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ABSTRACT 

Kate Gleason College of Engineering 

Rochester Institute of Technology 

 

Degree: Doctor of Philosophy Program: Microsystems Engineering 

Name of Candidate: Christopher S. Urban 

Title: Scaling the Bulk-Driven MOSFET into Deca-Nanometer Bulk CMOS Technologies 

 

The International Technology Roadmap for Semiconductors predicts that the nominal 

power supply voltage, VDD, will fall to 0.7 V by the end of the bulk CMOS era.  At that time, it is 

expected that the long-channel threshold voltage of a MOSFET, VT0, will rise to 35.5% of VDD in 

order to maintain acceptable off-state leakage characteristics in digital systems.  Given the recent 

push for system-on-a-chip integration, this increasing trend in VT0/VDD poses a serious threat to the 

future of analog design because it causes traditional analog circuit topologies to experience 

progressively problematic signal swing limitations in each new process generation.   

To combat the process-scaling-induced signal swing limitations of analog circuitry, 

researchers have proposed the use of bulk-driven MOSFETs.  By using the bulk terminal as an 

input rather than the gate, the bulk-driven MOSFET makes it possible to extend the applicability of 

any analog cell to extremely low power supply voltages because VT0 does not appear in the 

device’s input signal path.  Since the viability of the bulk-driven technique was first investigated in 

a 2 μm p-well process, there have been numerous reports of low-voltage analog designs 

incorporating bulk-driven MOSFETs in the literature – most of which appear in technologies with 

feature sizes larger than 0.18 μm.  However, as of yet, no effort has been undertaken to understand 

how sub-micron process scaling trends have influenced the performance of a bulk-driven 

MOSFET, let alone make the device more adaptable to the deca-nanometer technologies widely 

used in the analog realm today.  Thus, to further the field’s understanding of the bulk-driven 

MOSFET, this dissertation aims to examine the implications of scaling the device into a standard 

90 nm bulk CMOS process.  This dissertation also describes how the major disadvantages of a 

bulk-driven MOSFET – i.e., its reduced intrinsic gain, its limited frequency response and its large 

layout area requirement – can be mitigated through modifications to the device’s vertical doping 

profile and well structure.  To gauge the potency of the proposed process changes, an optimized 

n-type bulk-driven MOSFET has been designed in a standard 90 nm bulk CMOS process via the 

2-D device simulator, ATLAS. 
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1 Introduction 

1.1 Recent Trends in the Power Supply and Threshold Voltages 
 

Historically, scaling a MOSFET‟s gate length, Lg, has greatly enhanced the 

performance of digital systems in terms of packing density and switching speed.  

Unfortunately, over time, such scaling has caused the average power, Pavg, consumed by 

these systems to rise considerably since the dynamic component of Pavg, denoted Pdynamic, 

is directly proportional to the frequency, f, at which a system operates.   

To combat the growth in Pdynamic, the power supply voltage, VDD, has generally 

been reduced in each new process generation due its quadratic relationship with Pdynamic 

and Pavg, as shown below [1] (pp. 257–259):  

fCVIVPPP DDleakageDDdynamicstaticavg
2  (1.1) 

 

where C and Pstatic represent the total capacitance of a system and the static power 

consumed by a system, respectively.  To maintain a reasonable level of current drive 

between processes, the nominal long-channel threshold voltage used in a technology, VT0
†
, 

has typically been lowered along with VDD.  However, since a MOSFET‟s sub-threshold 

leakage current
‡
, Ileakage, is exponentially dependent upon the threshold voltage, VT [2]: 

tTV

sleakage eII


  (1.2) 

 
VT0 has not been able to decline as quickly as VDD does in each new process generation 

because of concerns over increasing Pavg through Pstatic. 

                                                 
†
 In this dissertation, VT0 is equal to the threshold voltage, VT, of a MOSFET whose gate length is at least 

ten times greater than the minimum allowable gate length of a given process, Lg,min.  Therefore, one should 

expect VT0 to be relatively constant for a given device (assuming that VBS is also constant).  VT, on the other 

hand, may vary as a function of Lg as a result of short-channel effects, halo implantation, etc. 
 

‡
 In (1.2), Is represents the leakage current present in an NMOS device when VT = 0; η is a parameter that 

depends on the ratio of the bulk-to-gate transconductances (gmb/gm) and ϕt is defined as the thermal voltage 

(26 mV at 300 K).   
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To see how disproportionately VT0 and VDD have fallen in recent years, the two 

parameters are plotted in Figure 1.1 for five standard IBM bulk CMOS processes [3]–[7].  

From the figure, one can see that unbalanced reductions in VT0 and VDD have caused the 

ratio of VT0/VDD to increase noticeably – from VT0/VDD = 0.50 V/2.50 V = 0.20 to 

VT0/VDD = 0.29 V/1.00 V = 0.29 – between IBM‟s 0.25 μm and 65 nm nodes.  As one 

would expect, this trend shall continue on until the end of bulk CMOS scaling, at which 

point, VDD and VT0/VDD are predicted to reach 0.70 V and 0.355, respectively [8]. 

 
Figure 1.1: A plot of the recent trends seen in VT0 and VDD for standard IBM bulk CMOS processes. 

 

In addition to the process-scaling-induced behavior of VT0 and VDD described 

above, there has recently been a growing interest in the wireless communication and 

biomedical areas to artificially lower the nominal power supply voltages of existing 

processes to values as low as 0.5 V in order to attain longer battery lives or to permit the 

use of energy scavenging techniques which harvest power from the environment [9]–[10].  

As a consequence of these artificial reductions in VDD, a new-found need has arisen for 

ultra-low-voltage circuits which can operate with VT0/VDD ratios as high as 0.7. 

1.2 The Future of Analog Circuit Design 
 
It is has long been the objective of the silicon industry to create purely digital 

integrated circuits which are capable of interfacing with the outside world since digital 
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systems are able to outperform their analog counterparts by a fairly significant margin 

while utilizing a much smaller amount of layout area.  However, given that the outside 

world is mostly analog in nature, this goal has not – and may never – come to fruition.  

Therefore, for now, it is necessary for the silicon industry to deal with the fact that analog 

and digital components will have to co-exist on a single chip – this idea is called system- 

on-a-chip, or SOC – to create a cost-effective design.   

In an SOC, analog designs are required to abide by the VDD and VT0 targets seen in 

Figure 1.1
†
 since in general, all process specifications are geared towards optimizing 

digital performance metrics.  In deca-nanometer technologies, these VDD and VT0 targets 

cause analog circuitry to experience harsh voltage swing limitations because each 

MOSFET utilized in an analog circuit must be saturated (VGS ≥ VT) in order to provide a 

moderate gain and frequency response.   

VDD

vIN
–vIN

+

vOUT

IBIAS

M4M3

M1 M2

VDSAT

VDSAT

VGS

 
Figure 1.2: The schematic representation of a conventional single-ended differential amplifier. 

  

As an illustration of the voltage swing problem, consider the input common-mode 

range, ICMR, of a conventional single-ended differential amplifier, such as the one 

shown in Figure 1.2.  By analyzing the input of M1, one can quickly show that the ICMR 

of this amplifier is limited to:  

GS1DSAT1GS3DDIBIASDSATGS1 VVVVVV  ||ICMR,  
(1.3) 

                                                 
†
 Low-power technologies will have slightly higher VDD targets than those listed in Figure 1.1 [11]–[12]. 
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Hence, if one were told to use an IBIAS = 20 μA, a |VGS1| = |VGS3| = VT + 100 mV [13] and 

an Lg = 5Lg,min [8], (1.3) predicts that the amplifier would have an ICMR of 1.65 V (66% 

of VDD) in a 0.25 μm process if BSIM4 [14] was used to calculate each VDSAT.  With 

identical amplifier specifications, (1.3) predicts that the amplifier would have an ICMR 

of only 0.43 V (43% of VDD) in a 65 nm process.  This represents a 74% decrease in the 

ICMR over a span of five process generations.   

Based on the forecasted projections for VDD and VT0 [8] and the growing desire for 

ultra-low-voltage circuits with large VT0/VDD ratios [9]–[10], it is expected that the ICMR 

of a conventional single-ended differential amplifier will to fall to a point where it 

becomes extremely difficult to use the amplifier in the near future [15] (pp. 25–27), 

[16] (pp. 6–12).  This revelation is quite startling because it is not isolated to the case 

considered above and actually carries over to every other traditional analog circuit 

topology [15] (pp. 22–37), [16] (pp. 6–12); it also compounds the problems already 

associated with the scaling of MOSFETs into the deca-nanometer regime – troubles 

which include: device intrinsic gain limitations brought about by degradation in the 

output resistance [17], ro; reduced gate oxide capacitance due to polysilicon gate 

depletion and quantum mechanical effects [18]; as well as non-negligible gate current due 

to direct electron (or hole) tunneling through the gate oxide [19]. 

Naturally, many researchers have investigated the voltage swing issue quite 

extensively at the device and circuit level.  This has led to a wide variety of techniques 

which can be used to enable analog circuit design at very low power supply voltages.  

The most notable of these techniques include: floating-gate [20], level-shifted [21], weak 

inversion [22] (pp. 12–14) and bulk-driven (BD) MOSFETs [23].  The use of thick (gate) 

oxide devices has also been suggested [24].   
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Out of all the possibilities mentioned above, the BD MOSFET – first introduced 

by Guziński, Białko and Matheau in 1987 [23] – has turned out to be one of the most 

popular low-voltage analog design techniques found in the literature.  In a BD MOSFET, 

the bulk terminal is used as an input rather than the gate.  This transforms a MOSFET 

into a depletion mode-like device because the threshold voltage no longer appears in the 

device‟s input signal path.   

As one would expect, the BD MOSFET‟s depletion mode-like behavior does 

come with a few drawbacks, the most notable of which is a low intrinsic gain due to the 

device‟s dependence on gmb rather than gm [23].  The BD MOSFET is also subject to a 

small cut-off frequency and a large layout area allotment because it must reside within its 

own separate well structure in a number of applications.  The possibility of inducing latch-

up by forward biasing the bulk–source junction has also been a cause for concern [25].   

Despite all of the problems listed above, an investigation by Blalock in 1996 [26] 

revealed that it was possible to design useful bulk-driven differential amplifiers and 

current mirrors with power supply voltages as low as 1 V in a 2 μm p-well process 

(VT0 = 0.7 V); the fear of inducing latch-up was proved to be ill-founded.   

Since Blalock‟s study, numerous reports of bulk-driven differential amplifier and 

current mirror designs have appeared in the literature
†
 (see Section 2.5 of this dissertation 

for an extensive list of references).  Researchers have also published papers extending the 

BD MOSFET‟s applicability to other critical analog and RF circuits, such as voltage 

controlled oscillators (VCOs) [28]–[30], phase-locked loops (PLLs) [9], voltage 

references [31]–[32], comparators [33]–[34], voltage followers [35]–[37] and mixers [27].  

                                                 
†
 Bulk-driven circuits are rarely implemented in technologies with feature sizes smaller than 0.18 μm.  The 

lone exception to this rule seems to be bulk-driven mixers, which have been fabricated in processes with 

feature sizes down to 45 nm (for an example, please see [27]). 
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1.3 The Purpose of this Research 
 

All working knowledge of the BD MOSFET is based on Blalock‟s work [26] 

which was performed in a 2 μm p-well process in 1996.  Since Blalock‟s thorough 

investigation of the BD MOSFET, there has been no effort undertaken to understand 

the short-channel behavior of the device, let alone make the device more adaptable to 

deca-nanometer processes even though circuits are regularly being published using the 

BD MOSFET.   

As a means of furthering the field‟s understanding of the BD MOSFET, this 

dissertation aims to examine the implications of scaling an n-type BD MOSFET into a 

standard 90 nm bulk CMOS technology (Lg,min = 80 nm).  The ideas contained within this 

document are intended to make the BD MOSFET more suitable for low-voltage analog 

applications operating at a VDD = 0.7 V, the minimum power supply voltage predicted for 

the end of bulk CMOS scaling [8].    

Ultimately, this dissertation describes how the major disadvantages of a BD 

MOSFET – i.e., its reduced intrinsic gain, its limited frequency response and its large 

layout area allotment – can be mitigated through modifications to the device‟s vertical 

doping profile and well structure.  To gauge the potency of the proposed process changes, 

an improved n-type BD MOSFET has been designed in the 2-D device simulator, 

ATLAS [38], and the device‟s characteristics have been evaluated against a triple-well 

isolated uniformly-doped BD MOSFET. 

A standard 90 nm bulk CMOS process was selected for this work because the 

march toward non-standard (SOI, FinFET, etc.) processes is expected to be gradual for the 

analog realm [39].  There are two supporting arguments for this line of reasoning.  First, it 

is harder for analog designs to adapt to technologies with smaller feature sizes since 
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analog circuits are more sensitive to the non-ideal effects present in such technologies as 

well as the process changes instituted to alleviate these non-ideal effects.  Second, it is 

increasingly cost-prohibitive to move into a newer technology due to the increase in 

process complexity with each new process generation.  This is evidenced by recent market 

data which shows that the migration to smaller feature sizes is relatively restrained [40].  

For these reasons, one can infer that deca-nanometer bulk CMOS processes will be 

relevant in the silicon marketplace for a long time to come.   

1.4 Organization of this Document 
 

The first three sections of this chapter have outlined the path of this research by 

declaring that the BD MOSFET is one of the most prominent low-voltage analog design 

techniques found in the literature.  To elaborate on this claim, a brief literature review is 

conducted in Chapter 2 to analyze benefits and limitations of each low-voltage analog 

design technique introduced in Chapter 1 and to indicate why the BD MOSFET has been 

chosen as the focal point of this work.   

To provide the proper background for this dissertation‟s study of the BD 

MOSFET, the long- and short-channel characteristics of the device are examined in 

Chapter 3 through various mathematical developments and circuit-level simulations
†
.  By 

doing so, it is possible to see how sub-micron process scaling trends have affected the 

expected advantages of the BD MOSFET.    

To mitigate the noted limitations of the BD MOSFET, several process changes 

are proposed in Chapter 4.  With the aid of the 2-D device simulator, ATLAS [38], 

the effectiveness of the most promising process changes are also evaluated in the 

chapter.  

                                                 
†
 The rest of this document will focus on n-type BD MOSFETs, unless noted otherwise. 
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Based on the findings of Chapter 4, the design of an improved n-type BD 

MOSFET is presented in Chapter 5 using a standard 90 nm bulk CMOS technology.  The 

benefits of the new design are also examined in the chapter via 2-D device simulations in 

ATLAS.  Following the conclusion of Chapter 5, closing remarks and suggestions for 

future research are provided in Chapter 6. 
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2 Low-Voltage Analog Design Techniques 

2.1 Floating-Gate MOSFETs 
 
In the literature, one will find many different techniques which have been 

proposed to enable low-voltage analog design.  One notable low-voltage analog design 

technique involves the use of floating-gate MOSFETs [20].  In a floating-gate MOSFET, 

there two control gates, G1 and G2, which are coupled to a floating gate through two 

capacitances, C1 and C2, as shown in Figure 2.1 for an n-type device.  When a sufficiently 

large DC bias voltage is applied to the first control gate, charge flowing from G1 to the 

floating gate (via Fowler-Nordheim tunneling) causes the effective threshold voltage of 

the second control gate to decrease to [20]: 

 G1FGT

1

2
FGTT,G2 VV

C

C
VV  ,,  (2.1) 

 
where VT,FG is the nominal threshold voltage of the device.   

D

S

VG1

VG2

C1

C2

D

S

VG2

VG1

DS

G1

G2

(a) (c)(b)
 

Figure 2.1: An illustration of the (a) layout, (b) device model and (c) symbol of an n-type floating-gate 

MOSFET.  S, D, G1 and G2 denote the source, drain, first control gate and second control gate 

terminals, respectively. 

 

 Typically, researchers have utilized floating-gate MOSFETs to form many 

primitive low-voltage analog circuits, such as the differential amplifier and current mirror 

cells depicted in Figure 2.2(a) and (b), respectively [20].  These circuits turn out to be 

functionally equivalent to their traditional counterparts since G2 is generally used as an 

input terminal while G1 is used to lower the threshold voltage of G2, as suggested by (2.1). 
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Figure 2.2: The schematic representation of a floating-gate (a) differential amplifier and (b) simple 

current mirror. 

 

 While the floating-gate MOSFET approach is capable of creating differential 

amplifiers with rail-to-rail ICMRs and current mirrors with small input voltages at VDDs 

as low as 1 V [41], there are many factors which inhibit the approach from being adopted 

as a general solution to low-voltage analog design.  Of those factors, the most prominent 

one is that it may become difficult to store charge within the device‟s floating gate in 

deca-nanometer technologies due to the presence of direct-tunneling-induced current 

flowing from the device‟s floating gate into the channel [42].  The floating-gate MOSFET 

is also plagued by a low transconductance resulting from the voltage divider formed by 

C2 and the floating-gate oxide capacitance
†
 at the device‟s input [43] (pp. 12–14), 

[44] (pp. 9–10).  The amount of layout area consumed by the floating-gate MOSFET is 

also a concern since C2 is required to be at least ten times larger than the floating-gate 

oxide capacitance in order for the device to operate properly [20].  

2.2 DC Voltage Level Shifting 

2.2.1 Current Mirrors 
 

Figure 2.3(a) shows how DC level shifting can be applied to remove the threshold 

voltage obstruction from the input of a simple current mirror.  In this technique, a bias 

voltage, VBIAS, is placed between the gate and drain of the current mirror‟s input device 

                                                 
†
 The capacitance cited here denotes the capacitance seen between the floating gate and the channel – i.e., Cox. 
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(M1) such that the mirror‟s input voltage is lowered to VIN = VGS1 – VBIAS.  The bias 

voltage can be implemented in many ways, though it is usually realized through the use 

of a PMOS source follower, as shown in Figure 2.3(b) [44]. 

+_

IIN IOUT

VBIAS

VIN VOUT

M1 M2

IIN IOUT

VIN VOUT

M1 M2

VDD

M3

(a) (b)

IBIAS

 
Figure 2.3: The schematic representation of an (a) ideal DC level-shifted simple current mirror 

(b) and its practical implementation using a PMOS source follower. 

 

While the DC level shifting technique does provide a fairly simple way to reduce 

the input voltage of a simple current mirror, its simplicity comes at a cost because the 

approach increases the amount of power consumed by the current mirror (due to the extra 

bias current, IBIAS).  The level shifting technique also sets a lower limit to the permissible 

current values under which the mirror functions reliably because VGS2 is no longer pinned 

at zero when VIN = 0 [21].  Thus, if VOUT is somehow increased while VIN is held at zero, 

one will see sub-threshold current flowing through M2 even though no current is flowing 

through M1 (ideally) [45].  Furthermore, given that direct-tunneling-induced gate current 

is no longer negligible in deca-nanometer technologies [42], any gate current generated 

by M3 (Figure 2.3(b)) will undoubtedly foster an additional source of inaccuracy between 

the input and output currents of the mirror [46]. 

2.2.2 Amplifier Input Stages 
 

Traditionally, the ICMR of an operational amplifier (op-amp) has been expanded 

through the use of a complementary differential pair input stage [47] (pp. 325–326).  In 
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this configuration, one connects an NMOS and PMOS differential pair in parallel such 

that when the NMOS pair is conducting, the PMOS pair is not, and vice versa.   

Unfortunately, as VDD scales, it becomes extremely difficult to implement the 

complementary differential pair input stage because of a voltage “dead zone” that forms 

in the middle of the power supply where neither pair conducts [48].  To eradicate this 

“dead zone,” one can apply the DC level shifting approach from Section 2.2.1 to alter the 

common-mode level of the stage‟s input voltages, as seen in Figure 2.4.  In this 

embodiment, a current, IS, is applied through two equal valued resistors (labeled RS) in 

such a way that vIN
+
 and vIN

–
 are shifted upwards (NMOS pair) or downwards (PMOS 

pair) when they are within the voltage “dead zone” [49]. A level-shifting current 

generator is then used to dynamically vary IS in response to vIN
+
 and vIN

–
 to ensure that 

one of the differential pairs is always conducting. 
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Figure 2.4: An illustration of the dynamic DC level shifting concept applied to a complementary 

differential pair input stage. 

 

By using the DC level shifting technique on an input stage, it is possible to design 

op-amps with rail-to-rail ICMRs at power supply voltages as low as 1 V [49].  However, 

one must again consume more power to achieve this benefit.  One will also need to 

increase the overall complexity of the input stage due to the additional control circuitry 

that is required to vary IS.  
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2.3 Weak Inversion MOSFETs 
 
Weak inversion MOSFETs have always captured the interest of researchers 

because their transconductance efficiencies, defined as gm/ID, are the highest among any 

region of operation, as shown in Figure 2.5.  This behavior is attributed to the fact that the 

electron flow in weak inversion MOSFETs is dominated by diffusion rather than drift, 

making the devices‟ drain currents and transconductances exponentially dependent on 

VGS [22] (pp. 12–14), [50] (pp. 170–175): 

   tDStTGS VVV

sD eeII
 

 1  (2.2) 
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Figure 2.5: A plot of gm/ID vs. VGS – VT for an NMOS device that was simulated using the process 

design kit for IBM’s standard 0.13 μm bulk CMOS technology (W/Lg = 6 μm/0.6 μm, VDS = 1 V and 

VBS = 0). 

 

As one would expect, weak inversion MOSFETs are naturally attractive for low-

voltage analog applications due to their low VGS and VDSAT requirements
†
.  This is 

evidenced by reports of weak inversion op-amps operating with power supply voltages as 

low as 0.6 V [51].  However, one must remember that the main application of weak 

inversion MOSFETs has historically been in the biomedical area where operating 

frequencies range between 1 Hz to 1 kHz [52].  It is not possible to use these devices at 

much higher frequencies because their drain currents and transconductances are 

                                                 
†
 VDSAT ≈ 4ϕt (104 mV) in the weak inversion region [16] (pp. 6–7). 
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inherently small in magnitude which limits the charging/discharging rate of capacitances‟ 

(i.e., the slew rate) and causes the aspect ratios of the devices to be relatively large. 

2.4 Thick Oxide MOSFETs 
 
In recent years, the analog portions of SOCs have been designed with thick (gate) 

oxide MOSFETs which are normally intended for I/O (input/output) circuits [24].  The 

motivation for using thick oxide MOSFETs is two-fold: to take advantage of their ability 

to operate with a higher power supply voltage and to circumvent the direct-tunneling-

induced gate leakage problem plaguing thin oxide devices [42].   

Unfortunately, when thick oxide devices are used in an SOC, they heighten the 

risk of an ESD (electrostatic discharge) event occurring within the digital section of the 

chip since thin oxide devices are still in use there [47] (pp. 659–660).  Including a larger 

and separate power supply voltage also complicates the level shifting interfaces between 

an SOC‟s analog and digital components [24].   

2.5 Bulk-Driven MOSFETs 
 

Figure 2.6(a) presents the schematic representation of an n-type BD MOSFET 

[23], [26].  In this device, the input voltage is applied to the bulk terminal and a fixed 

potential
†
, VBIAS, is tied to the gate to ensure that an inversion layer is formed within the 

channel.  By reconfiguring a MOSFET in this way
‡
, it is possible to obtain a depletion 

mode-like device – as witnessed in Figure 2.6(b) – because the input voltage (vIN = vBS) does 

not have to overcome a threshold voltage barrier in order for the device to be saturated.   

                                                 
†
 In most cases, VBIAS is set to VDD for an NMOS device and ground (or the negative power supply rail, –VSS) 

for a PMOS device.  This eliminates the need for external bias circuitry. 
 

‡
 In the literature, some scholars compare the operation of a BD MOSFET to that of a JFET.  This analogy 

is not quite correct because a BD MOSFET relies upon the transport of minority carriers in the channel, 

while in a JFET, the current is comprised of majority carriers. 
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(a)

+_VBIAS

vIN

vDS

  
Figure 2.6: (a) The schematic representation of an n-type BD MOSFET and (b) a representative plot of 

an n-type BD MOSFET’s ID–VBS characteristics which were generated using an analytical long-channel 

equation for ID and the device specifications of a standard 90 nm bulk CMOS technology for four 

different VGS values (Lg = 400 nm). 

 

In the literature, the BD MOSFET is most commonly found in differential 

amplifier input stages [10], [15], [23], [26] (pp. 59–68), [44], [53]–[91].  Such amplifiers – 

referred to as bulk-driven differential amplifiers – function in the same way as their gate-

driven (GD) counterparts (due to their structural similarities), except that their voltage 

gains and frequency responses are now dependent upon gmb and the input capacitance of 

the bulk terminal.   
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Figure 2.7: The schematic representation of a single-ended bulk-driven differential amplifier. 

 

In general, the main advantage of any bulk-driven differential amplifier topology 

is its ability to provide a rail-to-rail ICMR at power supply voltages where it is difficult 

for gate-driven differential amplifiers to operate.  The rail-to-rail characteristics of a bulk-
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driven differential amplifier – like the single-ended example illustrated in Figure 2.7 – 

can be observed by writing out its ICMR [26]
†
: 

BS1DSAT1GS3DDIBIASDSATBS1 VVVVVV  ||ICMRBD,    (2.4) 

 

and by then noting that VBS1 can be positive
‡
 or negative.  

