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Abstract

We introduce and develop a novel approach to outlier detection based on adaptation of random
subspace learning. Our proposed method handles both high-dimension low-sample size and tradi-
tional low-dimensional high-sample size datasets. Essentially, we avoid the computational bottle-
neck of techniques like Minimum Covariance Determinant (MCD) by computing the needed de-
terminants and associated measures in much lower dimensional subspaces. Both theoretical and
computational development of our approach reveal that it is computationally more efficient than
the regularized methods in high-dimensional low-sample size, and often competes favorably with
existing methods as far as the percentage of correct outlier detection are concerned.

Keywords

High-Dimensional, Robust, Outlier Detection, Contamination, Large p Small n, Random Subspace
Method, Minimum Covariance Determinant

1. Introduction

We are given a dataset D ={x,,x,,-,x,}, where x, = (x“,-u,xu, )T e X < R™", under the special scenario in
which n <& p refers to as high dimensional low sample size (HDLSS) setting. It is assumed that the basic dis-
tribution of the X, ’sis multivariate Gaussian, so that the density of X is given by ¢F (x: ,u,E) . with

; VR S (05 T CT W (1
4, (x;u2)= o p{ S(x-p) 2 u)} )

It is also further assumed that the data set D is contaminated, with a proportion ¢ € (O,T) where 7<e™,
of observations that are outliers, so that under & -contamination regime, the probability density function of X

How to cite this paper: Liu, B.H. and Fokoué, E. (2015) Random Subspace Learning Approach to High-Dimensional Outliers
Detection. Open Journal of Statistics, 5, 618-630. http://dx.doi.org/10.4236/0js.2015.56063
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Abstract

Random Subspace Learning on Outlier Detection and Classifation with
Minimum Covariance Determinant Estimator

Bohan Liu
Supervising Professor: Dr. Ernest Foko@

The questions brought by high dimensional data is intargsthd challenging. Our
study is targeting on the particular type of data in thisatitan that namely “large
p, sSmalln”. Since the dimensionality is massively larger than the banof obser-
vations in the data, any measurement of covariance andrgssia will be miserably
affected. The definition of high dimension in statistics bagn changed through-
out decades. Modern datasets with over thousands of diorenare demanding the
ability to gain deeper understanding but hindered by theecaf dimensionality. We
decide to review and explore further to negotiate with these@and extend previous
studies to pave a new way for estimating robustness thery apgploutlier detection
and classification.

We explored the random subspace learning and expand o#ssifatation and out-

lier detection algorithms to adapt its framework. Our pregebmethods can handle
both high-dimension low-sample size and traditional lamehsional high-sample

size datasets. Essentially, we avoid the computationdlelbetk of techniques like

Minimum Covariance Determinant (MCD) by computing the resbdeterminants

and associated measures in much lower dimensional sulssiizath theoretical and

computational development of our approach reveal thatabreputationally more

efficient than the regularized methods in high-dimensitmasample size, and of-

ten competes favorably with existing methods as far as tiheeptage of correct

outlier detection are concerned.
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Chapter 1

Introduction

1.1 Motivation and Difficulties

The beginning point of our work is mapped from our curiosifyr@bust estima-
tors in modern data-driven decisions. One can naturallyeoithis topic to outlier
detection and location estimation. Many studies in thigdftehd brought various
“thick-skinned” properties to attention since B&¥ used the word “robustness” to
describe the insensitive of violation of normality in Bettls[10] version of Neyman-
Pearsor]1]] likelihood ratio test. Modern datasets brought us hugetarhof chal-
lenges that not only because they consume massive congnatiatesource due to
their exponentially increasing scales but also expand $lkeéras to extreme struc-
tures such as “short-fat”, so callétigh Dimensional Low Sample SizgHDLSS).
Early studies seem to address this issue rarely but enorattergions have been
drawn throughout this decade. So we ask ourselves thisign&san we build ro-
bust estimators that can adapt to high dimensional datéth this question in mind,
we notice there are several points can not be ignored. Fiadt,ave are not solely
focusing on certain applications but interested in usiagjstical machine learning
to build estimators that can also be applied in various ne&tle results of the al-
gorithm can be used and adjusted in tasks like outlier deteeind classification.
Second, our target will not only be those extreme scenatibalbo other typical sta-
tistical situations like Boston Housing and Iris datasé&tse estimation method can
have roots in lower dimensional space then expand its stech¢eaves to survive



in harsher environment. Finally, the computational comipfeshould also be con-
sidered as a major factor especially with high-dimensigmablem. If covariance
matrices or their inverse with massive amount of variabtleseacountered, the time
used in estimation will increase cubically with the dimemsility then the task will

simply be impractical.

To follow the direction that we mentioned earlier, there @met number of routes
to explore. A very intuitive procedure can start from tecjuas like dimensionality
reduction or feature selection to uncover the structuré®itbeaningful proportion.
Then from this seemingly more rational base we may constwichew estimators
or models to travel through the patterns hidden in the datais;Tthe core problems

that have to be solved to guide us can be summarized by:

e What are the techniques used to reduce the dimensionality?

e What are the techniques have been applied on subspace sveadhiferent

goals?
e How we can extract the essence of previous studies to hibogets?

e How is the performance if we eventually applied our estioraito different

applications?

Unfolding these four questions can clarify the goal of oweaarch:Reduce the di-
mensionality efficiently then extend or combine previogsm@thms to build robust
estimators for both high and low dimensional dafsfter we acquired our estima-
tors we can compare their performances to other algoritinnagpplications such as

outlier detection and classification.



1.2 Background: The Curse of Dimensionality

1.2.1 Where Comes the Curse

Introduced by Bellmari[2] in 1957, the term curse in machine learning is mainly
used to describe the explosively increasing complexitywdch variable added in
higher dimension. Given a value of smooth function defined mgh dimensional
space, it is very likely the convergence rate of the estimatlh be inevitably slow.
Although the term is often related to the poor performancelagsical algorithms
especially for non-parametric ones like nearest neighandsGaussian kernel, the
true difficulties come from its deep uncertainty within.dtlike someone dropped a
key when he was walking through a narrow alley that all he s¢edlio to find the
key is just to walk in an opposite direction. But if the key viast on a golf course it
will be almost impossible to retrieve it. Some propertiesigih dimensional space
has been demonstrated in previous stu@idg5] [89] and many of them are speech-
lessly counter-intuitive. Human beings are deaf and bimthe universe, not only
because the range of frequency or spectrum we can hear ahdtsdso because we
can never possibly imagine adding even one more dimensiouartexisting world.

Unfortunately, among all these cruel situations there angesextremists can be eas-
ily encountered frequently. These are the datasets we omeatibefore as HDLSS
and often being labeled as “largesmalln”. To be more explicitly, given the data

-
7 = [x{,%y,-+,%,], wherex; = (z;1,- -+ ,1;) € R
X11 X12 o o o o le
X21 X22 DY o o e X2
X = v (1.1)

an Xn2 DRI DRI an



with p > n. Typical examples can be found in many fields especially tonc
putational biology and computer vision where plenty of data are considered as
benchmarks. In bioinformatics, such instances are coresidas daily basis in so
called micro-array gene expression. Micro-array is a tetdgy that using silicon
bio-chip with tens of thousands of preselected gene spot®ltect and measure
gene expression from biological samples. Later the datke@ed and normalized
through some database search algorithms that huge numiaetaijles are generated
after this pre-processing step. Famous datasets incldingemia”, “lymphoma”
and “colon-cancer” mainly come from previous cancer sts(@]d 4] [58] where re-
searchers were trying to find statistical patterns that ¢assify different tumors.
Among these datasets, a relative small number of varialpéearaund 2000 (colon-
cancer dataset). But the dataset contains only 62 obsamgadind makes the ratio
between the number of observation and dimensionality equals 0.031. One of
the noticeable examples in computer vision and image psougss ICDAR2013,
a competition of gender prediction from handwriting postedKaggle (a data sci-
ence competition platform). There were only 475 obsermatiwere provided but
the number of features extracted from four documents werto8000. Tradi-
tional methods usually fail sorrowfully in these cases duentiltiple properties of
the curse. Later in this thesis, we will often yst refer the number of dimensions
or variables ana to refer the number of observations or examples in the data.

1.2.2 What Comes With the Curse

Classical approaches in finite dimensional space fail ifediht ways. Any statis-
tical method that needs to compute the inverse of covariaratex fails immedi-
ately. Some of the attempisg [159 of approximating the inverse, though indeed
reduced the computational expenses, are still in developame have not been prac-
tically implemented. Several noticeable properties ofdhese can be summarized



below:

e The available sample points are going to be inevitably spardigh dimen-
sional space.

e Most of the data are severely pushed far from the centre in dignensional

space.
e Distance functions may largely lose their meaning in highehsional space.

e The major proportion of the data is very likely to be noisy @ty correlated
in high dimensional space.

e The number of models is growing ruthlessly in high dimenal@pace.

The sparsity maybe the most intuitive problem that one cark thf. Imagine if 10
points need to be sampled from an line interval from O to 1 ohrftensional coor-
dinate system. This means with each dimension add to thenaligpace that(?
points need to be sampled frgndimensional space. In the colon-cancer dataset we
mentioned before, it may seem to be very crowded if all 62 nlagi®ns lined on a
one dimensional line interval. With the exponential instiag in volume caused by
adding other 1999 dimensions, majority of the sample ponayg isolated from each
other.

The skewness of the data from centre is often demonstrateétebyatio between
an hypersphere and a hypercube. The side length of the hygeeegjuals the diame-
ter of the hypersphere. It is relatively fair to imagine timetwo or three dimensional
space that data may equally spread in both of the shapespbihts are “randomly”
distributed. However, increasing the dimensionality ofrbof them to a slightly
larger number, say 10, the volume of the hypersphere ca@tagisarply towards 0 as
in figure (L.1). Then majority of the data are squeezed to the edges of thertybe
where far from the centre. Formally, the volume gf-ball:



y, = 0 1.2
P Tpze1) Y as p—» o (1.2)

wherer is the radius of the hypersphere. To make this even more epunitiitive,
the volume of a unit hypercube remains 1 as the the dimengipgaes to infinity.
If the length of the side is less than 1 the volume approactasddf length of the
side is larger than 1 the volume turns out to be infinity. Thapehof the hypercube
iIs commonly visualized as a sea urchin where majority of tita dre located on its
“spikes” as in (.2).

