
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2-1-2011

Electro-optic adaptive microlens Electro-optic adaptive microlens

Dale Ewbank

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Ewbank, Dale, "Electro-optic adaptive microlens" (2011). Thesis. Rochester Institute of Technology.
Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/14?utm_source=repository.rit.edu%2Ftheses%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

ELECTRO-OPTIC ADAPTIVE MICROLENS

by

DALE E. EWBANK

A DISSERTATION

Submitted in partial fulfillment of the requirements

For the degree of Doctor of Philosophy

in

Microsystems Engineering

at the

Rochester Institute of Technology

February 2011

Author: Dale E. Ewbank ___
Microsystems Engineering Program

Certified by: ___
Thomas W. Smith, Ph.D.

Professor of Chemistry and Microsystems Engineering

Approved by: __
Bruce W. Smith, Ph.D.

Director of Microsystems Engineering Program

Certified by: ___
Harvey J. Palmer, Ph.D.

Dean, Kate Gleason College of Engineering

 ii

NOTICE OF COPYRIGHT

© 2011

Dale E. Ewbank

REPRODUCTION PERMISSION STATEMENT

Permission Granted

TITLE:

“ELECTRO-OPTIC ADAPTIVE MICROLENS”

I, Dale E. Ewbank, hereby grant permission to the Wallace Library of the Rochester Institute of

Technology to reproduce my dissertation in whole or in part. Any reproduction will not be for commercial

use or profit.

Signature of Author: Dale E. Ewbank _________________________________ Date: Feb 2011 ________

 iii

Electro-Optic Adaptive Microlens

By

Dale E. Ewbank

Submitted by Dale E. Ewbank in partial fulfillment of the requirements for the degree of Doctor of

Philosophy in Microsystems Engineering and accepted on behalf of the Rochester Institute of Technology

by the dissertation committee.

We, the undersigned members of the Faculty of the Rochester Institute of Technology, certify that we have

advised and/or supervised the candidate on the work described in this dissertation. We further certify that

we have reviewed the dissertation manuscript and approve it in partial fulfillment of the requirements of the

degree of Doctor of Philosophy in Microsystems Engineering.

Approved by:

Dr. Thomas W. Smith __
(Committee Chair and Dissertation Advisor) Date

Dr. Lynn F. Fuller __
 Date

Dr. Michael Kotlarchyk __
 Date

Dr. Bruce W. Smith __
 Date

MICROSYSTEMS ENGINEERING PROGRAM

ROCHESTER INSTITUTE OF TECHNOLOGY

February 2011

 iv

ABSTRACT

Kate Gleason College of Engineering

Rochester Institute of Technology

Degree: Doctor of Philosophy Program: Microsystems Engineering

Name of Candidate: Dale E. Ewbank

Title: Electro-Optic Adaptive Microlens

The goal of the present research was to demonstrate the viability of an electro-optic adaptive

microlens (EOAM) system in imaging applications requiring broadband illumination in the visible region.

Previous works illustrate devices that are adaptive optics but are limited in capability. Most have been

designed and optimized for a particular wavelength and many of them are polarization dependent. An

adaptive optical system that will function over a broadband of visible wavelengths will be useful in many

imaging applications.

The tasks completed for EOAM system design and build required understanding and

implementation of the imaging theory, the materials‟ properties, the control voltages, the fabrication

processes, and finally understanding and implementation of the imaging theory for testing. Single cell

transmission devices were used for initial characterization of the polymer-dispersed liquid crystal (PDLC)

process. Three iterations of the EOAM devices with PDLC were built on silicon wafers and 26 devices

were optically tested. The new chemical mechanical planarization process was implemented for the second

and third builds. For optical device testing the phase shift was extracted using a newly developed method

for blind phase extraction.

The development of a design model for the EOAM system and validating it with the images

formed by a real electro-optic adaptive microlens system has provided the knowledge base needed for

implementation of adaptive electro-optic lenses for the visible region, and a process which can be used for

further improvement of the microsystem. The model parameters can be adjusted for new electro-optic

materials that may become available that do not have the limitations of PDLC.

Abstract Approval: Committee Chair: Thomas W. Smith

 Program Director: Bruce W. Smith

 Dean, KGCOE: Harvey J. Palmer

 v

ACKNOWLEDGMENTS

This work is a compilation of efforts of numerous people from many different

disciplines. While completing this dissertation, I am fortunate to have had the opportunity

to collaborate with others and to enjoy the discovery of new knowledge. Thank you to all

who have helped me with this task.

The author wishes to thank Dr. Thomas W. Smith for his time, ideas, and

continuous encouragement during this dissertation process. It was an honor for me to

have on my committee Dr. Lynn F. Fuller, Dr. Michael Kotlarchyk, and Dr. Bruce W.

Smith.

I am grateful to the following organizations for support: KGCOE FEAD (2005),

Microsystems Engineering, Electrical and Microelectronic Engineering, Imaging Science,

Semiconductor and Microsystems Fabrication Laboratory.

I am indebted to my many colleagues for their help and support: Dr. Robert

Pearson, Dr. Santosh Kurinec, Dr. Michael Jackson, Dr. Karl Hirschman, Dr. Sean

Rommel, Dr. Surendra Gupta, Dr. Christopher Hoople, Dr. Mustafa Abushagur, Dr.

Zoran Ninkov, Dr. Jonathan Arney, Dr. Roger Easton, Robert MacIntrye, Robert Kraynik

Scott Blondell, Thomas Grimsley, David Yackoff, Bruce Tolleson, John Nash, Richard

Battaglia, Sean O‟Brien, Dr. Alan Raisanen, Dan Brown, Deoram Persaud, Ivan

Puchades, Jianming Zhou, Frank Cropanese, Andrew Estroff, Neal Lafferty, Germain

Fenger, Christopher Shea, and the numerous other students who helped and encouraged

me.

I am especially thankful to Nitin Nampalli for his optimization and

characterization of the CMP process, and to Patrick Whiting for his fabrication

processing and electrical simulations.

http://www.cis.rit.edu/user/39
http://www.cis.rit.edu/people/faculty/easton/index.html

 vi

TABLE OF CONTENTS

Abstract .. iv

List of Figures .. viii

List of Tables .. xi

I. Dissertation Statement ..1

II. Survey of Related Work ..3

III. Results and discussion ...11

A. Imaging Theory ..11

1.0 Fresnel Propagation ...11

2.0 Simulation of the EOAM system ...18

2.1 Function block diagram ...19

2.2 Assumptions for using propagation model for the EOAM22

B. Electro-optic Adaptive Microlens materials in single cell device26

C. Control voltages for the arrayed pixel device ..31

D. Fabrication process for the arrayed pixel device34

E. Device testing...45

1. Dual beam interferometer ..45

2. Single beam interferometer ..49

a. Theory ..49

b. Reflection simulation of film stack52

c. Imaging theory for phase extraction55

d. Assumptions and algorithm ...58

e. Simulations ..63

 vii

f. Summary of Phase extraction from devices67

F. Summary of EOAM Results ..72

IV. Conclusions..75

REFERENCES ..77

Appendix A: setupworkspace160_3.m, lensf500bit_3.m, arrayfillbit_160.m, fPropfocal_160.m,

and address_fbit.m

Appendix B: datain_rerun_singlefile.m

Appendix C: Run Sheet for EOAM v1.5b

Appendix D: EOAM_Process Rev1_5b.PPT

Appendix E: g5_nm_PDLC.fig and g5_nm_PDLC.m

Appendix F: xu_2007_ph_ext_05182010_data_p.m

 viii

List of Figures

Figure 1: This is the conceptual design and operation of the one-dimensional LC

reflection mode beam steerer. Reprinted with permission from [13]6

Figure 2: Fabrication of an inhomogeneous PDLC using a patterned photomask.

Reprinted with permission from [14] ...7

Figure 3: Diffraction properties at = 514 nm of a prism grating made of inhomogeneous

PDLC. Reprinted with permission from [14] ..7

Figure 4: Method for fabricating a PDLC Fresnel lens. Reprinted with permission from

[15]. Copyright 2003, American Institute of Physics. ...8

Figure 5: Experimental setup for subjective feedback loop to improve visual acuity and

determine aberrations of the human eye. Reprinted with permission from [2]9

Figure 6: An adaptive LC lens fabricated for experiment and 3D model of a wireless

implantable LC corrector lens are shown. Reprinted with permission from [1] ...10

Figure 7: Geometry for aperture propagating to new plane ...13

Figure 8: Fresnel Wave Propagation System for Electro-optic Adaptive Microlens.20

Figure 9: Input mask for EOAM system. Mask represents group of incoherent point

sources with random phase and transmission of 1.0 for all wavelengths24

Figure 10: Sample output image for EOAM system. Simulated wavelengths are 587, 486,

and 656 nm. ..25

Figure 11: Chemical structure for E48 liquid crystal. ..26

Figure 12: Chemical structure for NOA81 ..27

Figure 13: PDLC at 24% by weight in NOA81 polymerized at different intensities.

Sample transmission data includes losses due to two ITO coated glass slides.28

Figure 14: Image of single cell device made from E48/NOA81 utilizing patterned SU-8

resist as the spacer ..28

Figure 15: Diagram of dual beam interferometer test system used for single cell devices29

Figure 16: Phase shift versus voltage for single cell device at three wavelengths30

Figure 17: Comparison of phase shift with illumination of two different polarizations ...31

Figure 18: Diagram of voltage distribution board for EAOM device33

 ix

Figure 19: Sub array of pixels for EOAM device with 16 by 16 pixels34

Figure 20: Addresses for 8 by 8 array of a single quadrant with 160 micrometer pixels ..35

Figure 21: Metal 1of EOAM..36

Figure 22: Via 1 of EOAM ..37

Figure 23: Metal 2 of EOAM...38

Figure 24: Spacer layer for EOAM ..39

Figure 25: Layer stack for EOAM device..40

Figure 26: Examples of surface roughness before and after the CMP process [26] on

device pixels...41

Figure 27: Hundred millimeter device wafer after all lithography steps completed42

Figure 28: Finished EOAM device ..48

Figure 29: Dual beam interferometer test system with device and output image on card .46

Figure 30: Device with probes in dual beam interferometer test system46

Figure 31: Interferogram of device from dual beam interferometer test system47

Figure 32: Interferogram of device from dual beam interferometer test system47

Figure 33: Interferogram of device from dual beam interferometer test system48

Figure 34: Plot showing relative phase variability from dual beam interferometer test

system analysis...48

Figure 35: Single arm interferometer system diagram .. 50

Figure 36: Interferogram from EOAM device active area and surround at 0 volts51

Figure 37: Interferogram from EOAM device active area and surround at 200 volts51

Figure 38: EOAM device with non-active area masked off by black tape52

Figure 39: Modeled reflectance for EOAM device (entire film stack) 54

Figure 40: Modeled reflectance for top 4 layers of EOAM device55

Figure 41: Flow diagram of algorithm showing its process and validation steps63

 x

Figure 42: Phase extraction simulated with varying Ar > Ao maximum65

Figure 43: Phase with errors less than 2 /100 comparing input and output Ar/Ao ratio67

Figure 44: Layers of materials used in the reflective micro-device68

Figure 45: Diagram of single arm interferometer system used to collect interferograms .68

Figure 46: Interferograms of PDLC device at 3 volts (left) and 240 volts (right)69

Figure 47: Sample phase extraction from interferograms of electro-optic adaptive

microlens devices ...71

Figure 48: Delta phase versus electro-optic material thickness for n 74

 xi

List of Tables

None

1

I. Dissertation Statement

The major limitations of diffractive and adaptive imaging systems presently in use

are limited wavelength bandwidth and polarization dependence of the illumination.

Diffractive optical elements (DOEs) are efficient in beam steering, phase modulation,

image formation and scanning over a limited bandwidth due to the dispersion properties

of the materials of the DOE. The adaptation of liquid crystal display (LCD) technologies

to phase arrayed imaging systems has been limited due to the polarization dependence of

LCDs. The use of adaptive electro-optic type devices for correction of human vision has

been studied [1-4] and patented [5]; however, the implementation of corrective lens

devices has not reached the consumer.

The overall goal of this research project is to demonstrate the viability of an

electro-optic adaptive microlens (EOAM) system that does not have polarization

dependence in imaging applications that require broadband illumination in the visible

region.

The specific objective is to evaluate imaging quality as a function of the pixel

array design, properties of the EOAM materials, and the applied field for each pixel in

the array. The imaging quality will be evaluated by comparison of the EOAM system

image to that of a simulated image. The cell array design parameters include pixel size,

pixel pitch, and array size, all of which ultimately define the size of the EOAM device.

The EOAM materials properties are divided into several categories: mechanical,

chemical, electrical, and optical. The mechanical and chemical properties relate mainly to

the fabrication steps involved in building the EOAM device. The optical properties are

also relevant during fabrication as the patterning of the device is done using lithography.

2

The electrical and optical properties are the major contributors to the use and successful

application of the EOAM device in imaging. The applied field for each pixel will set the

relative phase shift for that pixel. The EOAM system is adaptive and can be used as

various type of diffractive elements by appropriate choice of the pixel array design,

properties of the EOAM materials, and the applied field for each pixel in the array.

The parameter space used in modeling and fabrication of the EOAM system lends

itself to applications in the visible region. While the electro-optic material used for this

research is not appropriate for consumer production; the knowledge developed for

modeling and fabrication is applicable to novel electro-optic materials as they become

available.

The polymer-dispersed liquid crystal (PDLC) material use in this work has

limited change in refractive index. The drive voltage and PDLC thickness combination

limit optical phase change to approximately 2 radians. This limit does not allow operation

of the EOAM at 2 levels (0,). Thus the lensing capabilities were not evaluated for a

pixilated device.

3

II. Survey of Related Work

With the slogan "you press the button, we do the rest," George Eastman put the

first simple camera into the hands of a world of consumers in 1888. In so doing, he made

a cumbersome and complicated process easy to use and accessible to nearly everyone [6].

The proliferation of optical devices over the last 120 years has grown

tremendously, largely on this same premise. There has always been a need and drive for

creating new optical instrumentation for the scientific, academic and industrial

communities; however, the needs and desires of the “consumers” are by far the largest

driving force for creation of new optical devices.

As an example, since Arthur L. Schawlow and Charles H. Townes published their

technical paper on the principles of the laser in 1958, the device has been put to work in a

vast range of applications and has assumed many forms. Today, lasers are used in a wide

range of applications in medicine, manufacturing, the construction industry, surveying,

consumer electronics, scientific instrumentation, and military systems. Literally billions

of lasers are at work today, ranging in size from tiny semiconductor devices no bigger

than a grain of salt to high-power instruments as large as an average living room [7].

Consumer optical devices are all about making cumbersome and complicated

processes easy to use and accessible to everyone. This has been done for digital cameras,

video recorders, CD and DVD players, and optical storage for computers. As the old

adage says “a picture is worth a thousand words,” and the consumer world is full of

images.

Over the past 40 years there have been two technologies that have developed and

are now interacting. Liquid crystal technology has been dominant in the development of

4

electronic displays [8]; while optical phased array technology [9] has moved from

mechanical steering to coherent optical sensor systems.

The technological development of liquid crystal displays (LCDs) began in 1964

with the discovery of guest-host mode and dynamic scattering mode by Heilmeier of

RCA Laboratories. Heilmeier conceived the idea of manufacturing wall-sized flat-panel

color televisions. But his idea did not become a reality until 1991. Due to materials

properties and power requirements, until 1988 LCDs were limited to niche applications

of small-size displays such as digital watches and pocket calculators. The development of

twisted nematic (TN) mode, super TN mode, and liquid crystals that can operate at room

temperature broadened the number of applications. Also the development of an

amorphous silicon field-effect transistor allowed for addressing and control of the LCDs.

Using a thin film transistor array in 1988, Nagayasu [10] of Sharp Corporation

demonstrated an active-matrix full color full-motion 14 inch display. This set the new and

ever advancing standard for the notebook computer industry.

These LCDs were developed and optimized for display devices, in which the

major requirements were optical transmission and low power consumption. The optical

properties of the LC also allow for modification of polarization of the illumination and

for phase change. The polarization effects were exploited by Schadt and Helfich [11] and

the utilization of two polarizers and surface alignment of the TN mode LC is the basis for

most display manufacturing throughout the world.

In 1994 beam steering of visible light was reported using a LC television panel as

a phased array [12]. LCDs are usually configured to modulate intensity, however when

the polarizers are removed the change of phase of the illumination can be utilized. This

5

LC system was configured such that the display pixels created a discrete blazed-grating

phase ramp across the aperture. The steering efficiency and deflection angle were limited

by the large pixel size and the limited available phase modulation of 1.3 . This type of

device is also polarization dependent.

Numerous other systems have been developed and many improvements have been

incorporated. One dimensional phase modulation devices have been incorporated into

systems for two dimensional steering. These systems were designed and optimized to

solve a particular imaging problem (beam splitting or steering, scanning, focusing, and/or

correction of phase aberrations). The imaging problems must be well defined and

generally are severely constrained by their input and output environments. The system

design is usually monochromatic and thus constrained to an operating wavelength of

radiation and a very small bandwidth around that wavelength. The device size (pixel size

and number of pixels) is dictated by the required numerical aperture of the system.

A phase profile is imparted on the optical wavefront when it is transmitted or

reflected from the device. As this phase modified wavefront is propagated through the

system it converges or diverges to form an image. The refractive index changes of the LC

under an applied field allow for effective changes to the optical path length (OPL). The

change in OPL results in the change of phase for that region of the wavefront.

Figure 1 shows the conceptual design for a one dimensional beam steering device

developed in 1996 at a wavelength of 10.6 m with a LC phase array [13]. The device

works in reflective mode and utilizes phase wrapping of 2 . It is polarization dependent

and the array has four cells.

6

Figure 1: This is the conceptual design and operation of the one-

dimensional LC reflection mode beam steerer. Reprinted with permission

from [13].

Recent work has been done using polymer-dispersed liquid crystal (PDLC)

materials to create devices [14, 15]. The inhomogeneous nanoscale droplets of PDLC

were obtained by exposing the LC/monomer with ultraviolet (UV) radiation through a

patterned photomask as shown in Figure 2. The intensity variation during exposure of the

PDLC results in a gradient of droplet sizes in the film, and the relative refractive index

change under an applied electric field is a function of the droplet size. This gradient

refractive index nanoscale (GRIN) PDLC is highly transparent in the visible wavelengths

and has been used to create prism gratings, as well as positive, negative, and Fresnel lens.

The GRIN PDLC devices are broadband, independent of light polarization, and simple to

fabricate, however, the required driving voltage is higher than 100 Vrms and response time

is 0.080-0.200 milliseconds.

7

Figure 2: Fabrication of an inhomogeneous PDLC using a patterned photomask.

Reprinted with permission from [14].

The optical results for a GRIN PDLC device are shown in Figure 3. The prism

grating is formed by the gradient of refractive index due to the patterned polymerization

resulting in control of the LC droplet sizes. The grating is “on” with no field applied and

the applied field of 100 volts causes the LC droplets to align and cancel the index

gradient.

Figure 3: Diffraction properties at = 514 nm of a prism grating made of

inhomogeneous PDLC. Reprinted with permission from [14].

A Fresnel lens was also fabricated using the GRIN PDLC as shown in Figure 4.

The lens is patterned to control droplet size and thus phase in 80 zones. As with the

grating above, the entire device is controlled with a single applied field. These devices

are adaptable but only over their limited range of design.

8

Figure 4: Method for fabricating a PDLC Fresnel lens. Reprinted with permission from

[15]. Copyright 2003, American Institute of Physics.

Systems for phase modulation have also been demonstrated by using LC on

silicon technology [16] and spatial light modulators (SLM) built with optically

addressable LC cells [17]. These systems have shown excellent results in wavefront

phase modulation and have two-dimensional array control; however, they are polarization

dependent. And because the LC system is based on light scatter they suffer from limited

efficiency of light transfer.

One of the applications for wavefront phase modulation is correction for human

vision. An adaptive optics phoropter system has been demonstrated utilizing optically

addressable LC SLM [18]. The system is used to measure the wavefront errors that occur

due to the structure of the human eye. The adaptive optics allow for correction of the

lower-order aberrations of the eye (defocus and astigmatism) as can be done using a

corrective lens. Additionally, the adaptive wavefront is capable of dealing with the high-

9

order aberrations such as spherical aberration and coma, leading to near diffraction-

limited image quality at the retina.