Another frequently seen application of the BD MOSFET has been in current 

mirror cells, such as the simple current mirror implementation depicted in Figure 2.8(a)  

[15] (pp. 88–89), [26] (pp. 36–51), [92]–[102].  As one might expect, a bulk-driven 

current mirror will also operate in the same way as a gate-driven current mirror (again, 

due to their structural similarities), except that its input voltage will now depend on VBS 

rather than VGS.  

VDDVDD

IOUT

VOUT
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M1 M2
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IOUT
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VIN

VDDVDD

M3 M4

(b)(a)
 

Figure 2.8: The schematic representation of a (a) simple and (b) cascode bulk-driven current 

mirror. 

 

By choosing to design a simple current mirror with a BD MOSFET instead of a 

GD MOSFET, one is able to reduce the minimum input voltage of the current mirror 

topology from VT + VDSAT to VDSAT.  However, it is important to note that in the bulk-

driven case, one will generally have to use an advanced current mirror architecture – such 

as the cascode example shown in Figure 2.8(b) – to accurately mirror and/or scale the 

                                                 
†
 This analysis assumes that VT0/VDD = 0.7 and that VDSAT ≈ 0.3 V. 

‡
 To avoid turning on the bulk–source junction diode, VBS must be less than 0.6 V [25]. 
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input current since the simple bulk-driven current mirror suffers from a non-linear input–

output current characteristic [26] (pp. 36–51).  Therefore, in the instances where a simple 

gate-driven current mirror is being replaced, one will see a slightly smaller drop in the 

minimum input voltage when switching to the bulk-driven approach. 

 An emerging application of the BD MOSFET is in the RF area where it can be 

employed within a mixer, such as the one illustrated in Figure 2.9(a) [27], [103]–[114].  

In a bulk-driven mixer, all four terminals of a MOSFET are utilized simultaneously and 

each device in the mixer (M1–M4) is biased such that its gate-to-source voltage is less 

than VT
†
.  A local oscillator (LO) signal, vLO, is then sent to each bulk terminal where it 

modulates VT and establishes whether the RF input, vRF, will pass through the gate and 

into the drain.  By using both the bulk and gate terminals as AC inputs, the bulk-driven 

mixer eliminates the need for the differential pair beneath M1–M4 in the traditional 

architecture – see Figure 2.9(b) – [115] (pp. 419–420) which increases the available voltage 

swing by at least VDSAT.   

M1 M2 M3 M4

vLO
–vLO

+

vRF
+ vRF

+

vRF
–

vIF
+

vIF
–

M1 M2 M3 M4

vRF
+ vRF

+

vRF
–

vIF
+

vIF
–

vLO
+

vLO
–

M5 M6

(b)(a)  
Figure 2.9: An illustration of exemplary (a) bulk-driven and (b) gate-driven mixer topologies.  Note 

that vIF denotes the intermediate frequency (IF) output. 

  

In addition to the applications discussed so far, the BD MOSFET has also 

been implemented in many other low-voltage analog and RF circuits, including VCOs 

                                                 
†
 Note that the gate of an n-type BD MOSFET is not tied to VDD in this configuration.  
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[28]–[30], PLLs [9], voltage references [31]–[32], comparators [33]–[34] and voltage 

followers [35]–[37].  Fixed DC potentials have also been applied to the bulk terminals of 

GD MOSFETs in order to lower their threshold voltages, and thus permit the use of a 

smaller power supply voltage [116]–[120]. 

Given the wide assortment of publications on bulk-driven circuitry, it is evident that 

the BD MOSFET is capable of extending the applicability of many fundamental analog 

(and RF) building blocks to very low power supply voltages.  However, as with all the 

other low-voltage analog design techniques considered in this chapter, the BD MOSFET is 

also hindered by a couple of disadvantages.  First, the transconductance of the device (gmb) 

is typically 60–80% less than the transconductance of a GD MOSFET (gm) based on long-

channel theory [26] (pp. 32).  This limits both the intrinsic gain as well as the cut-off 

frequency of the device.  Second, since input signal isolation is normally required (except 

in some instances within bulk-driven current mirrors and mixers), it is necessary for each 

BD MOSFET to reside within its own separate well.  As a result, a BD MOSFET generally 

consumes more layout area than a GD MOSFET and further suffers from a degraded 

frequency response due to the added input capacitance from its well structure. 

Besides the issues listed above, the BD MOSFET is also plagued by one 

commonly overlooked aspect – the characteristics of the device were last examined in 

2 μm p-well process [26].  As a result, it is unknown how sub-micron process scaling 

trends have influenced the performance of a BD MOSFET and the benefits of its 

associated circuit topologies.  This is a particularly significant concern because only a 

handful of the publications referenced in this section (predominantly regarding bulk-

driven mixers) have been designed in technologies with feature sizes smaller than 

0.18 μm.   
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2.6 Conclusions 
 
 This chapter has provided a comprehensive review of the most prominent circuit-

level and device-level low-voltage analog design techniques proposed in the literature.  

Most of these techniques attempt to lower the threshold voltage of a MOSFET to 

counteract the growth in VT0/VDD that is brought about by sub-micron process scaling 

trends.  For circuit-level approaches, this often leads to added circuit complexity and 

power consumption, as well as limited applicability.  It is for these reasons that circuit-

level approaches are not seen as a general solution to low-voltage analog design.   

Device-level approaches, on the other hand, tend to suffer from reduced 

transconductances and substantial increases in layout area due to their inherent device 

structures and/or operating conditions.  Of the device-level approaches reviewed in this 

chapter, weak inversion, floating-gate and thick oxide MOSFETs are not seen as general 

solutions to low-voltage analog design.  Weak inversion MOSFETs do not qualify 

because they cannot generate the frequency responses necessary for most analog 

applications while floating-gate MOSFETs should not be used since they may become 

unreliable in the presence of significant direct-tunneling-induced gate current.  Thick 

oxide MOSFETs remain undesirable because they complicate the level shifting interfaces 

between the analog and digital components of an SOC.   

Even though the BD MOSFET also suffers from the common problems plaguing 

device-level approaches, it is the only technique that should not be completely restricted 

by fundamental material limits or its inherent device structure in a standard deca-

nanometer bulk CMOS process.  Thus, it will be important to study how the BD 

MOSFET performs in a deca-nanometer technology since this topic has been virtually 

ignored in the literature.  Once the characteristics of a BD MOSFET are well understood 



20 

in the deca-nanometer regime, it will be possible to address the shortcomings of the 

device – i.e., its low intrinsic gain, its large layout area requirements and its limited 

frequency response – more appropriately. 
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3 The Current State of Bulk-Driven MOSFETs 

3.1 Device Background 

3.1.1 Bulk Transconductance 
 
The operation of a BD MOSFET relies upon the exploitation of the body effect to 

manifest a change in ID through VBS, as shown below for an n-type long-channel device:   

    22
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where VFB is the flat-band voltage, μn is the low-field electron mobility and C'  

ox is the gate 

oxide capacitance per unit area; W and L denote the channel width and channel length, 

respectively.  To obtain gmb, the measure of the bulk‟s control over the channel, one must 

take the partial derivative of ID with respect to VBS resulting in: 
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where the body effect coefficient, , and the Fermi potential, φF, are defined as: 
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FiF EEq   (3.4) 

 

and where q is the electronic charge, Na is the background doping level of a uniformly-

doped p-type substrate, EF is the Fermi level, Ei is the intrinsic Fermi level and εsi is the 

dielectric constant of Si multiplied by the permittivity of free space, ε0; C '
d and yd denote 

the depletion capacitance per unit area and depletion depth beneath the channel. 

3.1.2 Intrinsic Gain 
 

The intrinsic gain of a BD MOSFET can be determined by calculating the voltage 

gain seen between the bulk and drain terminals of a MOSFET when the source is 
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grounded – see Figure 3.1.  The result of such a calculation – given in (3.5) – indicates 

that a BD MOSFET‟s intrinsic gain is similar to that of a GD MOSFET, with the only 

difference being that its gain is dependent on gmb rather than gm.  Since gmb is 60%–80% 

less than gm based on long-channel theory [26] (pp. 32), one can expect a BD MOSFET‟s 

intrinsic gain to be lower than that of a GD MOSFET by a comparable margin.   

 

vin

gmbvin ro

vout DB

S
 

Figure 3.1: The ideal small-signal model of an n-type BD MOSFET in the common-source 

configuration.  B, D and S denote the bulk, drain and source terminals, respectively. 
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in

out rg
v

v
  (3.5) 

 

3.1.3 Layout Area 
 

 In deca-nanometer bulk CMOS technologies, GD MOSFETs are isolated from 

one another via shallow trench isolation (STI).  As a result, when utilizing the bulk-

driven technique, it is necessary for a BD MOSFET – such as the n-type example shown 

in Figure 3.2 – to reside within a triple-well structure to ensure that its input signal, vBS, is 

not electrically connected to the input of another BD MOSFET via the common p-type 

substrate (unless this condition is desired).  

n
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Figure 3.2: The device cross-section of a triple-well-isolated n-type BD MOSFET. 

 

Therefore, if one uses the design rules of a 65 nm bulk CMOS process, one will 

find that an n-type BD MOSFET must consume at least (W + 2.45) × (Lg + 2.45) μm
2
 of 
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layout area if the well-to-well spacing requirements between adjacent BD MOSFETs are 

included in the calculation
†
 [7].  As a comparison, one will find that an n-type GD 

MOSFET must minimally consume just (W + 0.29) × (Lg + 0.29) μm
2
 of layout area.   

3.1.4 Cut-Off Frequency 
 

Given that a BD MOSFET‟s input is at the bulk terminal, it is clear that the 

device‟s cut-off frequency, fT,BD, will be heavily influenced by the parasitic elements of the 

device‟s well structure, bulk–source junction and bulk–drain junction.  Thus, to determine 

fT,BD, it is necessary to create an AC model that accounts for these parasitic components.  

Such an AC model can be found by first considering the NMOS device model presented 

in Figure 3.3(a) where RG, RD, RS, RPW
‡
, RDNW and RPSUB denote the series resistance 

of gate, drain, source, p well, deep n well and p-type substrate, respectively; Dbse, Dbde, 

DPW–DNW and DDNW–PSUB represent the pn diodes formed by the bulk–source, bulk–drain, 

p-well–deep n-well and deep n-well–p-substrate junctions, respectively [121].   
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Figure 3.3: (a) The device model and (b) the ideal AC model of a triple-well isolated n-type BD 

MOSFET. 

                                                 
†
 A p-type BD MOSFET must consume at least (W + 1.51) × (Lg + 1.51) μm

2
 of layout area in the same 

process.  This is less than an n-type device because a p-type BD MOSFET does not require a triple-well 

structure to provide input signal isolation.   
 

‡
 RPW is largely dependent upon the doping level of a p well.  This resistance can be lowered by surrounding 

a p well with a ring of p
+
 contacts to increase the cross-sectional area of the bulk terminal‟s signal path.   
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By replacing each pn diode in Figure 3.3(a) with its equivalent depletion 

capacitance and ignoring the series resistance at each terminal for the sake of simplicity, 

the desired AC model can be constructed for the n-type BD MOSFET, as shown in 

Figure 3.3(b).  Interestingly, Figure 3.3(b) indicates that CDNW–PSUB has no effect on an 

n-type BD MOSFET‟s frequency response since it is effectively shorted out under normal 

operating conditions
†
. 

iin

gmbvin

DB

S

iout

CbsCPW–DNW

Cbd

 
Figure 3.4: The small-signal model of a BD MOSFET (neglecting the bulk-to-gate capacitance, Cbg) 

used to calculate fT,BD.  B, D and S represent the bulk, drain and source terminals, respectively.  iin 

and iout define the input and output currents of the device.   

 

Since CDNW–PSUB does not alter an n-type BD MOSFET‟s frequency response, one 

can modify the device‟s AC model to create the frequency-dependent small-signal model 

shown in Figure 3.4 for the case when the BD MOSFET‟s output is short-circuited.  

From Figure 3.4, it is possible to finally obtain fT,BD by setting the magnitude of iout/iin 

equal to one and solving for the cut-off frequency, as described in [44] (pp. 37–44) and 

[122] (pp. 262–263).  This approach yields:  

inmbout vgi ||
 (3.6) 

 

 

  inbdbsDNWPWin vCCCfi  2||
 (3.7) 

 

resulting in a cut-off frequency of: 

 bdbsDNWPW

mb
BDT
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g
f


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,  (3.8) 

                                                 
†
 In a p-type BD MOSFET, the depletion capacitance of the n-well–p-substrate junction is analogous to 

CPW–DNW because only one n well is required to isolate the device.  Hence, there is no CDNW–PSUB-like 

component in the AC model of a p-type BD MOSFET. 
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where Cbs and Cbd represent the parallel combinations of the intrinsic (Cbsi and Cbdi) and 

extrinsic (Cbse and Cbde) depletion capacitances seen between the body and source and 

body and drain terminals, respectively.  The cut-off frequency of a GD MOSFET, fT,GD, 

can be found in a similar fashion.  The result of such an analysis is given below: 

 gdgs

m
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g
f


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2
,  (3.9) 

 

where Cgs and Cgd represent the parallel combinations of the intrinsic (Cgsi and Cgdi) and 

extrinsic (Cgse and Cgde) overlap capacitances seen between the gate and source and gate 

and drain terminals, respectively.   

With equations for fT,BD and fT,GD now developed, it is beneficial to calculate 

fT,BD/fT,GD to see how the cut-off frequency of a BD MOSFET compares to that of a GD 

MOSFET in a deca-nanometer bulk CMOS process.  To provide a basis for this 

computation, simulation results from a device with W/Lg = 2.5 μm/0.1 μm, ID = 10 μA, 

VBS = 0 and VGS – VT = 70 mV can be used [123] (pp. 297–300).  Overall, the simulations 

show that this device has a Cgsi = 4.17 fF and a Cgdi = 1.56 fF.  Using conservative 

estimates from [50] (pp. 390–402), one can approximate that Cbsi = 0.425Cgsi = 1.772 fF 

and that Cbdi = 0.2Cgdi = 312 aF.  Cgse and Cgde do not need to be included in the 

calculation of fT,BD/fT,GD because the largest contribution to Cgs and Cgd typically comes 

from Cgsi and Cgdi, respectively.  However, the same cannot be said for Cbs and Cbd because 

Cbse and Cbde are usually on par with or greater than Cbsi and Cbdi [44] (pp. 42–43).  

Therefore, using data from a 65 nm process [7] and equations from [50] (pp. 408–409), 

one can estimate that Cbse and Cbde are each equal to 2.3 fF.  To round out the calculation 

of fT,BD/fT,GD, the value of CPW–DNW can be determined to be 2.62 fF using the formulation 
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in [26] (pp. 33–34) and the measured data from [121].  Thus, with all the relevant 

capacitances computed, one can finally express fT,BD/fT,GD as: 

m
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,

,
  (3.10) 

 

Unfortunately, it is likely that (3.10) is an overestimate of fT,BD/fT,GD because the 

diffusion capacitances of the bulk–source and bulk–drain junctions have been neglected.  

These diffusion capacitances, denoted Cbsd and Cbdd, are operative when the bulk–source 

and bulk–drain junctions become forward-biased since they depend upon the minority 

carrier current densities flowing through the junctions.  With the inclusion of Cbsd and 

Cbdd, the total parasitic contribution to the bulk-to-source and bulk-to-drain capacitances 

becomes Cbs = Cbsi + Cbse + Cbsd and Cbd = Cbdi + Cbde + Cbdd where
†
 [122] (pp. 100–102): 
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and where k is the Boltzmann constant and T is the temperature (in Kelvin); Ln, Dn and 

npo represent the electron diffusion length, diffusion constant and equilibrium carrier 

concentration for a p-type material while Jbs corresponds to the minority carrier current 

density (with units of A/cm
2
) flowing through the bulk–source junction.   

3.1.5 Input-Referred Noise 
 

To find the minimum input signal level that a BD MOSFET may process with 

acceptable quality, one must calculate its input-referred noise – i.e., the total equivalent 

noise seen at the device‟s input.  To do so, it is necessary to consider a MOSFET‟s 

dominant sources of noise, which are flicker and thermal noise; the former is attributed to 

                                                 
†
 The equation for Cbdd is similar to (3.11) except that the minority carrier current density, now defined Jbd, 

will depend on VBD not VBS.    
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the trapping and releasing of inversion layer carriers from dangling bonds at the Si–SiO2 

interface [47] (pp. 215–216) while the latter occurs due to the random motion of carriers 

in the resistive regions of the device‟s gate, channel and p well [47] (pp. 209–215).   

** *
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Figure 3.5: An n-type MOSFET model including the device’s major sources of noise. 

 

The noise contributed by a MOSFET‟s p-well resistance – see Figure 3.5 – is 

generally represented by a voltage source (with units of V
2
) in series with the bulk 

terminal [26] (pp. 73–78): 

fkTRe PWPWn Δ42
,   (3.12) 

 

while the noise added by the device‟s channel resistance is usually modeled by a current 

source (with units of A
2
) in parallel with the channel [26] (pp. 73–78): 

  fggkTi mbmchn  42
,  (3.13) 

 

where ∆f is the noise bandwidth and α is a fitting parameter which is equal to 
2
/3 for long-

channel devices and 
8
/3–

10
/3 for short-channel devices [124].  At the gate terminal, the 

noise contributed by a MOSFET‟s series gate resistance [26] (pp. 73–78) can be 

combined with the device‟s flicker noise component [47] (pp. 215–216) to form a single 

voltage source (with units of V
2
) in series with the gate: 
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where KF is a process parameter that varies between 5 × 10
–31

 and 1 × 10
–30

 C
2
/cm

2
 and c 

is a fitting parameter that ranges from 0.7 to 1.2 [50] (pp. 422–424). 
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Using (3.12)–(3.14), it is possible to group the noise sources from above into a 

single drain current, i2
ni (with units of A

2
), under the assumption that each noise source is 

uncorrelated: 
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This current can then be transformed into a single voltage source (with units of V
2
) in 

series with the bulk terminal to yield the input-referred noise of a BD MOSFET: 
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i2
ni can also be translated back to the gate terminal to obtain the input-referred noise of a 

GD MOSFET: 
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By reviewing (3.16) and (3.17), it is apparent that the input-referred noise of a BD 

MOSFET is similar in form to that of a GD MOSFET, with the only difference being that 

the input-referred noise is referenced to gmb in the bulk-driven case rather than gm.  As a 

result, the input-referred noise of a MOSFET will generally be greater when the bulk is 

used as an input since gmb is inherently smaller than gm.   

3.1.6 The Well Proximity Effect 
 

During the formation of a triple-well structure, a portion of the incoming n-type 

ions – intended for implantation within a deep n-well region – tend to scatter off the 

edges of protective photoresist (PR) layers and into the exposed p-type silicon surface, as 

illustrated in Figure 3.6.  By doing so, these deflected n-type ions cause the effective 

surface concentration to continually decrease below the desired doping level as one 
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approaches the edges of a triple-well structure, giving rise to what is known as the well 

proximity effect [125]–[126]. 

STI

PR

STI

PR

Incoming Ions for the Deep n-Well Implant

p well

Deep n well

p substrate  
Figure 3.6: The manifestation of the well proximity effect during the formation of a triple well. 

 

As one would expect, the well proximity effect has significant ramifications for 

triple-well isolated n-type BD MOSFETs because it causes VT0 to vary as a function of 

distance over a range of 1 μm near the edges of a triple well.  Thus, to maintain 

acceptable matching properties with neighboring devices, it becomes necessary to 

increase the layout area of every triple-well isolated n-type BD MOSFET by at least 2 μm 

in each spatial dimension. 

3.2 Short-Channel Behavior 
 

In Section 3.1.1, (3.2) was presented to describe the long-channel behavior of 

gmb in a uniformly-doped device.  This equation is commonly cited in publications 

referencing the bulk-driven technique.  Unfortunately, (3.2) fails to account for two 

crucial phenomena – source/drain charge sharing [127] (pp. 448–450) and the onset of 

velocity saturation [127] (pp. 455–456) – making it unsuitable for short-channel devices.   

To include charge sharing and velocity saturation in a mathematical representation 

of gmb, it is necessary to begin by re-deriving an equation for the drain current.  Thus, 

using the definitions given in Figure 3.7, one must start with [127] (pp. 431): 

    )()()()( xxVVVCWxxQWI TGSoxID    (3.18) 
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where V(x) is the potential, Q'
I (x) is the inversion layer charge density (per unit area) and 

υ(x) is the carrier velocity along the length of the channel. 

n
+

n
+

B

DS

G VGS VDS

VBS

p

x

y

 
Figure 3.7: The terminal voltage and dimensional definitions used in the short-channel gmb analysis.  

G, S, D and B denote the depletion charge controlled by the gate, source, drain and bulk, 

respectively. 

 

Velocity saturation can be incorporated into (3.18) by using the piece-wise carrier 

velocity model presented in [50] (pp. 280–283).  In this model, when the electric field, 

ξ(x), is less than the critical electric field at which the onset of velocity saturation occurs 

(ξsat), one can write the carrier velocity as: 
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where μn,eff denotes the effective electron mobility
†
.   

Using (3.19), (3.18) can be rearranged to yield: 
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By performing the required integration over L and VDS, one can then solve for ID resulting 

in (3.21). 

                                                 
†
 There are many scattering mechanisms which contribute to the effective electron mobility.  Typically, the 

mobility resulting from each scattering mechanism is calculated individually and then grouped together 

with the low-field mobility to form μn,eff using the Matthiessen rule.  For an example of this process, please 

see [128]. 
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When ξ(x) exceeds ξsat, the model in [50] (pp. 280–283) predicts that the carrier 

velocity will saturate at a value of υsat.  As a result, it becomes possible to determine the 

saturation drain current, IDSAT, by substituting V(x) = VDSAT and υ(x) = υsat into (3.18): 

)( DSATTGSoxsatDSAT VVVCWI     (3.22) 

 
By equating (3.21) and (3.22), one gets: 
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which can then be inserted back into (3.22) to obtain a more useful form of IDSAT: 
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At this point, it is appropriate to incorporate source/drain charge sharing into the 

development through the use of a quasi-two-dimensional model for the threshold voltage 

which captures the roll off observed in VT as L decreases in a uniformly-doped 

MOSFET [129]: 

T0T0T VVV Δ  (3.25) 
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In this model, l is a characteristic length that depends on the depletion depth beneath the 

channel and ϕc is a variable equal to φbi – 2φF where φbi is the built-in potential of the 

bulk–source and bulk–drain junctions; VBS is included in the model by replacing φbi with 

φbi – VBS.   
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By using (3.25) and (3.26) in conjunction with (3.24), one can finally find the 

desired short-channel equation for gmb: 
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and: 
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(3.29) 

 

To confirm the validity of the derived short-channel equation, (3.27) is plotted 

against L in Figure 3.8(a) along with results from a 2-D ATLAS [38] simulation for an 

n-type BD MOSFET with a gate oxide thickness, tox = 1.4 nm, Na = 2 × 10
18

 cm
–3

, 

VGS = VDS = 1 V and VBS = 0; similar data is displayed in Figure 3.8(b) for a 

VGS = VDS = 0.5 V.  From the figures, it is clear that there is good correlation between 

(3.27) and ATLAS for L > 200 nm.  Below that boundary, (3.27) begins to under-predict 

the simulated results because (3.25) and (3.26) are only valid for L > 100 nm [129]. 

  
Figure 3.8: A comparison between the derived short-channel equation for gmb and the results of a 2-D 

ATLAS simulation for a VBS = 0, (a) VGS = VDS = 1 V and (b) VGS = VDS = 0.5 V.   
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3.3 Process Scaling Trends 
 

As mentioned in Section 2.5, little is known about the BD MOSFET in processes 

with features sizes smaller than 0.18 μm.  Since one of the major goals of this dissertation 

is to design a BD MOSFET with an improved intrinsic gain and frequency response, one 

important question to ask would be: what happens to gmb as devices scale into the deca-

nanometer regime?  While (3.27) adequately describes the short-channel behavior of gmb 

in a uniformly-doped device, it becomes difficult to derive a tractable equation for gmb in a 

deca-nanometer process due to the non-ideal mechanisms – e.g., quantum mechanical 

[130]–[132], [133] (pp. 43–48) and STI stress effects [134]–[137] – and non-uniform 

doping profiles – resulting from retrograde and halo implant steps [138] (pp. 439–446) – 

present in the technology. 

Therefore, moving forward, it is appropriate to use a circuit simulation tool fitted 

with experimentally-calibrated process design kits (PDKs) to analyze the behavior of gmb 

below the 0.18 μm node.  By using a circuit simulator that employs such PDKs at this 

stage of the investigation, one may obtain meaningful results that reflect physical process 

scaling trends. 

3.3.1 Remarks on the Deficiencies of BSIM 
 

In the industry, BSIM [14] is the most commonly used compact model for circuit 

simulation.  While the MOS [139], PSP [140] and EKV [141] Models are becoming more 

prominent, they are not yet widely used.  Therefore, when using a circuit simulator, one 

should expect to encounter a version of BSIM3 [142] when dealing with a fairly mature 

process (e.g., a 0.18 μm process) and a version of BSIM4 [14] when working with a more 

recent technology. 
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As with any compact model, it is important to investigate any known deficiencies 

in BSIM to prevent the collection of erroneous data.  In the case of a BD MOSFET, there 

are two key issues which must be considered since the bulk terminal is not normally used 

as a device input.  