1.0

0.8

0.6
!

Volume of hypersphere
0.4

0.0
!

2 4 6 8 10 12

Number of dimensions

Figure 1.1: The volume of hypersphere with diameter equalscteases sharply as the number of
dimensions increases.
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Figure 1.2: Orthogonal projection of a 10 dimensional hgpbe

Another consequential effect is many of the distance measarmachine learning
start to drop their meaningfulness. As Beg¢mal[15 showed under certain condi-
tions, the ratio between the variance of the distance measwany given data point
and the variance of the mean distance measure of the digsgocsverging to zero
as dimensionality goes to infinity. So a little bit more fottpave have:

m var ( =
v g (o ) (1.3)

Then for every > 0,

lim Pr [max (dist,(X;)) < (14 e)min (dist,(X;))] =1, (1.4)

p—00

whered is a constant thal € (0, 00). Given dimensionality, f, is a function of
data X that inputs a data poinX; wherei = 1,2, --- ,n from both query and data
domain that output a non-negative real number. As a reduheidimensionality



inflates to infinity, the proportion of the difference betwdbe maximum distance
and the minimum distance from the centroid collapse to Z€hais, the meaning of
many distance measures becomes in doubt. Vast number ofmadehrning algo-
rithms which relied on the distances like Mahalanobis dista Manhattan distance
etc. may generate invalid results. Imaginably, the dimensipnabhn also affect
likelihood compute from Gaussian and make it skew towardsgber dimensions.
One of the famous examples can be found is the outlier deteatgorithm based on
the Nearest Neighbors proposed by Ramaswat@al[124] in 2000. Later the lack
of contract phenomena of distances for any given data pastshown in relevant
research of Zimelet al[163 in 2013 by asymptotically computing and comparing
the minimum and maximum distances of simulated Gaussiamamolrm data from
lower to higher dimensions. A figure of maximum distancedid by the minimum
distance for multivariate Gaussian can be found inTi§)(

Max/Min Distances vs. P

max dist/min dist

AN ' o
n

X
o o0 1 o
%0° 6 e} O /o‘/" o
0% /500 ‘o 7\ 50 o
00~0 o ., © 000,0
o° oo o5 00 ° 09600

T
0 20 40 60 80 100

dimensions

Figure 1.3: The ratio between max-distance and min-distasc dimensionality from multivariate
Gaussian when = 10



For afinite lower dimensional dataset, students are taogtatch the multicollinear-
ity while learning multiple linear regression by plottirfgetcorrelation matrix to pair-
wisely check variables that are highly correlated with eattter. However, this is
not the first time common sense has been greatly challengsuinpyy introduce an
ultra-high dimensionality. The probability of multicalkarity can be largely ampli-
fied with p increasing. Fan and L¥D] showed the maximum sample correlation and
multiple correlation are frequently occurred even samptesdrawn from indepen-
dent Gaussian variables in higher dimensignedquals10® and10*). This implies
that the noisy variables can be very deceive in high dimeasispace especially
whenp > n. Our truly relevant variables sometimes may be represdnyettie
combination of or, replaced by noise and then associate iwgponses. Thus the
fitted model looks like putting the earth’s land surface omngle rope string, theo-
retically, if nobody moves. Then the world can be destroyét @ slightest breath

just because of its massively inflated variance.

A simple example can be illustrated in multiple linear resgien model:

Y = XB+E, where& ~ N(0,0°1), (1.5)

the variance of an individual predictiof; given a new observatior; thatx; =
T
(w1, , 7)) € RY™P can be expressed as:

var (y; | x;) = x; var (B) x; +var (€ | x;) (1.6)

= 6 (x{ (X' X) 'x;+ 1) (1.7)
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If p increases drastically, more and more eigenvalueX o6fX starts to reach zero
and its inverse is lack of boundaries. Thus, as a consequend§; | x;) becomes

infinity.

Even if somehow all of the problems mentioned above do nat,itbe number of
models to estimate and parameters to be selected is davgstatir regression, par-
simony is usually one of the first lessons in model selectiarthe simplest model
can still knock people off by checking how many significarest they need to com-
pute. Fokoe@ et al[25] in his book described the explosive increasing number of
models to estimate by simply using polynomial regressiarrder of two. There are
already 63 models under such condition with only two vagabhot to mention how
many models need to be built with other polynomial regressiohen the order is
slightly larger than two.

1.2.3 Three Attitudes

Countless of researchers achieved remarkable resultsgihidecades. Many of the
studies patiently sit down and talk to the crazily enlarg@deshsionality and try
to dig out its real thoughts. Though the inspiration of pipte component anal-
ysis (PCA) can trace back all the way to Pearson’s so callemsést fit” of data
points[L1§, truly thanks to the amazing results from applied linegeala like sin-
gular value decomposition (SVD) and eigenvalue decomipos{EVD) that this
powerful tool and its derivative improvements are still plgw today and habitu-
ally applied in various fields. It is completely possiblettbae finally lost his pa-
tience with this complicated discussion that forcefullpsudown the topics to end
the conversation. Proposed by Tikhnonbd§ in 1943, regularization introduces a
parameter-wised penalty to solve the ill-conditioned reeeproblems especially in
regression and classification. Theoretical results anticapipns that focused some
of the implements such as ridge], LASSO[144] and elastic nefl64] constantly
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draw attention every year. Instead of reasoning out the evbohversation, one can
bring up some small issues at a time but having meetings muwie frequently.
Popularized by researchers like Briem22j[and Ho[/0] that ensemble learning is
undoubtedly one of the strongest work in terms of perforreammvadays. In later
chapters we will address and discuss these significant vindatail.

1.3 Outline of the Thesis

The thesis is divided into five chapters to deliver a relativerough study of our

project. Despite the introductory chapter, the more dedaiéview starts from chap-
ter 2 and chapter 3. Our two relative studies and resultseredstrated in chapter
4 and 5 then we summarize the topic in the end of chapter 5.

In chapter 2 and 3 some commonly used modern techniques ¢t dith high
dimensional data are reviewed. We are focused on the mexrhamf some PCA
based algorithms and its derivatives. Some of their siitiggrand relationships are
explored with examples. Also, their limitations and impeoments are addressed.
Then a general introduction of ensemble learning can benegam chapter 3. We
will discuss three most popular ensemble learning algmgtin modern statistics.

Since the application may involve outlier detection, Cleagt contains a more de-
tailed review of recent outlier detection algorithms wittog and cons. More im-
portantly, current methods dealing with high dimensiorahdvill be emphasized in
this chapter.

Later in chapter 4 we implement our extensive studies oreatirmethods. Also,
we can talk about some of results in outlier detection anskdiaation and compare
to the performances to some of the current algorithms inteln&p Both simulations
and an example of the benchmark dataset are involved.
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In the end, we summarize the reason of pluses and minusesns taethodology
and performances of our proposed algorithms. Our futuectons and works may
be raised in the final paragraphs.
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Chapter 2

Common Technigues in High Dimensions

2.1 Principle Component Analysis

2.1.1 Brief Review and Recent Developments

The content of Principle Component Analysis (PCA) can betamiinto several

books. Although the most famous derivations from Peatktjwas done in 1901,
not too many works were published until Hotelli@§] after 32 years later. It is
unbelievable that after a hundred years later that from 20@002, there are still
over thousands of paper published that related to PCA walsimgle year. Another
distinct point to mention is Eckart and Youn@§] illustration of the connection
between principle components and singular value decoripo$5VD) derived by

Beltrami[13] and Jordar§§2]. It turned out that thé-2 low rank approximation of the
data can be obtained by the diagonal matrix with larger efdsngecomposed from
SVD. The method still stands for the most powerful decontpwsitoday. In fact,

eigenvalue decomposition of a low-dimensional covariamegrix can be largely
simplified by just computing the SVD of the original data matr

Later influential studies were mainly targeted on its tw@mbus limitations. First,
principle components are assumed to be linearly separabbenmonly this con-
venience does not hold in many fields especially social selefihus plenty of ap-
proaches had been proposed by researchers to solve thismriblsoughout decades
and they are generously categorized as non-linear prenxcgghponent analysis (NLPCA).
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Majority of the attentions had been drawn by two studiesrdpfi0’s. The two most
famous methods either creating non-linear functions to thaporiginal spaces to
reduced spaces or reshape the data to a higher dimensi@ta &pcompromise
the linearity. KrameQ] (1991) simply trained a two sigmoid layer neural net-
work (NN) that maps the input space to low-dimensional feagpace and then
de-maps the outputs back to data space. At last, the firstin@|gyer of the trained
NN can be separated and used as NLPCA to reduce the dimelisiafdhe data.
Scholkopf et al[140 (1998) adopted the kernel function to project input spate |
high-dimensional feature space and then perform the reB@a on that space. The
curse of dimensionality vanished to the number of obserymatby the inner product
of the kernel functions unlessis too large.

