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ABSTRACT 

Kate Gleason College of Engineering 

Rochester Institute of Technology 

Degree: Doctor of Philosophy  Program: Microsystems Engineering  

Name of Candidate: Dale E. Ewbank  

Title: Electro-Optic Adaptive Microlens  

The goal of the present research was to demonstrate the viability of an electro-optic adaptive 

microlens (EOAM) system in imaging applications requiring broadband illumination in the visible region. 

Previous works illustrate devices that are adaptive optics but are limited in capability. Most have been 

designed and optimized for a particular wavelength and many of them are polarization dependent. An 

adaptive optical system that will function over a broadband of visible wavelengths will be useful in many 

imaging applications. 

The tasks completed for EOAM system design and build required understanding and 

implementation of the imaging theory, the materials‟ properties, the control voltages, the fabrication 

processes, and finally understanding and implementation of the imaging theory for testing. Single cell 

transmission devices were used for initial characterization of the polymer-dispersed liquid crystal (PDLC) 

process. Three iterations of the EOAM devices with PDLC were built on silicon wafers and 26 devices 

were optically tested. The new chemical mechanical planarization process was implemented for the second 

and third builds. For optical device testing the phase shift was extracted using a newly developed method 

for blind phase extraction. 

The development of a design model for the EOAM system and validating it with the images 

formed by a real electro-optic adaptive microlens system has provided the knowledge base needed for 

implementation of adaptive electro-optic lenses for the visible region, and a process which can be used for 

further improvement of the microsystem. The model parameters can be adjusted for new electro-optic 

materials that may become available that do not have the limitations of PDLC. 

Abstract Approval:                  Committee Chair: Thomas W. Smith 

                                                 Program Director: Bruce W. Smith 

                                                     Dean, KGCOE: Harvey J. Palmer 
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I. Dissertation Statement 

The major limitations of diffractive and adaptive imaging systems presently in use 

are limited wavelength bandwidth and polarization dependence of the illumination. 

Diffractive optical elements (DOEs) are efficient in beam steering, phase modulation, 

image formation and scanning over a limited bandwidth due to the dispersion properties 

of the materials of the DOE. The adaptation of liquid crystal display (LCD) technologies 

to phase arrayed imaging systems has been limited due to the polarization dependence of 

LCDs. The use of adaptive electro-optic type devices for correction of human vision has 

been studied [1-4] and patented [5]; however, the implementation of corrective lens 

devices has not reached the consumer.  

The overall goal of this research project is to demonstrate the viability of an 

electro-optic adaptive microlens (EOAM) system that does not have polarization 

dependence in imaging applications that require broadband illumination in the visible 

region.  

The specific objective is to evaluate imaging quality as a function of the pixel 

array design, properties of the EOAM materials, and the applied field for each pixel in 

the array. The imaging quality will be evaluated by comparison of the EOAM system 

image to that of a simulated image. The cell array design parameters include pixel size, 

pixel pitch, and array size, all of which ultimately define the size of the EOAM device. 

The EOAM materials properties are divided into several categories: mechanical, 

chemical, electrical, and optical. The mechanical and chemical properties relate mainly to 

the fabrication steps involved in building the EOAM device. The optical properties are 

also relevant during fabrication as the patterning of the device is done using lithography. 
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The electrical and optical properties are the major contributors to the use and successful 

application of the EOAM device in imaging. The applied field for each pixel will set the 

relative phase shift for that pixel. The EOAM system is adaptive and can be used as 

various type of diffractive elements by appropriate choice of the pixel array design, 

properties of the EOAM materials, and the applied field for each pixel in the array. 

The parameter space used in modeling and fabrication of the EOAM system lends 

itself to applications in the visible region. While the electro-optic material used for this 

research is not appropriate for consumer production; the knowledge developed for 

modeling and fabrication is applicable to novel electro-optic materials as they become 

available.  

The polymer-dispersed liquid crystal (PDLC) material use in this work has 

limited change in refractive index. The drive voltage and PDLC thickness combination 

limit optical phase change to approximately 2 radians. This limit does not allow operation 

of the EOAM at 2 levels (0, ). Thus the lensing capabilities were not evaluated for a 

pixilated device. 
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II. Survey of Related Work 

With the slogan "you press the button, we do the rest," George Eastman put the 

first simple camera into the hands of a world of consumers in 1888. In so doing, he made 

a cumbersome and complicated process easy to use and accessible to nearly everyone [6]. 