Figure 5 shows the test bench design for a correction system with human

feedback for control of a deformable mirror for wavefront control [2]. The system is

designed to correct wavefront errors that limit human vision and to establish the

correction values needed for proper wavefront control. Vdovin has also done work in the

field of applying these corrections by building adaptive lens [1]. As seen in Figure 6, a 5

mm aperture LC adaptive lens was fabricated. The lens is addressed by a single applied

field and only focal length can be controlled. This LC system is also polarization

dependent.

Figure 5: Experimental setup for subjective feedback loop to

improve visual acuity and determine aberrations of the human

eye. Reprinted with permission from [2].

10

Figure 6: An adaptive LC lens fabricated for experiment

and 3D model of a wireless implantable LC corrector lens

are shown. Reprinted with permission from [1].

The previous works illustrate devices that are adaptive optics but are limited in

capability. Most have been designed and optimized for a particular wavelength and many

of them are polarization dependent. An adaptive optical system that will function over a

broadband of visible wavelengths and be polarization independent will be useful in many

imaging applications.

11

III. Results and discussion

The five major topics of the solution are understanding and implementation of the

imaging theory for design, the materials‟ properties, the control voltages for the device,

the fabrication process, and finally understanding and implementation of the imaging

theory for testing. Each of these topics will be discussed in this section.

A. Imaging Theory

An essential element of this research project is the design, modeling, and

fabrication of an EOAM system for use in the visible wavelengths of light. An EOAM

that will function over a broad range of applications can reduce the cost of production

and ultimately reduce the cost of ownership for the system.

 1.0 Fresnel Propagation

The optical modeling for the EOAM system is based on Fresnel propagation [19-

22]. The device design was stimulated and the imaging system was modeled and

compared to the desired output (image). In an iterative process the design can be

changed, simulated, remodeled and compared to allow for optimization of the EOAM.

The design changes can be driven by various optimization schemes.

Viewing wave propagation phenomena as a system allows for valid

approximations over a wide class of input field distributions and optical elements. The

concept of the intensity of a wave field and the Huygens-Fresnel principle are well suited

for approximation in image formation. The first wave theory for light expressed by

Christian Huygens in 1678 was that if each point on a wavefront is considered as a point

source radiating spherical wavefronts, then a later wavefront can be found by

constructing an envelope of the secondary wavelets.

12

The response of a detector is a function of the distribution of the intensity in the

image. Thus it is important to relate the intensity to the complex field which makes up the

image.

In 3-dimensional space the second order partial differential wave equation is

 (3.1.1)

and the generalized harmonic wave is

 (3.1.2)

where represents a position vector of a point in space. At any fixed time,

the surfaces for which equals a constant are called wavefronts. When , the

amplitude of the wave, is a constant over the wavefront, the wave is homogeneous.

The above generalized harmonic wave can be expressed in complex form as

 (3.1.3)

where

 (3.1.4)

with equal to an initial arbitrary phase.

This is useful when substituting into (3.1.1) resulting in

 (3.1.5)

13

which is the Helmholtz Equation. If interested in the spatial properties, but not the

temporal, solutions to the Helmholtz Equation are sufficient to represent the wave.

The Huygens-Fresnel principle can be stated in rectangular coordinates as

 (3.1.6)

where the angle between the outward normal and the vector pointing from to

as shown in Figure 7. represents the field at the plane of having

Figure 7: Geometry for aperture propagating to new plane.

propagated from the plane at . The value of and (3.1.6) can be rewritten as

 (3.1.7)

where the vector distance is given by

 (3.1.8)

z

y

x0

y0

x

z0=0 z = z1

P1

P0

14

Huygens-Fresnel principle has only two approximations: one is the approximation

inherent in scalar theory and the second is the assumption that as the observation

plane is many wavelengths form the aperture.

The distance can be approximated by making use of the binomial expansion

for the square root. For the number of terms needed in the expansion

 , (3.1.9)

for accuracy depends on the magnitude of . Applying the expansion to (1.8) yields

 (3.1.10)

by retaining the first two terms. When substituting (3.1.10) into (3.1.7) the error of the

value for squared in the denominator is small provided ,

which is the case in the paraxial region. However, the in the exponent is multiplied by

a large , and phase changes of small fractions of a radian change the value of the

exponential significantly. Both terms in the binomial approximation must be kept in the

exponent. The expression for the field by substituting (3.1.10) into (3.1.7) becomes

 .

15

By rearranging and incorporating the finite limits of the aperture in the definition of

 the resulting equation is

 . (3.1.11)

The field at any plane 1z described by (3.1.11) can be seen as a convolution of

the form

 (3.1.12)

with the convolution kernel as

 . (3.1.13)

The expression for represents a diverging spherical wave and quadratic phase

approximation to the wave for position values of . The convolution with (3.1.13) is the

propagation of the field from the aperture at plane to the field at

for the plane at .

Maxwell‟s Equations lead to the properties of light [19-22]: its wave nature, that it

is a transverse wave, and the relationship between the electric and magnetic fields.

Assume light propagating in a medium that has the following properties:

 Uniform: , permittivity (dielectric constant,) and , permeability, have

constant value at all points

 Isotropic: and do not depend on direction of propagation

 Nonconducting: , conductivity, and thus , current density

 Free of “free charge”: , charge density

 Nondispersive: and are independent of frequency.

16

Then Maxwell‟s Equations are:

 (3.1.14)

 (3.1.15)

 (3.1.16)

 (3.1.17)

Evaluating Maxwell‟s Equation in a medium leads to the following two equations

 (3.1.18)

 , (3.1.19)

which are coupled transverse waves. The electric and magnetic field are also solutions to

the Helmholtz and 3-dimension second order partial differential wave equation for

vacuum when

 . (3.1.20)

For materials where , velocity, is less than , velocity in vacuum, the material

is characterized by its index of refraction,

 . (3.1.21)

The intensity of the field is related to the flow of energy for the coupled electric

and magnetic fields as described by the Poynting Vector,

17

 . (3.1.22)

The Poynting vector cannot be detected at the very high frequencies associated with light,

so what is detected is the temporal average of taken as an average over time, ,

determined by the detector time response. The time average of is the flux density in

units of [W/m
2
] and is called intensity of the light wave,

 . (3.1.23)

For an electric field represented by and using the

expression for intensity can be reduced to

 (3.1.24)

where . Then for independent of time and ,

 . (3.1.25)

Knowing that for large the integral , results in

 . (3.1.26)

The intensity of the field is proportional to the electric field amplitude squared.

In actual practice the electric field at the object plane must be broken down into

constituent parts for modeling. The above Fresnel propagation is based on

monochromatic illumination and incorporating the finite limits of the aperture, , in the

18

definition of for (3.1.11), also assumes that the aperture can be adequately

described.

For broadband illumination in the visible region the propagation can be simulated

at multiple wavelengths. Then a summation of the multiple wavelength aerial images

approximates the actual image well. The difficulty in this scenario is the estimation of

temporal coherence.

To adequately describe the illumination field at aperture, , for the case when the

field is spatially coherent is relatively easy. An arbitrary phase can be assigned as in

(3.1.4). However, for the spatially incoherent field this is not possible. In the spatially

incoherent field case it is useful to evaluate the EOAM system as if the illumination field

is a point source, and to use the aerial image of that point source as the system response.

The system response from the point source is valid for spatial coherence; however, the

effects of temporal coherence may introduce errors. The image from the aperture, , can

then be approximated by proper sizing (magnification) and convolution with the system

response as Fresnel propagation is linear and shift invariant [20].

2.0 Simulation of the EOAM system

The purpose of the system is to create an aerial image for a finite amount of time

that can be captured by another system for viewing, propagation or as a latent image. A

wavefront (electro-magnetic field) and a mask are the inputs to the system. The output is

an aerial image that has characteristics unique to the system inputs. The desired image is

a result of the transfer of the wavefront and mask as well as the interactions of the various

system functions. The mask may be designed such that it resembles the output aerial

19

image or it may be designed to contain information that changes the wavefront unique to

the system.

The input wavefront is allowed to enter the system for a finite time by the

exposure control unit. The mask in the filter interface then modulates this wavefront. The

resulting modified wavefront is then propagated a distance z1. The propagation of the

wavefront results in a redistribution of the energy in the wavefront. The EOAM function

then collects the energy and modifies the wavefront. The wavefront leaving the EOAM is

then propagated a distance z2. The wavefront output is an electro-magnetic field that has

an energy distribution that can be viewed, propagated, or captured.

2.1 Function block diagram

The function block diagram in Figure 8 illustrates the system relationships used in

the simulation and for the physical EOAM device. Each of the components (inputs,

output, and functions) is described in this section.

I1 – Wavefront

The wavefront is an electro-magnetic wave that is described in four-dimensional space.

The wavefront is known by its electric component, which is a complex vector field,

, as a function of three-dimensional space and time. The wave must follow

Maxwell‟s Equations as it propagates and interacts with space and matter.

20

Figure 8: Fresnel Wave Propagation System for Electro-optic Adaptive Microlens

I2 – Mask >>

The mask is a physical object that can modify the electro-magnetic wave. The mask is

described by which is a two-dimensional array of complex numbers.

I3 – Control signals for pixels

The EOAM device is controlled by addressing the array of pixels with various applied

voltages. The applied voltage determines the relative phase shift introduced into the

wavefront by each of the pixels.

F1 – Exposure control

The exposure control function allows for the input wavefront into the system and to

transfer energy for a finite amount of time. The function is modeled by a rectangle

function, . The output is the result of multiplied by .

F2 – Filter interface

21

The wavefront and mask are input into the filter interface. The interface controls the

alignment of the two components and can be modeled by a multiplication of

 by . The output of the filter interface is a modulated wavefront.

F3 – Propagation

The propagation function models the transfer of the wavefront through a medium. The

medium is described by its optical properties, namely optical path distance , and the

propagation is modeled by a convolution with the modulated wavefront.

 (3.1.27)

 (3.1.28)

F4 – EOAM

The EOAM element changes the wavefront by modifying the relative phase at each pixel.

The model for the EOAM function is the multiplication of the wavefront with the pupil

and the EOAM element. The pupil is a two-dimensional complex array that limits the

energy transferred from the incoming wavefront to the output wavefront. The EOAM

element changes the characteristics of the wavefront.

 (3.1.29)

F5 – Propagation

The propagation function models the transfer of the wavefront through a medium. The

medium is described by its optical properties, namely optical path distance , and the

propagation is modeled by a convolution with the imaged wavefront.

22

 (3.1.30)

 (3.1.31)

O1 – Image

The image is an electro-magnetic field that is known by its electric component, which is a

complex vector field, . Here the intensity is proportional to electric field

squared,

 . (3.1.32)

2.2 Assumptions for using this propagation model for the EOAM

The model was implemented in Matlab® code with the following assumptions:

a) Fresnel propagation

b) Polarization independence

c) Paraxial region for object and image

d) Wavelength dependence

e) Spatially incoherent illumination.

The first three assumptions are based on the theory in section 1.0, Fresnel Propagation.

This code is shown in Appendix A: setupworkspace160_3.m, lensf500bit_3.m,

arrayfillbit_160.m, fPropfocal_160.m, and address_fbit.m.

The wavelength dependence of the equations is handled by simulation at three

separate values for lambda. The electric field at each wavelength is propagated

23

completely through the system and the intensity is found at the image plane. The final

image is a summation of the three wavelength intensities.

For spatially incoherent illumination each point of the mask can be treated as an

independent point source with random phase. In the paraxial region of the system the

image can be approximated by the convolution of the point spread function of the system

with the appropriately scaled object. The scaling is based on geometric optics for a

simple thin lens. Figure 9 and Figure 10 show sample input and output for a focal length

500 micron lens with 256 by 256 micron square pupil having pixel size of 4 microns and

dispersion index similar to quartz. The phase has been quantized to 4 levels between zero

and 2 , with the regions between pixels approximated by averaging the phase of the

adjacent pixels. The object and image distances are based on geometric paraxial Gaussian

optics with magnification of -1.25.

24

Figure 9: Input mask for EOAM system. Mask represents group of incoherent

point sources with random phase and transmission of 1.0 for all wavelengths.

25

Figure 10: Sample output image for EOAM system. Simulated wavelengths are

587, 486, and 656 nm.

26

B. Electro-optic Adaptive Microlens materials in single cell device

The EOAM materials properties are determined by mechanical, chemical,

electrical, and optical factors. The mechanical and chemical characteristics relate mainly

to the fabrication steps involved in building the EOAM device. Because the device was

patterned using lithography, the optical properties are also determined during fabrication.

The electrical and optical properties are the major contributors to the performance and

ultimate utility of the EOAM device in imaging.

The electro-optic material used in the device is a polymer-dispersed liquid crystal

(PDLC) described by Ren et al[15]. A mixture of 26% by weight E48 LC and 74% UV

curable prepolymer NOA81 was sandwiched between ITO coated glass slides and

patterned to create a GRIN PDLC Fresnel lens. Figures 11 and 12 illustrate the structures

of the molecular entities of E48 and in NOA81. The mixture was patterned by exposure

with UV radiation that induced the monomers in NOA81 to polymerize. The rate of

polymerization determines the droplet size of the micro domains of LC material that

phase separate as the NOA81 polymerizes. It has been confirmed in the literature [23, 24]

that the mean size of the droplets is dependent on the weight fraction of LC and the rate

of polymerization.

CN

4-cyano-4'-pentyl-1,1-biphenyl

Figure 11: Chemical structure for E48 liquid crystal.

27

SH
O

O

SH

O

SH

O

O

O

O

O

OH

Composition of a thioester UV curable photoresist

+ +
Photoinitiator

Figure 12: Chemical structure for NOA81.

Several composite films (Samples 001-005) with 10 micrometer polystyrene

spheres used as spacers on the substrate were cured and used for preliminary studies on

single cell devices. The samples were exposed with a mercury arc source filtered at 365

nm. Because the droplet size of the micro domains of LC were slightly larger than the

wavelength of illumination, Sample 001, exposed at intensity of ~2.25 mW/cm
2
,

appeared somewhat milky in color under white light illumination and the LC droplets

scatter the light. In Sample 005, exposed at intensity of >50 mW/cm
2
, the droplet size

was equal to or smaller than the wavelength of visible light and appeared clear. Figure 13

shows transmission data collected on the two samples. Sample 005 had higher

transmission but exhibits some loss of transmission at shorter wavelengths. This indicated

that the droplet size was approximately on the order of the blue wavelengths.

The next generation of single cell devices (shown in Figure 14) were fabricated

utilizing patterned SU-8 photoresist as a spacer on the ITO glass slides and the

E48/NOA81 precursor exposed at intensity of >50 mW/cm
2
.

28

Figure 13: PDLC at 24% by weight in NOA81 polymerized at different intensities.

Sample transmission data includes losses due to two ITO coated glass slides.

Figure 14: Image of single cell device made from E48/NOA81 utilizing patterned SU-8

resist as the spacer.

The samples were also evaluated using a Michelson interferometer to determine

the relative phase shift induced by an applied field. The samples were inserted into the

29

measurement arm of the Michelson interferometer and a voltage was applied to the ITO

layer of one slide, while the other ITO slide was grounded. The light path made a double

pass through the sample with this configuration as shown in Figure 15.

Figure 15: Diagram of dual beam interferometer test system used for single cell devices.

The interferograms from the dual beam interferometer were captured on a digital

camera back and analyzed using code written in MATLAB®. This code (Appendix B,

datain_rerun_singlefile.m) allowed selection of an area of multiple interferograms for

analysis of minimums and calculation of the relative shifts of the minimums. The

interferograms were captured with different applied voltages and a sample of the output

phases fit to 3
rd

 order splines is shown in Figure 16. A system to measure phase for

reflective electro-optical micro-devices at visible wavelengths was presented at Optical

Fabrication and Test Conference in 2006 [25].

30

Figure 16: Phase shift versus voltage for single cell device at three wavelengths.

The single cell device was also evaluated at the red wavelength for sensitivity to

polarization of the illumination. The PDLC as fabricated is reported to be polarization

independent [15]. Interferograms were captured for the device with a linear polarizer

inserted in the beam path ahead of the beam splitter. The resulting relative phase versus

applied voltage is shown in Figure 17. A 100%(1-) confidence interval, with = 0.05,

was constructed on the regression of Relative Phase on Applied Voltage for P270. This

confidence interval was used to compare the 3
rd

 order fit for P0 to the 3
rd

 order fit for the

P270 regression. It was found that the estimated fit for P0 fell entirely within the 95%

confidence interval for P270, so no significant difference between the two processes can

be discerned at the = 0.05 level. Note that this confidence interval is a realization of all

possible intervals at this probability; this indicates that 95% of the time the true

31

regression (not the individual observations) will fall within the estimated upper and lower

bounds of the interval.

Figure 17. Comparison of phase shift with illumination of two different polarizations.

 C. Control voltages for the arrayed pixel device

The applied field for each pixel of the EOAM controlled the relative phase for

that pixel. The simulation program (Appendix A, address_fbit.m) for addressing of pixels

in the device array at various phase levels was written to incorporate the relative phase

shift as a function of the material thickness, the applied field and the wavelength of

illumination. The number of required phase levels for operation of the system was

quantized and also incorporated in the simulation.

To simplify the addressing of the device the work utilized only two phase levels.

The imaging performance of the EOAM system can be enhanced by allowing more phase

-6

-5

-4

-3

-2

-1

0

1

2

0 50 100 150 200 250 300

R
e

la
ti

ve
 p

h
as

e
 [

ra
d

ia
n

s]

Applied voltage DC [V]

EOAM 007B Phase with polarized
illumination

p0

p270

95% CI on p270

Poly. (p0)

Poly. (p270)

32

levels. A voltage control device that allowed quantization of the applied field at 2
2
 levels

was built on a breadboard for use in testing the EOAM devices.

The power distributor design was based on the need to use one power supply with

multiple outputs. The EOAM devices use applied voltage over a range of 0 to 300 volts

AC or DC but do not conduct current. Accordingly, the distributor was designed for

safety to limit current to less than 1 mA. If the EOAM device has current flow, it has

failed and is no longer useable. Slow blow 10 mA fuses were assembled in-line on the

power source leads, and ~300 k ohms resistors were added to the EOAM leads. The

power supply varied from 0 to ~240 volts, and the distributor board was designed to have

four levels plus ground. Figure 18 shows a diagram of the voltage distribution board. The

voltage at each node for the EOAM is as follows:

 (3.2.1)

where R1 is the resistance before the node and R2 is the resistance after the node with the

input voltage of Vin.

33

Figure 18: Diagram of voltage distribution board for EAOM device.

DC voltage was used in testing the single cell devices and the first fabrication run

of the 16 by 16 pixel devices. As the single cell and pixel devices had a long memory

(> 30 seconds to return to off state) with DC applied voltage, the subsequent pixel

devices were tested using an AC source at 60 Hz.

34

D. Fabrication process for the arrayed pixel device

The fabrication processes for the EOAM made use of both newly developed and

existing processes within the Semiconductor and Microsystems Fabrication Laboratory at

RIT. Detailed instructions for the fabrication processes are given in Appendix C, Run

Sheet for EOAM v1.5b, and illustrations of the fabrication processing steps are shown in

Appendix D, EOAM_Process Rev1_5b.PPT.

Figure 19: Sub array of pixels for EOAM device with 16 by 16 pixels.

Figure 19 shows a sub array of 8 pixels (a through h) that are addressed

individually. These are built up to create the four quadrants of the device. The routing

layout for the device was optimized for the sub array. For a lens that is circularly

symmetric to the optical axis, this arrangement of cells allows for multiplexing of the

cells that are of equal radial distance from the optical axis (usually the center of the

device). The code „address_fbit.m‟ calculates the quantization levels for the lens phase

and thus the addressing needed for each pixel. Figure 20 shows an example of the

35

addressing a single quadrant for a 250 mm focal length microlens for phase quantized at

2 and 4 levels.

Figure 20: Addresses for 8 by 8 array of a single quadrant with 160 micrometer pixels.

The design for wiring to bond pads utilized ICgraph by Mentor Graphics

Corporation. Four sets of bonding pads are on the device, however access is only needed

to one set. The others are redundant and also allow for redundant multiple contacts

between the metal layers.

Figures 21 through 24 show the layout of the EOAM device levels.

36

Figure 21 Metal 1of EOAM.

37

 Figure 22: Via 1 of EOAM.

38

Figure 23 Metal 2 of EOAM.

39

Figure 24 Spacer layer for EOAM.

The fabrication process had 4 levels that required microlithographic patterning.

Figure 25 is a diagram of a complete layer stack for one pixel. Metal 1 is the wiring for

addressing the pixels. Metal 2 is the conductor that defines the lower electrode for each

pixel. The ITO on the glass cover was attached to the ground electrode.

40

Figure 25 Layer stack for EOAM device.