Even the data is linearly separable, the second issue ligeinature of PCA that
it is always searching the largest variances. If the dats doé scale well or there
are some contamination, say an outlier, that can drive th@esriow-rank approx-
imation far away. Research directions that involved in tigjge of problems are
categorized as robust principle component analysis (R&0A or RPCA). Due to
the application in image processing and computer visiaiss of how to inject the
robustness into PCA based algorithms are still intensgijoeed. Candset al[24]
(2009) proposed a penalizing term on the small perturbatiatrix beside the low-
rank approximation. The method is so called principle congo pursuit (PCP) that
in sense of solving convex optimization. Netrapalial[109 (2014) presented an
alternative non-convex approach that greatly challenigeddnvex low-rank approx-
imation in terms of computational efficiency. Later in thisapter we will discuss a
little bit more about some PCA or RPCA based algorithms archapter 5 and we
compare our algorithm and a PCA based algorithm in termsafracy.
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2.1.2 Some General Deductions

The classical PCA problem can be summarized as finding thady@®sentation or
basis for the data space. It is very intuitive to rebuild tberdinates or project the
data to new arrangements according to its variance. Thaapssour dataX has
already centered to 0, in convex fashion we can define thdgroas:

n

(W, Z) = arg min X -WZ|> = argmin; 1% — %[ (2.1)
This is so called theeconstruction erroiin PCA. Here the datX is presented as a
p x n matrix. W is an orthonormab x d matrix that representing directions having
largest variance.Z is an x d matrix, whered < p, that actually builds fromi
eigenvectors associated with ranked eigenvalues froresatg smallest. Thus each
row of Z: z; = W 'x;, wherei = 1,2, - - - , n, denotes the encoding of original data
into our newd-dimensional column space. Naturally, the reconstruatioshecoding
process is expressed Ry = Wz; and then we can minimize this error to obtain our
estimation¥¥. In addition,|| X || ,, denotes the Frobenius norm Af:

1 X[ =/ tr (X7 X) (2.2)

If we step back to examine a larger picture of the varianceatd,dwith the recon-
struction in 2.1 above, we have:

E|IX]°] =E || x - ww x| +E ||[w X]] (2.3)

whereE [HXHQ} is the total variance of original data. When we subtract the r

construction errol [HX — WWTXHQ] we haveE [HWTXHQ] This is usually
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referred as the actual amountvafriance capturedh PCA. Itis very intuitive to think

that minimizing the reconstruction error equals maxingzour variance captured.

Now to show the connection between these two parts, for co@mepurpose, we

are only looking for 1-dimensional solution that= 1 and assume that this principle

component vector with unit length:

((w, Z)

arg max [E [HwTXHQ} , st flw]| =1 (2.4)

n
1 T 2
arg max — E Hw XZH
w N~ 1
1=

argmaxw XX ' w
w

max A (X))

Where%XXT = C is just straightly equal to the empirical covariance mabfixx .

Since we setl = 1 andw is orthonormalw 'w vanished to 1. It turned out the

solution is just the maximum eigenvalue of our covariancéimaSimilarly, remain

the same setting above, we minimize the reconstructiom:erro

((w)

(2.5)

n
. T 2
arg min E HXL — ww XLH
w
=1

argminz (HXzHQ — (wTXi)2>
i=1

arg min (tr (XXT) — HwTXH2>

wheretr (XXT) IS just a constant. Thus, minimizing the reconstructionrag just
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the opposite of equation of maximizing the variance cajptur@imilar results can
be showed for principle components> 1, a demonstration of first two principle
components of Iris dataset can be found in Fig@r&)(

setosa —e— versicolor virginica

> \ResMiznhfith

PC2 (22.7% explained var.)

<,
(6'791/;

PC1 (73.3% explained var.)

Figure 2.1: projection of Iris dataset on first two principanponents

Another important point of view is the relationship betwevD and PCA. As we
mentioned before, the principle components are eigenkseofahe covariance ma-
trix of X, here on the purpose of clarity, we still denote the dimemadity of X as
p X n. Thus if we apply the eigenvalue decomposition on our cavee matrixC

we have:

C=XX"=UANU" (2.6)
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Now U is the matrix contains eigenvectors®iin each column. Thus the principle
components can just be representedlbyX similar to previous equationsA is

a diagonal matrix filled with ranked eigenvalugs: = 1,2,--- ,d of A. Since in
SVD we have:

X=Uxv" (2.7)

whereU 'U = I andV 'V = I, Y is also a diagonal matrix with all singular values
then we can present our covariance matrix as:

1 1
- XX' = —uzv'vu' (2.8)
n n
1 2 T
= U |- |U
n
Thus, if we denote the entries of ass;,i = 1,2,---,d, then the eigenvalues

A\; = (1/n)s? are just the scaled square of the singular values of the icova
matrix. So, the principle components are the columns oféftesingular matrixU .
Computationally, using the SVD to perform PCA is generalgfprred.d of singu-

lar vectors will only requird) (npd) which is much more cheap than computing the
covariance matrix with expense & (an). Figure @.2) illustrates an example of
dimensionality reduction of an image.
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Original Photo 200 X 200 Image output using 100 singular values

Image output using 25 singular values

Figure 2.2: SVD of an image with different choices of larggagular values

2.1.3 Notes on NLPCA

As many of the problems in machine learning, PCA can also beed@s convex
optimization with constraint just like we mentioned eatli€he process of project-
ing X back and forth:W W ' X is considered as a common analogy of encoding
and decoding. Oja’4[13 work established the connection between PCA and neural
networks in 1982 that a modified Hebbian’s learning was agtbfit the PCA into
linear neurons. Later several studies including Kram@@lshutoassociative princi-
ple component network are all in this encoding-decodingdre

{(F,G) = arg min > llxi — F(Gr (x)|I” (2.9)
YWY F i—1

where F and G are non-linear functions. The functiddz : R? — R! while
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F : R! — R?, a more specific presentation is shown below in fig@&)( One
crucial issue with Kramer’'s method that raised by Malth¢i8d in 1998 is that the
pre-defined continuity of the functio&r. Since it is possible that some principle
components’ projection index are discontinuous, the amtyigan mislead the index

to map points to undesirable places.

Input Encode Feature Decode  Qutput
Layer Layer Space Layer Layer

Figure 2.3: The 5-layer neural network map the inpukfcand de-map tdR?

Instead of mapping data to a non-linear lower-dimensiopats, application of ker-
nel trick that allow us to project the points to non-lineagter dimensional feature
space. But we jump into kernel, another key factor to mensao look back at PCA
in sense of using Lagrange multipliarto solve the optimization with a slightly
different constraint. Assume we still searching for theixehsional principle com-

ponent:

((w,\) = argma;waTXHQ—l—A(HwH —1), stl]w]*<1 (2.10)
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Take the derivative with respect fav|| we have:

Vi (w,\) =2(XX")w— 2w

Let the gradient equals to 0, then the problem reduced togemealue equation:

(XX w=)w (2.11)

This basic form is greatly linked kernel PCA by Stkopf[137] and his generalized
version ofRepresentor Theorenjust like the normal vectors perpendicular to the de-
cision plane in Support Vector Machine, we can imagine iffumciple components
like w can be decomposed as:

w = Zaimi = Xa (2.12)
i=1

The essential of PCA is no more than inner product, if we @plide vectorw
during maximizing our variance capturea ' X X "w. Then the form turns out
to bea’' (X'XX'X)a = a'D?a with constrainta' Do = 1 resembling
|lw|| = 1. Thus, we just loop back to solve the same sort of eigenvaiiglgm like
X" X a = \e. Vital point here is computing the inner product does notinegthe
actual access of both vectors. This property functionikg d “black box” no matter
how we move our data points as long as they still remain in ¢ fof the inner
product. But first, we define the kernel function as:

R - F, where F is a Hilbert space (2.13)
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JF is our feature space that can be arbitrarily large withouband. Some com-
mon examples include: Gaussian RBF kerg¢k,y) = e Ix=vl’, polynomial
kernelg(x,y) = (1+ xTy)2 etc. Thanks to Mercer’s theorem, for a finite set
{z;},1 = 1,2,--- ,nin X € R™ and countable set of non-negative eigenvalues
{\i},i=1,2,--- 00, the continuous kernel function of padt(z, z) on X x X can

be decomposed ;" \:¢: () ¢: (2). By substituting just in the fashion of 2.12,
we can repost our object as:

1 -
—Ka = )\ (2.14)
n

where K is ourn x n kernel matrix thatK;; is defined byg (x:)" ¢ (x;). Thus,
this just reduced to a common situation just like any othgemvalue problems.
Figure @.4) shows projection of the spam and iris dataset on two kernetipal
components by using RBF kernel.

15

2nd Principal Component
5 10
8&3&9
%o
[ele)
°
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°
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o]
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[}
® @

1st Principal Component 1st Principal Component

Figure 2.4. (left) projection of the spam dataset on 2 ppaccomponents by RBF kernel. (right)
projection of the iris dataset on 2 principal components B§Rernel.
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2.1.4 Noteson RPCA

Beginning from the basic assumption of the intrinsic lowenehsionality given a
large data matrix, Camrs4] repost the PCA problem as decomposition the data
matrix itself:

X =Ly+ 8, (2.15)

So the PCA problem can be described as optimi#iXg— L|| subjecttarank (L) <
d, where L is the approximation of low rank matrik, and the support obj is
assumed to be sparse. Xf is heavily contaminated, the noise resideSincan be
largely amplified. Thus, the authors proposed Principle gament Pursuit (PCP)
by separating the low rank approximation and the sparse coary:

(L,S) = argrlr_llingLH* +AIS|l;, st. X=L+S (2.16)

where the| A||, is an nuclear norm of matrid. The meaningful disentangling and
recovery ofL requires|UV || _ < uy/r/n, wherer is the rank ofL and is its
level of incoherence. The paper illustrated one way to siblgeconvex optimization
by applying the augmented Lagrange multiplier:

((L.8,2) = | L]+ AlIS|, + 2" (X ~L-8)+ 51X - L-S;

Thus, the problem can be solved by sequentially updafing and Z until the
approximationsj| X — L — S| < ¢ || X||» where¢ is enough small. For example,
we start with selecting. > 0 and settingSy, Z, equals to 0 then updatinf; with
the solution:
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Ly =D, (X -8 +pu'Z)

whereD,,1 (X)) is a function recoverX from its SVD having only singular values
that larger tham,!. It is defined by:

D.(X)=US,(X)V', where S, (z)=1(max (|z| - 7))

S is so called the shrinkage operator. Thgiean be updated by:

Syt (X — L1+ /let)

Then we can updat& by a further step to complete the loop. The algorithm needs
to find the eigenvalues for each step so sometimes it couldmpatationally ex-
pensive and the choices pfand¢ are vital. Later in outlier detection we will talk

a little bit more about the applications of RPCA but here wsedss no more details
about it. Other related contents including its non-convexetbpment can be found

in [109 and [39.
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Chapter 3

Basics of Ensemble Learning

3.1 An Overview

The mechanism of ensemble learning functions like antshwvisito gather multiple
tiny workers to move a huge target. Kea®4[posted a progress of machine learn-
ing class project in 1988 that asking whether the potential get of weak learners
can be combined to improve the accuracy. This so calgabthesis Boosting Prob-
lemwas definitively answered by Schapit8f] in 1990. He introduced thBoosting
which is one of the most widely used and powerful algorithmensemble learning.
The method was originally built for classification and latefapt itself to regres-
sion problems. Just like the question posted by Kearns,|tjogithm select a weak
learner that is slightly better than random guessing inttiaing process. For each
time and each of these weak learners are trained with theatathe ones that are
more accurate are rewarded with a candy. In the end, all détdreers are weighted
by their success and failure to create a voted machine fesifleation or a averaged
model for regression. Later in the vital paper in 1995 thdtapire and Freund]/]
were introducing the most popular boosting algoritAdaboosta similar story was
told in analogy of horse-racing gamblers while they wer&itgl about their im-
proved version of adaboodf]. A pool of personal experience based suggestions,
if possibly, slightly better than random guessing, candaiteliable prediction. At
first glance, the phenomena itself is interesting and wéiedause the gap between
the mathematical principles and the practical results sderbe huge. However, it
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IS just like Schapire’s later explanation ib3J€q that referring to Vapniks[55 great
work, “by understanding the nature of learning at its fourfg in terms of both
algorithms and this phenomena.

