
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

Spring 5-20-2016

Scare Tactics Scare Tactics

Tiago Martines
txm7803@rit.edu

Gabriel Ortega
go4113@rit.edu

Karan Sahu
ks6332@rit.edu

Lucas Pereira Vasconcelos
lpv1569@rit.edu

Henrique Silva Chaltein de Almeida
hxs1151@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

 Part of the Computer and Systems Architecture Commons, and the Game Design Commons

Recommended Citation Recommended Citation
Martines, Tiago; Ortega, Gabriel; Sahu, Karan; Pereira Vasconcelos, Lucas; and Silva Chaltein de Almeida,
Henrique, "Scare Tactics" (2016). Thesis. Rochester Institute of Technology. Accessed from

This Master's Project is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F9068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=repository.rit.edu%2Ftheses%2F9068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1133?utm_source=repository.rit.edu%2Ftheses%2F9068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/9068?utm_source=repository.rit.edu%2Ftheses%2F9068&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Rochester Institute of Technology

B. Thomas Golisano College of
Computing and Information Sciences

Master of Science in Game Design and Development

Capstone Final Design & Development Approval Form

Student Name: Gabriel Ortega

Student Name: Henrique Silva Chaltein de Almeida

Student Name: Karan Sahu

Student Name: Lucas Pereira Vasconcelos

Student Name: Tiago Martines

Project Title: Scare Tactics

Keywords: Asymmetrical Gameplay, Haunted House, C++

Jessica Bayliss, Ph.D.

Committee Co-Chair

Elouise Oyzon

Committee Co-Chair

Chris Cascioli

Committee Co-Chair

Ian Schreiber

Advisor

Owen Gottlieb, Ph.D.

Advisor

Cody Van De Mark

Advisor

David Schwartz, Ph.D.

Director, School of Interactive Games and Media

Scare Tactics

By

Gabriel Ortega

 Henrique Silva Chaltein de Almeida

Karan Sahu

Lucas Pereira Vasconcelos

Tiago Martines

Project submitted in partial fulfillment of the requirements for the
degree of Master of Science in Game Design and Development

Rochester Institute of Technology

B. Thomas Golisano College of Computing and
Information Sciences

May 20th, 2016

i

Acknowledgements
We would like to thank our committee members, the School of Interactive Games and Media, our

friends and every person who has helped us with designing, developing and testing this project.

 This work was supported in part by a grant from the Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior (CAPES) – Brazil.

ii

Executive Summary
It is the purpose of this document to describe the design and development processes of Scare Tactics.

The game will be discussed in further detail as it relates to several areas, such as market analysis,

development process, game design, technical design, and each team members’ individual area of

background research. The research areas include asymmetrical game design, level design, game engine

architecture, real-time graphics, user interface design, networking and artificial intelligence.

 As part of the team’s market analysis, other games featuring asymmetric gameplay are

discussed. The games described in this section serve as inspirations for asymmetric game design. Some

of these games implement mechanics that the team seeks to emulate and expand upon in Scare Tactics.

 As part of the team’s development process, several concepts were prototyped over the course of

two months. During that process the team adopted an Agile methodology in order to assist with

scheduling, communication and resource management. Eventually, the team chose to expand upon the

prototype that became the basis of Scare Tactics.

 Game design and technical design occur concurrently in the development of Scare Tactics.

Designers conduct discussions where themes, settings, and mechanics are conceived and documented.

Mechanics are prototyped in Unity and eventually ported to a proprietary engine developed by our

team. Throughout the course of development, each team member has had to own an area of design or

development. This has led to individual research performed in several areas, which will be discussed

further in this document.

iii

Table of Contents

1 Introduction ... 1

2 Game Genre Background and Market Analysis .. 3

3 Game Development Process ... 8

3.1 Prototype Phase .. 8

3.2 Team Management ... 8

3.3 Task Management ... 9

3.4 Schedule .. 10

3.5 Pipeline .. 10

3.6 Design Process... 11

4 Game Design ... 14

4.1 Summary ... 14

4.2 Introduction .. 14

4.3 Asymmetric Gameplay .. 15

4.3.1 Explorer Gameplay .. 16

4.3.2 Ghost Gameplay .. 24

4.3.3 The Light Mechanic ... 28

4.3.4 Gameplay Influences from Other Games .. 29

4.4 Level Design... 40

5 Technical Design ... 43

5.1 Tools .. 43

5.1.1 Visual Studio 2015 ... 43

5.1.2 Unity .. 43

5.1.3 Proprietary Tools (Debugging) .. 43

5.2 Game Engine Architecture .. 48

5.2.1 Components / Policies ... 49

5.2.2 Template Specialization / Inheritance .. 49

iv

5.2.3 Vertex Example ... 50

5.3 Class Breakdown ... 50

5.3.1 BaseSceneObject ... 50

5.3.2 BaseComponent .. 51

5.3.3 Explorer Example .. 52

5.3.4 Object Factory ... 54

5.4 Graphics .. 55

5.4.1 Shadow Mapping... 55

5.4.2 Hardware Instancing ... 55

5.4.3 Lighting Deferred Rendering (Point lights / Spot lights) ... 56

5.5 Skeletal Animation .. 57

5.5.1 State Based Animations .. 58

5.6 User Interface .. 58

5.6.1 Font rendering ... 60

5.6.2 Debug UI .. 61

5.7 Collision Detection .. 61

5.7.1 Template Colliders .. 62

5.7.2 Collider Components ... 62

5.7.3 Bounding Volume Hierarchy ... 62

5.7.4 Culling .. 63

5.8 Networking .. 64

5.9 Artificial Intelligence ... 65

5.9.1 Motion Planning .. 66

5.9.2 Decision Making .. 67

5.10 Optimizations .. 70

5.10.1 Memory Management / Static vs Dynamic ... 71

5.10.2 Packet Construction .. 72

6 Asset Overview ... 74

7 Play Testing and Results ... 79

7.1 Internal .. 79

7.2 Public ... 79

v

7.3 Game Developer’s Conference (GDC) ... 80

7.4 RPI GameFest 2016 / ImagineRIT 2016 ... 81

7.5 Result ... 83

8 Post Mortem .. 84

8.1 Successes ... 84

8.2 Improvements ... 85

8.3 Future Work .. 85

vi

List of Figures

Figure 1.1 - Scare Tactics splash screen. .. 2

Figure 2.1 - Four Hunters against One Monster. ... 3

Figure 2.2 - In-Game View of the General. .. 4

Figure 2.3 - Player View in Monaco. .. 5

Figure 2.4 - Dungeon Master vs Three Heroes. .. 6

Figure 2.5 - Warriors Fighting a Monster Possessed by the Shadowlord. .. 7

Figure 4.1 - The 3 Explorers. From left to right: Trap Master, Professor and Sprinter. 16

Figure 4.2 - Generator being captured (left) and light cannon (right). .. 17

Figure 4.3 - The Professor Class. .. 18

Figure 4.4 - The Sprinter Class. .. 20

Figure 4.5 - The Trap Master Class. ... 21

Figure 4.6 - Lights affecting the Ghost. The Ghost cannot spawn minions on orange/yellow areas and

any minion inside those areas is slowed.. 28

Figure 4.7 - The Legend of Zelda: A link between worlds, title screen. ... 31

Figure 4.8 - The Legend of Zelda: A link between worlds, camera. ... 31

Figure 4.9 - Monaco: What’s yours is mine, title screen. ... 32

Figure 4.10 - A level from Monaco... 33

Figure 4.11 - Dungeon of the Endless, title screen. .. 34

Figure 4.12 - Players in different sections of the map (left) and enemies spawning from several

locations (right). .. 35

Figure 4.13 - Bastion, title screen. .. 35

Figure 4.14 - The Kid aiming his spear at the mouse cursor... 36

vii

Figure 4.15 - Dungeonland, title screen. ... 37

Figure 4.16 - Dungeonland’s Dungeon Master mode. .. 38

Figure 4.17 - Prototype Level. .. 40

Figure 4.18 - First Level for Ghost vs Man theme. ... 41

Figure 4.19 - Scare Tactics Recent Level. .. 42

Figure 5.1 - Usage example of the CONSOLE_COMMAND macro. .. 44

Figure 5.2 - Console Window filtered by the keyword Warning. ... 44

Figure 5.3 - Console Window context menu displaying Clear and Copy to Clipboard commands. ... 44

Figure 5.4 - Trace messages being displayed in the Console Window. .. 45

Figure 5.5 - Trace messages being displayed on Visual Studio Output Window. 45

Figure 5.6 - Variable values being debugged without Trace Window. Usage (left) and output (right).

 ... 46

Figure 5.7- Variable values being debugged with Trace Window. Usage (left) and output (right). ... 46

Figure 5.8 - Line drawing macro definitions. .. 47

Figure 5.9 - Grid rendering method using TRACE_SMALL_BOX to draw grid data on the game

screen. Usage taken from Scare Tactics codebase. ... 47

Figure 5.10 - Grid data being displayed with use of a line drawing macro. Example taken from Scare

Tactics development build. ... 48

Figure 5.11 - BaseSceneObject Class Diagram. ... 51

Figure 5.12 - BaseComponent Class Diagram. ... 52

Figure 5.13 - Explorer Class Diagram. ... 53

Figure 5.14 - Usage of Factory iterator. .. 54

Figure 5.15 - Object registration. .. 54

Figure 5.16 - Object creation. ... 55

Figure 5.17 - Object destruction. ... 55

viii

Figure 5.18 - G-Buffer is composed of several textures, including a normal texture (top left). Diffuse

texture (top right). A lighting texture (bottom right) is created using the normals and positions. The

final image (bottom left) is composed using the diffuse and lighting textures. 57

Figure 5.19 - Different UI elements on different alignments. ... 59

Figure 5.20 - Radial fill being used to indicate the cooldown of an ability. The math is part of the

shader that render sprites. .. 60

Figure 5.21 - Linear fill being used for Ghost’s mana bar. ... 60

Figure 5.22 - UI rendering based on world space coordinates. ... 60

Figure 5.23 - Class diagram for collision detection system. ... 61

Figure 5.24 - Bounding Volume Hierarchy. Root Quadrants are traced in red. All other colliders are a

child of one or more quadrants. ... 63

Figure 5.25 - Typical structure of a decorator task. .. 69

Figure 5.26 - Subtree declaration pulled from Scare Tactics codebase. ... 70

Figure 5.27 - Imp Behavior Tree assembled from various subtrees. Example pulled from Scare Tactics

codebase. ... 70

Figure 5.28 - Intel CPU architecture. .. 72

Figure 5.29 - Different packet types.. 72

Figure 5.30 - Packet structure. .. 73

Figure 6.1 - Character Mood Board. ... 75

Figure 6.2 - Environment Mood Board. .. 75

Figure 6.3 - Professor Concept Art. .. 76

Figure 6.4 - Sprinter Concept Art. .. 76

Figure 6.5 - Trap Master Concept Art. .. 76

Figure 6.6 - Environment Concept Art. Entrance hall (top left). Master bedroom (top right). Library

(middle). Generators and light-cannon (bottom left). Bathroom (bottom right). 77

ix

Figure 6.7 - UI icons. .. 78

Figure 7.1 - RPI Playtest. .. 82

Figure 7.2 - RPI Award. From left to right: Henrique Chaltein, Gabriel Ortega, Lucas Vasconcelos,

Karan Sahu, Tiago Martines. .. 82

x

List of Tables

Table 3.1 - Most prominent group roles. ... 9

Table 3.2 - Major milestones. ... 10

Table 4.1 - Minion types and stats. ... 26

1

1 Introduction

Asymmetry in games exists in many forms. Turn-based games exhibit asymmetry in that one player

goes first and the other second. One form of asymmetric gameplay involves assigning unique

mechanics to each player. An example of this can be seen in games such as Gauntlet (1985), where

players each select separate avatars each of which possess a distinct skill set. Another form of

asymmetric gameplay is the concept of one versus many. In this type of game one player competes

against many other players.

 Asymmetric games have unique properties when compared to symmetric games. Due to offering

separate experiences, an asymmetric game can appeal to a wider audience than a purely symmetric

game. However, these types of games are more challenging to balance via purely numerical methods

and must rely on play test data.

 Although not a particularly new concept, asymmetric gameplay is an interesting pseudo-genre

and serves as the core concept behind Scare Tactics (Figure 1.1).

2

Figure 1.1 - Scare Tactics splash screen.

 Scare Tactics is a multiplayer game featuring asymmetric play, developed by So Close Games.

It takes place in a haunted house where a group of Explorers face off against a Ghost, whom is in

control of the house. A group of up to three people can play as Explorers, while one person can play

as the Ghost. The Ghost and Explorer each have unique gameplay mechanics. The gameplay for the

Ghost character is based on the Real Time Strategy genre. He or she can spawn and manage units, as

well as manipulate the house on a global scale. The Explorer gameplay is based on top down action

adventure. The Explorer can perform melee attacks, acquire power-ups and manipulate the

environment on a local scale. Both characters use their unique skills and mechanics to thwart each

other. The Explorers must exorcise the haunted house in order to defeat the Ghost, and the Ghost must

disable all Explorers by diminishing their health. It was the goal of our team to design and develop

Scare Tactics as an asymmetric gameplay experience.

3

2 Game Genre Background and Market Analysis

Our game is focused on providing players with an asymmetric ‘1 vs many’ gameplay experience. We

are looking at games that provide a similar experience. Some of the games that we have come across

are Evolve, Heroes and Generals, Dungeonland, and Shadow Realms.

