will then ask the user if the setting should be

saved for future sessions. Pressing “Update Trait Info” will update the information displayed for

traits in the Trait Search screen. Vine synonym management can be accessed by pressing

“Manage Vine Name Synonyms”.

Figure 22: Options Menu

55

An image of the options menu. This menu can be accessed from the Text Search and Trait Search windows.

Vine Name Synonyms Management Window

Synonyms can be created in the synonym management window (Fig. 23) by entering a Hidden

Name and Shown Name into the appropriate boxes in the Create Synonym section. A Synonym

can be removed by entering the Hidden Name of a row into the appropriate box in the Remove a

Synonym section. Pressing “Save Changes” will save the synonyms to a file for later sessions.

Existing synonyms are shown in the “Current Synonyms” list.

Figure 23: Synonym Management Window

56

Image of the Synonym Management Window. Here users can create and delete vine name synonyms recognized by

the program.

Report Formats

57

Normal:

The normal report format (Fig. 24) is produced when a user selects no additional formatting

options in the Information Management Window.

Figure 24: Normal Report Format

A snapshot of the Normal report format. The format has major sections for each vine. Subsections are created for

each study the vine participates in. The observations for each trait in the study are listed in each study sub-section.

This format is specified in the Information Management Window by selecting none of the check-boxes in the

“Format Options” section. The entire report can be seen in appendix NUMBER.

Average:

The average report format (Fig. 25) will be produced when a user selects the “Averages Only”

box in the Information Management Window.

Figure 25: Average Report Format

58

A snapshot of the Average Report format. Here, the sub-sections for each study are collapsed as only the average

value of a trait for each vine is reported. The number of observations is listed after each trait header. This format can

be specified in the Information Management Window by selected the “Averages” check-box in the “Format

Options” section. The entire spreadsheet can be seen in appendix NUMBER.

Analysis:

59

The analysis report format (Fig. 26) will be produced when a user selects the “Analysis” box in

the Information Management Window.

Figure 26: Analysis Report Format

A snapshot of the Analysis Report format. Here, all traits observed for all vines are listed across the top of the

spreadsheet; vines are listed down the left-hand column. Each replication for a vine in a trial, and entry for a vine in

a nursery is given a unique row. This format can be specified in the Information Management Window by selected

the “Analysis” check-box in the “Format Options” section. The entire spreadsheet can be seen in appendix

NUMBER.

Average and Analysis:

60

The average-analysis report format (Fig. 27) will be produced when a user selects the boxes

labeled “Averages Only” and “Analysis” in the Information Management Window.

Figure 27: Average-Analysis Format

A snapshot of the Average-Analysis Report format. Here, all traits observed for all vines are listed across the top of

the spreadsheet; vines are listed down the left-hand column. Each vine is given only one row in the spreadsheet. The

average value of each trait for each vine is reported here. This format can be specified in the Information

Management Window by selected the “Analysis” check-box in the “Format Options” section. The entire spreadsheet

can be seen in appendix NUMBER.

Voice-to-spreadsheet

61

Below is a sample spreadsheet produced by the text-to-spreadsheet software (Fig. 28).

Figure 28: Text-to-spreadsheet Output

A snapshot of a spreadsheet produced by the Text-to-spreadsheet script.

Scripts for fieldbook printing

62

Below are portions of Second Test Block Format (Fig. 29) and Seedling Format (Fig. 30) that are

required by the Cornell Grape Breeding program, and be produced by scripts provided in this

thesis.

Second Test Block Format:

63

Figure 29: Second Test Block Report Format

Shown here are sample lines from a second test block report. The vine name and cross are shown on the top lines for

each entry. Notes and Source information are shown below. The Vineyard Row is shown at the top of the page. The

Plot Numbers for each vine are shown descending on the left. Traits of interest are shown left-aligned for each vine.

VINE VINEYARD 35 ROW 1 YEAR 2013

1 95.0300.02 -

2 NOTES:-/-/+/?/?; also at 35-14-052-54;

 Source: 95.0300.02

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

3 95.0302.01 -

4 NOTES:-/-/-/?/?; also at 35-01-003;4;

 Source: 95.0302.01

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

5 Chancellor -

 NOTES:Seibel 7053;

 Source: Chancellor

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

Seedling Format:

64

Figure 30: Seedling Format

Shown here is an example of the seedling report format. The Row Number is shown at the top of each page. The

Plot Number, Vine Name, and Cross are shown on the top row for each entry. Notes are shown on the second line.

The third line contains traits of interest for each vine.

VINE VINEYARD 35 ROW 1 YEAR 2015

30 95.0310.03 -

NOTES: -/-/+/?/?; also at 35-17-040-43;

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

31 97.0501.01 -

NOTES: male; -/-/-/?/?; also at 35-17-054;55;

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

32 97.0501.01 -

NOTES: male; -/-/-/?/?; also at 35-17-054;55;

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

33 97.0512.01 -

NOTES: -/-/-/?/?; also at 35-18-003;4;

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

34 97.0512.01 -

NOTES: -/-/-/?/?; also at 35-18-003;4;

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

65

Discussion

Graphical Search Tool

The original command-line interface was built using Perl due to my familiarity with the language

and with text processing built-ins that were useful in organizing the search results. At the time, it

made sense to build a simple GUI on top of the command-line interface. As the GUI has become

more complex, creating well-designed screens has been difficult in Perl. I did not discover the

difficulty until after some of the main screens had seen their first iteration and needed to be

adjusted. If able to go back and change one thing in my thesis, it would be the choice of language

in which the GUI was built.

The intent of the search tool is to be as simple and intuitive as possible. Ideally, users could

determine the basic functionality of all parts from the interfaces alone. The Text Search screen is

modeled to be a simple search bar that is present in all web browsers. The labels for the radio

buttons should be informative enough for a user to understand what is being searched for. The

Vineyard search type may be the least intuitive by name, but should become apparent as the

drop-down list populates options based on what the user entered.

The Trait search mode is more difficult to understand at first glance due to the large amount of

options on the screen. There are many message windows that can be triggered from here to help

guide the user through the process of creating filters. One of the possible pitfalls may be that a

user specifies a series of filters that no vines passes, and thus no results are returned. There is not

much helpful feedback for the user in this case; they will not know where they went wrong in

their search to return no results, or if the program is in fact to blame for the lack of results.

66

Ideally, the user will be able to understand the trait filter screen after reading the help message

that can be displayed from the help button.

The Information Management Window is the easiest window to understand at a glance. The

actions that a user can take are simple and can be described easily on buttons or labels on the

screen. The windows specify traits and studies should be simple to understand as well. The

feature most likely to confuse a new user will be the formatting options for the reports. A new

user will not understand the results of selecting the formatting options without seeing examples

of the reports each options will produce. Nonetheless, the fact that checking the boxes will alter

the format of the report should be obvious from the labels around the boxes.

The structure of having a separate search tool and report making function was designed to allow

for the replacement or modification of either component without affecting the other. I anticipate

that the report making function may need modification or replacement to satisfy the needs of the

Breeders who may want different formats for reports in the future. A new report making function

can be created without modifying the search tool. Similarly, if the search tool needs modification

or replacement, this can be accomplished without affecting the report making function. The

report making function can also be used without the search tool; users would have to run their

own MySQL queries, save the output to a temporary file (along with a list of studies and traits to

include in the report), and call the report making script. Whichever component becomes outdated

first can be replaced or modified without affecting the other.

There are two major assumptions made by the search tool and reporting script that need to be

discussed here. First, all variables which the user would like to search need to be of the type

“Observation Variate” when created. The type of variable (other examples include Germplasm

Descriptor, Environmental Descriptor) tells the BMS where in the MySQL database to store the

67

information. Retrieving information from varying locations in the database proved difficult, and

is not implemented in the search tool. The type specified for a variable impacts where it can be

specified in a study or nursery. The Observation Variate type allows the variable to be added as a

measurement to be taken in an experiment. Germplasm Descriptor indicates that the variable

must be added in the trial descriptions tab, though there will still be an observation for every

individual in the study. Environmental Descriptor tells the BMS that one observation needs to be

taken to describe the environment of the nursery or trial (or one observation for every replication

in a trial). In most cases, specifying a variable as Observation Variate will not impact its

usefulness in the BMS, and allows it to be searched and retrieved by the search tool.

The other major assumption is that the year of the study is present in the name of the study (e.g.

2016 Vineyard 33, or 2016 Juice Quality Analysis Batch 1). The date of the study can be

specified in the BMS; however, retrieving the date proved to be difficult. The date is stored in

different location in the database depending on whether the dataset is a trial or nursery.

Furthermore, the default for a dataset is the date the dataset was created. If a user does not

explicitly change the date, the date will be inaccurate. Adding the date to the name of the study is

a good naming practice regardless, as duplicate trial names are not allowed. Adding the year to

the beginning of the dataset name creates a uniform naming structure, naturally allows for unique

dataset names indefinitely, and is easy to extract and manipulate without a more complicated and

time consuming query for information that may not be reliable.

An update to the BMS could change the schema of the MySQL database. This may render the

queries I have written obsolete. The BMS team indicated that an API will be released at some

point in the future. The queries can be replaced with analogous API calls. Alterations to the

MySQL queries to reflect the schema changes would also work, though using the API interface

68

would be a better long term solution as the API will not change as the schema changes. In

(APPENDIX HERE), the MySQL queries used in the program are documented, as is the

information expected to be returned for each query. As long as the expected information can be

duplicated by API calls or updated queries, the search tool will continue to be functional.

The development of the Search and Report tool helps to solve one of the major tasks of the

development of genetic markers, the extraction of useful data and the ability to find trends in the

data. Extracting relevant information for developing disease resistance, that being disease ratings

for vines, as well as the ability to extract well performing vines for the trait, allows researchers to

quickly move into the analytics stage of marker development, and not have to spend time

gathering data to begin. The Breeding Management System solves the problem of organizing

data in a structured and consistent manner. Storing all records in a standard format, as well as the

standardization of variables, allows the Search and Report tool to exist with relative simplicity.

Voice-to-spreadsheet

Dragon is useful for its ability to manipulate the vocabulary. Dragon can be trained to identify

complicated traits, and words similar to traits can be removed from the vocabulary. Other voice-

to-text programs may not have the functionality to add new words to the vocabulary, or remove

words that are similar to desired traits. The configuration file for the text-to-spreadsheet software

is designed to handle short-comings of voice-to-text programs. Users can map many words that

may appear in the text block to a certain trait. For example, very, vary, Barry, and bury all have

been translated in the place of “berry”. With Dragon, these similar words can be removed from

the vocabulary so that they will not appear again. Alternatively, all of the similar words can be

mapped to the trait “berry” in the configuration file, and thus be recognized by the program.

69

The voice-to-spreadsheet method has been used to create data sheets for multiple recordings of

disease resistance and plant status in vineyards on a cell phone, as well as multiple trial

recordings in office settings on a microphone. The primary limitation of the process is the quality

of the audio recording. There have been several times where a word appeared in the text block

for which a close sounding variable could not be determined, or an expected value or trait was

not found in the text block. In these situations, it was not possible to tell from the audio file what

was spoken at the time. The common causes were wind noise disrupting the audio, and

notification sounds on the phone being recorded while data was being spoken.

Ontology

The variables chosen for creation in the ontology were selected out of immediate or predicted

future need. As data sheets were delivered for upload, part of the process was to consider the

variables in the data and determine if they matched an existing trait in the ontology, or if a new

trait needed to be created. Breeding fieldbooks were also gathered and used to create variables

for the ontology. Many of the unused variables are for data collected by other breeding

programs. They have been defined if the need arrives to store data delivered from them.

 The ontology (Fig. 31) comes with an existing basic structure. Some variables fit easily into the

basic structure, others required more branches to be created to accommodate them. Many of the

chemical assay traits needed their own unique branches, which are based off of the classification

of molecule being assayed. Some of the higher branches group the traits into categories such as

sugar and proteins, while lower branches further separate the molecules based on their

properties. In cases where the variable was not easily understood, or not enough information

70

about the variable was immediately available to determine its place in the ontology, outside help

was retrieved from those who understood the data best.

The creation of new branches of the ontology was primarily motivated by having enough similar

variables to warrant the creation of a branch, or the existence of a variable that was vastly

different from existing branches. The process that was used was to following the variable down

the most logical branches until the most specific existing branch was found. The variable would

then be compared to other variables on the same branch. If there were groups of variables that

stood out as different, a new branch would be created for them. If the new variable was

sufficiently different from others existing on that branch, a new branch would be created for the

new variable.

Creation of new branches was avoided if possible as this may complicate the ontology in

unnecessary ways. Since the ontology must be navigated by clicking to open new branches to

reveal variables and branches.

71

Figure 31: Ontology Browsing Screen

Shown here is an image of the ontology browsing screen. Note that each branch must be clicked to reveal lower

branches and variables.

There is a balance to maintain between creating informative branches for grouping, and creating

too many branches and making ontology navigation difficult.

The variable management of the BMS will play a large role in the standardization of data

collection at Cornell and possibly in the VitisGen project group. Specific definition of how

measurements are taken and standardization of the measurements across programs was well

received at the VitisGen annual meeting. I was not the only researcher who had encountered

problems with data standardization, and there was a consensus that more effort needed to be

taken to regulate how common traits were being assessed. The specific variable definition

allowed by the BMS helped me to work with researchers in the breeding program and other labs

to specifically define how traits and other measurements are taken. Currently there is an excel

spreadsheet with all of the defined variables, over one hundred have been currently defined. By

72

defining variables in this way, it is possible to achieve high regularity in how data is collected in

the Cornell program. By sharing our variable definitions with other breeding programs, we may

also be able to achieve consensus on how regular traits should be evaluated.

The structure of the underlying MySQL database was a key factor in deciding how to select the

role of each variable, as can be done when creating a variable. The role of the variable dictates

where in the database the BMS will store data collected for the variable. In order to simplify the

data extraction process, the decision was made to select “Observation Variate” as the role of each

variable even though the role of “Germplasm Descriptor” may better suit a variable called

“Accession Number”. This is contradictory to the best aspects of the ontology, which is the

ability to create detailed and accurate variable descriptions, but in this case a compromise was

made.

Data Entry

Data entry for the 181 nurseries and trials was done by hand. The two reasons that this process

was not automated were the complexity of entering data into the MySQL database, and the lack

of a long term need for such automation. Initial assessment of the automation of data upload

proved that while pulling data out of the BMS was simple, properly automating the process was

likely to take longer than manually uploading the data, and would be likely to introduce flaws in

the data. Additionally, there is no expected need for bulk uploads of data in the future; there is

data for about three years that needs to be entered, but this will constitute a vastly smaller

amount of data sets to upload. Ultimately the process of manually entering data took about three

73

working days (about 24 hours total), and was more time efficient than developing a single-use

routine for bulk data upload.

Additionally, the permissions set for the MySQL database for the root user do not allow the

altering or entering of data. Working around this issue would only add to the time needed to

develop a working method to enter data directly into the database. Manual entry was the most

effective, and boring, way to solve the problem.

The Breeding Management System provides much of the basic functionality for storing,

organizing, and standardizing data for the Cornell Grape Breeding program. There is, however,

functionality required by the breeding program that is not provided by the BMS. Software to

search, generate custom reports, produce fieldbooks, and have defined traits assessed by

breeders, technicians, etc. have been built to accommodate these needs. The system developed

here received highly positive feedback at the annual VitisGen project meeting. Interest was

expressed by other breeding programs about using the system. To this point, none of the

programs that expressed interest have attempted to use the BMS and the custom tools here.

Transitioning to a new data management system takes a large amount of internal momentum and

commitment from the breeding program; perhaps the success of the system in the Cornell

program will convince other breeders to adopt the system as well.

Breeding Management System Additional Functionality

The Breeding Management System has tools that can be used to help breeders make decisions on

which vines to propagate and which to discard, and to create new nurseries based on certain

crosses. For the Cornell program, we found these tools to be rigid, and that it was easier for the

breeder to handle these decisions outside of the BMS. Fig.

74

Citations

Akkurt, Murat, Leocir Welter, Erika Maul, Reinhard Töpfer, and Eva Zyprian. Development of

SCAR Markers Linked to Powdery Mildew (Uncinula Necator) Resistance in Grapevine

(Vitis Vinifera L. and Vitis Sp.). Molecular Breeding 19.2 (2007): 103-11.

Alleweldt, G., and J.v. Possingham. Progress in Grapevine Breeding. Theoretical and Applied

Genetics 75.5 (1988): n. pag.

Bowen, Pat, Jim Menzies, David Ehret, Lacey Samuels, and Anthony D.M. Glass. Soluble

Silicon Sprays Inhibit Powdery Mildew Development on Grape Leaves. Journal of the

American Society for Horticultural Science. N.p., Nov. 1992. Web. 30 Oct. 2014.

Delannay, Xavier, Graham Mclaren, and Jean-Marcel Ribaut. Fostering Molecular Breeding in

Developing Countries. Molecular Breeding 29.4 (2012): 857-73.

Barba, Paola, Lance Cadle-Davidson, James Harriman, Jeffrey C. Glaubitz, Siraprapa Brooks,

Katie Hyma, and Bruce Reisch. Grapevine Powdery Mildew Resistance and

Susceptibility Loci Identified on a High-resolution SNP Map. Theoretical and Applied

Genetics 127.1 (2014): 73-84.

The IBP Breeding Management System Version 3.0.8 (2015) The Integrated Breeding Platform.

https://www.integratedbreeding.net/breeding-management-system.

Dalbo, M. A., Ye, G. N., Weeden, N. F., Wilcox, W. F., and Reisch, B. I.2001. Marker-assisted

selection for powdery mildew resistance in grapes. J. Am. Soc. Hortic. Sci. 126:83-89.

E-Brida: A Database for Breeders. Agri Information Partners.

Fischer, B. M., Salakhutdinov, I., Akkurt, M., Eibach, R., Edwards, K. J., Topfer, R., and

Zyprian, E. M. 2004. Quantitative trait locus analysis of fungal disease resistance factors

on a molecular map of grapevine. Theor. Appl. Genet. 108:501-515.

75

Gohre, V., and Robatzek, S. 2008. Breaking the barriers: Microbial effector molecules subvert

plant immunity. Annu. Rev. Phytopathol. 46:189-215.

Fung, R. W.m., M. Gonzalo, C. Fekete, L. G. Kovacs, Y. He, E. Marsh, L. M. Mcintyre, D. P.

Schachtman, and W. Qiu. Powdery Mildew Induces Defense-Oriented Reprogramming

of the Transcriptome in a Susceptible But Not in a Resistant Grapevine. Plant

Physiology 146.1 (2008): 236-49.

MKF Research LLC. The Impact of Wine, Grapes and Grape Products on the American

Economy 2007. Publication. Wine Institute, National Grape and Wine Initiative, Wine

America, WineGrape Growers of America, n.d. Web.

Mulitze, D. K. AGROBASE/4: A Microcomputer Database Management and Analysis System

for Plant Breeding and Agronomy. Agronomy Journal82.5 (1990): 1016. Web.

Ramming, David W., Franka Gabler, Joe Smilanick, Molly Cadle-Davidson, Paola Barba,

Siraprapa Mahanil, and Lance Cadle-Davidson. "A Single Dominant Locus, Ren4 ,

Confers Rapid Non-Race-Specific Resistance to Grapevine Powdery Mildew."

Phytopathology 101.4 (2011): 502-08 Production of Grape by countries. UN Food &

Agriculture Organization. 2011.

Unity Project - Phenome Networks. Phenome Networks. Phenome Networks, 2014.

Tonietto, Jorge, and Alain Carbonneau. A Multicriteria Climatic Classification System for

Grape-growing Regions Worldwide. Agricultural and Forest Meteorology 124.1-2

(2004): 81-97.

USDA-NASS. 2006. Agricultural Chemical Usage Fruit Summary. Published online by USDA-

NASS at http://www.nass.usda.gov/.

76

Welter, Leocir J., Nilgün Göktürk-Baydar, Murat Akkurt, Erika Maul, Rudolf Eibach, Reinhard

Töpfer, and Eva M. Zyprian. Genetic Mapping and Localization of Quantitative Trait

Loci Affecting Fungal Disease Resistance and Leaf Morphology in Grapevine (Vitis

Vinifera L). Molecular Breeding 20.4 (2007): 359-74.

77

Appendix I: Search Tool User Documentation

Search Tool Usage:

To Open:

Click the desktop icon called vine search to open the tool.

Search for vines by name

Make sure the radio button on the main screen is selected for the search type “Name”.

Enter the full or partial name of a vine. A search conducted using a partial vine name will return

all vines that start with the name fragment entered.

Please note that all vines that contain an underscore version (ex: 04_0406_03) and period version

(04.0406.03) will be returned

Search for vines by parents

Check the radio button next to “Parental” search type.

Enter the full or partial parentage of a vine into the search bar. An example of a full name is

“Chancellor/Aromella”. This will return al vines with Chancellor as the femalse parent and

Aromella as the male parent. Notice that the parents are entered together, separated by a forward-

slash.

78

Searching for a single parent like “Chancellor” will return all vines that have “Chancellor” in

their parentage.

All underscored and period versions of parent names will be checked.

Search for vines by vineyard

Click the radio button next to “Vineyard”.

This will change the search box into a drop-down menu. Here users can select a vineyard or

study to search by. All vines that appear in the study the user search for will be returned. If the

user selects a single year from the drop-down menu instead, all vines that appear in that year will

be returned.

79

Users will not be allowed to enter the name of a vineyard or study that is not recognized by the

software.

Search for vines by traits

Click the “Trait Search” button at the bottom of the window the “Trait Search” window. Users

can always return to the previous screen by clicking “Text Search” in the upper left corner of this

new screen.

To start, users must enter the name of a trait they wish to search by in the box labeled “Trait”.

This box is a drop-down menu, and you can select any trait in the menu. Clicking on a trait, or

pressing the return key when a trait is highlighted will bring up information about the trait in the

“Trait Values” box. This information will allow users to make more informative searches.

Next select a search type; the options are “Single_Value” or “Average”. If single value is

selected, any observation that meets the filter requirements will allow a vine to pass the filter. If

“Average” is selected, the overall average value for the trait will be taken for each vine, and

vines whose average value for the trait meet the filter requirements will pass. The “Average”

type should not be selected for a non-numeric trait.

80

Next select an operator for this trait from the dropdown menu. For a numeric trait, you will not

want to use the “like” and “not like” operators. These are used for text only.

Optionally, you can enter a year range in the format yyyy-yyyy in the appropriate box. Only

values within the year range supplied (ex 2003-2005 will include years: 2003, 2004, and 2005)

will be considered for the filter requirements. If this box is left empty, all observations across all

years will be considered.

Finally select a value. You are creating a filter, so only vines that meet the criteria you are

creating will be returned. You can use the “trait values” box to better select a cutoff value for

your filter.

Finally, click the “Add” button to create the filter. You will see it appear in the box labeled

“Current Filters”.

Due to the way in which filters are processed, it is recommended to create equivalent

Single_Value filters for each Average filter (That is, filters that are the same in trait, operator,

and value to the average filter but are of type Single_Value. Year range does not affect this). If

you create an Average filter without an equivalent Single_Value filter, the program will ask if

you would like the Single_Value filter created for you. In most cases, you will select yes.

81

Selecting yes will create the new filter for you.

You can repeat this process to add as many filters as you choose. More filters will result in a

more selective search, but it will also take more time to look up the traits in the database.

You will notice that each filter is assigned a number in the “Current Filters” box. You can

remove a filter by typing this number into the box labeled “Filter number to remove”. Click

“Remove Filter” to remove the filter of the entered number. Pressing “Clear All Filters” will

remove all filters in the “Current Filters” box.

82

Click “Search” to search for vines that meet the filter criteria specified. Only vines that meet all

filters will be returned.

A Tip for trait year ranges:

It is a good idea to look at what studies are available when opting to include a year range in a

trait filter. If you select a year range for which no observations of a given trait are recorded (for

example there are virtually no DTA trials in the early 2000’s), you will not get any vines from

your trait search. You can check the studies available in the Text Search window, or by browsing

through the studies in the Report Management screen, by clicking on “Select Studies to Include”.

Search Results Screen and Information Management

All searches will result in a screen which shows the vines that were returned from the search in a

box on the left, as well as other options under “Report Information Management”. The vines in

the box on the left are in alphabetic order.

The vines that are displayed in the window on the left are the vines that will be included in the

resulting report. To add a vine to this list, select a vine from the dropdown menu in the “Select

83

Vines for Report” section. Click “Add Vine” and the vine entered will appear in the list on the

left. Adding a vine already in the list will have no effect.

To remove vines from the list, you can enter the name of the vine you wish to remove, and click

“Remove Vine”. Removing a vine not on the list will have no effect.

You can specify which studies the report will draw information from. To do this, click “Specify

Studies to Include” in the “Specify Information for Report” subsection. This will open a new

window.

84

The new window lists all of the studies the report will draw information from. By default, every

study is included. You can remove specific studies by selecting a study from the “Study to

Remove” box, and pressing the “Remove” button. You can remove all studies by pressing the

“Remove all studies” button.

You can add specific studies by selecting a study from the “Enter Study to Include in Report”

box, and pressing “Add Study”. You can add all studies to the report by pressing the “Add All

Studies” button.

You can specify which traits to include in the report by clicking the “Specify Traits to Include”

in the “Specify Information for Report” subsection. Adding and removing traits from the report

works in the exact same way that the study selection does.

85

You can specify the format of the report by toggling the check mark boxes in the “Format

Options” section.

Checking neither box will result in the default report style showing all observations for all vines

and traits selected for the report.

“Averages Only” will report the average value of every trait for each vine and trait in the report.

“Analysis Format” will format the report so that vine names are on the left column in the

resulting spreadsheet, and variable names run across the top. It is recommended to use this

format with “Averages Only” checked as well.

If you include only one study in the report, and check only “Analysis Format” you will produce

the original spreadsheet used to make the study (with modified headers).

Click “Save” to generate the report. It may take some time to save the report.

Creating a report for a vineyard

From the Text Search screen, select “Vineyard” search mode. Select the name of a study or

vineyard you would like a report for a press “Search”. The result of the search will be all of the

86

vines in that vineyard or study. Next, click the “Specify Studies for Report” button. Click

“Remove All Studies”, and then add only the study you want the report for. This will include

only data from that study. Click “OK”, then save the report.

Options Menu

Click the “Options” button to access the options menu. This button is located on the “Text

Search” or “Trait Search” screens. The first four rows of information allow you to set various

connection parameters to the database. These should be set up by default. If you want to change

them, enter a new value into the boxes, and click the corresponding “Set” button to save the

information for the current session. A dialogue box will appear asking you if you want to save

the new setting. Clicking “Save” will save the new setting for future sessions.

You can click the “Update Trait Info” button to update stored information about traits.

Vine Name Synonyms

87

You can click the “Manage Vine Name Synonyms” button to open a window to manage vine

name synonyms.

On the left is a list of current synonyms. Each synonym has two parts, a “Hidden Name” and a

“Shown Name”. The Hidden Name is a bad, or old name that you do not want to see again. The

Shown Name is the new or corrected name.

To create a synonym, enter a Hidden Name and Shown Name into the boxes in the “Create a

Synonym” section. You will notice that most Hidden Names have a “---“ at the end. This

indicates to the software to ignore everything after the “---“. Some names have extra information

at the end of the name that should be ignored. It is usually best to add a “---“ to the end of the

Hidden Name.

Click “Create Synonym” to create the synonym.

To remove a synonym, enter the “Hidden Name” of an existing synonym into the “Specify a

Row by Hidden Name” box. Click “Remove Synonym” to remove the synonym pair.

Click “Save Changes” to save the changes you have made here.

Appendix II: Search Tool Technical Documentation

Vine search technical documentation

88

This document is intended for someone working with the codebase to understand the different

paths that the data follows in Vine Search for either debugging, or perhaps adding to the tool.

This document refers to the code inside search.pl.

The document is broken up into the different search modes that the search tool offers, as they are

mostly isolated from each other.

Section 1: Global Variables:

The top of the document lists the imports necessary for the tool to run. The directory of the

search tool source code is accessed here. The configuration file “search.conf” is read in at the

beginning which gives the database connection settings. There is a line which indicates whether

this is the first time the search tool has been run on the system. If this is read as “TRUE”, the

options menu will open to allow the user to enter appropriate database connection settings.

Global variables that are not graphics components:

my @traitFilters; #An Array that holds all of the trait filters currently active

my %vines; #Holds current set of vines to search for. key is vine name, value is vine GID (from

BMS). This is populated by all search types, and used by query functions to know which vines to

pull information for.

my @traitsToInclude = getVariableList(); #List of traits to include in report. printed to file later.

The default initialization here is that all traits are included

my @studiesToInclude = getStudyList(); #List of studies to include in report. printed to file later.

The default initialization here is that all studies are included

my @allVinesList = @{getAllVines()}; #List of all vines in database

my @allVineIDs = @{getAllIDs()}; #List of all vine GIDs in the database

89

my @studies = getStudyList(); #List of all studies in database. Separate from

@studiesToInclude. This is used by Vineyard Search Mode to populate the dropdown list

my $currentVineSelected; #Holds the current vine selected from drop down list in the

information management window.

my %VineSynonyms; #Hash map which maps {hidden name}->shown name

my %AltLookups; #Hash map which holds {shown name}-> Arraylist of hidden names

Other globals exist, and these mostly track which windows are open, or the values of certain GUI

entry components. They are less important to understanding the flow of information in the

program.

Finally, the graphics components, and other tracking variables for those components, are

initialized.

The Method ReadVines() reads in the file vineNames.conf and populates %VineSynonyms and

%AltLookups with values from the file.

The Main() method is then called which arranges the Text Search window on the screen. If this is

the first time using the tool, a Warning-Window will appear prompting the user to specify

database connection settings.

Part 2: Main Window Component Management

The Main Window is either the Text Search box or Trait Search box. Only one can be open at a

time.

Text Search:

90

Trait Search:

The buttons that say “Trait Search” or “Text Search” in each window are used to switch between

the two windows.

The button called “my $trait” on line 121 (as of writing this) handles the transition between the

two. The method described for this button checks a Boolean to see which window is open. It the

reverses the Boolean, calls a method to destroy either the string frame or trait frame (whichever

is currently open), and then calls a method to open the new window. Notice that the Main()

method is called to re-open the Text Search window. This is all that the Main() method does.

Note that the radio buttons call the searchBarManager(number) function. Name and parental

queries supply a 0, and vineyard search supplies a 1. This function handles the type of search bar

91

that is present based on what radio button is selected. See line 95 for the radio buttons, and line

305 for the searchBarManager function.

Name Search:

One of the three types of searching available from the Text Search window is to search by the

name of the vine. The variable that tracks which radio button is pressed is called $type on line

76, and is initialized to “name”. The search button on line 119 ($search) is the search button you

can see in the Text Search window. When the name search radio button is selected, the search

button when pressed will get the contents of the search bar, and call nameQuery($value,1). The

type (1) is never used by nameQuery, but it is still there.

nameQuery takes the name of the vine and then generates two strings, one with all periods

(04.0506.98), and one with all underscores (04_0506_98). These two names are then passed to

escapeMySQL() which returns a string in which any MySQL wildcards are removed. A query

string is created (see MySQL documentation for more on this). This string is then passed to the

function query(). Query handles most of the querying done by the search tool. The official

function call here is query($query, 2, “”). $query is the MySQL search string, 2 is the type of

search, a search by vine name, and “” is the year specifications if there are any. In this case, none

are allowed.

The query() function takes the MySQL search string, and runs the MySQL query using the

appropriate database connection settings. The results of the query are returned and arranged into

array of array pointers (2d array). The arrays being pointed to contain the values of the columns

92

returned for each line in the report. Further processing then happens based on what the type

supplied to the function is.

Type 2 search indicates a name query. The results of the query are expected to be the name of the

vine and its GID in in each row. Here, the name of each vine returned is checked against

whether the name of the vine is a hidden name (%VineSynonyms and %altLookups global

variables). Names are altered if need be. The names are then sorted alphanumerically, and a

string is created with their names. This string is used to make the Information Management

Window (see section for this). The vines returned from the query, before processing, are used to

populate the %vines (see global variables) hash.

This is where the name query data pipeline ends and is taken up by the Information Management

Window.

Parental Query

One of the three types of searching available from the Text Search window is to search by the

parents of the vine. The variable that tracks which radio button is pressed is called $type on line

76, and is initialized to “name”. The search button on line 119 ($search) is the search button you

can see in the Text Search window. When the parental search radio button is selected, the search

button when pressed will get the contents of the search bar, and call parentalQuery($value).

Parental names are stored in the format parent1/parent2. A user can search by entering the name

of either parent (Traminette or 04.0506.07), or the partial name of either parent (04.0506).

Additionally, they could enter the full name of the first parent a “/”and the partial name of the

second parent (Traminette/04.0506). They can also enter the names of both parents separated by

a “/”(Traminette/04.0506.07).

93

The parentalQuery() function takes the string entered and creates two version of it, one with all

underscores, and one with all periods. These names are then passed through a function remove

all MySQL wildcard characters. A MySQL query string is then constructed from these name

variations (see MySQL documentation for more info on this). The MySQL query string is then

passed to the query() function. The exact function call is query ($query, 2, “”). $query is the

MySQL search string, 2 is the type of search to be conducted, and “” is the year specification. In

this case, none is allowed.