In the same year, Breimaz()] introduced bootstrap aggregation, so calBayging

In fact, the simplicity of bagging is unspeakably shocking b turned out to be
convincing after Breiman demonstrate the improvemente@ptediction error UCI
repository datasets. The method regenerate training sanhyl bootstrapping the
original observations and later largely applied in decisiee models. A comparison
between bagging and two boosting algorithms was raised litg @pd MaclinfLO]]

in 1999 that bagging was shown contently outperformed itebearner but occa-
sionally much less accurate than boosting while boosting flaatuate down below
its base learner. In Breiman’s another pap&rin 1996, after he talked about Ge-
man’s bias-variance decomposition of the error term, herased that both bagging
and boosting are reducing the variance in order to achieyeehiaccuracy. Later of
that year Schapire and Freudd] indicated that boosting also reduces the bias by
forcing the weak learners to focus on different parts of thetance space. Bauer
and KohavilL1] performed a more thorough comparison in 1999 among seséral
gorithms including bagging and adaboost and unexpectedigladed that not only
boosting but also bagging may reduce the bias part of erraeitain real-world
datasets. Though many of the answers looped back to “nodumeh”, bagging was
mentioned as appropriate for decision trees and neurabnketvy Opitz and Maclin
in [101]. Itis very interesting that the decision tree algorithmymaest like a “twitchy
sow's ear” in Breiman's22] analogy that can build up one of his most famous “silk
purse”’Random ForestRF).

Ho[69] discussed a systematic way of growing trees in her 1995rpabide many
of other studies focused on sophisticated pruning proesdun deliberation of the



27

oblique hyperplanes, she took the advantage of randomizati subspaces of vari-
able dimensions. Later in a more comprehensive sit@yjonducted in 1998, her
approach was formally namétandom Subspace Meth(®/SM). Variables are ran-
domly selected and eight different splitting function wesed to construct forests.
Like many other ensemble learning, voting through a weptecess or other tech-
niques can be applied in final model aggregation. Strongpadnces were shown
in this paper against boosting and bagging in certain dasthsé there was one ques-
tion left open. the performance of the algorithm seemedelsirmfluenced by the
number of dimensions when tested by the data called “dna’suggested select the
roughly about half of the variables and there are rarely distthave been systemat-
ically solved this issue that most of the selections aredbaseempirical evidence or
cross validation. Faced the variance in performances amiffiegent classifiers, Ho
published a reporifl] in 2001 to discuss some empirical observations that lead to
the measures of data or problem complexity. Followed by déisearch of Kuncheva
et al[95], the complexity of generated random subspaces are stilidered lack of
understanding thus further studies are required to illateinhe foundations behind
it.

3.2 Boosting

3.2.1 Foundations of Adaboost

Schapire paid his tribute to Vapnik and Chervonemk§] for uncovering the funda-
mental mechanism of learning theory &8jf. He summarized that a classifier learnt
from data can be considered as effective by three conditions

e The training process needs support from large amount ofredisens.
e Model has reasonable fit without having too much trainingrerr

e Parsimony applies, the simpler the better.
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Though it is very intuitive to think about The VapnikChenamkis dimension (VC
dim) as the direct explanation of the function of boostingapapire. He proved the
error is bounded by:

T
E<2T|[VEM-E) (3.1)

t=1
wheret is the number of iteration and for eaéh there exist somex > 0 for
E: = 1/2 — « so each error has the value belay2. This is so called theveak
learning condition Given this assumption, it is noticeable that the trainingreof
adaboost algorithm can reduce to 0 at spee@dfog ), wheren is the number of
observations. So the error of the aggregated classifier framing and testing is
just a function of the number of iteratidin The error of classifier applied on sample
data is guaranteed to be small. Then Schapire applied Vaftii] Structural Risk
Minimization (SRM) to restrict the number of weak learnensl @heir simplicity in
order to make the error of the whole domainXf close to the empirical error on
the training observations. For a binary classifier clas# all classifiers have VC
dimensiond > 2, it can be proved that the upper bound of the class doi®aih T’
linear binary classifiers i@ is:

VC(©7(C)) <2(d+1)(T + 1) (logy(e (T + 1)) (3.2)

wheree denotes the natural number. There is a closely linear oslstiip between
the VC dimension of the aggregated classifier and the numiiéerations. This
shows that the classical overfitting phenomena does happletom many iterations
but may be avoided in practical situations.
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3.2.2 Adaboost: The Algorithm

Formally, we have the algorithm of adaptive boostkupboost

Algorithm 1 Adaptive Boosting
1: procedure ADABOOST(T)

22 Set ol ew® = Lforalli, wherei =1,--- ,n
fort=1to7T do
>

n

i=1W;

Conput e the errorg"” = 3™ oy — fi(x)]
g®
Set g® = —m

(t+1) w(t) (ﬁ(t))lflygt)*ft(xgt))\

7 -

3

4

5: Cal | the weak learnef andAssi gn weightsw®
6

7

Set weightsw
end for
10: Qut put can be computed by:

\

- { 1 if Zthl log <ﬁ> ft(x(t)) > Llog (ﬁ)

I t(X(t)) =
0 otherwise

11: end procedure

Starting from uniform weights thai:g1> — 1/n, foralli, the weight vectorw® is
updated in each loop by then final output is generated by weighted votifg) is
actually a function o€ that manipulating the weight vector. Notice fof) there
is a reversed adjustment that the “lost” function is \yZ@ — ﬁ(x§t>)|. Thus, if the
classifier is making a correct decision, the probabilitygsst will reduce. Vice
versa, If the classifier is making an incorrect decision,grabability assign it will
increase. Adaptive boosting is not very similar to many pbwsting algorithms by
the time which the errors of the weak learners are used tshitja structure. Other
forms of adaboost can be found in studies lil&], slightly modified adaboost in

applications like SVM are in99].
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3.3 Bagging and Random Subspace

3.3.1 Reasons for Stabilization

In Breiman’s original paper, he explained why bagging wosigdl after some real
world data experiments. The key of bagging is to stabiliz=vériance, the square
loss was adopted to demonstrate the his point. Suppose wedlasa examples are
independently sampled from joint distributid®: D = {(?JN,XN)} whereN =

~

1,2,---,n, yy are all continuous and(x, D) represents our prediction thus the
aggregated versiofu(x, D) is just:

falx. P) = E(f(x, D)) (33)

The average erraf from prediction over distributior? can be expressed by the
expectation of square loss:

£ =EpByx (Y — (X, D))’ (3.4)

And if we denote the error after aggregationagk 4:

Es=Eyx (Y — fa(x, P))’ (3.5)

Then by Jensen'’s inequality(E(Z)) < E (¢(Z2)). Soif ¢(Z) = Z* we have:

~

£ = E(Y?) —2E(Y f4) + EyxEp (f(X,D))2
> Eyx (Y — fa(X,P))’ =€, (3.6)

So the aggregated predictor has smaller mean squared Eueny time, The more
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diverseD are sampled fron® the more difference of two sides of the Jensen’s in-
equality (ED (f(x,l))))2 < Ep (f(x,D))2 can be. Thus, if the base learner is
not stable, it can actually travel around insidef®dby the bootstrap approximation.
However, if the base learner is stable, bagging may not lbelpiuch in terms of ac-
curacy. Breiman also showed in classification scenariagipags always improving
the performance even the classifier is nearly optimal. Metaits can be found in
[20], here we do not discuss further details.

3.3.2 Bagging: The Algorithm

The algorithm of bagging is shockingly refined in terms of@ea. Bootstrap sam-
ples are generated by uniformly samplingpbservations from the original training
data with replacement. There aBebootstrap samples and with each one a classifier
or predictorf(b)(X, D) is computed by using thigh sample. However this proce-
dure is directly related to its robustness which we will @liout it later in chapter 4.
Here, formally we have the bootstrap aggregation for diassion Bagging

Algorithm 2 Bootstrap Aggregation
1: procedure BAGGING(B)

2: forb=1to B do

3 Draw wi th replacenent {i{" ... i’} from {1,2,---,n} to form the bootstrap
samplez®

4: Cal | the bth hypothesis f® with 2®

5: end for

@

Qut put can be computed by:

7. end procedure

In the last step, the majority votes of the labels from alhaf hypothesis become the
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final classifier. In continuous response predictions likgression, bagging will take
the model averaging to build the final prediction.