The proliferation of optical devices over the last 120 years has grown 

tremendously, largely on this same premise. There has always been a need and drive for 

creating new optical instrumentation for the scientific, academic and industrial 

communities; however, the needs and desires of the “consumers” are by far the largest 

driving force for creation of new optical devices.  

As an example, since Arthur L. Schawlow and Charles H. Townes published their 

technical paper on the principles of the laser in 1958, the device has been put to work in a 

vast range of applications and has assumed many forms. Today, lasers are used in a wide 

range of applications in medicine, manufacturing, the construction industry, surveying, 

consumer electronics, scientific instrumentation, and military systems. Literally billions 

of lasers are at work today,  ranging in size from tiny semiconductor devices no bigger 

than a grain of salt to high-power instruments as large as an average living room [7].  

Consumer optical devices are all about making cumbersome and complicated 

processes easy to use and accessible to everyone. This has been done for digital cameras, 

video recorders, CD and DVD players, and optical storage for computers. As the old 

adage says “a picture is worth a thousand words,” and the consumer world is full of 

images. 

Over the past 40 years there have been two technologies that have developed and 

are now interacting. Liquid crystal technology has been dominant in the development of 
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electronic displays [8]; while optical phased array technology [9] has moved from 

mechanical steering to coherent optical sensor systems. 

The technological development of liquid crystal displays (LCDs) began in 1964 

with the discovery of guest-host mode and dynamic scattering mode by Heilmeier of 

RCA Laboratories. Heilmeier conceived the idea of manufacturing wall-sized flat-panel 

color televisions. But his idea did not become a reality until 1991. Due to materials 

properties and power requirements, until 1988 LCDs were limited to niche applications 

of small-size displays such as digital watches and pocket calculators. The development of 

twisted nematic (TN) mode, super TN mode, and liquid crystals that can operate at room 

temperature broadened the number of applications. Also the development of an 

amorphous silicon field-effect transistor allowed for addressing and control of the LCDs. 

Using a thin film transistor array in 1988, Nagayasu [10] of Sharp Corporation 

demonstrated an active-matrix full color full-motion 14 inch display. This set the new and 

ever advancing standard for the notebook computer industry.  

These LCDs were developed and optimized for display devices, in which the 

major requirements were optical transmission and low power consumption. The optical 

properties of the LC also allow for modification of polarization of the illumination and 

for phase change. The polarization effects were exploited by Schadt and Helfich [11] and 

the utilization of two polarizers and surface alignment of the TN mode LC is the basis for 

most display manufacturing throughout the world.  

In 1994 beam steering of visible light was reported using a LC television panel as 

a phased array [12]. LCDs are usually configured to modulate intensity, however when 

the polarizers are removed the change of phase of the illumination can be utilized. This 
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LC system was configured such that the display pixels created a discrete blazed-grating 

phase ramp across the aperture. The steering efficiency and deflection angle were limited 

by the large pixel size and the limited available phase modulation of 1.3 . This type of 

device is also polarization dependent. 

Numerous other systems have been developed and many improvements have been 

incorporated. One dimensional phase modulation devices have been incorporated into 

systems for two dimensional steering. These systems were designed and optimized to 

solve a particular imaging problem (beam splitting or steering, scanning, focusing, and/or 

correction of phase aberrations). The imaging problems must be well defined and 

generally are severely constrained by their input and output environments. The system 

design is usually monochromatic and thus constrained to an operating wavelength of 

radiation and a very small bandwidth around that wavelength. The device size (pixel size 

and number of pixels) is dictated by the required numerical aperture of the system. 

A phase profile is imparted on the optical wavefront when it is transmitted or 

reflected from the device. As this phase modified wavefront is propagated through the 

system it converges or diverges to form an image. The refractive index changes of the LC 

under an applied field allow for effective changes to the optical path length (OPL). The 

change in OPL results in the change of phase for that region of the wavefront. 