The query() function takes the MySQL search string, and runs the MySQL query using the

appropriate database connection settings. The results of the query are returned and arranged into

array of array pointers (2d array). The arrays being pointed to contain the values of the columns

returned for each line in the report. Further processing then happens based on what the type

supplied to the function is.

Type 2 search indicates a parental query. The results of the query are expected to be the name of

the vine and its GID in in each row.

The vines returned from the query, before processing, are used to populate the %vines (see

global variables) hash.

Here, the name of each vine returned is checked against whether the name of the vine is a hidden

name (%VineSynonyms and %altLookups global variables). Names are altered if need be. The

names are then sorted alphanumerically, and a string is created with their names. This string is

used to make the Information Management Window (see section for this). This is where the

parental query data pipeline ends and is taken up by the Information Management Window.

Vineyard Search

94

Vineyard search is conducted from the Text Search window and allows users to search based on

the Trial or Nursery name that the vine appears in in the BMS. The variable $studyLister on line

107 is the drop-down menu that is created when the vineyard search radio button is selected. The

choices are returned from the getStudyList() function, and the current value of the dropdown list

is stored in the $studySearchString variable.

When the search button (line 118, $search) is pressed, the value of the radio button is checked.

When the vineyard search radio button is selected, the search button calls

vineyardQuery($studySearchString). This sets into motion the vineyard search pipeline.

The vineyardQuery() function takes the name of the supplied study, and passes it through the

MySQLEscape() function to remove any MySQL wildcard characters. A MySQL search string is

then constructed from the name of the study (see MySQL documentation for more information).

The method query() is then called to conduct the query. The exact function call is query($query,

2, “”). $query is the MySQL search string, 2 is the search mode, and “” is the year constraints.

Not year constraint is allowed here.

The query() function takes the MySQL search string, and runs the MySQL query using the

appropriate database connection settings. The results of the query are returned and arranged into

array of array pointers (2d array). The arrays being pointed to contain the values of the columns

returned for each line in the report. Further processing then happens based on what the type

supplied to the function is.

Type 2 search indicates a vineyard query. The results of the query are expected to be the name

of the vine and its GID in in each row.

The vines returned from the query, before processing, are used to populate the %vines (see

global variables) hash.

95

Here, the name of each vine returned is checked against whether the name of the vine is a hidden

name (%VineSynonyms and %altLookups global variables). Names are altered if need be. The

names are then sorted alphanumerically, and a string is created with their names (one line per

name, and the number of the vine in order before each name). This string is used to populate the

Information Management Window vine list (see section for this). This is where the vineyard

query data pipeline ends and is taken up by the Information Management Window.

Trait Search

Trait searches are conducted from the Trait Search window, shown again below:

The 5 fields to focus on first are the trait, tpe, operator, value, and year range fields. Each

component has a variable assigned to tracking its value, or natively has a method for retrieving

the value inside of it.

The frist concept to understand is that of a filter. A filter has 5 parts. The specifies what trait the

filter will be focused on. The operator and value determine what criteria are required to pass the

filter. The year range specifies what years to draw data from. The type specifies how vines can

pass the filter. A single_value type filter requires that a vine only have one observation of the

trait, and within the constraints of the operator and value to pass through the filter. An Average

96

filter requires that the average value of observation for the specified trait for an individual meet

the operator and value constraints to pass.

When a trait is selected from the Trait dropdown box, a method is called

(updateTraitDescription())to populate the Trait Values window with information on the trait that

was selected.

The user then selects the filter type, the operator and value constraints, and enters a year range if

one is desired. A Blank year range results in all data being considered for the filter. Once the

filter has been specified, “Add” ($addButton on line 172) is clicked, which calls the addFIlter

method. The exact function call is addFilter($traitString,$operator,$entValue->get(),$traitType,

$entYear->get()). $traitString is the name of the selected trait, $operator is the operator elected

from the dropdown list, $entValue->get() gets the value of the Value entry box, $traitType is the

value of the filter type selected from the dropdown box, and $entYear->get() gets the value of

the year range box.

addFilter() makes several checks to ensure that the filter is acceptable. First it checks that

$traitString, $operator, and $entyear->get() are all defined.

A check is made to ensure that the operator is an accepted symbol. This check is a holdover from

when this was a command-line based search tool. I do not think it is possible to fail at this check

due to the dropdown list implementation.

A check is made by calling the checkVariableName() function. The exact function call is

checkVariableName($trait). The function returns a 1 or a 0 indicating whether the trait name

exists in the database or not.

97

Several checks are then made to ensure that $entYear-get() is in the proper format of yyyy-yyyy

and that the year on the left is <= the year on the right. A proper year format is 2001-2005 or

2002-2002. The year range includes the years specified at the ends of the range.

At any point during the checks if the filter fails, a failure boolean is set to 1, and the function will

return at the end without adding the filter to the @traitFilters (See global variables).

If the filter passed all checks, an array of the filter is constructed and added to the @traitFIlters

array. A string representatio of the filter is also constructed, and the text is set in the text box

labeled “Current Filters”.

To remove a filter, the user enters the index number of a filter in the appropriate box and clicks

“remove” ($removeButton, line 179). The function removeFilter($removeEnt->get()) is called, at

line 379. The filter index is spliced out of the array so long as it looks like a number. A string

representation of the filters are then constructed and the terxt box is updated with the new filter

string.

A user can also click “Clear Filters” ($clearButton, line 176) which calls the clearFilters()

method on line 418. This empties the @traitFIlters array, and sets the text box to be empty.

Finally, the user can click “Search” which will conduct the search based on all of the filters

($searchButton, line 174). The calls the traitQuery() method.

The logic of how the filters are grouped and processed is described here. First, all filters are

chekced for the type and year range. If the type is “Average” or a year range has been specified,

the filter will be added to a secondary filter group to be processed later. Only filters of type

“Single_Value” and with no year range specified will be initially processed.

The first filters to be processed are then further grouped based on the traits they are filtering for.

Each group of initial filters can only have 1 filter for a specific trait. The reason for this is that it

98

is not possible to determine which of the filters a value passed from the MySQL report; it is not

able to be determined if a value passed one or both filters. To begin this grouping process, a first

group of filters is initialized and is empty. A hashmap keeps track of the traits that have been

added to each group. A filter cannot be added to a group if a filter exists in the same group with

the same trait. If this collision occurs, a second group is created to accommodate the duplicate

trait filter. Filters are added to the first group as long as no collisions occur, and will be added to

the second group if a collision occurs in the first so long as no collision occurs in the second

(unlikely). If a collision does occur in the second filter, a third group will be made.

It does not matter which group the initial filters fall into. What is returned from each group is the

number of filters each vine passed. A vine must pass all filters in all groups to be included in the

final report.

Several check steps occur and lines 1344 and 1354 to ensure that some filters have been etnered,

and that the groups of filters to not violate the no duplicate trait rule (which should not be

possible).

A MySQL search string is constructed for each group of filters. This search string is passed to

the query() function. The number of filters passed from each group is recorded. Again, vines

must pass all filters in all groups to be in the final report. The official function call is

query($queryString, 3, “”). $queryString is the MySQL search string that was constructed for the

filter group, 3 is the type of processing, and “” is the year range, which is not allowed here.

The query() function takes the MySQL search string, and runs the MySQL query using the

appropriate database connection settings. The results of the query are returned and arranged into

array of array pointers (2d array). The arrays being pointed to contain the values of the columns

99

returned for each line in the report. Further processing then happens based on what the type

supplied to the function is.

Type 3 processing indicates a trait query. The year range is not specified so all years are

accounted for (actually years 0 through the current year). The trait query returns the name of the

vine, a placeholder column to identify which filter was passed, and the trial or nursery name. The

year is dervied from the beginning of the trial or nursery name. It is expected that the year of the

study is fund at the beggning of the study name like “2015 DTA Trial”. The year from the study

is extracted, and if it falls within the range of the filters supplied (in this case it must), then the

count of filters passed for that vine is incremented. This processsing occurs for all rows in the

MySQL report.

Finally, a hash is returned to the traitQuery() function. The hash maps the name of the vine (key)

to the number of filters that the vine pased form that filter group (value). traitQuery takes the

returned hash and extracts all vines that passed the total number of filters in that group. Those

vines are added to an array to keep track of later, @returnedVines. .

The above process repeats for all filter groups. After this has occurred, the array @returnedVines

is processed. The appearances of each vine are counted in that array, and the total must be equal

to the number of filter groups that were processed. Vines that pass this check pass the initial level

of filter processing, and are now filtered through the secondary filters (with Average or year

ranges).

The reason that secondary filters are processed later is that they take significantly longer to rn the

MySQL queries. I therefor choose to only run them on the vines that pass the initial filtering,

rather than the thousands of vines that exist in the database.

100

To begin, the vines that passed the initial filtering are added to the @vinesThatPassed array. If

there were no initial filters, the vines that passed array is populated with all of the vines in the

database.

The following processing occurs for every secondary filter, and every vine in @vinesThatPassed.

A query is consstructed from the secondary filter. This query is passed to the query() method.

The exact function call is query($secondaryQueryString,4,$secondaryFilter[4]);

$secondaryQueryString is the MySQL query string, 4 is the search type, and $secondaryFilter[4]

is the year range to process the vines in.

Query processing type 4 is processed the same as type 3, except that the raw values for each vine

are returned in an array to traitQuery(). If the filter requires an average value to pass the

constraints, then the average of all values is calculated for the vine, and a check is made based on

the operator in the filter. If the vine pases this check, a counter is incremented in a hashmap

which maps the vine name (key) to the number of secondary filters it passed (value).

If the type of the secondary filter is single value, any value in the array that passes the operator

and value constraint will cause the incrementation of the secondary filter (a boolean is set in this

case to avoid multiple passing values causing multiple counter increments for the same filter).

Finally, reguar expression checks are used if the values are judged to be text based.

If the counter in the hashmap for each vine is the same as the umber of secondary filters, it has

passed all filters the user applied.

A (now redundant) check is made to ensure that a hidden name is not present in the list of passed

vines. The list of vines is coinverted into a string for the information management window. The

passing vines are added to the %vines hash. Trait filter processing ends here, and further control

is given to the information management window.

101

Inforamtion Management Window

This is the image of the Information Management Window:

The vines that passed the resulting query (name, parental, vineyard, or trait) are displayed in the

box on the left. The information management window is called at the end of all query functions,

and is supplied the list of vines resulting from the query. The definition starts on line 1089. The

box labeled “Select Vines for Report” allows a user to enter a vine name to a fill-in box. They

can then add or remove the selected vine using the $addVIneButton or $removeVineButton on

lines 1131 and 1132 respectively. Adding a vine simple adds the currently selected vine to the

%vine hash, and calls a method to update the window on the left. The generateVineString() (line

2573) method takes the list of vines in %vines and generates the string you see on the left text

box. The most important processsing is removing vines from the list that are hidden names. The

method then sorts the vines alphanumerically, and returns the string which it generated.

Next a user can click the “Specify Traits to Include” ($specifyTraitButton, line 1126) . This

opens a window managed by the makeTraitSelectWindow() function (line 555). An image of the

trait select window is shown below:

102

By default all traits in the database are included. Traits that are selected for inclusion will be

included in the final report. This feature allows users to include or exclude specific traits to

generate reports of their choosing.

A user can enter a trait into either of the two drop-down list boxes. If a user enters a trait into the

Add trait box and clicks “Add” ($addButton, line 594), the addATrait() method is called (line

594). The specific function call is addATrait($currentTrait). $currentTrait keeps track of the

currently selected trait in the Add Trait box ($traitEnt, line 576). addATrait() checks to make

sure $currentTrait is a valid trait in the database, and adds it to @traitsToInclude (see global

variables). It then generates the string shown the upper box. $addButton then adjusts the options

in the Remove Trait dropdown box to reflect the traits that are in the upper box.

If a user enters a trait into the Remove Trait box and clicks “Remove” ($removeIndexButton,

line 602), the removeATrait() method is called (line 628). The specific function call is

removeATrait($removeTrait). $removeTrait keeps track of the currently selected trait in the

Remove Trait box ($removeEnt, line 567). removeATrait() removes all instances of

103

$removeTrait from @traitsToInclude (see global variables). It then generates the string shown

the upper box. $removeButton then adjusts the options in the Remove Trait dropdown box to

reflect the traits that are in the upper box.

A user can then click the “Add All Traits” button ($addAllButton, line 596). This calls the

addAllTraits() method on line 667. This adds all of the traits in the database to @traitsToInclude.

A string is generated for the upper box, and $addAllButton updates the upper box, and updates

$removeEnt to reflect the traits that are in the upper box.

A user can also click “Remove All Traits” ($removeAllButton, line 598). This will set

@traitsToInclude to an empty array, set the text box to be empty, and remove all choices from

$removeEnt.

Clicking “ok” will close the window.

A user can click the “Specify Studies to Include” ($specifyStudytButton, line 1127) . This opens

a window managed by the makeStudySelectWindow() function (line 694). An image of the study

select window is shown below:

104

By default all studies in the database are included. Studies that are selected for inclusion will be

included in the final report. This feature allows users to include or exclude specific studies to

generate reports of their choosing. Items in the list that include only a year are actually folder

names in the BMS. Selecting these folders for inclusion will result in all studies which begin

with that year to be selected.

A user can enter a study into either of the two drop-down list boxes. If a user enters a study into

the Add Study box and clicks “Add” ($addButton, line 731), the addAStudy() method is called

(line 775). The specific function call is addAStudy($currentStudy). $currentStudy keeps track of

the currently selected study in the Add Study box ($studyEnt, line 714). addAStudychecks to

make sure $currentStudyis a valid study in the database, and adds it to @studiesToInclude (see

global variables). It then generates the string shown the upper box. $addButton then adjusts the

options in the Remove Study dropdown box to reflect the studies that are in the upper box.

If a user enters a study into the Remove Study box and clicks “Remove” ($removeIndexButton,

line 736), the removeAStudy() method is called (line 760). The specific function call is

removeAStudy($removeStudy). $removeStudy keeps track of the currently selected study in the

Remove Study box ($removeEnt, line 704). removeAStudy() removes all instances of

$removeStudy from @studiesToInclude (see global variables). It then generates the string shown

the upper box. $removeButton then adjusts the options in the Remove Study dropdown box to

reflect the studies that are in the upper box.

A user can then click the “Add All Studies” button ($addAllButton, line 732). This calls the

addAllStudies() method on line 792. This adds all of the traits in the database to

105

@studiesToInclude. A string is generated for the upper box, and $addAllButton updates the

upper box, and updates $removeEnt to reflect the studies that are in the upper box.

A user can also click “Remove All Studies” ($removeAllButton, line 733). This will set

@studiesToInclude to an empty array, set the text box to be empty, and remove all choices from

$removeEnt.

Clicking “ok” will close the window.

Looking back at the original window now:

The format options are checkboxes that allow users to specify the format of the resulting report

($cb and $cbAnalysis at lines 1129 and 1130 respectively). These buttons set booleans which

trakc whether the button is on or off. The Avergaes Only button will take the average value of

each trait for each vine in the report. The default is to report every value for each trait. This can

106

condense the report, and make it more readable. Analysis format will create a simple spreadsheet

layout with trait names across the top row, and vine names in the far left column. There will be

multiple entries for each vine if this format is used, one for each replication in each study. It is

not reccomended to use Analysis Format without Averages only unless the user is only including

one study in the report.

Save report calls the traitReport() function and supplies the name of a temporary file for output.

This is where the control of the information management window ends, and the

traitReport()method begins.

Trait Report Method

This method is called when a user clicks save report in the Information Management Window.

The method first iterates through the names of all of the vines in the %vines hash (see global

variables) and determines if the vine is a hidden name or a shown name. If the vine is a hidden

name, I need to add the shown name a list called @altLookups, as well as all other hidden names

associated with that shown name. If name is a shown name, all hidden names associated with it

must be added to @altLookups. The logic you see between lines 1823 and 1879 is designed to

handle this. The function then calls vineQuerier() for each vine in %vines and each vine in

@altLookups. The function call will always be vineQuerier([name], 1) or vineQuerier([name],

2).

A 1 designates a search by GID, and a 2 designates a search by vine name.

vineQuerier() (line 1962) constructs a MySQL query from the supplied name of the vine (see

MySQL documentation for more information) and conducts a MySQL query based on the vine

name. Each row returned from the query should contain the vine name, parents, trait, value of

observation, trait description, study name, and a unique identifier for the study and observation.

107

The resulting MySQL report is then written to the file tempoutfileforreport.txt, which is used by

a later function.

Once all vines have been queried for, traitReport() prints two alternate files traitfileforreport.txt

and studyfileforreport.txt. The files contain the list of traits and studies contained in

@studiesToInclude and @traitsToInclude (see global variables). This information is used by

later report making functions.

An options string is generated from the Average and Analysis Boolean trackers (see Information

Management Window) to specify how the report should be formatted).

The function finally calls reportMaker2.pl, the report formatting function. Below is the function

call:

$dir/reportMaker2.pl\" \"$dir/tempoutfileforreport.txt\" \"$outFile.csv\"

\"$dir\\traitfileforreport.txt\" \"$dir\\studyfileforreport.txt\" $yearsSince $optionsString.

$yearsSince is no longer supplied. Instead the studies included serve as a year cutoff.

This is the end of control for the Vine Search Window. See the section below for the options

menu documentation.

Options Menu

The options menu appears when the user clicks the options button in either the Text Search or

Trait Search Windows ($options, line 106). Clicking this button calls the options_menu()

function on line 864.

The options menu is shown here:

108

The four fields (hostname, DB name, port number, User Name) allow the user to set specific

database connection settings. The default settings for everything except the database name

should be sufficient. The Database name can be selected from a drop-down list ($entDB, line

876) which is populated with a list of databases from the BMS.

Clicking Update Trait Infor ($refreshTraitDescriptionsButton, line 893) will call

updateTraitValueInfo() which calculates all of the trait statistics seen in the Trait Search

Window. This takes a considerable amount of time to do. Then getTraitValueInfo() is called by

the button which updates this info for the current session.

Setting the values for the above fields sets their value for the current session. A box will then

appear asking if the new setting should be saved. Clicking yes will rewrite the vineSearch.conf

file (see globals section) with the new database connection settings.

Clicking Manage Vine Name Synonyms ($openVineNameButton, line 892) will call the

makeVineNameWindow() function on line 930 (see Manage Vine Name Synonyms Section).

Manage Vine Name Synonyms

This window is used to manage vine name synonyms. Vine name synonyms specify that two

entries have different names, but are the same genotype. This can arise when a variety is released

and given a new name, or when mistakes are made in data entry, and the names do not match.

This window allows users to specify these relationships. The hidden name is considered the old

109

or bad name, it will not be shown in any report. The shown name is the corrected or new name.

The hidden name will be replaced by the shown name in all cases.

Things to note about these relationships: the hidden name is unique. It does not make sense to

map one hidden name to multiple shown names. Many different hidden names can map to the

same shown name though. This is a many to one relationship type.

Secondly, the “---“following most hidden names is a flag for the program to ignore all other

characters. Sometimes extra information is added onto the end of the name of the vine, and this

is useful to correct for that. I do not add them by default as there are some cases where this

functionality is not desired.

Here is a picture of the Manage Vine Name Synonyms Window:

The box on the left shows current synonyms. Users can create a new synonym by filling in the

hidden name field and shown name field and clicking create synonym ($addButton, line 959).

$addButton calls the addSynonym() function on line 1037. The specific function call is

addSynonym($hnameEnt->get(),$snameEnt->get()). $hnameEnt->get() is the value in the hidden

110

name field, and snameEnt->get() is the value in the shown name field. addSynonym() checks to

make sure that both fields are defined and that the hidden name has not already been taken. After

satisfying these requirements, the relationship will be added to the %VineSnynonyms hash (see

global variables), but not the $altLookups hash. A string is generated from the new

%VineSynomyms hash which is returned to the button. The button then enters this text into the

Current Synonyms text box.

Users can remove a synonym relationship in the “Remove A Synonym” area. Users must enter a

hidden name into the Hidden Name box, and click “Remove Synonym” ($removeButton, line

952). $removeButton calls the removeASynonym function. The specific function call is

removeSynonym($removeEnt->get()), where $removeEnt->get() is the value in the Hidden

Name field. removeSynonym() checks to make sure the hidden name is defined, and that it exists

in the %VineSynonyms hash. Passing these tests, the synonym is removed from the hash.

removeSynonym() creates a text representation of the new list of synonyms, returns this to the

calling button, which then writes the text to the box on the left.

Clicking “Save Changes” ($quitButton, line 948) will call the writeVineConfigFile() and close

the window.

writeVineConfigFile() method writes the vine synonym relationships to the vineNames.conf file.

This is read in when a new session is opened.

Final Output of Vine Search

The final output of all of the search paths are dir/tempoutfileforreport.txt,

$dir\traitfileforreport.txt\, and $dir\studyfileforreport.txt. tempoutputfileforreport.txt is just the

raw output of the MySQL queries that are generated by Vine Search. All data for all vines

111

included in the report is printed to this file. Filtering of data that is not in included studies or for

observations of traits that are not included is performed by the report maker.

The columns expected in tempoutputfileforreport.txt are VINE_NAME CROSS

 VALUE TRAIT TRAIT_DESCRIPTION STUDY

 RELATED_IDENTIFIER.

The names should be self-explanatory.

The reportMaker program takes the raw output and formats the report according to specifications

given to it. Please see documentation for the report maker (report maker technical

documentation).

Adding a Search Method

In order to add a search method, you will have to perform a number of steps:

1) Create a GUI interface for the search. One way to approach this may be to add a button to

open a new window to your search. From there, you can have buttons, entry fields, or

whatever else you need to specify the options to the search. Some GUI components will

have built in get() methods which return the current value of the component. Others will

require that you specify a variable to store the value of the field in. You can google what

is expected for each component.

a. Consider the design of the GUI closely. A new user should be able to figure out

the basics of how to use your interface without needing to read instructions. If a

user has to read instructions to figure out how to use your interface, it is not

designed well.

b. Take a look at the code for some of the current screens to know how to place the

GUI elements where you want them.

112

2) You will have to develop your own MySQL query for the search. You may be able to

easily adapt one or more queries that are currently written to your needs. In any case,

you’ll want to use some parts of the query that extract the names of the vines.

3) The query should return a list of vines. Hidden names should be removed from the list,

and then the function makeVineListingWindow() should be called, supplying the

windows with the list of vines as a parameter. This will bring up the screen to

add/remove vines, studies, and traits, as well as format and save the report.

Expected File Locations

This section describes where expcted files are for the search tool.

reportMaker2.pl and search.pl are both stored in the main folder. This is where the temporary

study, trait, and raw MySQL text output files are stored. search.conf (database connection

details), traitDescriptions.conf (information about traits displayed in trait search window), and

vineNames.conf (hidden/shown name synonyms) are found in a folder called Configuration.

Configuration is in the same directory as search.pl.

Appendix III: Report Making Documentation

This document is intended for someone working with reportMaker2.pl to understand how to use

the report making function.

ReportMaker2.pl is designed to be run by vineSearch.pl, but it can be run by hand. Please note

that ReportMaker2.pl needs input of only the raw MySQL files, the list of studies and traits to

include in the resulting reports, and some flags to specify what format to print in. These files are

generated by vineSearch.pl. If you want to create a new format type, it is recommended to create

your own formatting script. This one will be very difficult to add a new feature to, but you may

113

want to copy some of the logic in the beginning to read the necessary files in, and correct vine

name mistakes. These details are provided here.

The inputs for this script can also be generated without vineSearch.pl (please see documentation

for MySQL queries). You will have to run MySQL queries by hand, and copy and paste the

results into files and feed them into the script. I would only recommend this if vineSearch.pl is

unusable for some reason.

Preparation Steps

The preparation steps include reading in the studies file, trait file, and vine name file. The vine

name file specifies hidden and shown name relationships (please see vine search technical

documentation for more information). Essentially, bad names are corrected to good names in this

file, and the information is read in by the script.

Reading in the studies and traits is simple; each line in the files contains one study or trait, and

the names of the studies and traits are stored in a hash for easy lookup later. Vine names are

stored in a hash where bad name (key) is mapped to good name (value).

Next the script reads in tempoutputfileforreport.txt which is the raw data from the MySQL query.

The expected columns in the file are: VINE_NAME CROSS VALUE TRAIT

 TRAIT_DESCRIPTION STUDY RELATED_IDENTIFIER.

The fields should be tab separated, and each row should contain the information for 1

observation. Rows can unfortunately be split among several lines in the file for whatever reason

(I could never figure this out) so the script will read lines until all 7 columns have been populated

with information (see lines 104-111). Lines 113 to 126 replace bad names with good names

based on hash lookups. Finally lines 128-135 will only accept the row if the study name and trait

name is valid for the report.

114

The representation of the report in the script is a 2d array. The outer array contains pointers.

Each pointer points to an array which represents a row with 7 entries. The array index mapping is

as follows:

 0: VINE_NAME

1: CROSS

 2: VALUE

 3: TRAIT

 4: TRAIT_DESCRIPTION

 5: STUDY_NAME

 6: RELATED_IDENTIFIER

Finally, please experiment with the different formats of reports to see what the report making

script will give you.

Appendix IV: Query Documentation

The purpose of this document is mostly to help another person in my position to understand the

MySQL queries I have written.

Outlined here are the 11 queries that my search tool uses.

Each query has a “Use” section, which briefly describes what the query is used for, and a “How

to” section. The “How to” section describes which place holders (such as $vineName) need to be

replaced with an actual value to use the query. The query is listed below the How To section.

Some queries are easier to use than others. The queries are organized so that the simpler ones to

execute are first, and the most complicated queries are at the end.

115

Another document (Name will be supplied when I have finished it) that I am preparing describes

where to use these queries and how to run them, and refers to this document as a reference for

writing queries to the MySQL underlying the BMS.

Finally, please be mindful of retaining the quotation marks and other characters that are in the

queries. Only replace the characters that represent the place holders. The dollar signs ($) mark

the place holders, and should be replaced as well.

Query1:

Use: Return list of all variables in the database

How to: Simply use query as is

select * from projectprop where type_id = 1043 or type_id = 1048;

Query2:

Use: Get list of all studies in the database

How to: Simply use query as is

select name from project;

116

Query 3:

Use: Get list of all vines in database

How to: Simply use query as is

select desig from LISTDATA group by desig;

Query 4:

Use: Get the GID of a vine from its name

How to: Replace $name with the name of a vine you want to know the name of

select dbxref_id from stock where name ='$name';

Query 5:

Use: Get the name of a vine from its GID

How to: Replace $GID with the GID of a vine

select name from stock where dbxref_id = $GID;

Query 6:

Use: Return information about a study

How to: Replace $name with the name of a study like 2015 Downy Mildew Leaves

117

select * from project where name = '$name';

Query 7:

Use: Get the scale of a variable based on the variable name

How to: Replace $trait with the variable you want to know the scale of

select scale from standard_variable_details where stdvar_name = '$trait';

Query 8:

Use: Search for vines based on studies/vineyards they appear in

How to: replace $studyname with the name or partial name of a study.

 "2015 Vineyard 44" will return all vines in that vineyard.

 "2015" will return all vines appearing in any study in 2015.

select e.name as 'VINE_NAME', e.dbxref_id as 'ID'

 from nd_experiment c

 JOIN nd_experiment_stock d on c.nd_experiment_id = d.nd_experiment_id

 JOIN stock e on d.stock_id = e.stock_id

 JOIN nd_experiment_project f on c.nd_experiment_id = f.nd_experiment_id

 JOIN project g on f.project_id = g.project_id

 where substring(g.name ,1,$length) = '$studyname'

 GROUP BY 1

118

 ;

Query 9:

Use: Find all vines with different variations of a name. Used in search tool for finding vines

name variations with underscores (_) or periods (.)

How to: Replace $vineName and $vineName2 with different variations of a name. Example:

$vineName replaced with 07.0504.07 and $vineName2 replaced with 07_0504_07

 If there is only one variation or you only desire to search for one name, use the

same name for both fields.

select e.name as 'VINE_NAME', e.dbxref_id as 'ID'

 FROM STOCK e

 JOIN LISTDATA h ON e.name = h.desig

 JOIN ND_EXPERIMENT_STOCK d ON e.stock_id =

d.stock_id

 JOIN ND_EXPERIMENT_PROJECT f ON d.nd_experiment_id =

f.nd_experiment_id

 JOIN ND_EXPERIMENT_PHENOTYPE b ON d.nd_experiment_id =

b.nd_experiment_id

 WHERE (e.name = '$vineName'

 AND h.desig = '$vineName') or (e.name = '$vineName2'

 AND h.desig = '$vineName2')

119

 GROUP BY 1

 ;

Query 10:

Use: Return all observations for a given vine name

How to: Replace $vineName with the name of a vine you want to search for.

Alternate Uses:

 1) replace "e.name = '$vineName' AND h.desig = '$vineName" with "i.TRAIT = '$trait'.

 $trait can be any variable. This will return all observations of a given trait.

SELECT e.name as

'VINE_NAME' ,

 h.grpname as 'CROSS'

,

 a.value as 'VALUE'

,

 i.TRAIT ,

 i.TRAIT_DESCRIPTION ,

 REPLACE(g.name, '-PLOTDATA',

'') as 'STUDY_NAME' ,

 d.nd_experiment_id as

'RELATED_IDENTIFIER'

 FROM STOCK e

120

 JOIN LISTDATA h ON e.name =

h.desig

 JOIN ND_EXPERIMENT_STOCK d ON

e.stock_id = d.stock_id

 JOIN ND_EXPERIMENT_PROJECT f ON

d.nd_experiment_id = f.nd_experiment_id

 JOIN ND_EXPERIMENT_PHENOTYPE b ON

d.nd_experiment_id = b.nd_experiment_id

 JOIN PROJECT g ON f.project_id =

g.project_id

 JOIN PHENOTYPE a ON b.phenotype_id

= a.phenotype_id

 JOIN (SELECT i1.value ,

 i2.value as

'TRAIT' ,

 REPLACE(i3.value,

'"', '') as 'TRAIT_DESCRIPTION'

 FROM projectprop i1

 JOIN projectprop i2 on

i1.project_id = i2.project_id and i1.rank = i2.rank and (i2.type_id = 1043 or i2.type_id = 1048)

 JOIN projectprop i3 on

i1.project_id = i3.project_id and i1.rank = i3.rank and i3.type_id = 1060

121

) i ON a.observable_id =

i.value

 WHERE e.name = '$vineName' AND h.desig =

'$vineName'

 GROUP BY 1,3,4,5,6,7;

Query 11:

Use: Search for vines based on parental names

How to: Replace $vineName and $vineName2 with period and underscore versions of a name.

Use the same name for both fields if only one version of the name exists.

 Replace $length1 and $length2 with the character lengths of $vineName and

$vineName2 respectively.

 The name format for parents is $parent1/$parent2. If a single name is entered, all

parent groups which start or end with that parent will be selected.

 select e.name as 'VINE_NAME', e.dbxref_id as 'ID'

 FROM STOCK e

 JOIN LISTDATA h ON e.name = h.desig

 JOIN ND_EXPERIMENT_STOCK d ON e.stock_id = d.stock_id

 JOIN ND_EXPERIMENT_PROJECT f ON d.nd_experiment_id =

f.nd_experiment_id

122

 JOIN ND_EXPERIMENT_PHENOTYPE b ON d.nd_experiment_id =

b.nd_experiment_id

 WHERE (substring(h.grpname,1,$length1) = '$vineName' or h.grpname like

'%/$vineName')

 or (substring(h.grpname,1,$length2) = '$vineName2' or

h.grpname like '%/$vineName2')

 GROUP BY 1

 ;

Query 12:

WARNING: VERY DIFFICULT TO WRITE THIS QUERY WITHOUT SOFTWARE HELP

Use: Return the vines that meet trait filter requirements

How to:

 1) Create filter string by replacing $trait with a trait, $operator with an operator

(examples: =,!=,<,<=,>,>=,like,not like) and $value with a value for the phrase below.

 (I.TRAIT = $trait and a.value $operator $value)

 An example is (I.TRAIT = DTA_LT and a.value < -25)

 2) String multiple filters together by separating them with "or" in the following

format:

 (I.TRAIT = $trait and a.value $operator $value) or (I.TRAIT = $trait and

a.value $operator $value) or (I.TRAIT = $trait and a.value $operator $value)

 3) Replace $filterString below with the string of filters you have created above.