3.3.3 Random Subspace Method

When Breiman??2] published his random forests in 2001, he mentioned twoissud
that greatly influenced by two studies. One is Amit and Gesj@hgeometrical in-
vestigation of the best split of trees in large dimensidpand another important re-
search is Ho's[0] random subspace method (RSM). The method was originadigt us
to build decision trees but it can actually adapt many otlggrahms. Skurichina
and DuinfL41] applied RSM to linear classifiers like Linear Discriminatalysis
(LDA) for two-class problems. Like bagging, RSM also impesuhe prediction er-
ror by stabilizing classifiers especially when many of tinedir classifiers are fickle.
One of the benefits of RSM for building and aggregating thessfeers is the num-
ber of dimensionality may be much smaller than the origirethd In sub-feature
spaces the sample size does not change. So this methodyastosdases the rel-
ative observations that are available for each loop. Whendtdta was combined
with plenty of noise variables classifiers may be able toqrerfbetter in random
subspaces than the original space. Thus the aggregatesiotiecan outperform a
single predictor or classifier. Similar proof of stabiliwat can be applied just like
Breiman’s bagging since bootstrap is also used for first istégSM. Tao and Tang
et al. combined symmetric bagging and RSM to stabilize relevanppart vector
machines based feedback schemes. Although RSM structapésadnany of the ap-
plications such as face recognitiaep] and fMRI classificatior4], there is rarely
a deeper understanding or any analysis about the comptEbstybspaces to solidify
its foundation. In Kunchevat al’s experiments, it is imaginable that the complex-
ity among subspaces are much higher than the complexity gumootstrap subsets.
Furthermore, the number of the subspaces selected isldiretdated to the com-
plexity but the complexity may reduce as more variables alected. This may just



33

due to the increase probability of selecting the overlagpeeknsions. Most impor-
tantly, the noisy variables often observed to generatdairoomplexity comparing
to the variables without redundancy. However, the reseasctiarified that there is
no clear methods of the measure of complexity and even thaititefi of complexity.

Like the notations we used in bagging, there Brbootstrap samples and with each
sample there is ouiith hypothesisﬂb)(X,D). But within each bootstrap . Here,
formally we have the random subspace method for classtit&5M

Algorithm 3 Random Subspace Method
1: procedure RANDOM SUBSPACEMETHOD(B)

2: forb=1to B do

3: Draw with replacenent {i” ... i} from {1,2, --,n} to form the bootstrap
samplez®

4 Draw wi t hout repl acenment from {1,2,---,p} a subset;\”, ... ,jg’)} to form
d variables

5: Bui | d thebth classifierf® with 2®

6: Drop unsel ected vari abl es from 2® so that2"”) is d dimensional

7: Call the bth hypothesis f®(2%)

8: end for

9: Qut put can be computed by:

fA(x) = arg max Z 1

e
b:f(b) (gsub):y

10: end procedure

In the last step, the majority votes of the labels from alhaf hypothesis become the
final classifier. In continuous response predictions likgression, bagging will take
the model averaging to build the final prediction.
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Chapter 4

Random Subspace MCD

4.1 Outlier Detection

4.1.1 Previous Studies

The definition of outlier was never clear, descriptions fraiservation point that is
distant from other observation§9 to “an observation that lies outside the overall
pattern of a distribution'$8] can be found in plenty of books. Thus, great number
of cases were considered as outliers. For example, the dataics missing values
or extreme values in some observations, some of the vasialbl@ot come from the
same distribution as our objective samples or even the p#realata is unspecified
with huge errors. So the question of outlier detection ilyfopened as almost no or
vague paths to reach an undefined goal. In early multivastaties, two approaches
dealing with outliers seemed to draw majority of the therditas with different pur-
suits. The two ways of solving outlier problems are very miiiksd to complement
each other. The difference lies in their primary target, isrie build the parametrical
estimators for the data and another one is solely huntingh®outliers not matter
whether estimators are required. However, all of the stullae one common latent
need is discover the intrinsic structure of the data.

Rousseeuwt al[129 [131] proposedMinimum Volume EllipsoigMVE) as a robust
location estimator. Later based on MVE he developktimum Covariance Deter-
minan{1327 in application of outlier detection. Davies}] proved that the MVE
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satisfy a local Hlder condition of ordetl /2 and also converges weakly to a non-
Gaussian distribution at rate af 3. He and Wandj6] establish strong consistency
and functional continuity that for MVE estimator can actse@able if the shape of
intrinsic distribution is likely to be elliptically symmet. This type of estimator
Is criticized as slow convergence rate due to its large kdityaand low efficiency.
Woodruff and Rocke28 proposedMULTOUT in 1996 that combined several steps
in MCD to create a hybrid approach to improve both computai@xpenses and
peformances. Thus, a careful choice of parameters is cotymeouired. Billoret
al[17] introduced BACON to find the best subset of the data at thmlmrocess and
Pena and Priet@fL7's Kurtosis 1 chooses directions that maximize and minemiz
the univariate projected data. Maronna and Zaf[proposed theiOrthogonal-
ized Gnanadesikan-Kettenrif@GK) robust estimator in 2002 that claimed to be

better and faster than MCD that deals with relative largeetisional situations.

4.1.2 Dance with Increasing Dimensionality

None of the algorithms we mentioned above can actually cagbehigh dimensional
data. Aggarwal and Y@] proposed an algorithm that tries to find of potential
combinations of: subspaces in which the data is sparse. Though comparingrichse
each subspace that the method largely reduced the numbambimations, just like
we mentioned in chapter 1, the number of combinations caidlyaphoot to sky
with increasing dimensionality. Zhang et aB(J in 2004 challenged with the same
UCI machine learning repository and explained thédS-miner The algorithm
tries to identify the subspaces that a given point is an eutiNguyenet al[117]

in 2011 criticized a monotonic behavior in Zhang's resedhett the condition does
not have to be hold the outlier-residing subspaces. Ngug@mosedHigh-DOD that
uses modified k-nearest neighbor weight outlier score apliebon normalized
¢, norm. Later Kriegelet al[91] criticized High-DOD by its process of examine
too many subspaces which bias can be generated. By the tiarg, of the outlier
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detection algorithms that deal with larger dimensionaity proposed such &CS

by Keller et al[85], OutRankby Miiller et al[10§ and COP by Kriegel et al[91]

but none of these can actually handle or perform very wellue high dimensional
data, especially for “large, smalln” problems. The one that catches our eyes is the
PCA-based algorithm proposed by Filzmoserl[46] that namedPCOutin 2008.

It specifically targeted high dimensional outlier detectlny taking advantages of
the nature of PCA. The algorithm uses median absolute dewiabrmalized data
to find out the most variable dimensions and use re-defingdmiiss to classify the
outliers. A simulation withp = 2000 was presented in the paper and a practical
example of detecting outliers on a transposed micro-aresne gexpression dataset.
In next section we talk more about the algorithm and comgaséh our method in
terms of accuracy in simulation study.

4.1.3 Alternatives to Parametric Outlier Detection Methods

The assumption of multivariate Gaussianity of thés is obviously limiting as it
could happen that the data does not follow a Gaussian difitih Outside of the
realm where location and scatter matrix play a central ailger methods have been
proposed, especially in the field of machine learning, amdifipally with similarity
measures known as kernels. One such method is known as @ss-&kipport Vector
Machine (OCSVM) proposed by B9 to solve the so-called novelty detection prob-
lem. It is important to emphasize right away that noveltyedgon although similar
in spirit to outlier detection, can be quite different whércomes to the way the
algorithms are trained. OCSVM approach to novelty detedsanteresting to men-
tion here because despite some conceptual differences®govariance methods
explored earlier, it is formidable at handling HDLSS datartks to the power of
kernels. Le® : 2" — .#. The one-class SVM novelty detection solves

. I
argmin {2w +Vn;§} p}

weF EcR” pelR
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Subject to
<w7(b(xl)> >p—£@7 5@ 207 1= 17 y I

USingejz{/(Xi,Xj) = <(I)(XZ), @(X])> = (I)(XZ')T(I)(XJ'), we get
f(xb) = sign (Z a; X (x,X) — ﬁ)

so that any; with f(xi) < 0 is declared an outlier. The;'s andp are determined
by solving the quadratic programming problem formulatedvabThe parameter
controls the proportion of outliers detected. One of thetnrnosnmon kernel is the
so-called RBF kernel defined by
1 2
o i) = exp { =l

202

OCSVM has been extensively studied and applied by manynessas among which
[103, [79] and [16]], and later enhanced by]l OCSVM is often applied to semi-
supervised learning tasks where training focuses on alptsitive examples (non
outliers) and then the detection of anomalies is performeddarching points that
fall geometrically outside of the estimated/learned deni®oundary of the good
(non outlying trained instances). It is a concrete and qodpular algorithm for
solving one-class problems in fields like digital recogmtand documentation cat-
egorization. However, it is crucial to note that OCSVM canbe used with many
other real life datasets for which outliers are not welldedi and/or for which there
are no clearly identified all-positive training exampleai&éable such as gene expres-
sion mentioned before.
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4.2 MCD and PCOut

4.2.1 Minimum Covariance Determinant Estimators

We are given a datas&t = {x,---,x,}, wherex; = (1, - ,:cip)T e X C
R™? under the special scenario in whigh<< p, referred to as high dimensional
low sample size (HDLSS) setting. It is assumed that the lzhsigbution of theX;’s

is multivariate Gaussian, so that the densityXois given by, (x; u, ), with:

1 1 To—1
Op(x; 1, ) = WGXP {_i(x —p) B (x— M)} : (4.1)

It is also further assumed that the data e contaminated, with a proportiane
(0, 7) wherer < e~1, of observations that are outliers, so that undeontamination
regime, the probability density function o&f is given by

p(x|p, X, e,m,7) = (1 —€)dp(x; p, ) + (x5 p +1,73), (4.2)

wheren represents the contamination of the location parametevhile v captures
the level of contamination of the scatter matbix Given a dataset with the above
characteristics, the goal of all outlier detection techesjand methods is select
and isolate as many outliers as possible so as to performstaiatistical procedures
non-aversely affected by those outlieds such scenarios where the multivariate
Gaussian is the assumed basic underlying distribution cliesical Mahalanobis
distance is the default measure of the proximity of the olzdems, namely

ds(x)=(xi—p) T (x; — p), (4.3)

and experimenters of often address and tackle the outliectien task in such situa-
tions using either the so-called Minimum Covariance Deteamt (MCD) Algorithm
[129 or some extensions or adaptations thereof.
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Algorithm 4 Minimum Covariance Determinant (MCD)
1: Selecth observations, and form the dataset. H C {1,--- ,n}.