Figure 1 shows the conceptual design for a one dimensional beam steering device 

developed in 1996 at a wavelength of 10.6 m with a LC phase array [13]. The device 

works in reflective mode and utilizes phase wrapping of 2 . It is polarization dependent 

and the array has four cells. 
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Figure 1: This is the conceptual design and operation of the one-

dimensional LC reflection mode beam steerer. Reprinted with permission 

from [13]. 

Recent work has been done using polymer-dispersed liquid crystal (PDLC) 

materials to create devices [14, 15]. The inhomogeneous nanoscale droplets of PDLC 

were obtained by exposing the LC/monomer with ultraviolet (UV) radiation through a 

patterned photomask as shown in Figure 2. The intensity variation during exposure of the 

PDLC results in a gradient of droplet sizes in the film, and the relative refractive index 

change under an applied electric field is a function of the droplet size.  This gradient 

refractive index nanoscale (GRIN) PDLC is highly transparent in the visible wavelengths 

and has been used to create prism gratings, as well as positive, negative, and Fresnel lens. 

The GRIN PDLC devices are broadband, independent of light polarization, and simple to 

fabricate, however, the required driving voltage is higher than 100 Vrms and response time 

is 0.080-0.200 milliseconds. 
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Figure 2: Fabrication of an inhomogeneous PDLC using a patterned photomask. 

Reprinted with permission from [14]. 

The optical results for a GRIN PDLC device are shown in Figure 3. The prism 

grating is formed by the gradient of refractive index due to the patterned polymerization 

resulting in control of the LC droplet sizes. The grating is “on” with no field applied and 

the applied field of 100 volts causes the LC droplets to align and cancel the index 

gradient. 

 

Figure 3: Diffraction properties at  = 514 nm of a prism grating made of 

inhomogeneous PDLC. Reprinted with permission from [14]. 

A Fresnel lens was also fabricated using the GRIN PDLC as shown in Figure 4. 

The lens is patterned to control droplet size and thus phase in 80 zones. As with the 

grating above, the entire device is controlled with a single applied field. These devices 

are adaptable but only over their limited range of design. 
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Figure 4: Method for fabricating a PDLC Fresnel lens. Reprinted with permission from 

[15]. Copyright 2003, American Institute of Physics. 
 

Systems for phase modulation have also been demonstrated by using LC on 

silicon technology [16] and spatial light modulators (SLM) built with optically 

addressable LC cells [17]. These systems have shown excellent results in wavefront 

phase modulation and have two-dimensional array control; however, they are polarization 

dependent. And because the LC system is based on light scatter they suffer from limited 

efficiency of light transfer. 

One of the applications for wavefront phase modulation is correction for human 

vision. An adaptive optics phoropter system has been demonstrated utilizing optically 

addressable LC SLM  [18]. The system is used to measure the wavefront errors that occur 

due to the structure of the human eye. The adaptive optics allow for correction of the 

lower-order aberrations of the eye (defocus and astigmatism) as can be done using a 

corrective lens. Additionally, the adaptive wavefront is capable of dealing with the high-
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order aberrations such as spherical aberration and coma, leading to near diffraction-

limited image quality at the retina. 

Figure 5 shows the test bench design for a correction system with human 

feedback for control of a deformable mirror for wavefront control [2]. The system is 

designed to correct wavefront errors that limit human vision and to establish the 

correction values needed for proper wavefront control. Vdovin has also done work in the 

field of applying these corrections by building adaptive lens [1]. As seen in Figure 6, a 5 

mm aperture LC adaptive lens was fabricated. The lens is addressed by a single applied 

field and only focal length can be controlled. This LC system is also polarization 

dependent.  

 

Figure 5: Experimental setup for subjective feedback loop to 

improve visual acuity and determine aberrations of the human 

eye. Reprinted with permission from [2]. 
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Figure 6: An adaptive LC lens fabricated for experiment 

and 3D model of a wireless implantable LC corrector lens 

are shown. Reprinted with permission from [1]. 

The previous works illustrate devices that are adaptive optics but are limited in 

capability. Most have been designed and optimized for a particular wavelength and many 

of them are polarization dependent. An adaptive optical system that will function over a 

broadband of visible wavelengths and be polarization independent will be useful in many 

imaging applications. 
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III. Results and discussion 

The five major topics of the solution are understanding and implementation of the 

imaging theory for design, the materials‟ properties, the control voltages for the device, 

the fabrication process, and finally understanding and implementation of the imaging 

theory for testing. Each of these topics will be discussed in this section. 