To start with, it is well known that gmb/gm is a monotonically increasing function 

of VBS up until the point where significant current begins to flow through the bulk–source 

junction (VBS = 0.6 V [25]).  However, as seen in Figure 3.9, this behavior is not always 

captured by BSIM because of a non-physical discontinuity that exists at VBS = 0 in older 

versions of the model [15] (pp. 74).  Since this issue was eventually corrected in 

BSIM4.3.0 [143] (Ch. 10, pp. 4), it would be wise to avoid using older versions of BSIM 

in any bulk-driven circuit simulation where VBS will be greater than zero. 

 
Figure 3.9: A plot of the normalized gmb/gm ratio (referenced to gmb/gm at VBS = 0) vs. VBS as predicted 

by BSIM3v3 and BSIM4.6.2 for an NMOS device. 

 

In addition to the issue mentioned above, it is important to note that as of yet, 

BSIM does not provide a way to include the depletion capacitance of a BD MOSFET‟s 

well structure in a device cell without the use of a model wrapper.  As seen in (3.8), this 

depletion capacitance plays a vital role in determining the frequency response of the 

device.  Hence, to perform an accurate AC simulation on a bulk-driven circuit, one will 

first need to extract well capacitance data for every BD MOSFET in the circuit from an 

estimated layout of each device. 
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3.3.2 Simulation Setup and Results 
 
To see how sub-micron process scaling trends have influenced gmb, and more 

importantly, gmb/gm, simulations were performed in the circuit simulator, Cadence Spectre 

[144], on a n-type MOSFET for two different gate lengths, Lg = 300 nm and Lg = 500 nm.  

The device was simulated using PDKs from IBM‟s standard 0.25 μm, 0.18 μm, 0.13 μm, 

90 nm and 65 nm bulk CMOS technologies [3]–[7] and operated with an ID = 150 μA, a 

gate over-drive voltage, VGS – VT = 300 mV and a VBS = 0 (W was allowed to vary in each 

process).  Two cases were then considered: constant current, where VDS – VDSAT was 

equal to 200 mV, and constant power (VDSID), where VDS was set to 1 V.  The results for 

both gate lengths are displayed below in Figure 3.10 and Figure 3.11. 

 

  
 

Figure 3.10: A plot of gmb and gm for an NMOS device (Lg = 300 nm) in various IBM bulk CMOS 

technologies under (a) constant current and (b) constant power constraints. 

 

  
 

Figure 3.11: A plot of gmb and gm for an NMOS device (Lg = 500 nm) in various IBM bulk CMOS 

technologies under (a) constant current and (b) constant power constraints. 

0

200

400

600

800

1000

1200

250 180 130 90 65

T
ra

n
sc

o
n

d
u

ct
a

n
c
e 

(μ
S

) 

Process Node (nm) 

gm

gmb

0

200

400

600

800

1000

1200

250 180 130 90 65

T
ra

n
sc

o
n

d
u

ct
a

n
c
e 

(μ
S

) 

Process Node (nm) 

gm

gmb

0

200

400

600

800

1000

1200

250 180 130 90 65

T
ra

n
sc

o
n

d
u

ct
a

n
c
e 

(μ
S

) 

Process Node (nm) 

gm

gmb

0

200

400

600

800

1000

1200

250 180 130 90 65

T
ra

n
sc

o
n

d
u

ct
a

n
c
e 

(μ
S

) 

Process Node (nm) 

gm

gmb

 gm 

 gmb 

 gm 

 gmb 

 gm 

 gmb 

 gm 

 gmb 

(a) (b) 

(a) (b) 



36 

 Figure 3.10 and Figure 3.11 both indicate that gmb/gm has decreased by 63% 

between IBM‟s 0.25 μm and 65 nm technologies [3]–[7].  This outcome – summarized in 

Table 3.1 [145] – is mainly brought about due to the fact that gm has generally grown in 

each new process generation while gmb has tended to remain constant from the 0.18 μm 

node onward.  The behavior of gm is easily attributed to the reduction in tox that occurs 

from process to process.  However, the trend of gmb takes a little more effort to explain. 

 
Table 3.1: The gmb/gm ratios obtained from the results plotted in Figure 3.10 and Figure 3.11. 

GGaattee  LLeennggtthh  CCoonnddiittiioonn  00..2255  μμmm  PPrroocceessss  6655  nnmm  PPrroocceessss  

330000  nnmm  
CCoonnssttaanntt  CCuurrrreenntt  00..338800  00..112211  

CCoonnssttaanntt  PPoowweerr  00..337777  00..112200  

550000  nnmm  
CCoonnssttaanntt  CCuurrrreenntt  00..338877  00..112200  

CCoonnssttaanntt  PPoowweerr  00..338855  00..111188  

 

 There are two main parameters which control gmb in a process scaling scenario –

tox and VT0.  A smaller tox has a positive influence on gmb because it forces one to increase 

the effective background doping concentration, Na,eff
†
, to maintain a constant value of VT0 

(refer to (3.1)–(3.4)) in each new process generation.  However, since recent process 

scaling trends (as described in Section 1.1) dictate that VT0 also be reduced from process 

to process, the required growth in Na,eff is relatively subdued.  As a result, yd, and thus, 

gmb, remain fairly constant across process technology – due to their square root 

dependence on the background doping concentration – resulting in the behavior seen 

between the 0.18 μm and 65 nm nodes in Figure 3.10 and Figure 3.11.  

 The rather large drop in gmb that occurs between the 0.25 μm and 0.18 μm 

technologies is thought to be an anomaly because the Lg values considered in this process 

scaling study are closest to Lg,min at the 0.25 μm node.  Therefore, since current 

                                                 
†
 In an n-type MOSFET, Na,eff is defined as the average p-type doping concentration found between the 

surface of the device and the depletion depth beneath the channel. 
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technologies utilize halo implantation to improve the performance of digital devices, it is 

possible that the halo regions are most significantly overlapped in the 0.25 μm case 

causing Na,eff and thus the observed value of gmb to be noticeably higher in that process
†
.  

 To round out the process scaling study, gmb/gm was also analyzed against the gate 

length, as shown in Figure 3.12 for IBM‟s 0.18 μm and 65 nm technologies.  From the 

figure, one can see that the gmb/gm ratio tails off as Lg approaches Lg,min.  The roll off in 

gmb/gm is credited to source/drain charge sharing since it is likely that the source and 

drain prefer to steal depletion charge away from the bulk terminal rather than the gate as 

Lg is reduced because the bulk has weaker control over the channel [145].  Therefore, 

this finding suggests that bulk-driven circuits should use gate lengths longer than 

2Lg,min–3Lg,min to maximize the gmb/gm ratio.  

 
Figure 3.12: A plot of gmb/gm vs. Lg/Lg,min for an NMOS device in IBM’s standard 0.18 μm and 65 nm 

bulk CMOS technologies (VGS = VDS = 1 V, VBS = 0 and W/Lg = 10). 

 

3.4 The Implications of Gate Oxide Scaling on Device Performance  
 

The gmb, gm and gmb/gm values of an NMOS device are plotted against tox in 

Figure 3.13(a) for a representative 90 nm bulk CMOS technology using the results of a 

2-D ATLAS simulation [146].  Ultimately, Figure 3.13(a) suggests that the gate oxide 

scaling requirements of a BD MOSFET are not as stringent as those of a GD MOSFET 

                                                 
†
 A larger Lg could not be considered in this investigation due to an issue with the 90 nm PDK obtained by 

the author.  The PDK had an artificially low limit on the maximum gate length that could be simulated. 
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because gmb does not degrade as quickly as gm does when tox is increased.  These differing 

trends in gmb and gm occur because the bulk is able to maintain better control over the 

channel through its depletion capacitance, Cd, as tox is made thicker.  As a result, if one 

were to enlarge tox from 1.4 nm (the typical gate oxide thickness of a standard 90 nm 

technology [6]) to 1.8 nm, one would see gmb decrease by only 8%.  Over that same span, 

gm would fall by more than 18%.   

  
Figure 3.13: (a) A plot of the normalized values of gmb and gm (referenced to gmb and gm at tox = 1.4 nm) 

as well as gmb/gm vs. tox along with (b) a plot of the loss in gmb and gm caused by quantum mechanical 

effects vs. tox (Lg = 400 nm, VT0 = 0.3 V at tox = 1.4 nm, VGS = VDS = 1 V and VBS = 0).  The gmb/gm ratio is 

also shown in (b) with and without the influence of quantum mechanical effects. 

 

In Figure 3.13(b), the data from Figure 3.13(a) is plotted once more with and 

without the influence of quantum mechanical (QM) effects
†
 [146].  The figure indicates 

that gmb/gm is roughly 7% higher when quantum mechanical effects are taken into 

account.  This 7% growth in gmb/gm signifies that the disparity between the bulk- and 

gate-driven techniques has decreased, which benefits the bulk-driven approach.  The 

increase in gmb/gm is attributed to the fact that quantum mechanical confinement in the 

inversion layer causes Cd to be measured between the depletion depth beneath the 

channel and the peak of the inversion layer carrier concentration, rather than the Si–SiO2 

interface [147].  Hence, while Cd does degrade as a result of quantum mechanical 

confinement, its reduction is not as significant as that of Cox. 

                                                 
†
 Polysilicon gate depletion was not accounted for in these simulations. 
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3.5 The Role of Threshold Voltage in Analog Bulk-Driven Circuitry 
 

When Blalock performed the first-ever in-depth investigation of the BD MOSFET 

in a 2 μm technology in 1996, he chose to use a VDD = 1 V to demonstrate that it would 

be feasible to design analog circuits at low power supply voltages if the BD MOSFET 

was used to augment existing circuit design techniques [26] (pp. 7–9).  By lowering the 

power supply voltage of his 2 μm technology from its nominal value of 5 V to 1 V, 

Blalock was able to artificially raise the process‟ VT0/VDD ratio from 0.14 to 0.70 which 

ensured that each BD MOSFET he used would have a rather small VDSAT.   

Since Blalock‟s study, a 1 V power supply voltage has generally been adopted to 

verify the low-voltage operation of a bulk-driven circuit in the literature – regardless of 

what technology was used to implement the circuit.  As a result, it turns out that the 

VT0/VDD ratio is a decreasing function of process scaling in the bulk-driven realm.  As one 

would expect, this steady decline in VT0/VDD is detrimental to the performance of bulk-

driven circuitry
†
 because it causes a BD MOSFET‟s VDSAT to grow in each new process 

generation.   

 

VDD

vIN
–vIN

+

vOUT

IBIAS

VDD

M1 M2

M4M3

 
Figure 3.14: The schematic representation of a single-ended bulk-driven differential amplifier. 

                                                 
†
 Recall from Section 1.2 that the opposite is true for the gate-driven realm because a low VT0/VDD ratio aids 

the performance of gate-driven circuitry.  
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To illustrate the consequences of a declining VT0/VDD ratio, consider a bulk-driven 

differential amplifier – such as the one shown in Figure 3.14 – which has been designed 

in a 65 nm technology where the nominal VDD and VT0 have fallen to 1 V and 0.29 V, 

respectively [7].  For a |VGS3| = VT + 100 mV [13], IBIAS = 20 μA and Lg = 5Lg,min [8], one 

can calculate the ICMR of this amplifier to be: 

BS1DSAT1GS3DDIBIASDSATBS1 VVVVVV  ||ICMRBD,  

                                             V78.0ICMR0 BD 
 

(3.30) 

 
if BSIM4 [14] is used to determine each VDSAT and if VBS1 is kept below its conservative 

upper limit of 0.6 V [25].  Based on this calculation, one can conclude that the rail-to-rail 

ICMR expected from the bulk-driven differential amplifier is no longer attainable at such 

a low VT0/VDD ratio because VBS1 cannot climb high enough to compensate for the rather 

large value of VDSAT1.   

VDDVDD

IOUT

VOUT

IIN

VIN

M1 M2

 
Figure 3.15: The schematic representation of a simple bulk-driven current mirror. 

 

 Naturally, a bulk-driven current mirror – such as the one depicted in Figure 3.15 – 

will also suffer from a falling VT0/VDD ratio since its input voltage, VIN = VBS1 = VDS1, 

must be greater than VDSAT1 in order to provide a reasonably-sized input current.  For a 

VDD = 1 V [7], VT0 = 0.29 V [7], IIN = 20 μA and Lg = 5Lg,min [8], one can calculate the 

bulk-driven current mirror‟s minimum allowable input voltage to be 0.47 V in a 65 nm 

technology if BSIM4 [14] is used to compute VDSAT1.  This input voltage is much higher 

than that of an equivalent gate-driven current mirror because the gate of the mirroring 
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device (M1) is tied to the power supply voltage in the bulk-driven case rather than 

VT + 100 mV [13]. 

Given the above insight, it is likely that the process-scaling-induced growth in 

VDSAT is responsible for the lack of publications on bulk-driven differential amplifiers and 

current mirrors below the 0.18 μm node [145].  While the performance of these circuits 

should improve as VDD scales toward 0.7 V [8], the decrease in VDD may not be enough to 

alleviate the issues outlined above.  Therefore, if one wishes to design bulk-driven 

circuits in technologies with feature sizes smaller than 0.18 μm, it may be necessary to tie 

the gate of an n-type BD MOSFET to a voltage less than VDD such that the device‟s VDSAT 

is lowered adequately.  However, doing so would require the generation of an additional 

bias voltage [85].   

3.6 Conclusions  
 

This chapter has provided an extensive review of the long-channel operation of a 

BD MOSFET and has presented several new contributions to expand the field‟s 

understanding of how sub-micron process scaling trends have affected the characteristics 

of the device, as described below [145]–[146]: 

 
 An equation was developed to model the short-channel behavior of gmb in a 

uniformly-doped device.  This equation had good correlation with 2-D device 

simulations down to a channel length of 200 nm.   

 
 gmb/gm was observed to fall from roughly 0.380 to 0.120 between IBM‟s 

standard 0.25 μm and 65 nm bulk CMOS technologies.  This trend is thought 

to occur because gm continually increases in each new process generation due 

to a reduction in tox while gmb remains relatively constant since Na,eff and Cd do 

not rise appreciably if VT0 is decreased from process to process along with tox. 

 
 gmb/gm was found to roll off for gate lengths close to Lg,min as a result of 

considerable charge sharing between the bulk, source and drain.  It was 
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suggested that bulk-driven circuits use gate lengths longer than 2Lg,min–3Lg,min 

to maximize the gmb/gm ratio. 

 
 The advantages expected from the bulk-driven differential amplifier and 

current mirror architectures were shown to disappear if the circuits were used 

in an environment where VT0/VDD was sufficiently low, such as in low-voltage 

analog applications targeted for technologies with features sizes smaller than 

0.18 μm.  It was noted that the benefits of these circuits could be regained by 

tying the gate of an n-type BD MOSFET to a bias voltage less than VDD, 

thereby shrinking VDSAT. 

 
 The gate oxide scaling requirements of a BD MOSFET were found to be less 

stringent than those of a GD MOSFET because the bulk is able to maintain 

better control over the channel through its depletion capacitance as tox is made 

thicker.   

 
 Quantum mechanical effects were shown to be less detrimental to the 

performance of a MOSFET when the bulk is used as an input terminal rather 

than the gate because Cd/Cox grows as the peak of the inversion layer carrier 

concentration moves away from the Si–SiO2 interface. 

 

Based on the knowledge gained from this chapter, one can devise a set of three 

major device design goals to address the deficiencies of a BD MOSFET intended for use 

within a deca-nanometer bulk CMOS process.  Of these guidelines, it will be most 

important to modify a BD MOSFET‟s doping profile in such a way that yd is reduced – 

i.e., gmb is improved – so that the intrinsic gain, frequency response and input-referred 

noise limitations of the device can be mitigated as much as possible.  Subsequently, it 

will be necessary to modify a BD MOSFET‟s well structure in order to reduce the 

device‟s layout area requirements and well capacitance (to further improve fT,BD), as well 

as to lessen the consequences of the well proximity effect.  Lastly, since bulk-driven 

circuits require that a process‟ VT0/VDD ratio be relatively large, it would be prudent to 

investigate whether it is possible to increase a BD MOSFET‟s long-channel threshold 
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voltage – i.e., its effective background doping concentration – in order to restore the 

expected advantages of bulk-driven circuitry in deca-nanometer technologies.  With these 

metrics defined, it is now possible to move forward and search for ways to meet the 

objectives stated above. 
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4 Improving the Performance of Bulk-Driven 
MOSFETs 

4.1 Methods to Enhance the Bulk Transconductance 

4.1.1 Conventional Uniform Doping 
 

Throughout this dissertation, the low transconductance of a BD MOSFET has 

been identified as a major limitation of the device.  Based on (3.2) (from Section 3.1.1), it 

is apparent that this limitation can be mitigated rather easily by using a uniformly-doped 

profile in the device and by raising the doping profile‟s Na until a sufficient gmb has been 

achieved.  However, since this dissertation will ultimately culminate with the design of a 

BD MOSFET in a deca-nanometer bulk CMOS process, it is unlikely that such a design 

approach would be sensible because Na,eff is known to be greater than 1 × 10
18

 cm
–3

 in the 

deca-nanometer regime [145].  Thus, if one were to raise a uniformly-doped profile‟s Na 

in an attempt to boost gmb significantly, one would cause an appreciable amount of 

ionized impurity scattering in the channel, negating any potential enhancement in gmb.  

4.1.2 Step, Delta and Counter Doping 
 

While there are currently no known reports of any gmb enhancement techniques in 

the literature, there has been a fair amount of effort put into modifying the body effect
†
 for 

digital applications, as seen in [148]–[151], [152] (pp. 32–46) and [153] (pp. 49–56).  In 

these publications, three vertical doping profiles have been considered for tailoring the 

body effect to meet certain specifications – they are called the step-, delta- and counter-

doped profiles, and are shown in Figure 4.1. 

The fundamental advantage of the step-, delta- and counter-doped profiles is that 

each profile has the ability to redistribute dopants away from the surface of a MOSFET 

                                                 
†
 The body effect is typically defined as ∆VT = VT |V

BS
 = 0 – VT for a particular value of VBS. 
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and into a region just below the device‟s channel in such a way that yd is reduced relative 

to its nominal depth in a uniformly-doped device for a given value of VT0 and Na,eff.  As a 

result, these profiles allow yd and gmb to be controlled through a combination of Na,eff and 

the thickness of an epitaxially-grown lightly-doped channel region, defined as yepi [151].   

|N(y)|

y

Na |N(y)|

y

Na

yepi

|N(y)|

yyepi

|N(y)|

y

Nd
Na

Uniform Doping Step Doping

|ξ(y)|

yyd

|ξ(y)|

yyd

|ξ(y)|

y

|ξ(y)|

y

(a) (b)

Delta Doping Counter Doping

(d)(c)

yepi2 yepi
yepi2

yd yd

Nδ Na

Nδ

yepi3

 
Figure 4.1: A plot of the dopant distribution, N(y), and the electric field, ξ(y), of a (a) uniformly-doped, 

(b) step-doped, (c) delta-doped and (d) counter-doped profile vs. the vertical depth, y, into the substrate.  

Note that Nd denotes a region of n-type doping while Na and Nδ correspond to regions of p-type doping.  

The average p-type doping concentration for y < yepi is denoted as Nepi and is not shown in the figure.    

 

To see how the step-, delta- and counter-doped profiles translate to a BD MOSFET, 

it is helpful to derive a simple 1-D equation for the long-channel bulk transconductance 

of each profile and to compare the results to (3.2).  To start the analysis, consider the 

step-doped profile.  Using the definitions given in Figure 4.1(b), one can write a piece-

wise equation for the profile‟s charge density as follows: 










depia

epiepi

SD yyyqN

yyqN
y

0
)(  (4.1) 
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ρSD(y) can then be substituted into Poisson‟s Equation to yield the potential, φSD.  Through 

a rearrangement of φSD, the depletion depth can be found to be: 

    

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

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221
epiepia

BSFsi

a

SDd yNN
q

V

N
y


 (4.2) 

 

if φSD is set to 2φF – VBS at the onset of inversion.  With yd,SD obtained, the depletion 

charge (per unit area) can be written as: 

 epidaepiepideffaB,SD yyqNyqNyqNQ 
,  (4.3) 

 

where Nepi is defined as the average p-type doping concentration for y < yepi.  The long-

channel threshold voltage of the step-doped profile then becomes: 
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where: 
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C
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Using VT0,SD, one can finally express the bulk transconductance of the step-doped profile as: 
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(4.6) 

 

where gm,SD is the gate transconductance of the step-doped profile.   

The analysis from above can be repeated for the delta-doped profile (Figure 4.1(c)) 

by making a slight modification to the charge density equation: 














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0
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In due course, ρDD(y) results in a depletion depth of: 
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and a long-channel threshold voltage of: 
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where: 
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The bulk transconductance of the delta-doped profile then becomes: 
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(4.11) 

 

where gm,DD is the gate transconductance of the delta-doped profile.   

For the counter-doped profile (Figure 4.1(d)), one can write the charge density 

equation as follows: 
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After a few mathematical maneuvers, ρCD(y) yields a depletion depth of: 
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and a long-channel threshold voltage of: 
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where: 
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As a result, the bulk transconductance of the counter-doped profile then becomes: 
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where gm,CD is the gate transconductance of the counter-doped profile. 

 The 1-D analysis performed above for the step-, delta- and counter-doped profiles 

is summarized in Table 4.1 where the expected behavior of yd, VT0 and gmb is listed for 

each profile relative to uniform doping under the constraint that Na is kept constant in 

each profile.  By examining Table 4.1, along with (3.2), (4.6), (4.11) and (4.16), it is 

apparent that both delta and counter doping have the ability to enhance gmb if Nδ is 

sufficiently larger than Nd, and if Nd is sufficiently larger than Na.  Step doping, on the 

other hand, can only improve gmb by raising Na.   

 Since Na corresponds to the doping level of an n-type BD MOSFET‟s p-well 

region, it would not be desirable to increase Na because doing so would negatively 

influence CPW–DNW, and thus, fT,BD (refer to Figure 3.2 and (3.8)).  It is for this reason that 

step doping may be discounted as a potential gmb enhancement technique.   

 
Table 4.1: The expected behavior of yd, VT0 and gmb for the step-, delta- and counter-doped profiles 

relative to uniform doping (Na is kept constant in each case). 

PPrrooffiillee  yydd  VVTT00  ggmmbb  NNootteess  

SStteepp    ↑↑  ↓↓  ↓↓  NNeeppii  <<  NNaa  

DDeellttaa  ↓↓  ↑↑  ↑↑  NNδδ  >>  NNaa  &&  NNeeppii  <<  NNaa  

CCoouunntteerr    ↓↓  ↑↑  ↑↑  NNδδ  >>  NNdd  >>  NNaa  &&  NNeeppii  <<  NNaa  

 

To gain further insight into the two remaining doping profile candidates, it is 

necessary to investigate how the bulk transconductances of the delta- and counter-doped 
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profiles compare to that of a uniformly-doped device at a constant value of VT0 since the 

long-channel threshold voltage is a device specification, not Na.  To complete this task, these 

doping profiles will be examined more thoroughly in a device simulator in Section 4.4.3. 

4.2 Using Deep Trenches to Improve Layout Area Efficiency 
 
 The combined area of multiple BD MOSFETs can be reduced considerably by 

employing a deep trench isolation (DTI) scheme, such as the one illustrated in Figure 4.2 

and Figure 4.3 for an n-type device.  In this configuration, one can place several BD 

MOSFETs within a single deep n well where each device is electrically isolated from one 

another via deep trenches in the horizontal direction and by a reverse-biased pn junction 

from below.  The deep trench depth is chosen such that it extends into a BD MOSFET‟s 

deep n-well region, but not all the way through to the p-type substrate.  This allows the 

deep n-well region to be biased through a ring of n
+
 contacts along its perimeter [154] 

and eliminates the well-to-well spacing requirements between adjacent BD MOSFETs.   
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Figure 4.2: An illustration showing how DTI can be used to reduce the layout area requirements of a 

BD MOSFET – side view. 

 

By choosing a DTI scheme over a triple-well implementation, one can condense 

the effective layout area of an n-type BD MOSFET from (W + 2.45) × (Lg + 2.45) μm
2
 [7] 
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to (W + 1.56) × (Lg + 1.56) μm
2
 in a 65 nm bulk CMOS process.  For a device with a 

W = 10Lg,min and an Lg = 5Lg,min, this brings about an area reduction of 53%.   
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Figure 4.3: An illustration showing how DTI can be used to reduce the layout area requirements of a 

BD MOSFET – top view. 
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In addition to eliminating the well-to-well spacing requirements between adjacent 

BD MOSFETs, a DTI scheme should be able to minimize the well proximity effect‟s 

influence on the layout area of an n-type BD MOSFET because the device would no longer 

be surrounded by the edge of a deep n well on all sides.  DTI should also cause a BD 

MOSFET‟s input capacitance to decrease since the isolation scheme removes the sidewall 

depletion capacitance component from the device‟s well structure.  This could lead to a 

sizable increase in fT,BD, and must be investigated in more detail using a device simulator. 