2. Compute the empirical covarian&; and mearniy.

3: Compute the Mahalanobis distancé%HiH (x;), 1=1,---,n

4. Select theh observations having the smallest Mahalanobis distance.
5. UpdateZy and repeat stepsto 5 until det(le) no longer decreases.

The MCD algorithm can be formulated as an optimization peobl

(H, i, Sp) = argmin {E(p, =, H)} (4.4)
w3 H
where
1
E(n. B, H) = log{det(D)} + > ki) T (xi— ). (4.5)
1€d

The seminal MCD algorithm proposed b9 turned out to be rather slow and did
not scale well as a function of the sample size That limitation of MCD led its
author to creation of the so-called FAST-MCIB, focused on solving the outlier
detection problem in a more computationally efficient wancg the algorithm only
needs to select a limited numbenf observations for each loop, its complexity can
be reduced when sample sizds large, since only a small fraction of the data is
used. It must be noted however that the bulk of the computsiio MCD has to do
with the estimation of determinants and the Mahalanobigdces, both requiring
a complexity ofO(p*) wherep is the dimensionality of the input space as defined
earlier. It becomes crucial therefore to find out how MCD $annenn is large and

p is also large, even the now quite ubiquitous scenario whesesmall butp is very
larger, and indeed much larger than As noted before, with the MCD algorithm,
h observations have to be selected to compute the robustagstinnfortunately,
whenn < p, neither the inverse nor the determinant of covarianceirmean be
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computed. As we’'ll show later, th@(p?) complexity of matrix inversion and de-
terminant computatation renders MCD untenablefas moderate as00. It is
therefore natural, in the presence of HDLSS datasets, ttecmiate at least some
intermediate dimensionality reduction step prior to perfimg the outlier detection
task. Several algorithms have been proposed, among whiGuBiey [46], Regular-
ized MCD (R-MCD) by b5 and other ideas by7], [1], [57], [92]. When instability
in the data makes the computation ﬁfproblematic inp dimension, regularized
MCD may be used with objective function

E(pu, X, H,\) = E(p, 3, H) + Mtrace(Z 1), (4.6)

where) is the so-called regularizer or tuning parameter, chosatetailize the pro-
cedure. However, it turns out that even the above ReguthNKeD cannot be con-

templated whep > n, sincedet(X) is always zero in such cases. The solution to
that added difficulty is addressed by solving:

(}A], i, §H> = argmax{ log{det(i)}

-+ % gj; (x; — p) " >t (x; — @) + )\trace(fll)}

where the regularized coveriance mafixs given by:

Sa)=(1-—a)E+ %trace(f])Ip (4.7)

with o € (0,1). For many HDLSS datasets however, the dimensionalign reach
p > 10% or evenp > 10%. As aresult, even the above direct regularization is compu-
tationally intractable, because wheris large, theO(p?) complexity of the needed
matrix inversion and determinant calculation makes thélera computationally un-
tenable. The fastest matrix inversion algorithms lik&|[and [97] are theoretically
aroundO(p*37) and O(p*3™), and so complicated that there are virtually no use-
ful implementation of any of them. In short, the regulanaatapproach to MCD
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like algorithms is impractical and unusable for HDLSS dets®ven for values of
around a few hundreds.

4.2.2 PCOut Algorithm for HDLSS Data

Another approach to outlier detection in the HDLSS contas ilevolved around ex-
tensions and adaptations of PCA thaP{SOutas we mentioned before. By reducing
the dimensionality of the original data, one seeks to craatew data representation
that evades the curse of dimensionality. However, PCA sigé&neric form, is not
robust, for the obvious reason that it is built by a seriesarigformations of means
and covariance matrices whose generic estimators areimagty non robust. It is
therefore of interest to seek to perform PCA in a way that dagsuffer from the
presence of outliers in the data, and thereby identify th#yiog observations as a
byproduct of such a PCA. Many authors have worked on the timasion of PCA,
and among them/7p] whose proposed ROBPCA, a robust PCA method, which es-
sentially robustifies PCA by combining MCD with the famago®jection pursuit
technique (B2], [98]). Interestingly, if instead of reducing the dimensiohabased

on robust estimators, one can first apply PCA to the whole, dlaga outliers may
surprisingly lie on several directions where they are thgrosed more clearly and
distinctly. Such an insight appear to have motivated thatme of the so-called
PCOut algorithm proposed by§. PCOut uses PCA as part of its preprocessing
step after the original data has been scaled by Median Atesbleviation (MAD).

In fact, in PCOut, each attribute is transformed as follows:

(4.8)

wherex; = (zy;, -+ ,z,;) C R™! andx; is the median ok;. Then withX* =
[x},x3,--+,x;], PCA can be performed, namely

X' X*=VAV' (4.9)
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from which the principal component scorgs= X* - V' may then be used for the
purpose of outlier detection. In fact, it also turns out tegt principal component
scoresZ may be re-scaled to achieve a much lower dimension %itly variance
retained. Unlike MCD, PCA based re-scaled method is not préytical but also
performs better with high dimensional datase18% of simulated outliers are de-
tected whem = 2000, p = 2000. A higher false positive rate is reported in low
dimensional cases, and less than half of the outliers wergifted in scenarios with
n = 2000, p = 50. Itis clear by now that with HDLSS datasets, some form of di-
mensionality reduction is needed prior to performing @ntletection. Unlike the
authors just mentioned who all resorted to some extensiada@ptation of principal
component analysis wherein dimensionality reduction seldaon transformational
projection, we herein propose an approach where dimengiomneduction is not
only stochastic but also selection-based rather thangirojebased. The rest of this
paper is organized as follows: in section 2, we present ale@tdescription of our
proposed approach, along with all the needed theoretiahlcanceptual justifica-
tions. In the interest of completeness, we close this seetith the general descrip-
tion of a nonparametric machine learning kernel method éeefty detection known
as the one-class support vector machine, which under siitahditions is an alter-
native to the outlier detection approach proposed in thpepaSection 3 contains
our extensive computational demonstrations on variousas@es. We specifically
present the comparisons of the predictive/detection padaces between our RSSL
based approach and the PCA based methods discussed &delierainly used sim-
ulated data here, with simulations seeking to assess thacinop various aspects of
the data such as the dimensionalitgf the input space, the contamination ratnd
other aspects like the magnitugdeof the contamination of the scatter matrix. We
conclude with section 4, in which we provide a thorough désoon of our results
along with various pointers to our current and future workha rather compelling
theme of outlier detection.
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4.3 Random Subspace Learning Approach to Outlier Detection

4.3.1 Rationale for Random Subspace Learning

We herein propose a technique that combines the conceptlyindeRandom sub-
space Method or, Random Subspace Learning (RSSL) byQHuajith some of the
key ideas behind minimum covariance determinant (MCD) toex® a computa-
tional efficient, scalable, intuitive appealing and highlycurate outlier detection
method for both HDLSS and LDHSS datasets. With our propossttioal, the com-
putation of the robust estimators of both location and scatiatrix can be achieved
by tracing the optimal subspaces directly. Besides, we dsinaie via practical ex-
amples that our RSSL based method is computationally véigiesft, specifically
because it turns out that, unlike the other methods merdi@alier, our method
does not require the computationally expensive calculatad determinants and Ma-
halanobis distances at each step. Morever, whenever simhat®ns are needed,
they are all performed in very low dimensional spaces, grrémphasizing the com-
putational strength of our approach. The original MCD aillpon formulates the
outlier detection problem as the problem of finding the sesaltieterminant of co-
variances computed from a seque@;ié), k=1,---,m of different subsets of the
original data seZ. Each subset contairtisobservations. More precisely, #,p:imai

is the subset o7 whose observations yield the estimated covariance mattixtine
smallest (minimum) determinant out of all the subsets considered, then we must
have:

det(Z(ZDoptimar)) = min {det(i(@}}))), det(2(2)), - ,det(i(@,ﬁ"”))} ,

wherem is the number of iterations needed for the MCD algorithm toveoge.
Daptimal 1S the subset o7 that produces the estimated covariance matrix with the
smallest determinant. The MCD estimates of the locationoreand scatter matrix
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parameters are given by:
Hucp = ﬁ(-@optz‘mal) and Xy = E(-@()ptimal)'

The number. of observations in each subset is required t§ ke /» < n. Itturns out
thath = [(n + p + 1)/2] reaches its highest possible breakdown value according to
[10Q. It is obvious that withh, = [(n 4+ p+ 1) /2] being the highest breakdown point,
the requiremen{ < i < n cannot achieved in the HDLSS context, since in such
a contextp >> n. It is therefore intuitively appealing to contemplate a Sudice

of the input spaceZ’, and define/contruct such a subspace in such a way that its
dimensionalityd < p is also such thaf < n to allow the seamless computation of
the needed distances.

4.3.2 Description of RSSL for Outlier Detection

Random Subspace Learning in its generic form is designegrimisely this kind
of procedure. In a nutshell, RSSL combines instance-bag@inotstrap ie sam-
pling observations with replacement) with attribute-baggsampling indices of at-
tributes without replacement), to allow efficient ensembbrning in high dimen-
sional spaces. Here we present the algorithm in the form cdradwork: Random
Subspace Learning (Attribute Bagging) proceeds very mikehinaditional bagging,
with the added crucial step consisting of selecting a sulifstbie variables from the
input space for training rather than building each basekrarusing all the original

variables.

Algorithm 5 Random Subspace Learning (RSSL): Attribute-bagging step
1: Random y draw the nunber d<p of variables to consider

2: Draw wi t hout replacenent the indices of d variables of the
original p variables
3: Performlearning/estimation in the d-di nensional subspace
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This attribute-bagging step is the main ingredient of outi@udetection approach
in high dimensional spaces.