After fabrication of the first devices it was found that the metal 2 layer had a

surface roughness that was too large and the variation in surface height of the pixel due to

the contacts resulted in large optical path variations. This layer is the reflective mirror in

the device and as such, should have specular rather than diffuse reflections. A new

process was developed and implemented to polish the metal 2 surface. The thickness of

the deposited aluminum was increased to 1.5 micrometers from 1.0 micrometers to

ensure step coverage over the metal 1 and contact edges, and still allow for removal of

metal 2 material. The chemical mechanical planarization (CMP) of the metal 2 was done

on the Strausbaugh. This CMP process was optimized and was unique in the fact that the

aluminum layer was patterned before CMP. If the metal was planarized first, then

alignment to the underlying features would have been very difficult.

41

Figure 26: Examples of surface roughness before and after the CMP process [26]

on device pixels.

The devices were probed prior to CMP to verify the proper conductivity between

the pads and the appropriate pixels for the device design. This allowed for sorting of good

devices before CMP and also prevented scratching of the planarized surface.

After CMP the spacer layer was patterned in SU-8 photoresist. The SU-8 is a

negative photoresist and was cross linked with exposure at i-line and post development

baking. A sample wafer completed to this step is shown in Figure 27. The SU-8 pattern

established the region in which the electro-optic material would be deposited.

42

Figure 27: Hundred millimeter device wafer after all lithography steps completed.

The E48/NOA81 mixture was deposited as a liquid and covered with the ITO

glass slide. Photopolymerization of the PDLC bonds the ITO glass slide in place. A

specialty UV exposure tool was assembled for use in photopolymerization of the

E48/NOA81 mixture. This tool allowed for controlled intensity and thus control of the

rate process for droplet formation of the LC domains. Figure 28 show a finished EOAM

device.

43

Figure 28: Finished EOAM device.

Detailed instructions for the fabrication processes are given in Appendix C, Run Sheet for

EOAM v1.5b and illustrations of the fabrication processing steps are shown in Appendix

D, EOAM_Process Rev1_5b.PPT.

Arrayed pixel device builds

The fabrication of the arrayed pixel EOAM devices was carried out with three

iterations of device build runs. The first iteration validated the masks and the processing

steps that were used. The initial masks for Metal 1 and Metal 2 had minor design errors

44

and were rebuilt. The first iteration of EOAM devices could only be tested with all pixels

addressed to same voltage. The surface roughness for the Metal 2 layer was also

identified with the initial run.

The second iteration implemented the new masks, the CMP process, and adjusted

film thicknesses of the layers to allow CMP. The third iteration repeated the processes

used and greater care was taken to reduce contamination defects and improve yield to

result in more devices for testing.

45

E. Device Testing

1. Dual Beam Interferometer

While each new build was ongoing, devices from the previous run were used for

evaluation of phase versus applied voltage. The phase extraction method of using

multiple interferograms with various applied voltage for analysis of minimums and their

relative shifts as used for the single cell device was implemented for the pixel arrays

addressed with same voltage. The results from this method proved to be unreliable.

Changes in the optical path lengths of the dual beam interferometer system due to

vibration and ambient temperature fluctuations caused the relative phase shifts to be

unrepeatable.

Figures 29 and 30 show a device in the dual beam interferometer test system.

Figures 31 through Figure 33 are interferograms captured for a pixel device with all

pixels address by same voltage. Figure 34 shows a plot of data from analysis of the

interferograms from the dual beam interferometer. The line connects the data point in the

order that the interferograms were collected (total time of about 10 minutes). As can be

seen, the output phase is not predictable.

46

Figure 29: Dual beam interferometer test system with device and output image on card.

Figure 30: Device with probes in dual beam interferometer test system.

47

Figure 31: Interferogram of device from dual beam interferometer test system.

Figure 32: Interferogram of device from dual beam interferometer test system.

48

Figure 33: Interferogram of device from dual beam interferometer test system.

Figure 34: Plot showing relative phase variability from dual beam interferometer test

system analysis.

49

2. Single Beam Interferometer

a. Theory

A new method for extraction of the phase was needed. During the set up of the

dual beam interferometer system it was noted that interference patterns could be

generated by utilizing only the EOAM device in a single arm of the interferometer. The

“surface” reflection of the device was known to exist; but had been considered as a

nuisance reflection and needed to be minimized as it contributed to the „noise‟

component during device measurement and usage. With the dual beam system the

reference beam wavefront and the device beam wavefront were to recombine and

generate the appropriate interferogram; the “surface” reflection wavefront was 5 to 10

times less intense and to be neglected.

The reference beam mirror was taken out of the dual beam interferometer system

to create the single arm interferometer system. The EOAM device acts as a Pohl fringe-

producing system [22] that can generate interferograms. The use of a single arm

interferometer system for reflective micro-device phase measurement was presented at

Optical Fabrication and Test Conference in 2010 [27]. Figure 35 shows a diagram of the

single arm interferometer system used.

50

Figure 35: Single arm interferometer system diagram.

Figures 36 and 37 show interferograms from the device tested in the single arm

interferometer system. The interferograms include the active device area and the

surrounding non-active electrical pad area (right side of image); the non-active area

interferogram does not change with applied voltage. The non-active areas were masked

with black tape as shown on the EOAM device in Figure 38.

51

Figure 36 Interferogram from EOAM device active area and surround at 0 volts.

Figure 37 Interferogram from EOAM device active area and surround at 200 volts.

52

Figure 38: EOAM device with non-active area masked off by black tape.

b. Reflection simulation of film stack

The interferograms from the EOAM devices at varying voltage clearly show

changes to the interference patterns. The interferograms are the result of constructive and

destructive interference between the wavefront of the active device optical path and the

wavefront of the non-changing optical path (reference wavefront) in the single arm

interferometer system. Simulation code was written in Matlab® to explore the

approximate reflectance of the film stack for the EOAM device and is included in

53

Appendix E, g5_nm_PDLC.fig and g5_nm_PDLC.m. The optical properties of the film

stack for the EOAM device are input and the algorithm models the reflectance [19] at the

various interfaces based on the layers of the film stack. Figure 39 shows the estimate for

reflectance into air of the EOAM device versus thickness of the ITO layer for 541 nm

illumination at 2 degrees angle of incidence as 0.84 to 0.91. This reflectance estimate

includes the active device optical path and the wavefront from the non-changing optical

path. Figure 40 gives the reflectance, 0 to 0.06, for the wavefront from the non-changing

optical path that includes only the top four layers of the EOAM device.

54

Figure 39: Modeled reflectance for EOAM device (entire film stack).

55

Figure 40: Modeled reflectance for top 4 layers of EOAM device.

c. Imaging theory for phase extraction

Extraction of the blind phase from the interferograms was necessary to

characterize the EOAM as a function of the applied voltage. An iterative algorithm

(Appendix F, xu_2007_ph_ext_05182010_data_p.m) has been implemented for blind

phase extraction for characterization of an electro-optic adaptive microlens device. The

56

EOAM was designed to operate in the visible wavelengths and due to its reflective nature

it was possible to collect interferograms of the reference wavefront and the object

wavefront using a common optical path. It is not possible to measure the reference and

the object wavefronts independently for the reflective device; and therefore the algorithm

has been developed for this case. To validate the code and better understand its region of

usefulness a series of simulations were completed to verify the algorithm based on

assumptions.

Evaluation of optical surfaces is commonly accomplished via phase-shifting

interferometry (PSI). PSI techniques have been used for more than forty years [28, 29].

All PSI techniques are based on multiple collections of the interference of a reference

wavefront and an object wavefront at some point in space. An interferogram is a mapping

of one of these collections of interference.

In general each interferogram, collected as an image, is a record of the constructive

and destructive interference of the reference and object wavefronts at a plane for some

finite interval of time. The image irradiance collected at each point (x,y) of the detector is

given by:

 (3.4.1)

where (x,y) is the relative phase of each image point and is the relative phase

difference between the reference and object wavefronts. Ao(x,y) is the electric field of the

object wavefront and Ar is the electric field of the reference wavefront. It is assumed

that the reference wavefront is non-varying across the image.

Many of the modern methods of PSI require collection of multiple (n ≥ 3)

interferograms [30-36] at varying phase differences between the reference and object

57

wavefronts. The requirement for multiple interferograms is due to the mathematical

methods used for extraction of information from the interferograms. Equation (3.4.1) has

four unknowns and thus requires three or more images to develop a solution.

There are techniques that can derive the wavefront or extract the phase difference

utilizing only two interferogram images [37, 38]; however these techniques require that

the reference wavefront and the object wavefront be measurable independently of one

another.

A method utilizing an iterative algorithm for blind phase extraction [39] allows for

extraction of the phase without measurement of the reference wavefront. This method

was used as the starting point for development of a technique to extract phase for an

electro-optic micro device that functions in the visible and is also reflective.

The electro-optic micro device [27] was fabricated on a silicon substrate and allows

for addressing of pixels. The device has an active layer of polymer dispersed liquid

crystals (PDLC) that change alignment under an applied electric field. The alignment of

the PDLC causes a change in the refractive index and thus alters the effective optical path

length. The device is reflective and the incoming radiation makes a double pass through

the PDLC before exiting.

To characterize the change in optical path length with applied electric field the device

was put into a Twyman-Green (dual beam) interferometer that was assembled on an

electrical probe station [25]. Upon measurement and calculation of the phase change of

the micro device, with replication of the results it was found that the arms of the

interferometer were not stable. The extracted phase in data collected over a period of 20

minutes varied by as much as pi due to the ambient air flow, temperature, and humidity.

58

In the optical setup and alignment process it was also noted that reflections from other

surfaces of the device allow for collection of interferometric fringes. These “nuisance”

fringes are a result of the upper layers of the electro-optic micro device and are noise to

the device output. However, this ”nuisance” wavefront can be used as a reference

wavefront in a single beam interferometer system [27]. This reference wavefront cannot

be measured independently of the object wavefront exiting the device.

A modified algorithm has been developed and tested. This new technique allows for

relative phase extraction of the active layer of the micro device while utilizing the

“nuisance” wavefront as the non-changing reference. This new technique is based on the

blind phase shift extraction [39] technique previously published; however it requires a

different set of assumptions., which are discussed in detail in the following section. The

modified algorithm was tested via simulated interferograms and a comparison of

extracted phase shifts to known inputs. Data is presented for extracted phase shifts from

the reflective electro-optic micro device.

d. Assumptions and algorithm

The previously published iterative algorithm for blind phase extraction [39] combines

the least square regression method and formulae that allow extraction of the unknown

phase shift utilizing only the intensities of the two interferograms. While the algorithm

requires far less measured or controlled input than other methods [28-38], it has a few

stated assumptions and restrictions.

Equation (3.4.1) is the basis for the two required interferograms and are given as

 (3.4.2)

 and

59

 (3.4.3)

I1(x,y) is given for = 0, where as I2(x,y) includes a change in phase equal to . The

algorithm [39] previously published requires that the following assumptions hold true:

I. Ao(x,y) and (x,y) are the real amplitude and phase distributions of the

object wave and the region of interest is large enough that the distribution

of is random.

II. Ar is the constant amplitude of a plane reference wave.

III. The arbitrary phase shift of the reference wave between two images is

and 0 < <

IV. Inputs of Ar > Ao maximum, as is the case in practice to guarantee correct

recording.

As stated, the algorithm previously published works well over a wide range of phase

shift from 0.4 to 2.5 radians [39].

In this work the use of the algorithm has been extended to the case for the reflective

electro-optical adaptive micro-device. As such, the algorithm requires the two

interferograms given in equation (3.4.2) and (3.4.3) as well as the following assumptions:

i. Ao(x,y) and (x,y) are the real amplitude and phase distributions of the

object wave and the region of interest is large enough that the distribution

of is random.

ii. Ar is the constant amplitude of an unchanging reference wave.

iii. The arbitrary phase shift of the object wave between two images is and

0 < <

iv. Calculated Ar /Ao ratio of greater than one.

v. Calculated values in the iterations of the least squares regression must

remain real valued.

This modified algorithm works well over a wider range of phase shift depending on

the calculated Ar /Ao ratio as is shown in the Simulations section.

60

Assumption I and i are the same as both algorithms are designed to extract the phase

change between the reference wavefront and an object wavefront based on equations

(3.4.2) and (3.4.3).

Assumption II, III, and IV are required because the initial algorithm is designed to

extract the object wavefront, which can be back propagated to calculate the amplitude

and phase distribution of the object. For this work the amplitude of the object wave and

reference wave are assumed to be non-changing as the object is shifted in phase by

between the two interferograms. Therefore assumptions II and III are changed to

assumptions ii and iii.

Assumption iv is required due to the reflective nature of the electro-optic micro

device. However, as stated in [29, 38] and inferred by many using PSI, wavefront

reconstruction by two-step interferometry requires Ar(x,y) to be chosen as a constant

greater than the maximum of Ao(x,y). This is due to the image recording method on silver

halide film. Due to the non-linearity of the foot of the image transfer curve the beam

ratio,

 (3.4.4)

is stated in [40] as requiring a minimum R > 1. This requirement has been carried over

for the use of digital image detectors, even though most digital detectors are linear down

to much lower irradiances. For dual or multiple beam interferometers the wavefronts can

be attenuated to ensure the beam ratio remains greater than one. Attenuation of the

wavefronts independently is not possible with a single beam system as used with a

reflective electro-optical adaptive micro-device [27].

61

Assumption v is applied as a result of using the algorithm on simulated and

experimental data. Further explanations and examples follow.

Following the algorithm [39], using equations (3.4.2) and (3.4.3), the sum and the

difference of the two interferograms are

 (3.4.5)

and

 (3.4.6)

Using assumption i and sin
2
[(x,y) -] + cos

2
[(x,y) -] = 1 with equations

(3.4.5) and (3.4.6), the quadratic equation

 (3.4.7)

is obtained, where Io= Ao
2
, Ir= Ar

2
, p = I1 + I2 + 2 Ircos(), q = [(I1 + I2 - 2 Ir)

2
 + (I2 -

I1)
2
/tan

2
()]/4, and the coordinates (x,y) are omitted from Ao, Io, I1, and I2. Solving for

the real roots by assuring and are positive as in [39], the

irradiance and electric field are found for the object wavefront,

 (3.4.8)

Here assumption iv is used; validation will be shown in the simulations.

Rearrangement of equation (3.4.2) gives

 (3.4.9)

and

 (3.4.10)

is obtained by substitution of equation (9) into equation (5).

62

The object wavefront O(x,y) = Ao(x,y) exp(i (x,y) can be calculated with I1, I2, Ar and

 using equations (3.4.8)-(3.4.10).

Least squares regression can be used to find Ar and by rearrangement of equation

(3.4.6) as

 (3.4.11)

where

 (3.4.12)

and the summations for equation (3.4.13) are taken for the N x N pixels of the

interferograms. The matrix,

 (3.4.13)

can be solved for values of Ir, c1, and c2 allowing calculation of the reference electric field

Ar and the phase shift as

 (3.4.14)

Thus using I2, Ao and the blind phase shift is extracted.

Because only the interferograms I1 and I2 are known, the initial value for is chosen

from 0.1 to 0.4 times and the initial value for Ar is the square root of the average pixel

irradiance of I1(x,y). With these initial values, Ao and are calculated using equations

(3.4.8)-(3.4.10). The least squares regression is then calculated and new values for the

reference electric field, Ar, and the phase shift, are obtained. This iterative process is

63

allowed to continue until the value for phase shift converges to a difference of less than 1

x 10
-5

 radians.

The flow of the algorithm is shown in Figure 41. In the process of executing the

algorithm it is necessary to validate the calculated intermediate values to ensure that the

assumptions hold true and that the intermediate values are real. These validation steps are

also shown in Figure 41. The outputs at step 13 include the blind phase shift, , that

results from the change of the optical path length of the object wavefront.

Figure 41: Flow diagram of algorithm showing its process and validation steps.

e. Simulations

The algorithm was coded in MATLAB® for use with RGB JPEG images captured on

a Nikon D50 camera back. Upon coding and testing of the algorithm it was found that the

64

equations and iteration steps can lead to various non-real solutions. In these cases the

resulting calculation of the phase () is not reliable. As such, the intermediate values for

several of the variables are tested to validate assumption v.

It is important to remember that the variables of Ao(x,y) and (x,y) are functions of

the pixel position in the wavefront. For equations (3.4.9) and (3.4.10) the calculated

cos((x,y)) and sin((x,y)) must be real for all pixels in each iteration step. Then

calculated value of (x,y) will also be real. The least squares regression of the pixels data

gives Ir, c1 and c2 that must be real, such that the calculated from c1 and c2 will be real

and in the range of 0 to .

To validate the code and better understand its region of usefulness a series of

simulations were completed. The region of interest for the simulations was driven by the

need to extract phase from the electro-optic adaptive microlens. The algorithm was run to

extract phase and appeared to function correctly for some cases, but failed to give reliable

data for others.

65

Figure 42: Phase extraction simulated with varying Ar > Ao maximum.

Simulations of interferograms were generated using the following equations:

 (3.4.15)

 (3.4.16)

and

 (3.4.17)

where x and y are the pixel indices, is the arbitrary phase as the wavefronts propagate,

and (x,y) is random phase error. The distribution of phase for (x,y) used is normal with

parameters of =0 and = 2 /100. These interferograms were then used as inputs for

phase extraction. Figure 42 shows output phase error for simulated data where the input

Ar was set to 5 and the Ao value was incremented from 1 to 50. The simulated region over

66

this range of Ar > Ao maximum clearly breaks assumption IV. However, as can be seen

in the figure with varying Ar /Ao ratio, the calculated phase error is small over the range

of calculated Ar /Ao ratio from 1 to 10. The plus symbol represents simulations where the

value for did not converge to the point where the change in alpha was less than 1 x 10
-3

in less than 100 iterations. The algorithm transforms the inputs of Ar and Ao to force the

outputs to result in an Ar /Ao ratio of one or greater. It thus allows for calculation of object

and reference wavefronts with the object having a greater intensity than the reference.

The usefulness of the algorithm for extracting phase is greatly increased by applying the

requirement of assumption iv. This is the case needed for the electro-optic adaptive

microlens.

As can be seen in Figure 43 the useful range of phase for calculated is limited by

the output Ar /Ao ratio. Only data with calculated error of less than 2 /100 are plotted;

the dot symbols indicate input Ar /Ao ratio and the circle symbols indicate calculated

output Ar /Ao ratio for simulations with the input phase. The useful range of for the

algorithm can also be seen in Figure 43. The circle symbols of output Ar /Ao ratio map the

valid region for which the value of can be extracted. This valid region for output Ar /Ao

ratios greater than 5 includes a wider range of , 0.1 to >2.5 radians, than the algorithm

previously published [39].

67

Figure 43: Phase with errors less than 2 /100 comparing input and output Ar/Ao ratio.

f. Summary of phase extraction from devices

The electro-optic adaptive microlens was fabricated on a silicon substrate using

standard microlithography techniques, with a film stack as shown in Figure 44. The

aluminum layer is highly reflective, approximately 85-95%, and the upper layers of the

film stack combine to give a reflectivity of approximately 5-15%. The reflectance from

the upper layers is used as the reference wavefront in the phase extraction algorithm. The

object path traverses the electro-optic material twice and is reflected from the aluminum

interface. The electro-optic material used in the micro-device is polymer dispersed liquid

crystals (PDLC) [15].

68

Figure 44: Layers of materials used in the reflective micro-device.

Figure 45: Diagram of single arm interferometer system used to collect interferograms.

Interferograms were collected from the micro-device utilizing an optical and

electrical test system set up as a single arm interferometer[27]. As shown in Figure 45,

the reference wavefront for the interferometer and the object wavefront travel the same

path in the optical system. The object wavefront makes a double pass through the PDLC.

69

The refractive index of the PDLC is controlled by applying an electric field across the

PDLC layer[15]. The top electrode is indium tin oxide (ITO) coated on the cover glass.

The bottom electrode is polished aluminum of the metal 2 layer that has been patterned as

pixels and is contacted to the metal 1 layer. The metal 1 layer is routed to the pads on the

outer edge of the micro-device. The field is applied as 60 Hz AC from 3-240 volts

through the probe pins.

Images were collected from a single arm interferometer of electro-optic adaptive

microlens devices as the input voltage to the device was varied. Figure 46 shows two

sample interferograms. The device itself is made up of an array of 16 by 16 pixels that are

on a pitch of 160 micrometers. The device pixels were addressed with the same voltages

for image capture. The images were then analyzed utilizing the algorithm with

assumptions i to v to estimate the phase change due to applied field across the PDLC.

Figure 46: Interferograms of PDLC device at 3 volts (left) and 240 volts (right).

