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Abstract
Random Subspace Learning on Outlier Detection and Classification with

Minimum Covariance Determinant Estimator

Bohan Liu

Supervising Professor: Dr. Ernest Fokoúe

The questions brought by high dimensional data is interesting and challenging. Our
study is targeting on the particular type of data in this situation that namely “large
p, smalln”. Since the dimensionality is massively larger than the number of obser-
vations in the data, any measurement of covariance and its inverse will be miserably
affected. The definition of high dimension in statistics hasbeen changed through-
out decades. Modern datasets with over thousands of dimensions are demanding the
ability to gain deeper understanding but hindered by the curse of dimensionality. We
decide to review and explore further to negotiate with the curse and extend previous
studies to pave a new way for estimating robustness then apply it to outlier detection
and classification.

We explored the random subspace learning and expand other classification and out-
lier detection algorithms to adapt its framework. Our proposed methods can handle
both high-dimension low-sample size and traditional low-dimensional high-sample
size datasets. Essentially, we avoid the computational bottleneck of techniques like
Minimum Covariance Determinant (MCD) by computing the needed determinants
and associated measures in much lower dimensional subspaces. Both theoretical and
computational development of our approach reveal that it iscomputationally more
efficient than the regularized methods in high-dimensionallow-sample size, and of-
ten competes favorably with existing methods as far as the percentage of correct
outlier detection are concerned.
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Chapter 1

Introduction

1.1 Motivation and Difficulties

The beginning point of our work is mapped from our curiosity of robust estima-

tors in modern data-driven decisions. One can naturally connect this topic to outlier

detection and location estimation. Many studies in this field had brought various

“thick-skinned” properties to attention since Box[19] used the word “robustness” to

describe the insensitive of violation of normality in Bartlett’s[10] version of Neyman-

Pearson[111] likelihood ratio test. Modern datasets brought us huge amount of chal-

lenges that not only because they consume massive computational resource due to

their exponentially increasing scales but also expand themselves to extreme struc-

tures such as “short-fat”, so calledHigh Dimensional Low Sample Size(HDLSS).

Early studies seem to address this issue rarely but enormousattentions have been

drawn throughout this decade. So we ask ourselves this question:Can we build ro-

bust estimators that can adapt to high dimensional data?With this question in mind,

we notice there are several points can not be ignored. First of all, we are not solely

focusing on certain applications but interested in using statistical machine learning

to build estimators that can also be applied in various needs. The results of the al-

gorithm can be used and adjusted in tasks like outlier detection and classification.

Second, our target will not only be those extreme scenarios but also other typical sta-

tistical situations like Boston Housing and Iris datasets.The estimation method can

have roots in lower dimensional space then expand its stems and leaves to survive



2

in harsher environment. Finally, the computational complexity should also be con-

sidered as a major factor especially with high-dimensionalproblem. If covariance

matrices or their inverse with massive amount of variables are encountered, the time

used in estimation will increase cubically with the dimensionality then the task will

simply be impractical.

To follow the direction that we mentioned earlier, there arevast number of routes

to explore. A very intuitive procedure can start from techniques like dimensionality

reduction or feature selection to uncover the structure of the meaningful proportion.

Then from this seemingly more rational base we may constructour new estimators

or models to travel through the patterns hidden in the data. Thus, the core problems

that have to be solved to guide us can be summarized by:

• What are the techniques used to reduce the dimensionality?

• What are the techniques have been applied on subspace to achieve different

goals?

• How we can extract the essence of previous studies to hit our targets?

• How is the performance if we eventually applied our estimations to different

applications?

Unfolding these four questions can clarify the goal of our research:Reduce the di-

mensionality efficiently then extend or combine previous algorithms to build robust

estimators for both high and low dimensional data. After we acquired our estima-

tors we can compare their performances to other algorithms in applications such as

outlier detection and classification.
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1.2 Background: The Curse of Dimensionality

1.2.1 Where Comes the Curse

Introduced by Bellman[12] in 1957, the term curse in machine learning is mainly

used to describe the explosively increasing complexity with each variable added in

higher dimension. Given a value of smooth function defined ina high dimensional

space, it is very likely the convergence rate of the estimator will be inevitably slow.

Although the term is often related to the poor performance ofclassical algorithms

especially for non-parametric ones like nearest neighborsand Gaussian kernel, the

true difficulties come from its deep uncertainty within. It is like someone dropped a

key when he was walking through a narrow alley that all he needs to do to find the

key is just to walk in an opposite direction. But if the key waslost on a golf course it

will be almost impossible to retrieve it. Some properties ofhigh dimensional space

has been demonstrated in previous studies[9] [35] [89] and many of them are speech-

lessly counter-intuitive. Human beings are deaf and blind in the universe, not only

because the range of frequency or spectrum we can hear and seebut also because we

can never possibly imagine adding even one more dimension toour existing world.

Unfortunately, among all these cruel situations there are some extremists can be eas-

ily encountered frequently. These are the datasets we mentioned before as HDLSS

and often being labeled as “largep, smalln”. To be more explicitly, given the data

D =
[
x⊤
1 ,x

⊤
2 , · · · ,x⊤

n

]
, wherexi = (xi1, · · · , xip)

⊤ ∈ R
1×p:

X =




x11 x12 · · · · · · x1p

x21 x22 · · · · · · x2p

... .. . .. . ... ...

xn1 xn2 · · · · · · xnp




(1.1)
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with p ≫ n. Typical examples can be found in many fields especially for com-

putational biology and computer vision where plenty of datasets are considered as

benchmarks. In bioinformatics, such instances are considered as daily basis in so

called micro-array gene expression. Micro-array is a technology that using silicon

bio-chip with tens of thousands of preselected gene spots tocollect and measure

gene expression from biological samples. Later the data is cleaned and normalized

through some database search algorithms that huge number ofvariables are generated

after this pre-processing step. Famous datasets including“leukemia”, “lymphoma”

and “colon-cancer” mainly come from previous cancer studies[3] [4] [58] where re-

searchers were trying to find statistical patterns that can classify different tumors.

Among these datasets, a relative small number of variables are around 2000 (colon-

cancer dataset). But the dataset contains only 62 observations and makes the ratio

between the number of observation and dimensionalityn/p equals 0.031. One of

the noticeable examples in computer vision and image processing is ICDAR2013,

a competition of gender prediction from handwriting postedon Kaggle (a data sci-

ence competition platform). There were only 475 observations were provided but

the number of features extracted from four documents went upto 28000. Tradi-

tional methods usually fail sorrowfully in these cases due to multiple properties of

the curse. Later in this thesis, we will often usep to refer the number of dimensions

or variables andn to refer the number of observations or examples in the data.

1.2.2 What Comes With the Curse

Classical approaches in finite dimensional space fail in different ways. Any statis-

tical method that needs to compute the inverse of covariancematrix fails immedi-

ately. Some of the attempts[125] [159] of approximating the inverse, though indeed

reduced the computational expenses, are still in development and have not been prac-

tically implemented. Several noticeable properties of thecurse can be summarized
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below:

• The available sample points are going to be inevitably sparse in high dimen-

sional space.

• Most of the data are severely pushed far from the centre in high dimensional

space.

• Distance functions may largely lose their meaning in high dimensional space.

• The major proportion of the data is very likely to be noisy or highly correlated

in high dimensional space.

• The number of models is growing ruthlessly in high dimensional space.

The sparsity maybe the most intuitive problem that one can think of. Imagine if 10

points need to be sampled from an line interval from 0 to 1 in 1-dimensional coor-

dinate system. This means with each dimension add to the original space that10p

points need to be sampled fromp dimensional space. In the colon-cancer dataset we

mentioned before, it may seem to be very crowded if all 62 observations lined on a

one dimensional line interval. With the exponential increasing in volume caused by

adding other 1999 dimensions, majority of the sample pointsmay isolated from each

other.

The skewness of the data from centre is often demonstrated bythe ratio between

an hypersphere and a hypercube. The side length of the hypercube equals the diame-

ter of the hypersphere. It is relatively fair to imagine thatin two or three dimensional

space that data may equally spread in both of the shapes if thepoints are “randomly”

distributed. However, increasing the dimensionality of both of them to a slightly

larger number, say 10, the volume of the hypersphere collapses sharply towards 0 as

in figure (1.1). Then majority of the data are squeezed to the edges of the hypercube

where far from the centre. Formally, the volume of ap-ball:
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Vp =
rpπp/2

Γ(p/2 + 1)
−→ 0, as p −→ ∞ (1.2)

wherer is the radius of the hypersphere. To make this even more counter-intuitive,

the volume of a unit hypercube remains 1 as the the dimensionality goes to infinity.

If the length of the side is less than 1 the volume approaches 0and if length of the

side is larger than 1 the volume turns out to be infinity. The shape of the hypercube

is commonly visualized as a sea urchin where majority of the data are located on its

“spikes” as in (1.2).
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Figure 1.1: The volume of hypersphere with diameter equals 1decreases sharply as the number of

dimensions increases.
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Figure 1.2: Orthogonal projection of a 10 dimensional hypercube

Another consequential effect is many of the distance measures in machine learning

start to drop their meaningfulness. As Beyeret al.[15] showed under certain condi-

tions, the ratio between the variance of the distance measure of any given data point

and the variance of the mean distance measure of the distanceis converging to zero

as dimensionality goes to infinity. So a little bit more formally, we have:

lim
p→∞

var

(
(fp(Xi))

d

E ((fp(Xi))d)

)
= 0, (1.3)

Then for everyǫ > 0,

lim
p→∞

Pr [max (distp(Xi)) 6 (1 + ǫ)min (distp(Xi))] = 1, (1.4)

whered is a constant thatd ∈ (0,∞). Given dimensionalityp, fp is a function of

dataX that inputs a data pointXi wherei = 1, 2, · · · , n from both query and data

domain that output a non-negative real number. As a result, if the dimensionality
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inflates to infinity, the proportion of the difference between the maximum distance

and the minimum distance from the centroid collapse to zero.Thus, the meaning of

many distance measures becomes in doubt. Vast number of machine learning algo-

rithms which relied on the distances like Mahalanobis distance, Manhattan distance

etc. may generate invalid results. Imaginably, the dimensionality can also affect

likelihood compute from Gaussian and make it skew towards tohigher dimensions.

One of the famous examples can be found is the outlier detection algorithm based on

the Nearest Neighbors proposed by Ramaswamyet al.[124] in 2000. Later the lack

of contract phenomena of distances for any given data point was shown in relevant

research of Zimeket al.[163] in 2013 by asymptotically computing and comparing

the minimum and maximum distances of simulated Gaussian anduniform data from

lower to higher dimensions. A figure of maximum distance divided by the minimum

distance for multivariate Gaussian can be found in fig (1.3).

0 20 40 60 80 100
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 d
is

t/m
in

 d
is

t

Figure 1.3: The ratio between max-distance and min-distance vs. dimensionality from multivariate

Gaussian whenn = 10



9

For a finite lower dimensional dataset, students are taught to watch the multicollinear-

ity while learning multiple linear regression by plotting the correlation matrix to pair-

wisely check variables that are highly correlated with eachother. However, this is

not the first time common sense has been greatly challenged bysimply introduce an

ultra-high dimensionality. The probability of multicollinearity can be largely ampli-

fied withp increasing. Fan and Lv[40] showed the maximum sample correlation and

multiple correlation are frequently occurred even samplesare drawn from indepen-

dent Gaussian variables in higher dimensions (p equals103 and104). This implies

that the noisy variables can be very deceive in high dimensional space especially

whenp ≫ n. Our truly relevant variables sometimes may be representedby the

combination of or, replaced by noise and then associate withresponses. Thus the

fitted model looks like putting the earth’s land surface on a single rope string, theo-

retically, if nobody moves. Then the world can be destroyed with a slightest breath

just because of its massively inflated variance.