123

 4) Replace $filterNumber with the number of filters statements you have strung

together

SELECT VINE_NAME FROM

 (SELECT VINE_NAME, COUNT(*) as 'COUNT' FROM

 (SELECT VINE_NAME, CONCAT(VINE_NAME,TRAIT) as GLOB

FROM

 (SELECT

 e.dbxref_id as 'VINE_NAME',

 h.grpname as 'CROSS' ,

 a.value as 'VALUE' ,

 i.TRAIT ,

 i.TRAIT_DESCRIPTION ,

 REPLACE(g.name, '-PLOTDATA', '') as

'STUDY_NAME' ,

 d.nd_experiment_id as

'RELATED_IDENTIFIER'

 FROM STOCK e

 JOIN LISTDATA h ON e.name = h.desig

 JOIN ND_EXPERIMENT_STOCK d ON e.stock_id =

d.stock_id

124

 JOIN ND_EXPERIMENT_PROJECT f ON

d.nd_experiment_id = f.nd_experiment_id

 JOIN ND_EXPERIMENT_PHENOTYPE b ON

d.nd_experiment_id = b.nd_experiment_id

 JOIN PROJECT g ON f.project_id = g.project_id

 JOIN PHENOTYPE a ON b.phenotype_id =

a.phenotype_id

 JOIN (SELECT i1.value ,

 i2.value as 'TRAIT'

,

 REPLACE(i3.value, '"', '') as

'TRAIT_DESCRIPTION'

 FROM projectprop i1

 JOIN projectprop i2 on i1.project_id =

i2.project_id and i1.rank = i2.rank and (i2.type_id = 1043 or i2.type_id = 1048)

 JOIN projectprop i3 on i1.project_id =

i3.project_id and i1.rank = i3.rank and i3.type_id = 1060

) i ON a.observable_id = i.value

 WHERE $filterString

 GROUP BY 1,3,4,5,6,7)

 as BIG GROUP BY GLOB)

 as SMALL GROUP BY VINE_NAME)

as LAST where COUNT = $filterNumber;

125

Appendix V: search.pl

#!/usr/bin/perl -w

####IMPORTS############

use strict;

use Tk;

use DBI;

use Scalar::Util qw(looks_like_number);

use Tk::MatchEntry;

use Cwd;

use File::Spec::Functions qw(rel2abs);

use File::Basename;

use List::Util qw(sum);

use List::Util qw(min);

use List::Util qw(max);

use feature "switch";

###############DATABASE CONNECTION INFORMATION######################################

my $dir = dirname(rel2abs($0)); #Directory that this script is actually in

my $database= "ibdbv2_grape_4_local"; #Database name

my $port= "13306"; #Port number

my $host= "localhost"; #host name

my $username= "root"; #Username

#Open the database connection file. Read in the variables to connect to database

#This must be done to access the MySQL database

#There is no password as the MySQL database is not password secured

#Please see Configuration\search.conf for file structure if you are interested.

open(my $CONFIGURATION_FILE, "$dir\\Configuration\\search.conf") or die "Could not locatate configuration file $dir\\Configuration\\search.conf: $!\n";

my $configurationCounter = 1; #Keep track of what line I am on

my $firstTimeFlag;

my @traitsToInclude; #List of traits to include in report. printed to file later

my @studiesToInclude; #List of studies to include in report. printed to file later

my @allVinesList ; #List of all vines in database

my @allVineIDs ;

my @traits; #Get the variable list used in the drop down menu when specifying traits

my @studies = getStudyList();

while (!eof($CONFIGURATION_FILE)) {

 my $line = readline($CONFIGURATION_FILE);

 chomp $line;

 $line =~ s/"//g;

 my @splitLine = split("\t", $line);

 if ($configurationCounter == 3) {

 $database = $splitLine[0];

126

 }elsif($configurationCounter == 4){

 $port = $splitLine[0];

 }elsif($configurationCounter == 5){

 $host = $splitLine[0];

 }elsif($configurationCounter == 6){

 $username = $splitLine[0];

 }elsif($configurationCounter==7){

 if ($splitLine[1] eq "TRUE") {

 $firstTimeFlag = 1;

 }else{

 $firstTimeFlag = 0;

 }

 }

 $configurationCounter++;

}

close($CONFIGURATION_FILE);

my @traitFilters; #Holds trait filters

my %vines; #Holds current set of vines to search for. key is vine name, value is vine GID (from BMS)

if ($firstTimeFlag == 1) {

 #do nothing

}else{

####################GLOBALS USED BY MANY FUNCTIONS##################

@traitsToInclude = getVariableList(); #List of traits to include in report. printed to file later

@studiesToInclude = getStudyList(); #List of studies to include in report. printed to file later

@allVinesList = @{getAllVines()}; #List of all vines in database

@allVineIDs = @{getAllIDs()};

@studies = getStudyList(); #List of all studies in database

@traits = getVariableList(); #Get the variable list used in the drop down menu when specifying traits

}

my $currentVineSelected; #Holds the current vine selected from drop down list in the information management window

my %VineSynonyms; #Hash map which maps {hidden name}->shown name

my %AltLookups; #Hash map which holds {shown name}-> Arraylist of hidden names

 #MAIN WINDOW COMPONENTS FOR TEXT SEARCH MODE

 ############GLOBAL VARIABLES FOR MAIN WINDOW HERE######################

127

my $type = "name"; #Search type. Radio button change this. Starts as name search

my $traitFrameOpen = 0; #Track if trait frame is open. 0 is no, 1 is yes

my $searchMode = 0; #Indicates search mode for seach bar. Name and parental searches are mode 0 (indicates standard entry bar). Mode 1 is for vineyard searches, which will create a dropdown

bar instead

my $analysisBool = 0; #Used to track if "Analysis" checkbox is checked.

my $avgBool = 0; #Track if average box is ticked

my $yearsSince = 0; #Store the year cutoff. Default is zero to be all inclusive. Thus if year is never specified all studies are included

my $studySearchingString = "";

my $traitType = 1; #Search type where 1 = any value, 2 = average

 #Main Window Components#

my $mw = new MainWindow;

$mw->optionAdd('*font', 'Helvetica 14');

my $frm_name = $mw -> Frame(); #Main frame

my $lab = $frm_name -> Label(-text=>"Search For:");

my $ent = $frm_name -> Entry(); #Entry point for search string in main window

my $frm_type = $mw -> Frame();

my $dummyLabel = $frm_type->Label(); #Label for formatting

my $lbl_type = $frm_type -> Label(-text=>"Search Type: "); #Label next to search bar

 ###Radio Buttons here####

#The following radio button changes the search type to Name search and calls search bar manager with the new bar type

my $rdb_m = $frm_type -> Radiobutton(-text=>"Name",

 -value=>"name", -variable=>\$type, -command=>sub{searchBarManager(0);}); #Name search radio button

#The following radio button changes the search type to parental search and calls the search bar manager with the new bar type

my $rdb_f = $frm_type -> Radiobutton(-text=>"Parental",

 -value=> "parental",-variable=>\$type, -command=>sub{searchBarManager(0);}); #Parental search radio button

#The following radio button changes the search type to vineyard and calls the search bar manager with the new bar type.

my $rdb_v = $frm_type -> Radiobutton(-text=>"Vineyard",

 -value=> "vineyard",-variable=>\$type, -command=>sub{searchBarManager(1);}); #Vineyard search radio button

 ###Other Main Window Components###

my $options = $mw -> Button(-text=>"Options", -command =>\&options_menu); #"Options" button to open options menu

my $studyLister = $frm_name->MatchEntry(

 -multimatch=>0,

 -autoshrink=>1,

 -maxheight=>10,

 -ignorecase=>1,

 -variable => \$studySearchingString,

 -state => 'normal',

 -choices => [getStudyList()],

 -width => 35); #create drop down menu for studies

#Call appropriate search function (based on $type which is updated by radio buttons) when search is pressed

my $search = $frm_name -> Button(-text=>"Search", -command => sub{ if($type eq "name"){my $value = $ent->get(); $value =~ s/;"#//g; nameQuery($value,1);} elsif($type eq "parental"){my

$value = $ent->get(); $value =~ s/;"#//g;parentalQuery($value);} elsif($type eq "vineyard"){vineyardQuery($studySearchingString);}});

128

#Trait frame button. Calls appropriate functions to manage transition between trait search and string search windows.

my $trait = $mw -> Button(-text=>"Trait Search", -command=>sub{if($traitFrameOpen == 0){makeTraitMenu();$traitFrameOpen = 1;destroyStringFrame();}else{destroyTraitFrame();

$traitFrameOpen = 0;Main();}}); #Open trait frame or main frame

#Opens help menu for main window

my $helpButton = $mw->Button(-text=>"Help", -command=>sub{showMainHelp();}); #Open the help window

########################END MAIN WINDOW COMPONENTS##########################

########################TRAIT WINDOW COMPONENTS#############################

 #GLOBAL VARIABLES FOR TRAIT WINDOW HERE##

my $operator; #holds operator selected from dropdown list

my $traitString = ""; #Holds string of trait in the entry field

my $traitDescribersRef = getTraitValueInfo();

my %traitDescribersHash = %$traitDescribersRef; #Holds the average, std, min, max, etc for each trait in the form of a string. key is trait name, value is string

#my $vineTraitAveragesRef = getTraitAveragesInfo();

#my %vineTraitAveragesHash = %$vineTraitAveragesRef; #Holds the average value of every trait for every vive. key is vine name, value is pointer to hash. The hash being pointed to is

structured as key (trait) and value (average)

#Filter management here

my $filterFrame = $mw->Frame(-highlightbackground=>"black", -highlightthickness=>2);

my $removeFilterFrame = $mw->Frame(-highlightbackground=>"black", -highlightthickness=>2);

my $searchFrame = $mw->Frame();

my $labTrait = $filterFrame ->Label(-text=>"Trait");

my $labType = $filterFrame->Label(-text=>"Type");

my $labOp = $filterFrame ->Label(-text=>"Operator"); #Operator label

my $labValue = $filterFrame ->Label(-text=>"Value"); #Value label

my $entValue = $filterFrame->Entry(); #Value entry field

my $entYear = $filterFrame->Entry();

my $labYear = $filterFrame->Label(-text=>"Year Range");

my $entType = $filterFrame->Optionmenu(

 -options => [[Single_Value=>1], [Average=>2]],

 -variable => \$traitType

);

my $jb1 = $filterFrame->MatchEntry(

 -multimatch=>0,

 -autoshrink=>1,

 -maxheight=>10,

 -ignorecase=>1,

 -variable => \$traitString,

 -state => 'normal',

 -choices => [@traits],

 -width => 35,

 -entercmd => sub{updateTraitDesciption($traitString);}, #create drop down menu for traits

129

 -command => sub{updateTraitDesciption($traitString);});

my $filterCreateLabel = $filterFrame->Label(-text=>"Create Trait Filter", -font=> "Helvetica 16");

my $opt = $filterFrame->Optionmenu(

-options => [['> (greater than)'=>'>'], ['< (less than)'=>'<'], ['<= (less than or equal to)'=>'<='], ['>= (greater than or equal to)'=>'>='], ['= (equal to)'=>'='], ['!= (not equal to)'=>'!='], ['like (contains

the following phrase)'=>'like'], ['not like (does not contain the following phrase)'=>'not like']],

-variable => \$operator,

-textvariable => \$operator

); #dropdown list for valid operators

my $addButton = $filterFrame->Button(-text=>"Add", -command=> sub{addFilter($traitString,$operator,$entValue->get(),$traitType, $entYear->get());}

); #Click button to add trait filter

my $searchButton = $searchFrame -> Button(-text=>"Search", -command=>sub{traitQuery();}); #Execute trait search when search button is clicked

my $removeFilterLabel = $removeFilterFrame ->Label(-text=>"Remove Trait Filter", -font=> "Helvetica 16");

my $clearButton = $removeFilterFrame -> Button(-text=>"Clear All Filters", -command=>sub{clearFilters();}); #Clear filters when this button is clicked

my $removeLab = $removeFilterFrame -> Label(-text=>"Filter number to remove: "); #Remove label

my $removeEnt = $removeFilterFrame ->Entry(); #Remove entry field

my $removeButton = $removeFilterFrame -> Button (-text=>"Remove", -command => sub{removeFilter($removeEnt->get());}); #remove filter with the index stored in the removeEnt field.

 #Text box for current filters

my $textarea = $mw -> Frame();

my $txt = $textarea -> Text(-width=>80, -height=>10);

my $srl_y = $textarea -> Scrollbar(-orient=>'v',-command=>[yview => $txt]); #Y axis scrollbar

my $srl_x = $textarea -> Scrollbar(-orient=>'h',-command=>[xview => $txt]); #X axis scrollbar

my $filterLabel = $textarea-> Label(-text=>"Current Filters");

$txt -> configure(-yscrollcommand=>['set', $srl_y],

 -xscrollcommand=>['set',$srl_x]); #

 ##make trait description window

my $describeArea = $mw ->Frame();

my $describe = $describeArea -> Text(-width=>35, -height=>10);

my $describe_y = $describeArea -> Scrollbar(-orient=>'v',-command=>[yview => $txt]); #Y axis scrollbar

my $describe_x = $describeArea -> Scrollbar(-orient=>'h',-command=>[xview => $txt]); #X axis scrollbar

my $describeLabel = $describeArea-> Label(-text=>"Trait Values");

$describe -> configure(-yscrollcommand=>['set', $describe_y],

 -xscrollcommand=>['set',$describe_x]);

sub readVineNames{

 #Takes: Nothing

 #returns: Nothing

 #Purpose: Populates %VineSynonyms and %AltLookups hashes with vine name synonym relationships

 #Called directly below function. Please see Configuration\vineNames.conf for file information.

 %VineSynonyms = ();

130

 %AltLookups = ();

 open(my $VINE_FILE,"$dir\\Configuration\\vineNames.conf") or makeWarningWindow("Could not open $dir\\Configuration\\vineNames.conf");

 while (!eof($VINE_FILE)) {

 my $line = readline($VINE_FILE);

 chomp $line;

 my @splitLine = split("=",$line);

 if (scalar @splitLine!= 2) { #If there are not two names seperated by an "=", there is an error in the file which needs to be corrected

 makeWarningWindow("FORMATTING ERROR IN vineNames.conf");

 }

 $VineSynonyms{$splitLine[0]} = $splitLine[1];

 if (exists($AltLookups{$splitLine[1]})) {

 push(@{$AltLookups{$splitLine[1]}}, $splitLine[0]);

 }else{

 my @tempArray;

 push @tempArray, $splitLine[0];

 $AltLookups{$splitLine[1]} = \@tempArray;

 }

 }

 close ($VINE_FILE);

}

readVineNames(); #Read in vine names

#delete a temp file that can hang around if program is interupted in earlier session

open(my $DELETE, ">>", "$dir\\tempoutfileforreport.txt") or die makeWarningWindow("Could not open $dir\\tempoutfileforreport.txt: $!\n"); #Open the file for appending

close $DELETE;

Main(); #Call method to open main window

##################ALL WINDOWS CREATED WITH FUNCTIONS BELOW#########################

sub Main{ #Open main window

 $mw->optionAdd('*font', 'Helvetica 14');

 $mw->title("Text Search");

 #Geometry Management -- Place everything where it goes in the main window

 $lab -> grid(-row=>1,-column=>1);

 $ent -> grid(-row=>1,-column=>2);

 $helpButton->configure(-command=>sub{showMainHelp();}); #Not geometry management. Specifying which function to call when helpButton is pushed.

 $frm_name -> grid(-row=>1,-column=>1,-columnspan=>2);

 $lbl_type -> grid(-row=>3,-column=>1);

 $rdb_m -> grid(-row=>3,-column=>2);

 $rdb_f -> grid(-row=>3,-column=>3);

 $rdb_v -> grid(-row=>3, -column=>4);

131

 $frm_type -> grid(-row=>3,-column=>1,-columnspan=>5);

 $search -> grid(-row =>1,-column=>3);

 $trait ->grid(-row=>6,-column=>1);

 $helpButton->grid(-row=>6,-column=>2);

 $options -> grid(-row=>6, -column=>3);

 #$dataForYear-> grid(-row=>6,-column=>4);

 $mw->update;

 if ($firstTimeFlag == 1) {

 makeWarningWindow("It looks like this is your first time using this tool.\n Please fill out the MySQL connection settings in the options page to connect to your database.");

 options_menu();

 }

 MainLoop;

}

###############HELPER FUNCTIONS FOR TRAIT AND MAIN WINDOWS###########################

sub destroyTraitFrame{

 #Returns nothing, takes nothing

 #Called when Text search button is pressed from trait search screen. Destroys the trait frame and reopens the Text search screen.

 $traitFrameOpen = 0; #let everyone know the trait frame is not open

 $textarea->gridRemove(); #remove text area from screen

 $describeArea->gridRemove();

 $filterFrame->gridRemove();

 $removeFilterFrame->gridRemove();

 $searchFrame->gridRemove();

 $trait->configure(-text=>"Trait Search"); #Change button text

 $mw->update; #update main window

}

sub destroyStringFrame{

 #Returns nothing, takes nothing

 #Called when Trait Search button is pressed in TExt Search scren. Destroys the Text earch screen and opens the trait search screen.

 $frm_name->gridRemove(); #Remove name frame (search bar)

 $frm_type->gridRemove(); #Remove type frame (radio buttons)

 $trait->configure(-text=>"Text Search"); #Change name of "Trait Search" button to "Text Search"

 $trait->grid(-row=>1,-column=>1);

 $helpButton->grid(-row=>1,-column=>2);

 $options->grid(-row=>1,-column=>3);

 $traitFrameOpen =1; #Mark that the trait frame is open

 $mw->update;

}

sub searchBarManager{

 #Takes nothing and returns nothing

 #Called when the radio buttons are pressed to change the search bar into the approprite type

132

 my ($modeInto) = @_;

 if ($modeInto == 1) { #Tranisitioning to vineyard search

 $ent->gridRemove();

 $studyLister -> grid(-row=>1,-column=>2);

 $searchMode = 1;

 }else{

 $searchMode = 0;

 $studyLister -> gridRemove();

 $ent->grid(-row=>1, -column=>2);

 }

}

 #TRAIT FILTER SELECTION WINDOW##

sub makeTraitMenu{

 #Sub to call the trait menu when "Trait Search" is clicked.

 #Place window components in the appropriate locations

 $mw->optionAdd('*font', 'Helvetica 11');

 #Creates the trait search screen. Called when "trait search button is pressed from text search screen

 $mw->title("Trait Search");

 $helpButton->configure(-command=>sub{showTraitHelp();});

 $filterFrame->grid(-row=>3,-column=>1, -columnspan=>6);

 $textarea -> grid(-row=>7,-column=>1,-columnspan=>5, -rowspan=>5);

 $filterCreateLabel->grid(-row=>1, -column=>3);

 #Geometry management -- place everything where it needs to go in the trait search window

 #$frm_trait ->grid(-row=>7,-column=>1,-columnspan=>3);

 $describeArea -> grid(-row=> 7, -column=>6, -columnspan=>5, -rowspan=>5);

 $removeFilterFrame->grid(-row=>12,-column=>1,-columnspan=>6);

 $searchFrame->grid(-row=>16,-column=>1, -columnspan=>6);

 $labTrait->grid(-row=>2,-column=>1);

 $jb1->grid(-row=>3,-column=>1, -columnspan=>1);

 #$dummylabel ->grid(-row=>1,-column=>2);

 $labOp->grid(-row=>2,-column=>3);

 $labType->grid(-row=>2,-column=>2);

 $entType->grid(-row=>3,-column=>2);

 $opt->grid(-row=>3,-column=>3, -columnspan=>1);

 $labValue->grid(-row=>2,-column=>4);

 $entValue->grid(-row=>3,-column=>4);

 $labYear->grid(-row=>4,-column=>1);

 $entYear->grid(-row=>5,-column=>1);

 $addButton->grid(-row=>3,-column=>6);

 $txt -> grid(-row=>1,-column=>1, -columnspan=>3, -rowspan=>2);

 $srl_y -> grid(-row=>1,-column=>4,-sticky=>"ns", -rowspan=>2);

 $srl_x -> grid(-row=>3,-column=>1,-sticky=>"ew", -columnspan=>3);

133

 $describe -> grid(-row=>1, -column=>1, -columnspan=>3, -rowspan=>2);

 $describe_y->grid(-row=>1, -column=>4, -sticky=>"ns", -rowspan=>2);

 $describe_x->grid(-row=>3, -column=>1, -sticky=>"ew", -columnspan=>3);

 $describeLabel->grid(-row=>0, -column => 2);

 $filterLabel -> grid (-row => 0, -column=>2);

 $searchButton -> grid(-row=>1,-column=>6);

 $clearButton -> grid(-row=>2,-column=>1);

 $removeFilterLabel->grid(-row=>1,-column=>4);

 $removeLab -> grid(-row=>2,-column=>4);

 $removeEnt->grid(-row=>2,-column=>5);

 $removeButton->grid(-row=>2,-column=>6);

 #$dataForYear->grid(-row=>10, -column=>4);

 #$fakeLabel->grid(-row=>6,-column=>7);

 $mw -> update;

}

####FILTER MANAGEMENT METHODS CALLED BY TRAIT WINODW####

sub removeFilter{

 #Takes: A filter index to remove

 #Retuns: Nothing

 #Use: Removes a filter based on the index provided. Splices out the supplied index (subtract 1 to convert to zero based array).

 my ($index) = @_;

 if (looks_like_number($index)){

 splice @traitFilters,$index-1,1; #Remove based on index minus 1

 }

 my $counter = 0;

 my $string = "";

 #Generate string representing current filters and update text field

 foreach my $filter (@traitFilters){#Update list of trait filters in textarea

 $counter++;

 $string = $string."$counter)\t";

 my @filterArray = @$filter;

 for(my $counter = 0;$counter < scalar @filterArray; $counter++){

 if ($counter != 3) {

 $string = $string."$filterArray[$counter]\t";

 }elsif($counter==3){

 if ($filterArray[$counter] == 1) {

 $string = $string."Single Value\t";

 }else{

134

 $string = $string."Average Value\t";

 }

 }else{

 if ($filterArray[$counter] eq "") {

 }else{

 $string = $string.$filterArray[$counter];

 }

 }

 }

 $string = $string."\n";

 }

 $txt->delete('0.0','end');

 $txt -> insert('end',"$string");

 $mw->update;

}

sub clearFilters{

 #Takes: Nothing

 #Returns: Nothing

 #Clear all filters. Set filter array to empty and remove all text shown.

 @traitFilters = ();

 $txt->delete('0.0','end');

 $mw->update;

}

sub addFilter{

 #Takes: Trait, operator, value

 #Returns: Nothing

 #Use: Add a filter with a given trait, operator, value, and type number

 my $failBool = 0;

 my ($trait,$operator,$value,$typeNo, $yearString) = @_;

 if (($trait eq "") || ($operator eq "") || ($value eq "") || $typeNo eq "") { #Empty value error

 makeWarningWindow("BLANK FIELD WHEN ENCOUNTERED WHEN ATTEMPTING TO MAKE FILTER")

 }elsif($operator !~ /<|<=|>|>=|=|!=|like/){ #Probably cannot ever fail here due to drop down list implementation

 makeWarningWindow("UNKNOWN OPERATOR ENTERED: $operator");

 }elsif(($trait =~ /;|#/) || ($value =~ /;|#/)){ #Stop tryna screw with my mysql

 makeWarningWindow("Semicolon (;) and pound (#) characters not accepted in trait or value");

 $failBool = 1;

 }

 elsif(checkVariableName($trait) == 0){ #Unknown variable error

 makeWarningWindow("UNKNOWN TRAIT ENTERED: $trait");

 $failBool = 1;

 }elsif((!looks_like_number($value)&&(($value !~ /^\".*\"/))&&($value!~/^\'.*\'/))){ #Quotes around all text values

 makeWarningWindow("UNQOUTED CHARACTERS DETECTED IN VALUE BOX. ALL CHARACTERS IN VALUE BOX MUST BE IN QUOTES");

135

 $failBool = 1;

 }elsif($yearString ne ""){

 my @years = split("-", $yearString);

 if ((scalar @years)!= 2) {

 makeWarningWindow("Invalid Years Entered. Format is yyyy-yyyy");

 $failBool = 1;

 }

 foreach my $year (@years){

 if ($year !~ /\d{4}/) {

 makeWarningWindow("Invalid Years Entered. Format is yyyy-yyyy");

 $failBool = 1;

 }

 }

 if ($years[0] > $years[1]) {

 makeWarningWindow("Invalid Years Entered. First year must be less than second year");

 $failBool = 1;

 }

 }if($typeNo == 2){

 #if average filter, check if analagous single filter

 my $hasAnalogueBool = 0;

 foreach my $filterRef (@traitFilters){

 my @filter = @$filterRef;

 if (($trait eq $filter[0]) && ($operator eq $filter[1]) && ($value == $filter[2]) && ($filter[3] == 1)) {

 $hasAnalogueBool = 1;

 }

 }

 if ($hasAnalogueBool != 1) {

 MakeFilterPromptWindow($trait, $operator,$value);

 }

 }

 if($failBool== 0){

 #Success

 #create filter and add it to filter list

 my @filter;

 push(@filter,$trait);

 push(@filter,$operator);

 push(@filter,$value);

 push(@filter,$typeNo);

 push(@filter,$yearString);

 push(@traitFilters,\@filter);

 my $string= "";

 my $counter = 0;

136

 foreach my $filter (@traitFilters){ #Update text area that shows trait filters

 $counter++;

 $string = $string."$counter)\t";

 my @filterArray = @$filter;

 for(my $counter = 0;$counter < scalar @filterArray; $counter++){

 if ($counter < 3) {

 $string = $string."$filterArray[$counter]\t";

 }elsif($counter == 3){

 if ($filterArray[$counter] == 1) {

 $string = $string."Single Value\t";

 }else{

 $string = $string."Average Value\t";

 }

 }else{

 if ($filterArray[$counter] eq "") {

 }else{

 $string = $string.$filterArray[$counter];

 }

 }

 }

 $string = $string."\n";

 }

 $txt->delete('0.0','end');

 $txt -> insert('end',"$string");

 $mw->update;

 }else{

 return();

 }

}

sub checkVariableName{

 #Takes: Variable name

 #Returns: 1 if variable name exists in database

 #: 0 if variable name does not exist in database

 #Looks up variable name in database. Returns 0 if variable does not exist. Returns 1 if it does.

 my ($name) = @_;

 $name = escapeMySQL($name);

 if ($name eq "") {

 return(0);

 }

 my $query = "select * from projectprop where value = \"$name\"";

 my $dbh = DBI->connect("DBI:mysql:$database:$host:$port", $username, "", {RaiseError=>0,PrintError=>1}); #Connect to database

 my $sqlQuery;

137

 if (defined($dbh)) {

 $sqlQuery = $dbh->prepare($query) or die "Can't prepare $query: $dbh->errstr\n"; #Prepare the query

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return ();

 }

 my $rv = $sqlQuery->execute or die "can't execute the query: $sqlQuery->errstr"; #Execure the query

 my @report = []; #Initialize array for report

 while (my @row= $sqlQuery->fetchrow_array()) { #get each row of results

 push (@report,\@row); #add pointer to row array to report array

 }

 if ((scalar @report)< 2) {

 return(0);

 }

 return(1);

}

####Sub called by trait filter search window

sub updateTraitDesciption{

 #Takes: Trait name as a string. The same trait displayed in drop down menu of trait selection for filters

 #Returns: Nothing

 #Purpose: Update "Trait Information" text box with appropriate trait information

 my ($trait) = @_;

 if (exists($traitDescribersHash{$trait})) {

 my $string = $traitDescribersHash{$trait};

 $describe-> delete('0.0','end');

 $describe -> insert('end',"$trait\n$string");

 $mw ->update;

 }else{

 $describe-> delete('0.0','end');

 $describe -> insert('end',"Trait not recognized\n");

 }

}

##################################More Windows#######################

sub makeTraitSelectWindow(){

 #Takes nothing, returns nothing

 #Manages the addition and subtraction of traits to include in the report

 #This window opens when the Specify Studies for Report button is clicked.

 my $TraitSelectWindow = new MainWindow();

 $TraitSelectWindow->optionAdd('*font', 'Helvetica 14');

 $TraitSelectWindow->title("Trait Selection");

138

 my $traitFrame1 = $TraitSelectWindow->Frame();

 my $traitLab = $traitFrame1->Label(-text=>"Enter Trait to Include In Report: "); #Label to enter a trait to include

 my $currentTrait = ""; #Holds the string of the current trait in the trait entry field

 my $removeTrait = ""; #Holds current trait in drop down field

 my $removeEnt = $traitFrame1->MatchEntry(

 -multimatch=>0,

 -autoshrink=>1,

 -maxheight=>10,

 -ignorecase=>1,

 -variable => \$removeTrait,

 -state => 'normal',

 -choices => [@traitsToInclude], #The currently selected traits

 -width => 35);

 my $traitEnt = $traitFrame1->MatchEntry(#Drop down menu to select traits

 -multimatch=>0,

 -autoshrink=>1,

 -maxheight=>10,

 -ignorecase=>1,

 -variable => \$currentTrait,

 -state => 'normal',

 -choices => [@traits],

 -width => 35); #create drop down menu for traits

 my $textArea = $TraitSelectWindow->Frame(); #Text area to show currently selected traitss

 my $traitFrameLabel=$textArea->Label(-text=>"Selected Traits"); #Label above text area

 my $txts = $textArea -> Text(-width=>60, -height=>10); #Text area

 my $srl_y1 = $textArea -> Scrollbar(-orient=>'v',-command=>[yview => $txts]); #Y axis scrollbar

 my $srl_x1 = $textArea -> Scrollbar(-orient=>'h',-command=>[xview => $txts]); #X axis scrollbar

 my $filterLabel = $textArea-> Label(-text=>"Current Filters");

 $txts -> configure(-yscrollcommand=>['set', $srl_y1],

 -xscrollcommand=>['set',$srl_x1]);

 #Add button gets trait from drop-down list, calls Add Function, gets string from that function, and updates text field to show string

 my $addButton = $traitFrame1->Button(-text=>"Add Trait", -command=>sub{my $newString = addATrait($currentTrait);$removeEnt->configure(-choices=>[@traitsToInclude]);$txts-

>delete('0.0','end');$txts -> insert('end',"$newString");$TraitSelectWindow->update;});

 #Adds all traits in database. Calls addAll function, get string from that functon and update text field to hold that text

 my $addAllButton = $traitFrame1->Button(-text=>"Add All Traits", -command=>sub{my $newString = addAllTraits();$removeEnt->configure(-choices=>[@traitsToInclude]);$txts-

>delete('0.0','end');$txts -> insert('end',"$newString");$TraitSelectWindow->update;});

 #Remove all traits from resulting report. Update text field to be blank

 my $removeAllButton = $traitFrame1->Button(-text=>"Remove All Traits", -command=>sub{@traitsToInclude=();$removeEnt->configure(-choices=>[@traitsToInclude]);$txts-

>delete('0.0','end');$TraitSelectWindow->update;});

 my $removeByIndexLab=$traitFrame1->Label(-text=>"Trait to Remove: "); #Label to remove traits by name

 #Button to remove the entered trait. Calls apropriate function, gets string from that function, and updates the text field to hold that string

 my $removeIndexButton=$traitFrame1->Button(-text=>"Remove", -command=>sub{my $newString = removeATrait($removeTrait);$removeEnt->configure(-

choices=>[@traitsToInclude]);$txts->delete('0.0','end');$txts -> insert('end',"$newString");$TraitSelectWindow->update;});

 #Dummy label for formatting purposes

 my $dummyLab= $traitFrame1->Label(-text=>"");

139

 #Click OK Button to close the window

 my $okButton = $traitFrame1->Button(-text=>"OK", -command=>sub{$TraitSelectWindow->destroy();});

 #Geometry management. Put all the components where they need to go.

 $textArea->grid(-row=>2,-column=>1);

 $traitFrameLabel->grid(-row=>1,-column=>1);

 $txts -> grid(-row=>2,-column=>1);

 $srl_y1 -> grid(-row=>2,-column=>2,-sticky=>"ns");

 $srl_x1 -> grid(-row=>3,-column=>1,-sticky=>"ew");

 $traitFrame1->grid(-row=>4,-column=>1, -columnspan=>3);

 $traitLab->grid(-row=>4, -column=>1);

 $traitEnt->grid(-row=>4,-column=>2);

 $addButton->grid(-row=>4,-column=>3);

 $removeByIndexLab->grid(-row=>5,-column=>1);

 $removeEnt->grid(-row=>5,-column=>2);

 $removeIndexButton->grid(-row=>5,-column=>3);

 $addAllButton->grid(-row=>6,-column=>1);

 $removeAllButton->grid(-row=>6,-column=>3);

 $dummyLab->grid(-row=>6,-column=>2);

 $okButton->grid(-row=>7,-column=>2);

 my $textString = getTraits(); #Get selected traits when window is opened

 $txts->delete('0.0','end'); #Remove text already in text field. Not sure why there would be, but to be safe...

 $txts -> insert('end',"$textString"); #Put current string of selected traits in the text box

 $TraitSelectWindow->update; #Update the window

 sub removeATrait{

 #Takes: Trait to remove

 #Returns: String representing currently selected traits

 #Use: Removes all occurances of the entered trait from the list of traits to include in the next study

 my ($trait) = @_;

 #Generate list of indexes that match the entered trait. Removes all occurances of the trait from the traits to include list

 my @del_indexes = grep { $traitsToInclude[$_] eq "$trait" } 0..$#traitsToInclude;

 #Sort indexes from largest to smallest for easy splicing

 @del_indexes = sort { $b <=> $a } @del_indexes;

 foreach my $index (@del_indexes){

 splice @traitsToInclude,$index,1;

 }

 my $string = ""; #Holds string representing currently selected traits

 my $counter = 1; #Count the amount of traits we have

 foreach my $trait(@traitsToInclude){ #Build string representing traits

 $string = $string."$counter)\t$trait\n";

 $counter++;

 }

 return $string;

 }

 sub addATrait{

 #Takes: A trait to add

 #Returns: A string representing the current list of selectefd traits

 #Purpose: Add a trait to include in the next report.