70

Figure 47 is a plot of repeated runs of the algorithm across nine 256x256 pixel

regions of the interferograms. The plus symbols indicate that the value for did not

converge to the point where the change in alpha was less than 1 x 10
-5

 in less than 200

iterations and the x symbols indicate that the values for calculated cos((x,y)) or

sin((x,y)) were complex so the iteration cycle was terminated. The diamond symbols

represent values where the change in alpha was less than 1 x 10
-5

 and the phase

extraction was successful. The star symbol was plotted to show the average value of for

the successful iterations at each voltage. The variations in at each voltage are due to the

regions for which the algorithm was run (each region was 256 by 256 pixels of the

interferograms). The calculated Ar /Ao ratio for this device was 2.35, which is in the range

for valid extraction of from approximately 0.1 to 2.0 rad as shown in Figure 43. The

object wave has about 5.5 times the energy of the reference wave.

71

Figure 47: Sample phase extraction from interferograms of electro-optic adaptive

microlens devices.

72

F. Summary of EOAM Results

Single cell transmission devices were used for initial characterization of the

PDLC process and were evaluated based on double arm interferometer with two passes

through the device

The electro-optic adaptive microlens (EOAM) system was designed and built.

Three fabrication cycles were completed for the reflective device wafers. The wafers had

multiple devices with 160 m pixels in an16x16 array. The devices were designed at two

focal lengths and with 2 and 4 phase levels.

The EOAM devices from fabrication cycles 1 and 2 were evaluated based on

double arm interferometer. This method of characterization of phase was found to be

unstable.

The EOAM devices from fabrication cycles 2 and 3 were evaluated based on

single arm interferometer. This method of characterization of phase was found to be

stable. With applied voltage of 240 V AC, the EOAM devices were limited in phase

change to less than radians.

Code was written and utilized for the following four tasks:

1. Simulation of imaging device

a. setupworkspace160_3.m

b. lensf500bit_3.m

c. arrayfillbit_160.m

d. fPropfocal_160.m

e. address_fbit.m

2. Simulation of film stack

a. g5_nm_PDLC.fig

b. g5_nm_PDLC.m

c. multilayer_Guenther_interface5.m

d. multilayer_Guether_zzzface5_cycle_542.m

73

3. Blind phase extraction

a. datain_phase_extract_file6.m

b. gen_phase_ex_06102008.m

c. simple_phase_ex_05162008.m

d. singlearm_Iaverage_0802.m

e. singlearm_Image_grab_03242010_plot.m

f. xu_2007_ph_ext_020102010_data_p.m

g. xu_2007_phase_extract_working10132008.m

4. Analysis of devices

a. datareal_plotting_phase_BW_03242010.m

b. datareal_plotting_phase_RGB_03242010.m

c. plot_datareal_A.m

d. s_strehl_02122009.m

e. spot_strehl_09292009.m

f. testA0Ar01152009.m

The objectives completed were:

1. Design of an EOA Microlens.

2. Modeling and simulation of a near field wave propagation system.

3. Build an adaptive optical element that is electronically controlled by

addressing the 2-dimensional array of pixels.

4. Test and analyze the EOAM in a wave propagation system.

Three iterations of the EOAM devices with PDLC were built and 26 devices were

optically tested. The first build had aluminum surface roughness leading to high scatter

and the phase shift could not be quantified. The aluminum CMP process was

implemented for the second and third builds. For optical device testing the phase shift

was extracted using a newly developed method for blind phase extraction.

Problems related to PDLC material and process were:

1. 2 phase change not possible (n ~ 0.03, thickness~11 m)

2. shorting of device due to high drive voltage

3. Delaminating of device

74

Figure 48: Delta phase versus electro-optic material thickness for n.

Need new electro-optic material with index change at low voltage (n ~ 0.23,

thickness~1.6 m, V< 10 volts). Figure 48 shows the design space for the electro-optic

material phase change based on equation (3.4.18). The red dotted area represents the

PDLC used with n ~ 0.03 and a thickness needed of 20 micrometers.

Delta phase is calculated as:

 (3.4.18)

New process steps developed for the EOAM device fabrication were:

1. CMP of Metal 2 (patterned aluminum over via in TEOS to aluminum)

2. Patterning for Spacer layer (SU-8 negative i-line photoresist)

3. PDLC precursor mixture

4. PDLC fill and cover with ITO glass slide

5. UV exposure to cure PDLC and attach slide.

75

V. Conclusions

The goal of the present research was to demonstrate the viability of an electro-

optic adaptive microlens (EOAM) system in imaging applications requiring broadband

illumination in the visible region. Building an electro-optic adaptive microlens system

utilizing polymer dispersed liquid crystals (PDLC) and pixel addressing was unique. The

EOAM devices that were built modify the light path in the visible wavelengths; however,

the designed lens effect was not realized because the PDLC change in phase for the film

stack was limited to approximately 2 radians. Processes for design, fabrication, and

testing of an electro-optic adaptive microlens (EOAM) system were however

implemented. Software code was developed for design and simulation of the EOAM; and

new fabrication processes for building reflective devices were developed and

characterized. In addition, a new algorithm for blind phase extraction for characterization

of an optical device that acts as a Pohl fringe producing system was developed, simulated

and implemented in code. The development of a design model for the EOAM system and

validating it with the images formed by a real electro-optic adaptive microlens system has

provided the knowledge base needed for implementation of adaptive electro-optic lenses

for the visible region, and, a process which can be used for further improvement of the

microsystem. The model parameters can be adjusted for new electro-optic materials that

may become available that do not have the limitations of PDLC.

The processes implemented here for design, fabrication, and testing of an electro-

optic adaptive microlens (EOAM) system can be applied to a pixilated phase-only spatial

light modulator (SLM). The pixel size, PDLC layer thickness, and resulting drive

voltages can be adjusted and optimize to implement a system for relative phase changes

76

of less than one radian. Such a SLM would be useful element in optical systems needing

small phase aberration corrections.

77

References

[1] G. Vdovin, M. Loktev, and A. Naumov, "On the possibility of intraocular

adaptive optics," Opt. Express, vol. 11, pp. 810-817, 2003.

[2] G. Vdovin, M. Loktev, A. Simonov, V. Kijko, and S. Volkov, "Adaptive

correction of human-eye aberrations in a subjective feedback loop," Opt. Lett.,

vol. 30, pp. 795-797, 2005.

[3] Rejean Munger, Linda E. Marchese and Lijan Hou, "Phase modulators for

refractive corrections of human eyes", Proc. SPIE 5578, 251 (2004);

doi:10.1117/12.567605.

[4] D. Miller, L. Thibos, and X. Hong, "Requirements for segmented correctors for

diffraction-limited performance in the human eye," Opt. Express, vol. 13, pp. 275-

289, 2005.

[5] R. D. Blum, D. P. Duston, W. Kokonaski, J. Thibodeau, Y. Katzman, and U.

Efron, "Electro-optic lens with integrated components," U.S. Patent 6871951,

2005.

[6] http://www.kodak.com/global/en/corp/historyOfKodak/historyIntro.jhtml?pq-

path=2687, Mar. 17, 2005.

[7] http://www.bell-labs.com/about/history/laser/laser_uses.html, Mar. 17, 2005.

[8] H. Kawamoto, "The history of liquid-crystal displays," Proceedings of the IEEE,

vol. 90, pp. 460-500, 2002.

[9] P. F. McManamon, et al., "Optical phased array technology," Proceedings of the

IEEE, vol. 84, pp. 268-298, 1996.

[10] T. Nagayasu, et al., "A 14-in.-diagonal full-color a-Si TFT LCD," in Display

Research Conference, 1988., Conference Record of the 1988 International, 1988,

pp. 56-58.

[11] M. Schadt and W. Helfrich, "VOLTAGE-DEPENDENT OPTICAL ACTIVITY

OF A TWISTED NEMATIC LIQUID CRYSTAL," Applied Physics Letters, vol.

18, pp. 127-128, 1971.

[12] A. Tanone, Z. Zhang, and C.-M. Uang, vol. 7, ed. Microwave and Optical

Technology Letters, 1994, pp. 285-289.

[13] D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner,

"High-efficiency liquid-crystal optical phased-array beam steering," Opt. Lett.,

vol. 21, pp. 689-691, 1996.

78

[14] Yun Hsing Fan, Hongwen Ren and Shin Tson Wu, "Electrically controlled lens

and prism using nanoscale polymer-dispersed and polymer-networked liquid

crystals", Proc. SPIE 5289, 63 (2004); doi:10.1117/12.526148.

[15] H. Ren, Y.-H. Fan, and S.-T. Wu, "Tunable Fresnel lens using nanoscale

polymer-dispersed liquid crystals," Applied Physics Letters, vol. 83, pp. 1515-

1517, 2003.

[16] X. Wang, H. Dai, and K. Xu, "Tunable reflective lens array based on liquid

crystal on silicon," Opt. Express, vol. 13, pp. 352-357, 2005.

[17] M. T. Gruneisen, L. F. DeSandre, J. R. Rotge, R. C. Dymale, and D. L. Lubin,

"Programmable diffractive optics for wide-dynamic-range wavefront control

using liquid-crystal spatial light modulators," Optical Engineering, vol. 43, pp.

1387-1393, 2004.

[18] Abdul Ahad S. Awwal, Brian J. Bauman, Donald T. Gavel, Scot S. Olivier, Steve

Jones, Dennis A. Silva, Joseph L. Hardy, Thomas B. Barnes and John S. Werner,

"Characterization and operation of a liquid crystal adaptive optics phoropter",

Proc. SPIE 5169, 104 (2003); doi:10.1117/12.510393.

[19] R. D. Guenther, Modern Optics: John Wiley & Sons, 1990.

[20] J. W. Goodman, Introduction to Fourier Optics, 2nd ed.: McGraw Hill

Companies, Inc, 1996.

[21] M. Born and E. Wolf, Principles of Optics, 7th ed.: Cambridge University Press,

1999.

[22] E. Hecht, Optics, 4th ed.: Addison Wesley, 2002.

[23] Marek Aleksander and Stanislaw J. Klosowicz, "Effect of preparation method on

PDLC morphology and properties", Proc. SPIE 5565, 389 (2004);

doi:10.1117/12.581217.

[24] J. D. LeGrange, et al., "Dependence of the electro-optical properties of polymer

dispersed liquid crystals on the photopolymerization process," Journal of Applied

Physics, vol. 81, pp. 5984-5991, 1997.

[25] D. E. Ewbank, "Optical Test System for Reflective Electro-Optical Adaptive

Micro-Device Phase Measurement," in Frontiers in Optics, OSA Technical

Digest (CD) (Optical Society of America, 2006), paper OFMC6.

[26] N. Nampalli, ”Optimization of Chemical Mechanical Planarization (CMP) of

Aluminum over Topography”, RIT Undergraduate Research Symposium (2006),

unpublished.

79

[27] D. E. Ewbank, "Single Arm Interferometer System for Reflective Micro-Device

Phase Measurement," in Optical Fabrication and Testing, OSA Technical Digest

(CD) (Optical Society of America, 2010), paper OWC2.

[28] D. Malacara, Interferogram analysis for optical testing, 2nd ed. vol. 84. Boca

Raton, FL :: Taylor & Francis, 2005.

[29] Optical shop testing, 3rd ed ed. Hoboken, N.J. :: Wiley-Interscience, 2007.

[30] E. Luna, L. Salas, E. Sohn, E. Ruiz, J. M. Nunez, and J. Herrera, "Deterministic

convergence in iterative phase shifting," Applied Optics, vol. 48, pp. 1494-1501,

Mar 2009.

[31] J. Xu, Q. Xu, and L. Chai, "Iterative algorithm for phase extraction from

interferograms with random and spatially nonuniform phase shifts," Appl. Opt.,

vol. 47, pp. 480-485, 2008.

[32] X. F. Xu, L. Z. Cai, X. F. Meng, G. Y. Dong, and X. X. Shen, "Fast blind

extraction of arbitrary unknown phase shifts by an iterative tangent approach in

generalized phase-shifting interferometry," Opt. Lett., vol. 31, pp. 1966-1968,

2006.

[33] J. Vargas, N. Uribe-Patarroyo, J. A. Quiroga, A. Alvarez-Herrero, and T.

Belenguer, "Optical inspection of liquid crystal variable retarder

inhomogeneities," Applied Optics, vol. 49, pp. 568-574, Feb 2010.

[34] L. Z. Cai, Q. Liu, and X. L. Yang, "Phase-shift extraction and wave-front

reconstruction in phase-shifting interferometry with arbitrary phase steps," Opt.

Lett., vol. 28, pp. 1808-1810, 2003.

[35] Z. Wang and B. Han, "Advanced iterative algorithm for phase extraction of

randomly phase-shiftedinterferograms," Opt. Lett., vol. 29, pp. 1671-1673, 2004.

[36] P. Gao, B. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, "Phase-shift

extraction for generalized phase-shifting interferometry," Opt. Lett., vol. 34, pp.

3553-3555, 2009.

[37] X. F. Xu, et al., "Simple direct extraction of unknown phase shift and wavefront

reconstruction in generalized phase-shifting interferometry: algorithm and

experiments," Opt. Lett., vol. 33, pp. 776-778, 2008.

[38] X. F. Meng, et al., "Wavefront reconstruction by two-step generalized phase-

shifting interferometry," Optics Communications, vol. 281, pp. 5701-5705, 2008.

[39] X. F. Xu, et al., "Blind phase shift extraction and wavefront retrieval by two-

frame phase-shifting interferometry with an unknown phase shift," Optics

Communications, vol. 273, pp. 54-59, 2007.

80

[40] R. J. Collier, Optical holography. New York: Academic Press, 1971.

81

Appendix A: setupworkspace160_3.m, lensf500bit_3.m, arrayfillbit_160.m,

fPropfocal_160.m, and address_fbit.m

function [N, FIG, LAMBDA, LZ, Q, FocaL, DIA, PIXEL, D0, X0, Y0] =

setupworkspace160_3(fig); % ****
% setup workspace for quartz >>> LAMBDA n k
%
% (for synthetic fused silica)
% LAMBDA [microns] n k nvslope [delta n per V/micron]
% nd .5875618 1.45846 0 .0015 is .030 per 20
% nF .4861327 1.46313 0 .0015
% nC .6562816 1.45637 0 .0015
%
% Vd = (nd - 1) / (nF - nC)
%
global N FIG LAMBDA LZ Q FocaL DIA PIXEL scale D0 X0 Y0 DF MAG show sh

zmag scrsz
start_clock = clock
set(0,'Units','pixels');
scrsz = get(0,'ScreenSize');
show=1; sh= 0;
N = 30
FIG = fig
LAMBDA = [0.5875618 1.45846 0 0.0015,
 0.4861327 1.46312 0 0.0015,
 0.6562816 1.45636 0 0.0015]

Vd = (LAMBDA(1,2) - 1.0)/ (LAMBDA(2,2)-LAMBDA(3,2))

%for lensf500
LZ = 20; % lens thickness in microns
Q = 2 % quantize levels
zmag = 1.1 % times focal length for z1 value
FocaL = 150000; % FocaL length in microns
PIXEL = 160 % PIXEL pitch in microns
if PIXEL > 16
 scale= PIXEL/16 % scale is microns per display "pixel units"
else
 scale = 1
end;
DIA = 368*scale; % lens DIAmeter in microns
D0= 1 % input diameter for ef0 aperture
DF = 50; % size of mask
X0=0 % input center for ef0 aperture
Y0=0 %input center for ef0 aperture

[f500bit, FIG] = lensf500bit_3(1);
[zbit, FIG] = arrayfillbit_160(f500bit,1);
dB = fPropfocal_160(zbit);
address_fbit(f500bit)
Q, PIXEL, D0, FocaL, MAG, scale
end_clock=clock
elapsed_time= etime(end_clock, start_clock)

82

function [f500bit, FIG] = lensf500bit_3(ask);
% build at 2D lens in complex array z with Q (Quantized levels of

phase)
% zout = exp(i 2pi n LZ /LAMBDA * exp(-i pi r^2 / (LAMBDA FocaL))
% n index, LZ thickness, FocaL length of lens
%
% DIA DIAmeter, PIXEL pitch in microns including

border
%
%USAGE run:
% [N, FIG, LAMBDA, LZ, Q, FocaL, DIA, PIXEL, D0, X0, Y0] =

setupworkspaceNFIGLAMBDA_2(1);
%
%
%
global N FIG LAMBDA LZ Q FocaL DIA PIXEL D0 X0 Y0
close all

%LZ % lens thickness in microns
%Q % Quantize levels
%FocaL % FocaL length in microns
%DIA % lens DIAiameter in microns
%PIXEL % PIXEL pitch in microns

 N=floor(DIA/PIXEL)+3
 if rem(N,2)==1
 N= N+1
 end;
if ask == 1
maskname=strcat('lens','FocaL',num2str(round(FocaL)),'N',num2str(N));

prompt = {'Enter matrix size: ','Enter mask name: ','Enter FocaL

length: ', ...
 'Enter DIAmeter: ','Enter Quantize levels: ','Enter x 0ffset:

','Enter y offset: ', ...
 'Enter PIXEL size: '};
title = 'Input for creating MASK for Imaging simulation';
lines= 1;
def = {num2str(N),maskname, ...

num2str(FocaL),num2str(DIA),num2str(Q),num2str(X0),num2str(Y0),num2str(

PIXEL)};
datas = inputdlg(prompt,title,lines,def);

datas
if isempty(datas)
 close(FIG);
 return;
end;
tic
N=str2num(datas{1});
maskname1=datas{2};
FocaL=str2num(datas{3});
DIA=str2num(datas{4});
Q=str2num(datas{5});
X0=str2num(datas{6});

83

Y0=str2num(datas{7});
PIXEL=str2num(datas{8});
end;
Xlens=-PIXEL/2
Ylens=-PIXEL/2

 maskname=strcat('lens','DIA',num2str(round(DIA)),'N',num2str(N));

r = DIA/2;
%start clock
%tic;
lx = ((N/2 +1)*PIXEL +Xlens)- r;
hx = ((N/2 -1)*PIXEL +Xlens)+ r;
ly = ((N/2 +1)*PIXEL +Ylens)- r;
hy = ((N/2 -1)*PIXEL +Ylens)+ r;
% lx,hx,ly,hy

if lx < PIXEL | ly < PIXEL
 error('counter < N');
 else if hx > N*PIXEL | hy > N*PIXEL
 error('counter > N');
 end;
end;
%

xl = (-N/2)*PIXEL
xh = ((N/2)-1)*PIXEL

[X,Y] = meshgrid(xl:(PIXEL):xh);

R = sqrt((X-Xlens).^2 + (Y-Ylens).^2) + eps;
z = ((sign(r-R))+1)/2.* exp(i * 2 * pi * LAMBDA(1,2) * LZ / LAMBDA(1,1)

)...
 .* exp(-i * pi *R.^2 / (LAMBDA(1,1) * FocaL));

%Quantizes the phase in Q levels

zmag= abs(z);
%angle(z)*180/pi; %fix for angle??????????
zang= (round(angle(z)/(2*pi/Q))); %discretizes the phase
for m=1:N
for n=1:N
 if zang(n,m)< 0
 zang(n,m)= zang(n,m)+Q;
 end;
end;
end;
%zang
z= zmag.* exp(i.*zang.*(2*pi/Q));

if ask == 1
FIG=showproj(FIG+1,N,z,maskname);
%FIG=showproj(FIG+1,N,zang,'zang');
end;

84

%

% zout now in units of microns !!!!!!!
 f500bit = zang;
assignin('base','f500bit',f500bit);
toc
return;

function [zbit, FIG] = arrayfillbit_160(arrayin, ask);
% build at 2D lens in complex array z with
% zbit =
% n rows m columns
%
% PIXEL size in microns
%
%USAGE run before this:
% [f500, FIG] = lensf500_2(Q, 1);
%
%
%
%
global N FIG LAMBDA LZ Q FocaL DIA PIXEL scale D0 X0 Y0
N=512
%close all

%PIXEL = pin; % pitch = pixel size plus border in microns
z = arrayin;
insize=size(z)

shn = N- PIXEL*insize(1)/scale
shm = N- PIXEL*insize(2)/scale;

if shn < 0 | shm < 0
 error('PIXEL*insize()/scale > N in arrayfillbit');
end;
%
%take z array and expand it to zbit array for PIXEL size of PIXEL
%
zbit=zeros(N);

Pscale = PIXEL/scale
temp= ones(Pscale);
for m=1:insize(2)
for n=1:insize(1)

 temp=temp*z(n,m);
zbit(Pscale*n-(Pscale-1):Pscale*n,Pscale*m-(Pscale-

1):Pscale*m)=temp(1:Pscale,1:Pscale);

temp= ones(Pscale);
end;
end;
% fill in linear estimate for border on 1 micron

85

for m = Pscale:Pscale:insize(2)*Pscale
 for n = 1:insize(1)*Pscale
 zbit(n,m)= (zbit(n,m)+zbit(n,m+1))/2;
 end;
end;
for n = Pscale:Pscale:insize(1)*Pscale
 for m = 1:insize(2)*Pscale
 zbit(n,m)= (zbit(n,m)+zbit(n+1,m))/2;
 end;
end;
% zbit now in units of microns !!!!!!!