A simple example can be illustrated in multiple linear regression model:

Y = Xβ + E , where E ∼ N (0,σ2I), (1.5)

the variance of an individual prediction̂yi given a new observationxi that xi =

(xi1, · · · , xip)
⊤ ∈ R

1×p can be expressed as:

var (ŷi | xi) = x⊤
i var

(
β̂
)
xi + var (E | xi) (1.6)

= σ̂2
(
x⊤
i (X

⊤X)−1xi + 1
)

(1.7)
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If p increases drastically, more and more eigenvalues ofX⊤X starts to reach zero

and its inverse is lack of boundaries. Thus, as a consequencevar (ŷi | xi) becomes

infinity.

Even if somehow all of the problems mentioned above do not hold, the number of

models to estimate and parameters to be selected is devastating. For regression, par-

simony is usually one of the first lessons in model selection but the simplest model

can still knock people off by checking how many significance test they need to com-

pute. Fokoúe et al.[25] in his book described the explosive increasing number of

models to estimate by simply using polynomial regression inorder of two. There are

already 63 models under such condition with only two variables, not to mention how

many models need to be built with other polynomial regressions when the order is

slightly larger than two.

1.2.3 Three Attitudes

Countless of researchers achieved remarkable results through decades. Many of the

studies patiently sit down and talk to the crazily enlarged dimensionality and try

to dig out its real thoughts. Though the inspiration of principle component anal-

ysis (PCA) can trace back all the way to Pearson’s so called “closest fit” of data

points[118], truly thanks to the amazing results from applied linear algebra like sin-

gular value decomposition (SVD) and eigenvalue decomposition (EVD) that this

powerful tool and its derivative improvements are still popular today and habitu-

ally applied in various fields. It is completely possible that one finally lost his pa-

tience with this complicated discussion that forcefully runs down the topics to end

the conversation. Proposed by Tikhonov[145] in 1943, regularization introduces a

parameter-wised penalty to solve the ill-conditioned inverse problems especially in

regression and classification. Theoretical results and applications that focused some

of the implements such as ridge[72], LASSO[144] and elastic net[164] constantly
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draw attention every year. Instead of reasoning out the whole conversation, one can

bring up some small issues at a time but having meetings much more frequently.

Popularized by researchers like Brieman[22] and Ho[70] that ensemble learning is

undoubtedly one of the strongest work in terms of performance nowadays. In later

chapters we will address and discuss these significant worksin detail.

1.3 Outline of the Thesis

The thesis is divided into five chapters to deliver a relativethorough study of our

project. Despite the introductory chapter, the more detailed review starts from chap-

ter 2 and chapter 3. Our two relative studies and results are demonstrated in chapter

4 and 5 then we summarize the topic in the end of chapter 5.

In chapter 2 and 3 some commonly used modern techniques that deals with high

dimensional data are reviewed. We are focused on the mechanisms of some PCA

based algorithms and its derivatives. Some of their similarities and relationships are

explored with examples. Also, their limitations and improvements are addressed.

Then a general introduction of ensemble learning can be reached in chapter 3. We

will discuss three most popular ensemble learning algorithms in modern statistics.

Since the application may involve outlier detection, Chapter 4 contains a more de-

tailed review of recent outlier detection algorithms with pros and cons. More im-

portantly, current methods dealing with high dimensional data will be emphasized in

this chapter.

Later in chapter 4 we implement our extensive studies on current methods. Also,

we can talk about some of results in outlier detection and classification and compare

to the performances to some of the current algorithms in chapter 5. Both simulations

and an example of the benchmark dataset are involved.
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In the end, we summarize the reason of pluses and minuses in terms methodology

and performances of our proposed algorithms. Our future directions and works may

be raised in the final paragraphs.
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Chapter 2

Common Techniques in High Dimensions

2.1 Principle Component Analysis

2.1.1 Brief Review and Recent Developments

The content of Principle Component Analysis (PCA) can be written into several

books. Although the most famous derivations from Pearson[118] was done in 1901,

not too many works were published until Hotelling[73] after 32 years later. It is

unbelievable that after a hundred years later that from 2001to 2002, there are still

over thousands of paper published that related to PCA withina single year. Another

distinct point to mention is Eckart and Young’s[38] illustration of the connection

between principle components and singular value decomposition (SVD) derived by

Beltrami[13] and Jordan[82]. It turned out that theℓ-2 low rank approximation of the

data can be obtained by the diagonal matrix with larger elements decomposed from

SVD. The method still stands for the most powerful decomposition today. In fact,

eigenvalue decomposition of a low-dimensional covariancematrix can be largely

simplified by just computing the SVD of the original data matrix.

Later influential studies were mainly targeted on its two infamous limitations. First,

principle components are assumed to be linearly separable.Commonly this con-

venience does not hold in many fields especially social science. Thus plenty of ap-

proaches had been proposed by researchers to solve this problem throughout decades

and they are generously categorized as non-linear principle component analysis (NLPCA).
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Majority of the attentions had been drawn by two studies during 90’s. The two most

famous methods either creating non-linear functions to mapthe original spaces to

reduced spaces or reshape the data to a higher dimensional space to compromise

the linearity. Kramer[90] (1991) simply trained a two sigmoid layer neural net-

work (NN) that maps the input space to low-dimensional feature space and then

de-maps the outputs back to data space. At last, the first mapping layer of the trained

NN can be separated and used as NLPCA to reduce the dimensionality of the data.

Scḧolkopf et al.[140] (1998) adopted the kernel function to project input space into

high-dimensional feature space and then perform the regular PCA on that space. The

curse of dimensionality vanished to the number of observations by the inner product

of the kernel functions unlessn is too large.

Even the data is linearly separable, the second issue lies inthe nature of PCA that

it is always searching the largest variances. If the data does not scale well or there

are some contamination, say an outlier, that can drive the entries low-rank approx-

imation far away. Research directions that involved in thistype of problems are

categorized as robust principle component analysis (Robust PCA or RPCA). Due to

the application in image processing and computer vision, studies of how to inject the

robustness into PCA based algorithms are still intensely explored. Cand̀eset al.[24]

(2009) proposed a penalizing term on the small perturbationmatrix beside the low-

rank approximation. The method is so called principle component pursuit (PCP) that

in sense of solving convex optimization. Netrapalliet al.[109] (2014) presented an

alternative non-convex approach that greatly challenged the convex low-rank approx-

imation in terms of computational efficiency. Later in this chapter we will discuss a

little bit more about some PCA or RPCA based algorithms and inchapter 5 and we

compare our algorithm and a PCA based algorithm in terms of accuracy.
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2.1.2 Some General Deductions

The classical PCA problem can be summarized as finding the best representation or

basis for the data space. It is very intuitive to rebuild the coordinates or project the

data to new arrangements according to its variance. Thus, assume our dataX has

already centered to 0, in convex fashion we can define the problem as:

ℓ (W ,Z) = argmin
W ,Z

‖X −WZ‖2F = argmin

n∑

i=1

‖xi − x̂i‖2 (2.1)

This is so called thereconstruction errorin PCA. Here the dataX is presented as a

p× n matrix.W is an orthonormalp× d matrix that representing directions having

largest variance.Z is a n × d matrix, whered < p, that actually builds fromd

eigenvectors associated with ranked eigenvalues from largest to smallest. Thus each

row of Z: zi = W⊤xi, wherei = 1, 2, · · · , n, denotes the encoding of original data

into our newd-dimensional column space. Naturally, the reconstructionor decoding

process is expressed byx̂i = W zi and then we can minimize this error to obtain our

estimationŴ . In addition,‖X‖F denotes the Frobenius norm ofX:

‖X‖F =
√

tr (X⊤X) (2.2)

If we step back to examine a larger picture of the variance of data, with the recon-

struction in 2.1 above, we have:

E

[
‖X‖2

]
= E

[∥∥X −WW⊤X
∥∥2
]
+ E

[∥∥W⊤X
∥∥2
]

(2.3)

whereE
[
‖X‖2

]
is the total variance of original data. When we subtract the re-

construction errorE
[∥∥X −WW⊤X

∥∥2
]

we haveE
[∥∥W⊤X

∥∥2
]
. This is usually
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referred as the actual amount ofvariance capturedin PCA. It is very intuitive to think

that minimizing the reconstruction error equals maximizing our variance captured.

Now to show the connection between these two parts, for convenient purpose, we

are only looking for 1-dimensional solution thatd = 1 and assume that this principle

component vector with unit length:

ℓ (w,Z) = argmax
w

E

[∥∥w⊤X
∥∥2
]
, s.t. ‖w‖ = 1 (2.4)

= argmax
w

1

n

n∑

i=1

∥∥w⊤xi

∥∥2

= argmax
w

w⊤XX⊤w

= maxλ (X)

where1
nXX⊤ = C is just straightly equal to the empirical covariance matrixof X.

Since we setd = 1 andw is orthonormal,w⊤w vanished to 1. It turned out the

solution is just the maximum eigenvalue of our covariance matrix. Similarly, remain

the same setting above, we minimize the reconstruction error:

ℓ (w) = argmin
w

n∑

i=1

∥∥xi −ww⊤xi

∥∥2 (2.5)

= argmin
w

n∑

i=1

(
‖xi‖2 −

(
w⊤xi

)2)

= argmin
w

(
tr
(
XX⊤)−

∥∥w⊤X
∥∥2
)

wheretr
(
XX⊤) is just a constant. Thus, minimizing the reconstruction error is just
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the opposite of equation of maximizing the variance captured. Similar results can

be showed for principle componentsd > 1, a demonstration of first two principle

components of Iris dataset can be found in Figure (2.1).
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Figure 2.1: projection of Iris dataset on first two principlecomponents

Another important point of view is the relationship betweenSVD and PCA. As we

mentioned before, the principle components are eigenvectors of the covariance ma-

trix of X, here on the purpose of clarity, we still denote the dimensionality of X as

p × n. Thus if we apply the eigenvalue decomposition on our covariance matrixC

we have:

C = XX⊤ = UΛU⊤ (2.6)
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Now U is the matrix contains eigenvectors ofC in each column. Thus the principle

components can just be represented byU⊤X similar to previous equations.Λ is

a diagonal matrix filled with ranked eigenvaluesλi, i = 1, 2, · · · , d of A. Since in

SVD we have:

X = UΣV ⊤ (2.7)

whereU⊤U = I andV ⊤V = I, Σ is also a diagonal matrix with all singular values

then we can present our covariance matrix as:

1

n
XX⊤ =

1

n
UΣV ⊤V ΣU⊤ (2.8)

= U

(
1

n
Σ2

)
U⊤

Thus, if we denote the entries ofΣ as si, i = 1, 2, · · · , d, then the eigenvalues

λi = (1/n) s2i are just the scaled square of the singular values of the covariance

matrix. So, the principle components are the columns of the left singular matrixU .

Computationally, using the SVD to perform PCA is generally preferred.d of singu-

lar vectors will only requireO (npd) which is much more cheap than computing the

covariance matrix with expense ofO
(
np2
)
. Figure (2.2) illustrates an example of

dimensionality reduction of an image.
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Figure 2.2: SVD of an image with different choices of largestsingular values

2.1.3 Notes on NLPCA

As many of the problems in machine learning, PCA can also be solved as convex

optimization with constraint just like we mentioned earlier. The process of project-

ing X back and forth:WW⊤X is considered as a common analogy of encoding

and decoding. Oja’s[113] work established the connection between PCA and neural

networks in 1982 that a modified Hebbian’s learning was adopted fit the PCA into

linear neurons. Later several studies including Kramer’s[90] autoassociative princi-

ple component network are all in this encoding-decoding trend:

ℓ (F ,G) = arg min
F ,GF

n∑

i=1

‖xi − F (GF (xi))‖2 (2.9)

whereF andGF are non-linear functions. The functionGF : R
p → R

1 while
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F : R1 → R
p, a more specific presentation is shown below in figure (2.3). One

crucial issue with Kramer’s method that raised by Malthouse[102] in 1998 is that the

pre-defined continuity of the functionGF . Since it is possible that some principle

components’ projection index are discontinuous, the ambiguity can mislead the index

to map points to undesirable places.