 In Evolve, one player plays as the monster while the other four play as hunters (Figure 2.1).

Each of the two sides tries to kill the other. It starts out with the monster underpowered and the hunters

chase it to take it down. Over time the monster becomes stronger and a force with which to be

reckoned. For the majority of the game, the monster is running away from the hunters and trying to

catch prey to level up and become stronger. The monster does not have any support while the hunters

can be revived by other hunters. From our perspective, the monster does not feel all that overwhelming.

This is the opposite of what we are trying to achieve. We want the Explorers to be scared of the Ghost

from the outset. If they are careless and within reach of the monsters, they should be taken down.

Figure 2.1 - Four Hunters against One Monster.

4

 Heroes and Generals is a massive multiplayer battle set during World War II where heroes have

a first person point of view and are directly involved in the war. The generals have a map to decide

where the battles take place. They could strategize to attack a city to capture it or defend against attacks

from the opponent (Figure 2.2). The General is never directly involved with a battle taking place in a

city. He does not have detailed information about the troop movement and their actions.

Figure 2.2 - In-Game View of the General.

 We do not want this with our Ghost player. His view is similar to the general’s but is limited in

terms of scope and has much more information on what the players on the ground are doing. We want

the Ghost player to see the Explorer’s movements and actions in the level (Figure 2.3) instead of a

general description such as running or populating, in case of Generals and Heroes. We want him to

have detailed visual information on every Explorer, whenever the gameplay allows, which would

allow him to strategize accordingly and be directly involved with the “battle.”

5

Figure 2.3 - Player View in Monaco.

 Dungeonland is another Player vs Player asymmetric game very similar to ours in terms of

interaction between the two player types (Figure 2.4). Three heroes battle against swarms of monsters

that are spawned by a dungeon master. The goal of the heroes is to get to the end of the dungeon and

defeat the boss that is controlled by the dungeon master. If they die, the dungeon master wins. The

ghost in our game has a very similar role to the dungeon master. He can spawn his minions, place traps

and capture the players. We are aiming for a mechanic where the Ghost can possess an Explorer and

cause him to have hallucinations. The Explorer would see things that are not actually present. This

could lead the Explorer into a trap or mistake another Explorer for a minion of the Ghost. This could

harm the Explorers as the game will have friendly fire. We also want the Explorers as well as the

Ghost to be able to interact with the environment, to be able to use it to their advantage or to hinder

their enemy.

6

Figure 2.4 - Dungeon Master vs Three Heroes.

Shadow Realms is a fast paced third - person action game where a team of warriors fight against an

evil called the shadowlord (Figure 2.5). Their goal is to destroy the other player, unlike Dungeonland

where the heroes can only win by getting to the end of the level. The shadowlord can spawn monsters

that attack the warriors and create traps that get activated when a warrior is close to it. These two

mechanics relate back directly to our game. Similar to Dungeonland, the shadowlord can possess other

monsters and directly control them. We have a hallucination mechanic that is triggered by possessing

an Explorer. The shadowlord can also create a copy of himself and disguise it as the warriors. He

cannot be identified until he receives damage. We also wish to focus on the idea of hidden information.

We want to give extra information to the Ghost to make him or her feel dominant. The additional

knowledge would give an advantage over the Explorers, allowing a better strategy for placing traps

and minions.

7

Figure 2.5 - Warriors Fighting a Monster Possessed by the Shadowlord.

 The games currently in this genre are mostly action-oriented and include some elements of

strategy. The player fighting against a team of players is outnumbered, but does not necessarily feel

extremely evil and overpowering. Scare Tactics intends to take the action setting and add Real Time

Strategy (RTS) and stealth elements. We want to reinforce the “1 vs many” gameplay experience. We

want the Ghost to feel powerful, to feel like the ruler. On the other hand, the Explorers cannot see the

Ghost as s/he has no physical presence on the map. We want the Explorers to tread carefully and be

afraid of the Ghost. The player assuming the role of the Ghost has an overarching view of the map and

is in charge of the environment, thus enforcing a global force. The players in control of the Explorers

have a hyper-localized view of the map and are not as aware of the Ghost’s actions nor the surprises

that lie ahead of them. In addition, we want our co-op gameplay to be distributed. We want to avoid

the Explorers clustering all the time. We want them to split up in order to cover more ground and make

it more difficult for the Ghost to catch them.

8

3 Game Development Process

3.1 Prototype Phase

Our development process started in September 2015, with a 2-month ideation period. During this time,

the group focused all of its efforts into creating a unique prototype per week, covering different game

styles, themes, mechanics and feelings. Prototypes were put to test with other individuals to help with

the evaluation process. This extended ideation phase also played an important role in defining our

development process – after every weekly cycle we met for a post-mortem assessment, iterating and

polishing the process so it became suitable for our team. More importantly, by the end of this ideation

period and the following selection phase, we had a solid game idea that was promptly embraced by all

members.

3.2 Team Management

With the selected game idea, we started focused development by November 2015. Initially, we decided

to use the some of the techniques often employed for software development via the Scrum

methodology. In addition, each member of the team had been assigned a couple of roles according to

individual areas of expertise and interest. Although all individuals are working on every aspect of the

game, picking some roles and leaders helps to address conflicts and create guidelines more efficiently.

The most prominent roles are listed on Table 3.1.

9

Table 3.1 - Most prominent group roles.

Scrum Roles Collaborators

Product Owner Karan Concept Artist Jeannette Forbes

Scrum Master Lucas/Gabriel Concept Artist Katherine Harrison

Backlog Maintenance Henrique Concept Artist Felipe Yoon

Field Expertise Leaders Rigger/Animator Dillon Guscott

Design Henrique / Karan 3D Modeler Kerong Fu

Engine Architecture Gabriel 3D Modeler Steven Cerqueira

Graphics Programming Gabriel 3D Modeler Robert Marsh

AI Programming Lucas 3D Modeler Jesse Florio

UI Programming Tiago 3D Modeler Ziyun Peng

Network Programming Tiago 3D Modeler John David Satriale

Art Karan Audio Designer Kedar Shashidhar

Organization Roles Audio Designer Rick Scott

Process Tiago

External Resources Karan

3.3 Task Management

We started by selecting a tool to aid us with controlling tasks, bugs, documentation and other artifacts

that are employed during our process. We selected Redmine, an open-source web-based project

management and issue tracking tool, mainly because this tool is free to use and allows total

customization. For our group, this customization level was especially useful to trim down the features

that are usually included in a fully-fledged Scrum environment, but that we considered detrimental to

our process given our team size and specific goals.

 Moreover, Redmine also integrated seamlessly to the version control system we are using, Git,

allowing commit and tags to be directly linked to certain tickets, either bugs or feature requests.

Redmine also allows our stockholders, mostly our committee members and other interested faculty, to

login and follow up with our tickets, sprint burndowns, released versions and documentation.

10

3.4 Schedule

With the process tools and methods set, we started to sketch our production schedule. We broke down

the timeline into six major milestones, as shown on Table 3.2.

Table 3.2 - Major milestones.

3.5 Pipeline

Following Scrum practices, every week we arranged a sprint planning meeting to specify which tasks

were immediately more relevant towards the milestone outputs. Each sprint produced a minor version

of the game, e.g., 0.2 or 0.3. A major milestone release was identified by a major version number, e.g.,

1.0 or 2.0. With this methodology, we wanted to ensure there would always be a current build readily

available for playtest or exposition.

 Moreover, our sprint planning tries to schedule most individual tasks in an efficient manner.

Design tasks are always followed by a prototyping task, allowing a playtest task to come right after it.

Ideation Deadline: November 1st, 2015

Main activity: Weekly prototypes

Output: A solid game idea

Proposal Deadline: December 16th, 2015

Main activity: Design; Technical Research

Output: Game proposal; Playable Unity prototype

Winter
break

Deadline: January 24th, 2016

Main activity: Feature set definition; Core implementation; Research

Output: Major mechanics implemented in Unity; Framework for C++

GDC Build Deadline: March 10th, 2016

Main activity: Porting; Code optimizations; Balancing; Assets implementation

Output: Public playable C++ game

Imagine
RIT / RPI

Deadline: April 20th, 2016

Main activity: Aesthetical improvements; Balancing; Bug fixing; Documentation

Output: One fully playable game mode; Documentation

Final Deadline: May 18th, 2016

Main activity: Polishment; Bug fixing;

Output: Final game; Pitch and Presentation;

11

After playtesting, the feature is scheduled for implementation. By pipelining those tasks accordingly,

we want to ensure there are fewer roadblocks between design and development phases.

 Most of the design decisions involved using Unity as prototyping tool. Thereby, we devoted

much of our planning to making tools and policies to export content, levels, configuration and other

assets from Unity into our proprietary engine. With this solution, we allowed the design team to work

faster and as independently as possible from the development team. We believe this decision greatly

improved the experience we had while developing Scare Tactics, as it allowed every member of the

team to focus on and improve their areas of interest. More about our prototyping and development

environments is detailed on section 5.

3.6 Design Process

By the end of the prototyping phase of our development, we created 6 unique prototypes. Out of the

6, we voted to develop the prototype titled Shutter into our capstone project. The theme of the prototype

was prison and considering our asymmetrical gameplay, we felt it might be difficult to expand this

theme into a long term project with interesting mechanics. So we went back to the drawing board to

come up with themes that would fit better into our asymmetrical gameplay style. The most promising

themes from a long list were Nature vs Industrialism (a worker expanding his city versus the Spirit of

Nature reclaiming his territory), Magic vs Technology (A scientist and a Wizard fighting over whether

theirs is the best method to help their village) and Ghost vs Man (Ghost Squad trying to exorcise a

ghost house.) As a group we settled on Ghost vs Man as it appealed to the majority of us and we felt it

had the potential to grow.

 The next big question we needed to answer was whether to include a narrative and create a single

player campaign or focus on multiplayer. We did not have a dedicated story writer and none of us had

done it earlier. A single player campaign also meant we would have to create a long enough gameplay

and have an ending, in the game and not just on paper. This seemed challenging as we opted to create

12

the game in C++. We had very limited time and were a small group of 5 people. Thus, we changed our

direction and decided to create a multiplayer only version with a few game modes. Each mode would

have a short narrative within itself, trying to give the game a bit more depth.

 We opted for the approach to overscope the design and cut down the features that weren’t as

exciting and created a priority list for the ones we wanted to implement in the game. Due to this

approach we created 4 different game modes, but only managed to implement one, Landmark.

1. Landmark - activate the weapon in the middle of the haunted environment to kill the Ghost

2. Hostage - find and guide the hostages trapped in a haunted amusement park to the exit

3. Escape - escape a haunted junkyard before the Ghost kills every Explorer

4. Escort - guide a scared priest to the heart of the haunted house to exorcise the Ghost

Four Explorer classes:

1. Scout - evolved into Sprinter

2. Support - evolved into Professor

3. Offensive Long Range - evolved into Trap Master

4. Offensive Short Range

Thirteen minions:

1. Basic Melee - evolved into Imp

2. AOE Bomber - evolved into Abomination

3. Ambusher (Defender) - evolved into Flytrap

4. Basic Projectile

5. Triangle Squad

6. Attach

13

7. Poison

8. Barrier

9. "Transporter (Worm)"

10. Bull

11. "Trespasser (Ceiling Goop)"

12. Ambusher (Chaser)

13. Hulk

14

4 Game Design

This section describes Scare Tactics game design. It will demonstrate all design decisions made for

the game as well as the reasoning behind those decisions.

4.1 Summary

Scare Tactics is a hybrid action adventure/tactical online multiplayer game focused on player versus

player interaction for children aged 6 and up. The game is set in a house that is haunted by a Ghost. A

group of three Explorers decide to go to said house in order to exorcise the Ghost that lives there. The

game is a one versus many multiplayer game that provides two different experiences depending on the

role the player chooses to play. The Ghost player has a slower-paced, individual and more tactical

experience while the Explorers have a faster-paced, team based and action-oriented experience.

4.2 Introduction

As mentioned before, Scare Tactics is a hybrid action adventure/tactical online multiplayer game

focused on player versus player interaction. The purpose of this game is to provide two completely

different experiences to the players depending on which role they decide to play. These roles are

separate and are meant to not directly influence one another. These roles are the Ghost and the

Explorers.

 The game takes place on a creepy old mansion where the Ghost lives. The Ghost has absolute

power inside the mansion, being able to summon monsters (called Minions) at will, create illusions

and telepathically manipulate objects. The Ghost enjoys ruling over the mansion and will attack

anyone who dares to disturb its territory.

 The Explorers are a group of thrill-seekers that travel around the world chasing ghosts and

exorcising them. They are the Professor, the Sprinter and the Trap Master. They use the light-based

technology developed by the Professor in order to fight ghosts and their minions around the world.

15

Each explorer has their own unique skills fulfill a specific role on the team. The game starts when

these Explorers find the Ghost’s haunted mansion and decide to go inside and exorcise the Ghost.

 In Scare Tactics two distinct roles are put against each other. The Ghost, although all-powerful,

is alone and has to manage its minions and the whole mansion while the Explorers, significantly

weaker by themselves, must use each character's unique skills and teamwork.

 Despite the creepy atmosphere and Haunted Mansion theme, Scare Tactics sports a more

cartoony style and is geared towards children from age 6 and up. Playtests showed a surprisingly good

response from children around that age, as discussed on section 7.