140

 my ($trait) = @_;

 if (checkVariableName($trait) == 1) { #if the trait exists, add it

 push(@traitsToInclude,$trait);

 }else{ #If this is not a trait in the database, warn the user and leave the function.ss

 makeWarningWindow("UNKNOWN TRAIT ENTERED: $trait");

 }

 my $string = ""; #Holds string representing currently selected traits

 my $counter = 1; #Count the current trait

 #Build the string

 foreach my $trait(@traitsToInclude){

 $string = $string."$counter)\t$trait\n";

 $counter++;

 }

 return $string;

 }

 sub addAllTraits{

 #Takes: Noting

 #Returns: String representing current list of selected traits

 my $string = ""; #Hold string representing currently selected traits

 @traitsToInclude = getVariableList(); #Get all available traits, and set my selected traits to that

 my $counter = 1; #Count current trait

 foreach my $trait(@traitsToInclude){ #Build string

 $string = $string."$counter)\t$trait\n";

 $counter++;

 }

 return $string;

 }

 sub getTraits{

 #Takes: Nothing

 #Returns: List of currently selected traits

 #Purpose: Generate initial string for text window

 #Notes: Could call this from above functions. W/e its simple

 my $string = "";

 my $counter = 1;

 foreach my $trait (@traitsToInclude){

 $string = $string."$counter)\t$trait\n";

 $counter++;

 }

 return $string;

 }

}

sub makeStudySelectWindow(){

 #Takes nothing, returns nothing.

 #Makes a window to manage the current studies to include in the resulting report.

 #NOTE: THIS IS ALMOST EXACTLY THE SAME AS THE ABOVE FUNCTION makeTraitSelectWindow. I'm not going to comment all of the same stuff again just because it does study

stuff now instead of trait stuff.

141

 my $studySelectWindow = new MainWindow();

 $studySelectWindow->optionAdd('*font', 'Helvetica 14');

 $studySelectWindow->title("Study Selection");

 my $studyFrame1 = $studySelectWindow->Frame();

 my $traitLab = $studyFrame1->Label(-text=>"Enter Study to Include In Report: ");

 my $removeStudy = "";

 my $removeEnt = $studyFrame1->MatchEntry(

 -multimatch=>0,

 -autoshrink=>1,

 -maxheight=>10,

 -ignorecase=>1,

 -variable => \$removeStudy,

 -state => 'normal',

 -choices => [@studiesToInclude],

 -width => 35);

 my $currentStudy = "";

 my $studyEnt = $studyFrame1->MatchEntry(

 -multimatch=>0,

 -autoshrink=>1,

 -maxheight=>10,

 -ignorecase=>1,

 -variable => \$currentStudy,

 -state => 'normal',

 -choices => [@studies],

 -width => 35); #create drop down menu for traits

 my $textArea = $studySelectWindow->Frame();

 my $studyFrameLabel=$textArea->Label(-text=>"Selected Studies");

 my $txts = $textArea -> Text(-width=>60, -height=>10);

 my $srl_y1 = $textArea -> Scrollbar(-orient=>'v',-command=>[yview => $txts]); #Y axis scrollbar

 my $srl_x1 = $textArea -> Scrollbar(-orient=>'h',-command=>[xview => $txts]); #X axis scrollbar

 my $filterLabel = $textArea-> Label(-text=>"Current Filters");

 $txts -> configure(-yscrollcommand=>['set', $srl_y1],

 -xscrollcommand=>['set',$srl_x1]);

 my $addButton = $studyFrame1->Button(-text=>"Add Study", -command=>sub{my $newString = addAStudy($currentStudy);$removeEnt->configure(-choices=>[@studiesToInclude]);$txts-

>delete('0.0','end');$txts -> insert('end',"$newString");$studySelectWindow->update;});

 my $addAllButton = $studyFrame1->Button(-text=>"Add All Studies", -command=>sub{my $newString = addAllStudies();$removeEnt->configure(-choices=>[@studiesToInclude]);$txts-

>delete('0.0','end');$txts -> insert('end',"$newString");$studySelectWindow->update;});

 my $removeAllButton = $studyFrame1->Button(-text=>"Remove All Studies", -command=>sub{@studiesToInclude=();$removeEnt->configure(-choices=>[@studiesToInclude]);$txts-

>delete('0.0','end');$studySelectWindow->update;});

 my $removeByIndexLab=$studyFrame1->Label(-text=>"Study to Remove: ");

 my $removeIndexButton=$studyFrame1->Button(-text=>"Remove", -command=>sub{my $newString = removeAStudy($removeStudy);$removeEnt->configure(-

choices=>[@studiesToInclude]);$txts->delete('0.0','end');$txts -> insert('end',"$newString");$studySelectWindow->update;});

 my $dummyLab= $studyFrame1->Label(-text=>"");

 my $okButton = $studyFrame1->Button(-text=>"OK", -command=>sub{$studySelectWindow->destroy();});

 $textArea->grid(-row=>2,-column=>1);

142

 $studyFrameLabel->grid(-row=>1,-column=>1);

 $txts -> grid(-row=>2,-column=>1);

 $srl_y1 -> grid(-row=>2,-column=>2,-sticky=>"ns");

 $srl_x1 -> grid(-row=>3,-column=>1,-sticky=>"ew");

 $studyFrame1->grid(-row=>4,-column=>1, -columnspan=>3);

 $traitLab->grid(-row=>4, -column=>1);

 $studyEnt->grid(-row=>4,-column=>2);

 $addButton->grid(-row=>4,-column=>3);

 $removeByIndexLab->grid(-row=>5,-column=>1);

 $removeEnt->grid(-row=>5,-column=>2);

 $removeIndexButton->grid(-row=>5,-column=>3);

 $addAllButton->grid(-row=>6,-column=>1);

 $removeAllButton->grid(-row=>6,-column=>3);

 $dummyLab->grid(-row=>6,-column=>2);

 $okButton->grid(-row=>7,-column=>2);

 my $textString = getStudies();

 $txts->delete('0.0','end');

 $txts -> insert('end',"$textString");

 $studySelectWindow->update;

 sub removeAStudy{

 my ($study) = @_;

 my @del_indexes = grep { $studiesToInclude[$_] eq "$study" } 0..$#studiesToInclude;

 @del_indexes = sort { $b <=> $a } @del_indexes;

 foreach my $index (@del_indexes){

 splice @studiesToInclude,$index,1;

 }

 my $string = "";

 my $counter = 1;

 foreach my $study(@studiesToInclude){

 $string = $string."$counter)\t$study\n";

 $counter++;

 }

 return $string;

 }

 sub addAStudy{

 my ($study) = @_;

 if (checkStudyName($study) == 1) {

 push(@studiesToInclude,$study);

 }else{

 makeWarningWindow("UNKNOWN STUDY ENTERED: $study");

 }

 my $string = "";

 my $counter = 1;

 foreach my $study(@studiesToInclude){

 $string = $string."$counter)\t$study\n";

143

 $counter++;

 }

 return $string;

 }

 sub addAllStudies{

 my $string = "";

 @studiesToInclude = getStudyList();

 my $counter = 1;

 foreach my $study(@studiesToInclude){

 $string = $string."$counter)\t$study\n";

 $counter++;

 }

 return $string;

 }

 sub getStudies{

 my $string = "";

 my $counter = 1;

 foreach my $study (@studiesToInclude){

 $string = $string."$counter)\t$study\n";

 $counter++;

 }

 return $string;

 }

}

sub makeYearWindow{

 #Called when year cutoff button is pushed. Simple window to enter a year

 #This window is currently not in service, but it may be put back in, who know. so I keep it

 my $yearWindow = new MainWindow;

 $yearWindow->optionAdd('*font', 'Helvetica 14');

 $yearWindow->title("Specify Years");

 my $yearFrm = $yearWindow ->Frame();

 my $yearLab = $yearFrm -> Label(-text=>"Enter oldest year for data return: "); #Label next to the entry field

 my $yearEnt = $yearFrm -> Entry(); #entry field

 #yesButton checks to make sure that the entered year is valid, then sets the global yearsSince to the value.

 #It also changes the function for the specifyYear button that opened this window to be able to flip back and forth between setting a year and returning the year cuttoff global to zero.

 #my $yesButton = $yearFrm -> Button(-text=>"OK", -command=>sub{$yearsSince = $yearEnt->get(); if($yearsSince !~ /^[0-9]{4}$/){makeWarningWindow("TEXT ENTERED NOT

RECOGNIZED AS A YEAR: $yearsSince. PLEASE ENTER A 4 DIGIT YEAR"); return();} $dataForYear->configure(-text=>"Remove Year Cutoff", -command=>sub{$yearsSince = 0;

$dataForYear->configure(-text=>"Specify Year Cutoff", -command=>sub{makeYearWindow();})}); $yearWindow->destroy();});

 my $cancelButton = $yearFrm ->Button(-text=>"Cancel", -command=> sub{$yearWindow->destroy();});

 #Geometry Managment

 $yearFrm->grid(-row=>1, -column=>1);

 $yearLab -> grid(-row=>1, -column=>1);

 $yearEnt->grid(-row=>1, -column=>2);

 #$yesButton->grid(-row=>2,-column=>1);

 $cancelButton->grid(-row=>2, -column=>2);

144

}

sub showMainHelp{ #Show help window when help is clicked from main window

 #Initialize window components

 my $helpWindow = new MainWindow;

 $helpWindow->optionAdd('*font', 'Helvetica 14');

 $helpWindow->title("Help");

 my $helpFrame = $helpWindow->Frame();

 my $helpLabel = $helpFrame ->Label(-text=>"Toggle between searching for vines by their name, parentage, or vineyards/studies in which they appear by using the radio buttons below.

 \nFull or partial vine names can be used for a name or parental search.");

 my $quitButton = $helpFrame ->Button(-text=>"OK",-command=>sub{$helpWindow->destroy()});

 #Geometry management

 $helpFrame->grid(-row=>1,-column=>1,-columnspan=>1);

 $helpLabel->grid(-row=>1,-column=>1);

 $quitButton->grid(-row=>2,-column=>1);

}

sub showTraitHelp{

 #Opens help window from trait search screen. Called when "Help" is pressed in trait search screen

 #initialize window comonents

 my $helpWindow = new MainWindow;

 $helpWindow->optionAdd('*font', 'Helvetica 14');

 $helpWindow ->title("Help");

 my $helpFrame = $helpWindow->Frame();

 my $helpLabel = $helpFrame ->Label(-text=>"Create filters by specifying a trait, value, operator, and type. For a Single_Value filter, a single observation which meets the trait, operator, and

value requirements will pass the filter.\n For an Average filter, a vine will pass if its average observation for the trait specified passes the operator and value requirements.\n Optionally, a year

range can be supplied. Only values witin the range (inclusively) will be considered for the filter.\nA vine must pass all filters to be returned in the results.\nRemove specific or all filters using the

buttons on the bottom of the screen. Press search to conduct the search.");

 my $quitButton = $helpFrame ->Button(-text=>"OK",-command=>sub{$helpWindow->destroy()});

 #Geometry management

 $helpFrame->grid(-row=>1,-column=>1,-columnspan=>1);

 $helpLabel->grid(-row=>1,-column=>1);

 $quitButton->grid(-row=>2,-column=>1);

}

sub options_menu{

 #Opens options window. Called when "Options" is pressed on either screen.

 #Initialize window components

 my $optionsWindow = new MainWindow;

 $optionsWindow->optionAdd('*font', 'Helvetica 14');

 $optionsWindow->title("Options");

 my $frm_name = $optionsWindow-> Frame();

 my $labHOST = $frm_name -> Label(-text=>"Hostname (default $host):");

 my $entHOST = $frm_name -> Entry();

 my $setHOST = $frm_name -> Button(-text=>"Set", -command => sub{my $name = $entHOST -> get(); $host = $name; setWindow("Hostname",$name);});

 my $labDB = $frm_name -> Label(-text=>"Database Name(default $database):");

 my $databases = getDatabases();

145

 my $entDB = $frm_name->MatchEntry(

 -multimatch=>0,

 -autoshrink=>1,

 -maxheight=>10,

 -ignorecase=>1,

 -variable => \$database,

 -state => 'normal',

 -choices => $databases,

 -width => 35); #create drop down menu for traits

 my $setDB = $frm_name -> Button(-text=>"Set", -command =>sub{setWindow("Database",$database);});

 my $labPORT = $frm_name -> Label(-text=>"Port Number (default $port):");

 my $entPORT = $frm_name -> Entry();

 my $setPORT = $frm_name -> Button(-text=>"Set", -command =>sub{my $name = $entPORT -> get(); $port = $name;setWindow("Port",$name);});

 my $labUSER = $frm_name -> Label(-text=>"User Name(default $username):");

 my $entUSER = $frm_name -> Entry();

 my $setUSER = $frm_name -> Button(-text=>"Set", -command =>sub{my $name = $entUSER -> get(); $username = $name;setWindow("Username",$name);});

 my $openVineNameButton = $frm_name -> Button(-text=>"Manage Vine Name Synonyms", -command=>sub{makeVineNameWindow();}); #Button to open vine synonym manager

 my $refreshTraitDescriptionsButton = $frm_name ->Button(-text=>"Update Trait Info", -command=> sub{updateTraitValueInfo();getTraitValueInfo();});

 #Geometry management

 $frm_name -> grid(-row=>1,-column=>1,-columnspan=>3);

 $labHOST -> grid(-row=>1,-column=>1);

 $entHOST -> grid(-row=>1,-column=>2);

 $setHOST -> grid(-row=>1,-column=>3);

 $labDB -> grid(-row=>2,-column=>1);

 $entDB -> grid(-row=>2,-column=>2);

 $setDB -> grid(-row=>2,-column=>3);

 $labPORT -> grid(-row=>3,-column=>1);

 $entPORT -> grid(-row=>3,-column=>2);

 $setPORT -> grid(-row=>3,-column=>3);

 $labUSER -> grid(-row=>4,-column=>1);

 $entUSER -> grid(-row=>4,-column=>2);

 $setUSER -> grid(-row=>4,-column=>3);

 $openVineNameButton ->grid(-row=>5,-column=>2);

 $refreshTraitDescriptionsButton->grid(-row => 5, -column=>1);

 #Setters for options

 sub setWindow{

 #Opens notification window to tell user a value has been changed from the options menu. Called when a "Set" button is pressed in the options menu.

 @traits = getVariableList();

 @studies = getStudyList();

 $jb1->configure(-choices=>\@traits);

 my ($type,$value) = @_;

 my $setWindow = new MainWindow;

 $setWindow->optionAdd('*font', 'Helvetica 14');

 $setWindow->title("NOTICE");

 my $frame = $setWindow-> Frame();

 my $label = $setWindow -> Label(-text=>"$type set to $value");

146

 my $QUIT = $setWindow -> Button(-text=> "Save",-command => sub{writeConfigFile();$setWindow->destroy;});

 $frame -> grid(-row=>1,-column=>1,-columnspan=>1);

 $label -> grid(-row=>1,-column=>1);

 $QUIT -> grid(-row=>2,-column=>1);

 }

}

sub makeVineNameWindow{

 #Takes nothing

 #Returns nothing

 #Vine name window. Synonym manager window

 my $vineNameWindow = new MainWindow;

 $vineNameWindow->optionAdd('*font', 'Helvetica 14');

 $vineNameWindow->title("Manage Vine Name Synonyms");

 my $createFrame=$vineNameWindow->Frame(-highlightbackground=>"black", -highlightthickness=>2);

 my $removeFrame= $vineNameWindow->Frame(-highlightbackground=>"black", -highlightthickness=>2);

 my $nameArea = $vineNameWindow -> Frame();

 my $labelFrame = $vineNameWindow->Frame();

 my $saveFrame = $vineNameWindow->Frame();

 my $nameTxt = $nameArea -> Text(-width=>40, -height=>10); #Text area to contain list of vines resulting from each query

 my $srl_yname = $nameArea -> Scrollbar(-orient=>'v',-command=>[yview => $nameTxt]); #Y axis scrollbar

 my $srl_xname = $nameArea -> Scrollbar(-orient=>'h',-command=>[xview => $nameTxt]);#X axis scrollbar

 $nameTxt -> configure(-yscrollcommand=>['set', $srl_yname],xscrollcommand=>['set',$srl_xname]);

 my $tempString = getSynonyms(); #Get the current synonnyms

 my $label = $nameArea ->Label(-text=>"Current Synonyms\nHidden Name\t Shown Name"); #Currently selected synonyms label

 my $quitButton = $saveFrame->Button(-text=>"Save Changes", -command=>sub{writeVineConfigFile();$vineNameWindow->destroy()}); #Save changes and write to file button

 my $removeLab = $removeFrame->Label(-text=>"Specify a Row by Hidden Name"); #Remove name label

 my $removeEnt = $removeFrame->Entry(); #Remove entry field

 #remove name button. Call function, and update text

 my $removeButton = $removeFrame->Button(-text=>"Remove Synonym", -command=>sub{my $newString = removeSynonym($removeEnt->get()); $nameTxt->delete('0.0','end');$nameTxt

-> insert('end',"$newString"); $vineNameWindow->update;});

 my $removeLabel = $removeFrame->Label(-text=>"Remove a Synonym", -font=>"Helvetica 16");

 my $hNameLabel = $createFrame->Label(-text=>"Hidden Name"); #Hidden name label

 my $sNameLabel = $createFrame-> Label(-text=>"Shown Name"); #Shown name label

 my $hnameEnt = $createFrame ->Entry(); #Hidden name entry field

 my $snameEnt = $createFrame ->Entry(); #shown name netry field

 #Add the current hidden name-shown name pair button. Call appropriate function, get the resulting string, and update text field

 my $addButton = $createFrame ->Button(-text=>"Create Synonym", -command=>sub{my $newString = addSynonym($hnameEnt->get(),$snameEnt->get()); $nameTxt-

>delete('0.0','end');$nameTxt -> insert('end',"$newString");$vineNameWindow->update;});

 #SHow big 'ol help message

 my $helpButton = $saveFrame ->Button(-text=>"Help", -command=>sub{showSynonymHelp();});

 my $bigLabel = $labelFrame->Label(-text=>"Synonym Management", -font =>"Helvetica 18");

 my $createLabel = $createFrame->Label(-text=>"Create a Synonym", -font=>"Helvetica 16");

 #my $helpCreateLabel = $createFrame->Label(-text=> "<---Same Genotype---Different Name--->");

 #Geometry management. Put things where they need to be in the window

 $nameArea ->grid(-row=>1,-column=>1, -columnspan=>3, -rowspan=>8);

 $labelFrame ->grid(-row=>1, -column=>4, -columnspan=>4);

147

 $bigLabel ->grid(-row=>1, -column=>1);

 $label -> grid(-row=>1,-column=>1);

 $createFrame->grid(-row=>2, -column=>4, -columnspan=>4);

 $removeFrame->grid(-row=>6,-column=>4,-columnspan=>3);

 $saveFrame->grid(-row=>10,-column=>4,-columnspan=>4);

 $createLabel->grid(-row=>1, -column=>2);

 $nameTxt -> grid(-row=>2,-column=>1);

 $srl_yname -> grid(-row=>2,-column=>2,-sticky=>"ns");

 $srl_xname -> grid(-row=>3,-column=>1,-sticky=>"ew");

 $hNameLabel -> grid(-row=>2,-column=>1);

 $sNameLabel ->grid(-row=>2,-column=>3);

 $hnameEnt -> grid(-row=>3,-column=>1);

 #$helpCreateLabel->grid(-row=>3,-column=>2);

 $snameEnt-> grid(-row=>3,-column=>3);

 $addButton -> grid(-row=>4,-column=>2);

 $removeLabel ->grid(-row=>1,-column=>2);

 $removeLab -> grid(-row=>2,-column=>1);

 $removeEnt -> grid(-row=>3,-column=>1);

 $removeButton->grid(-row=>3,-column=>3);

 $quitButton -> grid(-row=>1,-column=>1);

 $helpButton -> grid(-row=>1,-column=>3);

 $nameTxt -> insert('end',"$tempString");

 $vineNameWindow->update;

 sub showSynonymHelp{

 #Takes: Noting

 #Returns nothing

 #Prupose: Show a help window explaining how to do things in the synonym manager window

 my $synonymHelpWindow = new MainWindow;

 $synonymHelpWindow->optionAdd('*font', 'Helvetica 12');

 $synonymHelpWindow->title("Synonym Help");

 my $helplabel = $synonymHelpWindow -> Label(-text=>"Create a synonym by specifying a hidden name and a shown name. A hidden name is a bad or old name. A shown name is the

corrected or new name that you want displayed in reports.

 \nA hidden name can only be used once.

 \nAdding --- to the end of the name tells the program to ignore all characters after the name entered.

 \nWhen a search is conducted a hidden or shown name, all data under both names will be considered in the search, and will be included in the report if

appropriate.

 \nRemove a synonym by specifying the hidden name.");

 my $quitButtonHelp = $synonymHelpWindow -> Button(-text=>"OK", -command=>sub{$synonymHelpWindow->destroy();});

 $helplabel->grid(-row=>1,-column=>1);

 $quitButtonHelp->grid(-row=>2,-column=>1);

 }

}

sub removeSynonym{

 #Takes: A hidden name

148

 #Returns: A string representng current synonyms (I am already sick of typing this word)

 #Purpose: Given a hidden name, remove the synonym (ugh) with this hidden name. Hidden names can only appear once in all synonyms, so this is the "key"

 my ($name) = @_;

 chomp $name;

 if (exists($VineSynonyms{$name})) {

 delete $VineSynonyms{$name};

 }else{ #Warn user they did not succesfully remove anything. Need to regenerate string anyways

 makeWarningWindow("HIDDEN NAME $name not recognized");

 }

 my $string = ""; #This did not work...

 foreach my $hName (sort keys %VineSynonyms){

 $string = $string.sprintf("%20s %20s\n","$hName", $VineSynonyms{$hName});

 }

 return ($string);

}

sub addSynonym{

 #Takes: a Hidden name and shown name

 #Returns: A string representing the current synonyms

 #Purpose: Adds a synonym to the sybonym lists

 my ($hName,$sName) = @_;

 chomp $hName;

 chomp $sName;

 if (!defined($hName)) { #No hidden name entered

 makeWarningWindow("HIDDEN NAME NOT ENTERED");

 }elsif(!defined($sName)){ #No shown name entered

 makeWarningWindow("SHOWN NAME NOT ENTERED");

 }elsif(exists($VineSynonyms{$hName})){ #Cannot make two synonyms with same hidden name

 makeWarningWindow("SYNONYM ALREADY EXISTS FOR THIS HIDDEN NAME")

 }else{ #Success. Add the synonym

 $VineSynonyms{$hName} = $sName;

 }

 my $string =""; #Formatting did not work at all

 foreach my $hiddenName (sort keys %VineSynonyms){ #Generate string

 $string = $string.sprintf("%20s %20s\n","$hiddenName", $VineSynonyms{$hiddenName});

 }

 return ($string);

}

sub getSynonyms{

 #Takes: Nothing

 #Returns: String representing current synonyms

 #Prupose: Initialze text field based on current synonyms when window is opened

 #Could calll this in above functions instead of doing it every time. I'm dumb.

 my $string = "";

 foreach my $hiddenName (sort keys %VineSynonyms){

 $string = $string.sprintf("%20s %20s\n","$hiddenName", $VineSynonyms{$hiddenName});

 }

 return ($string);

149

}

sub makeWarningWindow{

 #Creates a warning window with a given message. Called from multiple locations whenever an error occurs.

 #Takes a message in the form of a string, and displays the message

 my ($message) = @_;

 #Initialize window components

 my $WarningWindow = new MainWindow;

 $WarningWindow->optionAdd('*font', 'Helvetica 14');

 $WarningWindow->title("NOTICE");

 my $warningFrame = $WarningWindow -> Frame();

 my $labMessage = $warningFrame -> Label(-text=>"$message");

 my $quitButton = $warningFrame -> Button(-text=> "OK", -command => sub{$WarningWindow->destroy;});

 $WarningWindow->update;

 #Geometry management

 $warningFrame -> grid(-row => 1, -column => 1, -columnspan => 3);

 $labMessage -> grid(-row=>1,-column=>1);

 $quitButton -> grid(-row=>3, -column =>1);

}

sub MakeFilterPromptWindow{

 my ($trait, $operator, $value) = @_;

 my $WarningWindow = new MainWindow;

 $WarningWindow->optionAdd('*font', 'Helvetica 14');

 $WarningWindow->title("NOTICE");

 my $warningFrame = $WarningWindow -> Frame();

 my $labMessage = $warningFrame -> Label(-text=>"You have created an Average type filter with no analagous Single_Value filter.");

 my$labMessage2 = $warningFrame -> Label(-text=>"It is recommended that one be created.");

 my $labMessage3 = $warningFrame -> Label (-text=>"Would you like one created for you?");

 my $yesButton = $warningFrame -> Button(-text=> "Yes", -command => sub{addFilter($trait, $operator, $value, 1, ""); $WarningWindow->destroy;});

 my $noButton = $warningFrame -> Button(-text=> "No", -command => sub{$WarningWindow->destroy;});

 $warningFrame -> grid(-row => 1, -column => 1, -columnspan => 3);

 $labMessage -> grid(-row=>1,-column=>2);

 $labMessage2 -> grid(-row=>2,-column=>2);

 $labMessage3 -> grid(-row=>3,-column=>2);

 $yesButton -> grid(-row=>4, -column =>1);

 $noButton -> grid(-row=>4, -column =>3);

}

sub makeVineListingWindow{

 #Takes: Text representing the vines returned from query. Does not include hidden names/shown names in pair

 #Retuns: Nothing

 #Called from every search type now

 #Creates a vine listing window. Shows the results from a trait based search or vineyard based search. $text contains the list of vines to show in the textarea.

 #Save report, and manage certain details of the report here

 my ($text) = @_;

 #initialize window components

 my $vineWindow = new MainWindow;

150

 $vineWindow->optionAdd('*font', 'Helvetica 14');

 $vineWindow->title("Search Results");

 my $vinearea = $vineWindow -> Frame();

 my $buttonarea = $vineWindow->Frame(-highlightbackground=>'black', -highlightthickness=>2);

 my $infoInforArea = $vineWindow->Frame(-highlightbackground=>'black', -highlightthickness=>2);

 my $formatInfoArea = $vineWindow->Frame(-highlightbackground=>'black', -highlightthickness=>2);

 my $saveInfoArea = $vineWindow -> Frame();

 my $labelArea = $vineWindow ->Frame();

 my $vineEnt = $buttonarea->MatchEntry(

 -multimatch=>0,

 -autoshrink=>1,

 -maxheight=>10,

 -ignorecase=>1,

 -variable => \$currentVineSelected,

 -state => 'normal',

 -choices => [@allVinesList],

 -width => 35);

 my $vinetxt = $vinearea -> Text(-width=>40, -height=>15); #Text area holding selected vines

 my $srl_y4 = $vinearea -> Scrollbar(-orient=>'v',-command=>[yview => $vinetxt]); #Y axis scroll

 my $srl_x4 = $vinearea -> Scrollbar(-orient=>'h',-command=>[xview => $vinetxt]); #X axis scroll bar

 $vinetxt -> configure(-yscrollcommand=>['set', $srl_y4],xscrollcommand=>['set',$srl_x4]);

 my $label = $vinearea ->Label(-text=>"Vines Resulting From Query"); #label abov etext field

 #Save button. Opens neat window and gets filename from that. Call the trait report supplying the filename and close this window

 my $saveButton = $saveInfoArea->Button(-text=>"Save Report", -command=>sub{my $filename = $vineWindow->getSaveFile(-title => 'Save File:',

 -initialdir => '.');if(defined($filename)){$filename =~ s/\.txt//; traitReport($filename); $vineWindow->destroy()}});

 #Just quit and destroy the window

 my $quitButton = $saveInfoArea->Button(-text=>"Cancel", -command=>sub{$vineWindow->destroy()});

 my $specifyTraitButton =$infoInforArea->Button(-text=>"Specify Traits to Include", -command=>sub{makeTraitSelectWindow();}); #Button to specify traits included in report

 my $specifyStudyButton = $infoInforArea ->Button(-text=>"Specify Studies to Include", -command=>sub{makeStudySelectWindow();}); #Button to specify the studies included in report

 #Check button to specify whether only averages will be returned. Updates $avgBool variable

 my $cbAnalysis = $formatInfoArea->Checkbutton(-text => 'Analysis Format', -onvalue=> 1, -offvalue=>0,-variable=>\$analysisBool); #Check button to make analysis report

 my $cb = $formatInfoArea->Checkbutton(-text => 'Averages Only', -onvalue=> 1, -offvalue=>0,-variable=>\$avgBool); #Poorly named checkbutton to take averages in report

 my $addVineButton = $buttonarea->Button(-text=>"Add Selected Vine", -command=>sub{addVine();$vinetxt->delete('0.0','end');$vinetxt->insert('end',generateVineString());});

 my $removeVineButton = $buttonarea->Button(-text=>"Remove Selected Vine", -command=>sub{removeVine();$vinetxt->delete('0.0','end');$vinetxt->insert('end',generateVineString());});

 my $informationLabel = $infoInforArea->Label(-text=>"Specify Information for Report");

 my $vineLabel = $buttonarea-> Label(-text=> "Select Vines for Report");

 my $manageLabel = $labelArea->Label(-text=>"Report Information Management",-font=>"Helvetica 18");

 my $formatLabel = $formatInfoArea->Label(-text=>"Format Options");

 my $dummyLabel = $saveInfoArea->Label(-text=>" ");

 #Geometry management. Put things where they need to be

 $vinearea ->grid(-row=>0,-column=>1,-columnspan=>4, -rowspan=>11);

 $labelArea->grid(-row=>0,-column=>5, -columnspan=>4);

 $buttonarea->grid(-row=>1, -column=>5, -columnspan=>4);

 $infoInforArea->grid(-row=>3,-column=>6, -columnspan=>4);

 $formatInfoArea->grid(-row=>7,-column=>6,-columnspan=>4);

 $saveInfoArea->grid(-row=>10,-column=>6,-columnspan=>4);

151

 $vinetxt -> grid(-row=>2,-column=>1, , -rowspan =>6);

 $srl_y4 -> grid(-row=>2,-column=>3,-sticky=>"ns", -rowspan=>10);

 $srl_x4 -> grid(-row=>11,-column=>1,-sticky=>"ew");

 $manageLabel->grid(-row=>0,-column=>1,-columnspan=>3);

 $vineEnt->grid(-row=>2,-column=>1,-columnspan=>3);

 $vineLabel->grid(-row=>1,-column=>2);

 $addVineButton->grid(-row=>3,-column=>1);

 $removeVineButton->grid(-row=>3,-column=>3);

 $label->grid(-row=>1,-column=>1);

 $formatLabel->grid(-row=>1,-column=>2);

 $cb->grid(-row=>2,-column=>1);

 $cbAnalysis -> grid(-row=>2, -column=>3);

 $saveButton->grid(-row=>10,-column=>1);

 $informationLabel->grid(-row=>6,-column=>2);

 $specifyTraitButton->grid(-row=>7,-column=>1);

 $specifyStudyButton->grid(-row=>7,-column=>3);

 $vinetxt ->insert('end',$text);

 $quitButton->grid(-row=>10,-column=>3);

 $dummyLabel->grid(-row=>10,-column=>2);

}

sub addVine{

 #Adds the current selected vine to the list of vines ot search

 #Takes: Nothing

 #Returns: Nothing

 $vines{$currentVineSelected} = 1;

}

sub removeVine{

 #Takes: Nothing

 #Returns: Nothing

 #Purpose: Removes vine from the currently selectedvines list.