Figure 2.3: The 5-layer neural network map the input toR
d and de-map toRp

Instead of mapping data to a non-linear lower-dimensional space, application of ker-

nel trick that allow us to project the points to non-linear higher dimensional feature

space. But we jump into kernel, another key factor to mentionis to look back at PCA

in sense of using Lagrange multiplierλ to solve the optimization with a slightly

different constraint. Assume we still searching for the 1-dimensional principle com-

ponent:

ℓ (w, λ) = argmax
w,λ

∥∥w⊤X
∥∥2 + λ (‖w‖ − 1) , s.t.‖w‖2 6 1 (2.10)
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Take the derivative with respect to‖w‖ we have:

∇ℓ (w, λ) = 2
(
XX⊤)w − 2λw

Let the gradient equals to 0, then the problem reduced to an eigenvalue equation:

(
XX⊤)w = λw (2.11)

This basic form is greatly linked kernel PCA by Schölkopf[137] and his generalized

version ofRepresentor Theorem. Just like the normal vectors perpendicular to the de-

cision plane in Support Vector Machine, we can imagine if ourprinciple components

like w can be decomposed as:

w =
n∑

i=1

αixi = Xα (2.12)

The essential of PCA is no more than inner product, if we replace the vectorw

during maximizing our variance captured:w⊤XX⊤w. Then the form turns out

to beα⊤ (X⊤XX⊤X
)
α = α⊤D2α with constraintα⊤Dα = 1 resembling

‖w‖ = 1. Thus, we just loop back to solve the same sort of eigenvalue problem like

X⊤Xα = λ̃α. Vital point here is computing the inner product does not require the

actual access of both vectors. This property functioning like a “black box” no matter

how we move our data points as long as they still remain in the form of the inner

product. But first, we define the kernel function as:

Φ : Rp → F , where F is a Hilbert space (2.13)
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F is our feature space that can be arbitrarily large without a bound. Some com-

mon examples include: Gaussian RBF kernelφ(x,y) = e−‖x−y‖2, polynomial

kernelφ(x,y) =
(
1 + x⊤y

)2
etc.. Thanks to Mercer’s theorem, for a finite set

{xi}, i = 1, 2, · · · , n in X ∈ R
n and countable set of non-negative eigenvalues

{λi}, i = 1, 2, · · · ,∞, the continuous kernel function of pairK(x, z) onX×X can

be decomposed to
∑∞

t=1 λtφt (x)φt (z). By substituting just in the fashion of 2.12,

we can repost our object as:

1

n
Kα = λ̃α (2.14)

whereK is ourn × n kernel matrix thatKij is defined byφ (xi)
⊤
φ (xj). Thus,

this just reduced to a common situation just like any other eigenvalue problems.

Figure (2.4) shows projection of the spam and iris dataset on two kernel principal

components by using RBF kernel.
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Figure 2.4: (left) projection of the spam dataset on 2 principal components by RBF kernel. (right)

projection of the iris dataset on 2 principal components by RBF kernel.
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2.1.4 Notes on RPCA

Beginning from the basic assumption of the intrinsic lower dimensionality given a

large data matrix, Candès[24] repost the PCA problem as decomposition the data

matrix itself:

X = L0 + S0 (2.15)

So the PCA problem can be described as optimizing‖X −L‖ subject torank (L) 6

d, whereL is the approximation of low rank matrixL0 and the support ofS0 is

assumed to be sparse. IfX is heavily contaminated, the noise reside inS0 can be

largely amplified. Thus, the authors proposed Principle Component Pursuit (PCP)

by separating the low rank approximation and the sparse component:

(L,S) = argmin
L,S

‖L‖∗ + λ ‖S‖1 , s.t. X = L+ S (2.16)

where the‖A‖∗ is an nuclear norm of matrixA. The meaningful disentangling and

recovery ofL0 requires
∥∥UV ⊤∥∥

∞ < µ
√
r/n, wherer is the rank ofL andµ is its

level of incoherence. The paper illustrated one way to solvethis convex optimization

by applying the augmented Lagrange multiplier:

ℓ (L,S,Z) = ‖L‖∗ + λ ‖S‖1 +Z⊤ (X −L− S) +
µ

2
‖X −L− S‖2F

Thus, the problem can be solved by sequentially updatingL, S andZ until the

approximations:‖X − L− S‖F 6 ξ ‖X‖F whereξ is enough small. For example,

we start with selectingµ > 0 and settingS0,Z0 equals to 0 then updatingL1 with

the solution:
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Lt+1 = Dµ−1

(
X − St + µ−1Zt

)

whereDµ−1 (X) is a function recoversX from its SVD having only singular values

that larger thanµ−1. It is defined by:

Dτ (X) = USτ (Σ)V
⊤, where Sτ (x) = I (max (|x| − τ))

Sτ is so called the shrinkage operator. ThenS can be updated by:

Sλµ−1

(
X −Lt+1 + µ−1Zt

)

Then we can updateZ by a further step to complete the loop. The algorithm needs

to find the eigenvalues for each step so sometimes it could be computationally ex-

pensive and the choices ofµ andξ are vital. Later in outlier detection we will talk

a little bit more about the applications of RPCA but here we discuss no more details

about it. Other related contents including its non-convex development can be found

in [109] and [39].
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Chapter 3

Basics of Ensemble Learning

3.1 An Overview

The mechanism of ensemble learning functions like ants which is to gather multiple

tiny workers to move a huge target. Kearns[84] posted a progress of machine learn-

ing class project in 1988 that asking whether the potential of a set of weak learners

can be combined to improve the accuracy. This so calledHypothesis Boosting Prob-

lemwas definitively answered by Schapire[134] in 1990. He introduced theBoosting

which is one of the most widely used and powerful algorithms in ensemble learning.

The method was originally built for classification and lateradapt itself to regres-

sion problems. Just like the question posted by Kearns, the algorithm select a weak

learner that is slightly better than random guessing in the training process. For each

time and each of these weak learners are trained with the dataset, the ones that are

more accurate are rewarded with a candy. In the end, all of thelearners are weighted

by their success and failure to create a voted machine for classification or a averaged

model for regression. Later in the vital paper in 1995 that Schapire and Freund[47]

were introducing the most popular boosting algorithmAdaboost, a similar story was

told in analogy of horse-racing gamblers while they were talking about their im-

proved version of adaboost[49]. A pool of personal experience based suggestions,

if possibly, slightly better than random guessing, can build a reliable prediction. At

first glance, the phenomena itself is interesting and weird,because the gap between

the mathematical principles and the practical results seems to be huge. However, it
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is just like Schapire’s later explanation in [136] that referring to Vapniks[155] great

work, “by understanding the nature of learning at its foundation” in terms of both

algorithms and this phenomena.

In the same year, Breiman[20] introduced bootstrap aggregation, so calledBagging.

In fact, the simplicity of bagging is unspeakably shocking but it turned out to be

convincing after Breiman demonstrate the improvements of the prediction error UCI

repository datasets. The method regenerate training samples by bootstrapping the

original observations and later largely applied in decision tree models. A comparison

between bagging and two boosting algorithms was raised by Opitz and Maclin[101]

in 1999 that bagging was shown contently outperformed its base learner but occa-

sionally much less accurate than boosting while boosting may fluctuate down below

its base learner. In Breiman’s another paper[21] in 1996, after he talked about Ge-

man’s bias-variance decomposition of the error term, he assumed that both bagging

and boosting are reducing the variance in order to achieve higher accuracy. Later of

that year Schapire and Freund[49] indicated that boosting also reduces the bias by

forcing the weak learners to focus on different parts of the instance space. Bauer

and Kohavi[11] performed a more thorough comparison in 1999 among severalal-

gorithms including bagging and adaboost and unexpectedly concluded that not only

boosting but also bagging may reduce the bias part of error incertain real-world

datasets. Though many of the answers looped back to “no free launch”, bagging was

mentioned as appropriate for decision trees and neural networks by Opitz and Maclin

in [101]. It is very interesting that the decision tree algorithm may just like a “twitchy

sow’s ear” in Breiman’s[22] analogy that can build up one of his most famous “silk

purse”Random Forest(RF).

Ho[69] discussed a systematic way of growing trees in her 1995 paper while many

of other studies focused on sophisticated pruning procedures. In deliberation of the
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oblique hyperplanes, she took the advantage of randomization on subspaces of vari-

able dimensions. Later in a more comprehensive study[70] conducted in 1998, her

approach was formally namedRandom Subspace Method(RSM). Variables are ran-

domly selected and eight different splitting function wereused to construct forests.

Like many other ensemble learning, voting through a weighted process or other tech-

niques can be applied in final model aggregation. Strong performances were shown

in this paper against boosting and bagging in certain datasets but there was one ques-

tion left open. the performance of the algorithm seemed largely influenced by the

number of dimensions when tested by the data called “dna”. Hosuggested select the

roughly about half of the variables and there are rarely a studies have been systemat-

ically solved this issue that most of the selections are based on empirical evidence or

cross validation. Faced the variance in performances amongdifferent classifiers, Ho

published a report[71] in 2001 to discuss some empirical observations that lead to

the measures of data or problem complexity. Followed by the research of Kuncheva

et al.[95], the complexity of generated random subspaces are still considered lack of

understanding thus further studies are required to illuminate the foundations behind

it.

3.2 Boosting

3.2.1 Foundations of Adaboost

Schapire paid his tribute to Vapnik and Chervonenks[156] for uncovering the funda-

mental mechanism of learning theory in [136]. He summarized that a classifier learnt

from data can be considered as effective by three conditions:

• The training process needs support from large amount of observations.

• Model has reasonable fit without having too much training error.

• Parsimony applies, the simpler the better.
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Though it is very intuitive to think about The VapnikChervonenkis dimension (VC

dim) as the direct explanation of the function of boosting bySchapire. He proved the

error is bounded by:

E 6 2T
T∏

t=1

√
E t (1− E t) (3.1)

where t is the number of iteration and for eachE t there exist someα > 0 for

E t = 1/2 − α so each error has the value below1/2. This is so called theweak

learning condition. Given this assumption, it is noticeable that the training error of

adaboost algorithm can reduce to 0 at speed ofO (logn), wheren is the number of

observations. So the error of the aggregated classifier fromtraining and testing is

just a function of the number of iterationT . The error of classifier applied on sample

data is guaranteed to be small. Then Schapire applied Vapnik’s[154] Structural Risk

Minimization (SRM) to restrict the number of weak learners and their simplicity in

order to make the error of the whole domain ofX close to the empirical error on

the training observations. For a binary classifier classC, if all classifiers have VC

dimensiond > 2, it can be proved that the upper bound of the class domainΘ of T

linear binary classifiers inC is:

V C (ΘT (C)) 6 2 (d+ 1) (T + 1) (log2(e (T + 1)) (3.2)

wheree denotes the natural number. There is a closely linear relationship between

the VC dimension of the aggregated classifier and the number of iterations. This

shows that the classical overfitting phenomena does happen with too many iterations

but may be avoided in practical situations.
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3.2.2 Adaboost: The Algorithm

Formally, we have the algorithm of adaptive boostingAdaboost:

Algorithm 1 Adaptive Boosting
1: procedure ADABOOST(T )

2: Set α
(1)
i ∈ w(1) = 1

n
for all i, wherei = 1, · · · , n

3: for t = 1 to T do

4: Setw(t) = w(t)

∑
n

i=1 w
(t)
i

5: Call the weak learnerf andAssign weightsw(t)

6: Compute the errorÊ
(t)

=
∑n

i=1 α
(t)
i |y(t)

i − f̂t(x
(t)
i )|

7: Set β(t) = Ê
(t)

1−Ê
(t)

8: Set weightsw(t+1)
i = w

(t)
i

(
β(t)
)1−|y

(t)
i

−f̂t(x
(t)
i

)|

9: end for

10: Output can be computed by:

f̂t(x
(t)) =





1 if
∑T

t=1 log
(

1
β(t)

)
f̂t(x

(t)) > 1
2
log
(

1
β(t)

)

0 otherwise.