%shift to center at N/2 +1

zbit = circshift(zbit,[floor(shn/2)+1 floor(shm/2)+1]);

if ask == 1
 maskname=strcat('zbit','scale',num2str(scale));
 FIG=showproj(FIG+1,N,zbit,maskname);
% FIG=showproj(FIG+1,N,angle(zbit),'angle zbit');
end;

return;

function dB = fPropfocal_160(bitdata); % ****
% Propagate an input illumination aperture e-field ef0, distance z1
% to an EOAM eoam1 in complex array of size N,
% then Propagate distance z2 to ouput e-field ef2,
%
% and plot
%
%USAGE run before this:
% [zfill, FIG] = arrayfillbit_3(f500,1);
%
%
global N FIG LAMBDA LZ Q FocaL DIA PIXEL scale D0 X0 Y0 z1 z2 show sh

zmag
global NT levels gen0 sizSelCh maxelN
global ef0 eoam1 eoami ef2 Prop1 Prop2 MAG

gen0 = 0; NT =1 % globals for testing????????
close all

%N=30; For testing
%eoami = angle(data)./(2*pi/Q); % in bit units from -(Q/2)+1 to Q/2
%min(min(eoami))
%max(max(eoami))
%zmag = 2;
slamb = size(LAMBDA,1)
LZphase = zeros(slamb,1);
ephase = zeros(N, N, slamb, 'double');
ephase(:,:,1) = angle(zmag * exp(i*bitdata*(2*pi/Q)));
if slamb>1
 LZphase(1) = mod((LAMBDA(1,2)*LZ*2*pi/LAMBDA(1,1)), 2*pi);

86

 Vpm = ((ephase(:,:,1)*LAMBDA(1,1)/(LZ*2*pi))/LAMBDA(1,4));
 for m = 2:slamb
 LZphase(m) = mod((LAMBDA(m,2)*LZ*2*pi/LAMBDA(m,1)), 2*pi);
 ephase(:,:,m) = (LZphase(m)-LZphase(1) +

(LAMBDA(m,4)*LZ*2*pi/LAMBDA(m,1))*Vpm);
 end;
end;

%NT1= sizSelCh;
if gen0 ==0
 NT1 = NT;
end;

dB=zeros(NT1,1);
%show=1; sh= 0; FIG=0;
% LAMBDA = [0.6328 1.5 0]; % [wavelength n k]
n1 = 1.000; % index of air for z1
n2 = 1.000; % index of medium for z2
%NA= % NA for object side of system
%Q = % total system OPL in microns

%D0= 30; X0=0; Y0=0; %input diameter and center for ef0

aperture
d1= 256; x1= 0; y1= 0; %input diameter and center for eoam1

aperture
d2= 300; x2=0; y2= 0; %input diameter and center for ef2

aperture

z0 = 0
z1= zmag*FocaL %(d1/2)/NA for only filled eoam1 %calculated z

distances
z2 = 1/(1/FocaL -1/z1)

dlens_d=zeros(N,N,3,'double');

if gen0 == 0

dlens_d(:,:,:) = 1.0 * exp(i * ephase(:,:,:)); %lens in complex

array

FIG=showproj3(FIG+1,N,dlens_d, 'dlens_d');
%FIG=showproj(FIG+1,N,dlens_d(:,:,2), 'dlens_F');
%FIG=showproj(FIG+1,N,dlens_d(:,:,3), 'dlens_C');

[e0, FIG] = rect(1, D0, X0, Y0, sh); % aperture at z0
[e1, FIG] = rect(1, d1, x1, y1, sh); % aperture at z1
[e2, FIG] = rect(1, d2, x2, y2, sh); % aperture at z2

[Prop1, FIG] = chirp_Pscale(1,z1,sh); %use upchirp for fresnel

propagation kernel
[Prop2, FIG] = chirp_Pscale(1,z2,sh); %use upchirp for fresnel

propagation kernel

87

assignin('base','e0',e0); % puts arrays into workspace
assignin('base','e1',e1);
assignin('base','e2',e2);
assignin('base','Prop1',Prop1);
assignin('base','Prop2',Prop2);
assignin('base','dlens_d',dlens_d);

ef0 = e0; % phase assumed constant?????
ef1 = ncconv3(ef0,Prop1); % fresnel Propagation --normalized

power

%else
 % disp ([' in looop with globals used']);

end;

for b = 1 : NT1

 dBx=99999;
 % [ran1,ran2]= vect2smatrix(data(b,:));
 % fixN = (N+maxelN)/2 +maxelN/2;
 % ran1(fixN+2*y1,fixN+2*x1)=0;
 % ran2(fixN+2*y2,fixN+2*x2)=0;
 % ran1=fftshift(ran1);
 % ran2=fftshift(ran2);
%ran1(N,N)=0;
%ran1a(1:N,1:N)=ran1(1:N,1:N);
%ran2(N,N)=0;
%ran2a(1:N,1:N)=ran2(1:N,1:N);

eoam_d= ncmult3(e1,dlens_d);

ef1e1= ncmult3(ef1,eoam_d);

% normalize power to 1 at EOAM
%for m=1:slamb
%norm(m)=sum(sum(ef1e1(:,:,m).*conj(ef1e1(:,:,m)))) % Power = 1

of wave front amplitude
%ef1e1(:,:,m) = ef1e1(:,:,m)./(norm(m)^0.5);
%end;

pow1=sum(sum(ef1e1.*conj(ef1e1)))

%f2 = (1/(i*LAMBDA*z2))*exp(-i*2*pi*z2/LAMBDA).*ncconv2(f1e1,Prop2);
ef2 = ncconv3(ef1e1,Prop2); % fresnel propagation --normalized

power
ef2e2 = ncmult3(e2,ef2);
zI3 = ncSUMintensity3(ef2e2);

88

ef22 = ncconv3(ef2,Prop2); % fresnel propagation --normalized

power

%ef222 = ncconv2(ef22,Prop2); % fresnel propagation --normalized

power

%f2222 = ncconv2(ef222,Prop2); % fresnel propagation --

normalized power
%ef2222e2= (ef2222).*e2;

assignin('base','ef2e2',ef2e2);
assignin('base','zI3',zI3);

pow2=sum(sum(ef2e2.*conj(ef2e2)))

%count = count+1;

totalpow= pow1.*pow2
%disp ([trialI triale3 pow1 pow2 pow3 totalpow]);
dBx= -10*log10(totalpow./pow1)

%dB(:,:,:,b)= dBx

if show ==1
 maskname=strcat('fProp3',' N',num2str(N));

masknamef0 =strcat(maskname,' ef0');
masknamef1 =strcat(maskname,' ef1');
masknamef1e1 =strcat(maskname,' ef1e1');
masknamef2 =strcat(maskname,' ef2 z2');
masknamef22 =strcat(maskname,' ef2 pastz2');
masknamef2e2 =strcat(maskname,' ef2e2');
masknameoam_d =strcat(maskname,' eoam');
%masknamef2222 =strcat(maskname,' ef24z2');
%masknamef2222e2 =strcat(maskname,' ef24z2e2');

 FIG=showproj(FIG+1,N,ef0, masknamef0);
 FIG=showproj3(FIG+1,N,ef1, masknamef1);
 FIG=showproj3(FIG+1,N,eoam_d, masknameoam_d);
 FIG=showproj3(FIG+1,N,ef1e1, masknamef1e1);
 FIG=showproj3(FIG+1,N,ef2, masknamef2);
% FIG=showproj3(FIG+1,N,ef2e2, masknamef2e2);
% FIG=showproj3(FIG+1,N,ef22, masknamef22);
 FIG=showproj_color3(FIG+1,zI3, masknamef2e2);
 %FIG=showproj(FIG+1,N,ef2222, masknamef2222);
 %FIG=showproj(FIG+1,N,ef2222e2, masknamef2222e2);
 %FIG=showplot(FIG+1,N,ef2e2, masknamef2e2);
end;

%output info on lens system
so = z1
si = 1/(1/FocaL -1/so)
z2

89

MAG= -si/so

convolwithinputscale(zI3);

end;
return;

function address_fbit(fbit);
% calculate the number of pixel radii that are distinct
%
%
%
global N FIG add0 add1 add2 add3 PIXEL scrsz
maskname='address_fbit';
ask=1;imshowmag=3000;
fbitsize=size(fbit)
N=fbitsize(1)
znor=fbit;
zN=znor(N/2+1:N,N/2+1:N);
zNv(1:(N/2)^2)=zN;
%zsort=sort(zv);
zmin=min(zNv);
%counter=1000001
%while min(zv)<100
% zmin = min(zv);
%for i=1:(N/2)^2
% if zv(i) == zmin
% zv(i)=counter;
% end;end;
% counter= counter+1;
%end;
%zv=zv-1000000
levelmax = max(zNv)

if ask == 1
 font=12;
larray = length(zN);
 figure(FIG+1);
 set(FIG+1,'Name',['Display of ',maskname]);
 set(FIG+1,'Position',[scrsz(3)*.5 scrsz(4)*.53 scrsz(3)*.4

scrsz(4)*.4])
imshow(zN,[],'InitialMagnification',imshowmag)
text(0,0,['Real Part of

',maskname],'FontSize',font,'VerticalAlignment','bottom');
 zmin = num2str(min(min(real(zN))),'%+6.4g');
 zmax = num2str(max(max(real(zN))),'%+6.4g');
 text(0,larray,['min=',zmin,' max=',zmax],'FontSize',font-

4,'VerticalAlignment','top');
figure(FIG+2);
set(FIG+2,'Position',[scrsz(3)*.5 scrsz(4)*.53 scrsz(3)*.4

scrsz(4)*.4])
plot(zNv,':bd')

90

end;

for i = 1:N/2
 zNN(1:N/2, i)=zNv(((i-1)*(N/2)+1):(i*(N/2)));
end;
zNN
z88=zNN(1:8,1:8)

if ask == 1
 figure(FIG+3);
 set(FIG+3,'Position',[scrsz(3)*.5 scrsz(4)*.53 scrsz(3)*.4

scrsz(4)*.4])
plot(z88,':bd')
 font=12;
larray = length(zN);
 figure(FIG+4);
 set(FIG+4,'Name',['Display of z88']);
 set(FIG+4,'Position',[scrsz(3)*.5 scrsz(4)*.53 scrsz(3)*.4

scrsz(4)*.4])
imshow(z88,[],'InitialMagnification',imshowmag)
text(0,0,['Real Part of

',maskname],'FontSize',font,'VerticalAlignment','bottom');
 zmin = num2str(min(min(real(z88))),'%+6.4g');
 zmax = num2str(max(max(real(z88))),'%+6.4g');
 text(0,larray,['min=',zmin,' max=',zmax],'FontSize',font-

4,'VerticalAlignment','top');
end;
add0= find(z88 ==0)
add1= find(z88 ==1)
add2= find(z88 ==2)
add3= find(z88 ==3)

assignin('base','add0',add0);
assignin('base','add1',add1);
assignin('base','add2',add2);
assignin('base','add3',add3);
assignin('base','levelmax',levelmax);
assignin('base','z88',z88);
%toc
return;

91

Appendix B: datain_rerun_singlefile.m

%function datain_rerun31_singlefile.m
%Dale Ewbank 10/26/2005
% select files and assign voltage and color for Phase vs Voltage

analysis
%
rerunning = 1 % 1 for rerun with data in workspace, 0 for new
prompt = {'Running data files(0 for NEW, 1 for rerun, 2 for single

file):'}
 title = ['Input datain_rerun31.m'];
 lines= 1;
 def = {num2str(rerunning)};
 datas = inputdlg(prompt,title,lines,def);
 if isempty(datas)
 close all;
 disp(['User canceled datain_rerun31_singlefile.m'])
 return;
 end;
 rerunning =str2num(datas{1});

 if rerunning == 2
 prompt = {'ReRunning file#: '}
 title = ['Input datain_rerun31_singlefile.m'];
 lines= 1;
 def = {'99'};
 datas = inputdlg(prompt,title,lines,def);
 if isempty(datas)
 close all;
 disp(['User canceled datain_rerun31.m'])
 return;
 end;
 Nsingle =str2num(datas{1});
 end;
if rerunning == 0
 clear; rerunning =0;
end;
close all hidden;
imtool close all;
global Nsample fig
tic

hsize = 64;
fig =2;
fig_reuseask=0;
fig_reuse2ask=1;
start_sample=1;
Nsample = 70;
N=1 % number of "samples" to extract per image
if rerunning == 1 |rerunning == 2
 N = 3 % number of "samples" to extract per image
 Ntemp=size(sNmins);
 Nsample =Ntemp(1)
 clear temp1 temp2 temp3 rad_pix12 rad_pix31
end;
sample = 1; ss12 = 1; ss31 = 1;

92

set(0,'Units','pixels')
scrsz = get(0,'ScreenSize')

while sample < Nsample & rerunning == 0
[filename, pathname]=uigetfile({'*.tif';'*.jpg';'*.bmp';'*.*'},['Select

Image > ',num2str(sample)]);
 if isequal(filename,0)
 disp('User selected Cancel. Ending file selection.')
 Nsample = sample -1
 else
 temppath= pathname;
 disp(['User selected', fullfile(temppath, filename)])
 sfile{sample}=filename;
 sample = sample +1;
 end;
end;

wave=0.5875618; % 0.4861327 for blue, 0.6562816 for red, 0.5875618

for green, 999 for all
 if wave == 0.4861327
 color = 3;
 colorr = 'b';
 elseif wave == 0.5875618
 color = 2;
 colorr = 'g';
 elseif wave == 0.6562816
 color = 1;
 colorr = 'r';
 else
 wave = 999;
 color = 3 ;
 colorr = 'b';
 end;
% test read to find files size and setup variables
if rerunning == 0
 moon1 = imread(fullfile(temppath, sfile{Nsample}));
 [rmax, cmax, ncolor] = size(moon1)
 r2use = rmax/2-(round(N/2)*hsize)
 svolt = zeros(Nsample,1);
 scolorr{1}=colorr
 sNmins=ones(Nsample,1); sNminst= sNmins(1);
 xx1=ones(Nsample,1)*(hsize); xx1t=xx1(1);
 xx6=ones(Nsample,1)*(cmax-xx1(1)); xx6t=xx6(1);
end;

%create filter for smoothing
 sigma = 0.5*hsize;
 h2 = fspecial('gaussian',[hsize hsize/4],sigma);
if rerunning == 0
 svoltt=0;
 for sample = start_sample : Nsample

 prompt = {'Enter Voltage: ','Enter color> b g or r: ', ...
 };
 title = ['Input ',sfile{sample}];
 lines= 1;

93

 def = {num2str(svoltt),colorr};
 datas = inputdlg(prompt,title,lines,def);
 if isempty(datas)
 close(FIG);
 return;
 end;
 svolt(sample)=str2num(datas{1});
 scolorr{sample}=datas{2};
 colorr=datas{2};
 if sample > 1
 svoltt= svolt(sample)+(svolt(sample)-svolt(sample-1));
 end;
 end;
end;
if rerunning == 2
 start_sample= Nsingle
 Nsample=Nsingle
 end;
for sample = start_sample : Nsample

 rad_pix12(sample)=0;
 rad_pix31(sample)=0;
 moon1 = imread(fullfile(temppath, sfile{sample}));
switch scolorr{sample}
 case 'b'
 wave = 0.4861327
 color = 3;colorr='b';
 case 'g'
 wave = 0.5875618
 color = 2;colorr='g';
 case 'r'
 wave = 0.6562816
 color = 1;colorr='r';
 otherwise
 disp(' Error on color input, please restart')
 return;
 end;
% pull region of image for finding fringe minimums
[x2,y2,I2,rect2] = imcrop(moon1,[1 r2use-hsize/2 cmax N*hsize]);
%imtool(h2,[]);

%imtool(I2f,[]);

if fig_reuseask == 0
 fig_reuse = 1;
 figure(fig_reuse);
 set(fig_reuse,'Position',[1 scrsz(4)*0.5 scrsz(3)*.8

scrsz(4)*0.40]);
else
 fig= fig+1;
 fig_reuse=fig;
end;
 figure(fig_reuse);
 clf('reset');
 set(fig_reuse,'Position',[1 scrsz(4)*0.5 scrsz(3)*.8

scrsz(4)*0.40]);

94

 set(fig_reuse,'Name',['#',num2str(sample),' of ',num2str(Nsample),'

', sfile{sample},' for minimums']);
 for n = 1 : N
 plot(I2(hsize/2+(n-1)*hsize,:,color),colorr);hold all;
 end;

 %find minimums between xx5 xx6
if rerunning == 0
 prompt = {'How many minimuns? ','Enter xx1 for left of minimums:

', ...
 'Enter xx6 for right of minimums: '};
 title = ['Input ',sfile{sample},'for ',scolorr{sample}];
 lines= 1;
 def = {num2str(sNminst),num2str(xx1t),num2str(xx6t)};
 datas = inputdlg(prompt,title,lines,def);
 if isempty(datas)
 disp('NO or bad DATA');
 return;
 end;
 sNmins(sample)=str2num(datas{1});
 xx1(sample)=str2num(datas{2});
 xx6(sample)=str2num(datas{3});
 sNminst=sNmins(sample);
 xx1t=xx1(sample);
 xx6t=xx6(sample);
end;
if rerunning == 1 |rerunning == 2
 I2f = imfilter(I2,h2);
 xxrange=[xx1(sample):xx6(sample)];
 I2fm= ones(N*hsize, cmax, ncolor)*999;

 if fig_reuse2ask == 0
 fig_reuse2 = 2;
 figure(fig_reuse2);
 set(fig_reuse2,'Position',[1 scrsz(4)*0.03 scrsz(3)*.8

scrsz(4)*0.40]);
 else
 fig=fig+1;
 fig_reuse2=fig;
 end;
 figure(fig_reuse2);
 clf('reset');
 set(fig_reuse2,'Position',[1 scrsz(4)*0.03 scrsz(3)*.8

scrsz(4)*0.40]);
 set(fig_reuse2,'Name',['filter/marker #',num2str(sample),' of

',num2str(Nsample),' ', sfile{sample},' for minimums']);

 for n = 1 : N
 marker = imextendedmin(I2f(hsize/2+(n-

1)*hsize,xxrange,color),hsize*N);
 plot(I2f(hsize/2+(n-1)*hsize,:,color),colorr);hold all;
 I2fm(hsize/2+(n-1)*hsize,xxrange,color) =

imimposemin(I2f(hsize/2+(n-1)*hsize,xxrange,color),marker);
 plot(I2fm(hsize/2+(n-1)*hsize,:,color),'k');hold all;

95

 ind1 = find(I2fm(hsize/2+(n-1)*hsize,xxrange,color) == 0);
 K=size(ind1);
 xmin=zeros(3,1)
 switch sNmins(sample) % 3 used for rad_pix31, and is ahead of

first minuimum
 case 1
 lm1 = ind1(1);
 hm1 = ind1(K(2));
 xmin(1) = xx1(sample) + round((lm1 + hm1) /2);

 case 2
 lm1 = ind1(1);
 hm2 = ind1(K(2));
 temp =0;
 for i = 2:K(2)
 if temp == 0 & abs(ind1(i) - ind1(i-1)) > 1
 hm1 = ind1(i-1);
 lm2 = ind1(i);
 temp = +1;
 end;
 end;

 xmin(1) = xx1(sample) + round((lm1 + hm1) /2);
 xmin(2) = xx1(sample) + round((lm2 + hm2) /2);

 case 3
 lm3 = ind1(1);
 hm1 = ind1(K(2));
 temp =0;
 for i = 2:K(2)
 if temp == 0 & abs(ind1(i) - ind1(i-1)) > 1
 hm3 = ind1(i-1);
 lm1 = ind1(i);
 temp = 1;
 end;
 end;

 xmin(1) = xx1(sample) + round((lm1 + hm1) /2)
 xmin(3) = xx1(sample) + round((lm3 + hm3) /2);
 otherwise
 disp('MINIMUMS FAILED');
 end;

 scatter(xmin(1),I2f(hsize/2+(n-

1)*hsize,xmin(1),color),100,colorr);hold all;
 if xmin(2) ~= 0
 scatter(xmin(2),I2f(hsize/2+(n-