4.3 Deca-Nanometer Technology MOSFET Model Review 
 

To see how delta doping, counter doping and DTI influence the performance of a 

BD MOSFET, it is beneficial to evaluate the effectiveness of these process changes using 

ATLAS [38].  But, before any simulation can be executed, one must first ensure that the 

proper device models have been activated in ATLAS so that the predictions made by the 

simulator are realistic.  Since the ultimate goal of this chapter is to gauge the potency of 

the aforementioned process changes in a deca-nanometer bulk CMOS process, it is 

necessary to find device models which can account for the dominant short-channel and 

quantum mechanical phenomena that are known to exist in the deca-nanometer regime. 

4.3.1 The Energy Balance Transport Model 
 
During the course of a typical device simulation, one will step through an iterative 

process that involves solving a set of carrier transport equations along with Poisson‟s 

Equation.  The transport equations are used to describe the response of electrons (or 

holes) to an applied electric field while Poisson‟s Equation gauges how the movement of 

these electrons perturbs the electric field within a device.   

Usually, electron transport is defined by a set of balance equations that are 

derived from the Boltzmann Transport Equation since it is computationally taxing to 
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solve the Boltzmann Transport Equation directly.  The simplest and most commonly used 

approximation of the Boltzmann Transport Equation is known as the Drift–Diffusion 

Model; it consists of two balance equations representing electron continuity (4.17) and 

current density (4.18), as shown below [155] (pp. 171–193, 290–291): 
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where G – R represents the difference between the generation and recombination rates 

while P and m*
e stand for the momentum and the effective mass of an electron, respectively.  

The fundamental limitation of the Drift–Diffusion Model is its assumption that 

the electron temperature, Tn, is equal to the lattice temperature, TL.  With this constraint, 

parameters such as the impact ionization rates, the carrier mobility and the drift velocity 

(υd) are linked to a local electric field rather than the spatial variation of Tn.  As a result, it 

is possible to severely underestimate a MOSFET‟s transconductance and output 

resistance at deca-nanometer dimensions because one has neglected velocity overshoot 

[156] and has overestimated the amount of impact ionization [38] (Ch. 3, pp. 24, 105), 

[157], respectively.   

To make the Drift–Diffusion Model more accurate, one must allow Tn to deviate 

from TL.  This can be accomplished by relating Tn to the average kinetic energy of an 

electron, which can be written as the sum of an electron‟s drift and thermal energies 

[155] (pp. 182–183): 

nden nkTnmW
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   (4.19) 

  
 Using (4.19), one can then incorporate electron temperature gradients into the 

Drift–Diffusion Model by creating an additional balance equation representing the rate of 
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energy lost by an electron to the lattice [38] (Ch. 3, pp. 24–27), [155] (pp. 181–188).  

This additional balance equation is shown below: 
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nnnn TKnkTW  ddn υυF  (4.21)  

 

where Kn stands for the thermal conductivity of an electron and Fn 
denotes the flux of 

energy between an electron and the lattice; τe represents the energy relaxation time – i.e., 

the time needed for the energy (temperature) distribution to reach steady state with the 

electric field [158].   

To complete the modification of the Drift–Diffusion Model, one must alter (4.18) 

to include a dependence on Tn [155] (pp. 191–193).  By including this dependence, one 

can obtain: 

nnnn TknnqDVqn  nJ  (4.22) 

 

The system of equations defined by (4.17) and (4.20)–(4.22) represents what is 

known as the Energy Balance Transport Model.  The model can be activated in ATLAS 

by selecting HCTE.EL in the MODELS statement and requires that BLOCK 

NEWTON be chosen in the METHOD statement [38] (Ch. 3, pp. 24–27; App. E, pp. 4).  

To obtain the most accurate results, the ID–VDS curves predicted by the Energy Balance 

Transport Model should be calibrated to Monte Carlo simulations using τe as a fitting 

parameter.  Commonly cited values of τe range between 0.1 ps and 0.2 ps [159]–[162]. 

4.3.2 Quantum Mechanical Effects 
 

In the channel of a strongly-inverted thin-oxide MOSFET, the peak of the 

inversion layer carrier concentration, n(y), is found at a distance, yinv, away from the Si 

surface, as shown in Figure 4.4(a).  The movement in n(y) is caused by the formation of a 
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potential well between the Si–SiO2 interface and yinv, which forces the conduction band to 

split near the interface [130]–[132], [133] (pp. 43–48), [147] (pp. 59–105).   
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Figure 4.4: (a) A comparison between the classical and quantum mechanical distributions of n(y) in a 

MOSFET and (b) an equivalent circuit defining a MOSFET’s effective gate oxide capacitance. 

 

The quantum mechanical confinement of n(y) must be considered in thin-oxide 

MOSFET simulations because it gives rise to a non-negligible inversion layer capacitance 

(per unit area), C '   
inv, in series with C'  

ox and the capacitive term representing polysilicon 

gate depletion – see Figure 4.4(b).  As a consequence of C '   
inv, the effective gate oxide 

capacitance (per unit area) of a MOSFET becomes [133] (pp. 43–48): 
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where εox is the dielectric constant of SiO2 multiplied by ε0 and ypoly is the width of the 

depletion region in the gate.  Quantum mechanical confinement also manifests itself in a 

MOSFET‟s effective depletion capacitance beneath the channel (per unit area), as seen 

below [147] (pp. 102–105): 

invd

si
d,eff

yy
C





 (4.24) 

 

The quantum mechanical behavior of n(y) can be predicted in ATLAS by 

using the Bohm Quantum Potential Model [38] (Ch. 13, pp. 8–12), [163] (BQP.N in the 

MODELS statement).  The model functions as follows: at a particular bias point, 

ATLAS solves Poisson‟s Equation and the corresponding carrier transport equations as it 
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would classically.  ATLAS then proceeds to compute a position-dependent quantum 

potential, Ʌ, based on the results of the classical simulation and inserts Ʌ into (4.22) 

such that: 

  nnnn TknnqDΛVqn  nJ  (4.25) 

 

Poisson‟s Equation is then solved once more along with the modified carrier transport 

equations, and a new quantum potential is subsequently calculated.  This process is 

repeated until the system converges before moving on to the next bias point.  If sufficient 

accuracy has been achieved after a few iterations, the cycle can be limited through the use 

of NBLOCKIT in the METHOD statement.   

To obtain the most accurate results, the Bohm Quantum Potential Model should be 

calibrated to 1-D MOS capacitance–voltage profiles generated by the Schrödinger–Poisson 

Equation solver in ATLAS.  This calibration can be performed by adjusting the fitting 

parameters, BQP.NGAMMA and BQP.NALPHA, in the MATERIAL statement for the 

Si region(s) containing the inversion layer of a MOSFET
†
 [38] (Ch. 13, pp. 9–11).   

4.3.3 Direct-Tunneling-Induced Gate Current 
 
 Classically, an electron with energy, E, cannot surmount a barrier, EB, if E < EB.  

However, when the barrier is sufficiently thin, it is quantum mechanically possible for 

tunneling to occur because the wave function, Ψ(y)
‡
, is non-zero at the transmitted end of 

the barrier [165] (pp. 143–150).  In a MOS system – see Figure 4.5 – the probability of an 

electron tunneling through a gate oxide barrier has been found to be [147] (pp. 21–23): 

  EEmt

tunnel
BeoxeEP



22

)(  (4.26) 

                                                 
†
 Due to an unresolved issue in ATLAS [164], one must set BQP.NGAMMA = BQP.NALPHA = 0 in the 

polysilicon gate and gate oxide regions of a MOSFET in order to obtain the expected behavior in n(y).  This 

modification should only have a minor impact on ATLAS‟ predictions for Cox,eff and Cd,eff since quantum 

mechanical confinement only occurs within the Si region(s) containing the inversion layer of a MOSFET. 
 

‡
 |Ψ(y)|

2
 denotes the probability of finding an electron at a certain position. 
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where me represents the mass of an electron and ħ is the reduced Planck‟s constant.   

ytox0

EB

Incident Wave
Function

Transmitted Wave
Function

Oxide

U(y)

E

 
Figure 4.5: An illustration of an electron with energy, E, tunneling through a gate oxide layer with a 

thickness of tox for the case when E < EB (U(y) denotes the potential energy). 

 

Based on (4.26), one can expect an exponential increase in electron tunneling as 

tox is reduced.  In fact, it turns out that when tox is on the order of a few nanometers, a 

non-negligible current will begin to flow through the gate of a MOSFET [42], [46], 

[166]–[170].  This gate current can be accounted for in ATLAS by selecting QTUNN.EL
†‡

 

in the MODELS statement [38] (Ch. 3, pp. 126–131), and the predictions made by the 

model can be calibrated to experimental data by using the effective mass of an electron in 

SiO2 (m* 
ox) as a fitting parameter [133] (pp. 49–52), [171]–[172].   

4.3.4 Mobility Models 
 

The effective electron (or hole) mobility is characterized by four major mobility 

degradation mechanisms: ionized impurity scattering, phonon scattering, surface 

scattering and velocity saturation.  Ionized impurity scattering can be included in ATLAS 

by choosing CONMOB in the MODELS statement while phonon and surface scattering 

can be added by activating CVT in the MODELS statement.  Velocity saturation can be 

enabled by selecting FLDMOB in the MODELS statement.  However, FLDMOB must 

                                                 
†
 QTUNN.EL will only function if a polysilicon gate region is defined in an ATLAS structure. 

 

‡
 QTUNN.EL is a post-processing model that adds a current component to the gate terminal of a MOSFET 

after ATLAS has converged on a solution for a particular bias point.  As a result, QTUNN.EL neglects the 

gate current‟s contribution to the drain, source and bulk terminal currents. 
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be augmented with the EVSATMOD = 0 flag to ensure that the carrier velocity is related 

to the carrier energy (temperature) rather than the local electric field.  For further 

discussion on the models introduced in this section, please see [38] (Ch. 3, pp. 42–81). 

4.3.5 Miscellaneous Model Notes 
 
In any MOSFET device simulation involving analog characterization, one must 

be sure to incorporate a carrier-energy-dependent impact ionization model (TOYABE in 

the IMPACT statement) because of the role that impact ionization plays in determining 

ro [38] (Ch. 3, pp. 105–107), [157].  Moreover, when the background doping concentration 

exceeds 1 × 10
18

 cm
–3

, it is also wise to account for band gap narrowing (BGN in the 

MODELS statement), Auger recombination (HNSAUG in the MODELS statement) and 

band-to-band tunneling (BBT.KL in the MODELS statement) since these effects 

become increasingly prominent at such high doping levels [38] (Ch. 3, pp. 9–10, 92–93).   

4.3.6 Computational Requirements  
 
By adding the Energy Balance Transport and Bohm Quantum Potential Models to 

a simulation deck, one will apply extensive computational strain on any computer 

attempting to run ATLAS.  As a result of the models‟ mathematical complexity, it is not 

uncommon to see a single ATLAS DC simulation last more than 30 minutes on a 1 GHz, 

8 GB RAM workstation for an Lg = 80 nm.  To offset some of this computational burden, 

one can run a single instance of ATLAS on multiple processors by starting a simulation 

with the following command: GO ATLAS SIMFLAGS = “–P #” where # denotes the 

number of processors to be used in parallel [38] (Ch. 2, pp. 4).  The benefit of this 

command is shown in Figure 4.6 where the normalized run time of a typical ATLAS DC 

simulation is plotted against the total number of processors utilized to perform the 
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simulation.  From the figure, the significant decrease in simulation time (65%) is evident 

as the number of processors grows from one to six; the advantage of parallel computing 

becomes negligible beyond that point. 

 
Figure 4.6: A plot of the normalized simulation time vs. the number of processors utilized to run a 

single ATLAS DC simulation.  Note that normalization set the simulation time equal to one when 

only one processor was being used to perform a simulation.  

 

4.4 The Benefits of Delta Doping, Counter Doping and Deep 
Trench Isolation 

4.4.1 Simulation Setup  
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Figure 4.7: An illustration of the n-type BD MOSFET device cross-section created in ATLAS to 

examine the process changes proposed in Section 4.1 and Section 4.2.  Note that this illustration does 

not depict any particular doping profile in the channel region of the device. 

  

 Using the electrical device models presented in Section 4.3, it is now possible 

to execute 2-D device simulations in ATLAS [38] to investigate the degree to which 

delta doping, counter doping and DTI are capable of improving the performance of a 

BD MOSFET.  In this dissertation, these simulations were performed on an n-type BD 

MOSFET using the device cross-section illustrated in Figure 4.7 and the device mesh 
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seen in Figure 4.8 and Figure 4.9
†
.  The dimensions and specifications of the device were 

selected to be largely consistent with those of a standard 90 nm bulk CMOS technology 

[6] and are summarized in Table 4.2.   

 

  
Figure 4.8: A screenshot of the 2-D mesh used to simulate an n-type BD MOSFET in ATLAS.  Note 

that this particular image depicts the case in which triple-well isolation was used to isolate the device. 

  

 
Figure 4.9: A close-up view of the 2-D mesh used to simulate an n-type BD MOSFET in ATLAS near 

the device’s source and drain regions. 

                                                 
†
 The ATLAS and DBINTERNAL [173] (App. B, pp. 1–14) codes used to generate the BD MOSFET 

device cross-section, its mesh and all the subsequent data contained in Chapter 4 can be found in the 

Appendix starting on page 101 and 109, respectively. 
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Table 4.2: A list of the device parameters that were used in ATLAS to examine the process changes 

proposed in Section 4.1 and Section 4.2. 

DDeevviiccee  PPaarraammeetteerr  DDeessccrriippttiioonn  DDiirreeccttiioonnaalliittyy  VVaalluuee  

MMiinniimmuumm  GGaattee  LLeennggtthh  xx  8800  nnmm  

LLoonngg--CChhaannnneell  TThhrreesshhoolldd  VVoollttaaggee
††
  ––  00..3377  VV  

SSiiOO22  GGaattee  OOxxiiddee  TThhiicckknneessss  yy  11..88  nnmm  

nn
++
  PPoollyyssiilliiccoonn  GGaattee  DDooppiinngg  CCoonncceennttrraattiioonn  ––  11  ××  1100

2200
  ccmm

––33
  

nn
++
  PPoollyyssiilliiccoonn  GGaattee  HHeeiigghhtt  [[117744]]  yy  115500  nnmm  

SSiiOO22  SSppaacceerr  WWiiddtthh  xx  1155  nnmm  

pp--WWeellll  DDooppiinngg  CCoonncceennttrraattiioonn  ––  11  ××  1100
1166

  ccmm
––33

  

pp--WWeellll  DDeepptthh  yy  11..55  μμmm  

DDeeeepp  nn--WWeellll  DDooppiinngg  CCoonncceennttrraattiioonn  ––  11  ××  1100
1177

  ccmm
––33

  

DDeeeepp  nn--WWeellll  DDeepptthh  yy  22..00  μμmm  

pp--SSuubbssttrraattee  DDooppiinngg  CCoonncceennttrraattiioonn  ––  11  ××  1100
1166

  ccmm
––33  

SSoouurrccee,,  DDrraaiinn,,  pp--WWeellll  aanndd  DDeeeepp  nn--WWeellll  CCoonnttaacctt  DDooppiinngg  CCoonncceennttrraattiioonn  ––  11  ××  1100
2200

  ccmm
––33

  

SSoouurrccee,,  DDrraaiinn,,  pp--WWeellll  aanndd  DDeeeepp  nn--WWeellll  CCoonnttaacctt  LLaatteerraall  AAbbrruuppttnneessss  [[116666]]  xx  44..88  nnmm//ddeecc  

SSoouurrccee,,  DDrraaiinn,,  pp--WWeellll  aanndd  DDeeeepp  nn--WWeellll  CCoonnttaacctt  JJuunnccttiioonn  DDeepptthh  yy  3300  nnmm  

SSoouurrccee,,  DDrraaiinn,,  pp--WWeellll  aanndd  DDeeeepp  nn--WWeellll  CCoonnttaacctt  WWiiddtthh  xx  220000  nnmm  

SSoouurrccee//DDrraaiinn  EExxtteennssiioonn  DDooppiinngg  CCoonncceennttrraattiioonn  ––  22  ××  1100
1199

  ccmm
––33

  

SSoouurrccee//DDrraaiinn  EExxtteennssiioonn  LLaatteerraall  AAbbrruuppttnneessss  [[116666]]  xx  44..88  nnmm//ddeecc  

SSoouurrccee//DDrraaiinn  EExxtteennssiioonn  JJuunnccttiioonn  DDeepptthh  yy  2255  nnmm  

SSiiOO22  SSTTII  DDeepptthh  yy  00..4422  μμmm  

SSiiOO22  SSTTII  WWiiddtthh  xx  00..4422  μμmm  

 

4.4.2 Model Calibration 
 

 To calibrate ATLAS [38] in accordance with the guidelines set forth in 

Section 4.3, it was necessary to begin by adjusting the Bohm Quantum Potential (BQP) 

Model to match the capacitance–voltage profile generated by the Schrödinger–Poisson 

(S–P) Equation for a 1-D uniformly-doped MOS structure with a degenerately-doped n
+
 

polysilicon gate, tox = 1.8 nm and Na = 1.125 × 10
18

 cm
–3‡

.  Ultimately, the BQP Model 

calibration procedure yielded a BQP.NGAMMA = 1.3 and a BQP.NALPHA = 1.0 

resulting in the curves shown in Figure 4.10.   

                                                 
†
 In Chapter 4–Chapter 6, the threshold voltage (VT) is defined as the gate-to-source voltage at which 

ID = (2 × 10
–7

 A/μm)/Lg for a VDS = 50 mV; VT0 is defined as the threshold voltage at Lg = 10Lg,min.   
 

‡
 The ATLAS code used to perform the calibration of the BQP Model can be found in the Appendix 

starting on page 110.  Note that polysilicon gate depletion was not accounted for in the calibration procedure. 
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Figure 4.10: A plot of the capacitance–voltage profiles predicted by the Schrödinger–Poisson 

Equation and the BQP Model (BQP.NGAMMA = 1.3 and BQP.NALPHA = 1.0) for a 1-D MOS 

structure with a degenerately-doped n
+
 polysilicon gate, tox = 1.8 nm and Na = 1.125 × 10

18
 cm

–3
.   

 

 Following the calibration of the BQP Model, the Energy Balance Transport Model 

was adjusted to replicate the ID–VDS characteristics predicted by the Monte Carlo device 

simulator, MCDEVICE [38] (Ch. 19, pp. 1–78), for a uniformly-doped MOSFET with a 

degenerately-doped n
+
 polysilicon gate, tox = 1.8 nm, Lg = 80 nm and Na = 1.125 × 10

18
 cm

–3
 

(VT0 = 0.37 V)
†
.  The outcome of the calibration procedure is depicted in Figure 4.11 for a 

τe = 0.1 ps
‡
.  Using the same device, the gate current model, QTUNN.EL, was then tuned to 

reflect experimental data from [133] (pp. 49–52) and [171]–[172], resulting in an m* 
ox = 0.45.   

 
Figure 4.11: A plot of ID vs. VDS as predicted by Monte Carlo and 2-D ATLAS simulations 

(τe = 0.1 ps) for a uniformly-doped MOSFET with a degenerately-doped n
+
 polysilicon gate, 

tox = 1.8 nm, Na = 1.125 × 10
18

 cm
–3

, Lg = 80 nm, VT0 = 0.37 V, VGS = 0.7 V and VBS = 0.   

                                                 
†
 The MCDEVICE and ATLAS codes used to perform the calibration of the Energy Balance Transport Model 

can be found in the Appendix starting on page 112 and 115, respectively.  Note that quantum mechanical 

effects and polysilicon gate depletion were not accounted for in the calibration procedure. 
 

‡
 With a τe = 0.1 ps and an Lg = 80 nm, ATLAS under-predicts ID by at least 5% for VDS < 0.4 V.  However, this 

discrepancy in ID should grow smaller as Lg approaches 250 nm since velocity overshoot does not influence ID 

noticeably at such gate lengths [159]. 
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4.4.3 Analysis of the Proposed Doping Profiles 
 

 With ATLAS [38] calibrated, delta doping (Figure 4.1(c)) was first examined to 

gain a greater understanding of how the doping profile influences the characteristics of a 

BD MOSFET, namely gmb, gmbro and fT,BD
†
.  In the investigation, three lightly-doped 

channel layer thicknesses (yepi) were considered: 0 nm, 5 nm and 10 nm; in order to 

maintain a constant VT0 = 0.37 V at every yepi, the doping concentration of the delta-doped 

layer (Nδ) was set to: 1.125 × 10
18

 cm
–3

, 1.75 × 10
18

 cm
–3

 and 3 × 10
18

 cm
–3

, respectively.  

Additionally, the doping level of the lightly-doped channel region (Nepi) was held at 

1 × 10
15

 cm
–3

 when yepi was equal to 5 nm and 10 nm to preserve the integrity of the delta-

doped profile, while the thickness of the delta-doped layer, yepi2 – yepi, was kept at 100 nm 

to ensure that the depletion region beneath the channel terminated within the delta-doped 

layer for each yepi
‡
.  

  
Figure 4.12: A plot of gmb vs. Lg for halo-implanted, uniformly-doped and delta-doped n-type BD 

MOSFETs (VT0 = 0.37 V, VGS = VDS = 0.7 V and VBS = 0) at gate lengths ranging from (a) 80 nm to 

800 nm and (b) 400 nm to 800 nm.  The halo-implanted device had halo lengths and depths equal to 

30 nm and 20 nm, respectively; the device’s halo regions were doped to 4 × 10
18

 cm
–3

. 

 

The bulk transconductances predicted by ATLAS are plotted in Figure 4.12(a) and 

(b) for the cases when uniform doping (equivalent to yepi = 0 nm since yepi2 > yd) and delta 

                                                 
†
 The input-referred noise of a BD MOSFET was not analyzed in this section since ATLAS lacks the 

ability to predict flicker noise if it does not receive certain process-dependent parameters from measured 

device data [38] (Ch. 16, pp. 11–12).  For similar reasons, mechanical stress was also not accounted for in 

this section – nor in the investigations carried out in Chapter 5 and Chapter 6 [175] (Ch. 3, pp. 159–161). 
 

‡
 The actual thickness of the delta-doped region is irrelevant as long as yepi2 > yd. 
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doping (yepi = 5 nm and 10 nm) are used in a BD MOSFET [176].  Data from a halo-

implanted device are also included in the figures to provide a reference to the doping 

profile most commonly found in deca-nanometer technologies.  From Figure 4.12(a) and 

(b), one can see that there is a distinct advantage to using delta doping in a BD MOSFET 

since the doping profile is capable of increasing gmb by 96%–105% relative to a 

uniformly-doped profile for gate lengths ranging from 80 nm to 800 nm.  This growth in 

gmb is primarily provided by a reduction in yd, which itself is caused by the redistribution 

of dopants from y < yepi to yepi < y < yd < yepi2 in such a way that Nδ becomes larger than 

Na,eff without the subsequent climb in VT0, as illustrated by the diagram in Figure 4.13.  

However, the growth process is somewhat aided by the decline of ionized impurity 

scattering in the channel based on the fact that the increase in gmb is larger when yepi is 

varied from 0 nm to 5 nm, rather than from 5 nm to 10 nm. 

vGB

Na < Na,eff

yd

vGB

Na = Na,eff

yd

Gate
Oxide

Nδ > Na,eff

Nepi < Na,eff

Uniform Doping Delta Doping

yepi

 
Figure 4.13: A 1-D illustration of how dopants are redistributed between the uniformly-doped and 

delta-doped profiles in order to obtain a smaller depletion depth at a constant value of Na,eff. 

 

 Interestingly, Figure 4.12(a) and (b) also show that the bulk transconductances of 

the halo-implanted and uniformly-doped devices are relatively similar for Lg ≥ 5Lg,min.  

This most likely occurs because the devices‟ threshold voltages are approximately equal 

at those gate lengths.  For Lg < 5Lg,min, the halo-implanted device‟s heavily-doped halo 
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regions begin to occupy a larger portion of the channel causing the device‟s threshold 

voltage to increase, rather than decrease as in the uniformly-doped case.  This causes the 

growth in the halo-implanted device‟s bulk transconductance to become suppressed as Lg 

shrinks since the reduction in its gate over-drive voltage (VGS – VT) negates any benefits 

brought about by a shorter Lg. 

 Moving forward, it is important to note that in general, halo-implanted MOSFETs 

are not desirable for analog applications since they suffer from long-channel DITS (drain-

induced threshold shift) [177] (pp. 26–36).  This long-channel DITS causes the output 

resistance of a halo-implanted MOSFET to be an order of magnitude lower than that of a 

uniformly-doped device for the gate lengths commonly used in analog circuits (Lg ≥ 5Lg,min 

[400 nm in a 90 nm process] [8]) [177] (pp. 26–36), which negatively influences the 

device‟s intrinsic gain.  It is for this reason that halo implantation will no longer be 

considered throughout the remainder of this dissertation.   

 
Figure 4.14: A plot of gmbro vs. yepi at an Lg of 400 nm and 800 nm (VT0 = 0.37 V, VGS = VDS = 0.7 V, 

VBS = 0 and ro ≡ [∂ID/∂VDS]
–1

). 

 

 The net effect of gmb and ro is displayed in Figure 4.14 where the intrinsic gain of 

a BD MOSFET is plotted against yepi for two different gate lengths.  Overall, one can see 

that the intrinsic gain of a BD MOSFET increases by as much as 110% if a delta-doped 

profile with a yepi = 10 nm is chosen for the device rather than uniform doping.  
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Intriguingly, the above finding indicates that it is possible for the growth in gmbro to 

exceed that of gmb itself.  This additional growth in gmbro is attributed to the delta-doped 

profile‟s ability to improve a BD MOSFET‟s long-channel DITS and ro characteristics 

[157] as yepi becomes larger.  