11: end procedure

Starting from uniform weights thatw(1)
i = 1/n, foralli, the weight vectorw(t) is

updated in each loop byβ(t) then final output is generated by weighted voting.β(t) is

actually a function ofE(t) that manipulating the weight vector. Notice forβ(t) there

is a reversed adjustment that the “lost” function is1 − |y(t)
i − f̂t(x

(t)
i )|. Thus, if the

classifier is making a correct decision, the probability assign it will reduce. Vice

versa, If the classifier is making an incorrect decision, theprobability assign it will

increase. Adaptive boosting is not very similar to many other boosting algorithms by

the time which the errors of the weak learners are used to adjust the structure. Other

forms of adaboost can be found in studies like[135], slightly modified adaboost in

applications like SVM are in [99].
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3.3 Bagging and Random Subspace

3.3.1 Reasons for Stabilization

In Breiman’s original paper, he explained why bagging workswell after some real

world data experiments. The key of bagging is to stabilize the variance, the square

loss was adopted to demonstrate the his point. Suppose we have data examples are

independently sampled from joint distributionP : D =
{
(yN ,xN)

}
whereN =

1, 2, · · · , n, yN are all continuous and̂f(x,D) represents our prediction thus the

aggregated versionfA(x,D) is just:

fA(x,P ) = E

(
f̂(x,D)

)
(3.3)

The average errorE from prediction over distributionP can be expressed by the

expectation of square loss:

E = EDEY,X (Y − f(X,D))2 (3.4)

And if we denote the error after aggregation asbcfEA:

EA = EY,X (Y − fA(x,P ))2 (3.5)

Then by Jensen’s inequalityφ (E(Z)) 6 E (φ(Z)). So ifφ(Z) = Z2 we have:

E = E
(
Y 2
)
− 2E (Y fA) + EY,XED

(
f̂(X,D)

)2

> EY,X (Y − fA(X,P ))2 = EA (3.6)

So the aggregated predictor has smaller mean squared error.Every time, The more
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diverseD are sampled fromP the more difference of two sides of the Jensen’s in-

equality
(
ED

(
f̂(x,D)

))2
6 ED

(
f̂(x,D)

)2
can be. Thus, if the base learner is

not stable, it can actually travel around inside ofP by the bootstrap approximation.

However, if the base learner is stable, bagging may not help too much in terms of ac-

curacy. Breiman also showed in classification scenario, bagging is always improving

the performance even the classifier is nearly optimal. More details can be found in

[20], here we do not discuss further details.

3.3.2 Bagging: The Algorithm

The algorithm of bagging is shockingly refined in terms of concise. Bootstrap sam-

ples are generated by uniformly samplingn observations from the original training

data with replacement. There areB bootstrap samples and with each one a classifier

or predictorf̂ (b)(X,D) is computed by using thebth sample. However this proce-

dure is directly related to its robustness which we will talkabout it later in chapter 4.

Here, formally we have the bootstrap aggregation for classificationBagging:

Algorithm 2 Bootstrap Aggregation
1: procedure BAGGING(B)

2: for b = 1 toB do

3: Draw with replacement {i(b)1 , · · · , i(b)n } from {1, 2, · · · , n} to form the bootstrap

sampleD (b)

4: Call the bth hypothesis f̂ (b) with D (b)

5: end for

6: Output can be computed by:

f̂(x) = argmax
y∈Y

∑

b:f̂(b)=y

1

7: end procedure

In the last step, the majority votes of the labels from all of the hypothesis become the



32

final classifier. In continuous response predictions like regression, bagging will take

the model averaging to build the final prediction.

3.3.3 Random Subspace Method

When Breiman[22] published his random forests in 2001, he mentioned two studies

that greatly influenced by two studies. One is Amit and Geman’s[6] geometrical in-

vestigation of the best split of trees in large dimensionality and another important re-

search is Ho’s[70] random subspace method (RSM). The method was originally used

to build decision trees but it can actually adapt many other algorithms. Skurichina

and Duin[141] applied RSM to linear classifiers like Linear DiscriminantAnalysis

(LDA) for two-class problems. Like bagging, RSM also improves the prediction er-

ror by stabilizing classifiers especially when many of the linear classifiers are fickle.

One of the benefits of RSM for building and aggregating the classifiers is the num-

ber of dimensionality may be much smaller than the original data. In sub-feature

spaces the sample size does not change. So this method actually increases the rel-

ative observations that are available for each loop. When the data was combined

with plenty of noise variables classifiers may be able to perform better in random

subspaces than the original space. Thus the aggregated decision can outperform a

single predictor or classifier. Similar proof of stabilization can be applied just like

Breiman’s bagging since bootstrap is also used for first stepin RSM. Tao and Tang

et al. combined symmetric bagging and RSM to stabilize relevance support vector

machines based feedback schemes. Although RSM structure adapted many of the ap-

plications such as face recognition[162] and fMRI classification[94], there is rarely

a deeper understanding or any analysis about the complexityof subspaces to solidify

its foundation. In Kunchevaet al.’s experiments, it is imaginable that the complex-

ity among subspaces are much higher than the complexity among bootstrap subsets.

Furthermore, the number of the subspaces selected is directly related to the com-

plexity but the complexity may reduce as more variables are selected. This may just
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due to the increase probability of selecting the overlappeddimensions. Most impor-

tantly, the noisy variables often observed to generate similar complexity comparing

to the variables without redundancy. However, the researchers clarified that there is

no clear methods of the measure of complexity and even the definition of complexity.

Like the notations we used in bagging, there areB bootstrap samples and with each

sample there is ourbth hypothesisf̂ (b)(X,D). But within each bootstrap . Here,

formally we have the random subspace method for classification RSM:

Algorithm 3 Random Subspace Method
1: procedure RANDOM SUBSPACE METHOD(B)

2: for b = 1 toB do

3: Draw with replacement {i(b)1 , · · · , i(b)n } from {1, 2, · · · , n} to form the bootstrap

sampleD (b)

4: Draw without replacement from {1, 2, · · · , p} a subset{j(b)1 , · · · , j(b)d } to form

d variables

5: Build thebth classifierf̂ (b) with D (b)

6: Drop unselected variables from D (b) so thatD (b)
sub is d dimensional

7: Call the bth hypothesis f̂ (b)(D
(b)
sub)

8: end for

9: Output can be computed by:

f̂(x) = argmax
y∈Y

∑

b:f̂(b)(D
(b)
sub

)=y

1

10: end procedure

In the last step, the majority votes of the labels from all of the hypothesis become the

final classifier. In continuous response predictions like regression, bagging will take

the model averaging to build the final prediction.
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Chapter 4

Random Subspace MCD

4.1 Outlier Detection

4.1.1 Previous Studies

The definition of outlier was never clear, descriptions from“observation point that is

distant from other observations”[59] to “an observation that lies outside the overall

pattern of a distribution”[68] can be found in plenty of books. Thus, great number

of cases were considered as outliers. For example, the data contains missing values

or extreme values in some observations, some of the variables do not come from the

same distribution as our objective samples or even the part of the data is unspecified

with huge errors. So the question of outlier detection is fully opened as almost no or

vague paths to reach an undefined goal. In early multivariatestudies, two approaches

dealing with outliers seemed to draw majority of the the attentions with different pur-

suits. The two ways of solving outlier problems are very muchlike to complement

each other. The difference lies in their primary target, oneis to build the parametrical

estimators for the data and another one is solely hunting forthe outliers not matter

whether estimators are required. However, all of the studies have one common latent

need is discover the intrinsic structure of the data.

Rousseeuwet al.[129] [131] proposedMinimum Volume Ellipsoid(MVE) as a robust

location estimator. Later based on MVE he developedMinimum Covariance Deter-

minant[132] in application of outlier detection. Davies[23] proved that the MVE
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satisfy a local Ḧolder condition of order1/2 and also converges weakly to a non-

Gaussian distribution at rate ofn− 1
3 . He and Wang[66] establish strong consistency

and functional continuity that for MVE estimator can act reasonable if the shape of

intrinsic distribution is likely to be elliptically symmetric. This type of estimator

is criticized as slow convergence rate due to its large variability and low efficiency.

Woodruff and Rocke[128] proposedMULTOUT in 1996 that combined several steps

in MCD to create a hybrid approach to improve both computational expenses and

peformances. Thus, a careful choice of parameters is commonly required. Billoret

al[17] introduced BACON to find the best subset of the data at the initial process and

Pena and Prieto[117]’s Kurtosis 1 chooses directions that maximize and minimize

the univariate projected data. Maronna and Zamar[104] proposed theirOrthogonal-

ized Gnanadesikan-Kettenring(OGK) robust estimator in 2002 that claimed to be

better and faster than MCD that deals with relative large dimensional situations.

4.1.2 Dance with Increasing Dimensionality

None of the algorithms we mentioned above can actually cope with high dimensional

data. Aggarwal and Yu[2] proposed an algorithm that tries to findm of potential

combinations ofk subspaces in which the data is sparse. Though comparing to search

each subspace that the method largely reduced the number of combinations, just like

we mentioned in chapter 1, the number of combinations can rapidly shoot to sky

with increasing dimensionality. Zhang et al.[160] in 2004 challenged with the same

UCI machine learning repository and explained theirHOS-miner. The algorithm

tries to identify the subspaces that a given point is an outlier. Nguyenet al.[112]

in 2011 criticized a monotonic behavior in Zhang’s researchthat the condition does

not have to be hold the outlier-residing subspaces. Nguyen proposedHigh-DOD that

uses modified k-nearest neighbor weight outlier score and applied on normalized

ℓp norm. Later Kriegelet al.[91] criticized High-DOD by its process of examine

too many subspaces which bias can be generated. By the time, many of the outlier
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detection algorithms that deal with larger dimensionalityare proposed such asHiCS

by Keller et al.[85], OutRankby Müller et al.[108] and COP by Kriegel et al.[91]

but none of these can actually handle or perform very well in true high dimensional

data, especially for “largep, smalln” problems. The one that catches our eyes is the

PCA-based algorithm proposed by Filzmoseret al.[46] that namedPCOut in 2008.

It specifically targeted high dimensional outlier detection by taking advantages of

the nature of PCA. The algorithm uses median absolute deviation normalized data

to find out the most variable dimensions and use re-defined distances to classify the

outliers. A simulation withp = 2000 was presented in the paper and a practical

example of detecting outliers on a transposed micro-array gene expression dataset.

In next section we talk more about the algorithm and compare it with our method in

terms of accuracy in simulation study.