Algorithm 6 Random Subspace Learning for Outlier Detection wheti n
1: procedure RANDOM SUBSPACE OUTLIER(B)

2: for b =1to B do

3: Draw with replacenent {i” ... i} from {1,2, --,n} to form the bootstrap
samplez®

4 Draw wi t hout repl acenent from{1,2, --,p}asubse{;\”, - ,jc(lb)} of d vari-
ables

5: Drop unsel ected vari abl es from 2® so that2""), is d dimensional

6: Build the ith determ nant of covariance det(f](@s(z)b))

7: end for

8: Sort the ensenble {det(i(.@iz)b)), b=1,--- ,B}

9 Form 2% : det(Z*) = argmin{det(f)(.@s(z)b)), b=1,--- ,B}
10: Conput e u* and $* base on @~
11: We can build the robust distance by:

0 (x) = (x— ") =T (x = ). (4.10)

12: end procedure

The RSSL outlier detection algorithm computes a deterntiobcovariance for each
subsample, with each subsample residing in a subspaceexbhgrihed randomly
selected variables, whetigs usually selected to bﬁin(%, /D). Atotal of B subsets

are generated, and their low dimensional covariance neatace formed along with
the corresponding determinants. Then the best subsamgéing the one with the
smallest covariance determinant is singled. It turns oait ith the LDHSS context

(n > p), our RSSL outlier detection algorithm always robustlylggethe robust
estimators:* andX* needed to compute the Mahalanobis distance for all the obser
vations. Then the outliers can be selected using the typidabff built on classical
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Xp,5<7 In HDLSS context, in order to handle the curse of dimendibnae need to

involve a new variable selection procedure to adjust oum&aork and concurrently
stabilize the detection. The modified version of our RSSlieutetection algorithm
in HDLSS is then given by:

Algorithm 7 Random Subspace Learning for Outlier Detection wheg p
procedure RANDOM SUBSPACE DETERMINANT COVARIANCE(B)

2: for b =1to B do
Draw wi th repl acenent {i{" ... i’} from {1,2,---,n} to form the bootstrap
samplez®

4: Draw wi t hout repl acenent from{1,2,---,p} asubse{jf”,- ,jd }ofdvarl-
ables
Drop unsel ected vari abl es from 2 so that@sub is d dimensional
6: Build the ith determ nant of covariance det(E(@iz)b))
end for
8 Sort the ensenble {det(i(.@

sub

N, b=1,- B}
Keep the k small est sanples based on el bowto form 2, where
n=1---,k, k<B
10: for j = 2toddo
Select v = j nost frequent variables left in 20 to conpute
det(3(Z0,0))
12: end for
Form 2% : det(Z*) = argmax{det( (Qs(zb 1])) J=2,--- ,d}

14:  Conpute 7i* and £* base on Z*
We can build the robust distance by:

16: end procedure

Without selecting the smallest determinant of covariamechoose to select a cer-
tain number of subsamples to achieve the variable seletttrongh a sort of voting
process. The portion of the most frequently appearing blesaare elected to build
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an optimal space that allow us to compute our robust estifatbhe simulation
results and other details will be discussed later.

4.3.3 Justification RSSL for Outlier Detection

Conjecture 1. LetZ be the dataset under consideration. Assume that a proportio
e of the observations i¥ are outliers. Ife < e~!, then will high probability, the
proposed RSSL outlier detection algorithm will efficiemtyrectly identify a set of
data that contains very few of the outliers.

Letx; € 2 be a random observation in the original datagetLet 2(") denote the
bth bootstrapped sample from. Let Pr[x; € 2)] represent the proportion of ob-
servations that are i@ but also present i?"). It is easy to provér[x; € 2] =

1 — (1—12)" In other words, ifPr[x; ¢ 2] = Pr[O,] denotes the observations
from 2 not present inz®), we must havePr[x; ¢ 2] = (1 - 1)" = Pr[0,).
SincePr[0,,] is known to converge te~! asn goes to infinity. Therefore for each
given bootstrapped samplel’), there is a probability close to ! that any given out-
lier will not corrupt the estimation of location vector anchfter matrix parameters.
Since the outliers as well as all other observations havesymatotic probability of
e~ ! of not affecting the bootstrapped estimator that we builter€fore over a large
enough re-sampling process (laf} there will be many bootstrapped sampie$)
with very few outliers leading to a sequence of small covargadeterminants as de-
sired, ife < e7!. Itis therefore reasonable to deduce that by averagingtuisision
of outliers over many replications, robust estimators waturally be generated by
the RSSL algorithm.

4.3.4 RSSL Classification for High Dimensional Data

Since RSSL-MCD method that we discussed in last section@itchdobust space for
the original data, thus the method can be applied to manyeafldssifiers especially
for linear classifiers. Here we select the Fisher’s lineacriminant analysis (LDA)
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as an example. Briefly speaking, for multivariate Gaussemsiy given clasg we
have:

1

E— T )
(2m)" [Zx]2

fr (x) =

So for the hypothesiéAI (X') we find the optimum class fot by compute the prob-
ability:

&)

(x) = argml?XPr (H=Fk| X =x)
= argmax fj (x) m

= log (arg max fr (x) 7Tk>

Replace the density function of multivariate Gaussian, areeasily show that:

500 = argmpx (— - ) B e ) log(m)) (@41)

Thus, the estimation of mean and covariance can be replacedrlrobust estima-
tors u* and >+ 1. Notice that the observations of the data are divided: loyasses
for LDA. However, since for variable selection we have to goie and rank the
determinants ofX, the pooled covariance can be computed by:
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Thus, formally we have the random subspace learning foatidescriminant analy-
SiSRSSL-LDA

Algorithm 8 Random Subspace Learning for LDA wherg p

2:

10:

12:

14:

16:

18:

20:

procedure RANDOM SUBSPACE DETERMINANT COVARIANCE(DB)
for b =1to B do
for k=1to K do

Draw wi th repl acenent {i”, ... i} from {1,2,---,n,} to form the boot-
strap samplez®)
Draw wi t hout repl acement from {1,2,--- ,p} a subsef;\” .. "} of d
variables
Drop unsel ected vari abl es from .@,ff’) SO that@s(ﬁ)bk is d dimensional
Conput e 5, from .@S(Z)bk
end for
Comput e the pool ed covariance (2%, )
Build the bth determ nant of covariance by pooled -covariance
det(Z(Zthpont)
end for
Sort the ensenble {det(fl(.@s(z)bpwl)), b=1,-- ,B}

Keep the 2 smallest sanples based on el bow to form 2, where
n=1---,2, 2<B
for j =2toddo
Select v = j nost frequent variables left in 2" to conpute
det(Z(2=Y )

subpool=j
end for
Form 2" : det(2*) = argmax{det(i(@s(zb:plo)ol:j)), j=2-- ,d}

Conput e [ andf); base ornz;
We can compute and select the probability of each class by:

~

1 ~x\ T x— sk
0% (x) = arg max (_§<X — ) E (x = p) + log (m))

end procedure
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Chapter 5

Implementation Results and Conclusion

5.1 Computational Demonstrations

5.1.1 Setup of Computational Demonstration and Initial Reslts

In this section, we conduct a simulation study to assess én®nmance of our
algorithm based on various important aspects of the dah wanalso provide a
comparison of the predictive/detection performance ofraathod against existing
approaches. All our simulated data are generated accotdlitige s-contaminated
multivariate Gaussian introduced vid.{) and @.2). In order to assess the effect
the covariance between the attributes, we use an AR-typa&rieoce matrix of the
following form:

S=| i o s s | =1 =)+ plply], (5.1)
P L p
\p P 1)

wherel, is the p-dimensional identity matrix, whil&,, is p-dimensional vector of

P

ones. For the remaining parameters, we consider 3 diffégeals of contamination
e € {0.05,0.1,0.15}, namely mild contamination to strong contaminatigns se-
lected betweer0, 0.25} to show the effect of correlation. The dimensionafitwill
increase in low-dimensional case &), 40, 50, 60, 70} and high dimensional case
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as{1000, 2000, 3000, 4000, 5000} and the number of observations are fixed at 1500
and 100. We compare our algorithm to existing PCA based iéhgos PCOutand
PCDist, both of which are available iR within the package calletircovHD.
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Figure 5.1: (left) Histogram of the distribution of the deténants from all bootstrap samplég‘ﬁ{)
whenn = 100, p = 3000; (right) Histogram of log determinants for all the bootgtssamples. Our
methodology later selects a portion of samples based onwdaall here the elbow.

As can be seen on Figurg.(), the overwhelming majority of samples lead to deter-
minants that are small as evidenced by the heavy right skeswugh concentration
around zero. This further confirms our conjecture that ag s < ¢! which is

a rather reasonable and easily realized assumption, wedsisolate samples with

few or no outliers.
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Figure 5.2: (left) Tail of sorted determinants in high diragmal
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be selected before reaching the elbow; (right) The conchepes can be observed by computing

determinants of covariance from 2 4@ dimension. The cut-off for variable selection is based on

the decreasing sorted frequency located at the maximuneafd¢terminants.

Since each bootstrapped sample selected has a small chiabem@ affected by

the outliers, we can select the dimensionality that maxentiias benefits. In our

HDLSS simulations, determinants are computed based oheatbindomly selected

subspaces, and are ruled by predominantly small valueghwimplies the robust-

ness of the classifier. Figur@.f) patently shows the dominance of small values of

determinants, which in this case are the determinants diaatstrapped samples

based on our simulated data. A distinguishable elbow isepites in Figure %.2).

The next crucial step lies in selecting a certain number otdicap samples, say

to build an optimal subspace. Since most of the determirastslose to each other,

it is a non-trivial problem, which means thaneeds to be carefully chosen to avoid

going beyond the elbow. However, it is important to noticé is too small then

the variable selection in later steps of the algorithm waltbme a random pick, be-

cause there is no opportunity for each variable to appedreirehsemble. Here, we

choosek to be the number of roughly the first 30% to 80%/®bootstrap samples
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2 according to their ascending order of the determinantss @hoice is based on
our empirical experimentations. It is not too difficult tden the asymptotic normal
distribution of the frequencies of all variables #" as we can observe in Figure
(1.2). Thus, the most frequently appearing variables locatetherleft tail can be
adopted/kept to build our robust estimator. Once the seledf 4 is made, the
frequencies of variables appearing in this ensemble carbtaned/computed for
variable selection. The 2 te most frequently appearing variables are included to
compute the determinants in Figude?). m is usually small, since we assume from
the start that the true dimensionality of the data is indewdlls Here for instance,
we choose0 for the purposes of our computational demonstration. Apshaaxi-
mum indicates the number of dimensierfrom that sorted ensemble that we need
to choose. Thus, with the bootstrapped observations hdakimgmallest determi-
nant with the subspace that generates the largest deterimwma can successfully
computez* = .@gfzb::li Then the robust estimators can be formedibyand =*.
Theoretically then we are in a presence of a minimax formaniadf our outlier de-
tection problem, namely

{2, ¥} = argmax {argmin{det(cov(ﬁ(.@(b)(7/(b)))))}} (5.2)
¥ ) )

By Equation , it should be understood that we need to isoldtegrecious subsam-
ple 2% that achieves the smallest overall covariance determibanthen concur-
rently identify along with2*) the subspac# *) that yields the highest value of that
covariance determinant among all the possible subspacsgiened.