1)*hsize,xmin(2),color),100,'k');hold all;
 end;
 if xmin(3) ~= 0;
 scatter(xmin(3),I2f(hsize/2+(n-

1)*hsize,xmin(3),color),100,'k');hold all;
 end;

96

 temp1(n)=xmin(1)
 temp2(n)=xmin(2)
 temp3(n)=xmin(3)
 end;
 xmin = [mean(temp1) mean(temp2) mean(temp3)]
 %xmin(1) = mean(temp1)
 %xmin(2) = mean(temp2)
 %xmin(3) = mean(temp3)
 if xmin(2)~= 0;
 rad_pix12(sample)= 2*pi/(xmin(2)-xmin(1))
 end;
 if xmin(3)~= 0
 rad_pix31(sample)= 2*pi/(xmin(1)-xmin(3))
 end;

 PX1(sample)=xmin(1)
 PX2(sample)=xmin(2)
 PX3(sample)=xmin(3)
 end;
end;
if rerunning == 1 |rerunning == 2
 if rerunning == 2
 Nsample =Ntemp(1); % resetting Nsample
 sample = Nsample;
 end;
 ind2 = find(svolt == 100)
 ind12 = find(rad_pix12 ~= 0)
 %rad_pix12(ind12)= (PX2(ind12)-PX1(ind12))
 %rad_pix12(ind12) = 2*pi/rad_pix12(ind12)
 rad_12 =mean(rad_pix12(ind12))

 PX1_mean=mean(PX1(ind2))
 Phaseshift = mean(rad_pix12(ind12))*(PX1 - mean(PX1(ind2)))

 fig=fig+1; figure(fig);
 set(fig,'Position',[1 scrsz(4)*0.5 scrsz(3)*.8 scrsz(4)*0.40]);
 set(fig,'Name',['Pixels of ',num2str(Nsample),'files versus

Voltage', sfile{sample},' for ',scolorr{sample}]);
 plot(svolt,PX1,[scolorr{sample},':x']);hold all;
 plot(svolt,PX2,'o');hold all;
 plot(svolt,PX3,'*');hold all;
 xlabel('Volts','FontSize',16)
 ylabel('Pixel column','FontSize',16)

 fig=fig+1; figure(fig);
 set(fig,'Position',[1 scrsz(4)*0.03 scrsz(3)*.8 scrsz(4)*0.40]);
 set(fig,'Name',['Phase ',num2str(Phaseshift(sample)),' of

',num2str(Nsample),' versus Voltage', sfile{sample},' for

',scolorr{sample}]);
 plot(svolt,Phaseshift,[scolorr{sample},':*']);hold all;
 if exist('rad_pix31','var') == 1
 ind31 = find(rad_pix31 ~= 0)
 rad_31 =mean(rad_pix31(ind31))
 Phaseshift3 = mean(rad_pix31(ind31))*(PX1 -

mean(PX1(ind2)))

97

 plot(svolt,Phaseshift3,['k','x']);hold all;
 end;
 xlabel('Volts','FontSize',16)
 ylabel('Phase [radians]','FontSize',16)
end;
 toc
 clear moon1

98

Appendix C: Run Sheet for EOAM v1.5b

Run Sheet for EOAM v1.5b

Third run of EOAM device wafers

Step 1)

Obtain 4” Silicon Wafers

Step 2)

RCA Clean of Silicon Wafers

Process Steps:

1) RCA Clean

- APM(SCI): 10 Minute Soak

- DI Water: 5 Minute Rinse

- Dilute HF: 1 Minute Soak

- DI Water: 5 Minute Rinse

- HPM: 10 Minute Soak

- DI Water: 5 Minute Rinse

2) Surface Defect Metrology Using the Tencor Surfscan tool.

Process Tools:

1) Wet Bench: RCA MOS Clean

2) Tencor 364 Surfscan

Step 3)

Growth of ~1 micron of Isolation Oxide

-Wet Oxide growth in Bruce Furnace (Tube 1)

Process Steps:

1) Thermal Processing in Bruce Furnace

- Run Program 888 (Furnace Warmup)

99

- Run Program 168 (1 micron wet oxide)

2) Oxide Thickness Metrology on Control Wafer C1

Process Tools:

1) Bruce Furnace (Tube 1)

2) Nanospec

Step 4)

Deposition of Metal #1

-Sputtering of ~0.5 m Aluminum

Process Steps:

1) Aluminum Sputtering in CVC 601

-Argon Flow: 18.0 sccm

-Flow Pressure: 5.0 mTorr

-Power: 1500 Watts (approx. 460 V and 3.26 Amps)

-Target: 8” Target

2) Aluminum Thickness Metrology on Control Wafer

Sputtering Paramters:

1) Approximate Time: 1020 seconds

2) Desired Thickness: 0.5 m

3) Resulting Thickness: 0.41 m

Process Tools:

1) CVC 601 Sputter

2) Nanospec

Step 5)

Patterning of Mask #1 in Photoresist

-Suss MA 150 Aligner

Process Steps:

1) Coating of Photoresist on SVG Track

 - Material: Shipley 1813

- Program: Program 1

100

 - Thickness: 1.25 m

2) Exposure in Suss MA 150 Aligner (broadband)

-Mask Metal 1

-Actual Dose: 76 mJ/cm
2

-Resolution: 1.0 micron

3) Develop SVG Track

 -Program: 1

4) Photoresist Defect Metrology on Device Wafers

Process Tools:

1) SVG Track

2) Suss MA

3) Nanospec

Step 6)

Etching of Metal 1

Metal Wet Etch followed by ashing of Photoresist in Branson Asher

Process Steps:

1) Etch in Metal Wet Etch

 -When the tank has reached 50C, place the wafers in the tank until the aluminum

clears and then give them an additional 10%.

 -After completing an aluminum etch, rinse the wafers for 5 minutes in the rinse

tank before transferring to the rinser/dryer.

2) Ash Wafers in Branson 3200 Asher

3) Pattern Defect Metrology

Etch Parameters:

1) Expected Time: 2.5 Minutes

2) Expected Rate: 2646 A/min

Process Tools:

1) Metal Wet Etch Bench

2) Branson 3200 Asher

3) Nanospec

101

Step 7)

Deposit Oxide Layer #2

CVD techniques via the AME P5000

Process Steps:

1) Deposit ~1 micron of Oxide

 -Process: 1 Micron TEOS Low Stress

 -Desired Thickness: 10064 Angstroms

 2) Oxide Thickness Metrology on Dummy Wafer

Process Tools:

1) AME P5000

2) Nanometrics Spectrophotometers

Step 8)

Patterning of Mask #2 in photoresist

Suss MA 150 Aligner

Process Steps:

1) Coating of Photoresist on SVG Track

 - Material: Shipley 1813

- Program: Program 1

 - Thickness: 1.2 m

2) Exposure in Suss MA 150 Aligner (broadband)

-Mask Via

-Actual Dose: 103.2 mJ/cm^2

-Resolution: 1.0 micron

3) Develop SVG Track

 -Program: 1

4) Photoresist Defect Metrology on Device Wafers

Process Tools:

1) SVG Track

2) Suss MA

102

3) Nanospec

Step 9)

Etching of Via Pattern onto oxide Layer

BOE Wet Etch followed by ashing of photoresist in Branson 3200 Asher

Process Steps:

1-1) Etch in BOE

 -Controlled Etch of Specified Time

 -5 Minute Rinse

 -Dry in Spin/Rinse Dryer

3) Pattern Defect Metrology

Etch Parameters:

1) Desired Rate: 586 A/min

2) Etch Rate: 1479 A/min

3) Etch Time: 7:40 min

Process Tools:

1) Drytek Quad

2) Branson 3200 Asher

3) Nanospec

Step 10)

Deposition of Metal #2

Sputtering of 1.50 - 2.00 m Aluminum (1.0 m used in previous runs)

Process Steps:

1) Aluminum Sputtering in CVC 601

-Argon Flow: 18.0 sccm

-Flow Pressure: 5.0 mTorr

-Power: 1500 Watts (approx. 460 V and 3.26 Amps)

-Target: 8” Target

103

2) Aluminum Thickness Metrology on Control Wafer

Sputtering Paramters:

1) Approximate Time: 3000 seconds Adjust for thickness

2) Desired Thickness: 1.50 m

Process Tools:

1) CVC 601 Sputter

2) Nanospec

Step 11)

Patterning of Mask #2 in photoresist

Suss MA 150 Aligner

Process Steps:

1) Coating of Photoresist on SVG Track

 - Material: Shipley 1813

- Program: Program 1

 - Thickness: 1.2 m

2) Exposure in Suss MA 150 Aligner (broadband)

-Mask Metal 2

-Actual Dose: 97.2 mJ/cm^2

-Resolution: 1.0 micron

3) Develop SVG Track

 -Program: 1

4) Photoresist Defect Metrology on Device Wafers

Process Tools:

1) SVG Track

2) Suss MA

3) Nanospec

Step 12)

Etching of Metal 2

Metal Wet Etch followed by ashing of Photoresist in Branson Asher

104

Process Steps:

1) Etch in Metal Wet Etch

 -When the tank has reached 50C, place the wafers in the tank until the aluminum

clears and then give them an additional 10%.

 -After completing an aluminum etch, rinse the wafers for 5 minutes in the rinse

tank before transferring to the rinser/dryer.

2) Ash Wafers in Branson 3200 Asher

3) Pattern Defect Metrology

Etch Parameters:

1) Expected Time: 7.5 Minutes

2) Expected Rate: 2646 A/min

Process Tools:

1) Metal Wet Etch Bench

2) Branson 3200 Asher

3) Nanospec

Step 13)

Probe of EOAM devices

 -Verify contact between pads and pixels

 -Verify pads not shorted to each other

Step 14) (Newly developed process)

CMP of Metal 2

Objective:

Create mirror like finish of metal on pixel areas

Process Tools:

Strausbaugh

Step 15) (Newly developed process)

Objective:

Patterning of Spacer Layer in photoresist –12 microns thickness

105

Method:

Patterning of fourth photoresist mask using Suss MA 150 Aligner

Process Steps:

1) Coating of Photoresist on Hand Coater

 -Material: SU-8

 -Ramp up spinner to 2400 RPM for 5 s

 -Hold at 2400 RPM for 40 s

 -Ramp Down

2) Soft Bake at 95 Degrees Centigrade

 - Bake at 65 Degrees Centigrade for 2 minutes

 - Bake at 95 Degrees Centigrade for 5 minutes

3) Exposure in Suss Mask Aligner (365 nm)

-Mask #4

-Dose to Clear: approx. 180 mJ/cm^2

-Thickness: 20.0 micron

4) Post Exposure Bake

 - Bake at 65 Degrees Centigrade for 1 minute

 - Bake at 95 Degrees Centigrade for 2 minutes

5) Develop on wet bench using RER-600 Developer

 - Develop using RER-600 for 3 minutes

 - Rinse in IPO

6) Hard Bake

 - Bake at 65 Degrees Centigrade for 1 minute

 - Bake at 95 Degrees Centigrade for 2 minutes

 - Bake at 150 Degrees Centigrade for 5 minutes

6) Photoresist Defect Metrology on Device Wafers

Process Tools:

1) Hand Spinner

2) Wet Development Bench

3) Nanometrics Spectrophotometers

106

Step 16)

Objective:

Dice wafers into separate devices

Method: Dice wafer so that individual „good‟ device have “handling die attached”.

Process Tools:

Tempress 4 Inch Wafer Saw

Step 17) (Newly developed process)

Objective:

Fill Layer with PDLC and cover with ITO Glass Slide

Method:

The cell will be filled with PDLC manually before a prefabricated ITO glass slide is

placed over the lens area.

Step 18) (Newly developed process)

Objective:

UV Exposure to cure

Method:

Completed dvice will be exposed to ultraviolet light via exposure.

 Procedure:

1.) UV Exposure with i-line head (Newly developed tool)

- Required Dose: minimum 50 mW/cm
2
 for 120 seconds

107

Appendix D: EOAM_Process Rev1_5b

© 20 January 2011 Dale Ewbank

EOAM Process

Page 1

Rochester Institute of Technology

Microelectronic Engineering

ROCHESTER INSTITUTE OF TECHNOLOGY
MICROSYSTEMS ENGINEERING

EOAM -- Process v1.5b

Silicon substrate (625)

Thermal oxide (0.5)

Metal 1- Al (0.5)

Metal 2- Al (1.5)

TEOS (1.0)

Glass (1092) with ITO (0.1)

Electro-optic material (12)

Thickness in m (x.x) not to scale

Spacer material (12)

© 20 January 2011 Dale Ewbank

EOAM Process

Page 2

Rochester Institute of Technology

Microelectronic Engineering

Step 1:

Obtain 4”

Substrates

EOAM -- Process v1.5b

108

© 20 January 2011 Dale Ewbank

EOAM Process

Page 3

Rochester Institute of Technology

Microelectronic Engineering

Step 2:

RCA Clean

EOAM -- Process v1.5b

© 20 January 2011 Dale Ewbank

EOAM Process

Page 4

Rochester Institute of Technology

Microelectronic Engineering

Step 3:

Grow >500 nm Thermal Oxide

EOAM -- Process v1.5b

109

© 20 January 2011 Dale Ewbank

EOAM Process

Page 5

Rochester Institute of Technology

Microelectronic Engineering

Step 4:

Deposit Metal 1

EOAM -- Process v1.5b

© 20 January 2011 Dale Ewbank

EOAM Process

Page 6

Rochester Institute of Technology

Microelectronic Engineering

Step 5:

Pattern photoresist for Metal 1

EOAM -- Process v1.5b

110

© 20 January 2011 Dale Ewbank

EOAM Process

Page 7

Rochester Institute of Technology

Microelectronic Engineering

Step 6:

Etch Metal 1

EOAM -- Process v1.5b

© 20 January 2011 Dale Ewbank

EOAM Process

Page 8

Rochester Institute of Technology

Microelectronic Engineering

Step 6 continued :

Strip Resist

EOAM -- Process v1.5b

111

© 20 January 2011 Dale Ewbank

EOAM Process

Page 9

Rochester Institute of Technology

Microelectronic Engineering

Step 7:

Deposit PECVD of TEOS Silicon Dioxide

EOAM -- Process v1.5b

© 20 January 2011 Dale Ewbank

EOAM Process

Page 10

Rochester Institute of Technology

Microelectronic Engineering

Step 8:

Pattern photoresist for Vias

EOAM -- Process v1.5b

112

© 20 January 2011 Dale Ewbank

EOAM Process

Page 11

Rochester Institute of Technology

Microelectronic Engineering

Step 9:

Etch Vias into TEOS

EOAM -- Process v1.5b

© 20 January 2011 Dale Ewbank

EOAM Process

Page 12

Rochester Institute of Technology

Microelectronic Engineering

Step 9 continued:

Strip resist

EOAM -- Process v1.5b

113

© 20 January 2011 Dale Ewbank

EOAM Process

Page 13

Rochester Institute of Technology

Microelectronic Engineering

Step 10:

Deposit Metal 2

EOAM -- Process v1.5b

© 20 January 2011 Dale Ewbank

EOAM Process

Page 14

Rochester Institute of Technology

Microelectronic Engineering

Step 11:

Pattern Photoresist for Metal 2

EOAM -- Process v1.5b

114

© 20 January 2011 Dale Ewbank

EOAM Process

Page 15

Rochester Institute of Technology

Microelectronic Engineering

Step 12:

Etch Metal 2

EOAM -- Process v1.5b

© 20 January 2011 Dale Ewbank

EOAM Process

Page 16

Rochester Institute of Technology

Microelectronic Engineering

Step 12 continued :

Strip resist

EOAM -- Process v1.5b

115

© 20 January 2011 Dale Ewbank

EOAM Process

Page 17

Rochester Institute of Technology

Microelectronic Engineering

Step 13:

Probe to verify contact between pads and pixels

EOAM -- Process v1.5b

© 20 January 2011 Dale Ewbank

EOAM Process

Page 18

Rochester Institute of Technology

Microelectronic Engineering

Step 14:

CMP Metal 2 (Newly developed process)

EOAM -- Process v1.5b

116

© 20 January 2011 Dale Ewbank

EOAM Process

Page 19

Rochester Institute of Technology

Microelectronic Engineering

Step 15:

Pattern Spacer layer (Newly developed process)

EOAM -- Process v1.5b

© 20 January 2011 Dale Ewbank

EOAM Process

Page 20

Rochester Institute of Technology

Microelectronic Engineering

Step 16:

Dice wafer into separate devices

EOAM -- Process v1.5b

117

© 20 January 2011 Dale Ewbank

EOAM Process

Page 21

Rochester Institute of Technology

Microelectronic Engineering

Step 17:

Fill with PDLC precursor (Newly developed process)

EOAM -- Process v1.5b

© 20 January 2011 Dale Ewbank

EOAM Process

Page 22

Rochester Institute of Technology

Microelectronic Engineering

Step 17 continued:

Cover with ITO glass slide (Newly developed process)

EOAM -- Process v1.5b

118

© 20 January 2011 Dale Ewbank

EOAM Process

Page 23

Rochester Institute of Technology

Microelectronic Engineering

Step 18:

UV Exposure to cure PDLC (Newly developed process and tool)

EOAM -- Process v1.5b

© 20 January 2011 Dale Ewbank

EOAM Process

Page 24

Rochester Institute of Technology

Microelectronic Engineering

EOAM layers

Silicon substrate (625)

Thermal oxide (0.5)

Metal 1- Al (0.5)

Metal 2- Al (1.2)

PECVD TEOS (1.0)

Glass (1092) with ITO (0.1)

Electro-optic material (12)

Thickness in m (x.x) not to scale

Spacer material (12)

EOAM -- Process v1.5b

119

Appendix E: g5_nm_PDLC.fig and g5_nm_PDLC.m

function varargout = g5_nm_PDLC(varargin)

%***************** updated 01082009 DEE see line 409

% to correct complex number display

% G5_NM_PDLC M-file for g5_nm_PDLC.fig

% G5_NM_PDLC, by itself, creates a new G5_NM_PDLC or raises the

existing

% singleton*.

%

% H = G5_NM_PDLC returns the handle to a new G5_NM_PDLC or the

handle to

% the existing singleton*.

%

% G5_NM_PDLC('CALLBACK',hObject,eventData,handles,...) calls the

local

% function named CALLBACK in G5_NM_PDLC.M with the given input

arguments.

%

% G5_NM_PDLC('Property','Value',...) creates a new G5_NM_PDLC or

raises

% the existing singleton*. Starting from the left, property value

pairs are

% applied to the GUI before g4_nm_Dvary_OpeningFunction gets

called. An

% unrecognized property name or invalid value makes property

application

% stop. All inputs are passed to g5_nm_PDLC_OpeningFcn via

varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help g5_nm_PDLC

% Last Modified by GUIDE v2.5 29-Sep-2010 14:30:35

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @g5_nm_PDLC_OpeningFcn, ...

 'gui_OutputFcn', @g5_nm_PDLC_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

120

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before g5_nm_PDLC is made visible.

function g5_nm_PDLC_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to g5_nm_PDLC (see VARARGIN)

% Choose default command line output for g5_nm_PDLC

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

initialize_gui(hObject, handles, false);

% UIWAIT makes g5_nm_PDLC wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = g5_nm_PDLC_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% function selectlayer_SelectionChangeFcn(hObject, eventdata, handles)

% % hObject handle to unitgroup (see GCBO)

% % eventdata reserved - to be defined in a future version of MATLAB

% % handles structure with handles and user data (see GUIDATA)

% set(handles.text4, 'String', 'setting');

% switch hObject

% case handles.layer3

% handles.metricdata.layer=3;

% case handles.layer4

% handles.metricdata.layer=4;

% case handles.layer5

% handles.metricdata.layer=5;

% otherwise

% handles.metricdata.layer=2; %handles.layer2

% end

% guidata(hObject,handles)

% set(handles.R, 'String',handles.metricdata.layer);

% guidata(handles.figure1, handles);

% --

121

% --- Executes during object creation, after setting all properties.

function n1_CreateFcn(hObject, eventdata, handles)

% hObject handle to n1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background, change

% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.

usewhitebg = 1;

if usewhitebg

 set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))

;

end

function n1_Callback(hObject, eventdata, handles)

% hObject handle to n1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of n1 as text

% str2double(get(hObject,'String')) returns contents of n1 as a

double

n1 = str2double(get(hObject, 'String'));

if isnan(n1)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

handles.metricdata.n1 = n1;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function m1_CreateFcn(hObject, eventdata, handles)

% hObject handle to m1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background, change

% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.

usewhitebg = 1;

if usewhitebg

 set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))

;

end

function m1_Callback(hObject, eventdata, handles)

122

% hObject handle to m1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of m1 as text

% str2double(get(hObject,'String')) returns contents of m1 as a

double

m1 = (get(hObject, 'String'));

if ischar(m1)

 set(hObject, 'String', 0);

 errordlg('Input must be a char','Error');

end

% Save the new m1 value

handles.metricdata.m1 = m1;

guidata(hObject,handles)

% --- Executes on button press in calculate.

function calculate_Callback(hObject, eventdata, handles)

% hObject handle to calculate (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

axes(handles.axes1);

cla;

%

%function multilayer_Guenther_interface_7resist

%DEE 02/06/2007

% Calculates Reflectance from film stack at angle of incidence.