  
Figure 4.15: A plot of (a) ∆VT and (b) gmb vs. VBS for three lightly-doped channel layer thicknesses 

(Lg = 400 nm, VGS = VDS = 0.7 V, VT0 = 0.37 V and ∆VT = VT |V
BS

 = 0 – VT). 

 

 When operating a delta-doped BD MOSFET with a VBS > 0, one can expect the 

boost in gmb provided by the delta-doped profile to be larger than that observed in 

Figure 4.12(a) and (b) as a result of the doping profile‟s enhanced body effect [149].  

This enhanced body effect – witnessed in Figure 4.15(a) – allows a delta-doped BD 

MOSFET‟s bulk transconductance to rise by as much as 138% at a yepi = 10 nm if VBS is 

increased from 0 to 0.5 V – as shown in Figure 4.15(b) – compared to only 92% in a 

uniformly-doped device.   

 
Figure 4.16: A plot of gmb/gm vs. yepi at a VT0 of 0.37 V and 0.50 V (Lg = 400 nm, VGS = VDS = 0.7 V and 

VBS = 0). 
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 In addition to the benefits described so far, delta doping is also capable of 

strengthening the bulk terminal with respect to the gate – as seen in Figure 4.16 for a VT0 

of 0.37 V and 0.50 V – since the doping profile ultimately increases the ratio of tox/yd 

(i.e., Cd/Cox).  Given this fact, one may argue that the long-channel threshold voltage – 

i.e., the effective background doping concentration – of a BD MOSFET should be raised 

as much as possible since doing so would reduce the disparity between the device‟s bulk 

and gate transconductances through a supplementary growth in tox/yd and would aid in 

reviving the expected advantages of bulk-driven circuitry in deca-nanometer 

technologies, as discussed in Section 3.5.  Unfortunately, there are a couple of drawbacks 

to this design approach (besides the well-known consequence of a degraded drive 

current). 

  
Figure 4.17: (a) A semi-logarithmic plot of ID vs. VGS for three lightly-doped channel layer 

thicknesses at a VT0 of 0.37 V and (b) a plot of S vs. yepi at a VT0 of 0.37 V and 0.50 V (Lg = 400 nm, 

VDS = 0.7 V and VBS = 0). 

   

 In Figure 4.17(a), the sub-threshold behavior of a BD MOSFET is displayed 

through a semi-logarithmic plot of ID vs. VGS for three lightly-doped channel layer 

thicknesses at a VT0 of 0.37 V
†
.  The extracted values of the device‟s sub-threshold swing, 

S, are plotted in Figure 4.17(b) along with similar data from a BD MOSFET with a 

                                                 
†
 The growth in off-state leakage current observed in Figure 4.17(a) occurs due to band-to-band tunneling 

(BTBT) between the source and drain regions of a BD MOSFET, and is caused by the higher Nδ that 

accompanies a larger yepi. 
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VT0 = 0.50 V.  From these figures, one can see that S rises by 9% between a yepi of 0 nm 

and 10 nm at a VT0 of 0.37 V.  The increase in S becomes more dramatic at a VT0 = 0.50 V 

– up to 19% – due to the bulk‟s growing influence over the channel, as predicted by the 

ideal definition of the sub-threshold swing [122] (pp. 314–315): 
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While a larger S is not overly detrimental to the performance of analog bulk-driven 

circuitry (since a BD MOSFET‟s gate is typically tied to a DC bias voltage), it will have 

negative implications for some RF applications which simultaneously utilize the bulk and 

gate terminals as device inputs [27], [103]–[114].    

 
Figure 4.18: A plot of |ξx,max| vs. yepi at a VT0 of 0.37 V and 0.50 V (Lg = 400 nm, VGS = VDS = 0.7 V and 

VBS = 0). 

  

 Along with the climb in S, a larger VT0 will also bring about a rapid increase in the 

magnitude of a BD MOSFET‟s maximum longitudinal field, |ξx,max|, as shown in 

Figure 4.18.  For a VT0 of 0.37 V, |ξx,max| turns out to be 13% higher if yepi = 10 nm rather 

than 0 nm.  However, when VT0 = 0.50 V, the growth in |ξx,max| becomes 21%.  Therefore, 

it is important to monitor |ξx,max| if one is designing a high-VT0 delta-doped BD MOSFET 

since the device may experience a noticeable reduction in device lifetime as a result of 

elevated hot carrier activity near the drain.   
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 As one would expect – based on (3.8) – delta doping‟s gmb-related benefits do 

carry over to a BD MOSFET‟s frequency response, as confirmed by Figure 4.19(a) and 

(b) where fT,BD, determined using Y parameters [178] (Ch. 6, pp. 18–19): 

111Y21Y
,


 ff BDT  (4.28) 

 
is plotted against Lg for three lightly-doped channel layer thicknesses

†
.  Figure 4.19(a) 

and (b) both show that a BD MOSFET‟s fT,BD can be enhanced by 37–50% for gate 

lengths ranging from 80 nm to 800 nm if one uses a delta-doped profile with a 

yepi = 10 nm rather than uniform doping.  However, the figures also indicate that the 

increase in fT,BD is less than that observed in Figure 4.12(a) and (b) for gmb.  This disparity 

is attributed to the higher Nδ of the delta-doped profile which negatively influences the 

extrinsic components of a BD MOSFET‟s bulk-to-source and bulk-to-drain capacitances, 

and thus the growth rate of fT,BD with respect to yepi. 

  
Figure 4.19: A plot of fT,BD vs. Lg for three lightly-doped channel layer thicknesses (VT0 = 0.37 V, 

VGS = VDS = 0.7 V and VBS = 0) at gate lengths ranging from (a) 80 nm to 800 nm and (b) 400 nm to 

800 nm. 

 

 To ensure that the delta-doped profile is able to maintain the improvements seen 

in Figure 4.12–Figure 4.19 at any given value of yepi, it is necessary to keep the doping 

concentration of the profile‟s lightly-doped channel region sufficiently low to avoid 

                                                 
†
 This definition of fT,BD is equivalent to the one used in Section 3.1.4 since it results in finding the 

frequency at which the ratio of a BD MOSFET‟s output-to-input current is equal to one in magnitude under 

the condition that the device‟s output terminal is short-circuited.  
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significant mobility degradation due to ionized impurity scattering.  Based on the data 

plotted in Figure 4.20, it is evident that Nepi must remain below 1 × 10
17

 cm
–3

 to preserve 

the integrity of the delta-doped profile. 

 
Figure 4.20: A semi-logarithmic plot of the normalized values of gmb and fT,BD (referenced to gmb and 

fT,BD at Nepi = 1 × 10
15

 cm
–3

) vs. Nepi for a delta-doped n-type BD MOSFET with a yepi = 10 nm 

(Lg = 80 nm, VT0 = 0.50 V, VGS = VDS = 0.7 V and VBS = 0).   

 

At this time, it is appropriate to discount counter doping as a potential gmb 

enhancement technique for deca-nanometer bulk CMOS technologies.  The preceding 

statement is founded on the fact that it is necessary to insert a layer of n-type dopants into 

a delta-doped profile to create a counter-doped profile, as illustrated by Figure 4.1(d).  

Thus, if one wanted to achieve a VT0 equal to that of delta doping, one would have to 

raise Nδ to compensate for the drop in Na,eff caused by the inclusion of a counter-doped 

layer.  Naturally, this increase in Nδ would need to be quite large in order to enhance gmb 

considerably relative to the delta-doped case.   

Unfortunately, for the representative technology considered in this section, Nδ is 

already equal to 3 × 10
18

 cm
–3

 in a delta-doped BD MOSFET with a yepi = 10 nm.  So, it 

is unlikely that a drastic growth in Nδ can be tolerated at a yepi of 10 nm since the doping 

concentration of the delta-doped layer must remain below 1 × 10
19

 cm
–3

 in order to avoid 

noticeable BTBT-induced leakage between the device‟s source and drain regions [179].  

As a result, if one were to create a counter-doped BD MOSFET in the same technology, 
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one would need to use a much smaller value of yepi which would erode any potential 

improvement in gmb that could be obtained by switching to a counter-doped profile. 

4.4.4 Examination of the Deep Trench Isolation Scheme 
 

To determine whether the DTI scheme depicted in Figure 4.3 and Figure 4.4 is 

capable of enhancing fT,BD to any significant degree, the n-type BD MOSFET setup 

discussed in Section 4.4.1 was modified to accommodate deep trenches between the 

device‟s p
+
 p-well contacts and device‟s n

+
 source and drain contacts [176].  The depths 

of the deep trenches were chosen to be 1.6 μm so that they would extend into a BD 

MOSFET‟s deep n-well region, but not all the way through to the p-type substrate, as 

suggested in Section 4.2.  The widths of the deep trenches were selected to be the same as 

the widths of the shallow trenches used in the triple-well isolation scheme (0.42 μm) 

since the horizontal isolation requirements are the same for both isolation techniques. 

 
Figure 4.21: A plot of the improvement seen in fT,BD when DTI is used in place of triple-well isolation 

in uniformly-doped and delta-doped n-type BD MOSFETs (VT0 = 0.37 V, VGS = VDS = 0.7 V and 

VBS = 0). 

 

The improvement seen in fT,BD when DTI is used in place of triple-well isolation is 

plotted in Figure 4.21 for the uniformly-doped and delta-doped BD MOSFETs considered 

throughout Section 4.4.3.  The figure shows that DTI is only capable of moderately 

increasing fT,BD at gate lengths near Lg,min.  DTI is unable to provide any substantial benefit 

to fT,BD at longer gate lengths since the sidewall depletion capacitance removed by the DTI 
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structure becomes much smaller than the depletion capacitance at the bottom of a BD 

MOSFET‟s p well as Lg is made larger
†
.  

4.5 Conclusions 
 

This chapter introduced several process changes which had the potential to 

improve the bulk transconductance and layout area requirements of a BD MOSFET.  The 

potency of the most promising process changes were evaluated in ATLAS [38] using 

device parameters largely consistent with those found in standard 90 nm bulk CMOS 

processes and electrical device models which accounted for the dominant short-channel 

and quantum mechanical phenomena present in the aforementioned technologies.  Based 

on the results obtained in this chapter, the following conclusions can be drawn [176]: 

 
 Delta doping is the best candidate to enhance the bulk transconductance of a 

BD MOSFET because of its ability to reduce yd through an increase in yepi at 

a constant value of Na,eff and VT0.  By choosing a delta-doped profile over 

uniform doping, one can raise gmb by as much as 105% for a yepi = 10 nm and 

a VT0 = 0.37 V.  This leads to an improvement in gmbro and fT,BD of up to 

110% and 50%, respectively.   

 
 The effectiveness of the delta-doped profile is limited by the doping 

concentration of its lightly-doped channel region.  To preserve the integrity of 

the doping profile at any given value of yepi, one must ensure that Nepi remains 

below 1 × 1017 cm–3 in order to avoid an excessive amount of ionized impurity 

scattering in the channel. 

 
 It is possible to raise a delta-doped BD MOSFET‟s VT0 to acquire a better 

gmb/gm ratio.  However, it is unlikely that VT0 can be raised high enough to 

restore the expected advantages of bulk-driven circuitry in deca-nanometer 

technologies since a sizable growth in VT0 will be met with noticeable 

degradation in ID, S and |ξx,max| which may not be acceptable for all BD 

MOSFET applications. 

                                                 
†
 In a physical (i.e., 3-D) implementation of a BD MOSFET, the improvement in fT,BD should be greater 

than that predicted in Figure 4.21 since a 2-D device simulator cannot account for the triple-well structure‟s 

sidewall depletion capacitance present along the length of the device in the x–y plane. 
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 By replacing a triple-well isolation scheme with DTI, it is possible to reduce 

the effective layout area of an n-type BD MOSFET by approximately 53% in 

a deca-nanometer bulk CMOS process since DTI is able to eliminate the well-

to-well spacing requirements between adjacent BD MOSFETs of the same 

type.   

 
 The improvement seen in fT,BD when DTI is used in place of triple-well 

isolation is fairly minor unless a BD MOSFET‟s gate length is sufficiently 

close to Lg,min because the sidewall depletion capacitance removed by the DTI 

structure represents only a small portion of the total well capacitance as Lg is 

made larger. 

 

Using the knowledge acquired in this chapter, it is now possible to move forward 

and create a BD MOSFET whose performance has been optimized for use within deca-

nanometer bulk CMOS technologies.  With the aid of 2-D device simulations in ATLAS, 

the design of such a device will be carried out in Chapter 5 using a standard 90 nm bulk 

CMOS process. 
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5 Designing a Superior Bulk-Driven MOSFET 

5.1 Device Design Approach 
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Figure 5.1: An illustration of the deep-trench-isolated delta-doped n-type BD MOSFET device cross-

section considered throughout Chapter 5. 

 

In Chapter 4, delta doping and DTI were identified as the best candidates to 

mitigate the major disadvantages of a BD MOSFET.  To completely understand the 

benefits of these process changes, it is necessary to see how they influence the 

performance of a BD MOSFET in a practical design setting.  To accomplish this task, the 

insight gained from Chapter 4 and the first three chapters of this dissertation were utilized 

to design a deep-trench-isolated delta-doped (DD) n-type BD MOSFET [180] in a 

standard 90 nm bulk CMOS technology using a VDD = 0.7 V [8], ATLAS [38] and the 

device cross-section illustrated in Figure 5.1
†
.   

To provide a reference for the delta-doped BD MOSFET design and the results that 

follow, a triple-well-isolated uniformly-doped (UD) n-type BD MOSFET was designated 

as a control device.  The uniformly-doped BD MOSFET‟s device specifications were 

selected to be entirely consistent with those of a standard 90 nm bulk CMOS technology 

[6] such that the device had a tox = 1.4 nm, a VT0 = 0.37 V, a yepi = 0 nm and an 

Nδ = 1.75 × 10
18

 cm
–3

 (yepi2 – yepi = 100 nm).  A full listing of the uniformly-doped BD 

MOSFET‟s device parameters can be found in Table 5.1. 

                                                 
†
 The ATLAS code, DBINTERNAL [173] (App. B, pp. 1–14) code and calibration parameters from Section 4.4 

were used to generate all the data contained in this chapter.  
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Table 5.1: A list of the device parameters that were used in the triple-well-isolated uniformly-doped 

control device for a standard 90 nm bulk CMOS technology. 

DDeevviiccee  PPaarraammeetteerr  DDeessccrriippttiioonn  DDiirreeccttiioonnaalliittyy  VVaalluuee  

MMiinniimmuumm  GGaattee  LLeennggtthh  xx  8800  nnmm  

LLoonngg--CChhaannnneell  TThhrreesshhoolldd  VVoollttaaggee  ––  00..3377  VV  

SSiiOO22  GGaattee  OOxxiiddee  TThhiicckknneessss  yy  11..44  nnmm  

pp
––
  LLiigghhttllyy--DDooppeedd  CChhaannnneell  LLaayyeerr  DDooppiinngg  CCoonncceennttrraattiioonn  ––  11  ××  1100

1155
  ccmm

––33
  

pp
––
  LLiigghhttllyy--DDooppeedd  CChhaannnneell  LLaayyeerr  TThhiicckknneessss  yy  00  nnmm  

pp
++
  DDeellttaa--DDooppeedd  LLaayyeerr  DDooppiinngg  CCoonncceennttrraattiioonn    ––  11..7755  ××  1100

1188
  ccmm

––33
  

pp
++
  DDeellttaa--DDooppeedd  LLaayyeerr  TThhiicckknneessss  yy  110000  nnmm  

nn
++
  PPoollyyssiilliiccoonn  GGaattee  DDooppiinngg  CCoonncceennttrraattiioonn  ––  11  ××  1100

2200
  ccmm

––33
  

nn
++
  PPoollyyssiilliiccoonn  GGaattee  HHeeiigghhtt  yy  115500  nnmm  

SSiiOO22  SSppaacceerr  WWiiddtthh  xx  1155  nnmm  

pp--WWeellll  DDooppiinngg  CCoonncceennttrraattiioonn  ––  11  ××  1100
1166

  ccmm
––33

  

pp--WWeellll  DDeepptthh  yy  11..55  μμmm  

DDeeeepp  nn--WWeellll  DDooppiinngg  CCoonncceennttrraattiioonn  ––  11  ××  1100
1177

  ccmm
––33

  

DDeeeepp  nn--WWeellll  DDeepptthh  yy  22..00  μμmm  

pp--SSuubbssttrraattee  DDooppiinngg  CCoonncceennttrraattiioonn  ––  11  ××  1100
1166

  ccmm
––33  

SSoouurrccee,,  DDrraaiinn,,  pp--WWeellll  aanndd  DDeeeepp  nn--WWeellll  CCoonnttaacctt  DDooppiinngg  CCoonncceennttrraattiioonn  ––  11  ××  1100
2200

  ccmm
––33

  

SSoouurrccee,,  DDrraaiinn,,  pp--WWeellll  aanndd  DDeeeepp  nn--WWeellll  CCoonnttaacctt  LLaatteerraall  AAbbrruuppttnneessss  xx  44..88  nnmm//ddeecc  

SSoouurrccee,,  DDrraaiinn,,  pp--WWeellll  aanndd  DDeeeepp  nn--WWeellll  CCoonnttaacctt  JJuunnccttiioonn  DDeepptthh  yy  3300  nnmm  

SSoouurrccee,,  DDrraaiinn,,  pp--WWeellll  aanndd  DDeeeepp  nn--WWeellll  CCoonnttaacctt  WWiiddtthh  xx  220000  nnmm  

SSoouurrccee//DDrraaiinn  EExxtteennssiioonn  DDooppiinngg  CCoonncceennttrraattiioonn  ––  22  ××  1100
1199

  ccmm
––33

  

SSoouurrccee//DDrraaiinn  EExxtteennssiioonn  LLaatteerraall  AAbbrruuppttnneessss  xx  44..88  nnmm//ddeecc  

SSoouurrccee//DDrraaiinn  EExxtteennssiioonn  JJuunnccttiioonn  DDeepptthh  yy  2255  nnmm  

SSiiOO22  SSTTII  DDeepptthh  yy  00..4422  μμmm  

SSiiOO22  SSTTII  WWiiddtthh  xx  00..4422  μμmm  

 

Using the uniformly-doped control device as a starting point, the design of the 

delta-doped BD MOSFET began by taking advantage of the relaxed gate oxide scaling 

requirements of the bulk-driven configuration – as discussed in Section 3.4 – to increase 

tox from its nominal value of 1.4 nm to 1.8 nm.  By making this change in tox, it was 

possible to reduce the new design‟s direct-tunneling-induced gate current density by a 

factor of 50 while giving up approximately 17% of gmb.  

With a gate oxide thickness selected, the design process continued by choosing a 

yepi and Nδ for the delta-doped BD MOSFET.  Based on the data plotted in Figure 4.12 
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(from Section 4.4.3), it was evident that yepi had to be made as thick as possible to yield 

the highest gmb.  Theoretically, this value of yepi would have been located at a yepi ≈ yd 

since Nδ → ∞ as (yd – yepi) → 0.  However, due to BTBT concerns [179], yepi was unable 

to aggressively approach yd since Nδ was restricted to doping concentrations below 

1 × 10
19

 cm
–3

.  Ultimately, it was determined that at a VT0 = 0.37 V, yepi could not exceed 

12 nm.  So, that value of yepi was chosen for the delta-doped BD MOSFET design, 

resulting in an Nδ = 4 × 10
18

 cm
–3

.  But, given that gmb was not at its peak value for an 

Nδ = 4 × 10
18

 cm
–3

 – see Figure 5.2 – it was decided that Nδ should be increased to 

6 × 10
18

 cm
–3

 in order to maximize gmb
†
.  As a by-product of this design choice, the delta-

doped BD MOSFET‟s VT0 shifted slightly from 0.37 V to 0.41 V. 

To complete the design of the delta-doped BD MOSFET, it was necessary to 

choose a width and depth for the deep trenches used in the device‟s DTI structure.  Given 

that the design rules and well dimensions utilized in this design process were the same as 

those considered throughout Section 4.4, the delta-doped design‟s deep trench widths and 

depths turned out to be identical to those employed within Section 4.4.4 – i.e., 0.42 μm 

and 1.6 μm, respectively.  

 
Figure 5.2: A semi-logarithmic plot of gmb vs. Nδ for the uniformly-doped and delta-doped n-type BD 

MOSFET designs (Lg = 80 nm, VGS = 0.7 V, VDS = 0.4 V and VBS = 0). 

                                                 
†
 Recall that one of the main conclusions from Chapter 4 was that one is allowed to judiciously raise VT0 in 

order to improve a BD MOSFET‟s performance as long as the increase in VT0 does not significantly degrade 

parameters such as ID, S and |ξx,max|. 
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5.2 Device Design Results 
 

gmb and gmb/gm are plotted against Lg in Figure 5.3(a) and (b) for the delta-doped 

and uniformly-doped BD MOSFET designs described in Section 5.1.  From the figures, 

one can see that the new delta-doped design is capable of boosting gmb and gmb/gm by as 

much as 113% each
†‡

.  Along with these enhancements in gmb and gmb/gm, Figure 5.4(a) 

shows that the delta-doped BD MOSFET design is also capable of raising gmbro by up to 

429%.  This growth in gmbro is obviously much greater than that of gmb, itself, and is 

attributed to the new design‟s delta-doped profile and larger tox which cause ro to climb 

appreciably – see Figure 5.4(b) – in response to the new design‟s lower long-channel 

DITS [157] and smaller drain current (recall that ro ID
–1

 based on long-channel theory). 

  
Figure 5.3: A plot of (a) gmb and (b) gmb/gm vs. Lg for the uniformly-doped and delta-doped n-type BD 

MOSFET designs (VGS = 0.7 V, VDS = 0.4 V and VBS = 0). 

  

While the improvements seen in gmb, gmb/gm and gmbro are all quite impressive, the 

delta-doped BD MOSFET design‟s smaller drain current – witnessed in Figure 5.5 – can 

be cited as a reason to reassess the advantage of increasing tox by 0.4 nm in the proposed 

design approach since ID can be as much as 20% lower in the delta-doped case at a 

                                                 
†
 The delta-doped design‟s gate transconductance turns out to be approximately equal to that of the 

uniformly-doped control device since the delta-doped design has a higher surface mobility which is able to 

compensate for the loss in gm brought about by its thicker tox.   
 

‡
 As a result of the increase in gmb/gm, one will see S climb by 16.3 mV/dec to reach 92.8 mV/dec in the 

delta-doped design when Lg = 400 nm, VDS = 0.7 V and VBS = 0.  In addition to this growth in S, one will 

see |ξx,max| rise by 0.08 MV/cm to wind up at 0.51 MV/cm in the delta-doped design when Lg = 400 nm, 

VGS = VDS = 0.7 V and VBS = 0. 
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VBS = 0.  However, given that bulk-driven applications generally require VBS to be greater 

than zero (for an n-type device), the degraded drain current seen at VBS = 0 should not be 

regarded as a significant concern since the delta-doped design‟s enhanced body effect 

allows the design‟s ID to become greater than that of its uniformly-doped counterpart 

when VBS exceeds a certain threshold, as observed in Figure 5.6(a) and (b). 

  
Figure 5.4: A plot of (a) gmbro and (b) ro vs. Lg for the uniformly-doped and delta-doped n-type BD 

MOSFET designs (VGS = 0.7 V and VBS = 0; VDS = 0.4 V [solid lines] and 0.5 V [dashed lines]). 

  

 
Figure 5.5: A plot of the maximum drain current, ID,max ≡ ID at VGS = VDS = 0.7 V, vs. Lg for the 

uniformly-doped and delta-doped n-type BD MOSFET designs (VBS = 0). 

 

Another benefit of the delta-doped BD MOSFET design is illustrated in 

Figure 5.7 where the design‟s normalized gmb/gm ratio is plotted against Lg along with 

similar data from the uniformly-doped control device.  Interestingly, Figure 5.7 reveals 

that the roll-off characteristics of gmb/gm are superior in the delta-doped case.  This 

behavior is credited to the delta-doped design‟s stronger bulk terminal which is able to 

weaken the influence of source/drain charge sharing as Lg shrinks.  Naturally, since one 
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of the main objectives of this dissertation was to mitigate the disparity between gmb and 

gm, one would want to avoid using gate lengths within gmb/gm‟s roll-off region.  

Therefore, if one were to (arbitrarily) require the normalized gmb/gm ratio to remain above 

0.95, Figure 5.7 suggests that it would be possible to reduce a BD MOSFET‟s minimum 

allowable gate length by about 50 nm by utilizing the delta-doped design
†
. 

  
Figure 5.6: (a) A plot of ID vs. VDS for the uniformly-doped and delta-doped n-type BD MOSFET 

designs (VGS = 0.7 V and Lg = 400 nm) and (b) a plot of ID,max vs. VBS for the uniformly-doped and 

delta-doped n-type BD MOSFET designs (Lg = 400 nm and VGS = VDS = 0.7 V). 

 

 
Figure 5.7: A plot of the normalized gmb/gm ratio (referenced to gmb/gm at Lg = 800 nm) vs. Lg for the 

uniformly-doped and delta-doped n-type BD MOSFET designs (VGS = 0.7 V, VDS = 0.4 V and VBS = 0).   