4.1.3 Alternatives to Parametric Outlier Detection Methods

The assumption of multivariate Gaussianity of thexi’s is obviously limiting as it

could happen that the data does not follow a Gaussian distribution. Outside of the

realm where location and scatter matrix play a central role,other methods have been

proposed, especially in the field of machine learning, and specifically with similarity

measures known as kernels. One such method is known as One-Class Support Vector

Machine (OCSVM) proposed by [139] to solve the so-called novelty detection prob-

lem. It is important to emphasize right away that novelty detection although similar

in spirit to outlier detection, can be quite different when it comes to the way the

algorithms are trained. OCSVM approach to novelty detection is interesting to men-

tion here because despite some conceptual differences fromthe covariance methods

explored earlier, it is formidable at handling HDLSS data thanks to the power of

kernels. LetΦ : X −→ F . The one-class SVM novelty detection solves

argmin
w∈F ,ξ∈IRn,ρ∈IR

{
1

2
‖w‖2 + 1

νn

n∑

i=1

ξi − ρ

}
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Subject to

〈w,Φ(xi)〉 > ρ− ξi, ξi ≥ 0, i = 1, · · · , n

UsingK (xi,xj) = 〈Φ(xi),Φ(xj)〉 = Φ(xi)
⊤Φ(xj), we get

f̂(xi) = sign

(
n∑

j=1

α̂jK (xi,xj)− ρ̂

)

so that anyxi with f̂(xi) < 0 is declared an outlier. Thêαj ’s andρ̂ are determined

by solving the quadratic programming problem formulated above The parameterν

controls the proportion of outliers detected. One of the most common kernel is the

so-called RBF kernel defined by

K (xi,xj) = exp

{
− 1

2σ2
‖xi − xj‖2

}

OCSVM has been extensively studied and applied by many researchers among which

[103], [79] and [161], and later enhanced by [5]. OCSVM is often applied to semi-

supervised learning tasks where training focuses on all thepositive examples (non

outliers) and then the detection of anomalies is performed by searching points that

fall geometrically outside of the estimated/learned decision boundary of the good

(non outlying trained instances). It is a concrete and quitepopular algorithm for

solving one-class problems in fields like digital recognition and documentation cat-

egorization. However, it is crucial to note that OCSVM cannot be used with many

other real life datasets for which outliers are not well-defined and/or for which there

are no clearly identified all-positive training examples available such as gene expres-

sion mentioned before.
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4.2 MCD and PCOut

4.2.1 Minimum Covariance Determinant Estimators

We are given a datasetD = {x1, · · · ,xn}, wherexi = (xi1, · · · , xip)
⊤ ∈ X ⊂

R
1×p, under the special scenario in whichn ≪ p, referred to as high dimensional

low sample size (HDLSS) setting. It is assumed that the basicdistribution of theXi’s

is multivariate Gaussian, so that the density ofX is given byφp(x;µ,Σ), with:

φp(x;µ,Σ) =
1√

(2π)p|Σ|
exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
. (4.1)

It is also further assumed that the data setD is contaminated, with a proportionε ∈
(0, τ) whereτ < e−1, of observations that are outliers, so that underε-contamination

regime, the probability density function ofX is given by

p(x|µ,Σ, ε, η, γ) = (1− ε)φp(x;µ,Σ) + εφp(x;µ+ η, γΣ), (4.2)

whereη represents the contamination of the location parameterµ, while γ captures

the level of contamination of the scatter matrixΣ. Given a dataset with the above

characteristics, the goal of all outlier detection techniques and methods is toselect

and isolate as many outliers as possible so as to perform robust statistical procedures

non-aversely affected by those outliers.In such scenarios where the multivariate

Gaussian is the assumed basic underlying distribution, theclassical Mahalanobis

distance is the default measure of the proximity of the observations, namely

d2µ,Σ(xi) = (xi − µ)⊤Σ−1 (xi − µ) , (4.3)

and experimenters of often address and tackle the outlier detection task in such situa-

tions using either the so-called Minimum Covariance Determinant (MCD) Algorithm

[129] or some extensions or adaptations thereof.
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Algorithm 4 Minimum Covariance Determinant (MCD)
1: Selecth observations, and form the datasetDH . H ⊂ {1, · · · , n}.
2: Compute the empirical covariancêΣH and mean̂µH .

3: Compute the Mahalanobis distancesd2
µ̂H ,Σ̂H

(xi), i = 1, · · · , n
4: Select theh observations having the smallest Mahalanobis distance.

5: UpdateDH and repeat steps2 to 5 until det(Σ̂H) no longer decreases.

The MCD algorithm can be formulated as an optimization problem:

(Ĥ, µ̂H , Σ̂H) = argmin
µ,Σ,H

{E(µ,Σ, H)} (4.4)

where

E(µ,Σ, H) = log{det(Σ)}+ 1

h

∑

i∈H
(xi − µ)⊤Σ−1 (xi − µ). (4.5)

The seminal MCD algorithm proposed by [129] turned out to be rather slow and did

not scale well as a function of the sample sizen. That limitation of MCD led its

author to creation of the so-called FAST-MCD [132], focused on solving the outlier

detection problem in a more computationally efficient way. Since the algorithm only

needs to select a limited numberh of observations for each loop, its complexity can

be reduced when sample sizen is large, since only a small fraction of the data is

used. It must be noted however that the bulk of the computations in MCD has to do

with the estimation of determinants and the Mahalanobis distances, both requiring

a complexity ofO(p3) wherep is the dimensionality of the input space as defined

earlier. It becomes crucial therefore to find out how MCD fares whenn is large and

p is also large, even the now quite ubiquitous scenario wheren is small butp is very

larger, and indeed much larger thann. As noted before, with the MCD algorithm,

h observations have to be selected to compute the robust estimator. Unfortunately,

whenn ≪ p, neither the inverse nor the determinant of covariance matrix can be
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computed. As we’ll show later, theO(p3) complexity of matrix inversion and de-

terminant computatation renders MCD untenable forp as moderate as500. It is

therefore natural, in the presence of HDLSS datasets, to contemplate at least some

intermediate dimensionality reduction step prior to performing the outlier detection

task. Several algorithms have been proposed, among which PCOut by [46], Regular-

ized MCD (R-MCD) by [55] and other ideas by [7], [1], [57], [92]. When instability

in the data makes the computation ofΣ̂ problematic inp dimension, regularized

MCD may be used with objective function

E(µ,Σ, H, λ) = E(µ,Σ, H) + λtrace(Σ−1), (4.6)

whereλ is the so-called regularizer or tuning parameter, chosen tostabilize the pro-

cedure. However, it turns out that even the above Regularized MCD cannot be con-

templated whenp ≫ n, sincedet(Σ̂) is always zero in such cases. The solution to

that added difficulty is addressed by solving:

(
Ĥ, µ̂H , Σ̂H

)
= argmax

{
log{det(Σ̃)}

+
1

h

∑

i∈H
(xi − µ)⊤ Σ̃−1 (xi − µ) + λtrace(Σ̃−1)

}

where the regularized coveriance matrixΣ̃ is given by:

Σ̃(α) = (1− α)Σ̂+
α

p
trace(Σ̂)Ip (4.7)

with α ∈ (0, 1). For many HDLSS datasets however, the dimensionalityp can reach

p > 103 or evenp > 104. As a result, even the above direct regularization is compu-

tationally intractable, because whenp is large, theO(p3) complexity of the needed

matrix inversion and determinant calculation makes the problem computationally un-

tenable. The fastest matrix inversion algorithms like [27] and [97] are theoretically

aroundO(p2.376) andO(p2.373), and so complicated that there are virtually no use-

ful implementation of any of them. In short, the regularization approach to MCD
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like algorithms is impractical and unusable for HDLSS datasets even for values ofp

around a few hundreds.

4.2.2 PCOut Algorithm for HDLSS Data

Another approach to outlier detection in the HDLSS context has revolved around ex-

tensions and adaptations of PCA that isPCOutas we mentioned before. By reducing

the dimensionality of the original data, one seeks to createa new data representation

that evades the curse of dimensionality. However, PCA, in its generic form, is not

robust, for the obvious reason that it is built by a series of transformations of means

and covariance matrices whose generic estimators are notoriously non robust. It is

therefore of interest to seek to perform PCA in a way that doesnot suffer from the

presence of outliers in the data, and thereby identify the outlying observations as a

byproduct of such a PCA. Many authors have worked on the robustification of PCA,

and among them [76] whose proposed ROBPCA, a robust PCA method, which es-

sentially robustifies PCA by combining MCD with the famousprojection pursuit

technique ([32], [98]). Interestingly, if instead of reducing the dimensionality based

on robust estimators, one can first apply PCA to the whole data, then outliers may

surprisingly lie on several directions where they are then exposed more clearly and

distinctly. Such an insight appear to have motivated the creation of the so-called

PCOut algorithm proposed by [46]. PCOut uses PCA as part of its preprocessing

step after the original data has been scaled by Median Absolute Deviation (MAD).

In fact, in PCOut, each attribute is transformed as follows:

x∗
j =

xj − x̃j

MAD(xj)
, j = 1, · · · , p, (4.8)

wherexj = (x1j, · · · , xnj) ⊂ R
n×1 andx̃j is the median ofxj. Then withX∗ =

[
x∗
1,x

∗
2, · · · ,x∗

p

]
, PCA can be performed, namely

X∗⊤X∗ = V ΛV ⊤ (4.9)
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from which the principal component scoresZ = X∗ · V may then be used for the

purpose of outlier detection. In fact, it also turns out thatthe principal component

scoresZ may be re-scaled to achieve a much lower dimension with99% variance

retained. Unlike MCD, PCA based re-scaled method is not onlypractical but also

performs better with high dimensional datasets.99% of simulated outliers are de-

tected whenn = 2000, p = 2000. A higher false positive rate is reported in low

dimensional cases, and less than half of the outliers were identified in scenarios with

n = 2000, p = 50. It is clear by now that with HDLSS datasets, some form of di-

mensionality reduction is needed prior to performing outlier detection. Unlike the

authors just mentioned who all resorted to some extension oradaptation of principal

component analysis wherein dimensionality reduction is based on transformational

projection, we herein propose an approach where dimensionality reduction is not

only stochastic but also selection-based rather than projection-based. The rest of this

paper is organized as follows: in section 2, we present a detailed description of our

proposed approach, along with all the needed theoretical and conceptual justifica-

tions. In the interest of completeness, we close this section with the general descrip-

tion of a nonparametric machine learning kernel method for novelty detection known

as the one-class support vector machine, which under suitable conditions is an alter-

native to the outlier detection approach proposed in this paper. Section 3 contains

our extensive computational demonstrations on various scenarios. We specifically

present the comparisons of the predictive/detection performances between our RSSL

based approach and the PCA based methods discussed earlier.We mainly used sim-

ulated data here, with simulations seeking to assess the impact of various aspects of

the data such as the dimensionalityp of the input space, the contamination rateε and

other aspects like the magnitudeγ of the contamination of the scatter matrix. We

conclude with section 4, in which we provide a thorough discussion of our results

along with various pointers to our current and future work onthis rather compelling

theme of outlier detection.



43

4.3 Random Subspace Learning Approach to Outlier Detection

4.3.1 Rationale for Random Subspace Learning

We herein propose a technique that combines the concept underlying Random sub-

space Method or, Random Subspace Learning (RSSL) by Ho[70] with some of the

key ideas behind minimum covariance determinant (MCD) to achieve a computa-

tional efficient, scalable, intuitive appealing and highlyaccurate outlier detection

method for both HDLSS and LDHSS datasets. With our proposed method, the com-

putation of the robust estimators of both location and scatter matrix can be achieved

by tracing the optimal subspaces directly. Besides, we demonstrate via practical ex-

amples that our RSSL based method is computationally very efficient, specifically

because it turns out that, unlike the other methods mentioned earlier, our method

does not require the computationally expensive calculations of determinants and Ma-

halanobis distances at each step. Morever, whenever such calculations are needed,

they are all performed in very low dimensional spaces, further emphasizing the com-

putational strength of our approach. The original MCD algorithm formulates the

outlier detection problem as the problem of finding the smallest determinant of co-

variances computed from a sequenceD
(k)
h , k = 1, · · · , m of different subsets of the

original data setD . Each subset containsh observations. More precisely, ifDoptimal

is the subset ofD whose observations yield the estimated covariance matrix with the

smallest (minimum) determinant out of all them subsets considered, then we must

have:

det(Σ̂(Doptimal)) = min
{
det(Σ̂(D

(1)
h )), det(Σ̂(D

(2)
h )), · · · , det(Σ̂(D

(m)
h ))

}
,

wherem is the number of iterations needed for the MCD algorithm to converge.