5.1.2 Further Results and Computational Comparisons

As indicated in our introductory section, we use the Mahaltes distance as our
measure of proximity. As since we are operating under thenaggon of multivari-
ate normality, we use the traditional distribution quaanbtfi,% as our cut-off with
the typicala = 10% anda = 5%. As usual, all observations with distances larger
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thanxi% are classified as outliers. The data for simulation studyanerated with
n, k € {2,5} representing both easy and hard situation for RSSL algorithdetect
the outliers, and as the rate of contamination. Throughout, we fise 200 replica-
tions for each combination of parameters for each algoritmmd we use the average
test errorAVE as our measure of predictive/detection performance. Spalby,
A I IR0 7w
AVE(f) = — — > Uy", f(x") b 5.3
(F) RZ{mE ()" Frlx >>} (5.3)

Whereﬁ(xy’))) is the predicted label of the test set observatigielded byfin the
r-th replication. The loss function used here is the basioc-pae loss defined by:

iy # Fx")

. (5.4)
0 otherwise

Wy, i) = Lyshadony = {
It will be seen later that our proposed method produces giiediaccurate outlier
detection results, typically competing favorably agaioter techniques, and usu-
ally outperforming them. Firstly however, we show in Figfe3) the detection
performance of our algorithm based on two randomly selestédpaces. The out-
liers detected by our algorithm are identified by red trisghnd contained in the
red contour, while the black circles are the normal data.
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X2

X1 X1

Figure 5.3: (left) The outliers detected in a two dimensi@ubspace are marked as red triangles.
Selection is based aft (x) > X3f—d.ase (right) Outliers are selected by, ,— -

The improvement of our random subspace learning algoritintow dimensional
data withp € {30, 40, 50, 60, 70} and relative large sample size= 1500, is demon-
strated in figure §.4) and 6.5) in comparison tdPCOutand PCDist Despite the
correlationp may moderately affect both algorithms’ performances that most
prominent changes are broughthwpndn. Given a relatively easy task, namely with
k,n = b, the outliers are scattered widely and shifted far from redythe RSSL with

1 — o equals95% and90% perform consistently very well, typically outperforming
the competition. When the rate of contamination is incregaén this scenario, al-
most100% accuracy can be achieved with RSSL based algorithm. Wheouitiers
are spread more narrowly and closer to the mean with= 2, the predictive accu-
racy of our random subspace based algorithm is slightlypesserful but still very
strong, namely with a predictive detection rate closgt to 99%.
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Figure 5.4: { = 1500, p = 0) The average error and standard deviation in low dimensgmalation

with x,n = 5 (left column) andk, n = 2 (right column).
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Figure 5.5: ¢ = 1500,p = 0.25) The average error and standard deviation in low dimensiona
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In high dimensional settings, namely withe {1000, 2000, 3000, 4000, 5000} and
low sample sizen = 100. Although the correlationp can slightly affect perfor-
mance, RSSL is also performs reasonably well as shown ingfi@u®) whenx and

n are relatively larger. However, asandn equals to while contamination rate is
severe around5%, the test is harder for RSSL that causes the accuracy reduce t
90%. When no correlation is added as in figuse7j, with 1 — o = 95% chi-squared
cut-off, whenk,n = 5, 96% to 98% of outliers can be detected constantly among
all simulated high dimensions. Under more difficult corahs, as withx,n = 2, a
decent amount of outliers can be detected with accuracyndr@ty; to 96%. Based
on the properties of robust PCA based algorithms, the situdahat we define as
"easy” for RSSL algorithms is actually "harder” fecOut andPCDist. The princi-
ple component space is selected based on the visibility tieos) and especially for
PCOut, the components with nonzero robust kurtosis are assigigéeéihweights by
the absolute value of their kurtosis coefficients. This mdtis shown to yield good
performances when dealing with small shift of mean and scaftthe covariance
matrix. However, if the outliers lied on largerandx where excessive choices can
be made then, it is more difficult for PCA to find the dimensidgao make the
outliers "stick out”. Reversely, with a small valuesftndr, the most obvious di-
rections are emphasized by PCA but less chance for alg@ilikien RSSL to obtain
the most sensible subspace to build robust estimators. fguire 6.7) and 6.9,
whenk, n = 2 the accuracy reduced to arouds but in all other high-dimensional
settings the performance of RSSL is consistent witbut and identically stable.
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Figure 5.6: { = 100, p = 0) The average error and standard deviation in high dimeasgmulation
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5.2 Real Data Classification

5.2.1 The Leukemia Dataset

We consider the data from the cancer classification reseametucted by Golub
et al. The goal of the research is to correctly distinguish betwaeute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL) froDNA-microarry
gene expression dataset. The data set contains 47 patiém&shi and 25 patients
with AML that adds up to 72 observations. There are 6817 kéggthat representing
human genes and each value of data is the expression levelirday Affymetrix
high density oligonucleotide arrays. Here we use a subseodata because some
bioinformatics filtering need to be taken as a preprocesstieygs. This procedure is
performed by:

e Eliminate the variables with extreme values that less thH#nhdnd larger than
16000

e A base 10 logarithmic transformation is performed for theleldataset

e Exclude the variables that have transformed observatidhs/miue:max / min <
5 or max — min < 500

Thus, the filtered dataset has unchanged observaticas72 but dimensiong =
3571. Such threshold was frequently used by researchers su@7jadhe prepro-
cessed data is already availableRrpackagespi kesl ab. Then we can applied
our RSSL-LDA and compare with other popular algorithr8&/Mwith Radial Ba-
sis (Gaussian) kernel aindomForesare selected due to their adaptation of such
high dimensionality. Since this is a real world data sitatiwe concern large por-
tion of the variables of the benchmark leukemia datasettasigh probability to
be correlated, an weighting scheme that taking advantaggsstatistic is adopted
by us that to reduce the chance of repeatedly select redaiedari-or each feature
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we give it a weightv; wherei = 1,2, --- | p according itsF'-statistic with respect to
the responsg, such procedure is taken before bootstrap aggregation.

5.2.2 Prediction Results

We still useB = 450 bootstrap samples for each run of the algorithm, and replica
R = 200 times. Since the ratio of between the devotionality and thealver of
observations is extremely unbalanced, 60f of bootstrap samples that are ranked
by determinant are used to selecodf the most frequently appeared variables. On
Figure 6.6), just like the situation in our previous outlier detectexperiment, huge
amount of samples with determinants that are very close o &hich leads an
obvious scene of heavy right skewness. This is again a sewidgnce that we need
to rebuild our estimators to achieve robustness insidei®etliremely noisy dataset.
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Figure 5.8: The frequency of determinant and (right) loged®inant of all random subspaces from
leukemia dataset.

For most of situations, the way way determine the value odn work well like the
previous outlier simulation study. The most frequent appeéaariables are added
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one by one and the determinant is computed accumulativelguals the dimension-
ality that has the maximum determinant. However, we a retasgd with massive
amount of redundancy is encountered, this way may not wortegity due to its
unexpected complexity among all subspaces. Thus, we mégrpea cross vali-
dation with values in{2,3,--- , z*} if the maximum is not available since we can
roughly estimate a range from previous loops. In this exampe choose* = 10
and a 3-fold cross validation is performed due to the limnachber of observations
in each class (47 and 25). Figute{) shows an example af= 3 when a maximum
can be obtained.
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Figure 5.9: (left) The maximum determinant can be obtaimeohf(right) the first 3 most frequently
appeared variables.

On Figure 6.9), the result of comparison with SVM with RBF kernel and ramdo
forests classifiers in terms of accuracy is shown. The samoéd3:ross validation
is performed for both SVM and RF on the training data is penied to assess the
guality of their models. The mean error rate of RSSL-LDA isgbly 5% that2.5%
lower than the tuned SVM and RF and the standard deviatiend@se to each other.
Though the practical performances of our algorithm sti#a®some improvements,
there are considerably amount of space that we can explore.
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Figure 5.10: Box plot of prediction errors of RSSL-LDA, SVRBF and RF.

5.3 Conclusion

We have presented what we can rightfully claim to be a contjpmal efficient,
scalable, intuitive appealing and highly predictively @@te outlier detection and
classification method for both HDLSS and LDHSS datasets. rAadaptation of
both random subspace learning and minimum covariancendigint, our proposed
approach can be readily used on vast number of real life ebemphere both its
component building blocks have been successfully applibd.particular appeal of
the random subspace learning aspect of our method comendly fa many outlier
detection and classification tasks on high dimension lowptarsize datasets like
DNA Microarray Gene Expression datasets for which the MCpraach proved
to be computational untenable. As our computational anddaa demonstrations
section above reveal, our proposed approach competesfdyavith other existing
methods, sometimes outperforming them predictively destsi straightforwardness
and relatively simple implementation. Specifically, ouoposed method is shown
to be very competitive in terms of accuracy for both low arghidimensional space
outlier detection, high dimensional data classificatiod encomputationally very
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efficient.

Our future interests on of the random subspace frame workealvided in to two
directions. We can examine some functiéndifferent weights and dynamic way of
selecting variables that can break down the potential aetation to efficiently com-
bine linear classifiers or, we can simply experiment on ckffé classifiers. Further-
more, we can extend our field of studies to model aggregagorabous weighting,
theoretical upper bound and oracle inequalities for comggregates.
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