  

 The frequency responses of the delta-doped and uniformly-doped BD MOSFET 

designs are studied in Figure 5.8(a).  The figure shows that the fT,BD of a BD MOSFET 

can be enhanced by as much as 71% if one follows the design approach outlined in 

Section 5.1.  As one would expect, the bulk of fT,BD‟s improvement occurs as a result of 

                                                 
†
 Figure 5.7 also suggests that the delta-doped design will be able to reduce a BD MOSFET‟s minimum 

allowable gate length by about 50 nm regardless of the threshold that one sets for the normalized gmb/gm ratio. 
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the delta-doped design‟s larger gmb/gm ratio.  This is confirmed by Figure 5.8(b) where 

fT,BD/fT,GD is observed to rise by as much as 34%.  Notably, the growth seen in fT,BD is less 

than that of gmb (refer to Figure 5.3(a)) because the total input capacitance of the delta-

doped design – denoted as Cin,bulk in Figure 5.9(a) – turns out to be as much as 40% 

greater than the total input capacitance of its uniformly-doped counterpart.  This increase 

in Cin,bulk is attributed to the new design‟s higher Nδ which causes the bulk-to-source and 

bulk-to-drain capacitances of the new design to swell noticeably, as seen in Figure 5.9(b).  

However, it is important to note that the growth in Cin,bulk is slightly dampened by the 

reduction of CPW–DNW – also witnessed in Figure 5.9(b) – that is brought about by the 

delta-doped design‟s DTI structure. 

  
Figure 5.8: (a) A semi-logarithmic plot of fT,BD vs. Lg and (b) a plot of fT,BD/fT,GD vs. Lg for the uniformly-

doped and delta-doped n-type BD MOSFET designs (VGS = 0.7 V, VDS = 0.4 V and VBS = 0). 

 

  
Figure 5.9: (a) A plot of the total input capacitance, Cin,bulk = CPW–DNW + Cbs + Cbd + Cbg, vs. Lg for the 

uniformly-doped and delta-doped n-type BD MOSFET designs (VGS = 0.7 V, VDS = 0.4 V and VBS = 0) 

and (b) a plot of the uniformly-doped and delta-doped n-type BD MOSFETs’ dominant capacitive 

components (CPW–DNW, Cbs and Cbd) vs. Lg (VGS = 0.7 V, VDS = 0.01 V and VBS = 0). 
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Figure 5.10(a) and (b) depict the behavior of gmb and gmb/gm against VBS for the 

delta-doped and uniformly-doped BD MOSFET designs.  Overall, the figures show that 

gmb and gmb/gm will be able to grow by 161% and 36%, respectively, in the delta-doped 

design if VBS is increased from 0 to 0.5 V, compared to 94% and 36%, respectively, in the 

uniformly-doped case
†
.  

  
Figure 5.10: A plot of (a) gmb and (b) gmb/gm vs. VBS for the uniformly-doped and delta-doped n-type 

BD MOSFET designs (Lg = 400 nm and VGS = VDS = 0.7 V). 

 

 Figure 5.11 and Figure 5.12 examine the consequences of process variations.  In 
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 gmb/gm is enhanced by the same amount in the uniformly-doped and delta-doped designs because the body 

effect is equally beneficial to both gmb and gm regardless of how strong the bulk terminal becomes. 
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where Nδ,nom and yepi,nom are defined as the nominal values of Nδ and yepi used within the 

uniformly-doped and delta-doped BD MOSFET designs.   

  
Figure 5.11: A plot of (a) |∆gmb|/gmb,nom and (b) |∆gm|/gm,nom vs. ∆Nδ/Nδ,nom for the uniformly-doped and 

delta-doped n-type BD MOSFET designs (Lg = 800 nm, VGS = 0.7 V, VDS = 0.4 V and VBS = 0). 

 

  
Figure 5.12: A plot of (a) |∆gmb|/gmb,nom and (b) |∆gm|/gm,nom vs. ∆yepi for the delta-doped n-type BD 

MOSFET design (Lg = 800 nm, VGS = 0.7 V, VDS = 0.4 V and VBS = 0). 

 

From Figure 5.11 and Figure 5.12, three intriguing observations can be made.  

First, gmb and gm are less susceptible to variations in Nδ in the delta-doped case.  This is a 

direct result of the new design‟s doping profile which is able to suppress random dopant 

fluctuation-induced deviations in VT [181].  Second, compared to gm, gmb is not as 

vulnerable to variations in Nδ.  This behavior is attributed to the fact that gmb nominally 

resides near its peak value – refer back to Figure 5.2 – for the designs considered in this 

chapter while gm does not, meaning that gm‟s rate of change is generally greater than gmb‟s 

with respect to Nδ.  Third, while gmb will not fluctuate as much as gm does when yepi 

varies, gmb‟s immunity to process variations will be severely weakened in such a scenario 

0

5

10

15

20

-20 -10 0 10 20

|∆
g

m
b
|/
g

m
b
,n

o
m

 (
%

) 

∆Nδ/Nδ,nom (%) 

DD BD MOSFET

UD BD MOSFET

0

5

10

15

20

25

30

35

-20 -10 0 10 20

|∆
g

m
|/
g

m
,n

o
m

 (
%

) 

∆Nδ/Nδ,nom (%) 

DD BD MOSFET

UD BD MOSFET

0

5

10

15

20

25

30

-2.0 -1.0 0.0 1.0 2.0

|∆
g

m
b
|/
g

m
b
,n

o
m

 (
%

) 

∆yepi (nm) 

0

5

10

15

20

25

30

-2.0 -1.0 0.0 1.0 2.0

|∆
g

m
|/
g

m
,n

o
m

 (
%

) 

∆yepi (nm) 

(a) (b) 

(a) (b) 



82 

since its nominal position near the peak of a gmb–Nδ characteristic is not overly beneficial 

if ∆yepi ≠ 0
†
. 

  
Figure 5.13: A plot of (a) gmb and (b) fT,BD vs. VGS – VT for the uniformly-doped and delta-doped 

n-type BD MOSFET designs (Lg = 400 nm, VDS = 0.4 V and VBS = 0). 

 

 
Figure 5.14: A plot of gmb/gm vs. VGS – VT for the uniformly-doped and delta-doped n-type BD 

MOSFET designs (Lg = 400 nm, VDS = 0.4 V and VBS = 0). 

 

Up to this point, a majority of the analysis performed on the delta-doped BD 

MOSFET design has been carried out at a VDD = 0.7 V to examine the design‟s 

performance at the minimum power supply voltage predicted for the end of bulk CMOS 

scaling [8].  To provide completeness to this section‟s investigation, the delta-doped 

design‟s key parameters are plotted against the gate over-drive voltage in Figure 5.13 and 

Figure 5.14 along with similar data from the uniformly-doped control device.  Ultimately, 

the figures show that gmb, gmb/gm and fT,BD will always be greater in the delta-doped 

design.  In fact, it turns out that the improvement seen in these parameters will be 

                                                 
†
 The same is true for the instances in which Lg and/or tox vary. 
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relatively constant with respect to the gate over-drive voltage.  Interestingly, Figure 5.14 

also reveals that gmb/gm will increase as the gate over-drive voltage is lowered, reaching a 

maximum of 0.690 at the edge of moderate inversion in the delta-doped design.   

5.3 Differential Amplifier Example 
 
 To demonstrate the benefits of the delta-doped BD MOSFET design at the circuit 

level, the design was placed within a differential amplifier structure – shown in Figure 5.15 

[180] – using ATLAS‟ circuit simulator, MIXEDMODE
†
 [38] (Ch. 12, pp. 1–50).  The 

differential amplifier was designed to have an IBIAS = 40 μA at a VDD = 0.7 V and its load 

devices, M3 and M4, were modeled by a current source equal to IBIAS/2 in parallel with an 

output resistance of 250 kΩ to serve as a representative load for the amplifier.   

vIN
–vIN

+

vOUT
+

VDD

M1 M2

vOUT
–

{M3 }M4

IBIAS

VDD

 
Figure 5.15: A schematic representation of the bulk-driven differential amplifier structure created in 

MIXEDMODE to demonstrate the benefits of the delta-doped n-type BD MOSFET design at the 

circuit level. 

 

  An exemplary plot of the differential amplifier‟s small-signal voltage gain, Av, is 

presented in Figure 5.16.  The results show that the delta-doped BD MOSFET design is 

capable of boosting the differential amplifier‟s DC gain by over 185% when the 

amplifier‟s input voltage is centered around the middle of the power supply 

[182] (pp. 417, 420–423).   

                                                 
†
 The MIXEDMODE codes used to generate the data contained within Figure 5.16 and Figure 5.17 can be 

found in the Appendix starting on page 118 and 122, respectively. 
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Figure 5.16: A semi-logarithmic plot of Av vs. operating frequency for the differential amplifier designs 

utilizing uniformly-doped and delta-doped n-type BD MOSFETs (Lg = 400 nm and vIN = vin + 0.35 V). 

  

 The VBS values of the differential amplifier‟s input devices are plotted in 

Figure 5.17 against the amplifier‟s input common-mode voltage
†
.  The figure illustrates 

that the delta-doped BD MOSFET design is capable of moderately lowering VBS1 and 

VBS2 at the positive boundary of the differential amplifier‟s ICMR.  This reduction in VBS1 

and VBS2 is credited to the delta-doped design‟s enhanced body effect which permits the 

source voltages of M1 and M2 to track VIN more aggressively
‡
 and is expected to become 

increasingly beneficial in applications with smaller nominal VT0/VDD ratios (refer to 

Section 3.5) since it will aid in keeping VBS1 and VBS2 away from their conservative upper 

limit of 0.6 V [25].   

  
Figure 5.17: A plot of VBS1 and VBS2 (VBS1 = VBS2) vs. VIN for the differential amplifier designs utilizing 

uniformly-doped and delta-doped n-type BD MOSFETs (Lg = 400 nm and VLOAD = 0.3 V). 

                                                 
†
 To collect the data for Figure 5.17, M3 and M4 were replaced with voltage sources – named VLOAD and equal 

to 0.3 V – to ensure that an adequate voltage was dropped across the amplifier‟s load [26] (pp. 59–63).   
 

‡
 Recall that smaller values of VGS1 and VGS2 are required to maintain a current level of IBIAS/2 through M1 

and M2 when the threshold voltages of M1 and M2 decrease. 
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5.4 Summary of Key Results 
 
 This chapter has presented the design of a deep-trench-isolated delta-doped n-type 

BD MOSFET optimized for use within deca-nanometer bulk CMOS technologies
†
 and 

low-voltage analog applications operating at a VDD = 0.7 V, the minimum power supply 

voltage predicted for the end of bulk CMOS scaling [8].  A summary of the process 

changes that were implemented to create the delta-doped design are provided below in 

Table 5.2 for a standard 90 nm bulk CMOS process.  A list of the delta-doped design‟s 

key results – obtained from ATLAS [38] – are also given in Table 5.3 and Table 5.4 for 

gate lengths of 400 nm and 800 nm, respectively, along with reference values from the 

triple-well-isolated uniformly-doped control device described in Section 5.1 [180].   

 
Table 5.2: A summary of the process changes that were implemented to create an optimized n-type 

BD MOSFET in a standard 90 nm bulk CMOS technology. 

PPaarraammeetteerr  UUDD  BBDD  MMOOSSFFEETT  DDDD  BBDD  MMOOSSFFEETT  

ttooxx  11..44  nnmm  11..88  nnmm  

NNδδ  11..7755  ××  1100
1188

  ccmm
––33

  66  ××  1100
1188

  ccmm
––33

  

yyeeppii  00  nnmm  1122  nnmm  

VVTT00  00..3377  VV  00..4411  VV  

SSTTII//DDTTII  WWiiddtthh    00..4422  μμmm  00..4422  μμmm  

SSTTII//DDTTII  DDeepptthh  00..4422  μμmm  11..66  μμmm  

 

Table 5.3: A summary of the key results for the uniformly-doped and delta-doped n-type BD 

MOSFET designs considered in Chapter 5 (Lg = 400 nm, VGS = 0.7 V, VDS = 0.4 V and VBS = 0). 

PPaarraammeetteerr  UUDD  BBDD  MMOOSSFFEETT  DDDD  BBDD  MMOOSSFFEETT  CChhaannggee  

ggmmbb  3355..7788  μμSS//μμmm  6699..0099  μμSS//μμmm  ++9933..11%%  

ggmmbb//ggmm  00..226611  00..550077  ++9944..44%%  

ggmmbbrroo  99..77  VV//VV  4455..33  VV//VV  ++336666..88%%  

IIDD  2266..6600  μμAA//μμmm  2233..2244  μμAA//μμmm  ––1122..77%%  

ffTT,,BBDD  11..5577  GGHHzz  22..5511  GGHHzz  ++5599..99%%  

ffTT,,BBDD//ffTT,,GGDD  00..228866  00..335599  ++2255..66%%  

CCiinn,,bbuullkk
‡‡
  44..0088  ffFF//μμmm  55..6600  ffFF//μμmm  ++3377..33%%  

                                                 
†
 The design approach outlined in Section 5.1 should be equally applicable to a p-type BD MOSFET destined 

for use within a similar technology since a p-type device would utilize a degenerately-doped p
+
 polysilicon 

gate [183] which would make the native VT0 of the device complementary to that of an n-type BD MOSFET. 
 

‡
 The Cin,bulk values listed in Table 5.3 and Table 5.4 were obtained at a VGS = 0.7 V, VDS = 0.01 V and VBS = 0. 
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Table 5.4: A summary of the key results for the uniformly-doped and delta-doped n-type BD 

MOSFET designs considered in Chapter 5 (Lg = 800 nm, VGS = 0.7 V, VDS = 0.4 V and VBS = 0). 

PPaarraammeetteerr  UUDD  BBDD  MMOOSSFFEETT  DDDD  BBDD  MMOOSSFFEETT  CChhaannggee  

ggmmbb  1177..6677  μμSS//μμmm  3333..8866  μμSS//μμmm  ++9911..66%%  

ggmmbb//ggmm  00..226666  00..551133  ++9922..77%%  

ggmmbbrroo  1199..00  VV//VV  8888..88  VV//VV  ++336688..44%%  

IIDD  1122..6655  μμAA//μμmm  1111..1111  μμAA//μμmm  ––1122..22%%  

ffTT,,BBDD  00..5566  GGHHzz  00..8866  GGHHzz  ++5533..88%%  

ffTT,,BBDD//ffTT,,GGDD  00..441155  00..449999  ++2200..11%%  

CCiinn,,bbuullkk  55..7733  ffFF//μμmm  88..0011  ffFF//μμmm  ++3399..99%%  
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6 Conclusions 

6.1 Final Remarks on the Bulk-Driven Technique 
 
 Based on the results presented in Chapter 4 and Chapter 5, it is clear that the 

performance of a BD MOSFET can be substantially improved if one incorporates delta 

doping and DTI into the design of the device.  However, since the delta-doped BD 

MOSFET design proposed in Section 5.1 was unable to make gmb comparable to gm in a 

standard 90 nm bulk CMOS process, it is unlikely that the new design approach will 

permit the bulk-driven technique to become viable as a general solution to low-voltage 

analog design since gmb/gm should continually decline as one moves beyond the 90 nm 

node (based on the findings of Section 3.3).  This belief is confirmed by process scaling 

simulations performed in ATLAS [38] using the new delta-doped design approach
†
, the 

results of which are given in Table 6.1.  The table shows that for a VGS – VT = 0.3 V and 

an Lg = 400 nm, gmb/gm will decrease from 0.450 to 0.370 between representative 90 nm 

and 45 nm standard bulk CMOS technologies
‡
.  The table also shows that gmb/gm will 

further degrade in high-κ/metal gate processes, falling due to a supplemental growth in 

C'  
ox caused by the elimination of polysilicon gate depletion. 

 While the BD MOSFET may not be ideal for the deca-nanometer regime, the 

device and the design approach outlined in this dissertation will still have significant 

value in low-voltage analog applications targeted for more mature bulk CMOS 

technologies – e.g., a 0.25 μm or a 0.18 μm process – since those technologies can 

                                                 
†
 In these simulations, tox and VT0 were not allowed to vary from their nominal values in a given process; Nδ 

was restricted to values below 1 × 10
19

 cm
–3

. 
 

‡
 Table 6.1 also indicates that yepi will stay relatively constant from process to process as a result of fairly 

minor changes in Na,eff (to see why Na,eff does not vary significantly, please see Section 3.3).  Given the 

range of values predicted for yepi between the 90 nm and 45 nm nodes, it will most likely be necessary to 

use molecular beam epitaxy (MBE) to form the lightly-doped channel layer.  However, it may be possible 

to use ultra-high vacuum chemical vapor deposition (UHV-CVD) in larger technologies where yepi exceeds 

20 nm [151].   
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inherently provide larger gmb/gm ratios (refer to Section 3.3) and will continue to be in 

demand for a while to come [39]–[40].  However, if one were to use the BD MOSFET in 

such applications, it would be wise to operate the device with a reasonable gate over-

drive voltage to combat the VT0/VDD-related issues discussed in Section 3.5 and to obtain 

a larger gmb/gm ratio, as previously illustrated by Figure 5.14 of Section 5.2. 

 
Table 6.1: A list of the Na,eff, yepi, gmb and gmb/gm values predicted by ATLAS for a standard 90 nm, 

65 nm and 45 nm bulk CMOS process, as well as a 45 nm high-κ/metal gate bulk CMOS process  

(Lg = 400 nm, VGS – VT = 0.3 V, VDS = 0.4 V and VBS = 0). 

PPrroocceessss  TTyyppee  NNaa,,eeffff  yyeeppii  ggmmbb  ggmmbb//ggmm  

SSttaannddaarrdd  9900  nnmm  [[66]]  11..7755  ××  1100
1188

  ccmm
––33

  1111  nnmm  7744..3355  μμSS//μμmm  00..445500  

SSttaannddaarrdd  6655  nnmm  [[77]]  11..3355  ××  1100
1188

  ccmm
––33

  1133  nnmm  7755..6622  μμSS//μμmm  00..440022  

SSttaannddaarrdd  4455  nnmm  [[118844]]––[[118855]]  11..5500  ××  1100
1188

  ccmm
––33

  1122  nnmm  7744..7744  μμSS//μμmm  00..337700  

HHiigghh--κκ//MMeettaall  GGaattee  4455  nnmm
††
  [[118844]]––[[118855]]  11..9900  ××  1100

1188
  ccmm

––33
  1100  nnmm  7744..5544  μμSS//μμmm  00..333355  

  

6.2 The Findings of this Research 
 

In this dissertation, several key findings were presented to expand the field‟s 

understanding of the BD MOSFET.  In particular, this dissertation showed that [145]–[146], 

[176], [180]: 

 
 In the sub-micron regime, gmb/gm is a monotonically decreasing function of 

process scaling because gm continually increases in each new process 

generation while gmb remains relatively constant due to minor changes in 

Na,eff. 

 
 The gate of an n-type BD MOSFET should be tied to a bias voltage less than 

VDD in environments where VT0/VDD is sufficiently low – e.g., in low-voltage 

analog applications targeted for technologies with feature sizes smaller than 

0.18 μm – in order to retain the expected advantages of bulk-driven circuitry. 

 
 The gate oxide scaling requirements of a BD MOSFET are not as stringent as 

those of a GD MOSFET because the bulk is able to maintain better control 

over the channel as tox is made thicker.   

                                                 
†
 An Al–SiO2 gate stack was utilized in the simulation of the high-κ/metal gate technology; tox was equal to 

the equivalent physical gate oxide thickness of the process.   
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 In deca-nanometer technologies, delta doping is the best candidate to enhance 

the bulk transconductance of a BD MOSFET because of its ability to 

efficiently reduce the depletion depth, yd, without requiring an increase in 

Na,eff and VT0.   

 
 It is possible to condense the effective layout area of a triple-well-isolated 

n-type BD MOSFET considerably by using a DTI structure since DTI is able 

to eliminate the well-to-well spacing requirements between adjacent BD 

MOSFETs of the same type.   

 
 While gmb can be noticeably improved via delta doping, it is unlikely that the 

improvements provided by the doping profile will be enough to make the BD 

MOSFET viable as a general solution to low-voltage analog design since it is 

not possible to make gmb comparable to gm in the deca-nanometer regime.  

However, a BD MOSFET – coupled with a delta-doped profile and a DTI 

structure – should still be useful for low-voltage analog applications targeted 

for mature bulk CMOS technologies – e.g., a 0.25 μm or a 0.18 μm process – 

since those technologies can inherently provide larger gmb/gm ratios and will 

continue to be utilized for the foreseeable future. 

 

6.3 Suggestions for Future Work  
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Figure 6.1: The device cross-section of a delta-doped n-type BD MOSFET built upon a PD-SOI 

substrate.  Note that the bulk terminal (tied to vIN) is directly connected to the BD MOSFET’s active 

area along the length of the device in the x direction. 

 

 To extend this dissertation‟s work on the BD MOSFET, it would be worthwhile to 

see how a delta-doped BD MOSFET performs on a PD-SOI (partially-depleted SOI) 

substrate – such as the one shown in Figure 6.1 – as there are low-voltage analog 

applications where an SOI substrate would be appropriate [186].  Theoretically, fT,BD and 
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fT,BD/fT,GD should be much greater in a PD-SOI setting because a BD MOSFET would no 

longer be plagued by a large area-dependent well capacitance and would have smaller bulk-

to-source and bulk-to-drain capacitances since its source and drain regions would be 

abutted to a buried oxide (BOX) layer [15] (pp. 57–61), [138] (pp. 456–460).  A PD-SOI 

substrate should also allow the layout area requirements of an n-type BD MOSFET to be 

similar to the case in which deep trenches are used to isolate the device on a bulk substrate, 

without requiring any modifications to the device‟s existing process flow.   
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Appendix 

Bulk-Driven MOSFET Device Structure 

ATLAS Code 

 
go atlas simflags="-P 8" 

 

############################### 

# Global Variable Definitions # 

############################### 

 

# Gate Oxide Thickness 

set tox=0.0018 

set toxmesh=$tox*(-1) 

# p-well Doping Level 

set Na=1e16 

# Deep n-well Doping Level 

set Ndnw=1e17 

# Substrate Doping Level 

set Nsub=1e16 

# Delta Doping Level (When Enabled) 

set Nd=6e18 

# Halo Doping Level (When Enabled) 

set Nhalo=4e18 

# Lightly-Doped Channel Doping Level (When Enabled) 

set Nepi=1e15 

# Gate Length 

set Length=0.08 

# S/D Contact Size 

set xcont=0.2 

# STI Width 

set xsti=0.42 

# STI Depth 

set ysti=0.42 

# DTI Width 

set xdt=$xsti 

# Deep n-well Contact Size 

set xdnw=$xcont/2 

# Leftmost Bulk Contact Definition- Right Side 

set xb=($xdt+$xdnw) 

# Source Contact Definition- Left Side 

set xs=$xb+$xcont+$xsti 

# S/D Junction Depth 

set yj=0.03 

# LDD Junction Depth (When Enabled) 

set yjLDD=0.025 

# LDD Length (When Enabled- Otherwise Ln=0) 

set Ln=0.015 

# S/D and Bulk Contact Doping 

set Nsd=1e20 

# LDD Doping (When Enabled) 

set NLDD=2e19 

# Drain Contact Definition- Left Side 

set xd=$xs+$xcont+$Length+2*$Ln 

# Rightmost Bulk Contact Definition- Left Side 

set xb2=$xd+$xcont+$xsti 

# Rightmost Bulk Contact Definition- Right Side 

set xb3=$xb2+$xcont 

# End of Device Definition in the x Direction 

set xl=$xb3+$xdt+$xdnw 

# Depth of Lightly-Doped Channel (When Enabled) 

set tepi=0.012 

# Depth of Delta-Doped Region (When Enabled) 

set tepi2=$tepi+0.1 

# Depth of p well 

set ypw=1.5 
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# Depth of Deep n well 

set ydnw=$ypw+0.50 

# Depth of Substrate 

set ysub=$ydnw+0.4 

# DTI Depth 

#set ydt=$ysti 

set ydt=$ypw+0.065 

# Halo Width (When Enabled) 

set xh=0.03 

# Halo Depth (When Enabled) 

set yh=0.02 

# Electrode Spacing from Contact Edge 

set co=0.04 

# Lateral Characteristics of S/D and Bulk Contacts 

set lat=0.003 

# Gate Height 

set tpoly=$toxmesh-0.15 

# Terminal Voltages 

set Vdd=0.7 

set Vgs=0.7 

set Vds=0.7 

set Vbs=0 

# Energy Relaxation Time 

set tau_e=0.1e-12 

 