Doptimal is the subset ofD that produces the estimated covariance matrix with the

smallest determinant. The MCD estimates of the location vector and scatter matrix



44

parameters are given by:

µ̂MCD = µ̂(Doptimal) and Σ̂MCD = Σ̂(Doptimal).

The numberh of observations in each subset is required to ben
2 ≤ h < n. It turns out

thath = [(n + p + 1)/2] reaches its highest possible breakdown value according to

[100]. It is obvious that withh = [(n+ p+1)/2] being the highest breakdown point,

the requirementn2 ≤ h < n cannot achieved in the HDLSS context, since in such

a contextp ≫ n. It is therefore intuitively appealing to contemplate a subspace

of the input spaceX , and define/contruct such a subspace in such a way that its

dimensionalityd < p is also such thatd < n to allow the seamless computation of

the needed distances.

4.3.2 Description of RSSL for Outlier Detection

Random Subspace Learning in its generic form is designed forprecisely this kind

of procedure. In a nutshell, RSSL combines instance-bagging (bootstrap ie sam-

pling observations with replacement) with attribute-bagging (sampling indices of at-

tributes without replacement), to allow efficient ensemblelearning in high dimen-

sional spaces. Here we present the algorithm in the form of a framework: Random

Subspace Learning (Attribute Bagging) proceeds very much like traditional bagging,

with the added crucial step consisting of selecting a subsetof the variables from the

input space for training rather than building each base learners using all thep original

variables.

Algorithm 5 Random Subspace Learning (RSSL): Attribute-bagging step
1: Randomly draw the number d < p of variables to consider

2: Draw without replacement the indices of d variables of the

original p variables

3: Perform learning/estimation in the d-dimensional subspace



45

This attribute-bagging step is the main ingredient of our outlier detection approach

in high dimensional spaces.

Algorithm 6 Random Subspace Learning for Outlier Detection whenp ≪ n

1: procedure RANDOM SUBSPACE OUTLIER(B)

2: for b = 1 toB do

3: Draw with replacement {i(b)1 , · · · , i(b)n } from {1, 2, · · · , n} to form the bootstrap

sampleD (b)

4: Draw without replacement from {1, 2, · · · , p} a subset{j(b)1 , · · · , j(b)d } of d vari-

ables

5: Drop unselected variables from D (b) so thatD (b)
sub is d dimensional

6: Build the bth determinant of covariance det(Σ̂(D
(b)
sub))

7: end for

8: Sort the ensemble
{
det(Σ̂(D

(b)
sub)), b = 1, · · · , B

}

9: Form D∗ : det(D∗) = argmin

{
det(Σ̂(D

(b)
sub)), b = 1, · · · , B

}

10: Compute µ̂∗ and Σ̂∗ base on D∗

11: We can build the robust distance by:

δ̂∗(x) = (x− µ̂∗)⊤ Σ̂∗−1 (x− µ̂∗) . (4.10)

12: end procedure

The RSSL outlier detection algorithm computes a determinant of covariance for each

subsample, with each subsample residing in a subspace spanned by thed randomly

selected variables, whered is usually selected to bemin(n
5
,
√
p). A total ofB subsets

are generated, and their low dimensional covariance matrices are formed along with

the corresponding determinants. Then the best subsample, meaning the one with the

smallest covariance determinant is singled. It turns out that in the LDHSS context

(n ≫ p), our RSSL outlier detection algorithm always robustly yields the robust

estimatorŝµ∗ andΣ̂∗ needed to compute the Mahalanobis distance for all the obser-

vations. Then the outliers can be selected using the typicalcut-off built on classical
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χ2
p,5%. In HDLSS context, in order to handle the curse of dimensionality, we need to

involve a new variable selection procedure to adjust our framework and concurrently

stabilize the detection. The modified version of our RSSL outlier detection algorithm

in HDLSS is then given by:

Algorithm 7 Random Subspace Learning for Outlier Detection whenn ≪ p

procedure RANDOM SUBSPACE DETERMINANT COVARIANCE(B)

2: for b = 1 toB do

Draw with replacement {i(b)1 , · · · , i(b)n } from {1, 2, · · · , n} to form the bootstrap

sampleD (b)

4: Draw without replacement from {1, 2, · · · , p} a subset{j(b)1 , · · · , j(b)d } of d vari-

ables

Drop unselected variables from D (b) so thatD (b)
sub is d dimensional

6: Build the bth determinant of covariance det(Σ̂(D
(b)
sub))

end for

8: Sort the ensemble
{
det(Σ̂(D

(b)
sub)), b = 1, · · · , B

}

Keep the k smallest samples based on elbow to form D (η), where

η = 1, · · · , k, k < B

10: for j = 2 to d do

Select ν = j most frequent variables left in D (η) to compute

det(Σ̂(D
(η=1)
sub=j))

12: end for

Form D∗ : det(D∗) = argmax

{
det(Σ̂(D

(η=1)
sub=j)), j = 2, · · · , d

}

14: Compute µ̂∗ and Σ̂∗ base on D∗

We can build the robust distance by:

δ̂∗(x) = (x− µ̂∗)⊤ Σ̂∗−1 (x− µ̂∗) .

16: end procedure

Without selecting the smallest determinant of covariance,we choose to select a cer-

tain number of subsamples to achieve the variable selectionthrough a sort of voting

process. The portion of the most frequently appearing variables are elected to build
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an optimal space that allow us to compute our robust estimators. The simulation

results and other details will be discussed later.

4.3.3 Justification RSSL for Outlier Detection

Conjecture 1. LetD be the dataset under consideration. Assume that a proportion

ε of the observations inD are outliers. Ifε < e−1, then will high probability, the

proposed RSSL outlier detection algorithm will efficientlycorrectly identify a set of

data that contains very few of the outliers.

Let xi ∈ D be a random observation in the original datasetD . Let D (b) denote the

bth bootstrapped sample fromD . Let Pr[xi ∈ D (b)] represent the proportion of ob-

servations that are inD but also present inD (b). It is easy to provePr[xi ∈ D (b)] =

1 −
(
1− 1

n

)n
. In other words, ifPr[xi /∈ D (b)] = Pr[On] denotes the observations

from D not present inD (b), we must havePr[xi /∈ D (b)] =
(
1− 1

n

)n
= Pr[On].

SincePr[On] is known to converge toe−1 asn goes to infinity. Therefore for each

given bootstrapped sampleD (b), there is a probability close toe−1 that any given out-

lier will not corrupt the estimation of location vector and scatter matrix parameters.

Since the outliers as well as all other observations have an asymptotic probability of

e−1 of not affecting the bootstrapped estimator that we build. Therefore over a large

enough re-sampling process (largeB), there will be many bootstrapped samplesD (b)

with very few outliers leading to a sequence of small covariance determinants as de-

sired, ifε < e−1. It is therefore reasonable to deduce that by averaging thisexclusion

of outliers over many replications, robust estimators willnaturally be generated by

the RSSL algorithm.

4.3.4 RSSL Classification for High Dimensional Data

Since RSSL-MCD method that we discussed in last section can build robust space for

the original data, thus the method can be applied to many of the classifiers especially

for linear classifiers. Here we select the Fisher’s linear discriminant analysis (LDA)
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as an example. Briefly speaking, for multivariate Gaussian density given classk we

have:

fk (x) =
1

(2π)p |Σk|
1
2

e−
1
2 (x−µk)

⊤
Σ−1

k
(x−µk).

So for the hypothesiŝH (X) we find the optimum class forx by compute the prob-

ability:

δ̂ (x) = argmax
k

Pr (H = k | X = x)

= argmax
k

fk (x)πk

= log
(
argmax

k
fk (x) πk

)

Replace the density function of multivariate Gaussian, we can easily show that:

δ̂ (x) = argmax
k

(
−1

2
(x− µk)

⊤
Σ−1

k (x− µk) + log (πk)

)
(4.11)

Thus, the estimation of mean and covariance can be replaced by our robust estima-

tors µ̂∗ andΣ̂∗−1. Notice that the observations of the data are divided byk classes

for LDA. However, since for variable selection we have to compute and rank the

determinants ofX, the pooled covariance can be computed by:

Σ̂pool =

K∑

k=1

n− 1

N − k
Σ̂k
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Thus, formally we have the random subspace learning for linear discriminant analy-

sisRSSL-LDA:

Algorithm 8 Random Subspace Learning for LDA whenn ≪ p

procedure RANDOM SUBSPACE DETERMINANT COVARIANCE(B)

2: for b = 1 toB do

for k = 1 toK do

4: Draw with replacement {i(b)1 , · · · , i(b)nk
} from {1, 2, · · · , nk} to form the boot-

strap sampleD (b)

Draw without replacement from {1, 2, · · · , p} a subset{j(b)1 , · · · , j(b)d } of d

variables

6: Drop unselected variables from D
(b)
k so thatD (b)

subk
is d dimensional

Compute Σ̂k from D
(b)
subk

8: end for

Compute the pooled covariance Σ̂(D
(b)
subpool)

10: Build the bth determinant of covariance by pooled covariance

det(Σ̂(D
(b)
subpool))

end for

12: Sort the ensemble
{
det(Σ̂(D

(b)
subpool)), b = 1, · · · , B

}

Keep the z smallest samples based on elbow to form D (η), where

η = 1, · · · , z, z < B

14: for j = 2 to d do

Select ν = j most frequent variables left in D (η) to compute

det(Σ̂(D
(η=1)
subpool=j))

16: end for

Form D∗ : det(D∗) = argmax

{
det(Σ̂(D

(η=1)
subpool=j)), j = 2, · · · , d

}

18: Compute µ̂∗
k andΣ̂∗

k base onD∗
k

We can compute and select the probability of each class by:

δ̂∗ (x) = argmax
k

(
−1

2
(x− µ̂∗

k)
⊤
Σ̂∗−1

k (x− µ̂∗
k) + log (πk)

)

20: end procedure
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Chapter 5

Implementation Results and Conclusion

5.1 Computational Demonstrations

5.1.1 Setup of Computational Demonstration and Initial Results

In this section, we conduct a simulation study to assess the performance of our

algorithm based on various important aspects of the data, and we also provide a

comparison of the predictive/detection performance of ourmethod against existing

approaches. All our simulated data are generated accordingto theε-contaminated

multivariate Gaussian introduced via (4.1) and (4.2). In order to assess the effect

the covariance between the attributes, we use an AR-type covariance matrix of the

following form:

Σ =




1 ρ · · · · · · ρ

ρ 1 ρ · · · ρ
... ... .. . ... ...

ρ ... ρ 1 ρ

ρ · · · · · · ρ 1




= [(1− ρ)Ip + ρ1p1
⊤
p ], (5.1)

whereIp is thep-dimensional identity matrix, while1p is p-dimensional vector of

ones. For the remaining parameters, we consider 3 differentlevels of contamination

ε ∈ {0.05, 0.1, 0.15}, namely mild contamination to strong contamination.ρ is se-

lected between{0, 0.25} to show the effect of correlation. The dimensionalityp will

increase in low-dimensional case as{30, 40, 50, 60, 70} and high dimensional case
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as{1000, 2000, 3000, 4000, 5000} and the number of observations are fixed at 1500

and 100. We compare our algorithm to existing PCA based algorithms PCOutand

PCDist, both of which are available inR within the package calledrrcovHD.
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Figure 5.1: (left) Histogram of the distribution of the determinants from all bootstrap samplesD
(b)
sub

whenn = 100, p = 3000; (right) Histogram of log determinants for all the bootstrap samples. Our

methodology later selects a portion of samples based on whatwe call here the elbow.