 #Checks for any synonyms. Will look to see if current vine is a hidden name, remove the shown name in that case, and all other hidden names of the vine

 #print "Current vine: $currentVineSelected\n";

 foreach my $syn (keys %VineSynonyms){ #checking here to see if $name is a hidden vine name. If it is, replace it with the correct shown name

 if (my $index = (index($syn,"---"))!=-1) {

 my $substring = substr($syn, 0,-3);

 if ($currentVineSelected =~ /$substring.*/) {

 foreach my $vine (keys %vines){

 #print "is $vine equal to $substring\n";

 if ($vine =~ /$substring.*/) {

 delete $vines{$vine};

 }elsif($VineSynonyms{$syn} eq $vine){

 delete $vines{$vine};

 }

 }

 }

 }else{

152

 if ($currentVineSelected eq $syn) {

 delete $vines{$syn};

 }

 }

 foreach my $vine (keys %vines){

 if (my $index = (index($syn,"---"))!=-1) {

 my $substring = substr($syn, 0,-3);

 if ($vine =~ /$substring.*/) {

 if ($VineSynonyms{$syn} eq $currentVineSelected) {

 delete $vines{$vine};

 }

 }

 }

 }

 }

 delete $vines{$currentVineSelected};

}

sub checkStudyName{

 #Takes: Name of a study

 #Returns: 1 or 0 denoting existence or not of study in BMS

 #Looks up variable name in database. Returns 0 if variable does not exist. Returns 1 if it does.

 my ($name) = @_;

 #$name = escapeMySQL($name);

 if ($name eq "") {

 return(0);

 }

 my $query = "select * from project where name = \"$name\"";

 my $dbh = DBI->connect("DBI:mysql:$database:$host:$port", $username,"", {RaiseError=>0,PrintError=>1}); #Connect to database

 my $sqlQuery;

 if (defined($dbh)) {

 $sqlQuery = $dbh->prepare($query) or die "Can't prepare $query: $dbh->errstr\n"; #Prepare the query

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return ();

 }

 my $rv = $sqlQuery->execute or die "can't execute the query: $sqlQuery->errstr"; #Execure the query

 my @report = []; #Initialize array for report

 while (my @row= $sqlQuery->fetchrow_array()) { #get each row of results

 push (@report,\@row); #add pointer to row array to report array

 }

153

 if ((scalar @report)< 2) {

 return(0);

 }

 return(1);

}

#########################QUERY METHODS######################

sub nameQuery{

 #Takes: Name and a type

 #returns: nothing

 #Conduct a query based on the name of the input vine

 my ($name, $type) = @_;

 #Generate two vine names with underscores and periods

 my $vineName = $name;

 my $stringLength = length $vineName;

 my $vineName2 = $vineName;

 $vineName2 =~ s/\./_/g; #replace periods in vine name with underscores

 $vineName = $vineName2;

 $vineName =~s/_/\./g;

 $vineName = escapeMySQL($vineName);

 $vineName2 = escapeMySQL($vineName2);

 my $query = "select e.name as \'VINE_NAME\', e.dbxref_id as \'ID\'

 FROM STOCK e

 JOIN LISTDATA h ON e.name = h.desig

 JOIN ND_EXPERIMENT_STOCK d ON e.stock_id = d.stock_id

 JOIN ND_EXPERIMENT_PROJECT f ON d.nd_experiment_id = f.nd_experiment_id

 JOIN ND_EXPERIMENT_PHENOTYPE b ON d.nd_experiment_id = b.nd_experiment_id

 WHERE (e.name like \"$vineName%\"

 AND h.desig like \"$vineName%\") or (e.name like \"$vineName2%\"

 AND h.desig like \"$vineName2%\") #The second number in the substring field gives the length of the search string

 GROUP BY 1

 ;";

 query($query,2,""); #Get report

 #my $rows = scalar @{$reportPtr} -1;

 #stringQueryWindow("$rows rows returned from search for $name"); #display report results to stringQueryWindow

}

sub parentalQuery{

 #Takes: Name of a parent vine

 #Returns: Nothing

 #Purpose: Conduct a parental query based on a name

 my ($name) = @_;

154

 #Generate two version of the name. One with periods and one wit underscores

 my $vineName = $name;

 my $stringLength = length $vineName;

 my $vineName2 = $vineName;

 $vineName2 =~ s/\./_/g; #replace periods in vine name with underscores

 $vineName = $vineName2;

 $vineName =~s/_/\./g;

 $vineName = escapeMySQL($vineName);

 my $length1 = length $vineName;

 $vineName2 = escapeMySQL($vineName2);

 my $length2 = length $vineName2;

 my $query = "select e.name as \'VINE_NAME\', e.dbxref_id as \'ID\'

 FROM STOCK e

 JOIN LISTDATA h ON e.name = h.desig

 JOIN ND_EXPERIMENT_STOCK d ON e.stock_id = d.stock_id

 JOIN ND_EXPERIMENT_PROJECT f ON d.nd_experiment_id = f.nd_experiment_id

 JOIN ND_EXPERIMENT_PHENOTYPE b ON d.nd_experiment_id = b.nd_experiment_id

 WHERE (substring(h.grpname,1,$length1) = \"$vineName\" or h.grpname like \"%/$vineName\") or (substring(h.grpname,1,$length2) = \"$vineName2\" or h.grpname like

\"%/$vineName2\")

 GROUP BY 1

 ;";

 query($query,2,""); #get results of query

}

sub traitQuery{

 #Takes: Nothing

 #Returns: Nothing

 #Purpose: Conduct a trait query based on filters

 my $counter = 0;

 my $groupCounter = 0;

 #Generate part of the query based on the filters

 my @filterGroups;

 my @traitHashes; #Holds hashes containing the traits of each filter group;

 my @secondaryFilters; #Holds filters that will be processed after initial filters run. These filters have average and/or year restrictions.

 for($counter = 0; $counter < scalar @traitFilters; $counter++){ #Generate compatible groups of filters.

 #A group of filters is just a list of filters for unique traits. If a filter is a duplicate of a trait (which may happen for notes or something), it is added to a new group

 if (($traitFilters[$counter]->[3] != 1) || $traitFilters[$counter]->[4]ne "") { #If an average restriction or year restriction exists for the filter

 push(@secondaryFilters, $traitFilters[$counter]);

 next;

 }

 my $addedBool = 0; #decides whether a filter got added to a filter list.

 for(my $innerCount = 0; $innerCount < scalar @filterGroups; $innerCount++){ #loop over all available filter groups

 if (!exists($traitHashes[$innerCount]->{$traitFilters[$counter]->[0]})) {

 #Good to go

 $addedBool = 1;

 $traitHashes[$innerCount]{$traitFilters[$counter]->[0]} = 1; #add trait to my hash

155

 push($filterGroups[$innerCount], $traitFilters[$counter]);

 }

 }

 if ($addedBool == 0) {

 #Must create a new filerGroup and hash

 $groupCounter++;

 my @newFilterGroup;

 push(@newFilterGroup,$traitFilters[$counter]);

 push(@filterGroups,\@newFilterGroup);

 my %newTraitHash;

 $newTraitHash{$traitFilters[$counter]->[0]} = 1;

 push(@traitHashes,\%newTraitHash);

 }

 }

 my @returnedVines;

 if ($counter == 0) {

 makeWarningWindow("NO FILTERS ENTERED"); #Warn

 return;

 }

 foreach my $group (@filterGroups){

 my $filterString = "(";

 for(my $counter = 0; $counter < scalar @$group; $counter++){

 my %usedTraits; #Hold a hash of trait names already used. Warn user that they have two filters for the same trait.

 #Multiple filters for the same trait are allowed.

 if (exists($usedTraits{@$group[$counter]->[0]})) {

 #This should not be triggered as filters have been split into seperate groups

 makeWarningWindow("MULTIPLE FILTERS FOR SAME TRAIT: @$group[$counter]->[0]");

 return;

 }else{

 $usedTraits{@$group[$counter]->[0]} = 1;

 }

 #Build query strings based on filters

 if ($counter == (scalar @$group)-1) {

 if (@$group[$counter]->[1] =~ /like/) {

 @$group[$counter]->[2] =~ s/"|'//g;

 $filterString = $filterString."(I.TRAIT = \"@$group[$counter]->[0]\" and a.value @$group[$counter]->[1] \"%@$group[$counter]->[2]%\")";

 }else{

 $filterString = $filterString."(I.TRAIT = \"@$group[$counter]->[0]\" and a.value @$group[$counter]->[1] @$group[$counter]->[2])";

 }

 }else{

 if (@$group[$counter]->[1] =~ /like/) {

156

 @$group[$counter]->[2] =~ s/"|'//g;

 $filterString = $filterString."(I.TRAIT = \"@$group[$counter]->[0]\" and a.value $traitFilters[$counter]->[1] \"%@$group[$counter]->[2]%\") or";

 }else{

 $filterString = $filterString."(I.TRAIT = \"@$group[$counter]->[0]\" and a.value @$group[$counter]->[1] @$group[$counter]->[2]) or";

 }

 }

 }

 #Conduct query for each group of filters

 $filterString = $filterString.")";

 $filterString = escapeMySQL($filterString); #Remove bad MySQL characters.

 my $filterNumber = scalar @$group;

 my $queryString = "SELECT VINE_NAME, CONCAT(VINE_NAME,TRAIT)as GLOB, STUDY_NAME FROM

 (SELECT

 e.dbxref_id as \"VINE_NAME\",

 a.value as \"VALUE\" ,

 i.TRAIT ,

 i.TRAIT_DESCRIPTION ,

 REPLACE(g.name, \"-PLOTDATA\", \"\") as \"STUDY_NAME\" ,

 d.nd_experiment_id as \"RELATED_IDENTIFIER\"

 FROM STOCK e

 JOIN LISTDATA h ON e.name = h.desig

 JOIN ND_EXPERIMENT_STOCK d ON e.stock_id = d.stock_id

 JOIN ND_EXPERIMENT_PROJECT f ON d.nd_experiment_id = f.nd_experiment_id

 JOIN ND_EXPERIMENT_PHENOTYPE b ON d.nd_experiment_id = b.nd_experiment_id

 JOIN PROJECT g ON f.project_id = g.project_id

 JOIN PHENOTYPE a ON b.phenotype_id = a.phenotype_id

 JOIN (SELECT i1.value ,

 i2.value as \"TRAIT\" ,

 REPLACE(i3.value, \""\", \"\") as \"TRAIT_DESCRIPTION\"

 FROM projectprop i1

 JOIN projectprop i2 on i1.project_id = i2.project_id and i1.rank = i2.rank and (i2.type_id = 1043 or

i2.type_id = 1048)

 JOIN projectprop i3 on i1.project_id = i3.project_id and i1.rank = i3.rank and i3.type_id = 1060

) i ON a.observable_id = i.value

 WHERE $filterString

)

 as BIG GROUP BY GLOB;";

 my $vines = query($queryString,3,"");

 my %vineCounterHash = %$vines;

 my @tempArray;

 foreach my $key (keys %vineCounterHash){

 if ($vineCounterHash{$key} >= $filterNumber) {

 push(@tempArray, $key);

157

 }

 }

 push(@returnedVines, \@tempArray)

 }#end group

 my %vineCounts;

 #Count number of filters each vine passes. Must pass all filters to be selected

 foreach my $vineGroup (@returnedVines){

 foreach my $vine (@$vineGroup){

 if (exists($vineCounts{$vine})) {

 $vineCounts{$vine}++;

 }else{

 $vineCounts{$vine} = 1;

 }

 }

 }

 my @vinesThatPassed; #List of vines that passed initial filters

 foreach my $tempVine (keys %vineCounts){

 if ($vineCounts{$tempVine} >= $groupCounter) {

 push(@vinesThatPassed,$tempVine);

 }

 }

 if ($groupCounter == 0) { #Search all vines if none have pased the initial test

 @vinesThatPassed = @allVinesList;

 }

 #Process secondary filters here

 my $secondaryFilterNum = scalar @secondaryFilters;

 my %secondaryVineCounts;

 foreach my $quickVine (@vinesThatPassed){

 $secondaryVineCounts{$quickVine} = 0;

 }

 foreach my $secondaryFilterRef(@secondaryFilters){

 my @secondaryFilter = @$secondaryFilterRef;

 foreach my $passedVine (@vinesThatPassed){

 my $value = $secondaryFilter[2];

 my $secondaryQueryString = "SELECT DISTINCT

 a.value as \"VALUE\",

 REPLACE(g.name, \"-PLOTDATA\", \"\") as \"STUDY_NAME\"

158

 FROM STOCK e

 JOIN LISTDATA h ON e.name = h.desig

 JOIN ND_EXPERIMENT_STOCK d ON e.stock_id = d.stock_id

 JOIN ND_EXPERIMENT_PROJECT f ON d.nd_experiment_id = f.nd_experiment_id

 JOIN ND_EXPERIMENT_PHENOTYPE b ON d.nd_experiment_id = b.nd_experiment_id

 JOIN PROJECT g ON f.project_id = g.project_id

 JOIN PHENOTYPE a ON b.phenotype_id = a.phenotype_id

 JOIN (SELECT i1.value ,

 i2.value as \"TRAIT\" ,

 REPLACE(i3.value, \""\", \"\") as \"TRAIT_DESCRIPTION\"

 FROM projectprop i1

 JOIN projectprop i2 on i1.project_id = i2.project_id and i1.rank = i2.rank and (i2.type_id = 1043 or i2.type_id = 1048)

 JOIN projectprop i3 on i1.project_id = i3.project_id and i1.rank = i3.rank and i3.type_id = 1060

) i ON a.observable_id = i.value

 WHERE (e.dbxref_id = \"$passedVine\" or h.desig = \"$passedVine\") and i.TRAIT = \"$secondaryFilter[0]\";";

 my $values = query($secondaryQueryString,4,$secondaryFilter[4]);

 my @valueArray = @$values;

 #print $secondaryQueryString."\n";

 my $increaseBool = 0; #bool to increase secondaryVineCounts for this vine

 #print $valueArray[0]."\n";

 if (defined($valueArray[0])) {

 if (((looks_like_number($valueArray[0])) && ($secondaryFilter[2] ne "DATE_OBSERVED")) &&($secondaryFilter[3] == 2)) {

 my $average = sum(@valueArray)/(scalar @valueArray);

 ##SWITCH MODULE COULD NOT LOAD IM SORRY

 if ($secondaryFilter[1] eq "=") {

 if ($average == $secondaryFilter[2]) {

 $increaseBool = 1;

 }

 }elsif($secondaryFilter[1] eq "!="){

 if ($average != $secondaryFilter[2]) {

 $increaseBool = 1;

 }

 }elsif($secondaryFilter[1] eq "<"){

 if ($average < $secondaryFilter[2]) {

 $increaseBool = 1;

 }

 }elsif($secondaryFilter[1] eq "<="){

 if ($average <= $secondaryFilter[2]) {

 $increaseBool = 1;

 }

 }elsif($secondaryFilter[1] eq ">"){

 if ($average > $secondaryFilter[2]) {

 $increaseBool = 1;

 }

 }elsif($secondaryFilter[1] eq ">="){

 if ($average >= $secondaryFilter[2]) {

159

 $increaseBool = 1;

 }

 }else{

 makeWarningWindow("Average Filter With Non-Numeric Operator Was Ignored in Search");

 }

 }elsif($secondaryFilter[3]==1){

 if (looks_like_number($valueArray[0])) {

 foreach my $value (@valueArray){

 ##SWITCH MODULE COULD NOT LOAD IM SORRY

 if ($secondaryFilter[1] eq "=") {

 if ($value == $secondaryFilter[2]) {

 $increaseBool = 1;

 }

 }elsif($secondaryFilter[1] eq "!="){

 if ($value != $secondaryFilter[2]) {

 $increaseBool = 1;

 }

 }elsif($secondaryFilter[1] eq "<"){

 if ($value < $secondaryFilter[2]) {

 $increaseBool = 1;

 }

 }elsif($secondaryFilter[1] eq "<="){

 if ($value <= $secondaryFilter[2]) {

 $increaseBool = 1;

 }

 }elsif($secondaryFilter[1] eq ">"){

 if ($value > $secondaryFilter[2]) {

 $increaseBool = 1;

 }

 }elsif($secondaryFilter[1] eq ">="){

 if ($value >= $secondaryFilter[2]) {

 $increaseBool = 1;

 }

 }

 }

 }else{

 foreach my $value (@valueArray){

 if ($secondaryFilter[1] eq "=") {

 if ($value eq $secondaryFilter[2]) {

 $increaseBool= 1;

 }

 }elsif($secondaryFilter[1] eq "!="){

 if ($value != $secondaryFilter[2]) {

 $increaseBool = 1;

 }

160

 }elsif($secondaryFilter[1] eq "like"){

 if ($value =~ /.*$secondaryFilter[2].*/) {

 $increaseBool = 1;

 }

 }elsif($secondaryFilter[1] eq "not like"){

 if ($value !~ /.*$secondaryFilter[2].*/) {

 $increaseBool = 1;

 }

 }

 }

 }

 }

 if ($increaseBool == 1){

 if (exists($secondaryVineCounts{$passedVine})) {

 $secondaryVineCounts{$passedVine} = $secondaryVineCounts{$passedVine} +1;

 }else{

 $secondaryVineCounts{$passedVine} =1;

 }

 }

 }elsif($secondaryFilter[3] == 1){

 }

 }

 }

 %vines=();

 my $vineString = "";

 my @keys = keys %secondaryVineCounts;

 @keys = sort @keys;

 my $indexCounter = 1;

 my %vinesSeen; #hash to hold list of unique vines added to vineString

 foreach my $key (@keys){

 #print $groupCounter."$vineCounts{$key}\n";

 if ($secondaryVineCounts{$key} >= $secondaryFilterNum) {

 my $name = $key;

 if ($groupCounter != 0) {

 $name = getNameFromID($key);

 }

 foreach my $syn (keys %VineSynonyms){ #checking here to see if $name is a hidden vine name. If it is, replace it with the correct shown name

 if (my $index = (index($syn,"---"))!=-1) {

 my $substring = substr($syn, 0,-3);

161

 if ($name =~ /$substring.*/) {

 $name = $VineSynonyms{$syn};

 }else{

 #print "$syn does not match $name\n";

 }

 }else{

 #print "$syn does not contain ---\n";

 if ($name eq $syn) {

 $name = $VineSynonyms{$syn};

 }

 }

 }

 if (!exists($vinesSeen{$name})) {

 #$vineString = $vineString."$indexCounter)\t$name\n";

 $vines{$name} = $key;

 #$indexCounter++;

 $vinesSeen{$name} = 1;

 }

 }

 }

 my @vinesList = keys %vinesSeen;

 @vinesList = sort @vinesList;

 foreach my $vine (@vinesList){

 $vineString = $vineString."$indexCounter)\t$vine\n";

 $indexCounter++;

 }

 #Finally make window with vines that pass the filtering

 makeVineListingWindow($vineString);

}

sub vineyardQuery{

 #Takes: Vineyard name

 #Returns: Nothing

 #Purpose: Query for vines based on vineyard name

 my ($name) = @_;

 $name = escapeMySQL($name);

 my $length = length $name;

 my $queryString = "select e.name as \'VINE_NAME\', e.dbxref_id as \'ID\'

 from nd_experiment c

 JOIN nd_experiment_stock d on c.nd_experiment_id = d.nd_experiment_id

 JOIN stock e on d.stock_id = e.stock_id

 JOIN nd_experiment_project f on c.nd_experiment_id = f.nd_experiment_id

 JOIN project g on f.project_id = g.project_id

162

 where substring(g.name ,1,$length) = \'$name\'

 GROUP BY 1

 ;";

 query($queryString,2,"");

}

########################MORE QUERY PROCESSING########################

sub query{

 #Takes: Query string and a query type

 #Returns: Pointer to vine listing.

 #Purpose: Conducts a query based on an input string ($query) and a number ($type). 1 denotes a vine name or parent search: return all observations for each vine. 2 denotes a vineyard or trait

search: first return all vines that meet the search requirements, then get all observations for those vines.

 my ($query,$type,$yearString) = @_;

 my $dbh = DBI->connect ("DBI:mysql:$database:$host:$port", $username, "",{RaiseError=>0,PrintError=>1}); #Connect to database

 my $sqlQuery ;

 if (defined($dbh)) {

 $sqlQuery = $dbh->prepare($query) or die makeWarningWindow("Can't prepare $query:". $dbh->errstr); #Prepare the query

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return ();

 }

 my $rv = $sqlQuery->execute or die makeWarningWindow("Can't execute the query: ".$sqlQuery->errstr); #Execure the query

 my $counter = 0; #initialize counter for rows

 my @report = []; #Initialize array for report

 while (my @row= $sqlQuery->fetchrow_array()) { #get each row of results

 push (@report,\@row); #add pointer to row array to report array

 }

 if (($type == 1)) { #NO LONGER BEING USED!Type 1 indicates a parental or name query. 7 columns returned.

 return(\@report);

 }elsif($type ==2){ #Type 2 indicates a name , parental, or vineyard query. returns list of vines.

 %vines = ();

 my @vineNameStrings;

 my $string = "";

 my $indexCounter = 1;

 foreach my $row (@report){

 if ((defined($row->[0])) && (defined($row->[1]))) {

 $vines{$row->[0]}=$row->[1];

 }

 }

 @vineNameStrings = sort keys %vines;

 my %vinesSeen; #Hash that holds all seen vines added to list

 foreach my $vine (@vineNameStrings){

 foreach my $key (keys %VineSynonyms){ #checking here to see if $name is a hidden vine name. If it is, replace it with the correct shown name

163

 if (my $index = (index($key,"---"))!=-1) {

 my $substring = substr($key, 0,-3);

 if ($vine =~ /$substring.*/) {

 $vine = $VineSynonyms{$key};

 }

 }else{

 if ($vine eq $key) {

 $vine = $VineSynonyms{$key};

 }

 }

 }

 if (!exists($vinesSeen{$vine})) {#$string = $string."$indexCounter)\t$vine\n";

 #$indexCounter++;

 $vinesSeen{$vine} = 1;

 }

 }

 my @vinesList = keys (%vinesSeen);

 @vinesList = sort @vinesList;

 foreach my $vine(@vinesList){

 $string = $string."$indexCounter)\t$vine\n";

 $indexCounter++;

 }

 makeVineListingWindow($string); #Make vine listing window with list of vines returned

 }elsif($type ==3){ #Type 3 just retuns a report as an aray

 #$data[0] is vine coutns hash. $data[1] is year hash

 my %vineCounterHash;

 my @years;

 if ($yearString ne "") {

 #Assume if it is defined it is valid at this point. validation occurs at entry

 @years = split("-",$yearString);

 }else{

 #set all valid years

 my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

 localtime(time);

 $years[0] = 0000;

 $year+=1900; #Year is originally years since 1900, so I add 1900 to get the current year

 $years[1] = $year;

 }

 foreach my $row (@report){

 my $vine = $row->[0];

 my $year = -1;

 if (defined($vine)) {

 if (exists($VineSynonyms{$vine})) {

 $vine = $VineSynonyms{$vine};

 }

164

 if (defined($row->[2])) {

 $row->[2] =~ m/.* *([0-9]{4}) *.*/;

 #print "Study: $row->[2]\n";

 $year = $1;

 "a" =~ /a/;

 }

 #Vine name exists and year is equal to one of the years given, or in between them

 if (exists($vineCounterHash{$vine})&& ((($year == $years[0]) || ($year == $years[1])) || (($year > $years[0]) && ($year < $years[1])))) {

 $vineCounterHash{$vine} = $vineCounterHash{$vine} +1;

 #year is equal to or between given year range

 }elsif(($year == $years[0]) || ($year == $years[1]) || (($year > $years[0]) && ($year < $years[1]))){

 $vineCounterHash{$vine} = 1

 }

 }

 "a" =~ /a/; #resets $1. dont delete

 }

 return(\%vineCounterHash);

 }elsif($type == 4){#return values for a query given a vine name and trait name

 my @values;

 my @years;

 if ($yearString ne "") {

 #Assume if it is defined it is valid at this point. validation occurs at entry

 @years = split("-",$yearString);

 }else{

 #set all avlid years

 my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

 localtime(time);

 $years[0] = 0000;

 $year+=1900; #Year is originally years since 1900, so I add 1900 to get the current year

 $years[1] = $year;

 }

 foreach my $row (@report){

 foreach my $thing (@$row){

 }

 my $year = -1; #If no year on the study,get rid of it

 if (defined($row->[0])) {

 my $vine = $row->[0];

 if (exists($VineSynonyms{$vine})) {

 $vine = $VineSynonyms{$vine};

 }

 if (defined $row->[1]) {

 $row->[1] =~ m/.* *([0-9]{4}) *.*/;

 $year = $1;

165

 "a" =~ /a/;

 }

 if (($year == $years[0]) || ($year == $years[1]) || (($year > $years[0]) && ($year < $years[1]))) {

 push(@values,$vine);

 }

 }

 }

 #print "Value total $valueTotal\n";

 return \@values;

 # foreach my $row (@report){

 # foreach my $value (@$row){ #print each value with a tab after it

 # push(@vines,$value);

 # }

 # }

 # return (\@vines);

 }

}

###########################REPORT FUNCTIONS############################

sub traitReport{

 #Takes: Output file name

 #Returns: Nothing:

 #Purpose: Generates a report from a vine list. Used by al search types

 my ($outFile) = @_;

 #Open temp file. This file gets deleted soon after

 open(my $OUTFILE, ">", "$dir\\tempoutfileforreport.txt") or die makeWarningWindow("Could not open $dir\\tempoutfileforreport.txt: $!\n"); #Open the file for appending

 print $OUTFILE "VINE_NAME\tCROSS\tVALUE\tTRAIT\tTRAIT_DESCRIPTION\tSTUDY\tRELATED_IDENTIFIER\n"; #Print cokumn headers to file

 close $OUTFILE;

 my @altLookups;

 #The next few loops just make sure I am including data for all synonyms

 foreach my $vineName (keys %vines){

 foreach my $key (keys %VineSynonyms){

 if (my $index = (index($key,"---"))!=-1) {

 my $substring = substr($key, 0,-3);

 if ($vineName=~ /$substring.*/) {

 my $addFlag = 1;

 foreach my $value (keys %vines){

 if ($value eq $VineSynonyms{$key}) {

 $addFlag = 0;

 }

166

 }if($addFlag == 1){

 my $id = getIDFromName($VineSynonyms{$key});

 if (defined($id)) {

 $vines{$VineSynonyms{$key}} = $id

 }else{

 #makeWarningWindow("Could not get GID for vine: $VineSynonyms{$key}");

 }

 }

 }

 }else{

 if ($vineName eq $key) {

 my $addFlag = 1;

 foreach my $value (keys %vines){

 if ($value eq $VineSynonyms{$key}) {

 $addFlag = 0;

 }

 }if($addFlag == 1){

 my $id = getIDFromName($VineSynonyms{$key});

 if (defined($id)) {

 $vines{$VineSynonyms{$key}} = $id

 }else{

 makeWarningWindow("Could not get GID For vine: $VineSynonyms{$key}");

 }

 }

 }

 }

 }

 foreach my $key (keys %AltLookups){

 if (my $index = (index($key,"---"))!=-1) {

 push(@altLookups,@{$AltLookups{$key}});

 }else{

 if ($vineName eq $key) {

 push(@altLookups,@{$AltLookups{$key}});

 }

 }

 }

 }

 #Pull out all data for all vines here

 my @a = keys %vines;

167

 my $total = (scalar @a)+(scalar @altLookups);

 my $counter = 0;

 foreach my $nameVine (keys %vines){

 if ((defined($vines{$nameVine}))) {

 if (my $index = (index($nameVine,"---"))!=-1) {

 print "Searching for $nameVine\n";

 vineQuerier($nameVine, 2);

 $counter++;

 print $nameVine."\n";

 my $percent = ($counter/$total) * 100;

 print "$percent% complete\n";

 }else{

 if ((defined($vines{$nameVine}))) {

 print "Searching for $nameVine\n";

 vineQuerier($vines{$nameVine}, 1);

 $counter++;

 print $nameVine."\n";

 my $percent = ($counter/$total) * 100;

 print "$percent% complete\n";

 }

 }

 }

 }

 #Alt lookups are a list of synonymsto search and include as well

 foreach my $nameVine(@altLookups){

 if (my $index = (index($nameVine,"---"))!=-1) {

 print "Searching for $nameVine\n";

 vineQuerier($nameVine, 2);

 $counter++;

 print $nameVine."\n";

 my $percent = ($counter/$total) * 100;

 print "$percent% complete\n";

 }else{

 if ((defined($vines{$nameVine}))) {

 print "Searching for $nameVine\n";

 vineQuerier($vines{$nameVine}, 1);

 $counter++;

 print $nameVine."\n";

 my $percent = ($counter/$total) * 100;

 print "$percent% complete\n";

 }

 }

 }

168

 #Now call reportMaker2 to make the report

 my $optionsString = "";

 if ($avgBool == 1) {

 $optionsString = $optionsString." --average";

 }

 if ($analysisBool == 1) {

 $optionsString = $optionsString." --analysis";

 }

 open(my $TRAITFILE, ">","$dir\\traitfileforreport.txt") or makeWarningWindow("Could not open $dir\\traitfileforreport.txt: $!");

 foreach my $trait (@traitsToInclude){

 my $scale = getTraitScale($trait);

 if (defined($scale)) {

 print $TRAITFILE "$trait\t$scale\n";

 }else{

 print $TRAITFILE "$trait\t\n";

 }

 }

 close $TRAITFILE;

 open(my $STUDYFILE, ">","$dir\\studyfileforreport.txt") or die makeWarningWindow("Could not open $dir\\studyfileforreport.txt: $!");

 foreach my $study (@studiesToInclude){

 print $STUDYFILE "$study\n";

 }

 close $STUDYFILE;

 $dir =~ tr{\\}{/};

 system "perl \"$dir/reportMaker2.pl\" \"$dir/tempoutfileforreport.txt\" \"$outFile.csv\" \"$dir\\traitfileforreport.txt\" \"$dir\\studyfileforreport.txt\" $yearsSince $optionsString"; #call

reportMaker.pl with correct arguments

 if (1 == 1) { #If I don't do this the temp file gets deleted before reportMaker2.pl is done with it. Sorta hacks, but it worked

 $dir =~ tr{/}{\\};

 unlink "$dir/tempoutfileforreport.txt";

 unlink "$dir\\traitfileforreport.txt";

 unlink "$dir\\studyfileforreport.txt";

 }

}

###################Additional Ultility functions##########################

sub vineQuerier{

 #Takes: Name of vine, and type of search (1 or 2); 1 = search by ID, 2 = search by name

 #Returns: Nothing

 #Purpose: Query the vine

 my ($vineName, $type) = @_;

 open(my $OUTFILE, ">>", "$dir\\tempoutfileforreport.txt") or die makeWarningWindow("Could not open $dir\\tempoutfileforreport.txt: $!\n"); #Open the file for appending

 if (!defined($vineName) || (!defined($type))) {

 makeWarningWindow("POSSIBLE ERROR IN SEARCH TERM, OR UNKNOWN VINE IN SYNONYM: $vineName, $type");

 return;

 }

169

 #print "Processing $vineName\n";

 $vineName = escapeMySQL($vineName);

 my $stringLength = length $vineName;

 if ($type == 1) {

 $vineName = "e.dbxref_id = $vineName AND

 h.gid = $vineName";

 }elsif($type == 2){

 my $index = index($vineName,"---");

 $vineName = substr($vineName,0,-3);

 $vineName = "e.name like \"$vineName%\" AND h.desig like \"$vineName%\"";;

 }

 my $query = "SELECT e.name as \"VINE_NAME\" ,

 h.grpname as \"CROSS\" ,

 a.value as \"VALUE\" ,

 i.TRAIT ,

 i.TRAIT_DESCRIPTION ,

 REPLACE(g.name, \"-PLOTDATA\", \"\") as \"STUDY_NAME\" ,

 d.nd_experiment_id as \"RELATED_IDENTIFIER\"

 FROM STOCK e

 JOIN LISTDATA h ON e.name = h.desig

 JOIN ND_EXPERIMENT_STOCK d ON e.stock_id = d.stock_id

 JOIN ND_EXPERIMENT_PROJECT f ON d.nd_experiment_id = f.nd_experiment_id

 JOIN ND_EXPERIMENT_PHENOTYPE b ON d.nd_experiment_id = b.nd_experiment_id

 JOIN PROJECT g ON f.project_id = g.project_id

 JOIN PHENOTYPE a ON b.phenotype_id = a.phenotype_id

 JOIN (SELECT i1.value ,

 i2.value as \"TRAIT\" ,

 REPLACE(i3.value, \""\", \"\") as \"TRAIT_DESCRIPTION\"

 FROM projectprop i1

 JOIN projectprop i2 on i1.project_id = i2.project_id and i1.rank = i2.rank and (i2.type_id = 1043 or i2.type_id = 1048)

 JOIN projectprop i3 on i1.project_id = i3.project_id and i1.rank = i3.rank and i3.type_id = 1060

) i ON a.observable_id = i.value

 WHERE $vineName #The second number in the substring field gives the length of the search string

 GROUP BY 1,3,4,5,6,7

 ;";

 #print $query."\n";

 my $dbh = DBI->connect("DBI:mysql:$database:$host:$port", $username, "",{RaiseError=>0,PrintError=>1}); #Connect to database

 my $sqlQuery;

 if (defined($dbh)) {

 $sqlQuery = $dbh->prepare($query) or die makeWarningWindow("Can't prepare $query:".$dbh->errstr); #Prepare the query

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return ();

 }

 my $rv = $sqlQuery->execute or die makeWarningWindow("Can't execute the query:". $sqlQuery->errstr); #Execure the query

170

 my @report = [];

 my $somethingCounter = 1;

 while (my @row= $sqlQuery->fetchrow_array()) { #get each row of results

 push (@report,\@row); #add pointer to row array to report array

 #print "Row: $somethingCounter\n";

 $somethingCounter++;

 }

 #Print data to output file

 my $printCounter = 1;

 foreach my $row (@report){ #print all values in report array

 foreach my $value (@$row){

 print $OUTFILE $value."\t";

 }

 #print "Printing $printCounter\n";

 $printCounter++;

 print $OUTFILE "\n";

 }

 my $num = scalar @report;

 close($OUTFILE); #Close temp file

}

sub getVariableList{

 #Takes: Nothing

 #Returns: Array of traits in BMS

 #Purpose: Get list of all traits in BMS

 #queries the database and returns an array of all variables in the database

 my $dbh = DBI->connect("DBI:mysql:$database:$host:$port", $username, "", {RaiseError=>0,PrintError=>1}); #Connect to database

 my $query = "select * from projectprop where type_id = 1043 or type_id = 1048";

 if (defined($dbh)) {

 my $sqlQuery = $dbh->prepare($query) or die makeWarningWindow("Can't prepare $query:".$dbh->errstr); #Prepare the query

 my $rv = $sqlQuery->execute or die makeWarningindow("Can't execute the query:". $sqlQuery->errstr); #Execure the query

 my @report = [];

 my %traitUnique;

 my @traits;

 while (my @row= $sqlQuery->fetchrow_array()) { #get each row of results

 if (exists($row[3])) {

 $traitUnique{$row[3]} = 1;