################### 

# Mesh Definition # 

################### 

 

mesh space.mult=1.0 

 

x.mesh loc=0.00   spac=0.0300 

x.mesh loc=($xdnw-$co)   spac=0.0300 

x.mesh loc=$xdnw   spac=0.0450 

x.mesh loc=($xb-$xdt/2-0.0001) spac=0.0250 

x.mesh loc=($xb-$xdt/2)  spac=0.0001 

x.mesh loc=($xb-$xdt/2+0.0001) spac=0.0250 

x.mesh loc=$xb      spac=0.0450 

x.mesh loc=($xb+$co)     spac=0.0300 

x.mesh loc=($xb+$xcont-$co)   spac=0.0300 

x.mesh loc=($xb+$xcont)  spac=0.0450 

x.mesh loc=($xb+$xcont+$xsti/2)   spac=0.0450 

x.mesh loc=$xs      spac=0.0275 

x.mesh loc=($xs+$co)     spac=0.0275 

x.mesh loc=($xs+$xcont-$co)     spac=0.0150 

x.mesh loc=($xs+$xcont+$Ln)    spac=0.0020 

x.mesh loc=$xl/2         spac=0.0250*($Length) 

x.mesh loc=($xd-$Ln)    spac=0.0015 

x.mesh loc=($xd+$co)      spac=0.0150 

x.mesh loc=($xd+$xcont-$co)    spac=0.0275 

x.mesh loc=($xd+$xcont)      spac=0.0275 

x.mesh loc=($xb2-$xsti/2)      spac=0.0450 

x.mesh loc=$xb2          spac=0.0450 

x.mesh loc=($xb2+$co)   spac=0.0300 

x.mesh loc=($xb3-$co)    spac=0.0300 

x.mesh loc=$xb3      spac=0.0450 

x.mesh loc=($xb3+$xdt/2-0.0001)    spac=0.0250 

x.mesh loc=($xb3+$xdt/2)    spac=0.0001 

x.mesh loc=($xb3+$xdt/2+0.0001)   spac=0.0250 

x.mesh loc=($xl-$xdnw)   spac=0.0450 

x.mesh loc=($xl-$xdnw+$co)    spac=0.0300 

x.mesh loc=$xl      spac=0.0300 

 

y.mesh loc=$tpoly     spac=0.1250 

y.mesh loc=($toxmesh-0.005)    spac=0.0020 

y.mesh loc=($toxmesh-0.0025)    spac=0.0010 

y.mesh loc=$toxmesh      spac=$tox/4 

y.mesh loc=0.00   spac=$tox/4 

y.mesh loc=0.0001    spac=0.00075 

y.mesh loc=0.0025      spac=0.0010 

y.mesh loc=($tepi-0.0001)     spac=0.0015 
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y.mesh loc=$tepi            spac=0.0001 

y.mesh loc=($tepi+0.0001)  spac=0.0015 

y.mesh loc=$yj    spac=0.0025 

y.mesh loc=($yj+0.05)     spac=0.0300 

y.mesh loc=($yj+0.10)      spac=0.0600 

y.mesh loc=$ysti    spac=0.1000 

y.mesh loc=($ypw-0.5)      spac=0.1250 

y.mesh loc=($ypw-0.0001)    spac=0.0250 

y.mesh loc=$ypw   spac=0.0001 

y.mesh loc=($ypw+0.0001)    spac=0.0250 

y.mesh loc=($ypw+$ydnw)/2   spac=0.0750 

y.mesh loc=($ydnw-0.0001)     spac=0.0350 

y.mesh loc=$ydnw            spac=0.0001 

y.mesh loc=($ydnw+0.0001)  spac=0.0500 

y.mesh loc=$ysub     spac=0.1000 

 

# Remove Un-Needed Node Points to The Left and Right of the Gate Contact 

eliminate rows x.min=0 x.max=($xs+$xcont-0.001) \ 

 y.min=$tpoly y.max=-0.0001 

eliminate rows x.min=($xd+0.001) x.max=$xl y.min=$tpoly y.max=-0.0001 

eliminate rows x.min=0 x.max=($xs+$xcont-0.001) \ 

 y.min=$tpoly y.max=-0.0001 

eliminate rows x.min=($xd+0.001) x.max=$xl y.min=$tpoly y.max=-0.0001 

 

# Bulk Contact & STI Node Reduction 

eliminate rows x.min=0 x.max=$xs y.min=0.0005 y.max=$tepi 

eliminate rows x.min=($xd+$xcont) x.max=$xl y.min=0.0005 y.max=$tepi 

eliminate rows x.min=0 x.max=$xdnw y.min=0.0005 y.max=($yj+0.05) 

eliminate rows x.min=($xl-$xdnw) x.max=$xl y.min=0.0005 y.max=$yj 

eliminate rows x.min=($xb+$xcont+0.0025) x.max=($xs-0.005) \ 

 y.min=0.0005 y.max=($ysti-0.01) 

eliminate rows x.min=($xd+$xcont+0.0025) x.max=($xb2-0.005) \ 

 y.min=0.0005 y.max=($ysti-0.01) 

eliminate rows x.min=($xb+$xcont+0.05) x.max=($xs-0.05) \ 

 y.min=0.0005 y.max=($yj+0.1) 

eliminate rows x.min=($xb+$xcont+0.05) x.max=($xs-0.05) \ 

 y.min=0.0005 y.max=($yj+0.1) 

eliminate rows x.min=($xd+$xcont+0.05) x.max=($xb2-0.05) \ 

 y.min=0.0005 y.max=($yj+0.1) 

eliminate rows x.min=($xd+$xcont+0.05) x.max=($xb2-0.05) \ 

 y.min=0.0005 y.max=($yj+0.1) 

 

# Substrate Node Reduction (Below Channel Region) 

eliminate columns x.min=($xs+$xcont) x.max=$xd y.min=($yj+0.05) y.max=$ysub 

eliminate columns x.min=($xs+$xcont) x.max=$xd y.min=($yj+0.05) y.max=$ysub 

eliminate columns x.min=($xs+$xcont-$co) x.max=($xd+$co) \ 

 y.min=($yj+0.1) y.max=$ysub 

eliminate columns x.min=0 x.max=$xl y.min=($ypw+0.1) y.max=$ysub 

eliminate columns x.min=0 x.max=$xl y.min=($ypw+$ydnw)/2 y.max=$ysub 

 

# Deep Trench Node Reduction 

eliminate rows x.min=($xdnw+0.0025) x.max=($xb-0.005) y.min=0.0005 \ 

 y.max=($yj+0.1) 

eliminate rows x.min=($xb3+0.0025) x.max=($xl-$xdnw-0.005) y.min=0.0005 \ 

 y.max=($yj+0.1) 

eliminate rows x.min=($xdnw+0.05) x.max=($xb-0.05) y.min=0.0005 \ 

 y.max=($yj+0.1) 

eliminate rows x.min=($xb3+0.05) x.max=($xl-$xdnw-0.05) y.min=0.0005 \ 

 y.max=($yj+0.1) 

eliminate rows x.min=($xdnw+0.05) x.max=($xb-0.05) y.min=0.0005 \ 

 y.max=($ydt-0.01) 

eliminate rows x.min=($xb3+0.05) x.max=($xl-$xdnw-0.05) y.min=0.0005 \ 

 y.max=($ydt-0.01) 

 

############################# 

# Device Region Definitions # 

############################# 

 

# Deep n well 

region number=1 x.min=0 x.max=$xl y.min=0 y.max=$ydnw material=Silicon 
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# Central p well 

region number=2 x.min=($xs-$xsti/2) \ 

 x.max=($xd+$xcont+$xsti/2) y.min=0 y.max=($yj+0.1) material=Silicon 

region number=3 x.min=($xs-$xsti/2) \ 

 x.max=($xd+$xcont+$xsti/2) y.min=($yj+0.1) y.max=$ypw material=Silicon 

 

# Gate Oxide 

region number=4 x.min=($xs+$xcont+$Ln) x.max=($xd-$Ln) y.min=$toxmesh \ 

 y.max=0 material=SiO2 

 

# Rest of p well 

region number=5 x.min=($xdnw+$xdt/2) x.max=($xs-$xsti/2) y.min=0 y.max=$ypw \ 

 material=Silicon 

region number=6 x.min=($xd+$xcont+$xsti/2) x.max=($xl-$xdnw-$xdt/2) y.min=0 \  

 y.max=$ypw material=Silicon 

 

# STI 

region number=7 x.min=($xb+$xcont) x.max=$xs y.min=0 y.max=$ysti material=SiO2 

region number=8 x.min=($xd+$xcont) x.max=$xb2 y.min=0 y.max=$ysti material=SiO2 

 

# Gate Poly 

region number=9 x.min=($xs+$xcont+$Ln) x.max=($xd-$Ln) \ 

 y.min=$tpoly y.max=$toxmesh material=Poly 

 

# Air/Vacuum 

region number=10 x.min=0 x.max=($xs+$xcont+$Ln) y.min=$tpoly y.max=0 material=Air 

region number=11 x.min=($xd-$Ln) x.max=$xl y.min=$tpoly y.max=0 material=Air 

 

# Substrate 

region number=12 x.min=0 x.max=$xl y.min=$ydnw y.max=$ysub material=Silicon 

 

# DTI 

region number=13 x.min=$xdnw x.max=$xb y.min=0 y.max=$ydt material=SiO2 

region number=14 x.min=$xb3 x.max=($xl-$xdnw) y.min=0 y.max=$ydt material=SiO2 

 

# Oxide Spacers 

region number=15 x.min=($xs+$xcont) x.max=($xs+$xcont+$Ln) y.min=$tpoly y.max=0 \ 

 material=SiO2 

region number=16 x.min=($xd-$Ln) x.max=$xd y.min=$tpoly y.max=0 material=SiO2 

 

##################################### 

# Electrode and Contact Definitions # 

##################################### 

  

electrode name=gate number=1 x.min=($xs+$xcont+$Ln) x.max=($xd-$Ln) \ 

 y.min=$tpoly y.max=$tpoly 

electrode name=source number=2 x.min=($xs+$co) x.max=($xs+$xcont-$co) \ 

 y.min=0 y.max=0  

electrode name=drain number=3 x.min=($xd+$co) x.max=($xd+$xcont-$co) \ 

 y.min=0 y.max=0  

electrode name=pwell number=4 x.min=($xb+$co) x.max=($xb+$xcont-$co) y.min=0 \  

 y.max=0 

electrode name=pwell number=5 x.min=($xb2+$co) x.max=($xb3-$co) y.min=0 y.max=0  

electrode name=nwell number=6 x.min=0 x.max=($xdnw-$co) y.min=0 y.max=0 

electrode name=nwell number=7 x.min=($xl-$xdnw+$co) x.max=$xl y.min=0 y.max=0 

electrode name=substrate number=8 x.min=0 x.max=$xl y.min=$ysub y.max=$ysub 

 

contact name=gate neutral 

contact name=source neutral exclude_near  

contact name=drain neutral exclude_near  

contact name=pwell neutral exclude_near  

contact name=nwell neutral exclude_near 

contact name=substrate neutral exclude_near 

 

############################# 

# Device Doping Definitions # 

############################# 

 

# Delta Doping (When Enabled) 

doping uniform conc=$Na p.type noyrolloff y.top=$tepi y.bottom=($yj+0.1) \  

 regions=2 
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doping uniform conc=$Nd p.type noyrolloff y.top=$tepi y.bottom=$tepi2 \  

 regions=2 

doping uniform conc=$Nepi p.type noyrolloff y.top=0 y.bottom=$tepi regions=2 

 

# Uniform Doping (When Enabled) 

#doping uniform conc=$Nd p.type regions=2 

 

# Substrate Doping  

doping uniform conc=$Ndnw n.type regions=1 

doping uniform conc=$Na p.type regions=3 

doping uniform conc=$Na p.type regions=5 

doping uniform conc=$Na p.type regions=6 

doping uniform conc=$Nsub p.type regions=12 

 

# Bulk Contact Definition 

doping gaussian junction=$yj conc=$Nsd p.type x.left=$xb x.right=($xb+$xcont) \ 

 lat.char=$lat regions=5 

doping gaussian junction=$yj conc=$Nsd p.type x.left=$xb2 x.right=$xb3 \   

 lat.char=$lat regions=6 

 

# Deep n-well Contact Definition 

doping gaussian junction=$yj conc=$Nsd n.type x.left=0 x.right=$xdnw \ 

lat.char=$lat regions=1 

doping gaussian junction=$yj conc=$Nsd n.type x.left=($xl-$xdnw) x.right=$xl \ 

 lat.char=$lat regions=1 

 

# Drain-Side Halo Definition 

#doping gaussian junction=$yh conc=$Nhalo  p.type x.left=($xd-$Ln-$xh) \   

# x.right=($xd-$Ln+$xh) lat.char=0.005 regions=2 

 

# Source-Side Halo Definition 

#doping gaussian junction=$yh conc=$Nhalo  p.type \ 

# x.left=($xs+$xcont+$Ln-$xh) x.right=($xs+$xcont+$Ln+$xh) \ 

# lat.char=0.005 regions=2 

 

# Gate Doping 

doping uniform conc=1e20 n.type regions=9 

 

# Drain LDD Definition 

doping gaussian junction=$yjLDD conc=$NLDD n.type x.left=($xd-$Ln) \  

 x.right=($xd+$xcont) lat.char=$lat regions=2 

 

# Source LDD Definition 

doping gaussian junction=$yjLDD conc=$NLDD n.type x.left=$xs \ 

 x.right=($xs+$xcont+$Ln) lat.char=$lat regions=2 

 

# Drain Contact Definition 

doping gaussian junction=$yj conc=$Nsd  n.type x.left=$xd \   

 x.right=($xd+$xcont) lat.char=$lat regions=2 

 

# Source Contact Definition 

doping gaussian junction=$yj conc=$Nsd n.type x.left=$xs \  

 x.right=($xs+$xcont) lat.char=$lat regions=2 

 

# Structure Output File for MIXEDMODE Simulations 

struct outfile=MIXEDMODE.str 

 

material region=1 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e taumob.el=$tau_e 

material region=2 bqp.ngamma=1.3 bqp.nalpha=1 taurel.el=$tau_e taumob.el=$tau_e 

material region=3 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e taumob.el=$tau_e 

material region=4 bqp.ngamma=0 bqp.nalpha=0 mc=0.45 

material region=5 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e taumob.el=$tau_e 

material region=6 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e taumob.el=$tau_e 

material region=7 bqp.ngamma=0 bqp.nalpha=0 

material region=8 bqp.ngamma=0 bqp.nalpha=0 

material region=9 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e taumob.el=$tau_e 

material region=10 bqp.ngamma=0 bqp.nalpha=0 

material region=11 bqp.ngamma=0 bqp.nalpha=0 

material region=12 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e taumob.el=$tau_e 

material region=13 bqp.ngamma=0 bqp.nalpha=0 

material region=14 bqp.ngamma=0 bqp.nalpha=0 
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material region=15 bqp.ngamma=0 bqp.nalpha=0 

material region=16 bqp.ngamma=0 bqp.nalpha=0 

 

# Plot of Device Structure 

tonyplot -set contours2.set 

 

############################### 

# Electrical Simulation Setup # 

############################### 

 

# Model Summary 

# hnsaug = Auger Recomb.; fldmob = Velocity Sat.; cvt & conmob = Mobility Degradation 

# consrh = SRH Recomb.; bqp.n = Quantum Potential Correction  

# fermidirac = Fermi-Dirac Stat's; hcte.el = Energy Balance Transport Model 

# toyabe = Impact Ionization; qtunn.el = Quantum/Direct Oxide Tunneling 

# bbt.kl = Band-to-Band Tunneling  

 

method block newton nblockit=2 maxtrap=6 itlimit=50 

 

models conmob consrh bgn cvt fldmob evsatmod=0 hnsaug ni.fermi fermidirac \ 

 hcte.el qtunn.el bqp.n bbt.kl print temperature=300 

impact toyabe tausn=$tau_e tausp=$tau_e 

 

extract name="Reset Clk" clock.time start.time=0 

 

################### 

# Linear VT Sweep # 

################### 

 

solve init 

solve vdrain=0.05 vgate=-0.05 vnwell=0.05 

solve name=nwell vnwell=0.10 vfinal=0.35 vstep=0.05 

solve name=nwell vnwell=0.40 vfinal=$"Vdd" vstep=0.10 

 

# Enable When Vbs > 0 

#solve name=pwell vpwell=0.00625 vfinal=0.0125 vstep=0.00625 

#solve name=pwell vpwell=0.05 vfinal=($"Vbs"-0.05) vstep=0.05 

#solve vpwell=$"Vbs" 

 

log outf=vt_lin.log 

solve name=gate vgate=0 vfinal=$"Vgs" vstep=0.05 

 

extract name="vt" \ 

(x.val from curve(abs(v."gate"),abs(i."drain")) where y.val=(2e-7/$"Length")) 

 

# MOS Cap. Calibration for Gate Current Model 

#extract name="Ig_lin" \ 

#(y.val from curve(abs(v."gate"),abs(i."gate")) where x.val=$"Vgs") 

 

# ID/VGS plot for Linear VT Extraction 

tonyplot vt_lin.log 

tonyplot -set contours-V.set 

 

log off 

 

################## 

# ro Calculation # 

################## 

 

log outf=ro_sweep.log 

solve name=drain vdrain=0.10 vfinal=0.175 vstep=0.025 

solve name=drain vdrain=0.20 vfinal=$"Vds" vstep=0.05 

 

extract name="ro" \ 

1/(y.val from curve(abs(v."drain"),abs(dydx(v."drain",i."drain"))) \ 

 where x.val=$"Vds") 

 

extract name="Idsmax" \ 

(y.val from curve(abs(v."drain"),abs(i."drain")) where x.val=$"Vds") 
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extract name="Ig_sat" \ 

(y.val from curve(abs(v."drain"),abs(i."gate")) where x.val=$"Vds") 

 

extract name="Id/Ig" ($"Idsmax"/$"Ig_sat") 

 

# ro/VDS plot 

tonyplot ro_sweep.log -set ro.set 

 

# Maximum E-field Calculation 

struct outfile=test.str 

extract init infile="test.str" 

extract name="Exmax" min.conc impurity="E Field X" material="Silicon" mat.occno=3 \ 

 y.val=0.005 

extract name="Eymax" max.conc impurity="E Field Y" material="Silicon" mat.occno=1 \ 

 x.val=$"xl"/2 

 

log off 

 

################### 

# gmb Calculation # 

################### 

 

solve name=pwell vpwell=($"Vbs"-0.00625) vfinal=($"Vbs"-0.0125) vstep=-0.00625 

 

log outf=gmb_sweep.log 

solve vpwell=($"Vbs"-0.03) 

solve name=pwell vpwell=($"Vbs"-0.0275) vfinal=($"Vbs"-0.0175) vstep=0.0025 

solve name=pwell vpwell=($"Vbs"-0.015) vfinal=($"Vbs"-0.005) vstep=0.005 

solve name=pwell vpwell=$"Vbs" vfinal=($"Vbs"+0.03) vstep=0.005 

 

# gmb/VBS plot 

tonyplot gmb_sweep.log -set gmb_pwell.set 

 

extract name="gmb" \ 

(y.val from curve(abs(v."pwell"),abs(dydx(v."pwell",i."drain"))) \ 

 where x.val=$"Vbs") 

 

log off 

 

solve name=pwell vpwell=($"Vbs"+0.025) vfinal=$"Vbs" vstep=-0.025 

 

################## 

# fT Calculation # 

################## 

 

log outf=FreqGD.log y.param inport=gate outport=drain \ 

 in2port=source out2port=source 

solve prev terminal=1 ac freq=7e8 fstep=1.75 mult.f nfsteps=10 vss=0.001 

tonyplot FreqGD.log -set yparam.set 

 

extract name="fTGD" (x.val from \ 

curve(elect."freq", \ 

((((y.real."21")^2+(y.imag."21")^2)/((y.real."11")^2+(y.imag."11")^2))^(1/2))) \ 

where y.val=1) 

log off 

 

log outf=FreqBD.log y.param inport=pwell outport=drain \ 

 in2port=source out2port=source 

solve prev terminal=4 ac freq=3e8 fstep=1.75 mult.f nfsteps=7 vss=0.001 

tonyplot FreqBD.log -set yparam.set 

 

extract name="fTBD" (x.val from \ 

curve(elect."freq", \ 

((((y.real."21")^2+(y.imag."21")^2)/((y.real."11")^2+(y.imag."11")^2))^(1/2))) \ 

where y.val=1) 

 

extract name="fTBD_fTGD" ($"fTBD"/$"fTGD") 

 

log off 
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########################################## 

# Capacitance Calculation (When Enabled) # 

########################################## 

 

#log outf=cap.log 

#solve terminal=4 ac freq=1 fstep=1e6 mult.f nfsteps=1 vss=0.001 

#tonyplot cap.log -set cap.set 

 

#extract name="Cbd" abs(y.val from \ 

#curve(elect."freq",c."pwell""drain") where x.val=1e6) 

#extract name="Cbs" abs(y.val from \ 

#curve(elect."freq",c."source""pwell") where x.val=1e6) 

#extract name="Cbg" abs(y.val from \ 

#curve(elect."freq",c."gate""pwell") where x.val=1e6) 

#extract name="Cpw/dnw" abs(y.val from \ 

#curve(elect."freq",c."nwell""pwell") where x.val=1e6) 

#extract name="Cbb" abs(y.val from \ 

#curve(elect."freq",c."pwell""pwell") where x.val=1e6) 

 

#log off 

 

################## 

# gm Calculation # 

################## 

 

log outf=gm_sweep.log 

#tonyplot -set contours-V.set 

solve name=gate vgate=$"Vgs" vfinal=($"vt"-0.10) vstep=-0.065 

 

extract name="gm" \ 

(y.val from curve(abs(v."gate"),abs(dydx(v."gate",i."drain"))) where x.val=$"Vgs") 

 

# Sub-Threshold Swing Calculation 

extract name="S" \ 

        1.0/slope(maxslope(curve(abs(v."gate"),log10(abs(i."drain")))))*1000 

 

# Saturation VT Calculation 

extract name="Sat_vt" \ 

(x.val from curve(abs(v."gate"),abs(i."drain")) where y.val=(2e-7/$"Length")) 

 

extract name="DITS" (($"vt"-$"Sat_vt")*1000)/($"Vds"-0.05) 

extract name="gmb_gm" abs($"gmb"/$"gm") 

extract name="gm_ro" ($"gm"*$"ro") 

extract name="gmb_ro" ($"gmb"*$"ro") 

 

# Substrate Current Calculation 

extract name="Ipwell_max" \ 

(y.val from curve(abs(v."gate"),abs(i."pwell")) where x.val=$"Vgs") 

 

# gm/VGS plot 

#tonyplot gm_sweep.log -set S.set 

#tonyplot gm_sweep.log -set gm.set 

 

log off 

 

# End of Simulation Time Calculation 

extract name="Time" clock.time 

 

quit 
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DBINTERNAL Code 

 
go internal 

 

# Load BD MOSFET ATLAS File from Page 101 

load infile=gmb_test_doping_finalwell.in 

 

###################################################### 

# Parametric Sweep of the Delta Doping Concentration # 

###################################################### 

 

#save type=sdb outfile=Nd.dat 

#sweep parameter=Nd type=list range="5e17, 1e18, 2e18, 3e18, 4e18, 5e18, \ 

# 6e18, 7e18, 8e18, 9e18, 1e19" 

#endsave 

 

####################################### 

# Parametric Sweep of the Gate Length # 

####################################### 

 

save type=sdb outfile=L.dat 

sweep parameter=Length type=list range="0.08, 0.16, 0.24, 0.32, 0.4, 0.48, \ 

 0.56, 0.64, 0.72, 0.8" 

endsave 

 

########################### 

# Parametric Sweep of VBS # 

########################### 

 

#save type=sdb outfile=Vbs.dat 

#sweep parameter=Vbs type=list range="0.5, 0.4, 0.3, 0.2, 0.1, 0" 

#endsave 

 

########################### 

# Parametric Sweep of VDS # 

########################### 

 

#save type=sdb outfile=Vds.dat 

#sweep parameter=Vds type=list range="0.7, 0.6, 0.5, 0.4, 0.3, 0.2" 

#endsave 

 

quit 

 

 

 

 

 

 

 

 

 

 



110 

Bohm Quantum Potential Model Calibration 

ATLAS Code 

 
go atlas simflags="-P 8" 

 

############################### 

# Global Variable Definitions # 

############################### 

 

# Gate Oxide Thickness 

set gate_ox=0.0018 

set Xoxmesh=$gate_ox*(-1) 

# Background Doping Level 

set Na=1.125e18 

# Gate Length 

set Length=0.08 

# Depth of Substrate 

set ysub=0.08 

# End of Device in the x Direction 

set xl=$Length 

 

################### 

# Mesh Definition # 

################### 

 

mesh space.mult=1.0 

 

x.mesh loc=0.00          spac=0.0 

x.mesh loc=$Length       spac=$Length 

 

y.mesh loc=$Xoxmesh      spac=$gate_ox/20 

y.mesh loc=0.0000        spac=$gate_ox/20 

y.mesh loc=0.0001        spac=0.00075 

y.mesh loc=0.0025        spac=0.0010 

y.mesh loc=0.0100        spac=0.0010 

y.mesh loc=0.0250        spac=0.0025 

y.mesh loc=$ysub         spac=0.0050 

 

############################# 

# Device Region Definitions # 

############################# 

 

# Substrate 

region number=1 x.min=0 x.max=$xl y.min=0 material=Silicon 

 

# Gate Oxide  

region number=2 x.min=0 x.max=$xl y.min=$Xoxmesh \ 

 y.max=0 material=SiO2 

 

##################################### 

# Electrode and Contact Definitions # 

##################################### 

 

electrode name=gate number=1 x.min=0 x.max=$xl \ 

 y.min=$Xoxmesh y.max=$Xoxmesh 

electrode name=substrate number=2 x.min=0 x.max=$xl y.min=$ysub y.max=$ysub 

 

contact name=gate n.poly 

contact name=substrate neutral 

 