 The next few sections will go into deeper detail on the design decisions made during the

development of Scare Tactics.

4.3 Asymmetric Gameplay

Asymmetric games are those in which different player roles play differently. This difference in play

can come from different mechanics, tasks, visuals, advantages, disadvantages, etc. attached to these

roles. The asymmetric design of Scare Tactics is focused on having different mechanics and tasks

attached to the different roles. The gameplay experience attached to each role is meant to be played

notably different from the other. The team’s objective was to bring together these two different game

experiences and merge them into one.

 Merging two game experiences is not a simple task. Both game experiences have to be

compelling and unique on their own without being independent from the other. The gameplay loops

of both experiences have to be distinct, but still influence one another. The core of this challenge was

striving for this balance between independence and interconnectivity.

 When playing as an Explorer in Scare Tactics the player will have a game experience focused

on moment to moment decision making with an emphasis on action and teamwork. When playing as

the Ghost players will have an experience focused on long-term decision making with an emphasis on

16

strategy and resource management. The next sections will discuss each of these experiences as well as

the differences between them.

4.3.1 Explorer Gameplay

 As mentioned before there are three Explorer classes: the Professor, the Sprinter and the Trap

Master (Figure 4.1). Each one of these classes fulfills a specific role on the Explorer’s team and has

unique skills that help players fulfilling that role. This section will first discuss the general gameplay

shared by all explorers and then discuss each one of the explorer classes separately, focusing on their

different skills and mechanics.

Figure 4.1 - The 3 Explorers. From left to right: Trap Master, Professor and Sprinter.

General Gameplay

The Explorer’s objective in Scare Tactics is to exorcise the Ghost. In order to achieve that goal they

need to power their Light Cannon, shown as a concept in Figure 4.1 and during gameplay on Figure

4.2. However, the light cannon takes an enormous amount of energy to be powered up. To generate

enough power, the explorers must find 3 generators hidden on the house, one in each floor, and redirect

their energy to the light cannon. Once powered up, the Explorer’s can activate the Light Cannon, defeat

the Ghost and win the game.

17

Figure 4.2 - Generator being captured (left) and light cannon (right).

 Gameplaywise the Generators and the Light Cannon work as a typical capture point usually

present in multiplayer “King of the hill” style games. A capture point is a finite area where players

must stand inside for a certain amount of time in order to score points. When the game starts all 3

generator capture points are available and the Light Cannon capture point only becomes available once

the 3 Generator points are captured. When the Explorer captures this last point, they win the game.

 The Explorer role in Scare Tactics is the one inspired by the top down adventure genre. A lot of

the general Explorers mechanics is lifted directly from conventions of this genre. All explorers have

the ability to:

 Move around the level: One of the most basic abilities of any game. Explorers can move in

all 8 cardinal directions (North, South, West, East and the 4 diagonals between them). Players

cannot jump.

 Class Attack: The main method by which Explorers defend themselves and fight minions.

Each class has its own unique attack with their own separate properties that will be discussed

in the next session.

 Drop Portable Lantern: At any time Explorers can drop a Portable Lantern on the floor.

Lanterns in general are light sources and, as such, they have a special effect on the Ghost and

its minions. This is further discussed on section 4.3.3.

18

 Turn on/off Wall Lanterns: Explorers can turn on/off Wall lanterns if they are next to them.

These Wall Lanterns are scattered through the level and are light sources similar to the Portable

lanterns. As mentioned, lights and their effect on the Ghost and its minions is further discussed

on section 4.3.3.

 Revive a Downed Ally: When an Explorer takes enough damage, he falls on the ground and

becomes unable to fight. Another Explorer can go near his downed ally and revive him, healing

a small amount of that explorers health and enabling him to fight again.

Classes and Skills

This section will detail the three Explorer Classes: The Professor, The Sprinter and the Trap Master.

The Professor Class

The Professor is the one that invented the technology used by the Explorers to fight The Ghost. He is

small in stature and little bit portly, however he is very smart and methodical. He prefers to keep his

distance and only take action if strictly necessary. Figure 4.3 shows the professor.

Figure 4.3 - The Professor Class.

19

 On the Explorers team he acts as a support class. His unique skill is the ability to heal allies. He

can create a green light healing sphere centered on himself that slowly expands outwards, healing

himself and any ally that touches said sphere.

 Even though he is not a fighter, he is equipped with a heavy staff that he uses to hit minions if

they get too close. The staff does a lot of damage due to its weight alone, but the Professor is not strong

enough to wield it with enough force to push minions.

 Due to his physique, he is the slowest of all Explorers, often being left behind. To compensate

he has the highest attack power and hit points. These stats, Attack, Speed and Hit Points; varied greatly

during the development of Scare Tactics. He was always meant to be the slowest character but the

maneuverability of the Explorers proved to be one of their core assets when it came to surviving the

Ghost’s attacks. Speed is such an important status that it is necessary for the slowest character to have

both the highest Attack and HP.

 Good Professor players will learn to stay close to the group, staying back and healing whenever

necessary. More often than not, the success of an explorer team is dependent on how well the Professor

player plays.

The Sprinter Class

The Sprinter is the assistant of the Professor. She has worked for him for a long time and is responsible

for the development of some of the technology used by the Explorers. She is tall and slender, which

makes her fast and agile, but not physically strong. She is not as smart as the Professor since she lacks

his years of study, but she is sharp and quick witted, being able to quickly adapt to most situations she

finds herself in. Figure 4.4 shows the sprinter.

20

Figure 4.4 - The Sprinter Class.

 On the Explorers team she acts as a Scout class. Her unique skill is the ability to Sprint, which

makes her twice as fast for a limited amount of time. This is a versatile ability that can be used to either

escape a bad situation or rush forward to take advantage of an opportunity.

 Her weapons of choice are two Batons that she can quickly swing at Minions to cause damage.

Even though each blow does low damage individually, the hits tend to pile up making her a decent

damage dealer. Her attacks can push minions away and, due to her speed, Players have the choice to

either pursue and finish off a Minion or retreat after each blow.

 She is the fastest of all Explorers, which means that she usually rushes ahead by herself.

However, her low amount of Hit Points makes her very fragile and a perfect target for the Ghost when

she is alone. In a reverse situation than that of the Professor, her speed made her a powerhouse during

the development of Scare Tactics. It was necessary to make her have the lowest Attack and HP;

otherwise she could defeat the Ghost by herself.

 Good Sprinter players will understand the value of the hit and run strategy as well as sticking

close to the team. While her team heavily defends an area, she can use herself as bait to either lure

powerful enemies away from her teammates while they gather themselves or to lure weak enemies

into her allies for easy pickings.

21

The Trap Master Class

The Trap Master is a roguish thrill-seeker friend of the Professor that can never say “no” to an

adventure. He became friends with the Professor after they stumbled on each other at the University’s

library. The Professor was looking for a book about Ghosts and the houses they haunt for research

purposes, the Trap Master was looking at the same book looking for an adventure. Years of chasing

trouble made him very fit physically and gave him “street smarts”. He is not especially intelligent nor

dumb, but he instinctively knows how to get out of a bad situation through luck and quick thinking.

Figure 4.5 shows the sprinter.

Figure 4.5 - The Trap Master Class.

 His role on the Explorer’s team is to Control Space. He can place two different kinds of traps

that have different effects on the minions. The Glue Trap can slow minions down to a higher degree

than that of a light source (see section 4.3.3 for more details) and the Poison Trap unleashes poisonous

gas that deal consistent damage to a Minion over a short amount of time. When placed, a Trap stays

on the level until it is triggered. Once triggered said Trap unleashes its effect for some time and then

disappears. Traps can only be triggered by Minions but their effects can harm Explorers as well.

 To attack the Trap Master uses a special kind of Grenade developed by the Professor that only

harms Minions. These Grenades explode on contact and damages all Minions hit by their explosions.

22

They can only be thrown at a fixed range from the Trap Master, which makes him vulnerable to

minions that come too close to him.

 Out of all the classes, his attack and abilities are the hardest ones to use. Both Grenades and

Traps require great spatial awareness from the player and the misuse of the Trap Master skills can

cause serious harm to the whole team. Therefore, he was made into the “Average” stats wise class to

ease his learning curve a little bit.

 Good Trap Master players will be aware at all time of where they, his teammates, his enemies

and his traps are. He will use this information to his advantage. Poison traps are especially good against

minions with low mobility while Glue traps can give the team a chance to counter a bad situation.

They will work with Sprinters to set up ambushes for enemy minions or work with Professors to set

up a powerful defensive position holding their ground using traps, heals, grenades and occasionally

whacking a Minion or two with a staff.

Cooperative Gameplay

The Explorer aspect of Scare Tactics relies heavily on cooperative gameplay and requires players to

communicate with each other. Cooperation and teamwork are the key to success for the Explorers,

given that they can be easily overwhelmed when acting alone. The previous section detailed each

Explorer class and, by looking at it, it’s easy to see how they all need each other.

 The Professor is powerful and can heal himself, but his low maneuverability makes him easy to

be surrounded and overwhelmed when alone. His Heal ability is very powerful, but can only delay the

inevitable. However, if another Explorer can help him open a way through the surrounding Minions

and he uses his Heal ability well; they can overcome this situation together.

 The Sprinter is very fast and her higher attack rate makes her a decent damage dealer, but she

more often than not puts herself into dangerous situations. Even she is not fast enough to escape all

Minions unscathed without help. All small hits she takes pile up and she will eventually succumb due

23

to her low HP. The Professor can help her simply by healing her wounds and enabling her to keep

fighting and the Trap Master can help her by dealing the extra damage or slowing down the Minions

enough that she can avoid them.

 The Trap Master class has access to very versatile skills and can adhere to multiple strategies,

but he has a fatal weak point at close range. He is very good at keeping minions at a distance but he

cannot keep them all away. Eventually some minions will break through and take him down. Any other

one of the other classes can cover this flaw simply by being able to attack at close range. A combination

with the Sprinter tends to be more offensive while one with the Professor more defensive.

 That being said it is not strictly necessary for the explorers to always keep together. Strategies

that involve one player acting alone are viable, if well thought out. The player acting alone is definitely

more vulnerable, but he can either act as bait to distract the Ghost or rush towards an objective; for

limited time. Cooperation does not necessarily mean always being together; but rather acting together

using a strategy that best fits the team’s needs.

 By being together, Explorers can cover up for their weaknesses and revive one another if

necessary. But that also means that they will have the Ghost’s full attention and forces to deal with.

On the other hand, by splitting up they also split up the Ghost’s resources and they can fulfill objectives

faster, but they become much more vulnerable. Banding together makes the game last longer and could

be interpreted as a long-term strategy, while splitting up is a high-risk high reward strategy that has

potential to either succeed or fail marvelously.

 All classes have the ability to survive for some time by themselves as exemplified in the previous

paragraphs. All classes only fall after some time. This survival time limit could only be achieved by

carefully tweaking and balancing the Explorers and Minions stats and has proven to be one of the

greatest challenges when designing Scare Tactics.

24

4.3.2 Ghost Gameplay

The other player role in Scare Tactics is the Ghost. Differently from the Explorers, there is only one

Ghost. This section will discuss the gameplay aspects of the Ghost role as well as the Minions and

skills, called Haunts, available for players in this role.

General Gameplay

The Ghost is an all-powerful entity that rules over the Haunted House in which Scare Tactics takes

place. No one really knows when he started haunting this mansion, or why. All that it is known is that

visitors are not welcome. Should a group of adventures be foolish enough to invade this Ghost’s

territory they will have to face hordes and hordes of Minions.

 The Ghost’s objective in Scare Tactics is simple: To kill all Explorers that have invaded its

house. However, the Ghost cannot interact directly with the Explorers. Instead it must summon

Minions and use Haunts to either kill the Explorers, or trick them into killing each other.

 As mentioned in section 4.3.1, the Explorers objective is to redirect three Generators energy to

the Light Cannon and use it to defeat the Ghost. Therefore, the Ghost’s objective is to defend said

generators and defeat the Explorers. In order to achieve this objective, the Ghost has access to Minions

and Haunts.

 Minions are monsters summoned by the ghost each with their own unique status and behavior.

Minions are designed so that each one has a specific use and can be considered a different tool in the

Ghost’s arsenal.

 Haunts are the ghost skills in which he manipulates the environment or the senses of the

Explorers. Save for one exception, Haunts were designed as a support system for the Minions, allowing

the Ghost to have influence over their behavior and effectives in some way. The exception of the

Haunts is Imp Illusion, which directly interferes with the Explorers and was designed to spread

misinformation and doubt among them.

25

 Both Minions and Haunts are discussed more in depth in the next section.

 Gameplaywise, The Ghost’s role in Scare Tactics is similar to that of a Dungeon Master in

traditional pen and paper RPGs. The Ghost is the one responsible for crafting the obstacles that the

Explorer’s must overcome to win the game. If the Explorers succeed in clearing these obstacles, they

win but if they don't, the Ghost wins.

 The Ghost’s gameplay is slower and more tactical when compared to the Explorer’s. The ghost

focus on mid- to long-term decisions as well as managing the resources available to it. The Ghost first

hatches a plan, then he executes and, if something unforeseen happens, he adapts.

 Good Ghost players will be aware of the consequences of their actions, as well as know which

Minion or Haunt is appropriate for the situation they are currently in. Players will be able to set

ambushes, trick explorers and essentially guide the game to a more desirable state while accurately

managing their resources. They understand if they misuse their resources they will be helpless for a

small period of time that could very well mean victory or defeat.