 }

 }

 @traits = keys %traitUnique;

 @traits = sort @traits;

171

 return(@traits);

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return (());

 }

 return (()); #returns an empty list

}

sub getStudyList{

 #Takes: Nothing

 #Returns: Array of study names

 #Purpose: Get list of all studies from BMS

 #RETURN LIST OF STUDIES IN DATABASE

 my $dbh = DBI->connect("DBI:mysql:$database:$host:$port", $username, "",{RaiseError=>0,PrintError=>1}); #Connect to database

 my $query = "select name from project;";

 if (defined($dbh)) {

 my $sqlQuery = $dbh->prepare($query) or die makeWarningWindow("Can't prepare $query:".$dbh->errstr); #Prepare the query

 my $rv = $sqlQuery->execute or die makeWarningindow("Can't execute the query:". $sqlQuery->errstr); #Execure the query

 my @report = [];

 my %studyUnique;

 my @studies;

 while (my @row= $sqlQuery->fetchrow_array()) { #get each row of results

 if (exists($row[0])) {

 if(($row[0]!~ /.*PLOTDATA/) &&($row[0] !~ /.*ENVIRONMENT/)&&($row[0]!~ /.*#[0-9]+/)){

 $studyUnique{$row[0]} = 1;

 }

 }

 }

 @studies = keys %studyUnique;

 @studies = sort @studies;

 return(@studies);

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return (());

 }

 return (()); #returns an empty list

}

sub escapeMySQL{

 #Takes: String to be put into MySQL

 #Retusn: A string that removes MySQL special characters

 #Purpose: No MySQL shenanigans, but its your DB anyways, so IDK

 #returns string that does not contain mysql stuff in it

 my ($string) = @_;

 $string =~ s/0'bnrtz\\%_/\\0\\'\\b\\n\\r\\t\\z\\\\\\%_/g;

 return ($string);

172

}

sub writeConfigFile{

 #Takes: Nothing

 #Returns: Nothing

 #Writes DB connection settings to appropriate file

 open(my $CONFIG_FILE,">","$dir\\Configuration\\search.conf");

 print $CONFIG_FILE "#Change the values if quotes if necessary. See Section 11 in Workflow documentation for how to determine values for these fields

#DO NOT ALTER ANYTHING ABOUT THIS FILE OTHER THAN THE VALUES IN QUOTES

\"$database\"\t#Database name

\"$port\"\t#Port Number

\"$host\"\t#HostName

\"$username\"\t#User name

firstTimeFlag\tFALSE";

close $CONFIG_FILE;

}

sub getDatabases{

 #Takes: Nothing

 #Returns pointer to array of database names

 #Get list of available databases

 my $dbh = DBI->connect("DBI:mysql:information_schema:$host:$port", $username, "",{RaiseError=>0,PrintError=>1}); #Connect to database

 my $databases = $dbh->selectcol_arrayref('show databases');

 return ($databases);

}

sub writeVineConfigFile{

 #Takes: Nothing

 #Returns: Nothing

 #Purpose: Write vine synonyms to file, and read in those synonyms to file (only way to load new synonyms)

 open(my $CONFIG_FILE,">","$dir\\Configuration\\vineNames.conf") or makeWarningWindow("Could not open $dir\\Configuration\\vineNames.confs");

 my @keyNames = keys %VineSynonyms;

 for(my $counter = 0; $counter < scalar @keyNames; $counter++){

 print $CONFIG_FILE "$keyNames[$counter]=$VineSynonyms{$keyNames[$counter]}";

 #print "$keyNames[$counter]=$VineSynonyms{$keyNames[$counter]}\n";

 if ($counter != ((scalar @keyNames)-1)) {

 print $CONFIG_FILE "\n";

 }

 }

 close $CONFIG_FILE;

 readVineNames(); #Read in new data

}

sub getIDFromName{

 #Takes: GID From BMS

 #Returns: VIne name from BMS

 #Purpose: Get the name of a vine given an ID for the purposes of displaying the vine name to screen

 my ($name) = @_;

 my $dbh = DBI->connect("DBI:mysql:$database:$host:$port", $username, "",{RaiseError=>0,PrintError=>1}); #Connect to database

173

 my $query = "select dbxref_id from stock where name =\"$name\";";

 if (defined($dbh)) {

 my $sqlQuery = $dbh->prepare($query) or die makeWarningWindow("Can't prepare $query:".$dbh->errstr); #Prepare the query

 my $rv = $sqlQuery->execute or die makeWarningindow("Can't execute the query:". $sqlQuery->errstr); #Execure the query

 my %idUnique;

 while (my @row= $sqlQuery->fetchrow_array()) { #get each row of results

 if (exists($row[0])) {

 $idUnique{$row[0]} = 1;

 }

 }

 foreach my $id (keys %idUnique){

 return ($id);

 }

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return ();

 }

 return (); #returns an empty value

}

sub getNameFromID{

 #Takes: Name of a vine

 #Returns: GID from BMS

 #Purpose: COnvert a vine name to an ID for the purposes of looking up the GID for a further search

 my ($id) = @_;

 my $dbh = DBI->connect("DBI:mysql:$database:$host:$port", $username, "",{RaiseError=>0,PrintError=>1}); #Connect to database

 my $query = "select name from stock where dbxref_id = $id;";

 #print $query."\n";

 if (defined($dbh)) {

 my $sqlQuery = $dbh->prepare($query) or die makeWarningWindow("Can't prepare $query:".$dbh->errstr); #Prepare the query

 my $rv = $sqlQuery->execute or die makeWarningWindow("Can't execute the query:". $sqlQuery->errstr); #Execure the query

 my %uniqueName;

 while (my @row= $sqlQuery->fetchrow_array()) { #get each row of results

 if (exists($row[0])) {

 $uniqueName{$row[0]} = (); #{$row[0]} = 1;

 }

 }

 foreach my $name (keys %uniqueName){

 return ($name);

 }

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return ();

 }

 return (); #returns an empty value

174

}

sub getTraitScale{

 #Takes: Name of trait

 #Returns: String representing scale of trait

 #Purpose: Get the scale of a trait

 my ($trait) = @_;

 my $dbh = DBI->connect("DBI:mysql:$database:$host:$port", $username, "",{RaiseError=>0,PrintError=>1}); #Connect to database

 my $query = "select scale from standard_variable_details where stdvar_name = \"$trait\";";

 if (defined($dbh)) {

 my $sqlQuery = $dbh->prepare($query) or die makeWarningWindow("Can't prepare $query:".$dbh->errstr); #Prepare the query

 my $rv = $sqlQuery->execute or die makeWarningWindow("Can't execute the query:". $sqlQuery->errstr); #Execure the query

 my $scale;

 while (my @row= $sqlQuery->fetchrow_array()) { #get each row of results

 if (exists($row[0])) {

 $scale = $row[0];

 }

 }

 return $scale;

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return ;

 }

 return;

}

sub getTraitValueInfo{

 #Takes: Nothing

 #Returns: Hash where keys are trait names and valus are string representing trait info

 #If trait is numeric, string will show average and standard deviation. If trait is categorical, string will show all valid values

 my $filename = "$dir\\Configuration\\traitDescriptions.conf";

 my %traitValuesHash;

 open(my $CONFIG_FILE,"<", $filename) or makeWarningWindow("Could not open $filename:$!\n");

 while (!eof($CONFIG_FILE)) {

 my $line = readline($CONFIG_FILE);

 chomp $line;

 my @splitLine = split("\t", $line);

 $splitLine[1] =~ s/,/\n/g;

 $traitValuesHash{$splitLine[0]} = $splitLine[1];

 }

 return \%traitValuesHash;

}

sub updateTraitValueInfo{

 #Takes: Nothing

 #Retuns: Nothing

 #Purpose: Update configuration file which contains descriptors for all traits to help users search

175

 #Run when user clicks button to run this method

 my $totalObservations = 0;

 my @traits = getVariableList(); #Gets list of all variables in database

 my %traitValuesHash; #Hash to describe trait values. Key is trait name, value is description string

 foreach my $trait (@traits){

 if ($trait ne "DATE_OBSERVED") {

 my $traitString = "i.TRAIT = \"$trait\"";

 my $queryString = "SELECT

 a.value as 'VALUE'

 FROM ND_EXPERIMENT_STOCK d

 JOIN ND_EXPERIMENT_PROJECT f ON d.nd_experiment_id = f.nd_experiment_id

 JOIN ND_EXPERIMENT_PHENOTYPE b ON d.nd_experiment_id = b.nd_experiment_id

 JOIN PROJECT g ON f.project_id = g.project_id

 JOIN PHENOTYPE a ON b.phenotype_id = a.phenotype_id

 JOIN (SELECT i1.value ,

 i2.value as \"TRAIT\" ,

 REPLACE(i3.value, \""\", \'\') as \"TRAIT_DESCRIPTION\"

 FROM projectprop i1

 JOIN projectprop i2 on i1.project_id = i2.project_id and i1.rank = i2.rank and (i2.type_id = 1043 or i2.type_id = 1048)

 JOIN projectprop i3 on i1.project_id = i3.project_id and i1.rank = i3.rank and i3.type_id = 1060

) i ON a.observable_id = i.value

 WHERE $traitString #The second number in the substring field gives the length of the search string

 ;";

 my $dbh = DBI->connect("DBI:mysql:$database:$host:$port", $username, "",{RaiseError=>0,PrintError=>1}); #Connect to database

 my $sqlQuery;

 if (defined($dbh)) {

 $sqlQuery = $dbh->prepare($queryString) or die makeWarningWindow("Can't prepare $queryString:".$dbh->errstr); #Prepare the query

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return ();

 }

 my $rv = $sqlQuery->execute or die makeWarningWindow("Can't execute the query:". $sqlQuery->errstr); #Execure the query

 my @report = [];

 while (my @row= $sqlQuery->fetchrow_array()) { #get each row of results

 push (@report,\@row); #add pointer to row array to report array

 }

 my @list;

 foreach my $row (@report){

 foreach my $value (@$row){

 push(@list, $value);

176

 }

 }

 $queryString = "SELECT e.name as \"VINE_NAME\"

 FROM STOCK e

 JOIN LISTDATA h ON e.name = h.desig

 JOIN ND_EXPERIMENT_STOCK d ON e.stock_id = d.stock_id

 JOIN ND_EXPERIMENT_PROJECT f ON d.nd_experiment_id = f.nd_experiment_id

 JOIN ND_EXPERIMENT_PHENOTYPE b ON d.nd_experiment_id = b.nd_experiment_id

 JOIN PROJECT g ON f.project_id = g.project_id

 JOIN PHENOTYPE a ON b.phenotype_id = a.phenotype_id

 JOIN (SELECT i1.value ,

 i2.value as \"TRAIT\" ,

 REPLACE(i3.value, \""\", \"\") as \"TRAIT_DESCRIPTION\"

 FROM projectprop i1

 JOIN projectprop i2 on i1.project_id = i2.project_id and i1.rank = i2.rank and (i2.type_id = 1043 or i2.type_id = 1048)

 JOIN projectprop i3 on i1.project_id = i3.project_id and i1.rank = i3.rank and i3.type_id = 1060

) i ON a.observable_id = i.value

 WHERE $traitString #The second number in the substring field gives the length of the search string

 GROUP BY 1; ";

 my $dbh2 = DBI->connect("DBI:mysql:$database:$host:$port", $username, "",{RaiseError=>0,PrintError=>1}); #Connect to database

 my $sqlQuery2;

 if (defined($dbh2)) {

 $sqlQuery2 = $dbh2->prepare($queryString) or die makeWarningWindow("Can't prepare $queryString:".$dbh2->errstr); #Prepare the query

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return ();

 }

 my $rv2 = $sqlQuery2->execute or die makeWarningWindow("Can't execute the query:". $sqlQuery2->errstr); #Execure the query

 my @report2 = [];

 while (my @row= $sqlQuery2->fetchrow_array()) { #get each row of results

 push (@report2,\@row); #add pointer to row array to report array

 }

 my @listVines;

 foreach my $row (@report2){

 foreach my $value (@$row){

 push(@listVines, $value);

 }

 }

 my $totalVines = scalar @listVines;

 if (looks_like_number($list[0])) {

 #want average and standard deviation

 my $average = sum(@list)/(scalar @list);

 my $standardDeviation = 0;

177

 if (scalar(@list) == 1) {

 #standard deviation is still 0

 }else{

 my $sqtotal = 0;

 foreach my $value (@list){

 $sqtotal += ($average-$value)**2;

 }

 my $total = scalar @list;

 $standardDeviation = $sqtotal / ($total-1);

 $standardDeviation = $standardDeviation**.5;

 }

 my $max = max(@list);

 my $min = min(@list);

 my $total = scalar @list;

 $traitValuesHash{$trait} = ",Avg: $average,StdDev: $standardDeviation,Min: $min,Max: $max,No. Obs.: $total,No. Vines: $totalVines";

 $totalObservations += $total;

 }else{

 #categorical data

 my %categoriesHash; #Just holds all of the unique values for the category

 foreach my $value (@list){

 if (!exists($categoriesHash{$value})) {

 $categoriesHash{$value} = 1;

 }

 }

 my $sampleCategories = ",Example Values,";

 my @keyList = keys %categoriesHash;

 for (my $counter = 0; $counter < 5 && $counter < scalar @keyList; $counter++){

 my $num = $counter+1;#Just for formatting in the display. List displayed starts at 1 and not zero.

 $sampleCategories.= $num.") ".$keyList[$counter].","

 }

 my $total = scalar @list;

 $sampleCategories.="No Obs.: $total, No. Vines: $totalVines";

 $traitValuesHash{$trait} = $sampleCategories;

 $totalObservations += $total;

 }

 }

 }

 my $filename = "$dir\\Configuration\\traitDescriptions.conf";

 open(my $CONFIG_FILE, ">", $filename) or makeWarningWindow("Could not open $filename: $!\n");

 foreach my $key (keys %traitValuesHash){

 print $CONFIG_FILE $key."\t".$traitValuesHash{$key}."\n";

 }

 close($CONFIG_FILE);

 print "TOTAL OBSERVATIONS = $totalObservations\n";

}

178

sub updateVineAverageInfo{

 #Called to update the average value for each trait per vine. This infor is written to a file

 #first get vine list

 #Then for each vine get averages

 #Print it all to a file

 my $queryString = "select desig from LISTDATA group by desig;";

 my $dbh = DBI->connect("DBI:mysql:$database:$host:$port", $username, "",{RaiseError=>0,PrintError=>1}); #Connect to database

 my @vinelist = @{getAllVines()};

 #Got list of all vines. Time to execute a new query

 my %vineToTrait; #hash that maps vine name(key) to a pointer to a hash. The hash that is pointed to has structure of trait(key) and average (value).

 foreach my $vine(@vinelist){

 #I want to get all trait data now

 print "Searching for trait info for $vine\n";

 my $queryString2 = "SELECT e.name as \"VINE_NAME\",

 h.grpname as \"CROSS\" ,

 a.value as \"VALUE\" ,

 i.TRAIT ,

 i.TRAIT_DESCRIPTION ,

 REPLACE(g.name, \"-PLOTDATA\", \"\") as \"STUDY_NAME\" ,

 d.nd_experiment_id as \"RELATED_IDENTIFIER\"

 FROM STOCK e

 JOIN LISTDATA h ON e.name = h.desig

 JOIN ND_EXPERIMENT_STOCK d ON e.stock_id = d.stock_id

 JOIN ND_EXPERIMENT_PROJECT f ON d.nd_experiment_id = f.nd_experiment_id

 JOIN ND_EXPERIMENT_PHENOTYPE b ON d.nd_experiment_id = b.nd_experiment_id

 JOIN PROJECT g ON f.project_id = g.project_id

 JOIN PHENOTYPE a ON b.phenotype_id = a.phenotype_id

 JOIN (SELECT i1.value ,

 i2.value as \"TRAIT\" ,

 REPLACE(i3.value, \""\", \"\") as \"TRAIT_DESCRIPTION\"

 FROM projectprop i1

 JOIN projectprop i2 on i1.project_id = i2.project_id and i1.rank = i2.rank and (i2.type_id = 1043 or i2.type_id = 1048)

 JOIN projectprop i3 on i1.project_id = i3.project_id and i1.rank = i3.rank and i3.type_id = 1060

) i ON a.observable_id = i.value

 WHERE e.name = \"$vine\" AND h.desig = \"$vine\" #The second number in the substring field gives the length of the search string

 GROUP BY 1,3,4,5,6,7;";

 my $sqlQuery2;

 if (defined($dbh)) {

 $sqlQuery2 = $dbh->prepare($queryString2) or die makeWarningWindow("Can't prepare $queryString2:".$dbh->errstr); #Prepare the query

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return ();

 }

179

 my $rv2 = $sqlQuery2->execute or die makeWarningWindow("Can't execute the query:". $sqlQuery2->errstr); #Execure the query

 my @report2 = [];

 while (my @row= $sqlQuery2->fetchrow_array()) { #get each row of results

 push (@report2,\@row); #add pointer to row array to report array

 }

 #organize data into hash of lists where key is trait name, value is pointer to list of values for that trait

 my %traitValueListHash; #See above statement

 foreach my $row(@report2){

 if ((looks_like_number($row->[2])) && ($row->[3] ne "DATE_OBSERVED")) {

 #If the value of the trait

 if (exists($traitValueListHash{$row->[3]})) {

 #trait has already been seen. list of values exists

 my $listRef = $traitValueListHash{$row->[3]}; #get list pointer from hash

 my @tempList = @$listRef; #retrieve array from pointer

 push(@tempList, $row->[2]); #push value to array

 $traitValueListHash{$row->[3]} = \@tempList; #set hash list to the updated list

 }else{

 #Trait has not been seen yet

 my @tempList; #make temp array

 push(@tempList, $row->[2]); #push value to temp list;

 $traitValueListHash{$row->[3]} = \@tempList; #set hash value to be pointer to array

 }

 }

 }

 #traitValueListHash has been fully populated for this vine. Now calculate the average off all the lists

 my %traitToAverageHash; #hash that maps the trait (key) to the average value (value)

 foreach my $trait (keys %traitValueListHash){

 my $listRef = $traitValueListHash{$trait};

 my @valueList = @$listRef;

 my $totalInList = scalar @valueList;

 my $listTotal = sum(@valueList);

 my $average = $listTotal/$totalInList;

 my @tempList;

 push(@tempList, $average);

 push(@tempList, $listTotal);

 $traitToAverageHash{$trait} = \@tempList;

 }

 $vineToTrait{$vine} = \%traitToAverageHash;

 }

 #all vines have been processed and %vineToTrait hash has been fully populated.

 #I need to collapse vines based on their synonyms

 print "Collapsing averages info based on vine synonym names\n";

 foreach my $name(keys %vineToTrait){

 print $name."\n";

 foreach my $syn (keys %VineSynonyms){ #checking here to see if $name is a hidden vine name. If it is, replace it with the correct shown name

180

 if (my $index = (index($syn,"---"))!=-1) {

 my $substring = substr($syn, 0,-3);

 if ($name =~ /$substring.*/) {

 #name is current vine (bad name). $VineSynonyms{$syn} is new name. Need to go look up new name hash, and merge all shared traits

 my $newName = $VineSynonyms{$syn};

 my $badHashRef = $vineToTrait{$name};

 my %badHash;

 if (defined($badHashRef)) {

 %badHash = %$badHashRef;

 }

 print $name."\n";

 print $badHashRef."\n";

 if (exists($vineToTrait{$newName})) {

 #there is info for the vine under the new name. this will happen almost always

 my %goodHash = %{$vineToTrait{$newName}};

 foreach my $trait(keys %badHash){

 if (exists($badHash{$trait})) {

 #Overlap between traits. Merge average values

 my @badInfo = @{$badHash{$trait}};

 my @goodInfo;

 my $newAverage;

 my $newTotal;

 my @newInfo;

 if(exists($goodHash{$trait})){

 @goodInfo= @{$goodHash{$trait}};

 $newAverage = $badInfo[0]*$badInfo[1]+$goodInfo[0]*$goodInfo[1];

 $newTotal = $badInfo[1]+$goodInfo[1];

 }else{

 @newInfo = @badInfo;

 }

 push(@newInfo, $newAverage);

 push(@newInfo, $newTotal);

 $goodHash{$trait} = \@newInfo;

 }

 }

 #Set the hash pointer to the updated hash

 $vineToTrait{$newName} = \%goodHash;

 delete $vineToTrait{$name};

 }

 }else{

 #print "$syn does not match $name\n";

 }

181

 }else{

 #print "$syn does not contain ---\n";

 if ($name eq $syn) {

 my $newName = $VineSynonyms{$syn};

 my %badHash = %{$vineToTrait{$name}};

 if (exists($vineToTrait{$newName})) {

 #there is info for the vine under the new name. this will happen almost always

 my %goodHash = %{$vineToTrait{$newName}};

 foreach my $trait(keys %badHash){

 if (exists($badHash{$trait})) {

 #Overlap between traits. Merge average values

 my @badInfo = @{$badHash{$trait}};

 my @goodInfo = @{$goodHash{$trait}};

 my $newAverage = $badInfo[0]*$badInfo[1]+$goodInfo[0]*$goodInfo[1];

 my $newTotal = $badInfo[1]+$goodInfo[1];

 my @newInfo;

 push(@newInfo, $newAverage);

 push(@newInfo, $newTotal);

 $goodHash{$trait} = \@newInfo;

 }

 }

 #Set the hash pointer to the updated hash

 $vineToTrait{$newName} = \%goodHash;

 delete $vineToTrait{$name};

 }

 }

 }

 }

 }

 print "Writing averages to file\n";

 my $filename = "$dir\\Configuration\\traitAverages.conf";

 open(my $CONFIG_FILE, ">", $filename) or makeWarningWindow("Could not open $filename: $!\n");

 foreach my $vine (keys %vineToTrait){

 my $hashRef = $vineToTrait{$vine};

 my %traitHash = %$hashRef;

 foreach my $trait (keys %traitHash){

 print $CONFIG_FILE "$vine\t$trait\t$traitHash{$trait}\n";

 }

 }

 close($CONFIG_FILE);

}

sub getTraitAveragesInfo{

 #Take no parameters

 #returns hash of vine-value pairs

 #Reads in vine trait average info from config file

182

 my %vineTraitAveragesHash; #key is "vine_trait" value is average

 my $filename = "$dir\\Configuration\\traitAverages.conf";

 open(my $CONFIG_FILE,"<", $filename) or makeWarningWindow("Could not open $filename:$!\n");

 while (!eof($CONFIG_FILE)) {

 my $line = readline($CONFIG_FILE);

 chomp $line;

 my @splitLine = split("\t", $line);

 $vineTraitAveragesHash{"$splitLine[0]_$splitLine[1]"} = $splitLine[3];

 }

 return \%vineTraitAveragesHash;

}

sub getAllVines{

 #Takes: Nothing

 #Returns: list of all vines in database.

 #Purpose: Get list of all vines in database

 my $queryString = "select desig from LISTDATA group by desig;";

 my $dbh = DBI->connect("DBI:mysql:$database:$host:$port", $username, "",{RaiseError=>0,PrintError=>1}); #Connect to database

 my $sqlQuery;

 if (defined($dbh)) {

 $sqlQuery = $dbh->prepare($queryString) or die makeWarningWindow("Can't prepare $queryString:".$dbh->errstr); #Prepare the query

 }else{

 makeWarningWindow("Bad Connection Settings. Change in Options Menu");

 #options_menu();

 return ();

 }

 my $rv = $sqlQuery->execute or die makeWarningWindow("Can't execute the query:". $sqlQuery->errstr); #Execure the query

 my @report = [];

 while (my @row= $sqlQuery->fetchrow_array()) { #get each row of results

 push (@report,\@row); #add pointer to row array to report array

 }

 my @vinelist; #holds list of all viens in the system

 foreach my $row (@report){

 foreach my $value (@$row){

 push(@vinelist, $value);

 }

 }

 return \@vinelist;

}

sub getAllIDs{

 #Takes: Nothing

 #Returns: list of all vine IDs in database.

 #Purpose: Get list of all vine IDs in database

 my @vines = getAllVines();

 my @IDs;

 foreach my $vine (@vines){

 my $id = getIDFromName($vine);

 push (@IDs, $id);

183

 }

 return \@IDs;

}

sub generateVineString{

 #generate a string for a list of vines. Used to make vineListingWindow strings. Also updates the current vine selections based on synonyms

 #takes nothing

 #returns the string

 my $indexCounter = 1;

 my $vineString = "";

 my %vinesSeen;

 foreach my $name (sort keys %vines){

 foreach my $syn (keys %VineSynonyms){ #checking here to see if $name is a hidden vine name. If it is, replace it with the correct shown name

 if (my $index = (index($syn,"---"))!=-1) {

 my $substring = substr($syn, 0,-3);

 if ($name =~ /$substring.*/) {

 $name = $VineSynonyms{$syn};

 }else{

 #print "$syn does not match $name\n";

 }

 }else{

 #print "$syn does not contain ---\n";

 if ($name eq $syn) {

 $name = $VineSynonyms{$syn};

 }

 }

 }

 if (!exists($vinesSeen{$name})) {

 #$vineString = $vineString."$indexCounter)\t$name\n";

 $vines{$name} = getIDFromName($name);

 #$indexCounter++;

 $vinesSeen{$name} = 1;

 }

 }

 my @vinesList = keys %vinesSeen;

 @vinesList = sort @vinesList;

 foreach my $vine (@vinesList){

 $vineString = $vineString."$indexCounter)\t$vine\n";

 $indexCounter++;

 }

 return $vineString;

184

}

Appendix VI: reportMaker2.pl

#!/usr/bin/perl -w

use strict;

use warnings;

use Getopt::Long;

use Tk;

use Scalar::Util qw(looks_like_number);

use Cwd;

use File::Spec::Functions qw(rel2abs);

use File::Basename;

my $dir = dirname(rel2abs($0));

my $helpFlag;

my $averageFlag;

my $analysisFlag;

my $result = GetOptions("help"=> \$helpFlag, "average" => \$averageFlag, "analysis"=> \$analysisFlag);

if (($helpFlag) || ((scalar @ARGV) > 5)) { #If there are not two arguments the person probably doesn't know how to use this

print <<USAGE;

 USAGE: perl $0 [input_file] [output_file] [trait file] [study file]

 perl $0 --help

 EXAMPLE: perl $0 "C:\\Users\\Seem Lab\\Documents\\data.txt" "C:\\Users\\Seem Lab\\Documents\\Chardonnay_report.txt

 NOTE: IT IS NOT LONGER RECCOMENDED TO USE THIS SCRIPT AS A STANDALONE (THOUGH IT IS POSSIBLE). USE

search.pl INSTEAD

 This script formats a tab delimited file from a MySQL query into a tab delimted report.

 It takes file at [input], reformats the data, and prints to file [output].

 If the input or output file is not in the same folder as this script you may have to suply the full path.

 Example: This script is in C:\\Users\\Seem Lab\\Documents\\Scripts and the data is on C:\\Users\\Seem Lab\\Desktop. You will need to supply

"C:\\Users\\Seem Lab\\Desktop\\[input]" as the filename. This includes the quotes (needed if there is a space in the filename)

 [trait file] = file containing list of traits to include in the report. One trait per line, exactly as they appear in the input file.

 [study file] = file containing list of studies to include in report. Ones tudy per line, exactly as they appear in the input file.

185

 If you get a lot of errors that never stop, you may have saved the MySQL report as a .csv file, even though the file extension is .txt.

 Options:

 --help: Display this message

 [year]: Optionally specify a cuttoff year. Only trait values observed in studies after (or including) the cutoff year will be reported.

 --average: Show averages for all variables for each vine.

 --analysis: Format report for downstream analysis. Can only be specified in --average is on.

USAGE

 exit;

}

##################READ IN REPORT###################################

#get comand line args

my $infile = $ARGV[0];

my $outfile = $ARGV[1];

my $traitFile = $ARGV[2];

my $studyFile = $ARGV[3];

my $year = 0;

if (defined($ARGV[4])) {

 $year = $ARGV[4];

 if (($year!~/^[0-9]{4}$/) && ($year != 0)) {

 print "ERROR: UNKNOWN YEAR ENTERED: $year\n";

 exit();

 }

}

print "Generating Report\n";

#Initialize and read in file

my %traits;

my %seenTraits;

my %scales;

my @file = []; #File will be stored in a 2d array. To get a specific value at "row x" and "column y": my $value = $file[x]->[y]

open(my $TRAITS, $traitFile) or die "Could not open $traitFile: $!\n";

186

while (!eof($TRAITS)) {

 my $line = readline($TRAITS);

 chomp $line;

 my @splitLine = split("\t", $line);

 $traits{$splitLine[0]} = 1;

 $scales{$splitLine[0]} = $splitLine[1];

}

close($TRAITS);

my %studies;

open(my $STUDY, $studyFile) or die "Could not open $studyFile: $!\n";

while (!eof($STUDY)) {

 my $line = readline($STUDY);

 chomp $line;

 $studies{$line} = 1;

}

close($STUDY);

#Read in vine synonyms

my %vineSynonyms;

open(my $VINE_FILE, "$dir\\Configuration\\vineNames.conf") or print "Could not open $dir\\Configuration\\vineNames.conf: $!\n";

while (!eof($VINE_FILE)) {

 my $line = readline($VINE_FILE);

 chomp $line;

 my @splitLine = split("=",$line);

 if ((scalar @splitLine) != 2) {

 print "ERROR: Formatting error in vineNames.conf\n";

 }else{

 $vineSynonyms{$splitLine[0]} = $splitLine[1];

 }

}

close ($VINE_FILE);

open(my $FILEHANDLE, $infile) or die ("Could not open $infile: $!.\n");

while (!eof($FILEHANDLE)) {

 my $line = readline($FILEHANDLE); #read one line from the input file

 chomp $line;

 if ($line ne "") {

187

 my @tempLine = @{processLine($line)}; #get the resulting array from the processLine subroutine

 #Sometimes the line doesn't have all of the columns in it and they hang over onto next line. Sometimes there is even an extra blank

line in between. Its dumb

 while (((scalar @tempLine) < 7) &&(!eof($FILEHANDLE))) { #As long as my line doesnt have 7 values, keep reading and adding

values

 my $nextLine = readline($FILEHANDLE);

 if ($nextLine ne "") {

 my @nextTempLine = @{processLine($nextLine)};

 push (@tempLine,@nextTempLine);

 }

 }#end while

 foreach my $key (keys %vineSynonyms){

 if (my $index = (index($key,"---"))!=-1) {

 my $substring = substr($key, 0,-3);

 if ($tempLine[0] =~ /$substring.*/) {

 $tempLine[0] = $vineSynonyms{$key};

 }

 }else{

 if ($tempLine[0] eq $key) {

 $tempLine[0] = $vineSynonyms{$key};

 }

 }

 }

 #Check if the study name on tempLine exists in our allowed studies. If not, check if the study name is just a year. If that year mathces

the year of the study, ad the data

 if (exists($traits{$tempLine[3]})){

 if (exists($studies{$tempLine[5]})) {

 push(@file,\@tempLine);#add this line to the file

 }else{

188

 foreach my $study(keys %studies){

 if (looks_like_number($study)) {

 if (index($tempLine[5],$study)!=-1) {

 push(@file,\@tempLine);#add this line to the file

 }

 }

 }

 }

 }

 }

}

close($FILEHANDLE);

####################FINISHED READING REPORT#####################

###################PROCESS REPORT###############################

#The overall structure is for each vine, process the studies. For each study process the related_identifiers/trial replications. For each replication

process the traits/values.

#Assumed columns in input file (zero-based index for array lookups):

0: VINE_NAME

1: CROSS

2: VALUE

3: TRAIT

4: TRAIT_DESCRIPTION

5: STUDY_NAME

6: RELATED_IDENTIFIER

#You *could* loop over the coloumn headers, and use string matching to identify each of the columns above, but the MySQL query can be

ordered properly to not need this.