% Based on Guenther "Modern Optics" pg. 120-128

%

% set-up parameters

%global E1 E2 media_name n stack D lambda k r t tD

Aname='multilayer_Guenther_interface_7resist.m';

media_name=[handles.metricdata.m1 handles.metricdata.m2

handles.metricdata.m3 ...

 handles.metricdata.m4 handles.metricdata.m5

handles.metricdata.m6]

%

% Input for multilayer film stack

% n >> complex index of refraction

% D >> thickness in [nm]

% lambda >> units of [nm]

% ***

n=[handles.metricdata.n1 handles.metricdata.n2 handles.metricdata.n3

...

 handles.metricdata.n4 handles.metricdata.n5 handles.metricdata.n6

]

D=[handles.metricdata.z1 handles.metricdata.z2 handles.metricdata.z3

...

 handles.metricdata.z4 handles.metricdata.z5 handles.metricdata.z6]

Drange=400

lambda=handles.metricdata.lambda

theta_id=handles.metricdata.angleI

% theta_id=10 %degrees

Dvary=handles.metricdata.layer % choose layer 2 through inter-1

123

interface=handles.metricdata.Ninterfaces % choose interface for

reflectance calculation of stack

stack=size(n)

Rstack=zeros(2,stack(2));

Dtemp=D(Dvary)

theta_i=theta_id*pi/180 % [degrees]*pi/180 = [radians]

 % [radians] angle of incidence in layer 1 (top

layer of stack "usually air")

EfTE=[1

 0] % E field final TE

EfTM=[1

 0] % E field final TM

% set angle of illumination ********************************

theta=ones(1,stack(2))*99;

theta(1)=theta_i;

for j=2 : stack(2) % what happens if theta >= 90

degrees?

 theta(j)=asin((n(j-1)/n(j))*sin(theta(j-1)));

end;

% for inter = 2 : interface

inter = interface

 if Dtemp > 500

 Dmin=Dtemp-Drange/2;

 Dmax=Dtemp+Drange/2;

 else

 Dmin=1;

 Dmax=Dtemp+1;

 end;

 Erange=Dmax-Dmin+1

 Evary=zeros(2,1,Erange);

r=zeros(1,inter); t=ones(1,inter); % fresnel coefficents

rho=ones(1,inter); % reflection coefficent

for stack

Es=ones(2,1,inter)*7; Ep=ones(2,1,inter)*6; % E-field at bottom

of layer

I=ones(2,2,inter)*9; % interface transfer matrix

T=ones(2,2,inter)*99; % bulk film tranfer matrix (phase and

absorption??)

M=zeros(2,2,inter); % composite I*T for each transfer layer

Mfs=[1 0

 0 1];

Mfp=[1 0

 0 1];

 % run for TE pol=1 and then for TM pol=2 polarization

 for pol = 1:2

 if pol ==1

 N=n.*cos(theta) % complex effective index TE for each

layer

 else

 N=n./cos(theta) % complex effective index TM for each

layer

124

 end;

delta=2.*pi.*n.*cos(theta).*D/lambda % phase difference for single

pass thru layer

for vary= Dmin : Dmax

D(Dvary)=vary-1;

%delta(Dvary)=2*pi*N(Dvary)*D(Dvary)/lambda; % phase for effective

N?????

delta(Dvary)=2*pi*n(Dvary)*cos(theta(Dvary))*D(Dvary)/lambda; % phase

difference for single pass thru layer

%

 for j=2:inter

 r(j)=(N(j-1)-N(j))/(N(j-1)+N(j));

 t(j)= 2*N(j-1)/(N(j-1)+N(j));

 I(:,:,j)=[1/t(j) r(j)/t(j)

 r(j)/t(j) 1/t(j)];

 T(:,:,j)=[exp(i*delta(j)) 0

 0 exp(-i*delta(j))];

 M(:,:,j)=I(:,:,j)*T(:,:,j);

 end;

 MT=[1 0

 0 1];

 for j= 2:inter

 if j == inter

 MT=MT*I(:,:,j);

 else

 MT=MT*I(:,:,j)*T(:,:,j) ;

 end;

 end;

 if pol == 1

 Es=MT*EfTE;

 Evary(:,:,(vary-Dmin+1))=Es;

 rhoTE=Es(2,1)./Es(1,1);

 RstackTE=rhoTE.*conj(rhoTE);

 RTE(vary-Dmin+1)=RstackTE;

 if (vary-Dmin+1) == (Erange-1)/2

 Rstack(1,inter)=RstackTE;

 end;

 else

 Ep=MT*EfTM;

 Evary(:,:,(vary-Dmin+1))=Ep;

 rhoTM=Ep(2,1)./Ep(1,1);

 RstackTM=rhoTM.*conj(rhoTM);

 RTM(vary-Dmin+1)=RstackTM;

 if (vary-Dmin+1) == (Erange-1)/2

 Rstack(2,inter)=RstackTM;

 end;

 end;

 end;

 if pol ==1

% figure(inter)

% set(inter,'Name',['Display from ',Aname]);

125

 plot((Dmin:1:(Dmax)),RTE,'b'); hold all;

 title(['Reflectance of ',num2str(inter),' layer film stack vs

layer ',num2str(Dvary),' thickness']); hold all;

 [maxRTE,ImaxRTE]=max(RTE);

 [minRTE,IminRTE]=min(RTE);

 Fresnel_rTE=r

 ReflectanceTE=r.*conj(r)

 else

 [maxRTM,ImaxRTM]=max(RTM);

 [minRTM,IminRTM]=min(RTM);

% figure(inter)

 plot((Dmin:1:(Dmax)),RTM,'-.g'); hold all;

 xlabel(['layer ',num2str(Dvary),' thickness

[nm]'],'FontSize',10);

 ylabel(['Reflectance (incidence of ',num2str(theta_id),'

degrees)'],'FontSize',10);

 legend(['TE ',num2str(minRTE),' at ',num2str(IminRTE-

1+Dmin),...

 'nm ',num2str(maxRTE),' at ',num2str(ImaxRTE-

1+Dmin),'nm ',num2str(RTE(Erange))],...

 ['TM ',num2str(minRTM),' at ',num2str(IminRTM-

1+Dmin),...

 'nm ',num2str(maxRTM),' at ',num2str(ImaxRTM-

1+Dmin),'nm ',num2str(RTM(Erange))]);

 legend('location','Best');

 legend('boxoff');

 Fresnel_rTM=r

 ReflectanceTM=r.*conj(r)

 end;

end;

D(Dvary)=Dtemp;

media_name

n

% end;

ReflectanceTE

ReflectanceTM

R=[ReflectanceTE ReflectanceTM]

set(handles.R, 'String', Dvary);

% --- Executes on button press in reset.

function reset_Callback(hObject, eventdata, handles)

% hObject handle to reset (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

initialize_gui(gcbf, handles, true);

% --

function initialize_gui(fig_handle, handles, isreset)

% If the metricdata field is present and the reset flag is false, it

means

126

% we are we are just re-initializing a GUI by calling it from the cmd

line

% while it is up. So, bail out as we dont want to reset the data.

if isfield(handles, 'metricdata') && ~isreset

 return;

end

handles.metricdata.m1 = 'air';

handles.metricdata.m2 = 'glass';

handles.metricdata.m3 = 'ITO';

handles.metricdata.m4 = 'PDLC';

handles.metricdata.m5 = 'Al';

handles.metricdata.m6 = 'SiO2';

handles.metricdata.Ninterfaces = 6;

handles.metricdata.n1 = 1;

handles.metricdata.n2 = 1.5;

handles.metricdata.n3 = 1.93-0.0i;

handles.metricdata.n4 = 1.6-0.0i;

handles.metricdata.n5 = 0.769-6.08i;

handles.metricdata.n6 = 4.297488-.07i;

handles.metricdata.z1 = 1000;

handles.metricdata.z2 = 100000;

handles.metricdata.z3 = 120;

handles.metricdata.z4 = 10000;

handles.metricdata.z5 = 500;

handles.metricdata.z6 = 10000;

handles.metricdata.lambda = 541;

handles.metricdata.angleI = 2;

handles.metricdata.layer = 3;

plot(handles.metricdata.n1,handles.metricdata.z1);

set(handles.m1, 'String', handles.metricdata.m1);

set(handles.m2, 'String', handles.metricdata.m2);

set(handles.m3, 'String', handles.metricdata.m3);

set(handles.m4, 'String', handles.metricdata.m4);

set(handles.m5, 'String', handles.metricdata.m5);

set(handles.m6, 'String', handles.metricdata.m6);

set(handles.Ninterfaces, 'String',handles.metricdata.Ninterfaces);

set(handles.n1, 'String', num2str(handles.metricdata.n1));

set(handles.n2, 'String', num2str(handles.metricdata.n2));

set(handles.n3, 'String', num2str(handles.metricdata.n3));

set(handles.n4, 'String', num2str(handles.metricdata.n4));

set(handles.n5, 'String', num2str(handles.metricdata.n5));

set(handles.n6, 'String', num2str(handles.metricdata.n6));

set(handles.z1, 'String', handles.metricdata.z1);

set(handles.z2, 'String', handles.metricdata.z2);

set(handles.z3, 'String', handles.metricdata.z3);

set(handles.z4, 'String', handles.metricdata.z4);

set(handles.z5, 'String', handles.metricdata.z5);

set(handles.z6, 'String', handles.metricdata.z6);

set(handles.lambda, 'String', handles.metricdata.lambda);

set(handles.angleI, 'String', handles.metricdata.angleI);

set(handles.R, 'String', 0);

set(handles.selectlayer, 'SelectedObject', handles.layer3);

set(handles.text4, 'String', '[nm] <g5_nm_PDLC> 2010 DEE');

127

% Update handles structure

guidata(handles.figure1, handles);

function z1_Callback(hObject, eventdata, handles)

% hObject handle to z1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of z1 as text

z1= str2double(get(hObject,'String')) %returns contents of z1 as

a double

if isnan(z1)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

% Save the new z1 value

handles.metricdata.z1 = z1;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function z1_CreateFcn(hObject, eventdata, handles)

% hObject handle to z1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

usewhitebg = 1;

if usewhitebg

 set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))

;

end

function lambda_Callback(hObject, eventdata, handles)

% hObject handle to lambda (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

128

% Hints: get(hObject,'String') returns contents of lambda as text

% str2double(get(hObject,'String')) returns contents of lambda

as a double

lambda= str2double(get(hObject,'String')) %returns contents of

lambda as a double

if isnan(lambda)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

% Save the new lambda value

handles.metricdata.lambda = lambda;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function lambda_CreateFcn(hObject, eventdata, handles)

% hObject handle to lambda (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

% if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

% set(hObject,'BackgroundColor','white');

% end

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% new variablessss ****************

function m2_Callback(hObject, eventdata, handles)

% hObject handle to m2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of m2 as text

% str2double(get(hObject,'String')) returns contents of m2 as a

double

m2 = (get(hObject, 'String'));

if ischar(m2)

 set(hObject, 'String', 0);

 errordlg('Input must be a char','Error');

end

% Save the new m2 value

handles.metricdata.m2 = m2;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function m2_CreateFcn(hObject, eventdata, handles)

% hObject handle to m2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

129

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function m3_Callback(hObject, eventdata, handles)

% hObject handle to m3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of m3 as text

% str2double(get(hObject,'String')) returns contents of m3 as a

double

m3 = (get(hObject, 'String'));

if ischar(m3)

 set(hObject, 'String', 0);

 errordlg('Input must be a char','Error');

end

% Save the new m3 value

handles.metricdata.m3 = m3;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function m3_CreateFcn(hObject, eventdata, handles)

% hObject handle to m3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function m4_Callback(hObject, eventdata, handles)

% hObject handle to m4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of m4 as text

% str2double(get(hObject,'String')) returns contents of m4 as a

double

m4 = (get(hObject, 'String'));

if ischar(m4)

 set(hObject, 'String', 0);

130

 errordlg('Input must be a char','Error');

end

% Save the new m4 value

handles.metricdata.m4 = m4;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function m4_CreateFcn(hObject, eventdata, handles)

% hObject handle to m4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function m5_Callback(hObject, eventdata, handles)

% hObject handle to m5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of m5 as text

% str2double(get(hObject,'String')) returns contents of m5 as a

double

m5 = (get(hObject, 'String'));

if ischar(m5)

 set(hObject, 'String', 0);

 errordlg('Input must be a char','Error');

end

% Save the new m5 value

handles.metricdata.m5 = m5;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function m5_CreateFcn(hObject, eventdata, handles)

% hObject handle to m5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

131

function m6_Callback(hObject, eventdata, handles)

% hObject handle to m6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of m6 as text

% str2double(get(hObject,'String')) returns contents of m6 as a

double

m6 = (get(hObject, 'String'));

if ischar(m6)

 set(hObject, 'String', 0);

 errordlg('Input must be a char','Error');

end

% Save the new m6 value

handles.metricdata.m6 = m6;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function m6_CreateFcn(hObject, eventdata, handles)

% hObject handle to m6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function n2_Callback(hObject, eventdata, handles)

% hObject handle to n2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of n2 as text

% str2double(get(hObject,'String')) returns contents of n2 as a

double

n2 = str2double(get(hObject, 'String'));

if isnan(n2)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

handles.metricdata.n2 = n2;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function n2_CreateFcn(hObject, eventdata, handles)

% hObject handle to n2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

132

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function n3_Callback(hObject, eventdata, handles)

% hObject handle to n3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of n3 as text

% str2double(get(hObject,'String')) returns contents of n3 as a

double

n3 = str2double(get(hObject, 'String'));

if isnan(n3)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

handles.metricdata.n3 = n3;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function n3_CreateFcn(hObject, eventdata, handles)

% hObject handle to n3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function n4_Callback(hObject, eventdata, handles)

% hObject handle to n4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of n4 as text

% str2double(get(hObject,'String')) returns contents of n4 as a

double

n4 = str2double(get(hObject, 'String'));

if isnan(n4)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

133

handles.metricdata.n4 = n4;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function n4_CreateFcn(hObject, eventdata, handles)

% hObject handle to n4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function n5_Callback(hObject, eventdata, handles)

% hObject handle to n5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of n5 as text

% str2double(get(hObject,'String')) returns contents of n5 as a

double

n5 = str2double(get(hObject, 'String'));

if isnan(n5)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

handles.metricdata.n5 = n5;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function n5_CreateFcn(hObject, eventdata, handles)

% hObject handle to n5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function n6_Callback(hObject, eventdata, handles)

% hObject handle to n6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of n6 as text

134

% str2double(get(hObject,'String')) returns contents of n6 as a

double

n6 = str2double(get(hObject, 'String'));

if isnan(n6)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

handles.metricdata.n6 = n6;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function n6_CreateFcn(hObject, eventdata, handles)

% hObject handle to n6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function z2_Callback(hObject, eventdata, handles)

% hObject handle to z2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of z2 as text

% str2double(get(hObject,'String')) returns contents of z2 as a

double

z2 = str2double(get(hObject, 'String'));

if isnan(z2)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

handles.metricdata.z2 = z2;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function z2_CreateFcn(hObject, eventdata, handles)

% hObject handle to z2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

135

function z3_Callback(hObject, eventdata, handles)

% hObject handle to z3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of z3 as text

% str2double(get(hObject,'String')) returns contents of z3 as a

double

z3 = str2double(get(hObject, 'String'));

if isnan(z3)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

handles.metricdata.z3 = z3;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function z3_CreateFcn(hObject, eventdata, handles)

% hObject handle to z3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function z4_Callback(hObject, eventdata, handles)

% hObject handle to z4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of z4 as text

% str2double(get(hObject,'String')) returns contents of z4 as a

double

z4 = str2double(get(hObject, 'String'));

if isnan(z4)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

handles.metricdata.z4 = z4;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function z4_CreateFcn(hObject, eventdata, handles)

% hObject handle to z4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

136

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function z5_Callback(hObject, eventdata, handles)

% hObject handle to z5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of z5 as text

% str2double(get(hObject,'String')) returns contents of z5 as a

double

z5 = str2double(get(hObject, 'String'));

if isnan(z5)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

handles.metricdata.z5 = z5;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function z5_CreateFcn(hObject, eventdata, handles)

% hObject handle to z5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function z6_Callback(hObject, eventdata, handles)

% hObject handle to z6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of z6 as text

% str2double(get(hObject,'String')) returns contents of z6 as a

double

z6 = str2double(get(hObject, 'String'));

if isnan(z6)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

handles.metricdata.z6 = z6;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

137

function z6_CreateFcn(hObject, eventdata, handles)

% hObject handle to z6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% % --- Executes on button press in radiobutton20.

% function radiobutton20_Callback(hObject, eventdata, handles)

% % hObject handle to radiobutton20 (see GCBO)

% % eventdata reserved - to be defined in a future version of MATLAB

% % handles structure with handles and user data (see GUIDATA)

%

% % Hint: get(hObject,'Value') returns toggle state of radiobutton20

function angleI_Callback(hObject, eventdata, handles)

% hObject handle to angleI (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

angleI= str2double(get(hObject,'String')) %returns contents of

angleI as a double

if isnan(angleI)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

% Save the new angleI value

handles.metricdata.angleI = angleI;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function angleI_CreateFcn(hObject, eventdata, handles)

% hObject handle to angleI (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

138

% --

function selectlayer_SelectionChangeFcn(hObject, eventdata, handles)

% hObject handle to selectlayer (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

set(handles.text4, 'String', 'setting');

switch hObject

 case handles.layer3

 handles.metricdata.layer=3;

 case handles.layer4

 handles.metricdata.layer=4;

 case handles.layer5

 handles.metricdata.layer=5;

 otherwise

 handles.metricdata.layer=2; %handles.layer2

end

guidata(hObject,handles)

function Ninterfaces_Callback(hObject, eventdata, handles)

% hObject handle to Ninterfaces (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Ninterfaces as text

% str2double(get(hObject,'String')) returns contents of

Ninterfaces as a double

Ninterfaces= str2double(get(hObject,'String')) %returns contents

of Ninterfaces as a double

if isnan(Ninterfaces)

 set(hObject, 'String', 5);

 errordlg('Input must be a number','Error');

end

% Save the new Ninterfaces value

handles.metricdata.Ninterfaces = Ninterfaces;

guidata(hObject,handles)

% --- Executes during object creation, after setting all properties.

function Ninterfaces_CreateFcn(hObject, eventdata, handles)

% hObject handle to Ninterfaces (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

139

140

Appendix F: xu_2007_ph_ext_05182010_data_p.m

%function xu_2007_ph_ext_05182010_data_p.m
%Dale Ewbank from xu_2007.pdf
% case 'g'
% wave = 0.5435;
% color = 2;colorr='g';

% select files and assign voltage and color for Phase vs Voltage

analysis
% for jpg from Nikon D50 of single arm interferometer
% NOTE: For Ao > Ar see line 204 *************************************
%
close all hidden;
imtool close all;
global Nsample fig dataout
tic
clear IR C1 C2 dataout datahold Iout
set(0,'Units','pixels')
scrsz = get(0,'ScreenSize')
testing=0;