Minions and Haunts

As mentioned in previous sections, the Ghost has both Minions and Haunts at its disposal. This section

will discuss the different Minion types as well as the Haunts currently available on the game.

 Minions are monsters summoned by the Ghost to do his bidding. Each has their own unique

characteristics as well as their own unique behavior. Table 4.1 contains all Minion types, as well as

their characteristics.

26

Table 4.1 - Minion types and stats.

Minion
Type

Imp

Abomination

Flytrap

Description Small but vicious
demons that quickly
attack any Explorer
they set their eyes on.

An agglomeration of flesh
and viscera that attacks by
exploding itself on their
target.

A possessed house plant
that would rather eat flesh
than bask in the light of
the sun.

Role Small melee attackers.
Make up the majority
of the Ghost’s army.
By itself it poses no
threat, but in numbers
can be a force to be
reckoned with.

Big damage dealer.
It requires support in order
to hit the Explorers, but the
damage it does when
exploding more than
compensate for it.

Immobile defender.
Used to guard points of
interest.
Can be used to create
choke points or to trap
Explorers in a room.

Behavior Quickly roams around
the House and
immediately attacks
first explorer sighted.

Slowly roams around the
House. Once it sees an
Explorer, start moving
towards and blow itself up
when in range.

Once an Explorer is close
enough turns itself
towards him. If the
Explorer gets even closer,
attacks viciously.

Attack Average Very High Very High

Speed Fast Slower Immobile

Hit Points Low High Highest

Mana Cost 10 25 20

 It is important to note that the Ghost cannot directly control Minions. The Ghost needs to keep

the Minions behavior in mind when summoning them as well as predict what they will do.

Differently from the Haunts, Minions cost mana to be summoned. Each minion has a cost associated

to it, as shown on Table 4.1. The Ghost’s mana bar slowly replenishes itself and, if the Explorer’s

manage to complete an objective, the Mana bar refills itself faster. This allows for more minions to be

summoned as the Game progresses.

27

Haunts are utility skills that the ghost can use for no cost with the specific purpose of supporting the

Minions and confusing explorers. They are:

 Open doors: Minions do not have the ability to open doors. Sometimes Explorers use

this information to their advantage by locking a bunch of minions inside a room. With

this Haunt the Ghost can release these captured minions when the Explorers least expect

it. More experienced Ghost players will try to use a locked room an ambush; gathering

a bunch of minions inside a locked room on purpose and releasing them when necessary.

 Turning off Wall Lanterns: Light sources have the ability to interfere with the Ghost’s

summoning abilities as well as weakening minions. This is further expanded upon in

section 4.3.3. Wall lanterns are one of these light sources. The Ghost has the ability to

quite literally turn this annoyance off.

 Imp Illusion: This is a very different kind of Haunt. This haunt is not as simple as the

others and it is not meant to support the Minions. It instead confuses and tricks the

Explorers into attacking each other. This Haunt targets an explorer and, when in effect,

it disguises that explorer as an Imp. However, two important things happen: The targeted

Explorer is not aware that he is disguised as an Imp and the targeted explorer becomes

susceptible to friendly fire. By twisting the perception of the other Explorers, the Ghost

has the ability to trick the Explorers into killing one of their own by using this skill.

Haunts are mainly support skills available to the Ghost. However, the combination of both Haunts and

Minions enable the Ghost to execute a variety of elaborate strategies in order to defeat the Explorers.

Be it by using superior strategy, trickery, or simple brute force the Ghost is a force to be reckoned with

and it is best for the Explorers to be aware of that.

28

4.3.3 The Light Mechanic

As an asymmetric game Scare Tactics has two distinct roles. Each role has its own gameplay

completely separate from each other. But an asymmetric game must go beyond just having two

different roles, but also make these roles interact with one another. One of the design cornerstones the

team adopted was “the Explorers and the Ghost do not interact directly with one another, they use the

environment and other indirect interactions instead”. Adhering to this cornerstone heavily influenced

how the Ghost’s minions and haunts were designed, for example. Another main mechanic that was

born from this cornerstone is the Explorers and the Ghost relation to lights.

 In the world of Scare Tactics lights have the ability to weaken the Ghosts and its minions.

Gameplaywise this means that the Ghost cannot spawn minions on lit areas and any minion that walks

into a lit area becomes slowed, as shown in Figure 4.6.

Figure 4.6 - Lights affecting the Ghost.

The Ghost cannot spawn minions on orange/yellow areas and any minion inside those areas is slowed.

 Through this mechanic, the Explorers can interact with the Ghost using the environment and

positioning themselves on lit areas. Lit areas become a safe haven for the Explorers since they have an

29

overwhelming advantage against the Ghost’s minions in those areas. However, the amount of lit areas

is limited. Lit areas are created by turning on Wall Lanterns scattered throughout the walls of the

Mansion and they are placed in way so that it is impossible to light the whole mansion. The Ghost also

has the ability to manually turn the wall lanterns off, creating a war of attrition between the Explorers

and the Ghost.

 Another way the Explorers can create lit areas is through the use of Portable Lanterns. As

mentioned before, one skill all Explorers share is the ability to place these Lanterns on the level. Each

Explorer can only place one lantern at a time and they disappear after some time, however they cannot

be turned off by the Ghost. They act as a temporary defensive solution that can be used in a pinch by

the Explorers.

 Depending on which role the player play as, light is interpreted in different manners: for the

Explorers it is a protective field that can mean the difference between success and failure; for the Ghost

it is a constant annoyance that limits its power.

4.3.4 Gameplay Influences from Other Games

Scare Tactics is a hybrid action adventure/tactical online multiplayer game. As mentioned before, this

means that as a hybrid game Scare Tactics contains gameplay experiences on both of these genres.

The team looked at other games for inspiration and reference when designing the gameplay of Scare

Tactics.

 This project considers top-down action adventure games to be those in which the player controls

a character with a defined set of skills exploring a world and fighting against enemies using said skills.

These games use a camera placed above the player’s character, facing down. The player character may

or may not have their skill set defined by a character class and new skills may or may not be unlocked

as the game progresses.

30

 This project considers Tactical games to be those in which the players must summon units on a

map in order to complete his objectives. It also focuses on games that run in real time, i.e. time

constantly moves once the game start and there are no turns. These games usually involve resource

and base management, but not necessarily. They usually have a bird’s eye view camera and mouse-

driven controls. All units summoned by the player may be available from the start or be locked behind

some progression requirement.

 The Explorer’s role is inspired by Top-Down Action Adventure games (like games on the

Legend of Zelda series) and the Ghost’s gameplay by Tactical games (like games on the Starcraft

series). The team merged these two game genres in an adventures versus dungeon master like game

similar to the dungeon master mode found on Dungeonland. This section will highlight the games on

these three genres that had a significant influence on the design of Scare Tactics.

Legend of Zelda: A Link between Worlds

One of the first games studied was The Legend of Zelda: A link between worlds (Figure 4.7). In this

game, players take on the role of Link as he explores and defends the kingdom of Hyrule against those

that would threaten it. The players have access to a variety of items, each with their unique function,

which they must use to get through dungeons and defeat enemies. The core elements of these games

are the exploration element and the smart use of both the player’s items and the environment when

facing obstacles.

31

Figure 4.7 - The Legend of Zelda: A link between worlds, title screen.

 The camera in A link between worlds uses a top down perspective (Figure 4.8), but with a twist.

The camera is not directly above the character but instead at an angle and zoomed in. This set up not

only looks good and allows players to better see details on the character model, but also limits how

much of the world players can see on the screen at a time. The game uses the camera distance and

angle to limit how much space players have to maneuver in. The size of this “reaction space” was

carefully designed to not allow players to plan how to deal with enemies as they appear on the screen

but still be big enough that players can react to enemies. This keeps players in a constant alert state,

waiting for the next enemy to appear on the screen in order to properly react to it.

Figure 4.8 - The Legend of Zelda: A link between worlds, camera.

32

Monaco: What’s Yours is Mine

Monaco: What’s yours is Mine (Figure 4.9) is a co-op stealth game where players take on the role of

a team of thieves in order to steal all the valuables scattered across the level. Players must choose one

of 8 characters to play as. Each character has distinct skills and perks exclusive to them.

Figure 4.9 - Monaco: What’s yours is mine, title screen.

 Monaco’s co-op gameplay relies heavily on the characters in play. Each of the characters distinct

abilities complement each other if used wisely. The character composition used by a group of players

usually dictates how these players approach levels.

 For example,iven a group of three players playing as the Cleaner, the Lookout and the Redhead.,

the Cleaner has the ability to knock out enemy NPCs if they are not alert to his presence, the Lookout

has the ability to see her surroundings even without line of sight, and the Redhead can distract enemy

NPCs without harm. With this group of characters the players can go for a more direct approach, using

the Lookout to scout enemies in order to lure with the Redhead and take them out using the Cleaner.

But if you substitute the Cleaner with the Mole, who has the ability to dig through certain walls, the

strategy changes from taking out enemies to luring them away from the Mole while he carves a way

to victory. Independent of which strategy the players decide to use, communication between them is

essential.

33

 Figure 4.10 shows a level from Monaco. Levels in Monaco are big and open allowing the players

to move around as much as they want. Most rooms on a level are accessible in more than one way,

increasing the freedom of movement the players have.

Figure 4.10 - A level from Monaco.

 Due to the game’s bird’s eye view camera, levels are seen from the top. This makes them look

like floor plans. This not only fits the game’s theme, as thieves often plan their robberies using these

kind of plans in movies, games and other media; but it also gives all players information about the

level layout and the position of other players. Levels are designed to be neatly separated into sections

and this makes communication and planning between players easier. Finally, the game has a “fog of

war” on the level. Areas not in the line of sight of players are dark and foggy, allowing players to see

only the layout of walls and other objects. This “fog of war” and the lighting effect used in Monaco’s

levels make them look even better due to the contrast between light and shadow.

Dungeon of the Endless

Dungeon of the Endless (Figure 4.11) is a class-based procedurally generated online multiplayer

dungeon crawler game. The game uses handmade rooms on their procedural dungeon generation

algorithm. Its algorithm essentially shuffles all the rooms into graphs that fit into a given logic.

34

Figure 4.11 - Dungeon of the Endless, title screen.

 The game also features different character classes that the players must choose. Each class has

its own unique stats and skills that complement one another, although not to the extent as the ones in

Monaco. The main difference from the characters found in Dungeon of the Endless when compared to

other games is that the plays cannot directly control the characters actions. Players can control to which

room the characters go and when to use interactable objects on the environment (research stations),

but they cannot control which specific enemy the character attacks. This removes the player from the

moment to moment gameplay during a battle, allowing them to think more about their mid- to long-

term strategy rather than their immediate necessity.

 The co-op aspect of Dungeon of the Endless gives the player the option to use different

strategies. Individual players can stray away from the main group and explore the map (Figure 4.12).

If they are strong enough, they might be able to take on the enemies. More often than not, it gets

overwhelming for one player to go solo and stay alive until the end. It also hinders other players as the

enemies can come from random directions according to how many rooms have been explored. When

exploring a room, players must spend resources to keep said room powered up and prevent enemies

from spawning on said rooms. Enemies can destroy the research stations that the players set up (Figure

35

4.12). Communication and strategy are the keys to success. The later levels of this game can get so

complicated that it is impossible to finish them without proper teamwork.

Figure 4.12 - Players in different sections of the map (left) and enemies spawning from several locations (right).

Bastion

Bastion (Figure 4.13) is an action adventure game where the players take on the role of the Kid, a

young soldier tasked with guarding the walls of the town of Caelandia. At the beginning of the game

the town, and the whole world, is destroyed in an event called the Cataclysm. Being one of the few

survivors, the Kid explores this shattered world in order to not only find other survivors but also to fix

the caelondian machine called the Bastion that can, theoretically, restore the world. This game is

famous for its interactive storytelling and narration, however these elements are not the focus of this

analysis.

Figure 4.13 - Bastion, title screen.

36

 Bastion’s movement and combat control scheme proved to be very interesting when analyzed.

The Kid can move in all 8 cardinal directions and has access to a dodge roll. He has access to a variety

of weapons, each with two functions and set of special skills; but can only equip two at a time.

Movement is controlled by the keyboard while attacking is done with the mouse, when playing using

keyboard and mouse controls. Each weapon is attached to a different mouse button and the mouse

cursor is used for aiming. When moving, the Kid faces the direction of the movement but, if an attack

button is pressed, he will turn to the direction of the mouse cursor while keeping his movement speed

and direction (Figure 4.14). This grants players a great amount of maneuverability during combat,

since it lets players attack and reposition themselves at the same time.

Figure 4.14 - The Kid aiming his spear at the mouse cursor.

Dungeonland

Dungeonland (Figure 4.15) is a Hybrid Action Adventure/Tactical multiplayer player versus game

with a fantasy setting that heavily borrows from common pen and paper RPG tropes, The game takes

place in an amusement park called Dungeonland created by an evil Dungeon Master (the DM) in order

to trap and kill adventures dumb enough to come to said park “looking to have some fun”. Up to three

Players can play on the adventure roles while only one player can play as the DM. This is the game

closest to Scare Tactics in terms of design out of all analyzed games.

37

Figure 4.15 - Dungeonland, title screen.