############################# 

# Device Doping Definitions # 

############################# 

 

doping uniform conc=$Na p.type regions=1 
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# Plot of Device Structure 

tonyplot -set contours2.set 

 

################## 

# S-P Simulation # 

################## 

 

model schrodinger eigens=10 qminconc=1.0e5 ox.schro fermi \ 

 qy.min=$Xoxmesh qy.max=0.05 num.direct=3 new.eig 

method climit=1.0e-2 carriers=0 

 

solve init 

 

log outf=SP.log 

solve name=gate vgate=0.0 vstep=0.01 vfinal=1.0 qscv 

log off 

 

################## 

# BQP Simulation # 

################## 

 

model fermi bqp.n bqp.ngamma=1.3 bqp.nalpha=1.0 

method climit=1.0e-2 carriers=0 

 

solve init 

 

log outf=BQP.log 

solve name=gate vgate=0.0 vstep=0.01 vfinal=1.0 qscv 

log off 

 

tonyplot -overlay SP.log BQP.log -set qscv.set 

 

quit 
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Energy Balance Transport Model Calibration 

MCDEVICE Code 

 
go atlas  

 

############################### 

# Global Variable Definitions # 

############################### 

 

# Gate Length 

set Length=0.08 

# S/D Contact Definitions 

set xcont=0.05 

set co=0.02  

# LDD Length 

set Ln=0.015 

# Gate Oxide Thickness 

set tox=-0.0018 

# Gate Height 

set tpoly=(-0.005+$tox) 

# Depth of Substrate 

set ysub=0.08 

# Location of Drain Contact in the x Direction 

set xd=($xcont+$Length+2*$Ln) 

# End of Device in the x Direction 

set xl=($xd+$xcont) 

 

# Device Contact Mesh Parameters 

set Scon=($xcont-$co) 

set Dcon=($xd+$co) 

set Bcon=($ysub-0.0001) 

set Gcon1=($xcont+$Ln) 

set Gcon2=($xd-$Ln) 

set Gcony=($tpoly+0.0001) 

set SS1=($xcont-0.0075) 

set SS2=($xd+0.0075) 

 

# x and y Node Definitions 

# @xcont-co 

set pos2=(($xcont-$co)/0.001+1) 

# @xcont 

set pos3=($co/0.00075+$pos2) 

# @xcont+Ln 

set pos4=($Ln/0.00035+$pos3) 

# @xd-Ln 

set pos5=($Length/0.00035+$pos4) 

# @xd 

set pos6=($Ln/0.00035+$pos5) 

# @xd+co 

set pos7=($co/0.00075+$pos6) 

# @xl 

set pos8=(($xcont-$co)/0.001+$pos7) 

# @ysub 

set posy=(($ysub-0.08)/0.01+87) 

 

# Current Estimation Mesh Parameters 

set pt1=($xcont-0.002) 

set pt2=($xcont+$Ln-0.002) 

set pt3=$xl/2 

set pt4=($xd-$Ln+0.002) 

set pt5=($xd+0.002) 

 

############################# 

# MCDEVICE Simulation Setup # 

############################# 

 

mcdevice 
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algo mode=2 carrier=e iter=2000 dt=0.1e-15 restart=no 

poisson tstep=2 

output restart=-1 outfiles=yes init=1 \ 

  currentlogfile="BD_current.log" \ 

  currentramplogfile="BD_current_ramp.log" \ 

  solstrfile="BD_sol.str" \ 

  summaryoutfile="BD_summary.out" \ 

  tstep=1000 

particle n=60000 

 

################### 

# Mesh Definition # 

################### 

 

xmesh node=1      loc=0.0000 

xmesh node=$pos2  loc=($xcont-$co) ratio=1.00 

xmesh node=$pos3  loc=$xcont       ratio=1.00 

xmesh node=$pos4  loc=($xcont+$Ln) ratio=1.00 

xmesh node=$pos5  loc=($xd-$Ln)    ratio=1.00 

xmesh node=$pos6  loc=$xd          ratio=1.00 

xmesh node=$pos7  loc=($xd+$co)    ratio=1.00 

xmesh node=$pos8  loc=$xl          ratio=1.00 

 

ymesh node=1      loc=$tpoly 

ymesh node=3      loc=$tox         ratio=1.0000 

ymesh node=8      loc=0.0000       ratio=1.0000 

ymesh node=13     loc=0.0005       ratio=1.0000 

ymesh node=87     loc=0.0800       ratio=1.0508 

ymesh node=$posy  loc=$ysub        ratio=1.0508 

 

############################# 

# Device Region Definitions # 

############################# 

 

# Entire Device Boundaries 

region n=1 mat=Air type=out boundp=(0.0,$xl,$tpoly,$ysub) 

 

# Substrate 

region n=2 mat=Si type=mc boundp=(0.0,$xl,0.0,$ysub) 

 

# Gate Oxide 

region n=3 mat=SiO2 type=block boundp=($Gcon1,$Gcon2,$tox,0.0) 

 

# Source Contact 

region n=4 mat=Si type=contact boundp=(0.0,$Scon,0.0000,0.0001) \ 

       name="source" 

 

# Drain Contact 

region n=5 mat=Si type=contact boundp=($Dcon,$xl,0.0000,0.0001) \ 

       name="drain" usefermi=1 

 

# Gate Contact 

region n=6 mat=Poly type=contact boundp=($Gcon1,$Gcon2,$tpoly,$tox) \ 

       name="gate" 

 

# Substrate contact 

region n=7 mat=Si type=contact boundp=(0.0,$xl,$Bcon,$ysub) \ 

       name="substrate" 

 

#################################### 

# Drain Current Estimation Regions # 

#################################### 

 

# Near the Source Terminal 

cregion boundp=($pt1,$pt3,0.0,0.08) 

cregion boundp=($pt2,$pt3,0.0,0.08) 

 

# Near the Drain Terminal 

cregion boundp=($pt3,$pt4,0.0,0.08) 

cregion boundp=($pt3,$pt5,0.0,0.08) 
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# Across the Entire Channel 

cregion boundp=($pt1,$pt5,0.0,0.08) 

cregion boundp=($pt2,$pt4,0.0,0.08) 

 

############################# 

# Carrier Scattering Models # 

############################# 

 

ssregion boundp=($SS1,$SS2,$tox,$ysub) 

seregion boundp=($SS1,$SS2,$tox,$ysub) 

matdef N=4 name="SiO2" eps=3.9 barrier=3.15 rough=0.0 

 

############################# 

# Device Doping Definitions # 

############################# 

 

# Substrate Definition 

doping dopant=B conc=1.125e18 \ 

  boundp=(0.000,$xl,0.0,$ysub) 

 

# Source Contact Definition 

doping dopant=As conc=1e20 \ 

  boundp=(0.0000,$xcont,0.0,0.0001) \ 

  char =(0.0001,0.003,0.0001,0.014) 

 

# Source LDD Definition 

doping dopant=P conc=2e19 \ 

  boundp=(0.0000,$Gcon1,0.0,0.0001) \ 

  char =(0.0001,0.003,0.0001,0.015) 

 

# Drain Contact Definition 

doping dopant=As conc=1e20 \ 

  boundp=($xd,$xl,0.0,0.0001) \ 

  char =(0.003,0.0001,0.0001,0.014) 

 

# Drain LDD Definition 

doping dopant=P conc=2e19 \ 

  boundp=($Gcon2,$xl,0.0,0.0001) \ 

  char =(0.003,0.0001,0.0001,0.015) 

 

# Gate Contact Definition 

doping dopant=As conc=1e20 \ 

  boundp=($Gcon1,$Gcon2,$tpoly,$tox) 

 

############################## 

# Drain Current Calculations # 

############################## 

 

solve vgate=0.7 vdrain=0.7 

tonyplot BD_current.log -set MC.set 

tonyplot BD_sol.str -set mcdeviceex03_sol_str.set 

 

quit 
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ATLAS Code 

 
go atlas simflags="-P 8" 

 

############################### 

# Global Variable Definitions # 

############################### 

 

# Gate Oxide Thickness 

set tox=0.0018 

set toxmesh=$tox*(-1) 

# Substrate Doping Level 

set Na=1.125e18 

# Gate Length 

set Length=0.08 

# S/D Contact Size 

set xcont=0.05 

# Source Contact Definition- Left Side 

set xs=0 

# S/D Junction Depth 

set yj=0.03 

# LDD Junction Depth (When Enabled) 

set yjLDD=0.025 

# LDD Length (When Enabled- Otherwise Ln=0) 

set Ln=0.015 

# S/D Contact Doping 

set Nsd=1e20 

# LDD Doping (When Enabled) 

set NLDD=2e19 

# Drain Contact Definition- Left Side 

set xd=$xs+$xcont+$Length+2*$Ln 

# End of Device Definition in the x Direction 

set xl=$xd+$xcont 

# Depth of Substrate 

set ysub=0.08 

# Electrode Spacing from Contact Edge 

set co=0.02 

# Lateral Characteristics of S/D Contacts 

set lat=0.003 

# Gate Height 

set tpoly=$toxmesh-0.005 

# Terminal Voltages 

set Vdd=0.7 

set Vgs=0.7 

set Vds=0.7 

set Vbs=0 

# Energy Relaxation Time 

set tau_e=0.1e-12 

 

################### 

# Mesh Definition # 

################### 

 

mesh space.mult=1.0 

 

x.mesh loc=$xs      spac=0.0275 

x.mesh loc=($xs+$co)    spac=0.0275 

x.mesh loc=($xs+$xcont-$co)       spac=0.0150 

x.mesh loc=($xs+$xcont+$Ln)      spac=0.0020 

x.mesh loc=$xl/2            spac=0.0020 

x.mesh loc=($xd-$Ln)     spac=0.0015 

x.mesh loc=($xd+$co)       spac=0.0150 

x.mesh loc=($xd+$xcont-$co)     spac=0.0275 

x.mesh loc=$xl     spac=0.0275 

 

y.mesh loc=$tpoly       spac=0.1250 

y.mesh loc=($toxmesh-0.005)      spac=0.0020 

y.mesh loc=($toxmesh-0.0025)     spac=0.0010 

y.mesh loc=$toxmesh     spac=$tox/4 



116 

y.mesh loc=0.00     spac=0.00005 

y.mesh loc=0.0001       spac=0.00005 

y.mesh loc=0.0015        spac=0.00005 

y.mesh loc=0.0125       spac=0.0015 

y.mesh loc=$yj     spac=0.0025 

y.mesh loc=$ysub       spac=0.0100 

 

# Remove Un-Needed Node Points To The Left and Right of the Gate Contact 

eliminate rows x.min=0 x.max=($xs+$xcont-0.001) \ 

 y.min=$tpoly y.max=-0.0001 

eliminate rows x.min=($xd+0.001) x.max=$xl y.min=$tpoly y.max=-0.0001 

eliminate rows x.min=0 x.max=($xs+$xcont-0.001) \ 

 y.min=$tpoly y.max=-0.0001 

eliminate rows x.min=($xd+0.001) x.max=$xl y.min=$tpoly y.max=-0.0001 

 

############################# 

# Device Region Definitions # 

############################# 

 

# Substrate 

region number=1 x.min=0 x.max=$xl y.min=0 y.max=$ysub material=Silicon 

 

# Gate Oxide 

region number=2 x.min=$xs x.max=$xl y.min=$toxmesh \ 

 y.max=0 material=SiO2 

 

# Gate Poly 

region number=3 x.min=($xs+$xcont+$Ln) x.max=($xd-$Ln) \ 

 y.min=$tpoly y.max=$toxmesh material=Poly 

 

# Air/Vacuum 

region number=4 x.min=0 x.max=($xs+$xcont+$Ln) y.min=$tpoly y.max=0 material=SiO2 

region number=5 x.min=($xd-$Ln) x.max=$xl y.min=$tpoly y.max=0 material=SiO2 

 

##################################### 

# Electrode and Contact Definitions # 

##################################### 

  

electrode name=gate number=1 x.min=($xs+$xcont+$Ln) x.max=($xd-$Ln) \ 

 y.min=$tpoly y.max=$toxmesh 

electrode name=source number=2 x.min=$xs x.max=($xs+$xcont-$co) \ 

 y.min=0 y.max=0  

electrode name=drain number=3 x.min=($xd+$co) x.max=($xd+$xcont) \ 

 y.min=0 y.max=0  

electrode name=substrate number=4 x.min=0 x.max=$xl y.min=$ysub y.max=$ysub 

 

contact name=gate n.poly 

contact name=source neutral exclude_near  

contact name=drain neutral exclude_near  

contact name=substrate neutral exclude_near  

 

############################# 

# Device Doping Definitions # 

############################# 

 

# Uniform Doping 

doping uniform conc=$Na p.type regions=1 

 

# Gate Doping 

doping uniform conc=1e20 n.type regions=3 

 

# Drain LDD Definition 

doping gaussian junction=$yjLDD conc=$NLDD phosphorus x.left=($xd-$Ln) \  

 x.right=($xd+$xcont) lat.char=$lat regions=1 

 

# Source LDD Definition 

doping gaussian junction=$yjLDD conc=$NLDD phosphorus x.left=$xs \ 

 x.right=($xs+$xcont+$Ln) lat.char=$lat regions=1 

 

 

 



117 

# Drain Contact Definition 

doping gaussian junction=$yj conc=$Nsd arsenic x.left=$xd \   

 x.right=($xd+$xcont) lat.char=$lat regions=1 

 

# Source Contact Definition 

doping gaussian junction=$yj conc=$Nsd arsenic x.left=$xs \  

 x.right=($xs+$xcont) lat.char=$lat regions=1 

 

material region=1 taurel.el=$tau_e taumob.el=$tau_e 

 

# Plot of Device Structure 

tonyplot -set contours2.set 

 

############################### 

# Electrical Simulation Setup # 

############################### 

 

# Model Summary 

# hnsaug = Auger Recomb.; fldmob = Velocity Sat.; cvt & conmob = Mobility Degradation 

# consrh = SRH Recomb.; fermidirac = Fermi-Dirac Stat's 

# hcte.el = Energy Balance Transport Model 

 

method block newton maxtrap=6 

models conmob consrh cvt fldmob evsatmod=0 hnsaug ni.fermi fermidirac \ 

 hcte.el print temperature=300 

 

################### 

# Linear Vt Sweep # 

################### 

 

solve init 

solve vdrain=0.05 vgate=-0.05 

 

# Enable When Vbs > 0 

#solve name=substrate vsubstrate=0.00625 vfinal=0.0125 vstep=0.00625 

#solve name=substrate vsubstrate=0.05 vfinal=($"Vbs"-0.05) vstep=0.05 

#solve vsubstrate=$"Vbs" 

 

log outf=vt_lin.log 

solve name=gate vgate=0 vfinal=$"Vgs" vstep=0.05 

 

extract name="vt" \ 

(x.val from curve(abs(v."gate"),abs(i."drain")) where y.val=(2e-7/$"Length")) 

 

# ID/VGS plot for Linear VT Extraction 

tonyplot vt_lin.log 

 

log off 

 

############################# 

# Drain Current Calculation # 

############################# 

 

log outf=ro_sweep.log 

solve name=drain vdrain=0.10 vfinal=0.175 vstep=0.025 

solve name=drain vdrain=0.20 vfinal=$"Vds" vstep=0.05 

 

extract name="Idsmax" max(abs(i."drain")) 

 

# ID/VDS plot 

tonyplot ro_sweep.log -set idvd.set 

tonyplot -set contours-V.set 

 

log off 

 

quit 
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Bulk-Driven MOSFET Differential Amplifier Example 

MIXEDMODE Frequency Response Code 

 
go atlas simflags="-P 8" 

 

############################### 

# Global Variable Definitions # 

############################### 

 

# Terminal Voltages 

set Vdrain=0.7 

set Vgate=0.7 

set Vpwell=0.35 

# Desired Drain Current 

set Id=2e-5 

set gdrain=$Id/($Vdrain-0.05) 

set Ist=$gdrain*0.05-1e-9 

# Energy Relaxation Time 

set tau_e=0.1e-12 

# Output Resistance of the Load Devices 

set RL=250e3 

 

############################## 

# MIXEDMODE Simulation Setup # 

############################## 

 

.BEGIN 

 

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

$ MIXEDMODE Circuit Element Definitions                         $ 

$ Element Node1 Node2 (Ref_Node1 Ref_Node2) DC_Value (AC_Value) $ 

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

 

VG       1   0   0.05 

VD       3   0   0.05 

VINAC1   6   2   0.00   AC   0.5 

VINAC2   2   7   0.00   AC   0.5    

VINDC    2   0   0.05  

 

GD1      3   4   3      0    $gdrain 

Istart1  4   3   $Ist 

RD1      4   3   $RL 

GD2      3   8   3      0    $gdrain 

Istart2  8   3   $Ist 

RD2      8   3   $RL 

ES       5   0   3      0    (0.1/0.7) 

 

$ Import the BD MOSFET Structures from the ATLAS File on Page 101 (Width is in Microns) 

AM1    6=pwell 4=drain 5=source 1=gate 1=nwell 0=substrate width=0.8 

+      infile=MIXEDMODE.str  

AM2    7=pwell 8=drain 5=source 1=gate 1=nwell 0=substrate width=0.8 

+      infile=MIXEDMODE.str 

 

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

$ MIXEDMODE Circuit Analysis Definitions $ 

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

 

.LOG outfile=differential_amplifier 

.NODESET V(1)=0.05 V(2)=0.05 V(3)=0.05 V(4)=0.05 V(6)=0.05 V(7)=0.05 V(8)=0.05 

.OPTIONS M2LN RELPOT TEMP=300 TNOM=300 

 

$ Relax the DC Tolerance & Increase the Number of Circuit/Device Iterations 

$ Limit the Max. Allowable Change in a Node Voltage between Circuit/Device Iterations 

.NUMERIC TOLDC=50e-3 IMAXDC=100 VCHANGE=0.7 

 

$ Ramp Up the DC Terminal Voltages to Their Final Values 

.DC VG      0.10   $Vgate    0.05 
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.DC VINDC   0.10   $Vpwell   0.05 

.DC VD      0.10   $Vdrain   0.05 

 

$ Sweep the Input Voltage vs. Frequency 

.AC DEC 3 1e5 1e10 

 

.END 

 

########################################## 

# ATLAS Model Statements for AM1 and AM2 # 

########################################## 

 

models device=AM1 region=1 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=2 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=3 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=4 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=5 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=6 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=7 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=8 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=9 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=10 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=11 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=12 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=13 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=14 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=15 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=16 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

 

models device=AM2 region=1 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=2 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=3 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=4 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=5 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=6 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=7 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=8 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=9 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=10 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=11 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=12 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=13 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  
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models device=AM2 region=14 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=15 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM2 region=16 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

 

############################################# 

# ATLAS Material Statements for AM1 and AM2 # 

############################################# 

 

material device=AM1 region=1 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM1 region=2 bqp.ngamma=1.3 bqp.nalpha=1 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM1 region=3 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM1 region=4 bqp.ngamma=0 bqp.nalpha=0 

material device=AM1 region=5 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM1 region=6 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM1 region=7 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=8 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=9 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e  

material device=AM1 region=10 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=11 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=12 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM1 region=13 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=14 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=15 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=16 bqp.ngamma=0 bqp.nalpha=0  

 

material device=AM2 region=1 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM2 region=2 bqp.ngamma=1.3 bqp.nalpha=1 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM2 region=3 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM2 region=4 bqp.ngamma=0 bqp.nalpha=0 

material device=AM2 region=5 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM2 region=6 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM2 region=7 bqp.ngamma=0 bqp.nalpha=0  

material device=AM2 region=8 bqp.ngamma=0 bqp.nalpha=0  

material device=AM2 region=9 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e  

material device=AM2 region=10 bqp.ngamma=0 bqp.nalpha=0  

material device=AM2 region=11 bqp.ngamma=0 bqp.nalpha=0  

material device=AM2 region=12 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM2 region=13 bqp.ngamma=0 bqp.nalpha=0  

material device=AM2 region=14 bqp.ngamma=0 bqp.nalpha=0  

material device=AM2 region=15 bqp.ngamma=0 bqp.nalpha=0  

material device=AM2 region=16 bqp.ngamma=0 bqp.nalpha=0  

 

########################################### 

# ATLAS Impact Statements for AM1 and AM2 # 

########################################### 

 

impact device=AM1 region=1 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM1 region=2 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM1 region=3 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM1 region=5 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM1 region=6 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM1 region=9 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM1 region=12 toyabe tausn=$tau_e tausp=$tau_e 
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impact device=AM2 region=1 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM2 region=2 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM2 region=3 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM2 region=5 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM2 region=6 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM2 region=9 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM2 region=12 toyabe tausn=$tau_e tausp=$tau_e 

 

########################### 

# ATLAS Method Statements # 

########################### 

 

# Relax the Carrier Concentration and Carrier Temperature Tolerances 

# Reduce the BQP Model Iterations 

 

method block newton nblockit=1 clim.eb=1e15 tmin.fact=0.2 bqpr.tol=1e-20 \ 

 itlimit=50 

 

################################################## 

# Restart ATLAS to Plot the MIXEDMODE AC Results # 

################################################## 

 

go atlas 

tonyplot differential_amplifier_ac_1.log -set AC.set 

 

quit 
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MIXEDMODE Input Common-Mode Range Code 

 
go atlas simflags="-P 8" 

 

############################### 

# Global Variable Definitions # 

############################### 

 

# Terminal Voltages 

set Vdrain=0.7 

set Vgate=0.7 

set Vpwell=0.7 

# Desired Drain Current 

set Id=2e-5 

# Energy Relaxation Time 

set tau_e=0.1e-12 

 

############################## 

# MIXEDMODE Simulation Setup # 

############################## 

 

.BEGIN 

 

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

$ MIXEDMODE Circuit Element Definitions                         $ 

$ Element Node1 Node2 (Ref_Node1 Ref_Node2) DC_Value (AC_Value) $ 

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

 

VG    1   0   0.05 

VD    3   0   0.05 

VIN   2   0   0.05   AC   1 

 

RD    3   4   15000 

RS    5   0   1e6 

IS    5   0   2e-8 

 

$ Import the BD MOSFET Structure from the ATLAS File on Page 101 (Width is in Microns) 

$ Half-Circuit Analysis Only 

AM1      2=pwell 4=drain 5=source 1=gate 1=nwell 0=substrate width=3.4 

+        infile=MIXEDMODE.str  

 

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

$ MIXEDMODE Circuit Analysis Definitions $ 

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

 

.LOG outfile=single_device 

.NODESET V(1)=0.05 V(2)=0.05 V(3)=0.05 V(4)=0.05 V(5)=0.00 

.OPTIONS M2LN RELPOT TEMP=300 TNOM=300 

  

$ Relax the DC Tolerance & Increase the Number of Circuit/Device Iterations 

$ Limit the Max. Allowable Change in a Node Voltage between Circuit/Device Iterations 

.NUMERIC TOLDC=35e-3 IMAXDC=100 VCHANGE=0.7 

 

$ Ramp Up the DC Terminal Voltages to Their Final Values 

.DC VG        0.10   $Vgate    0.05 

.DC VD        0.10   $Vdrain   0.05 

.DC IS   DEC  1e-6   $Id       10 

.DC VIN       0.00   $Vpwell   0.05 

 

.END 

 

################################## 

# ATLAS Model Statements for AM1 # 

################################## 

 

models device=AM1 region=1 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=2 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  
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models device=AM1 region=3 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=4 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=5 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=6 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=7 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=8 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=9 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=10 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=11 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=12 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=13 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=14 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=15 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

models device=AM1 region=16 conmob consrh bgn cvt fldmob evsatmod=0 hnsaug \ 

 ni.fermi fermidirac hcte.el bqp.n bbt.kl print  

 

##################################### 

# ATLAS Material Statements for AM1 # 

##################################### 

 

material device=AM1 region=1 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM1 region=2 bqp.ngamma=1.3 bqp.nalpha=1 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM1 region=3 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM1 region=4 bqp.ngamma=0 bqp.nalpha=0 

material device=AM1 region=5 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM1 region=6 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM1 region=7 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=8 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=9 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e  

material device=AM1 region=10 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=11 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=12 bqp.ngamma=0 bqp.nalpha=0 taurel.el=$tau_e \ 

 taumob.el=$tau_e 

material device=AM1 region=13 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=14 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=15 bqp.ngamma=0 bqp.nalpha=0  

material device=AM1 region=16 bqp.ngamma=0 bqp.nalpha=0  

 

################################### 

# ATLAS Impact Statements for AM1 # 

################################### 

 

impact device=AM1 region=1 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM1 region=2 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM1 region=3 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM1 region=5 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM1 region=6 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM1 region=9 toyabe tausn=$tau_e tausp=$tau_e 

impact device=AM1 region=12 toyabe tausn=$tau_e tausp=$tau_e 
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########################### 

# ATLAS Method Statements # 

########################### 

 

# Relax the Carrier Concentration and Carrier Temperature Tolerances 

# Reduce the BQP Model Iterations 

 

method block newton nblockit=1 clim.eb=2e15 tmin.fact=0.2 bqpr.tol=1e-20 \ 

 itlimit=50 

 

################################################## 

# Restart ATLAS to Plot the MIXEDMODE DC Results # 

################################################## 

 

go atlas 

tonyplot single_device_dc_4.log -set DC-SD.set 

 

quit 
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