189

my $outputString = ""; #initialize string that will hold entire output string

my $headerString = "";

my $footerString = "";

my @studyList; #Hash to organize studies by their year.

my $vines = getUniqueVines(0); #The unique vine names in this report

my %traitMasterListNumeric; #Used for analysis reports. Holds master list of all numeric traits seen

my %traitMasterListText; #Used for analysis reports. Holds master list of all text traits seen

my %vineTraitValue; #Used for analysis reports. Holds hash where "vine_name" -> hash where "traitName" -> value

my %analysisFullHash;

my %vineCross; #Hash to hold vine and cross for analysis format

my @sortedVines = sort @$vines;

my $avgHeaderCount = 0; #See line 186

foreach my $vine (sort @sortedVines){ #Iterate over each vine. Each vine has a seperate section of the resulting report

 my $cross = getCross($vine); #get parents

 $vineCross{$vine} = $cross;

 my $line="";

 if (!$averageFlag) {

 $line = "Vine,Cross\n$vine,$cross\n\n,Study,Traits\n"; #Create the string for the vine and cross portions of the report. , is a tab. \n is a

newline

 }elsif(!$analysisFlag && $averageFlag){

 if ($avgHeaderCount == 0) {

 #Only put "Vine,Cross, at the top of the first entry

 $line = "Vine,Cross\n";

 }

 }

 if (!$analysisFlag) {

 $outputString = $outputString."$line"; #append line to output string

 }

 my $studies = getUniqueStudies($vine); #get all unique studies for this vine

190

 my %traitAverages; #Holds the average trait value. Keys are [trait_name] -> running total. [trait_name]_avg -> total observations of this trait.

 my %traitCounts; #Holds the amount of times each numeric trait was seen

 my %stringTraits; #Holds an instance of each string trait. will only take the first returned value for each.

 my %stringTraitYear;#Holds the most recent year observed for a string trait

 my %stringStudy; #Store the study that each string trait value came from.

 my %vineHash;

 my @sortedStudies = sort @$studies;

 foreach my $study(sort @sortedStudies){ #iterate over the studies. Each study gets its own subsection in each vine

 $study =~ m/.* *([0-9]{4}) *.*/;

 my $studyYear = $1;

 if (!defined($studyYear)) {

 $studyYear = 1; #Will include studies if year canot be identified and no year supplied. Will preculde studies if year is supplied and

studies cannot be identified.

 }

 if ((($study !~ /.*#[1-9]/) && ($studyYear >= $year))) { #Do not report studies with format [study_name]#[numbers]. These are

deleted studies that should not be reported on.

 if (!$averageFlag && !$analysisFlag) {

 my $line = ",$study"; #Add the study name to the outoutstring

 $outputString = $outputString.$line; #append the new line

 }

 my $relatedIdentifiers = getUniqueIdentifiers([$vine,$study]); #Get all related identifiers for the study

 my %traits; #Start new hash of traits for the study. This is an easy way to keep all unique traits together

 foreach my $relatedIdentifier (@$relatedIdentifiers){ #Count total traits observed in study for this vine. Do not assume all reps have

same traits

 my $traits = getTraits ([$vine,$study,$relatedIdentifier]); #Get all traits for each related_identifier

 foreach my $trait (@$traits){ #Check to see if trait is in hash. If it is not, add it to hash

 if (!exists($traits{$trait})) {

 $traits{$trait} = 1;

 }

 if (($averageFlag)) { #If calculating averages and the trait looks like a number

 if ((looks_like_number(getValue([$vine,$study,$relatedIdentifier,$trait])))) {

 if (exists($traitAverages{$trait})) {

191

 $traitAverages{$trait} = $traitAverages{$trait} + getValue([$vine,$study,$relatedIdentifier,$trait]);

 $traitCounts{$trait} = $traitCounts{$trait}+1;

 }else{

 $traitAverages{$trait} = getValue([$vine,$study,$relatedIdentifier,$trait]);

 $traitCounts{$trait} = 1;

 }

 }elsif(getValue([$vine,$study,$relatedIdentifier,$trait]) ne ""){

 $study =~ m/.* *([0-9]{4}) *.*/; #Get year

 if (exists($stringTraits{$trait})) {

 if (defined($1)) {

 if ($1 > $stringTraitYear{$trait}) { #if year is greater than current largest year, update year and

value

 $stringTraitYear{$trait} = $1;

 $stringTraits{$trait} = getValue([$vine,$study,$relatedIdentifier,$trait]);

 $stringStudy{$trait} = $study;

 }

 }

 }elsif(!exists($traitAverages{$trait})){

 $stringTraits{$trait} = getValue([$vine,$study,$relatedIdentifier,$trait]);

 $stringStudy{$trait} = $study;

 if ((defined($1))) {

 $stringTraitYear{$trait} = $1;

 }else{

 $stringTraitYear{$trait} = 0; #No year

 }

 }

 "a" =~ /a/; #reset $1. Seriously don't delete this.

 } ##Else the value is nothing

 }

 }

 }

 if (!$averageFlag) {

192

 my @traitList = keys %traits; #get list of all traits in study

 for(my $traitCounter = 0; $traitCounter < scalar @traitList; $traitCounter++){ #Iterate over list of traits. Check to see if

the trait is empty in all related identifiers.

 my $emptyCheck = checkIfEmptyValue([$vine,$relatedIdentifiers,$traitList[$traitCounter],$study]); #Check if

trait is empty in all related identifiers

 if ($emptyCheck == 0) { #Zero is returned if trait is empty

 delete $traits{$traitList[$traitCounter]}; #remove trait from hash

 }

 }

 @traitList = keys %traits; #Re-generate trait list from hash. Will be smaller than before b/c of deleted items

 @traitList = sort @traitList;

 my $dateIndex = checkDate(@traitList); #See if there is a "DATE" trait observed. will be far left trait in study if it exists

 my $notesIndex = getNotes(@traitList); #See if there is a "notes" trait. Will be far right trait if there is one.

 if ($dateIndex != -1) { #If there is a date, add it to the report first

 $outputString = $outputString.",$traitList[$dateIndex]"; #add in date column to output string

 }

 for (my $counter = 0; $counter < scalar @traitList; $counter++){ #Iterate over all traits to add them to the report

 if (($counter == $dateIndex) || ($counter == $notesIndex)) { #Skip if I come to notes or date trait

 next; #skip

 }

 $outputString = $outputString.",$traitList[$counter]"; #Add each trait to growing outputstring

 }

 if ($notesIndex != -1) { #If there is a notes field, add it lasl

 $outputString = $outputString.",$traitList[$notesIndex]"; #Add notes field

 }

 $outputString = $outputString."\n"; #add newline to outputstring

 foreach my $relatedIdentifier (@$relatedIdentifiers){ #For each identifier...here I start to add values for each repitition

in the study

 my %tempHash;

 my @values; #Initialize list of values

 foreach my $trait (@traitList){ #For each trait in this study...

193

 my $value = getValue([$vine,$study,$relatedIdentifier,$trait]); #Get the value for the unique vine, study,

trait, related identifier tuple.

 if ($value ne "") {

 $seenTraits{$trait} = 1;

 }

 $tempHash{$trait} = $value;

 push (@values,$value); #add value to list of values

 }

 $vineHash{$relatedIdentifier} = \%tempHash;

 if ($dateIndex != -1) { #If there is a date column

 $outputString = $outputString.",,$values[$dateIndex]"; #add the date value to the output

 }

 my $counter = 0;

 for ($counter = 0; $counter < scalar @values; $counter++){ #Iterate over the traits

 if ($counter == $dateIndex || $counter == $notesIndex) { #If I hit the date or notes column, skip it

 if (($counter == $notesIndex) && $counter == 0) {

 $outputString = $outputString.",";

 }

 next;

 }if(($counter == 0) && ($dateIndex == -1)){

 $outputString = $outputString.",";

 }

 if ($dateIndex != -1) {

 #code

 }

 $outputString = $outputString.",$values[$counter]"; #Add the value to the output string

 }

 if ($notesIndex != -1) { #If There is a notes column add it now

 $values[$notesIndex] =~ s/,//g;

 if ($counter == 0) {

 $outputString = $outputString.",";

194

 }

 $outputString = $outputString.",$values[$notesIndex]"; #add notes value

 }

 $outputString= $outputString."\n"; #Add a newline in between related_identifiers (study repititions)

 }

 $analysisFullHash{$vine} = \%vineHash;

 }#End of not avergae flag check

 }

 if(!$averageFlag && !$analysisFlag){

 $outputString=$outputString."\n"; #Add a new line in between study sections

 }

 "a" =~ /a/; #Don't delete. resets $1

 }

 if ($averageFlag) {

 my @traitList = keys %traitAverages;

 my @stringTraits = keys %stringTraits;

 my @valueList;

 @traitList = sort @traitList;

 @stringTraits = sort @stringTraits;

 my %tempHash;

 foreach my $trait(@traitList){

 my $value = ($traitAverages{$trait}/$traitCounts{$trait})*1.00;

 if (!exists($traitMasterListNumeric{$trait})){

 $traitMasterListNumeric{$trait} = 1;

 }

 $tempHash{$trait} = $value;

 push(@valueList,$value);

 }

 foreach my $stringTrait(@stringTraits){

 my $value = $stringTraits{$stringTrait};

 $value =~ s/,//g; #remove commas from string traits

195

 if (!exists($traitMasterListText{$stringTrait})){

 $traitMasterListText{$stringTrait} = 1;

 }

 $tempHash{$stringTrait} = $value;

 push(@valueList,$value);

 }

 $vineTraitValue{$vine} = \%tempHash;

 if (!$analysisFlag) {

 $outputString = $outputString."$vine,$cross,";

 foreach my $trait (@traitList){

 $outputString = $outputString.",$trait n=$traitCounts{$trait}";

 }

 foreach my $stringTrait(@stringTraits){

 $outputString=$outputString.",$stringTrait ($stringStudy{$stringTrait})";

 }

 $outputString = $outputString."\n,,,";

 foreach my $value(@valueList){

 $outputString = $outputString."$value,";

 }

 }

 }

 if (!$analysisFlag) {

 $outputString=$outputString."\n"; #add two new lines in between vine sections

 }

 $avgHeaderCount++;

}#No more vines.

if ($analysisFlag) {

 if ($averageFlag) {

 my @numericTraits = keys %traitMasterListNumeric;

 my @stringTraits = keys %traitMasterListText;

 @numericTraits = sort @numericTraits;

196

 @stringTraits = sort @stringTraits;

 $outputString = "VINE_NAME,CROSS,";

 foreach my $numericTrait (@numericTraits){

 $outputString = $outputString."$numericTrait,";

 }

 $outputString = $outputString.",,";

 foreach my $stringTrait (@stringTraits){

 $outputString = $outputString."$stringTrait,"

 }

 $outputString = $outputString."\n";

 my @vines = keys %vineTraitValue;

 @vines = sort @vines;

 foreach my $vine (@vines){

 $outputString = $outputString."$vine,$vineCross{$vine},";

 foreach my $numericTrait (@numericTraits){

 if (exists($vineTraitValue{$vine}->{$numericTrait})) {

 $outputString = $outputString."$vineTraitValue{$vine}->{$numericTrait},";

 }else{

 $outputString = $outputString."NA,"

 }

 }

 $outputString = $outputString.",,";

 foreach my $stringTrait(@stringTraits){

 if (exists($vineTraitValue{$vine}->{$stringTrait})) {

 $outputString = $outputString."$vineTraitValue{$vine}->{$stringTrait},";

 }else{

 $outputString = $outputString."NA,"

 }

 }

 $outputString = $outputString."\n";

 }

 }else{

 $outputString = "VINE_NAME,CROSS,";

 my @numericTraits = sort keys %seenTraits;

197

 foreach my $numericTrait (@numericTraits){

 $outputString = $outputString.$numericTrait.",";

 }

 $outputString = $outputString."\n";

 foreach my $vine (keys %analysisFullHash){

 foreach my $identifier (keys %{$analysisFullHash{$vine}}){

 $outputString = $outputString."$vine,$vineCross{$vine},";

 foreach my $numericTrait (@numericTraits){

 if (exists($analysisFullHash{$vine}{$identifier}{$numericTrait})) {

 $outputString = $outputString."$analysisFullHash{$vine}{$identifier}{$numericTrait},";

 }else{

 $outputString = $outputString."NA,";

 }

 }

 $outputString = $outputString."\n";

 }

 }

 }

}

#############################DONE PROCESSING REPORT ################################

############################ #OUTPUT ###

if (!$analysisFlag) {

 $outputString = $outputString.getTraitDescriptions(); #Get the list of all traits and trait descriptions in the report

}

open(my $OUTFILE, ">>", $outfile) or die makeWarningWindow("could not open $outfile: $!\n"); #Open output file

print $OUTFILE $outputString; #Print to outut file

close($OUTFILE); #Close output file

#gg

##################################END OF MAIN FUNCTION################################

##################################HELPER FUNCTIONS####################################

198

sub processLine{

 #Arguments: $line -- A String to format

 #Returns @tempLine -- An array, where each element in the array is a value from the line

 #Purpose:Given a raw line from the file, return an array reference of all the values in the line

 my ($line) = @_;

 chomp($line);

 $line =~ s/"//g;

 $line =~ s/\n+//g;

 $line =~ s/\r+//g;

 $line =~ s/[\n\r]+//g;

 $line =~s/^\t//g;

 my @tempLine = split("\t", $line);

 return(\@tempLine);

}

sub getUniqueVines{

 #Arguments: $column -- The number of the column to perform this routine on

 #Returns: A list of unique values from the column

 #Purpose: Used for getting unique vine names

 my ($column) = @_;

 my %uniqueHash; #Used to quickly check if unique name has been seen

 my @uniqueArray; #Stored list of seen uniques for easy iteration

 for my $j (1..$#file) {

 if (!exists($uniqueHash{$file[$j]->[$column]})) {

 $uniqueHash{$file[$j]->[$column]} = 1;

 push(@uniqueArray, $file[$j]->[$column]);

 }

 }

 return \@uniqueArray;

}

sub getUniqueStudies{

 #Arguments: $vine -- The name of a vine

199

 #Returns: \@uniqueArray -- An array reference to all of the unique studies the vine was used in

 #Purpose: Given the name of a vine, return all of the unique trials it was used in

 my ($vine) = @_;

 my %uniqueHash;

 my @uniqueArray;

 for my $j (1..$#file) {

 if ((!exists($uniqueHash{$file[$j]->[5]}))&&($file[$j]->[0] eq $vine)) {

 $uniqueHash{$file[$j]->[5]} = 1;

 push(@uniqueArray, $file[$j]->[5]);

 }

 }

 return \@uniqueArray;

}

sub getUniqueIdentifiers{

 #Arguments: $vine -- The name of a vine, a string

 # $study -- The name of a study, a string

 #Returns: \@uniqueArray -- A reference to an array containing all of the related identifiers associated with this vine and study

 #Purpose: Given a vine and a study name, get all of the related identifiers associated with them

 my ($checks) = @_;

 my $vine = @$checks[0];

 my $study = @$checks[1];

 my %uniqueHash;

 my @uniqueArray;

 for my $j (1..$#file) {

 if ((!exists($uniqueHash{$file[$j]->[6]}))&&($file[$j]->[0] eq $vine) && ($file[$j]->[5] eq $study)) {

 $uniqueHash{$file[$j]->[6]} = 1;

 push(@uniqueArray, $file[$j]->[6]);

 }

 }

 return \@uniqueArray;

}

sub getTraits{

200

 #Arguments: $vine -- The name of a vine, a string

 # $study -- The name of a study, a string

 # $identifier -- A related identifier, an integer (or string. There is no difference in perl)

 #Returns: \@uniqueArray -- A reference to an array containing all of the unique traits associated with the vine, related identifier, and study

 #Purpose: Given a vine, and identifier and a study name, get all of the traits associated with them

 my ($checks) = @_;

 my $vine = @$checks[0];

 my $study = @$checks[1];

 my $identifier = @$checks[2];

 my %uniqueHash;

 my @uniqueArray;

 for my $j (1..$#file) {

 if ((!exists($uniqueHash{$file[$j]->[3]}))&&($file[$j]->[0] eq $vine) && ($file[$j]->[5] eq $study) &&($file[$j]->[6] eq $identifier))

{

 $uniqueHash{$file[$j]->[3]} = 1;

 push(@uniqueArray, $file[$j]->[3]);

 }

 }

 return \@uniqueArray;

}

sub getValue{

 #Arguments: $vine -- The name of a vine, a string

 # $study -- The name of a study, a string

 # $identifier -- A related identifier, an integer (or string. There is no difference in perl)

 # $trait -- The name of a trait

 #Returns: \@uniqueArray -- The value of the trait for that vine, study, and identifier, or an empty string

 #Purpose: Given a vine, study, identifier, and trait, return the value associated with those

 #NOTE: You may not need to pass the study name, and can remove it as a check. The related identifier, vine, and trait should be enough to

uniquely identify the value

 my ($checks) = @_;

 my $vine = @$checks[0];

 my $study = @$checks[1];

 my $identifier = @$checks[2];

201

 my $trait = @$checks[3];

 for my $j (1..$#file) {

 if (($file[$j]->[0] eq $vine) && ($file[$j]->[5] eq $study) &&($file[$j]->[6] eq $identifier) && ($file[$j]->[3] eq $trait)) {

 $file[$j]-> [2] =~ s/,/;/g;

 return($file[$j]-> [2]);

 }

 }

return (""); #Could probably be "" as the return value. I don't think it matters.

}

sub checkDate{

 #Arguments: @traits -- A list of trait names

 #Returns: $counter -- The index of a variable with "DATE" in it, or a negative number if there is no trait that matches this. THis is just a

wrapper function to apply index() to an array

 #Purpose: Given a list of trait names, return the index (or a negative number) or the trait which has "DATE" in it

 my (@traits) = @_;

 for(my $counter = 0; $counter < scalar @traits; $counter++){

 if (index($traits[$counter],"DATE") !=-1) {

 return ($counter);

 }

 }

 return (-1);

}

sub getNotes{

 #Arguments: @traits -- A list of trait names

 #Returns: $counter -- The index of a variable with "NOTES" in it, or a negative number if there is no trait that matches this. THis is just a

wrapper function to apply index() to an array

 #Purpose: Given a list of trait names, return the index (or a negative number) or the trait which has "NOTES" in it

 #NOTE: You can probably combine this with the function above (checkDate), pass the array as a reference, and the string of the thing to

check, like "DATE" or "NOTES". THere is no reason to have two functons. I should not have wrote it this way

 my (@traits) = @_;

 for(my $counter = 0; $counter < scalar @traits; $counter++){

 if ((index($traits[$counter],"NOTES") !=-1) || (index($traits[$counter],"COMMENTS") !=-1)) {

202

 return ($counter);

 }

 }

 return (-1);

}

sub getCross{

 #Arguments: $vine -- A string representation of the vine name

 #Returns: The cross of the vine as a string

 #Purpose: Input the vine name, get the cross from the report

 my ($vine) = @_;

 for my $j (1..$#file){

 if ($file[$j]->[0] eq $vine) {

 return $file[$j]->[1];

 }

 }

 return ("");

}

sub getTraitDescriptions{

 #Returns: A string of trait nmes and their descriptions

 #Purpose: Get a formatted string of all the traits in this report and their descriptipons

 my %uniqueHash;

 my @uniqueArray;

 my %traitToDesc;

 for my $j (1..$#file) {

 if ((!exists($uniqueHash{$file[$j]->[3]}))) {

 $uniqueHash{$file[$j]->[3]} = 1;

 push(@uniqueArray, $file[$j]->[3]);

 $traitToDesc{$file[$j]->[3]} = $file[$j]->[4];

 }

 }

203

 my $string = ",Trait,Definition,Scale\n";

 @uniqueArray = keys %traitToDesc;

 @uniqueArray = sort @uniqueArray;

 for (my $j =0; $j < scalar @uniqueArray; $j++){

 $traitToDesc{$uniqueArray[$j]} =~ s/,//g;

 if (defined($scales{$uniqueArray[$j]})) {

 $string = $string.",$uniqueArray[$j],$traitToDesc{$uniqueArray[$j]},$scales{$uniqueArray[$j]}\n\n";

 }else{

 $string = $string.",$uniqueArray[$j],$traitToDesc{$uniqueArray[$j]}\n\n"

 }

 }

 return($string)

}

sub checkIfEmptyValue{

 #Arguments:

 # $vine -- The name of a vine

 # $identifiers -- An array reference to a list of identifiers

 # $trait -- The name of a trait

 # $study -- The name of a study

 #Returns: 1 if there is a value, or 0 if there is not

 #Purpose: Checks if any of the related identifiers for a given study, vine, trait, have a value associated with them. This eliminates the printing

of traits with no values for any related identifier. This happens becauase of an artifact of the BMS. Usually, empty traits should not be here

 #By artifact, I mean that if you reupload data to a trial/nursery and is now no data where data used to be, there will be a variable with no value

associated with it in the MySQL report.

 my ($checks) = @_;

 my $vine = @$checks[0];

 my $identifiers = @$checks[1];

 my $study = @$checks[3];

 my $trait = @$checks[2];

 foreach my $identifier (@$identifiers){

204

 my $value = getValue([$vine,$study,$identifier,$trait]);

 if ($value ne "") {

 return(1);

 }

 }

 return(0);

}

sub makeWarningWindow{

 my ($message) = @_;

 my $WarningWindow = new MainWindow;

 $WarningWindow->title("ERROR");

 my $warningFrame = $WarningWindow -> Frame();

 my $labMessage = $warningFrame -> Label(-text=>"$message");

 my $quitButton = $warningFrame -> Button(-text=> "OK", -command => sub{$WarningWindow->destroy;});

 $warningFrame -> grid(-row => 1, -column => 1, -columnspan => 3);

 $labMessage -> grid(-row=>1,-column=>1);

 $quitButton -> grid(-row=>3, -column =>1);

}

Appendix VII: nurseryFormat.pl

 #!/usr/bin/perl -w

use strict;

use warnings;

use Getopt::Long;

my $helpFlag;

my $entryType = "T";

my $result = GetOptions("help" => \$helpFlag, "entryype=s" => \$entryType);

#If exactly 3 arguments are not supplied to the program, the Description message is displayed.

#Optionally, if --help is supplied as an option, the help message will be displayed

#For all the scripts I write, if --help is entered as an option, the help message will be displayed.

205

if (($helpFlag) || (scalar @ARGV < 3)) {

 print <<USAGE;

Usage:

 perl $0 [input spreadhseet file] [year] [vineyard number]

Description:

NOTE: NOT WORKING YET. NEEDS TO BE TWEAKED

 Produces a nursery fieldbook based on the input excel spreadsheet file. The input file is a BMS excel book, saved as a Tab Delimted

file.

 Expected input is the observation sheet from the excel fieldbook that the BMS produces for Nurseries.

 You should have sorted the data by the Row and Group column, replaced the "/" separating the parents with " X ", and saved this sheet as a

text file.

 The text fle is the expected input for this script.

 The output is the name of the file, with "_NurseryBook.txt" appended to it. The file will appear in the directory the input file is in.

 Note that the script will append to the output file. Thus if a file already exists under the output name, it will attempt to append to the end of

it.

 This will be blocked if the file is open in word, and appending to the end of an existing file is probably not what you want anyways.

USAGE

 exit;

}

#These 3 variables hold the options entered on the command line

my $spreadsheet = $ARGV[0]; #The full path of the spreadsheet file

my $year = $ARGV[1]; #Year

my $vineyardNumber = $ARGV[2]; #Vineyard number

open(my $INPUT, $spreadsheet) or die "Could not open file:$!\n"; #Open the input file for reading

my @file = []; #The entire file is stored in a 2D array. Thus a specific value can be accessed by calling $file[ROW_NUM][COLUMN_NUM]

while (!eof) { #read until I get to the end of the file

 my $line = readline($INPUT); #read a line from the file, and store it in $line

 chomp($line); #Remove any trailing whitespace or newline characters

 my @splitLine = split("\t", $line); #Split the line on tab characters. This gives me a list of all of the fields in the current row

 $line =~ s/"//g; #Remove quotation marks. Sometimes the row numbers for the vines are in quotes. This is a regular expression. The general

form is /[PATTERN TO MATCH/[REPLACEMENT PATTERN]/. The "s" denotes search and replace. The "g" denotes that I want to replace

every occurance of the quote

 $line =~ s/'//g;

206

 push(@file,\@splitLine); #add this row to my growing file

}

close($INPUT); #Close the input file

my $rowNum; #Will hold the column number for the row

my $repNum; #Will hold the column number for the number of replicates

my $notesNum;

my $plotNum;

my $nameNum;

my $crossNum;

my %plotToRow; #Hash maps row and plot to rows in file;

 for (my $j = 0; $j < @{$file[1]}; $j++) { #Loop over the columns. When a column header matches one of the strings below, store the column

number in the appropriate variable

 if($file[1][$j] eq "VINE_ROW"){

 $rowNum = $j;

 print $rowNum."\n";

 }elsif($file[1][$j] eq "NOTES"){

 $notesNum = $j;

 }elsif($file[1][$j] eq "VINE_NUMBERS"){

 $plotNum = $j;

 }elsif(($file[1][$j] eq "VINE_NAME") || ($file[1][$j] eq "DESIGNATION")){

 $nameNum = $j

 }elsif($file[1][$j] eq "CROSS"){

 $crossNum = $j

 }

 }

for (my $i = 2; $i < scalar(@file); $i++) {

 my $row = $file[$i][$rowNum];

 my $rowLength = scalar @{$file[$i]};

 #print $file[$i][0]."\t".$row."\t".$rowLength."\n";

 my @plots = expandPlot($file[$i][$plotNum]);

 foreach my $plot(@plots){

207

 #print $plot."\n";

 my $key = $row*1000000+$plot;

 my $temp = $file[$i];

 @{$temp}[$plotNum] = $plot;

 $plotToRow{$key} = $temp;

 }

}

my $outString = ""; #This will hold the entire fieldbook, and will be generated piece by piece

my $currentRow = 1; #initialize counting variables that are used for formatting purposes

my $currentPlot = 1;

my $Counter = 1;

my @keys = sort {$a <=> $b} keys %plotToRow;

for (my $i = 0; $i < scalar(@keys); $i++) { #Loop over each row in the file. Ignore the header row

 if($plotToRow{$keys[$i]}[$rowNum] != $currentRow){ #If the row I am looking at is different than the previous row, I need to reset some

counters, and update the current row to be the one I am looking at

 $currentRow = $plotToRow{$keys[$i]}[$rowNum] ; #Update the current row to the one I am looking at

 $currentPlot = 0; #reset necessary formatting counters to indicate I am processing a new row

 $Counter = 1;

 }

 $keys[$i] =~ m/([1-9]+)0+([0-9]+)/;

 my $actualPlot = $2;

 #Interate the following process for the aount of replicates specified

 if (($currentPlot == 0) && ($i != 0)) { #If I just started a new row, insert a new page

 $outString = $outString."\f";#Insert a page break

 }

 if ($Counter == 1) { #If this is the first plot of the page, print the page header

 $outString = $outString."VINE\t VINEYARD\t$vineyardNumber\t ROW\t$currentRow\t YEAR\t$year\n\n";

 }

 elsif($Counter == 9){ #If this is the last plot of the page, reset the plot counter for the page

 $Counter = 0;

 }

208

 $outString =$outString.$actualPlot."\t".$plotToRow{$keys[$i]}[$nameNum]."\t\t\t".$plotToRow{$keys[$i]}[$crossNum]; #Print the

germplasm, and parents

 if (exists($plotToRow{$keys[$i]}[$notesNum])) { #If there is a notes field for this germplasm, I need to print it. If there isn't move on

 #Print the notes line, and the line with all of the variables to collect

 $plotToRow{$keys[$i]}[$notesNum] = substr($plotToRow{$keys[$i]}[$notesNum],0,60);

 $outString = $outString."\nNOTES: $plotToRow{$keys[$i]}[$notesNum]\n T B FL DM PM CR VG CS CC BS BC SD FL

TX S C R";

 }else{ #There are no notes, just leave the space after "Notes" blank

 #Print the notes line, and the line with al of the variables to collect

 $outString = $outString."\nNOTES:\n T B FL DM PM CR VG CS CC BS BC SD FL TX S C R"; #Print the notes (if there

are any) and print the variables to collect

 }

 if($Counter!= 0){

 $outString = $outString."\n\n\n---\n";

 }else{

 $outString = $outString."\f";

 }

 $currentPlot++; #Increment format counters

 $Counter++;

}

my @name = split(/\./,$spreadsheet); #Split the name of the input file on the period

my $outName = $name[0]."_SeedlingBook.txt"; #Append the new ending to the filename

open(my $OUTFILE, ">>","$outName") or die "Could not open $outName: $!\n"; #Open the output file

print $OUTFILE $outString."\n"; #Write the output fieldbook to the file

close($OUTFILE);

sub expandPlot{

 my ($string) = @_;

 my @numbers;

 my @parts = split(";",$string);

 foreach my $part (@parts){

 if (index($part,"-")!=-1) {

209

 my @range = split("-",$part);

 for (my $counter = $range[0]; $counter <= $range[1]; $counter++){

 $counter =~ s/^0*(\d+)$/$1/;

 push(@numbers,$counter);

 }

 }else{

 $part =~ s/^0*(\d+)$/$1/;

 push @numbers,$part;

 }

 }

 return(@numbers);

}

Appendix VIII: 2ndtestFormat.pl

#!/usr/bin/perl -w

use strict;

use warnings;

use Getopt::Long;

my $helpFlag;

my $entryType = "T";

my $result = GetOptions("help" => \$helpFlag, "entryype=s" => \$entryType);

#If exactly 3 arguments are not supplied to the program, the Description message is displayed.

#Optionally, if --help is supplied as an option, the help message will be displayed

#For all the scripts I write, if --help is entered as an option, the help message will be displayed.

if (($helpFlag) || (scalar @ARGV != 3)) {

 print <<USAGE;

210

Usage:

 perl $0 [input spreadhseet file] [year] [vineyard number]

Description:

 Produces a field notebook for a second-test nursery.

 Expected input is a vineyard report for the search tool, saved with "Analysis Format" box only checked.

 You should have sorted the data by the Row and Group column, replaced the "/" separating the parents with " X ", and saved this sheet as a

text file.

 The text fle is the expected input for this script.

 The output is the name of the file, with "_NurseryBook.txt" appended to it. The file will appear in the directory the input file is in.

 Note that the script will append to the output file. Thus if a file already exists under the output name, it will attempt to append to the end of

it.

 This will be blocked if the file is open in word, and appending to the end of an existing file is probably not what you want anyways.

 Note that if a more than 7 vines exist in a block together, only the first 7 numbers of the block will appear in the fieldbook.

USAGE

 exit;

}

#The values given on the command line for the input spreadsheet, year, and vineyard number are stored in these variables.

my $spreadsheet = $ARGV[0]; #Full path of the input spreadsheet

my $year = $ARGV[1]; #Year

my $vineyardNumber = $ARGV[2]; #Vineyard number

#Open the file for reading.

211

open(my $INPUT, $spreadsheet) or die "Could not open file:$!\n";

my @file = []; #The entire file is stored in a 2D array. Thus a specific value can be accessed by calling $file[ROW_NUM][COLUMN_NUM]

while (!eof) { #While I am not at the end of the file

 my $line = readline($INPUT); #Read in a single line from the file

 chomp($line); #Remove any trailing whitespace characters, as well as the newline character

 $line =~ s/"//g; #Remove quotation marks. Sometimes the row numbers for the vines are in quotes. This is a regular expression. The general

form is /[PATTERN TO MATCH/[REPLACEMENT PATTERN]/. The "s" denotes search and replace. The "g" denotes that I want to replace

every occurance of the quote

 $line =~ s/'//g;

 my @splitLine = split("\t", $line); #Split the line based on the tab character. This produces a list where each element in the list is a value from

the spreadsheet

 push(@file,\@splitLine); #Add this list to my list of files

}

close ($INPUT);#Close the input file

I calculate the column numbers for the Row, plot, notes, and source. I cannot assume that these column numbers will be the same for every

input spreadsheet

my $rowNum;

my $plotNum;

my $notesNum;

my $sourceNum;

my $vineNum;

my $crossNum;

my %plotToRow; #Maps plot numbers to row in file for sorting

 #When a column header matches one of these fields, I store the number for that column in the apropriate variable.

 for (my $j = 0; $j < @{$file[1]}; $j++) {

212

 if ($file[1][$j] eq "VINE_NUMBERS") {

 $plotNum = $j;

 }elsif($file[1][$j] eq "VINE_ROW"){

 $rowNum = $j;

 }elsif($file[1][$j] eq "NOTES"){

 $notesNum = $j;

 }elsif(($file[1][$j] eq "SOURCE") || ($file[1][$j] eq "ACCESSION_NUMBER")){

 $sourceNum = $j

 }elsif(($file[1][$j] eq "VINE_NAME") || ($file[1][$j] eq "DESIGNATION")){

 $vineNum = $j

 }elsif($file[1][$j] eq "CROSS"){

 $crossNum = $j

 }

 }

for(my $i =2; $i < scalar @file; $i++){

 my $row = $file[$i][$rowNum];

 my @plots = expandPlot($file[$i][$plotNum]);

 my $key = $row*1000000+$plots[0];

 $plotToRow{$key} = $file[$i];

}

my $outString = ""; #This variable holds the entire fieldbok in it, and is built piece by piece. The form $outString = $outString.[something]

appends [something] to the end of the string; thus the string can be grown and added to as I choose.