 The Adventurer role is divided in three different classes, Warrior, Rogue and mage. Warriors

can take a lot of damage and strike slowly with powerful blows; Rogues are fast and can deal weaker

blows in rapid succession and Mages are fragile but can use their magic to deal a lot of damage. These

classes are designed to be able to stand on their own if necessary but work better with the help of the

others. The Adventures objective is to go through the park slaying all monsters the DM throw at them

until they defeat a stronger boss monster at the end of each level. They all have a set of 3 unique skills

available to them, but players can only use one of them on a given level.

 The Dungeon Master role (Figure 4.16) is responsible for placing the obstacles that the

Adventurers must overcome. He does that by using a deck of cards that build by the player before the

game begins. Cards, once played, can summon monsters or use special skills unique to that card. In

order to play a card the DM must spend energy from an energy bar that slowly refills itself. The DM

must manage his resources in order to effectively lay down traps and defeat the explorers, before they

get to the end of the level and defeat him.

38

Figure 4.16 - Dungeonland’s Dungeon Master mode.

Lessons Learned

After analyzing all of these games and identifying interesting mechanics from them, the design team

incorporated these mechanics on their own design in a way that made sense for Scare Tactics.

From Legend of Zelda: A link between Worlds the camera angle, distance and the “reaction space”

concept created by them greatly influenced how the Explorer’s camera was made. The inability to see

that far ahead while maintaining enough space to react to obstacles creates intense moment to moment

gameplay that was desired for the Explorer’s gameplay.

 The focus on class-based teamwork of the Explorer’s role has its roots in the analysis of both

Monaco: What’s yours is Mine, and Dungeon of the Endless. The reliance of the classes on one another

increases the necessity for good player communication in order to win. Designing the Explorer classes

in a way similar to that of these games and, therefore, increasing the necessity for player

communication, was desired since the team wanted a noticeable contrast between the solo role of the

Ghost and the team role of the Explorers.

39

 The Explorer’s movement scheme was based directly from Bastion. Early playtests showed that

it was easy for the Ghost to surround and kill an Explorer. The increased maneuverability in the

Explorer’s movement proved to be necessary in order to create a game that could be balanced and fun,

The Ghost’s camera was inspired by the one in Monaco since it provided a good strategic view of the

whole level. This made the Ghost player feel more in control of the haunted mansion and allowed him

to more easily set up traps and obstacles for the Explorers. However being able to see the whole level

at once was not possible in Scare Tactics simply because the level is too big. The team settled on a

more zoomed in view. This zoomed in view had the added benefit of hiding some information from

the Ghost, adding to the challenge of playing this role.

 In Scare Tactics, Minions are not directly controlled by the player. Once spawned they follow

their behavior without any more input from the ghost. This a step further from Dungeon of the Endless

indirect character control. This decision allowed for the Ghost to focus solely on the strategic

placement of Minions. As the more tactical of the two roles in Scare Tactics, this made sense since it

allows the Ghost players to focus solely on strategy and not on the moment to moment dangers their

Minions might face.

 Dungeonland, being similar in design to Scare Tactics, served as a comparison point. By playing

this game it was easy to see the strengths and weaknesses of the design decisions shared by both games.

By analyzing Dungeonland’s implementation of these design decisions the team was able to come up

with alternate solutions better suited for Scare Tactics. One such design decision was how the Minions

should be spawned by the Ghost. By using a mana system and a deck of cards, Dungeonland limits

the Dungeon Master ability to summon monsters in two different ways. This increases the moments

of gameplay where “nothing happens”, since the DM cannot make anything happen. In Scare Tactics

the team used a skill and cooldown system instead of the deck of cards, but kept the mana bar. The

cooldown served as a weak limitation, stopping the Ghost from spamming the same kind of Minion

constantly, while the mana bar worked as a hard limitation. Ghost players are still punished for bad

40

management of their resources, however these punishments don't happen as often as they do on

Dungeonland thus reducing the amount of gameplay moments where “nothing happens”.

 The study of these other games not only helped the Design of Scare Tactics but also increased

the design knowledge of the whole team. All games mentioned on this document are impressive in

their own unique ways and their study is of great value to anyone interested in game design.

4.4 Level Design

Scare Tactics has evolved from being a top-down 2D game to a 3D game with two distinct camera

perspectives. Our initial level was a small flat level and both, the Explorers and the Ghost, had a top

down camera (Figure 4.17).

Figure 4.17 - Prototype Level.

 Once we chose Ghost vs Man as our theme, we needed a new level as it required objectives,

which was not present in our prototype level. The player playing as the overwatch took the role of the

41

Ghost. In our prototype version, the overwatch player used light to their advantage but it did not make

sense for the Ghost. Thus we had to strategically position the lights again but this time in favor of the

players in the scene (Figure 4.18).

Figure 4.18 - First Level for Ghost vs Man theme.

 Since the cameras were different, we wanted to enforce the visual depth and decided to transition

from 2D art to 3D art. This was definitely a big transition for us and worked in our favor as it enforced

different camera views for both sides of the asymmetrical gameplay. We were happy with the results,

but weren’t quite satisfied. Even though our art was 3D, our game did not feel 3D because we were

still moving on the same flat plane. We wanted to create different height elevations for the players to

walk around in. This posed a problem as the grid used for our AI in the game remained 2D. The

solution to the problem was to never create areas in the level where an Explorer or a minion could

walk on two different height elevations. If we were to look at our latest version of the level, the

walkable area is still a 2D grid, some parts just have different heights (Figure 4.19).

42

Figure 4.19 - Scare Tactics Recent Level.

Since the level is a haunted mansion, we looked at mansions around the 1900s for references. We

created a list of rooms and areas that we wanted to include in our game. The TV show Downton Abbey

was a good source of references and helped us get a feel of environment and objects that were used

back then. We laid out most of the rooms so it makes sense as a mansion but also kept the game flow

in mind. Since the light is used as a mechanic in our game, it was important for us to place the objects

and the wall lanterns strategically and not just aesthetically. The objectives for the level were placed

to give the Explorers a slight advantage since it requires for them to be within a small area. We wanted

the final objective to be placed in a bigger area to give a sense of a climax and was thus placed in the

main hall of the mansion.

43

5 Technical Design

This section describes the technical design of Scare Tactics. It will discuss the team’s choice of tools

for the game, the reasoning behind those choices, as well as, the game’s overall software architecture.

5.1 Tools

5.1.1 Visual Studio 2015

Scare Tactics is being developed in C++ using Microsoft Visual Studio 2015. One of the team’s goals

prior to development was to gain more technical experience using C++, because of its wide use within

the game development industry. As this is ultimately an academic project, this provided an opportunity

for the team to tackle challenges unique to C++ game development, such as memory management and

multithreading. C++ also allows us to have full control over the game loop and submission of draw

calls to the graphics API. The graphics API for this project is DirectX 11, due to the team's familiarity

with it. Visual Studio 2015 also comes with some useful graphics and GPU debugging tools

specifically for DirectX.

5.1.2 Unity

In addition, the team used Unity 5 as a prototyping tool and level editor. This allowed mechanics to be

tested faster and without the overhead of C++ implementation. Once a mechanic was tested and

proven, it was ported to the Scare Tactics engine. The Unity 5 scene editor is a powerful tool that

allowed the team the luxury of not having to build a level editor. Levels were built in Unity, exported

to the JSON format, and imported into the Scare Tactics engine.

5.1.3 Proprietary Tools (Debugging)

This section quickly describes the proprietary tools developed to increase the development

productivity of Scare Tactics.

44

Console Window

We built the console window using dear IMGUI framework. It is integrated with our Trace API, and

it also supports custom commands (Figure 5.1), keyword filtering (Figure 5.2), and copying to the

clipboard (Figure 5.3).

Figure 5.1 - Usage example of the CONSOLE_COMMAND macro.

Figure 5.2 - Console Window filtered by the keyword

Warning.

Figure 5.3 - Console Window context menu displaying

Clear and Copy to Clipboard commands.

Trace API

In the Scare Tactics vocabulary, Trace is a powerful set of preprocessor macros that allowed us to

inspect and debug our code during development time with zero impact in performance on release

mode. Trace macros can be subdivided into three main categories: logging, watch window, and line

drawing.

45

Logging

Logs can be created using the TRACE_LOG, TRACE_WARN, TRACE_ERROR and TRACE as

demonstrated in the (Figure 5.1). The logs are output in the game console (Figure 5.4) as well as in

Visual Studio Output tab (Figure 5.5).

Figure 5.4 - Trace messages being displayed in the Console Window.

Figure 5.5 - Trace messages being displayed on Visual Studio Output Window.

Watch Window

During a debug session, it is common to find key values that need to be watched over time. While it is

still possible to observe those values in the console window, they can quickly overflow the console

buffer making it impracticable for the developers to follow multiple of those variable values in the

console output at the same time - and ultimately slowing down the debug process. This scenario is

shown exemplified in Figure 5.6.

46

Figure 5.6 - Variable values being debugged without Trace Window. Usage (left) and output (right).

In order to better address this kind of debugging scenario, the Scare Tactics Trace API is loaded with

the TRACE_WATCH macro. In opposition to the log macros, the watch macro doesn’t output to the

console window. Instead, it creates a new watch window which displays the watched values in a much

more concise way. Figure 5.7 compares the usage and output of the watch macro with the previously

shown log macros

Figure 5.7- Variable values being debugged with Trace Window. Usage (left) and output (right).

Line Drawing

The Scare Tactics Trace API is also equipped with several macros for the output of simple lines and

geometry to the game screen, as shown in the Figure 5.8. The TRACE_LINE macro is used to draw a

straight line segment from a determined point to another in world space coordinates. The remaining

macros draw a combination of lines to form a simple geometry in a predetermined size.

47

Figure 5.8 - Line drawing macro definitions.

The common usage and output of the Line Drawing macros is showed in the Figure 5.9 and Figure

5.10.

Figure 5.9 - Grid rendering method using TRACE_SMALL_BOX to draw grid data on the game screen. Usage taken from

Scare Tactics codebase.

48

Figure 5.10 - Grid data being displayed with use of a line drawing macro. Example taken from Scare Tactics development

build.

5.2 Game Engine Architecture

This section describes research in the area of game engine architecture. One of the goals of this project

was to learn about the various subsystems of a game engine, such as rendering, networking, artificial

intelligence, memory management and collision detection. Although commercial engines such as

Unity and Unreal can streamline game development, these engines also abstract the subsystems that

the team was interested in building. With that in mind, the team decided to build the engine for Scare

Tactics from the ground up.

 The Scare Tactics engine is built in C++ 11. It currently supports Windows 10 and DirectX 11.

It provides a generalized API for rendering, memory allocation, and collision detection. It is

49

implemented using a combination of Policy Based Design and traditional Inheritance, which leverages

C++ Templates.

5.2.1 Components / Policies

In traditional Inheritance, a behavior, or policy is embedded in a base class, and then extended via a

derived class. This results in class hierarchies with greater depth, which can sometimes be a

performance issue when taking in account virtual function calls. Virtual functions, which are typically

implemented using a lookup table, often require an extra layer of indirection. (Baggett, 2014)

 Policy Based Design, which is also known as the Component Pattern (Nystrom, 2014) or the

Strategy Pattern (Gamma 2011), extracts these policies into classes. This pattern differs from

inheritance, because policies are no longer embedded inside of a base class. As Nystrom states, “The

entity is reduced to a simple container of components.” (Nystrom 2014. 214) This results in class

hierarchies with greater breadth.

5.2.2 Template Specialization / Inheritance

C++ Templates are a construct that allows “combinatorial behavior, because they generate code at

compile time based on the types (and / or constant values) provided by the user.” (Alexandrescu, 2001.

6) Through the use of templates, virtual function overhead can be avoided. By decomposing a class

into policies, we can achieve different combinations of behaviors.

 For example, a class factory may have different strategies for memory allocation and multi-

thread support. A traditional class hierarchy may have one base class and several derived classes that

encompass the full suite of desired behaviors, such as single threaded linear allocation or multi-

threaded pool allocation. A policy based model builds the factory as a template class that takes an

allocation policy and thread policy as template parameters. This allows for greater flexibility as the

engine’s functionality grows.

50

5.2.3 Vertex Example

To illustrate how the Scare Tactics engine implements policy-based design using templates, this

section will describe how FBX mesh data is loaded into different types of vertex structures. In graphics

programming it is common to define structures to represent vertices of geometric data.

These vertices often contain more than position information, such as vertex normal and texture

coordinates used for sampling. The information stored in a vertex structure is determined by the use

case. Three dimensional geometry often contains a vertex normal in order to perform lighting

calculations, which differs from the vertex used to render two dimensional text.

 Managing different types of vertices and the shaders with which they are compatible can often

become cumbersome, especially when loading resources from a file. It would be unreasonable to have

to modify the FBX resource loader for every kind of vertex that will be added. For example, some

mesh data is static and contains no animation data, while others are dynamic and contain blend indices

and weights to perform vertex skinning. To solve this problem, the FBX resource class takes a template

argument which is a vertex type. This allows us to add many different vertex types without having to

modify the resource class which uses them. The FBX resource class can load models using a vertex

that stores only positions, or a vertex that stores positions, normals, texture coordinates and blending

information.

5.3 Class Breakdown

The domain model in Scare Tactics is a combination of traditional inheritance and the component

pattern as described in section 5.2.