As can be seen on Figure (5.1), the overwhelming majority of samples lead to deter-

minants that are small as evidenced by the heavy right skewness with concentration

around zero. This further confirms our conjecture that as long asε < e−1 which is

a rather reasonable and easily realized assumption, we should isolate samples with

few or no outliers.
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Figure 5.2: (left) Tail of sorted determinants in high dimensionalD (b)
sub

, whereB = 450. k can

be selected before reaching the elbow; (right) The concave shape can be observed by computing

determinants of covariance from 2 tom dimension. The cut-offν for variable selection is based on

the decreasing sorted frequency located at the maximum of the determinants.

Since each bootstrapped sample selected has a small chance of being affected by

the outliers, we can select the dimensionality that maximize this benefits. In our

HDLSS simulations, determinants are computed based on all the randomly selected

subspaces, and are ruled by predominantly small values, which implies the robust-

ness of the classifier. Figure (2.4) patently shows the dominance of small values of

determinants, which in this case are the determinants of allbootstrapped samples

based on our simulated data. A distinguishable elbow is presented in Figure (5.2).

The next crucial step lies in selecting a certain number of bootstrap samples, sayk,

to build an optimal subspace. Since most of the determinantsare close to each other,

it is a non-trivial problem, which means thatk needs to be carefully chosen to avoid

going beyond the elbow. However, it is important to notice ifk is too small then

the variable selection in later steps of the algorithm will become a random pick, be-

cause there is no opportunity for each variable to appear in the ensemble. Here, we

choosek to be the number of roughly the first 30% to 80% ofB bootstrap samples
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D (η) according to their ascending order of the determinants. This choice is based on

our empirical experimentations. It is not too difficult to infer the asymptotic normal

distribution of the frequencies of all variables inD (η) as we can observe in Figure

(1.2). Thus, the most frequently appearing variables located onthe left tail can be

adopted/kept to build our robust estimator. Once the selection of k is made, the

frequencies of variables appearing in this ensemble can be obtained/computed for

variable selection. The 2 tom most frequently appearing variables are included to

compute the determinants in Figure (1.2). m is usually small, since we assume from

the start that the true dimensionality of the data is indeed small. Here for instance,

we choose20 for the purposes of our computational demonstration. A sharp maxi-

mum indicates the number of dimensionν from that sorted ensemble that we need

to choose. Thus, with the bootstrapped observations havingthe smallest determi-

nant with the subspace that generates the largest determinant, we can successfully

computeD∗ = D
(η=1)
sub=ν. Then the robust estimators can be formed byµ̂∗ andΣ̂∗.

Theoretically then we are in a presence of a minimax formulation of our outlier de-

tection problem, namely

{D (∗),V (∗)} = argmax
V (b)

{
argmin

D(b)

{det(cov(Σ̂(D (b)(V (b)))))}
}

(5.2)

By Equation , it should be understood that we need to isolatedthe precious subsam-

ple D (∗) that achieves the smallest overall covariance determinant, but then concur-

rently identify along withD (∗) the subspaceV (∗) that yields the highest value of that

covariance determinant among all the possible subspaces considered.

5.1.2 Further Results and Computational Comparisons

As indicated in our introductory section, we use the Mahalanobis distance as our

measure of proximity. As since we are operating under the assumption of multivari-

ate normality, we use the traditional distribution quantilesχ2
d,α2

as our cut-off with

the typicalα = 10% andα = 5%. As usual, all observations with distances larger
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thanχ2
d,α2

are classified as outliers. The data for simulation study aregenerated with

η, κ ∈ {2, 5} representing both easy and hard situation for RSSL algorithm to detect

the outliers, andε as the rate of contamination. Throughout, we useR = 200 replica-

tions for each combination of parameters for each algorithm, and we use the average

test errorAVE as our measure of predictive/detection performance. Specifically,

AVE(f̂) =
1

R

R∑

r=1

{
1

m

m∑

i=1

ℓ(y
(r)
i , f̂r(x

(r)
i ))

}
, (5.3)

wheref̂r(x
(r)
i )) is the predicted label of the test set observationi yielded byf̂ in the

r-th replication. The loss function used here is the basic zero-one loss defined by:

ℓ(y
(r)
i , f̂r(x

(r)
i )) = 1{y(r)

i
6=f̂r(x

(r)
i

)} =

{
1 if y(r)

i 6= f̂r(x
(r)
i )

0 otherwise.
(5.4)

It will be seen later that our proposed method produces predictive accurate outlier

detection results, typically competing favorably againstother techniques, and usu-

ally outperforming them. Firstly however, we show in Figure(5.3) the detection

performance of our algorithm based on two randomly selectedsubspaces. The out-

liers detected by our algorithm are identified by red triangles and contained in the

red contour, while the black circles are the normal data.
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Figure 5.3: (left) The outliers detected in a two dimensional subspace are marked as red triangles.

Selection is based on̂δ∗(x) > χ2
df=d,α=5%; (right) Outliers are selected byχ2

df=d,α=10%.

The improvement of our random subspace learning algorithm in low dimensional

data withp ∈ {30, 40, 50, 60, 70} and relative large sample sizen = 1500, is demon-

strated in figure (5.4) and (5.5) in comparison toPCOutandPCDist. Despite the

correlationρ may moderately affect both algorithms’ performances that the most

prominent changes are brought byκ andη. Given a relatively easy task, namely with

κ, η = 5, the outliers are scattered widely and shifted far from normal, the RSSL with

1− α equals95% and90% perform consistently very well, typically outperforming

the competition. When the rate of contamination is increasing in this scenario, al-

most100% accuracy can be achieved with RSSL based algorithm. When theoutliers

are spread more narrowly and closer to the mean withκ, η = 2, the predictive accu-

racy of our random subspace based algorithm is slightly lesspowerful but still very

strong, namely with a predictive detection rate close to96% to 99%.
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Figure 5.4: (n = 1500, ρ = 0) The average error and standard deviation in low dimensional simulation

with κ, η = 5 (left column) andκ, η = 2 (right column).
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Figure 5.5: (n = 1500, ρ = 0.25) The average error and standard deviation in low dimensional

simulation (n = 1500, ρ = 0) with κ, η = 5 (left column) andκ, η = 2 (right column).
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In high dimensional settings, namely withp ∈ {1000, 2000, 3000, 4000, 5000} and

low sample sizen = 100. Although the correlationρ can slightly affect perfor-

mance, RSSL is also performs reasonably well as shown in figure (5.9) whenκ and

η are relatively larger. However, asκ andη equals to while contamination rate is

severe around15%, the test is harder for RSSL that causes the accuracy reduce to

90%. When no correlation is added as in figure (5.7), with 1−α = 95% chi-squared

cut-off, whenκ, η = 5, 96% to 98% of outliers can be detected constantly among

all simulated high dimensions. Under more difficult conditions, as withκ, η = 2, a

decent amount of outliers can be detected with accuracy around92% to 96%. Based

on the properties of robust PCA based algorithms, the situation that we define as

”easy” for RSSL algorithms is actually ”harder” forPCOut andPCDist. The princi-

ple component space is selected based on the visibility of outliers, and especially for

PCOut, the components with nonzero robust kurtosis are assigned higher weights by

the absolute value of their kurtosis coefficients. This method is shown to yield good

performances when dealing with small shift of mean and scatter of the covariance

matrix. However, if the outliers lied on largerη andκ where excessive choices can

be made then, it is more difficult for PCA to find the dimensionality to make the

outliers ”stick out”. Reversely, with a small values ofκ andη, the most obvious di-

rections are emphasized by PCA but less chance for algorithms like RSSL to obtain

the most sensible subspace to build robust estimators. So infigure (5.7) and (5.9),

whenκ, η = 2 the accuracy reduced to around92% but in all other high-dimensional

settings the performance of RSSL is consistent withPCOut and identically stable.
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Figure 5.6: (n = 100, ρ = 0) The average error and standard deviation in high dimensional simulation

with κ, η = 5 (left column) andκ, η = 2 (right column).



60

0.
00

0.
05

0.
10

0.
15

0.
20

P

E
rr

or

Contamination = 0.05

1000 2000 3000 4000 5000

RSSL 95%
RSSL 90%

PCOut
PCDist

0.
00

0.
05

0.
10

0.
15

0.
20

P
E

rr
or

Contamination = 0.05

1000 2000 3000 4000 5000

RSSL 95%
RSSL 90%

PCOut
PCDist

0.
00

0.
05

0.
10

0.
15

0.
20

P

E
rr

or

Contamination = 0.1

1000 2000 3000 4000 5000

RSSL 95%
RSSL 90%

PCOut
PCDist

0.
00

0.
05

0.
10

0.
15

0.
20

P

E
rr

or

Contamination = 0.1

1000 2000 3000 4000 5000

RSSL 95%
RSSL 90%

PCOut
PCDist

0.
00

0.
05

0.
10

0.
15

0.
20

P

E
rr

or

Contamination = 0.15

1000 2000 3000 4000 5000

RSSL 95%
RSSL 90%

PCOut
PCDist

0.
00

0.
05

0.
10

0.
15

0.
20

P

E
rr

or

Contamination = 0.15

1000 2000 3000 4000 5000

RSSL 95%
RSSL 90%

PCOut
PCDist

Figure 5.7: (n = 100, ρ = 0.25) The average error and standard deviation in high dimensional

simulation withκ, η = 5 (left column) andκ, η = 2 (right column).
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5.2 Real Data Classification

5.2.1 The Leukemia Dataset

We consider the data from the cancer classification researchconducted by Golub

et al.. The goal of the research is to correctly distinguish between acute myeloid

leukemia (AML) and acute lymphoblastic leukemia (ALL) fromDNA-microarry

gene expression dataset. The data set contains 47 patients with ALL and 25 patients

with AML that adds up to 72 observations. There are 6817 variables that representing

human genes and each value of data is the expression level measured by Affymetrix

high density oligonucleotide arrays. Here we use a subset ofthe data because some

bioinformatics filtering need to be taken as a preprocessingsteps. This procedure is

performed by:

• Eliminate the variables with extreme values that less than 100 and larger than

16000

• A base 10 logarithmic transformation is performed for the whole dataset

• Exclude the variables that have transformed observations with value:max /min 6

5 or max−min 6 500

Thus, the filtered dataset has unchanged observationsn = 72 but dimensionsp =

3571. Such threshold was frequently used by researchers such as [37]. The prepro-

cessed data is already available inR packagespikeslab. Then we can applied

our RSSL-LDA and compare with other popular algorithms.SVMwith Radial Ba-

sis (Gaussian) kernel andRandomForestare selected due to their adaptation of such

high dimensionality. Since this is a real world data situation, we concern large por-

tion of the variables of the benchmark leukemia dataset has the high probability to

be correlated, an weighting scheme that taking advantages of F -statistic is adopted

by us that to reduce the chance of repeatedly select redundancies. For each feature
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we give it a weightwi wherei = 1, 2, · · · , p according itsF -statistic with respect to

the responsey, such procedure is taken before bootstrap aggregation.

5.2.2 Prediction Results

We still useB = 450 bootstrap samples for each run of the algorithm, and replicate

R = 200 times. Since the ratio of between the devotionality and the number of

observations is extremely unbalanced, top60% of bootstrap samples that are ranked

by determinant are used to selectz of the most frequently appeared variables. On

Figure (5.6), just like the situation in our previous outlier detectionexperiment, huge

amount of samples with determinants that are very close to zero which leads an

obvious scene of heavy right skewness. This is again a strongevidence that we need

to rebuild our estimators to achieve robustness inside of this extremely noisy dataset.
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Figure 5.8: The frequency of determinant and (right) log determinant of all random subspaces from

leukemia dataset.