#These variables are counters I use for formatting purposes

my $currentRow = 1;

my $currentPlot = 1;

213

my $Counter = 1;

my $pagePlot = 0;

my @keys = sort {$a <=> $b} keys %plotToRow;

for (my $i = 0; $i < scalar(@keys); $i++) { #Ignore the heading column, and loop over every row in the file

 print $keys[$i]."\n";

 if($plotToRow{$keys[$i]}[$rowNum] != $currentRow){ #if this row does not match the last

 $currentRow = $plotToRow{$keys[$i]}[$rowNum];#Get the row for the next plot

 $currentPlot = 0; #reset the necessary formatiing counters

 $Counter = 1;

 }

 #Check to make sure the row for this entry is the same as the last

 if ($currentPlot == 0) { #If this is the first plot of this row, I might need to insert a page break

 if($pagePlot!= 4){ #If there were not 4 plots on the previous page, I need to insert a page break

 $outString = $outString."\f"; #Insert a page break

 }

 }

 if($pagePlot== 3){ #If I have plotted 4 times (it looks like 3, but it is 4), reset the counter for plots on the page

 $pagePlot = 0;

 }

 $pagePlot++; #Incremenet the counter for plots on the page

 if ($Counter == 1) { #COunter tracks when I should print the header. I need to print the header here

214

 $outString = $outString."VINE\t VINEYARD\t$vineyardNumber\t ROW\t$currentRow\t YEAR\t$year\n\n"; #Append the header to

the growing fieldbook

 }

 elsif($Counter == 4){ #Reset the header counter if I have put 4 plots down

 $Counter = 0;

 }

 #THis section creates a list of numbers based on the row number input. Note that it can only handle numbers in one of 3 forms: a single

number, 2 numbers separated by a comma (2,3), or two numbers separated by a dash (2-6)

 my $var = $plotToRow{$keys[$i]}[$plotNum]; #Isolate the row numbers for this row in the spreadsheet

 my @nums = expandPlot($var);

 for(my $counter = 0; $counter < scalar @nums; $counter++){

 $nums[$counter] =~ s/^0+//g;

 }

 $outString = $outString."$nums[0]\t".$plotToRow{$keys[$i]}[$vineNum]."\t\t\t".$plotToRow{$keys[$i]}[$crossNum];#Print the first

number in the array, the cultivar name, and its parents.

 #The remaining print statements each have two options depending on if there are more plot numbers left to print. If there are more plot

numbers left to print, the first option is ued. Else the second option is used

 if (scalar(@nums > 1)) {

 $outString = $outString."\n$nums[1]\tNOTES:";

 }else{

 $outString = $outString."\n\tNOTES:";

 }

215

 if (exists($plotToRow{$keys[$i]}[$notesNum])) { #Check to see if there the notes field has a value or not

 $outString = "$outString$plotToRow{$keys[$i]}[$notesNum]\n";

 }else{

 $outString = "$outString\n";

 }

 if (scalar @nums > 2) {

 $outString = $outString."$nums[2]\tSource: $plotToRow{$keys[$i]}[$sourceNum]\n";

 }else{

 $outString = $outString."\tSource: $plotToRow{$keys[$i]}[$sourceNum]\n";

 }

 if (scalar @nums >3) {

 $outString = $outString."$nums[3]\t BUD BRK DM-FRT CROP BERRY FLVR R1-R5\n";

 }else{

 $outString = $outString."\t BUD BRK DM-FRT CROP BERRY FLVR R1-R5\n";

 }

 if (scalar @nums >4) {

 $outString = $outString."$nums[4]\tWI TRUNK LVS VIGOR SIZE TEXT\n";

 }else{

 $outString = $outString."\tWI TRUNK LVS VIGOR SIZE TEXT\n";

 }

 if (scalar(@nums > 5)) {

 $outString = $outString."$nums[5]\t WI BUD PM-FRT CLU-SZ COLOR SHAPE\n";

 }else{

 $outString = $outString."\t WI BUD PM-FRT CLU-SZ COLOR SHAPE\n";

216

 }

 if (scalar(@nums > 6)) {

 $outString = $outString."$nums[6]\t BLOOM LVS COMPAC SEED\n";

 }else{

 $outString = $outString."\t BLOOM LVS COMPAC SEED\n";

 }

 if (scalar @nums > 7) {

 $outString = $outString."$nums[8]\t FLOWER PDERM\n";

 }else{

 $outString = $outString."\t FLOWER PDERM\n";

 }

 #If this is not the last entry on the page, print the following string

 if($Counter!= 0){

 $outString = $outString."\n\n\n---\n";

 }else{ #Otherwise just print a bunch of newlines so that the next plot is not partially at the bottom of this page and partialy on the next

page

 $outString = $outString."\f";

 }

 $Counter++;

217

 $currentPlot++;

}

my @name = split(/\./,$spreadsheet); #Split the filename based on the period

my $outName = $name[0]."_2ndTestBook.txt";#append the appropraite end the the filename

open(my $OUTFILE, ">>","$outName") or die "Could not open $outName: $!\n"; #Open the file with the new name

print $OUTFILE $outString."\n"; #Write the fieldbook string to the file

close($OUTFILE);#Close the file

sub expandPlot{

 my ($string) = @_;

 my @numbers;

 my @parts = split(",",$string);

 foreach my $part (@parts){

 if (index($part,"-")!=-1) {

 my @range = split("-",$part);

 if ((scalar @range) != 2) {

 $part =~ s/-//g;

 push @numbers, $part;

 }else{

 for (my $counter = $range[0]; $counter <= $range[1]; $counter++){

 push(@numbers,$counter);

 }

 }

 }else{

218

 push @numbers,$part;

 }

 }

 return(@numbers);

}

Appendix IX: dragonParser2.pl

#!/usr/bin/perl -w

use strict;

use warnings;

use Scalar::Util qw(looks_like_number);

use Getopt::Long;

my $helpFlag;

#1: Dragon Data.txt

#2: Vineyard Report

#3: Output file

if (($helpFlag) || (scalar @ARGV != 2)) {

 print <<USAGE;

Usage:

 perl $0 [Input Data Sheet] [Output File Name]

Description:

 Converts Dragon Speech-to-text output to a spreadsheet. Takes an input data sheet, A vineyard report sheet (a comma separated file) with

columns "VINE_ROW", "VINE_NUMBERS", "VINE_NAME", and "CROSS". These data columns can be in any order.

 The row and number columns designate the position in the vineyard, which is used to match a location from the input file. Name and cross are

included in the final report. "VINE_NUMBERS" can include numbers separated by semi-colons and hyphens. Thus 1;3-5;7 is vines 1,3,4,5,7.

Single numbers also works.

 A "dragonParse.conf" file must be in the directory. This contains all of the variables the script will recognize. One variable per line (except the

first line of the file). The variables should be written as lowercase only. One word variables can be part of two word variables; thus "bud" and

"bud break" and "break bud" and "break" can all be valid variables.

219

 The script will warn if it encounters an unknown variable; this needs to be corrected in the input file. It will also warn if it finds a value it

cannot interpret as a number (see source code: line 28 for text that can be recognized as numbers. Actual digits will be processed as the number

that they are). Incorrect values can be corrected in the output file.

 Please see example data sheet for input, as well as example configuration files and vineyard file. Each row in the data sheet must contain a

"vine" and "row" variable to find the location from the input vineyard sheet.

USAGE

 exit;

}

#Text which can be converted to numbers

my %textToNumbers = ("zero"=>0,

 "one"=>1,

 "two"=>2,

 "to"=>2,

 "tew" =>2,

 "three"=>3,

 "four"=>4,

 "for"=>4,

 "five"=>5,

 "six"=>6,

 "seven"=>7,

 "eight"=>8,

 "nine"=>9,

 "ten"=>10,

 "eleven"=>11,

 "twelve"=>12,

 "thriteen"=>13,

 "fourteen"=>14,

 "fifteen"=>15,

 "sixteen"=>16,

 "seventeen"=>17,

 "eighteen"=>18,

 "nineteen"=>19,

 "twenty"=>20,

220

 "thirty"=>30,

 "forty"=>40,

 "fifty"=>50,

 "sixty"=>60,

 "seventy"=>70,

 "eighty"=>80,

 "ninety"=>90);

my %traitMap; #hash to map expected trait words to their spreadsheet headers

my %flagMap; #hash to map trait words to any flags associated with them. Key is trait word, value is pointer to array of flags.

my $conf_counter = 1; #Count which line of configuration file I am on

open(my $CONFIG_FILE, "dragonParse.conf") or die "Could not open dragonParse.conf $!:\n"; #open configuration file

while (!eof($CONFIG_FILE)) { #Read all lines of configuration file

 my $line = readline($CONFIG_FILE);

 if($conf_counter > 22){

 chomp $line;

 my @splitLine = split("=", $line); #split line on equals sign

 my @flags = split("-", $splitLine[1]); #Get all flags for variable

 $traitMap{$splitLine[0]} = $flags[0]; #Map the read-in variable to the name of the vbariable to be displayed in the spreadsheet

 shift @flags; #Pop the fron of the arrayu off. This is the spreadsheet display variable

 $flagMap{$splitLine[0]} = \@flags; #Flag map points read-in variable to list of flags associated with him

 }

 $conf_counter++;

}

close $CONFIG_FILE;

#Above covers all numbers 0-20, and every multiple of ten thereafter until 90. Also "to" and "for"

my %traits; #stores all observed traits

my @vineToTraitToValue; #Links vine to all of its traits to all ov its values

my %location;

my @locationFile;

#open(my $READFILE, $vineyardReportFile) or die "Could not open: $vineyardReportFile: $!\n";

my $locationCount = 0;

my $rowColumn = 0;

221

my $plotColumn = 0;

my $nameColumn = 0;

my $crossColumn= 0;

my @file;

#Read in the location stuff

#while (!eof($READFILE)) {

my $line = readline($READFILE);

chomp $line;

my @splitLine = split (",",$line);

push(@file,\@splitLine);

if ($locationCount == 0) {

my $headerCount = 0;

foreach my $header (@splitLine){

if ($header eq "VINE_ROW") {

$rowColumn = $headerCount;

}elsif($header eq "VINE_NUMBERS"){

$plotColumn = $headerCount;

}elsif($header eq "VINE_NAME"){

$nameColumn = $headerCount;

}elsif($header eq "CROSS"){

$crossColumn = $headerCount;

}

$headerCount++;

}

}

$locationCount++;

#}

#close($READFILE);

open(my $infile, $ARGV[0]) or die "Could not open $ARGV[0]: $!\n";

my $lineCounter = 0; #Count which line I am on

while (!eof($infile)) {

 $lineCounter++;

 my $line = readline($infile);

 $line =~ s/,//g; #Remove commas from line

222

 chomp $line;

 $line = lc $line; #Lowercase line

 my @splitLine = split(/ /, $line); #split on spaces

 my %traitToValue; #Hash to hold this vines trait to value pairs

 my $traitEncounteredFlag = 0; #Flag to let me know if I hjave processed a trait for this vine/line. This will only be turned on by traits that do

not have a newline flag

 for (my $counter = 0; $counter < scalar @splitLine; $counter++){

 my $ogTRAIT = $splitLine[$counter]; #Hold the trait for this current position

 my $ogCounter = $counter; #Hold the current counter

 my $trait = ""; #Initialize trait variable

 $counter = scalar @splitLine; #Counter is in the last position on the line now

 while((!exists($traitMap{$trait})) && ($counter >= $ogCounter)) { #As long as the counter is greater than or equal to the ogCounter (Where

we just were) and the trait I have does not exist

 $counter--; #Decriment the counter

 $trait = join (" ", @splitLine[$ogCounter..$counter]); #Calculate the new observed trait. Basically I process the whole line from back to

front

 #in order to get the longest variable possible. If "downy" and "downy mildew" are variables, I want the

longer one, because otherwise I will take downy and leave "mildew". This is bad

 }

 if (exists($traitMap{$trait})) { #If I found a trait...

 my @flag = @{$flagMap{$trait}}; #Get the flags for the trait

 my %flags = map { $_ => 1 } @flag;

 if ((exists($flags{"l"})) && ($traitEncounteredFlag == 1)) {

 #This trait has a newline flag and I have encountered a trait before

 $traitEncounteredFlag = 0; #Reset the flag

 $lineCounter++; #Increment line counter

 splice @splitLine, 0, $counter-1; #Cut off the part of the line that has already been processed

 $counter = 0; #Set counter back to zero

 my %tempHash = %traitToValue; #Create a new tempHash

 push(@vineToTraitToValue, \%tempHash); #Add it to arraylist of pointers to these hashes

 %traitToValue = (); #Reset general array

 next; #Next iteration of for loop

 }elsif(exists($flags{"N"})){

 #I have a NOTES flag

223

 $counter++;

 $traitEncounteredFlag = 1; #I have

 my $notesString = ""; #String to hold my notes

 my $traitTemp = ""; #Trait I am looking at in this loop

 my $stopFlag = 0; #Flag to stop adding to notes

 while (($stopFlag == 0) && ($counter < scalar @splitLine)) { #While the stop flag is false, and I am not running over the end of my

line

 $traitTemp = ""; #Reset temporary trait each loop

 my $tempCounter= scalar @splitLine; #Reset tempCounter

 while ((!exists($traitMap{$traitTemp})) && ($tempCounter >= $counter)) { #Similar loop to when I was finding my variable above

 $tempCounter--; #Count backwards and find largest variable possible

 $traitTemp = join (" ", @splitLine[$counter..$tempCounter]);

 }

 if (exists($traitMap{$traitTemp})) { #If I found a trait

 #get the flags

 my @flagTemp = @{$flagMap{$traitTemp}};

 my %flagsTemp = map { $_ => 1 } @flagTemp;

 if (exists($flagsTemp{"n"})) { #If i have a "n" flag, stop reading notes

 $stopFlag = 1; #Set stop flag to true.

 $counter--; #Decrement counter

 }else{

 $notesString .= " $splitLine[$counter]"; #No flag, add word to notes

 }

 }else{ #No trait. Add word to notes

 $notesString.= " $splitLine[$counter]";

 }

 $counter++; #increment counter

 }

 #Done creating notes string. Add notes to my seen variables, and add notes string to the value list

 $traitToValue{$traitMap{$trait}} = $notesString;

 $traits{$traitMap{$trait}} = 1;

 $counter--; #Decremenet counter so I can see the variable that stopped the notes

 next;

224

 }elsif(exists($flags{"w"})){#"w" flag encountered. Treat the value for this trait as the trait itself. This will be reported in the output

spreadsheet

 $traitEncounteredFlag = 1;

 $traitToValue{$traitMap{$trait}} = $splitLine[$counter];

 $traits{$traitMap{$trait}} = 1;

 next;

 }else{ #No flags

 my $value = $splitLine[$counter+1];

 if (!exists($flags{"l"})) { #If variable does not have a newline flag, set traitEncountered Flag to true

 $traitEncounteredFlag = 1;

 }

 if (looks_like_number($value) || exists($textToNumbers{$value})) { #Process the value

 if (exists($textToNumbers{$value})) {

 $traitToValue{$traitMap{$trait}} = $textToNumbers{$value};

 }else{

 $traitToValue{$traitMap{$trait}} = $value;

 }

 $traits{$traitMap{$trait}} = 1;

 $counter++;

 next;

 }else{ #I do not recognize the value

 if (!exists($traitMap{$value})) { #Look ahead and see if I am looking at a variable. Note it only looks one ahead. Copuld cause

problems

 $traitToValue{$traitMap{$trait}} = $value;

 $traits{$traitMap{$trait}} = 1;

 $counter++;

 print "Unknown value $value at line $lineCounter: $splitLine[$counter-1] $splitLine[$counter] $splitLine[$counter+1]\n";

 }else{

 print "Potentially missing value for trait $trait. Next observed word is $value: $splitLine[$counter-1] $splitLine[$counter]

$splitLine[$counter+1]\n";

 }

 #print "Added $value to $trait\n";

 next;

225

 }

 }

 }else{

 print("Could not identify trait beginning with $ogTRAIT: $splitLine[$counter-1] $splitLine[$counter] $splitLine[$counter+1]\n");

 $counter = $ogCounter;

 next;

 }

 }

 my %tempHash = %traitToValue;

 push(@vineToTraitToValue, \%tempHash);

}

close ($infile);

open(my $OUTFILE, ">>", $ARGV[1]) or die "Could not open $ARGV[2] $!:\n";

#print $OUTFILE "VINE_NAME,CROSS,";

foreach my $trait (keys %traits){

 if (exists($traits{$trait})) {

 print $OUTFILE $trait.",";

 }

}

print $OUTFILE "\n";

foreach my $vine (@vineToTraitToValue){

 ##print $OUTFILE getName($vineToTraitToValue{$vine}{"vine"},

$vineToTraitToValue{$vine}{"row"}).",".getCross($vineToTraitToValue{$vine}{"vine"}, $vineToTraitToValue{$vine}{"row"}).",";

 my %hash = %{$vine};

 foreach my $trait (keys %traits){

 if (exists($hash{$trait})) {

 print $OUTFILE $hash{$trait}.",";

 }else{

 print $OUTFILE ",";

226

 }

 }

 print $OUTFILE "\n";

}

sub getCross{

 return"DUMMY_CROSS";

 my ($number, $row) = @_;

 foreach my $line(@file){

 if (($line->[$rowColumn] == $row)) {

 my @numbers = expandPlot($line->[$plotColumn]);

 foreach my $plot (@numbers){

 if ($plot == $number) {

 return $line->[$crossColumn];

 }

 }

 }

 }

}

sub getName{

 return "DUMMY_NAME";

 my ($number, $row) = @_;

 foreach my $line(@file){

 if (($line->[$rowColumn] == $row)) {

 my @numbers = expandPlot($line->[$plotColumn]);

 foreach my $plot (@numbers){

 if ($plot == $number) {

 return $line->[$nameColumn];

 }

 }

 }

227

 }

}

sub expandPlot{

 my ($string) = @_;

 my @numbers;

 my @parts = split(";",$string);

 foreach my $part (@parts){

 if (index($part,"-")!=-1) {

 my @range = split("-",$part);

 for (my $counter = $range[0]; $counter <= $range[1]; $counter++){

 push(@numbers,$counter);

 }

 }else{

 push @numbers,$part;

 }

 }

 return(@numbers);

}

228

Appendix X: Second Test Format Report Example

VINE VINEYARD 33 ROW 84 YEAR 2016

1 05.0403.13 -

2 NOTES:R3-13

3 Source: 34-71-007

4 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

13 05.0428.01 -

14 NOTES:R4-13

 Source: 34-75-068

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

17 05.0435.02 -

18 NOTES:R3-13

 Source: 34-79-008

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

19 06.0528.01 -

20 NOTES:

 Source: 34-80-041

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

229

VINE VINEYARD 33 ROW 84 YEAR 2016

21 06.0530.02 -

22 NOTES:

 Source: 34-81-092

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

23 06.0530.03 -

24 NOTES:

 Source: 34-82-057

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

25 06.0531.02 -

26 NOTES:

 Source: 34-83-023

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

27 06.0534.01 -

28 NOTES:

 Source: 34-84-043

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

230

VINE VINEYARD 33 ROW 84 YEAR 2016

31 06.0536.02 -

32 NOTES:CHECK EARLY

 Source: 34-86-048

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

33 06.0537.01 -

34 NOTES:

 Source: 34-87-034

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

35 07.0618.01 -

36 NOTES:CHECK EARLY

 Source: 34-90-005

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

37 07.0621.01 -

38 NOTES:

 Source: 34-91-027

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

231

VINE VINEYARD 33 ROW 84 YEAR 2016

39 07.0621.02 -

40 NOTES:

 Source: 34-91-049

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

41 07.0621.03 -

42 NOTES:

 Source: 34-92-003

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

43 07.0621.04 -

44 NOTES:

 Source: 34-92-014

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

45 08.0721.01 -

46 NOTES:

47 Source: 34-94-069

48 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

232

233

VINE VINEYARD 33 ROW 85 YEAR 2016

1 08.0710.01 -

2 NOTES:

3 Source: 34-93-069

4 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

5 08.0716.01 -

6 NOTES:?/-/-/-/- ;

7 Source: 34-93-085

8 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

9 08.0721.02 -

10 NOTES:?/-/-/-/- ;

11 Source: 34-94-081

12 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

13 89.0607.04 -

14 NOTES:

15 Source: 33-69-022-24; 33-63-033; 34-09-056

16 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

17 WI TRUNK LVS VIGOR SIZE TEXT

18 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

234

VINE VINEYARD 33 ROW 85 YEAR 2016

19 98.0228.02 -

20 NOTES:SEE EARLY

21 Source: 33-70-044-46; 34-39-024

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

22 98.0234.02 -

23 NOTES:

24 Source: 33-68-016-18; 34-41-040

25 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

26 WI TRUNK LVS VIGOR SIZE TEXT

27 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

28 99.0410.02 -

29 NOTES:SEE EARLY

30 Source: 33-74-007-9; 43-01-073

31 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

32 WI TRUNK LVS VIGOR SIZE TEXT

33 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

34 99.0415.01 -

35 NOTES:

36 Source: 33-73-035-39; 43-03-022

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

235

VINE VINEYARD 33 ROW 85 YEAR 2016

37 01.0621.01 -

38 NOTES:

39 Source: 33-78-001-3; 43-14-056

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

40 01.0625.01 -

41 NOTES:EARLY

42 Source: 33-78-007-9; 43-17-046

43 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

44 WI TRUNK LVS VIGOR SIZE TEXT

45 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

46 03.0224.01 -

47 NOTES:

48 Source: 33-78-010-12; 34-53-014

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

236

VINE VINEYARD 33 ROW 86 YEAR 2016

1 05.0425.01 -

2 NOTES:

 Source: 34-74-054

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

5 06.0537.02 -

6 NOTES:EARLY

 Source: 34-87-037

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

7 06.0538.01 -

8 NOTES:DOUBLE BERRY

 Source: 34-88-056

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

9 06.0539.01 -

10 NOTES:

 Source: 34-88-018

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

237

VINE VINEYARD 33 ROW 86 YEAR 2016

11 07.0621.05 -

12 NOTES:

 Source: 34-91-020

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

13 07.0621.06 -

14 NOTES:

 Source: 34-91-053

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

15 07.0621.07 -

16 NOTES:

 Source: 34-92-019

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

17 08.0701.01 -

18 NOTES:

19 Source: 34-93-011

20 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

238

VINE VINEYARD 33 ROW 86 YEAR 2016

21 08.0702.01 -

22 NOTES:

23 Source: 34-93-021

24 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

25 08.0702.02 -

26 NOTES:

27 Source: 34-93-042

28 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

29 08.0702.03 -

30 NOTES:

31 Source: 34-93-043

32 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

33 08.0710.02 -

34 NOTES:

35 Source: 34-93-061

36 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

239

VINE VINEYARD 33 ROW 86 YEAR 2016

37 08.0721.03 -

38 NOTES:

39 Source: 34-94-083

40 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

41 08.0722.01 -

42 NOTES:

43 Source: 34-94-026

44 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

45 08.0722.02 -

46 NOTES:

47 Source: 34-94-049

48 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

240

VINE VINEYARD 33 ROW 87 YEAR 2016

1 08.0726.01 -

2 NOTES:

3 Source: 34-95-014

4 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

5 06.0530.04 -

6 NOTES:

 Source: 34-82-061

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

7 07.0618.02 -

8 NOTES:V.V. EARLY

 Source: 34-90-020

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

9 07.0620.02 -

10 NOTES:V. EARLY

 Source: 34-90-088

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

241

VINE VINEYARD 33 ROW 87 YEAR 2016

11 08.0732.02 -

12 NOTES:

 Source: 34-95-078

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

13 08.0732.03 -

14 NOTES:

 Source: 34-96-078

 BUD BRK DM-FRT CROP BERRY FLVR R1-R5

 WI TRUNK LVS VIGOR SIZE TEXT

 WI BUD PM-FRT CLU-SZ COLOR SHAPE

 BLOOM LVS COMPAC SEED

 FLOWER PDERM

242

Appendix XI: Seedling Test Format Report Example

VINE VINEYARD 36 ROW 1 YEAR 2016

7 88.0507.01 66.0795.01/MI# 2

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

12 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

13 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

14 88.0514. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

16 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

18 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

19 88.0514. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

22 88.0514. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

23 88.0514.03 -

243

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

244

VINE VINEYARD 36 ROW 1 YEAR 2016

24 88.0514. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

25 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

26 88.0514.01 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

28 88.0514. -

NOTES: perfect (somewhat reflex?)

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

29 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

30 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

31 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

32 88.0514. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

34 88.0514. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

245

VINE VINEYARD 36 ROW 1 YEAR 2016

36 88.0514. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

38 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

39 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

40 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

42 88.0514.06 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

45 88.0514. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

47 88.0514. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

48 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

50 88.0514.04 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

246

VINE VINEYARD 36 ROW 1 YEAR 2016

51 88.0514. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

52 88.0514. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

53 88.0514. 5-1-6 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

55 88.0514. 5-2-2 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

57 88.0514. 5-2-1 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

58 88.0514. 5-2-4 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

59 88.0514.02 5-1-5 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

61 88.0514. 5-1-1 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

62 88.0514. 5-1-2 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

247

VINE VINEYARD 36 ROW 1 YEAR 2016

63 88.0514. 5-1-7 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

65 88.0514. 5-2-7 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

66 88.0514. 5-1-3 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

67 88.0514. 5-3-5 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

69 88.0514. 5-4-1 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

72 88.0514. 5-3-8 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

73 88.0514. 5-4-8 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

75 88.0514. 5-4-6 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

76 88.0514. 5-4-4 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

248

VINE VINEYARD 36 ROW 1 YEAR 2016

77 88.0514. 5-2-8 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

78 88.0514. 5-3-1 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

79 88.0514. 5-3-4 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

80 88.0514. 5-4-5 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

81 88.0514. 5-3-9 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

83 88.0514. 5-4-7 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

84 88.0514. 5-6-8 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

85 88.0514. 5-5-8 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

89 88.0514. 5-5-3 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

249

VINE VINEYARD 36 ROW 1 YEAR 2016

90 88.0514. 5-6-1 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

92 88.0514. 5-5-2 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

93 88.0514. 5-6-3 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

94 88.0514. 5-6-5 -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

95 88.0514. 5-6-6 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

96 88.0514. 5-5-5 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

250

VINE VINEYARD 36 ROW 3 YEAR 2016

2 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

3 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

5 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

6 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

7 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

8 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

10 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

11 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

12 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

251

VINE VINEYARD 36 ROW 3 YEAR 2016

14 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

15 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

16 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

17 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

19 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

20 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

21 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

22 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

23 96.0801. -

NOTES: male; blk rot susc.

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

252

VINE VINEYARD 36 ROW 3 YEAR 2016

24 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

25 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

27 Chancellor /

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

28 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

30 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

31 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

32 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

34 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

35 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

253

VINE VINEYARD 36 ROW 3 YEAR 2016

36 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

37 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

40 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

41 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

43 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

44 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

46 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

47 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

48 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

254

VINE VINEYARD 36 ROW 3 YEAR 2016

49 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

50 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

51 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

52 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

53 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

55 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

57 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

58 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

59 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

255

VINE VINEYARD 36 ROW 3 YEAR 2016

60 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

61 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

62 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

63 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

64 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

65 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

66 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

67 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

68 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

256

VINE VINEYARD 36 ROW 3 YEAR 2016

69 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

70 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

72 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

73 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

74 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

75 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

76 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

77 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

81 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

257

VINE VINEYARD 36 ROW 3 YEAR 2016

82 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

86 96.0801. -

NOTES: male?

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

87 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

88 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

89 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

90 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

91 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

92 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

95 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

258

VINE VINEYARD 36 ROW 3 YEAR 2016

96 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

97 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

98 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

99 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

100 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

101 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

102 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

104 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

105 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

259

VINE VINEYARD 36 ROW 3 YEAR 2016

106 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

110 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

260

VINE VINEYARD 36 ROW 4 YEAR 2016

1 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

2 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

3 96.0801. -

NOTES: male?

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

4 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

5 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

8 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

9 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

10 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

12 96.0801. -

NOTES: perfect?

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

261

VINE VINEYARD 36 ROW 4 YEAR 2016

14 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

15 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

16 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

17 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

21 Steuben /

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

22 PI 200569 -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

23 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

26 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

27 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

262

VINE VINEYARD 36 ROW 4 YEAR 2016

29 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

30 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

32 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

33 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

34 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

35 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

36 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

37 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

38 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

263

VINE VINEYARD 36 ROW 4 YEAR 2016

39 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

40 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

44 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

45 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

46 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

47 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

48 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

49 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

50 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

264

VINE VINEYARD 36 ROW 4 YEAR 2016

51 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

52 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

53 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

54 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

55 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

57 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

59 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

61 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

62 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

265

VINE VINEYARD 36 ROW 4 YEAR 2016

64 96.0801. -

NOTES: perfect?

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

65 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

66 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

69 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

70 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

71 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

72 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

73 Concord /

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

74 Chancellor /

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

266

VINE VINEYARD 36 ROW 4 YEAR 2016

75 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

76 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

78 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

79 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

80 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

82 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

83 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

86 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

267

VINE VINEYARD 36 ROW 5 YEAR 2016

4 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

5 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

6 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

7 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

10 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

12 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

13 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

15 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

17 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

268

VINE VINEYARD 36 ROW 5 YEAR 2016

18 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

19 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

20 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

21 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

23 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

24 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

25 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

27 96.0801. -

NOTES: perfect; R2-'01

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

28 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

269

VINE VINEYARD 36 ROW 5 YEAR 2016

29 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

30 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

32 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

35 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

36 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

37 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

38 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

39 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

41 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

270

VINE VINEYARD 36 ROW 5 YEAR 2016

42 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

44 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

45 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

47 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

48 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

49 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

51 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

52 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

54 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

271

VINE VINEYARD 36 ROW 5 YEAR 2016

55 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

57 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

59 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

61 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

62 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

63 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

64 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

65 96.0801. -

NOTES: "perfect; R2-'01, R4-'02"

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

67 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

272

VINE VINEYARD 36 ROW 5 YEAR 2016

70 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

74 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

75 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

76 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

77 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

78 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

79 Concord /

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

81 Chancellor /

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

83 96.0801. -

NOTES: "perfect; R2-'01, R3-'02"

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

273

VINE VINEYARD 36 ROW 5 YEAR 2016

84 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

85 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

86 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

87 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

88 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

90 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

91 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

92 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

93 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

274

VINE VINEYARD 36 ROW 5 YEAR 2016

96 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

97 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

99 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

101 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

103 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

104 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

106 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

107 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

108 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

275

VINE VINEYARD 36 ROW 5 YEAR 2016

109 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

276

VINE VINEYARD 36 ROW 6 YEAR 2016

2 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

3 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

5 96.0801. -

NOTES: perfect; R2-'01&'02

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

6 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

7 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

8 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

13 96.0801. -

NOTES: perfect; R2-'01&'02

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

15 96.0801. -

NOTES: perfect; R2-'02

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

17 96.0801. -

NOTES: perfect; R2-'01&'02

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

277

VINE VINEYARD 36 ROW 6 YEAR 2016

18 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

20 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

22 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

23 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

25 96.0801. -

NOTES: perfect; R2-'02

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

26 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

27 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

29 96.0801. -

NOTES: perfect; R2-'01&'02

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

30 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

278

VINE VINEYARD 36 ROW 6 YEAR 2016

32 96.0801. -

NOTES: "perfect; R2-'01, R4-'02"

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

34 96.0801. -

NOTES: "perfect; R2-'01, R4-'02"

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

35 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

38 96.0801. -

NOTES: "perfect; R2-'01, R2-'02"

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

39 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

40 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

41 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

42 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

43 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

279

VINE VINEYARD 36 ROW 6 YEAR 2016

45 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

46 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

47 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

48 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

49 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

50 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

53 Chancellor /

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

54 Concord /

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

55 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

280

VINE VINEYARD 36 ROW 6 YEAR 2016

56 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

59 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

60 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

64 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

65 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

66 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

67 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

68 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

69 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

281

VINE VINEYARD 36 ROW 6 YEAR 2016

70 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

72 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

74 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

75 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

76 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

78 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

83 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

85 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

86 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

282

VINE VINEYARD 36 ROW 6 YEAR 2016

87 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

88 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

91 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

93 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

94 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

95 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

97 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

98 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

100 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

283

VINE VINEYARD 36 ROW 6 YEAR 2016

103 96.0801. -

NOTES: perfect; self/outcross?

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

104 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

105 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

106 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

107 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

108 Chancellor /

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

109 Steuben /

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

110 Concord /

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

284

VINE VINEYARD 36 ROW 7 YEAR 2016

1 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

3 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

4 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

5 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

6 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

7 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

9 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

11 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

16 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

285

VINE VINEYARD 36 ROW 7 YEAR 2016

18 96.0801. -

NOTES: perfect; R2-'01&'02

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

19 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

20 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

21 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

22 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

23 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

26 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

31 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

34 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

286

VINE VINEYARD 36 ROW 7 YEAR 2016

35 96.0801. -

NOTES:

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

36 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

37 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

38 96.0801. -

NOTES: male or perfect? Check!

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

39 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

40 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

41 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

42 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

43 96.0801. -

NOTES: "perfect; R2-'01, R4-'02"

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

287

VINE VINEYARD 36 ROW 7 YEAR 2016

47 96.0801. -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

48 96.0801. -NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

49 96.0801. -

NOTES: male

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

51 96.0801. -

NOTES: perfect; Sel. in no-spray nurs.

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

52 96.0801. -

NOTES: male; Sel. in no-spray nurs.

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

66 96.0804.01 -

NOTES: "perfect; R3-'00, R2-'02, R1-'04"

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

79 96.0805.01 -

NOTES: "perfect; R3-'02, R1-'04"

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

80 Chancellor -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

81 Steuben -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

288

VINE VINEYARD 36 ROW 7 YEAR 2016

82 Concord -

NOTES: perfect

 T B FL DM PM CR VG CS CC BS BC SD FL TX S C R

	Development of a Data Management System for Grape Breeding Programs
	Recommended Citation

	Development of a Data Management System for Grape Breeding Programs