5.3.1 BaseSceneObject

The BaseSceneObject is the base class for all other non-component entities within the game. It is an

instantiable class, which is composed of an instance of a Transform. A Transform is a class responsible

for maintaining the position, orientation, and scale of an object. Any entities which require a physical

51

representation in the game will have a Transform and thus inherit from BaseSceneObject. For example,

the Explorer and Minion classes inherit from BaseSceneObject. Figure 5.11 illustrates the

BaseSceneObject diagram.

Figure 5.11 - BaseSceneObject Class Diagram.

5.3.2 BaseComponent

The BaseComponent class is the base class for all component classes. Any class which represents a

behavior or policy will inherit from the BaseComponent class. The purpose of this class is to be

attached to classes derived from BaseSceneObject. It maintains an active state, and a pointer back to

the owning instance of BaseSceneObject. It also provides facilities for exposing callback functions for

a derived BaseComponent class. Figure 5.12 illustrates the BaseComponent diagram.

52

Figure 5.12 - BaseComponent Class Diagram.

 Some examples of derived component classes are the Health, and ColliderComponent classes.

The Health class is responsible for keeping track of the owning BaseSceneObject instance’s health and

receiving callback function’s when that value is synced across the network.

 The ColliderComponent class is responsible for defining a volume with which to test for

overlaps and notifying the owning BaseSceneObject instance when collisions have occurred and

concluded.

5.3.3 Explorer Example

As an example that illustrates how this design works, one can look at the Explorer class. The Explorer

class is derived from BaseSceneObject. It contains the following component classes: NetworkID,

ExplorerController, AnimationController, SphereColliderComponent, Skill, and Health. Each

component has a single responsibility and exists across multiple entities. Figure 5.13 illustrates the

Explorer class and its fields.

53

Figure 5.13 - Explorer Class Diagram.

 The NetworkID class is responsible for identifying the Explorer to a network server or client.

The ExplorerController is responsible to handling game logic of the Explorer. It handles callbacks

from other components such as the AnimationController. The AnimationController is responsible for

managing the animation state of the Explorer. It stores the SkeletalHierarchy and animations for a

given model. The SphereColliderComponent class stores the bounding sphere of the model and is used

for intersection testing with static scenery such as walls and floors. The Skill class manages the

activation and cooldown times of the different abilities of the Explorer. Lastly, the Health component

manages the maximum, and current health values of the Explorer and provides an interface to

manipulate that data.

54

5.3.4 Object Factory

The Object Factory is among the fundamental pieces of the Data Driven design adopted during the

development of Scare Tactics. It was built on top of our Pool Allocator and it also supports C++11

style iterators (Figure 5.14).

Figure 5.14 - Usage of Factory iterator.

The factory requires all object classes to be registered prior to its usage. This registration is made

during precompile time using the REGISTER_FACTORY macro (Figure 5.15).

Figure 5.15 - Object registration.

Figure 5.16 illustrates how objects are created while the Figure 5.17 illustrates how objects are

destroyed.

55

Figure 5.16 - Object creation.

Figure 5.17 - Object destruction.

5.4 Graphics

This section describes the rendering structures, and techniques used in Scare Tactics. Scare Tactics

presented some interesting rendering challenges based on the requirements of a scene and the coupling

of the lighting and artificial intelligence systems. The game features a full 3D environment, animated

characters and supports shadow casting light sources. Render passes are performed in the following

order: shadow textures, static mesh data, animated mesh data, light volumes, and the final composite

pass.

5.4.1 Shadow Mapping

Shadow Mapping is a projective texturing technique where a texture is created that represents the scene

from the perspective of the light. This texture carries depth information of the scene and is used during

the light buffer pass. In this pass, we compare the distance of the pixel from the light source to the

depth stored in the shadow map. If the distance is greater, than it can be determined that the pixel is

not in a direct line of sight of the light source (Luna, 2012. 673).

5.4.2 Hardware Instancing

Game scenes are constructed using modular walls and floor models. There are also a number of static

objects that serve as scenery. The renderer makes heavy use of Hardware Instancing in this pass.

56

Instancing is a technique where a geometry data is rendered multiple times using different transform

data (Gregory, 2009. 850). In order to minimize the setting of GPU state, transform data is grouped by

mesh and passed to the GPU in an Instance Buffer.

5.4.3 Lighting Deferred Rendering (Point lights / Spot lights)

The lighting system in Scare Tactics, is required to support anywhere between 10 - 20 shadow casting

light sources per scene. Given this constraint, Scare Tactics uses a Deferred Lighting system with

Shadow Mapping.

 Deferred Lighting is a post rendering process, where various information about a scene is

rendered to several textures. This collection of textures is called a Geometry Buffer (or G-Buffer), and

normally contains textures for position, surface normals, diffuse color and depth. Leveraging this

information, another pass is performed using the geometry of a light volume to calculate the lighting

information of the scene. This is sometimes called the light buffer texture. The light volume for a point

light is a sphere and for a spot light it is a cone. The final pass is performed which uses the information

stored in the G-Buffer and light buffer texture to compose the final image. The reason this method is

preferred for scenes with many lights is because via rasterization the only pixels drawn are pixels that

are contained within the lights volume. This contrasts forward lighting where light buffer is calculated

in the same pass as geometry, which will perform lighting calculations for pixels that will not be in the

light’s volume. An example of G-Buffer textures can be viewed in Figure 3.4.1.

57

Figure 5.18 - G-Buffer is composed of several textures, including a normal texture (top left). Diffuse texture (top right). A

lighting texture (bottom right) is created using the normals and positions. The final image (bottom left) is composed using

the diffuse and lighting textures.

 Light also serves the purpose of inhibiting the Ghost’s abilities. For example, The Ghost cannot

spawn enemies for the Explorer’s inside of well-lit areas. Also the enemies that are spawned become

slower when traveling through well-lit areas, and will try to avoid those areas. This requires that the

lighting information of a scene somehow be translated into a format which can be used by an AI to

plan motion and behavior. Light buffer textures are also used by the artificial intelligence system to

update grid information for enemy pathfinding.

5.5 Skeletal Animation

In Scare Tactics, all 3D characters are animated using a technique called Skeletal Animation. In this

technique, a hierarchy of coordinate spaces called bones, or joints is constructed. This hierarchy is

referred to as a skeleton. Each vertex of a mesh is “skinned” to this skeleton, which means that each

vertex is influenced by a subset of the skeletons joints. An animation is a series of keyframe poses of

58

the skeleton. Keyframes are position and orientation information of each joint at a given time during

an animation. As an animation plays, the positions and orientations of the joints are interpolated and

used to morph the position of the vertices over which they have influence. (Gregory, 2009. 547)

 The characters in Scare Tactics, are imported via FBX files, have a max joint count of 64 and

max influence count of 4 joints per vertex. Animations and joint matrices are calculated on the CPU

and then passed in a Constant Buffer to the GPU. On the GPU each vertex is transformed by a weighted

average of joint matrices before rasterization.

5.5.1 State Based Animations

Sitting above the low level implementation is an Animation Controller, which supports State Based

Animation. Each character has an idle, walk, attack state. Each state is a mapping between a range of

animation keyframes to a behavior. From a gameplay perspective, switching between animations is

easily accomplished by switching the state of an animation controller. The animation controller also

provides the ability to tag a specific keyframe with a callback function. This allows the user to time

behavior with a given animation. For example, melee animations often have a function tagged to the

beginning and end of the animation in order to activate and deactivate a collider used for hit detection.

5.6 User Interface

This sections describes some of the considerations for the implementation of the user interface (UI)

of Scare Tactics. Since the initial prototypes, we quickly noticed how important UI would be to convey

most of the game’s mechanics, goals and controls. During the different development stages, we tested

different combinations with different groups of people in order to learn what worked best in terms of

interface design. Soon enough, we noticed our UI was becoming complex and dense in terms of

meaning - becoming one of the key aspects of the game.

 Given the complexity of the prototype UI, one of the first solutions we considered was to use a

fully-fledged HTML engine to render the elements into some texture and then use that in our graphics

59

pipeline (e.g. Awesomium). This solution, despite being easy and quicker than any alternative, did not

met two of our goals: it is not performatic and did not add much in terms of knowledge, being a black-

box solution.

 The solution we finally used involved creating a custom Sprite Manager to render all of our 2D

elements - both for static HUD elements (e.g. skill bar) and for world-based elements (e.g. health bars).

We created a simple interface/API that allowed programmers to use the sprite manager flexibly from

different parts of the code for different purposes, yet, everything was rendered with a single draw call

using hardware instancing. The shader handling sprites is also responsible for some effects, such as

fill color and direction. The Sprite Manager also offers auxiliary methods to position UI elements both

on world space and camera space.

 The following images shows some of our Sprite Manager capabilities: icon/text alignment

(Figure 5.19), linear fill (Figure 5.20), radial fill (Figure 5.21) and world space rendering (Figure 5.22).

Figure 5.19 - Different UI elements on different alignments.

60

Figure 5.20 - Radial fill being used to indicate the cooldown of an ability. The math is part of the shader that render

sprites.

Figure 5.21 - Linear fill being used for Ghost’s mana bar.

Figure 5.22 - UI rendering based on world space coordinates.

5.6.1 Font rendering

While dealing with user interface, one problem that we had to deal with was font rendering. Different

solutions exist, most of them involving the creation of font maps of different sizes. We decided to

implement the signed distance field (SDF) solution (Green, 2007). This solution allowed us to use the

same font map for different scales, drastically reducing the number of textures to be loaded to the

GPU.

61

5.6.2 Debug UI

During early development, several of our debug tool and solutions (e.g. console, FPS meter, BVH

explorer) were created and used a third-party library for the user interface, dear IMGUI. By using this

library early on, we postponed the development of our actual UI solution to a later phase, without

hindering other areas. More importantly, some of the design solutions from dear IMGUI were used as

guidelines when creating ours, especially the Immediate Mode concept, opposed to more commonly

used Retained Mode paradigm. Some of these tools are further detailed in section 5.1.3.

5.7 Collision Detection

Collision Detection is the process of determining whether two or more objects are overlapping.

(Ericson, 2005) It is a broad topic with many applications and techniques. This section describes the

implementation of collision detection in Scare Tactics. Figure 5.23 shows an overall diagram of the

collision detection architecture.

Figure 5.23 - Class diagram for collision detection system.

62

5.7.1 Template Colliders

The Scare Tactics engine collision detection is composed of several layers (Figure 5.7.1). The first

layer is a collection of templated structures used to represent parametric surfaces and objects, such as

rays, lines, planes, spheres, and cubes. Also included in this layer are basic intersection tests for these

objects, such as the intersection tests for a ray and plane or a sphere and cube, etc. Many of these tests

are based on iterations over each dimension of the object. For example, the intersection test for a ray

and cube is basically a test between a ray and each pair of parallel plane faces of the cube. In 2D, this

test iterates twice. Once for each pair of faces parallel to a given basis axis. In 3D this test iterates

thrice. Our parametric structures and intersection tests use C++ Templates to generate code specific

to testing in 2D or 3D.

5.7.2 Collider Components

The second layer is a collection of component classes that wrap an instance of a first layer class. For

example, a sphere collider component wraps an instance of a sphere struct that takes a 3D vector

template argument. The component layer is responsible to storing information about the collider, such

as the active and dynamic state. This information determines whether collisions will be tested against

this collider and if that test will be a dynamic or static collision test. This layer also discerns whether

the collider should be treated as a physical object or as a trigger for some type of user defined behavior.

 A collider that is not a trigger is treated as a physical object and overlaps will be handled

automatically by the collision engine. The user does not have to include logic for objects that simply

must not overlap. A trigger will not be processed as a collision and simply notifies the overlapping

objects of each other’s presence.

5.7.3 Bounding Volume Hierarchy

The last layer is composed of a Bounding Volume Hierarchy and a Collision Detection Manager. These

higher level objects work in unison to process collisions and dispatch events. A Bounding Volume

63

Hierarchy is a tree of nodes representing objects that contain smaller objects. This is a spatial

partitioning technique to optimize the process of finding collisions by discarding large groups of

objects. (Ericson, 2005. 236)

 In the Scare Tactics engine, after the scene is loaded, it is broken up into quadrants, which are

the largest volume in the scene. Objects in the scene are then process in decreasing size order and

added to the hierarchy. Dynamic objects, such as characters, are removed and added to the bounding

volume hierarchy each frame. When an object is added, it is first tested against a quadrant. Once

finding the intersecting quadrant, all objects contained in nonintersecting quadrants are discarded,

which results in faster iteration times. Figure 5.24 shows how the Bounding Volume Hierarchy tree is

organized for one screen.

Figure 5.24 - Bounding Volume Hierarchy. Root Quadrants are traced in red. All other colliders are a child of one or more

quadrants.

5.7.4 Culling

Apart from these previous layers is a culling layer. This layer is application specific and used during

non-instanced rendering passes. For example, when rendering shadow textures, objects are culled

64

against the light’s perspective frustum. This is performed to avoid processing geometry on the GPU

that will get discarded during rasterization.

5.8 Networking

This section describes another important research field for Scare Tactics: networking. Given the

asymmetric gameplay we were aiming for, with distinct play styles and hidden information, it was

important to ensure that players could experience our game on different machines. Therefore, we

researched different techniques to implement multi-player networking in our game. Initially, Unity

helped to sketch and test some of the most basic decisions in terms of the network architecture to use

in our final game.