For most of situations, the way way determine the value ofz can work well like the

previous outlier simulation study. The most frequent appeared variables are added
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one by one and the determinant is computed accumulatively.z equals the dimension-

ality that has the maximum determinant. However, we a real dataset with massive

amount of redundancy is encountered, this way may not work perfectly due to its

unexpected complexity among all subspaces. Thus, we may perform a cross vali-

dation with values in{2, 3, · · · , z∗} if the maximum is not available since we can

roughly estimate a range from previous loops. In this example, we choosez∗ = 10

and a 3-fold cross validation is performed due to the limitednumber of observations

in each class (47 and 25). Figure (5.7) shows an example ofz = 3 when a maximum

can be obtained.
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Figure 5.9: (left) The maximum determinant can be obtained from (right) the first 3 most frequently

appeared variables.

On Figure (5.9), the result of comparison with SVM with RBF kernel and random

forests classifiers in terms of accuracy is shown. The same 3-fold cross validation

is performed for both SVM and RF on the training data is performed to assess the

quality of their models. The mean error rate of RSSL-LDA is roughly5% that2.5%

lower than the tuned SVM and RF and the standard deviations are close to each other.

Though the practical performances of our algorithm still needs some improvements,

there are considerably amount of space that we can explore.
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5.3 Conclusion

We have presented what we can rightfully claim to be a computational efficient,

scalable, intuitive appealing and highly predictively accurate outlier detection and

classification method for both HDLSS and LDHSS datasets. As an adaptation of

both random subspace learning and minimum covariance determinant, our proposed

approach can be readily used on vast number of real life examples where both its

component building blocks have been successfully applied.The particular appeal of

the random subspace learning aspect of our method comes in handy for many outlier

detection and classification tasks on high dimension low sample size datasets like

DNA Microarray Gene Expression datasets for which the MCD approach proved

to be computational untenable. As our computational and real data demonstrations

section above reveal, our proposed approach competes favorably with other existing

methods, sometimes outperforming them predictively despite its straightforwardness

and relatively simple implementation. Specifically, our proposed method is shown

to be very competitive in terms of accuracy for both low and high dimensional space

outlier detection, high dimensional data classification and is computationally very
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efficient.

Our future interests on of the random subspace frame work canbe divided in to two

directions. We can examine some functionF , different weights and dynamic way of

selecting variables that can break down the potential of correlation to efficiently com-

bine linear classifiers or, we can simply experiment on different classifiers. Further-

more, we can extend our field of studies to model aggregation by various weighting,

theoretical upper bound and oracle inequalities for convexaggregates.
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[89] Mario Köppen. The curse of dimensionality. In5th Online World Conference

on Soft Computing in Industrial Applications (WSC5), pages 4–8, 2000.

[90] Mark A Kramer. Nonlinear principal component analysisusing autoassocia-

tive neural networks.AIChE journal, 37(2):233–243, 1991.

[91] H Kriegel, Peer Kroger, Eugen Schubert, and Arthur Zimek. Outlier detection

in arbitrarily oriented subspaces. InData Mining (ICDM), 2012 IEEE 12th

International Conference on, pages 379–388. IEEE, 2012.

[92] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Outlier

detection in axis-parallel subspaces of high dimensional data. InAdvances in

Knowledge Discovery and Data Mining, pages 831–838. Springer, 2009.

[93] L.I. Kuncheva, J.J. Rodriguez, C.O. Plumpton, D.E.J. Linden, and S.J. John-

ston. Random subspace ensembles for fmri classification.Medical Imaging,

IEEE Transactions on, 29(2):531–542, Feb 2010.

[94] Ludmila I Kuncheva, Juan J Rodrı́guez, Catrin O Plumpton, David EJ Linden,

and Stephen J Johnston. Random subspace ensembles for fmri classification.

Medical Imaging, IEEE Transactions on, 29(2):531–542, 2010.



76

[95] Ludmila I Kuncheva, Fabio Roli, Gian Luca Marcialis, and Catherine A Shipp.

Complexity of data subsets generated by the random subspacemethod: an

experimental investigation. InMultiple Classifier Systems, pages 349–358.

Springer, 2001.

[96] P. Langley. Crafting papers on machine learning. In PatLangley, editor,Pro-

ceedings of the 17th International Conference on Machine Learning (ICML

2000), pages 1207–1216, Stanford, CA, 2000. Morgan Kaufmann.

[97] Francois Le Gall. Powers of tensors and fast matrix multiplication. InProceed-

ings of the 39th International Symposium on Symbolic and Algebraic Compu-

tation, ISSAC ’14, pages 296–303, New York, NY, USA, 2014. ACM.

[98] Guoying Li and Zhonglian Chen. Projection-Pursuit approach to robust dis-

persion matrices and principal components: Primary theoryand monte carlo.

Journal of the American Statistical Association, 80(391):759–766, 1985.

[99] Xuchun Li, Lei Wang, and Eric Sung. Adaboost with svm-based component

classifiers.Engineering Applications of Artificial Intelligence, 21(5):785–795,

2008.

[100] Hendrik P. Lopuhaa and Peter J. Rousseeuw. Breakdown points of affine

equivariant estimators of multivariate location and covariance matrices.Ann.

Statist., 19(1):229–248, 03 1991.

[101] Richard Maclin and David Opitz. An empirical evaluation of bagging and

boosting.AAAI/IAAI, 1997:546–551, 1997.

[102] Edward C Malthouse. Limitations of nonlinear pca as performed with generic

neural networks. Neural Networks, IEEE Transactions on, 9(1):165–173,

1998.

[103] Larry M Manevitz and Malik Yousef. One-class svms for document classifi-

cation. the Journal of machine Learning research, 2:139–154, 2002.



77

[104] Ricardo A Maronna and Ruben H Zamar. Robust estimates of location and

dispersion for high-dimensional datasets.Technometrics, 2012.

[105] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine Learn-

ing: An Artificial Intelligence Approach, Vol. I. Tioga, Palo Alto, CA, 1983.

[106] T. M. Mitchell. The need for biases in learning generalizations. Technical

report, Computer Science Department, Rutgers University,New Brunswick,

MA, 1980.

[107] Klaus-Robert Mller, Sebastian Mika, Gunnar Rtsch, Koji Tsuda, and Bern-

hard Schlkopf. An introduction to kernel-based learning algorithms. IEEE

TRANSACTIONS ON NEURAL NETWORKS, 12(2):181–201, 2001.

[108] Emmanuel M̈uller, Ira Assent, Uwe Steinhausen, and Thomas Seidl. Outrank:

ranking outliers in high dimensional data. InData Engineering Workshop,

2008. ICDEW 2008. IEEE 24th International Conference on, pages 600–603.

IEEE, 2008.

[109] Praneeth Netrapalli, UN Niranjan, Sujay Sanghavi, Animashree Anandkumar,

and Prateek Jain. Non-convex robust pca. InAdvances in Neural Information

Processing Systems, pages 1107–1115, 2014.

[110] A. Newell and P. S. Rosenbloom. Mechanisms of skill acquisition and the

law of practice. In J. R. Anderson, editor,Cognitive Skills and Their Acqui-

sition, chapter 1, pages 1–51. Lawrence Erlbaum Associates, Inc.,Hillsdale,

NJ, 1981.

[111] Jerzy Neyman and Egon S Pearson.On the problem of the most efficient tests

of statistical hypotheses. Springer, 1992.

[112] Hoang Vu Nguyen, Vivekanand Gopalkrishnan, and Ira Assent. An unbi-

ased distance-based outlier detection approach for high-dimensional data. In

Database Systems for Advanced Applications, pages 138–152. Springer, 2011.



78

[113] Erkki Oja. Simplified neuron model as a principal component analyzer.Jour-

nal of mathematical biology, 15(3):267–273, 1982.

[114] F. Z. Okwonu and A. R. Othman. Robust mlcr linear classification technique:

An application to classify aede albopictus mosquito.International Journal of

Computer Science Issues,, 10(6):266–270, 2013.

[115] J-X. Pan, W-K. Fung, and K-T. Fang. Multiple outlier detection in multivariate

data using projection pursuit techniques.Journal of Statistical Planning and

Inference, 83(1):153–167, 2000.

[116] Pance Panov and Saso Dzeroski. Combining bagging and random subspaces

to create better ensembles. In Michael R. Berthold, John Shawe-Taylor, and

Nada Lavrafc, editors,Advances in Intelligent Data Analysis VII, volume 4723

of Lecture Notes in Computer Science, pages 118–129. Springer Berlin Hei-

delberg, 2007.

[117] Daniel Pea and Francisco J. Prieto. Multivariate outlier detection and robust

covariance matrix estimation.Technometrics, 43:286–310, 2001.

[118] K Person. On lines and planes of closest fit to system of points in space.

philiosophical magazine, 2, 559-572, 1901.

[119] A. M. Pires. Projection-pursuit approach to robust linear discriminant analysis.

Journal Multivariate Analysis,, 101(10):2464–2485, 2010.

[120] A.M. Pires. Robust linear discriminant analysis and the projection pursuit

approach. In R. Dutter, P. Filzmoser, U. Gather, and P. J. Rousseeuw, editors,

Developments in Robust Statistics,, pages 317–329. Physica-Verlag HD, 2003.

ISNB: 978-3-642-63241-9.

[121] G. Pison, S. Van Aelst, and G. Willems. Small sample corrections for lts and

mcd. Metrika,, 55(1-2):111–123, 2002.



79

[122] Jrg Polzehl and Deutsche Forschungsgemeinschaft. Projection pursuit dis-

criminant analysis.Computational Statistics and Data Analysis, 20:141–157,

1993.

[123] S. et al. Pomeroy. Prediction of central nervous system embryonal tumor out-

come based on gene expression.Nature,, 415:436–442, 2002.

[124] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim.Efficient algorithms

for mining outliers from large data sets. InACM SIGMOD Record, volume 29,

pages 427–438. ACM, 2000.

[125] Sarunas Raudys and Robert PW Duin. Expected classification error of the

fisher linear classifier with pseudo-inverse covariance matrix. Pattern Recog-

nition Letters, 19(5):385–392, 1998.

[126] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu.High-dimensional

covariance estimation by minimizing 1-penalized log-determinant divergence.

Electronic Journal of Statistics,, 5:935–980, 2011.

[127] G.M. Reaven and R.G. Miller. An attemp to define nature of chemical diabest

using a multidimensional analysis.Diabetologica,, 16:17–24, 1979.

[128] David M Rocke and David L Woodruff. Identification of outliers in multivari-

ate data.Journal of the American Statistical Association, 91(435):1047–1061,

1996.

[129] P. J. Rousseeuw. Least median of squares regression.Journal of the American

Statistical Association,, 79(388):871–880, 1984.

[130] Peter J. Rousseeuw and Katrien Van Driessen. A fast algorithm for the mini-

mum covariance determinant estimator.Technometrics, 41:212–223, 1998.

[131] P.J. Rousseeuw. Multivariate estimation with high breakdown point. In



80

W. Grossmann, G. Pflug, I. Vincze, and W. Wertz, editors,In Mathematical

Statistics and Applications,, Dordrecht, 1985. Reidel Publishing Company.

[132] P.J. Rousseeuw and K. Van Driessen. A fast algorithm for the minimum co-

variance determinant estimator.Technometrics,, 41(3):212–223, 1999.

[133] A. L. Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3(3):211–229, 1959.

[134] Robert E Schapire. The strength of weak learnability.Machine learning,

5(2):197–227, 1990.

[135] Robert E Schapire. A brief introduction to boosting. In Ijcai, volume 99, pages

1401–1406, 1999.

[136] Robert E Schapire. Explaining adaboost. InEmpirical inference, pages 37–52.

Springer, 2013.
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[138] Bernhard Scḧolkopf, John C. Platt, John Shawe-taylor, Alex J. Smola, and

Robert C. Williamson. Estimating the support of a high-dimensional distribu-

tion, 1999.
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