Iaverage=3;
sam=1;
xxbegin=800;
xxstep=500;
xxtimes=1;
xxend=xxbegin+(xxtimes-1)*xxstep;
yybegin=300;
yystep=xxstep;
yytimes=1;
yyend=yybegin+(yytimes-1)*yystep;
step=0;
for xx = xxbegin:xxstep:xxend
 for yy = yybegin:yystep:yyend
 % Pixel to select
 step=step+1;
 xxx=0 + xx; %;
 yyy=yy; %
 blocksize=512;
 dALPHA= 0.00001; %change in calculated ALPHA to stop

interation
 compare=1 ; % number of file to compare to
 Aname='xu_2007_ph_ext_05182010_data_p'
 %see kend to stop loop ~line 177
 pixel=[xxx yyy blocksize blocksize];
 I=zeros(blocksize,blocksize,2);
 Istdev=zeros(blocksize,blocksize,2);

rerunning = 0; % 0 for rerun with data in workspace, 2-98 for new

141

if xx == xxbegin & yy==yybegin

prompt = {'Running data files(0 for start iterations, 2-98, 99 for

Itest):',...
 'number of file to compare to: '}
 mtitle = ['Input ',Aname];
 lines= 1;
 def = {num2str(rerunning),num2str(compare)};
 datas = inputdlg(prompt,mtitle,lines,def);
 if isempty(datas)
 close all;
 disp(['User canceled ',Aname])
 return;
 end;
 rerunning =str2num(datas{1});
 compare=str2num(datas{2});
end; % xx if
% if rerunning == 2
% prompt = {'ReRunning file2#: '}
% mtitle = ['Input ',Aname];
% lines= 1;
% def = {'99'};
% datas = inputdlg(prompt,mtitle,lines,def);
% if isempty(datas)
% close all;
% disp(['User canceled ',Aname])
% return;
% end;
% Nsingle =str2num(datas{1});
% end;
if rerunning ==99 % 99 is for test algorithm
 scolorr ='r';
 testing=99;
 svolt=[0 100];
 xx=xxend;
end;
if rerunning >= 0
 Aname='xu_2007_ph_ext_05182010_data_p';
 filestouse='';
 hsize = 8;
 fig =1;
 fig_reuseask=0;
 fig_reuse2ask=1;
% sam=1;
 Nsample = 98;

 Iaverage=3;
% scolorr='r';
% % Pixel to select
% xxx=1200;
% yyy=870;
% blocksize=32;
% pixel=[xxx yyy blocksize blocksize]
% I=zeros(blocksize,blocksize,2);
% Istdev=zeros(blocksize,blocksize,2);
end;

142

while rerunning >= 1 & rerunning <= 98
 svoltt=0;
 scolorr='g'; % green
 while sam <= Nsample & Iaverage ~= 99
 prompt = {'Averaging data files(1 for start, 2 or more), 99

for done:',...
 'Enter Voltage: ','Enter color> b g or r: '}
 mtitle = ['Input ',Aname];
 lines= 1;
 def = {num2str(Iaverage),num2str(svoltt),scolorr};
 datas = inputdlg(prompt,mtitle,lines,def);
 if isempty(datas)
 disp(['User canceled inputs for',Aname])
 datas{1}='99';datas{2}='0';datas{3}=scolorr;
 sfiles='endoffiles'
% return;
 end;
 Iaverage =str2num(datas{1});
 svoltt=str2num(datas{2});
 scolorr=datas{3};
 if Iaverage ~= 99
 [Iarray, I(:,:,sam), Istdev(:,:,sam), svolt(sam), scolorr,

sfiles]=singlearm_Iaverage_10282008_noplot...
 (svoltt, Iaverage, scolorr, pixel, filestouse);
 end;
 Afiles(1,sam) = {sfiles};
 if sam > 1 & Iaverage ~= 99
 svoltt= svolt(sam)+(svolt(sam)-svolt(sam-1));
 end;
 if Iaverage ==99
 rerunning=0;
 Nsample=sam-1;
 end;
 sam=sam+1;
 end;
% rerunning=1;
end;
switch scolorr
 case 'b'
 wave = 0.4861327;
 color = 3;colorr='b';
 case 'g'
 wave = 0.5435;
 color = 2;colorr='g';
 case 'r'
 wave = 0.6562816;
 color = 1;colorr='r';
 otherwise
 disp(' Error on color input, please restart')
 return;
 end;
if testing ==99

143

 M=2
else
 Ntemp=size(Afiles);
 Nsample =Ntemp(2)-1;
 filestouse=Afiles;
 M=Nsample ;

 [Iarray, I(:,:,1), Istdev(:,:,1), svolt(compare), scolorr,

sfiles]=singlearm_Iaverage_10282008_noplot...
 (svolt(compare), Iaverage, scolorr, pixel,

filestouse{compare});
end;
dataout=zeros(M,10);
for jjj= 1:M
if jjj ~= compare
if rerunning ~= 99
 [Iarray, I(:,:,2), Istdev(:,:,2), svolt(jjj), scolorr,

sfiles]=singlearm_Iaverage_10282008_noplot...
 (svolt(jjj), 3, scolorr, pixel, filestouse{jjj});
 [X,Y] = meshgrid(1:1:blocksize);
figure(1);
 surf(X,Y,I(:,:,1)); %hold all;
 xlabel('I(:,:,1) versus X,Y ');
% end;
 figure(2);
 surf(X,Y,I(:,:,2)); %hold all;
 xlabel('I(:,:,2) versus X,Y ');
end;
% % if jjj==2
% % rerunning == 1 % |rerunning == 2
% % clear dd1 dd2 temp D DD C CC S SS
% % % Ntemp=size(I);
% % % Nsample =Ntemp(3)
% % temp_svolt=svolt
% if testing ~=4
% Ntemp=size(Afiles);
% Nsample =Ntemp(2)-1;
% filestouse=Afiles;
% end;
% [Iarray, I(:,:,1), Istdev(:,:,1), svolt(1), scolorr,

sfiles]=singlearm_Iaverage_0802...
% (svolt(compare), 3, scolorr, pixel, filestouse{compare});

% if rerunning ==1
% clear fit12w fit13w fit17w plotI plotIstdev
% djCopy=[0:pi/M:(M-1)*pi/M]
% djCopy=djCopy'
% dj=djCopy
% end;
%%%
% Start here when analyzing data
if rerunning == 1 | 99 % 99 is for test algorithm

144

 % data for test input***

 [X,Y] = meshgrid(1:1:blocksize);
 xmax=blocksize;
 ymax=blocksize;
 Ao=8 ;%*rand ; % Ao=1*(X+Y)/(2*blocksize)
 Ar=ones(blocksize,blocksize,1)*3.0;

 test_phi=pi*.3; %test_phi=pi*rand ; %radians
 test_alpha= pi*.2 ; %radians
 if rerunning == 99 & jjj==2
 arb=pi/4; %arbitary initial phase
 I=zeros(blocksize,blocksize,2);
 rXY=rand(blocksize,blocksize)*0.05; noise=10;
 test_phi=0.6*((2*pi*X/xmax).^2+5*(2*pi*Y/ymax))+rXY ; %radians
 test_alpha= pi*.2 ; %test_alpha= pi*rand ; %radians
% I(:,:,1)=(Ao.*cos(arb+test_phi)+ Ar*cos(arb)).^2 ;
% I(:,:,2)=(Ao.*cos(arb+test_phi-test_alpha)+ Ar*cos(arb)).^2 ;
 I(:,:,1)=(Ao.*exp(i*(arb+test_phi))+ Ar*exp(i*(arb))).* ...
 conj((Ao.*exp(i*(arb+test_phi))+

Ar*exp(i*(arb))))+rand(blocksize,blocksize)*noise ;
 I(:,:,2)=(Ao.*exp(i*(arb+test_phi-test_alpha))+

Ar*exp(i*(arb))).* ...
 conj((Ao.*exp(i*(arb+test_phi-test_alpha))+

Ar*exp(i*(arb))))-rand(blocksize,blocksize)*noise;

 fig=100;figure(fig);
 surf(X,Y,test_phi);hold all;
 xlabel('test_phi versus X,Y ')
 end;
if jjj == 2
 figure(fig+1);
 surf(X,Y,I(:,:,1)); %hold all;
 xlabel('I(:,:,1) versus X,Y ');
% end;
 figure(fig+2);
 surf(X,Y,I(:,:,2)); %hold all;
 xlabel('I(:,:,2) versus X,Y ');
 end;
 %**

 %solving the problem?????
 kend=200;
 kendd=1;
 ALPHA=zeros(kend,1);
 AR=zeros(kend,1);
 AO=zeros(blocksize,blocksize,kendd);
 IO=zeros(blocksize,blocksize,kendd);
 cPHI=zeros(blocksize,blocksize,kendd);
 sPHI=zeros(blocksize,blocksize,kendd);
 AOout=[99 99];
 ALPHA(1)= pi*0.3;

% AR(1)=1.0
 AR(1)=mean(mean(I(:,:,1)))^0.5;
 k=1

145

while k < kend %begin k loop
 dropline=1;
 k=k+1;
 p=I(:,:,1)+I(:,:,2)+(AR(k-1)^2)*2*cos(ALPHA(k-1));
% q=((I(:,:,1)+I(:,:,2)-2*AR(k-1)^2).^2 + (I(:,:,1)-I(:,:,2)).^2

...
% /(tan(ALPHA(k-1)/2))^2)/4
q=((I(:,:,1)+I(:,:,2)-2*AR(k-1)^2).^2 + (I(:,:,1)-I(:,:,2)).^2 ...
 /(tan(ALPHA(k-1)/2))^2)/4;

% p2m4q=p.^2-4*q;
% pmp2m4q=p-abs(p2m4q).^0.5;
 p2m4q=p.^2-4*q;
 pmp2m4q=p-abs(p2m4q).^0.5;
 IO(:,:,kendd)= abs(pmp2m4q)/2;
 AO(:,:,kendd)= (abs((p-abs(p.^2-4*q).^0.5)/2)).^0.5;

 % is it best to calculate phi or cos(phi) ?????

% PHIc=acos((I(:,:,1)-AO(:,:,k).^2-AR(k-1)^2)./(2*AR(k-

1).*AO(:,:,k)))
% PHIs=asin((I(:,:,2)-I(:,:,1))/(2*AR(k-1).*AO(:,:,k)*sin(ALPHA(k-

1)))+...
% (I(:,:,1)-AO(:,:,k).^2-AR(k-1)^2)*tan(ALPHA(k-1)/2)/(2*AR(k-

1).*AO(:,:,k)))

 cPHI(:,:,kendd)=((I(:,:,1)-IO(:,:,kendd)-AR(k-1)^2)./(2*AR(k-

1).*AO(:,:,kendd)));
 temp1=(I(:,:,2)-I(:,:,1))./(2*AR(k-1).*AO(:,:,kendd)*sin(ALPHA(k-

1)));
 temp2= (I(:,:,1)-IO(:,:,kendd)-AR(k-1)^2)*tan(ALPHA(k-

1)/2)./(2*AR(k-1).*AO(:,:,kendd));
sPHI(:,:,kendd)=(temp1 +temp2);
if ~isreal(cPHI) | ~isreal(sPHI)
 dropline =9;
 disp(['cPHI or sPHI is complex at k=',num2str(k),'; canceled at

line ', num2str(dropline) ,Aname])
% FinalAR=AR(k)
% FinalAlpha=ALPHA(k)
 AOout=[mean(mean(AO)) mean(var(AO))];
 % return
dataout(jjj,:)= [k AOout AR(k-1) svolt(compare) svolt(jjj) ALPHA(k-1)

dropline xxx yyy]
break
end;
PHI=atan2(sPHI(:,:,kendd),cPHI(:,:,kendd));
% figure(1);
% rose(test_phi(:))
% xlabel('test_phi rose ')
if ~isreal(PHI)
 dropline =6;
 disp(['PHI is complex at k =',num2str(k),' canceled at line ',

num2str(dropline) ,Aname])
 AOout=[mean(mean(AO)) mean(var(AO))];
dataout(jjj,:)= [k AOout AR(k-1) svolt(compare) svolt(jjj) ALPHA(k-1)

dropline xxx yyy]

146

break
end;
if jjj == 2

figure(fig+3);
set(fig+3,'Position',[1 scrsz(4)*.5 scrsz(3)*.3 scrsz(4)*.3])
 rose(PHI(:));
 xlabel('aPHI rose ');
end;
% % difffphi=rem(test_phi,pi)-rem(aPHI,pi)
% difffphi=exp(i*test_phi)-exp(i*PHI)
% difff(k)=sum(sum(difffphi))
% % if abs(difff(k)) > 3*blocksize
% % disp(['PHI does not match canceled at line ',

num2str(dropline) ,Aname])
% % cPHI(:,:,k)
% % sPHI(:,:,k)
% % return;
% % end;
 %solve for IR c1 c2
 %x = A\b
if rerunning == 99
 aamatrix=[blocksize^2 sum(sum(cos(test_phi)))

sum(sum(sin(test_phi)))
 sum(sum(cos(test_phi))) sum(sum(cos(test_phi).^2))

sum(sum(cos(test_phi).*sin(test_phi)))
 sum(sum(sin(test_phi))) sum(sum(cos(test_phi).*sin(test_phi)))

sum(sum(sin(test_phi).^2))];

bbmatrix=[sum(sum(I(:,:,2)-Ao.^2))
 sum(sum((I(:,:,2)-Ao.^2).*cos(test_phi)))
 sum(sum((I(:,:,2)-Ao.^2).*sin(test_phi)))];
xxmatrix=aamatrix\bbmatrix;
end;
% % amatrix=[blocksize^2 sum(sum(cos(aPHI))) sum(sum(sin(aPHI)))
% % sum(sum(cos(aPHI))) sum(sum(cos(aPHI).^2))

sum(sum(cos(aPHI).*sin(aPHI)))
% % sum(sum(sin(aPHI))) sum(sum(cos(aPHI).*sin(aPHI)))

sum(sum(sin(aPHI).^2))]
% %
% % bmatrix=[sum(sum(I(:,:,2)-IO(:,:,k)))
% % sum(sum((I(:,:,2)-IO(:,:,k)).*cos(aPHI)))
% % sum(sum((I(:,:,2)-IO(:,:,k)).*sin(aPHI)))]
amatrix=[blocksize^2 sum(sum(cPHI(:,:,kendd)))

sum(sum(sPHI(:,:,kendd)))
sum(sum(cPHI(:,:,kendd))) sum(sum(cPHI(:,:,kendd).^2))

sum(sum(cPHI(:,:,kendd).*sPHI(:,:,kendd)))
sum(sum(sPHI(:,:,kendd))) sum(sum(cPHI(:,:,kendd).*sPHI(:,:,kendd)))

sum(sum(sPHI(:,:,kendd).^2))];

bmatrix=[sum(sum(I(:,:,2)-IO(:,:,kendd)))
 sum(sum((I(:,:,2)-IO(:,:,kendd)).*cPHI(:,:,kendd)))
 sum(sum((I(:,:,2)-IO(:,:,kendd)).*sPHI(:,:,kendd)))];

xmatrix=amatrix\bmatrix;
IR(k)=xmatrix(1);

147

C1(k)=xmatrix(2);
C2(k)=xmatrix(3);
% x=pinv(amatrix)*bmatrix test matrix
 % C1x=sum(sum(2*Ao*Ar*cos(test_alpha)));
 % C2x=sum(sum(2*Ao*Ar*sin(test_alpha)));
 % C2x_C1x=C2x/C1x;
% signC1(k)=sign(C1(k))
% signC2(k)=sign(C2(k))
if ~isreal(C2) | ~isreal(C1)
 dropline =5
 disp(['C2 or C1 is complex at k=',num2str(k),'; canceled at line ',

num2str(dropline) ,Aname])
% FinalAR=AR(k)
% FinalAlpha=ALPHA(k)
% test_alpha
AOout=[mean(mean(AO)) mean(var(AO))];
dataout(jjj,:)= [k AOout AR(k-1) svolt(compare) svolt(jjj) ALPHA(k-1)

dropline xxx yyy];
break
end;
ALPHA(k)=atan2(C2(k),C1(k));

AR(k)=IR(k)^0.5;
if ~isreal(ALPHA) | pi-abs(ALPHA(k)) < 0.001
 dropline =4
 disp(['ALPHA(',num2str(k),') is complex or pi; canceled at line ',

num2str(dropline) ,Aname])
% FinalAR=AR(k)
% FinalAlpha=ALPHA(k)
% test_alpha
AOout=[mean(mean(AO)) mean(var(AO))];
dataout(jjj,:)= [k AOout AR(k-1) svolt(compare) svolt(jjj) ALPHA(k-1)

dropline xxx yyy]
break
end;
if abs(ALPHA(k-1)-ALPHA(k))< dALPHA
 dropline =2
AOout=[mean(mean(AO)) mean(var(AO))];
 dataout(jjj,:)= [k AOout AR(k) svolt(compare) svolt(jjj) ALPHA(k)

dropline xxx yyy]
 rerunning=0;
break
end;

 end; % end k loop

if dropline == 1
 dropline =3; AOout=[mean(mean(AO)) mean(var(AO))];
dataout(jjj,:)= [k AOout AR(k) svolt(compare) svolt(jjj) ALPHA(k)

dropline xxx yyy]
rerunning=0 ;
end;
end; % end rerunning ==99

 Iout(:,:,1)=AO.^2 + AR(k)^2 + 2.*AO.*AR(k).*cPHI;

148

 Iout(:,:,2)=AO.^2 + AR(k)^2 +

2.*AO.*AR(k).*(cPHI*cos(ALPHA(k))+sPHI*sin(ALPHA(k)));
 fig=1000+jjj;
% if sam??? > 2
% close(fig);
% end;
 figure(fig);
 set(fig,'Position',[1 scrsz(4)*.03 scrsz(3)*.4

scrsz(4)*.4])
 plot(X(1,:),I(blocksize/2,:,1),'b');hold all;
 plot(X(1,:),I(blocksize/2,:,2),'r');hold all;
 plot(X(1,:),Iout(blocksize/2,:,1),'-.g');hold all;
 plot(X(1,:),Iout(blocksize/2,:,2),'-.k');hold all;
 xlabel([num2str(jjj),'I(1,:,1)blue I(1,:,2)red

Iout(1,:,1)green Iout(1,:,2)black'])
end; % end jjj ~= compare
end; % end of jjj loop
if step ==1
 datahold=zeros(xxtimes*yytimes,M,10);
end;
 datahold(step,:,:)= dataout;
 xxyylabel= [step];
fig=999;
figure(fig);
set(fig,'Position',[1 scrsz(4)*.03 scrsz(3)*.4 scrsz(4)*.4])
plot(dataout(:,6),dataout(:,7),'-.d');hold all;
xlabel([colorr,' Phase versus svolt']);

legend (num2str(xxyylabel),'Location','NorthWest');

 end; % end yy loop
end; % end xx loop
datareal=real(datahold)
toc

droplines={'1 is default'; ...
['2 diamond is end at less than dALPHA ',num2str(dALPHA),' line

369'];...
'3 + is end at k loop line 379';...
'4 o Alpha is complex or pi line 359';...
'5 * C2 or C1 is complex line 346';...
'6 ^ PHI is complex line 286';...
'9 x cPHI or sPHI is complex line 272'}

% Plot of only "GOOD" DATA
set(0,'Units','pixels')
scrsz = get(0,'ScreenSize')
counter=size(datareal)
fig=998;
figure(fig);
set(fig,'Position',[1 scrsz(4)*.03 scrsz(3)*.4 scrsz(4)*.4]);
goodsum=zeros(1,counter(2));
goodn=zeros(1,counter(2));
for x=1:counter(1)

149

 for y=1:counter(2)
 switch datareal(x,y,8)
 case 2
 mark='dg';
 case 3
 mark='+r';
 case 4
 mark='or';
 case 5
 mark='*r';
 case 6
 mark='^r';
 case 9
 mark='xr';
 otherwise
 mark='sk';
 end;

plot(datareal(x,y,6),datareal(x,y,7),mark);hold all;
 if datareal(x,y,8) == 2
 goodsum(y)=goodsum(y)+datareal(x,y,7);
 goodn(y)=goodn(y)+1;
 end;

 end;

 end;
 goodphase=goodsum(:)./goodn(:)
 plot(datareal(1,:,6),goodphase,'hk','MarkerSize',15);hold

all;
xlabel('Volts AC @ 60 HZ','FontWeight','bold');
ylabel('Radians','FontWeight','bold');
title('Relative Phase versus Input Voltage','FontWeight','bold');
%
ARsum=[];AOsum=[];ARcount=0;
for x=1:counter(1)

 for y=1:counter(2)
 if datareal(x,y,8)==2
 ARsum=[ARsum datareal(x,y,4)];
 AOsum=[AOsum datareal(x,y,2)];
 ARcount=ARcount+1;
 end;
 end;
end;
ARcount=ARcount
AOmean=mean(AOsum)
ARmean=mean(ARsum)
AR_AOratio=ARmean/AOmean
Transmission_AR=ARmean^2/(ARmean^2+AOmean^2)
Transmission_AO=AOmean^2/(ARmean^2+AOmean^2)

	Electro-optic adaptive microlens
	Recommended Citation

	tmp.1384712283.pdf.DzFsS