 One interesting point is that we have settled on a “one versus many” experience. This decision

immediately allowed us to draft a network architecture in which the Ghost player is the host

environment and the multiple Explorers are clients. This design has been put to test and allowed us to

set up a playable prototype very quickly. Most of the mechanics involved a handful of transform

synchronizations and some still required more reliable commands, but both scenarios were easily

handled by the new networking module in Unity 5.

 The greater challenge came with the C++ implementation. We decided to try and develop our

own network module, without resorting to third-party libraries. This decision was in line with the

academic goals we set for our project. Moreover, this gave us a lot of control over packet creation and

management, allowing us to have a very simplistic yet robust network module behind our game. Also,

as we will detail further in section 5.10.2, we could optimize the package serialization/deserialization

to ensure some extra performance.

 The C++ implementation mimics some of the design decisions used in the Unity prototype -

most notably the unified pattern in which one component can be present on both a client and a host,

having different behaviors associated with it. Also, every network component has the concept of

65

authority, guiding who is ultimately responsible for a certain object. We have also used the general

differentiation between a Command, i.e., a function that a client can call on the host given it has

authority over the target object, and a RPC (Remote Procedure Call), i.e., a function the host can call

on one or more clients to update certain information.

 We used basic socket functions made available by the Windows API to implement both host and

client, using a customized protocol transmitted through TCP. We chose TCP over other alternatives,

noticeably UDP, because it allowed us to simplify gameplay implementation. TCP ensures packet

delivery and sequence, so that our game does not have to worry about scenarios in which packets have

been lost. This comes at a cost, especially in terms of packet overhead. However, after some tests, we

could notice that using asynchronous sockets and disabling Nagle’s algorithm on them was enough to

obtain reasonable performance.

Initially, our game has no goals to be played over the Internet, so our design and optimizations focused

only playing via LAN connections. Also, for simplicity and given our current scope, the connection is

plain and not encrypted or secured. This helped us during development and debugging, as we could

read the protocol and inject packets when necessary. Should our game evolve to a commercial product,

these decisions would need to be reevaluated.

 Connections are handled by a NetworkManager class, which is a singleton in our solution. This

class exists on the host and the clients, and is aware of their roles. Therefore, our main update loop can

address networking updates without worrying about any special treatment.

5.9 Artificial Intelligence

This section describes the use of Artificial Intelligence in Scare Tactics. In particular, it describes the

motion planning and decision making techniques used to mold the behaviors of the different minions

that compose Scare Tactics.

66

5.9.1 Motion Planning

Motion Planning is the process of breaking down a desired movement sequence into a set of steps that

satisfy the movement requirements. In Scare Tactics, Motion Planning gives minions the ability to

chase explorers or wander around a certain area of the level.

Choosing a suitable pathfinding strategy was one of the challenges faced during the development of

Scare Tactics. It involved figuring out an optimized way to guide several NPCs into their respective

targets. Initially, we tackled this problem with a simplistic solution: each AI agent would perform a

new A* query from its position to its target position. Additionally, the A* would be recalculated

whenever the target position the layout of the grid changed. Soon, this solution proved itself as a

bottleneck in the scalability of the game and we had to look for optimization strategies to the

pathfinding solution.

 After analyzing the possibilities of improvement on the pathfinding algorithm, such as Jump

Point Search (Harabor, 2011), Hierarchical Pathfinding (Millington, 2009, 262) and D* (Millington,

2009, 272) - we decided to implement a variation of wave-front expansion using GPU resources to

speed up the process (Durant, 2013) (Cossell, 2011, 191). The final solution uses a two-dimensional

grid as the search space and is composed by the following steps:

1. The grid data is initialized on the CPU. At this point, each node on the grid holds its position,

its 2D coordinates on the grid and weight of -10 (this is an arbitrary value that indicates that

the node hasn’t yet been processed by the GPU). Then, the positions of all Explorers are

marked in the grid by changing the respective node weight to 0.

2. The grid data is then copied to a shader resource in the GPU for further processing.

3. On the GPU side, GPU step 1 processes the information from the actual level, e.g. lit or unlit

areas and wall placements, by sampling from textures previously used for rendering purposes.

This is reflected on different weights on the grid.

67

4. GPU step 2 iterates multiple times through the grid data starting off from the Explorer nodes.

For each pass, it performs a wave-front expansion. Here is where we limit the range of the

minions, for the number of passes reflects to which extent an Explorer is within the “sight” of

the AI agents.

5. The grid data is then copied back to the CPU with the updated weight values.

The updated grid works as a distance field. Node weights can either carry a negative value indicating

that the node is not walkable, a zero value indicating that the node is a goal node, or a positive value

indicating the number of steps that the node is from the closest Explorer. With this solution, it’s not

necessary to find the whole path from an AI agent to the closest goal. Instead, AI agents can simply

walk towards the neighbor node with the smallest positive weight until a goal node is reached.

5.9.2 Decision Making

The success of high-profile games like Halo 2 (Bungie Software, 2004) has leveraged the

popularization of Behavior Trees over the last decade. They emerged as a scalable alternative to the

popular Hierarchical Finite State Machines (HFSM).

 In Finite State Machines, states, the FSM and HFSM building blocks, hold a reference to the

next state to be executed. These references are called state transitions and are commonly manifested

as a simple call to a set-state method pointing to the next-to-be-executed state. States provide

developers with a simple way of encapsulating the code for different behaviors into specialized

modules with some hardcoded transitions (Nystrom, 2014, 100).

 The building blocks of Behavior Trees, often called tasks or behaviors, do not hold a reference

to the following task to be executed. In other words, a task does not declare explicitly by the means of

a task transition, which other task should execute next. Instead, they are added to a parent scope, and

executed according to the semantics of the parent scope. This self-containing factor combined with

68

some parametrization (Millington, 2009, 334) allows the structure of the Behavior Tree to be easily

rearranged, and its Tasks to be easily used in different contexts (Champandard, 2007).

 Behavior Tree tasks are split into four major types: Actions, Conditions, and Composite and

Decorator tasks. Actions and conditions are the leaf tasks on the tree. These tasks hold game specific

logic while composite and decorator tasks define the structure and execution flow of the tree. Such

tasks should be able to execute context free. The power of Behavior Trees lies in the different ways in

which these tasks can be mixed and matched (Millington, 2009, 335).

 Action tasks are the main building block for Behavior Trees. Conceptually, each action should

perform a small chunk of the objectives to be performed as a whole. For example, in order to complete

its objectives, an AI agent must open doors, turn on and off lights, and walk towards different target

locations. In this scenario, there could be an Action to walk towards a set target, another Action just to

set the target to a specific entity or location, and a third Action to interact with an object (a light switch

to be turned on or off, or a door to be opened or closed).

 Conditions check the state of the game. In the previous example, there could be Conditions for

checking the proximity between the AI agent and its target, checking the state of doors and lamps,

checking the internal state of the AI itself (do I have a valid target? Do I have enough life points?),

and so on. In Scare Tactics, condition tasks are called Predicates.

 Composite and Decorator tasks act like the branches of the tree. Typically, Composites handle

multiple children while decorators act like a wrap around a single child (or, in specific cases, a

predefined number of children) (Champandard, 2007).

 There are two fundamental types of Composite tasks: sequences and selectors. “Both of these

run each of their child tasks in turn”, “a Selector will return immediately with a failure status code

when one of its children fails” and “a Selector will return immediately with a success status code when

one of its children runs successfully” (Millington, 2009, 335). In other words, Sequences are

responsible for executing each of its children one by one but will break the execution as soon as one

69

of the children fails to execute, and Selectors will run its children one by one until one of them executes

with success.

 Decorator tasks can be used to alter the standard behavior of other tasks without modifying the

contents of the referenced tasks. That is done by plugging the Decorator tasks in between the original

tasks and its parent tasks (Figure 5.25). A classic example of Decorator tasks is the Repeat task, which

executes its child a predetermined number of times before returning with success to its parent.

Figure 5.25 - Typical structure of a decorator task.

 Behavior Trees are used in Scare Tactics to control the different minions present in the game.

We used the concept of subtrees to maximize the reusability of the behavior trees (Figure 5.26 and

Figure 5.27). On the outside, subtrees work just like any other task and can be attached normally to

any composite or decorator node. But under the hood, each subtree creates a new localized context

that works autonomously.

70

Figure 5.26 - Subtree declaration pulled from Scare Tactics codebase.

Figure 5.27 - Imp Behavior Tree assembled from various subtrees. Example pulled from Scare Tactics codebase.

5.10 Optimizations

In preparation for the development of the Scare Tactics, several prototypes were built. The first

prototype, which was built in Unity suffered from slow performance due to the amount of collision

tests and AI routines being performed. This served as a motivation to build the project in C++, which

would allow us more control over the various game engine systems. One of the benefits of building

71

the game’s engine were the opportunities to optimize based the specific game being built. Two areas

of note where this occurred where in memory management and networking.

5.10.1 Memory Management / Static vs Dynamic

The goal of the memory management system is to allow developers to allocate memory efficiently

without having to perform data alignment and pointer arithmetic. Several types of allocators were built

for various contexts, such as a linear allocator. This type of allocator cannot free individual allocations

but rather frees all allocations at once. It is useful for allocations that will not take place often. For

example, linear allocators are used for data that is created once per level such as textures and meshes.

 Another type of allocator the engine uses is a pool allocator. A pool allocator is useful for rapid

allocations of objects of the same size. It works by allocating a large block of memory and then splitting

that memory into smaller chunks. Internally it behaves as a singly linked list of memory locations. The

task scheduling system in the engine uses a pool allocator for task storage.

 The motivation behind efficient memory allocation is performance. Performance is largely

governed by memory access patterns of modern systems architecture. Most modern architectures

feature a cache system where data can be retrieved faster than from RAM, as shown in Figure 5.28. A

cache hit occurs when the CPU retrieves data from the cache. Program optimization accomplished in

part by maximizing cache hits. Memory allocation plays a part in this because when data is read into

the cache, neighboring data is read as well. For example, a set of data that needs to be transformed in

some fashion that is spread out in memory will result is more cache misses than data that is allocated

contiguously.

72

Figure 5.28 - Intel CPU architecture.

5.10.2 Packet Construction

By looking at the communication requirements of Scare Tactics, we could sketch a factory for network

packets that was simple enough to cover all packets we would need to run our game. This factory is

based on the simple concept that every packet we transmit has a fixed size, yet, according to the initial

byte, it is possible to deal with it differently. Figure 5.29 illustrates the different packets we use and

how they use the same amount of memory regardless of their contents.

Figure 5.29 - Different packet types.

73

 This solution allows us to have almost zero processing time to serialize and deserialize the data

coming through the network. A simple memory copy operation can be used to populate the packet

structure (Figure 5.30), and use it according to the scope in which the packet is required.

Figure 5.30 - Packet structure.

74

6 Asset Overview

Scare Tactics was originally going to be a 2D game. During our pre-production, we decided to change

to 3D due to the nature and perspective of our game. Our game has two different camera perspectives.

The Ghost has a broader view of the map while the Explorers have a much constrained view. In order

to better show the depth, we made the decision to switch to 3D.

 We wanted the game to have a simple and clean aesthetic. We were inspired by the simple

geometry and the visual appeal of games like Journey and Monument Valley. This approach also

helped us as the artists on our team weren’t very familiar with organic modeling and we had multiple

characters to create. The game is set in the 1900’s. This was the time when technology was flourishing.

The Explorers are a group of people that have come together from different parts of the world.

Exorcising Ghosts isn’t a job that everyone does and so they needed to create their own weapons and

gadgets from the parts they could find.

 In order to set a tone and direction for the aesthetic, we created a couple of mood boards, one

for the characters (Figure 6.1), and another one for the environment (Figure 6.2).

75

Figure 6.1 - Character Mood Board.

Figure 6.2 - Environment Mood Board.

76

 Over the next month, the concept artists designed characters (Figure 6.3, Figure 6.4 and Figure

6.5), environments (Figure 6.6) and the overall look and feel of the game while the 3D modelers started

modeling smaller props and scene filler objects. Once the characters were modeled, our

rigger/animator set up the rigs and created animations but due to time constraint and the restrictions

posed by our C++ engine, we used Adobe Mixamo to create base rigs and animations for our explorers.

From there, the animator took over and tweaked the rigs and animations to fit the aesthetic that we are

going for.

Figure 6.3 - Professor Concept Art.

Figure 6.4 - Sprinter Concept Art.

Figure 6.5 - Trap Master Concept

Art.

77

Figure 6.6 - Environment Concept Art. Entrance hall (top left). Master bedroom (top right). Library (middle). Generators

and light-cannon (bottom left). Bathroom (bottom right).

 Conveying the controls to the Explorers and the Minions to the Ghost needed more than words.

This brought UI into the game. The icons and symbols were created to represent the characters and

abilities as closely as possible (Figure 6.7). Some went through iterations after getting feedback from

playtests. Check Appendix A for a complete asset list.

78

Figure 6.7 - UI icons.

79

7 Play Testing and Results

Our playtest sessions started out with faculty members and other classmates playing our game and

verbally giving us their feedback. Once we had the basic mechanics nailed and our game got bigger,

we held playtest sessions with people that had never played our game to get feedback on overall game

design. We also held playtests with groups that had played our game before to get feedback on changes

we made to existing mechanics and game balance.

 Game Developer’s Conference (GDC) 2016 was a big public playtest for us. Since our game

requires 4 players for a single game, we decided to create an online questionnaire for players to fill out

after each game. This allowed us to observe the players and explain the game to people waiting to play

the game.

7.1 Internal

The internal playtests usually took place within the team or with other classmates weekly or biweekly.

We asked the playtesters to focus on how the movement felt, if the controls were friendly and easy to

use and if the core mechanic was fun to use.

 We went through several iterations of keyboard controls and movement scheme based on the

feedback we received. We altered the attacks for the Explorers to make it easier to hit the minions

without losing health. The most important feedback we received from the internal playtest would be

that the game felt like a race to get to objectives. The Explorers have an action - adventure style

gameplay but we wanted them to strategize and win and not race against the Ghost.

7.2 Public

Our first public playtest was conducted with the artists working with us. At this point, we had our core

mechanics nailed down. We were looking for feedback on the newer mechanics and a new level that

was created. This level was much larger than the one we had been using until now. We wanted to

80

explore the aspect of exploration and player communication as the players playing as Explorers could

easily get lost and lose without having each other’s backs.

 Surprisingly, the Explorers quickly figured out they needed to communicate to have a chance of

winning and actually called out to each other, created strategies, warned others of dangers and asked

for help. We realized that the new abilities were not easy to use without explanation and were either

underpowered or way too overpowered. Additionally, a larger level meant longer times for Explorers

to find objectives, which made it easier for the Ghost to win as he had the sight advantage and could

plan his moves ahead of time.

7.3 Game Developer’s Conference (GDC)

GDC was the biggest public playtest we participated in. Based on the feedback from our prior playtests,

we had tweaked our mechanics to be as smooth as possible. One big change was adding indicators to

other Explorers and all the objectives to give a general sense of direction to the Explorers. We also

introduced three different floors in our level, giving the scene a deeper sense of depth, in spite of our

game being 2D under the hood. These were the questions that were part of the online questionnaire:

1. Did you play as explorer, ghost, or both?

2. Describe your general strategy while playing the game.

3. How do the controls feel? Were they intuitive?

4. Which skills did you use the most?

5. What role did lanterns play in your decision making?

6. If you played as an explorer, did the gameplay encourage you to stay with other explorers?

Why, or why not?

7. Would you play this game again? Why, or why not?

81

 To our surprise, we received mostly positive reactions and people seemed to be having fun. Most

of the core mechanics worked, but some needed our attention immediately. The Explorers did not use

the lanterns and doors as much. It wasn’t clear that they could be used as a mechanic. They did not

know friendly fire existed. Eventually when they did realize, it was already too late. The hiding spots

did not prove any use at all and the indicators weren’t much help either. Explorers still felt lost and

did not know where to go. On the other side, the Ghost was overpowered and almost impossible to

defeat. The Imp minion was being used the most as it cost less, spawned two each time and were fast.

7.4 RPI GameFest 2016 / ImagineRIT 2016

RPI GameFest and Imagine RIT took place within two consecutive weekends. Since these events were

so close to the end of the semester, we decided to not make any major changes to game and kept it the

way it was.

 RPI being more of a competition rather than a playtest event, we decided to only observe the

players rather than take notes or making the players fill out a playtest feedback form. The UI changes

and the addition of an instruction screen allowed us to examine the players without giving them

instructions. They were able to understand the mechanics with very little supervision (Figure 7.1). This

was a big step for us as we had been explaining the mechanics to every player. In the end, we also won

2nd place at RPI, which was a pleasant surprise to the entire team (Figure 7.2).

82

Figure 7.1 - RPI Playtest.

Figure 7.2 - RPI Award. From left to right:

Henrique Chaltein, Gabriel Ortega, Lucas Vasconcelos, Karan Sahu, Tiago Martines.

83

 ImagineRIT was the first public playtest for our C++ version of the game. We had playtested

internally but never outside the team. We were all nervous if the C++ build would survive for over 7

hours or would it crash too often, which would force us to switch to our Unity version. Surprisingly,

the builds worked flawlessly with only 3 crashes over the entire day. Apart from a few minor bugs and

slight balancing issues, people were able to play our game multiple times. The crowd at ImagineRIT

was very different from what we had encountered in our earlier playtests. Most of the audience were

either young children or non-gamers. The instruction screen wasn’t enough most of the times and we

had to explain the controls and the mechanics of the game.

7.5 Result

We compiled the feedback we received from GDC and went back to the drawing board to figure out

solutions to the problems. We introduced a minimap in hopes of guiding the Explorers to the

objectives. We also added an objective list as part of the UI to ensure Explorers know what they need

to do from the get go. We removed friendly fire from all but one mechanic and switched the attacks

for two of the Explorers. One of the biggest additions was a startup screen displaying instructions and

controls for each Explorer and the Ghost. It also prevented the players from moving around in the

game before everyone was ready.

 When designing the game, our target audience was 13 and above due to the communication

aspect between the Explorers, the different classes and the different minions that the Ghost can use.

After RPI and ImagineRIT, we realized that plenty of younger children really enjoyed our game. They

played the game multiple times and brought their friends to play it with them. This was a success in

our eyes as it is difficult to please children. They would tell us straight to our face if the game was not

fun, but they did not. They played for a long time, even the ones who were hesitant to play.

84

8 Post Mortem

8.1 Successes

In general, Scare Tactics has been received positively by those who have viewed and played the game.

This can be attributed to several aspects of the So Close team’s chemistry and production process.

Aspects of note include the prototyping process, adoption of an Agile methodology, scheduling and

commitment to improving the process throughout the project.

 The initial eight weeks of prototyping served as a way for the team to learn how to work with

one another. It allowed for individual team members to learn about one another’s strengths and

weaknesses. Working on smaller one week projects was good preparation for the scope and size of

Scare Tactics. Throughout this period the team also gained experience working in Agile methodology

and identified which parts of that methodology would be most useful during the development of Scare

Tactics.

 The constructs adopted by the team included the Daily Standup, Weekly Sprint Planning, Demo,

and Retrospective. The Daily Standup provides an excellent way for team members to be aware of

each other’s work and stay informed of how his work influences the entire project. Sprint Planning

allows for setting of weekly goals that can be broken down into smaller tasks. The Demo is a meeting

where the team can assess the work done during the previous sprint, however, this meeting was

discarded after a few weeks.

 One of the most valuable aspects of Agile became the Sprint Retrospective, which is basically a

weekly post mortem. During these meetings the team would identify sources of success, and areas of

improvement. Once these areas were listed, a set of actionable policies would be set in place to improve

the development process for the coming week. The retrospectives became a constant source of

improvement for the team’s communication, task delegation and goal setting.

85

 All in all the team worked really well together and was able to build a project in Scare Tactics

that they are proud of and has been well received.

8.2 Improvements

During the development process there were several areas where the team could have improved.

Sometimes there were communication breakdowns between the art, design, and development teams.

This proved costly in some cases because it lead to repeat work having to be performed, or

misconceptions about the look, feel, and mechanics of a game. Some of these communication

breakdowns could have been mitigated by a stronger focus on documentation. The team lacked a

centralized source of information about the game being built.

 The team also struggled with time approximations. Tasks routinely took longer than the time for

which they had been scoped. In several cases this lead to falling behind schedule or features being

dropped completely. This problem could have been mitigated by making better use of Redmine

features. The Redmine Agile plugin provides mechanisms for tracking time spent on a task. Given

more consistent use of this feature, the team could have used the data as a way to make better time

estimates.

 Lastly, the development pipeline could have been better. Ideally, a feature would have been

implemented in Unity and then ported to the Scare Tactics engine. In practice, many features were

implemented in Unity, while major systems were being built in the engine. This lead to the engine

always having a larger weekly scope than the Unity prototype. At times it felt as if both versions were

unrelated. This could have been improved by implementing some of the smaller game systems first in

order to have a playtestable C++ version at all times. For example, our animation system was

implemented before the game state and logic that determines the winner and loser of the game. Had

the game logic been implemented first the C++ version could have been playtested much sooner.

8.3 Future Work

86

In regards to game design, we would like expand the world of Scare Tactics by creating 3 additional

game modes, Escort, Escape and Hostage. We designed these as part of our original game design but

were unable to implement them due to time restrictions. We would like to have new maps with

differently themed environments such as an amusement park, scientific laboratory, and abandoned

ship. This would add variety and hopefully increase the replayability of the game.

 Our Explorer classes currently have 3 - 4 different skills, but only 1 - 2 unique skills. We would

like to make the classes unique by adding abilities that allow for more varied gameplay. Since light

acts as a mechanic in our game, we wanted to give each Explorer a different colored light that acts

differently. Some other skills that were designed but could not be implemented are buff teammates,

radar (reveals enemies and objectives as dots, similar to a ship radar), tesla coil (created by placing

three rods in a triangle formation, damaging any enemy inside) and spring trap. It would give the

players the option to create different strategies on the fly. Similarly, creating more minions for the

Ghost, such as the ambusher, transporter and the poison, would give the player options to approach

each level in a different manner as well.

 We have visual feedback for the players, but they aren’t as exciting as they could be. We would

like to provide better visual and auditory feedback as it would make the gameplay more engaging.

Originally, we planned to have some humor elements to it, which would be a nice addition, both in

terms of audio and visual feedback.

87

Bibliography

Alexandrescu, Andrei. 2001. Modern C Design: Generic Programming and Design Patterns

Applied. Boston, MA: Addison-Wesley.

Baggett, Dave. 2014. “Is C++ slower than C?” Quora, March 2014. https://www.quora.com/Is-C++-

slower-than-C/answer/Dave-Baggett?srid=O175.

Champandard, Alex J. "Behavior Trees for Next-Gen Game AI." AiGameDev. December 28, 2008.

Accessed April 18, 2016. http://aigamedev.com/insider/presentations/behavior-trees/.

Champandard, Alex J. "Understanding Behavior Trees." AiGameDev. September 6, 2007. Accessed

April 18, 2016. http://aigamedev.com/open/article/bt-overview/.

Cossell, Stephen, and Jose Guivant. "Parallel evaluation of a spatial traversability cost function on

GPU for efficient path planning." Journal of Intelligent Learning Systems and Applications 3,

no. 04 (2011): 191.

Durant, Sidney. "Understanding Goal-Based Vector Field Pathfinding." Game Development Envato

Tuts. July 5, 2013. Accessed April 18, 2016.

http://gamedevelopment.tutsplus.com/tutorials/understanding-goal-based-vector-field-

pathfinding--gamedev-9007.

Ericson, Christer. 2005. Real-time Collision Detection. Amsterdam: Elsevier.

Gamma, Erich. 2011. Design Patterns: Elements of Reusable Object-oriented Software. Upper

Saddle River, NJ: Pearson Education.

Green, Chris. "Improved Alpha-tested Magnification for Vector Textures and Special Effects." ACM

SIGGRAPH 2007 Courses on - SIGGRAPH '07, 2007.

Gregory, Jason. 2009. Game Engine Architecture. Wellesley, MA: K Peters.

Harabor, Daniel Damir, and Alban Grastien. 2011. "Online Graph Pruning for Pathfinding On Grid

Maps." In AAAI.

https://www.quora.com/Is-C++-slower-than-C/answer/Dave-Baggett?srid=O175
https://www.quora.com/Is-C++-slower-than-C/answer/Dave-Baggett?srid=O175

88

Luna, Frank D. 2012. Introduction to 3D Game Programming with DirectX 11. Dulles, VA:

Mercury Learning & Information.

Millington, Ian, and John David Funge. 2009. Artificial Intelligence for Games. Burlington, MA:

Morgan Kaufmann/Elsevier.

Nystrom, Robert. 2014 Game Programming Patterns.

89

Appendix A - Asset List

1. Explorers

a. Sprinter

b. Professor

c. Trap Master

2. Ghost Minions

a. Imp

b. Abomination

c. Flytrap

3. Environment

a. Wall

i. Square

ii. T-intersection

iii. L-corner

iv. Wall with single door space

v. Wall with double door space

vi. Wall with window space

b. Floor

c. Lantern

i. Portable

ii. Wall

d. Stair

i. Straight

ii. Curved

90

e. Couch

i. Single seater

ii. Double seater

f. Chair

i. Dining

ii. Study

iii. Office

g. Table

i. Dining

ii. Study

iii. Round living room

iv. Rectangular living room

v. Office

h. Bed

i. House owner

ii. Staff

i. Cabinet

i. Bathroom

ii. Dining room

j. Bookshelf

i. Straight

ii. Curved

iii. Flat

k. Door

i. Single

91

ii. Single blocked

l. Stack of books

m. Trap box for glue and poison

n. Light cannon

o. Generator

p. Bedside Drawer

q. Sink

r. Toilet

s. Bathtub

t. Fireplace

u. Mirror

v. Lever

w. Bottles

x. Wood planks

y. Boxes

z. Wardrobe

4. UI

a. Explorer Icons

i. Baton Bash

ii. Staff Swing

iii. Grenade

iv. Heal

v. Sprint

vi. Poison Trap

vii. Glue Trap

92

viii. Portable Lantern

ix. Sprinter Indicator

x. Professor Indicator

xi. Trap Master Indicator

xii. Attack Mouse Cursor

xiii. Interact Mouse Cursor

b. Ghost Icons

i. Imp

ii. Abomination

iii. Flytrap

iv. Imp Illusion

v. Mana Bar

vi. General Mouse Cursor

vii. No Spawn Mouse Cursor

c. Text background

d. Splash Screen

	Scare Tactics
	Recommended Citation

	tmp.1466531001.pdf.rlrQw