A. Imaging Theory 

An essential element of this research project is the design, modeling, and 

fabrication of an EOAM system for use in the visible wavelengths of light. An EOAM 

that will function over a broad range of applications can reduce the cost of production 

and ultimately reduce the cost of ownership for the system. 

  1.0 Fresnel Propagation 

The optical modeling for the EOAM system is based on Fresnel propagation [19-

22]. The device design was stimulated and the imaging system was modeled and 

compared to the desired output (image). In an iterative process the design can be 

changed, simulated, remodeled and compared to allow for optimization of the EOAM. 

The design changes can be driven by various optimization schemes. 

Viewing wave propagation phenomena as a system allows for valid 

approximations over a wide class of input field distributions and optical elements. The 

concept of the intensity of a wave field and the Huygens-Fresnel principle are well suited 

for approximation in image formation. The first wave theory for light expressed by 

Christian Huygens in 1678 was that if each point on a wavefront is considered as a point 

source radiating spherical wavefronts, then a later wavefront can be found by 

constructing an envelope of the secondary wavelets.  
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The response of a detector is a function of the distribution of the intensity in the 

image. Thus it is important to relate the intensity to the complex field which makes up the 

image. 

In 3-dimensional space the second order partial differential wave equation is 

  (3.1.1) 

and the generalized harmonic wave is  

  (3.1.2) 

where represents a position vector of a point in space. At any fixed time, 

the surfaces for which equals a constant are called wavefronts. When , the 

amplitude of the wave, is a constant over the wavefront, the wave is homogeneous. 

The above generalized harmonic wave can be expressed in complex form as  

  (3.1.3) 

where  

  (3.1.4) 

with  equal to an initial arbitrary phase. 

This is useful when substituting into (3.1.1) resulting in  

  

  (3.1.5) 
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which is the Helmholtz Equation. If interested in the spatial properties, but not the 

temporal, solutions to the Helmholtz Equation are sufficient to represent the wave. 

The Huygens-Fresnel principle can be stated in rectangular coordinates as 

  (3.1.6) 

where the angle  between the outward normal and the vector pointing from to 

as shown in Figure 7. represents the field at the plane of  having 

 

Figure 7: Geometry for aperture  propagating to new plane. 

propagated from the plane at . The value of  and (3.1.6) can be rewritten as 

  (3.1.7) 

where the vector  distance is given by 

  (3.1.8) 

z 

y 

x0 

y0 

x 

z0=0 z = z1 

P1 

P0 
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Huygens-Fresnel principle has only two approximations: one is the approximation 

inherent in scalar theory and the second is the assumption that as the observation 

plane is many wavelengths form the aperture. 

The distance can be approximated by making use of the binomial expansion 

for the square root. For the number of terms needed in the expansion 

 , (3.1.9) 

for accuracy depends on the magnitude of . Applying the expansion to (1.8) yields 

  (3.1.10) 

by retaining the first two terms. When substituting (3.1.10) into (3.1.7) the error of the 

value for squared in the denominator is small provided , 

which is the case in the paraxial region. However, the in the exponent is multiplied by 

a large , and phase changes of small fractions of a radian change the value of the 

exponential significantly. Both terms in the binomial approximation must be kept in the 

exponent. The expression for the field by substituting (3.1.10) into (3.1.7) becomes 

 .  
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By rearranging and incorporating the finite limits of the aperture  in the definition of 

 the resulting equation is 

 . (3.1.11) 

The field at any plane 1z described by (3.1.11) can be seen as a convolution of 

the form 

  (3.1.12) 

with the convolution kernel as 

 . (3.1.13) 

The expression for  represents a diverging spherical wave and quadratic phase 

approximation to the wave for position values of . The convolution with (3.1.13) is the 

propagation of the field from the aperture  at plane to the field at 

for the plane at . 

Maxwell‟s Equations lead to the properties of light [19-22]: its wave nature, that it 

is a transverse wave, and the relationship between the  electric and  magnetic fields. 

Assume light propagating in a medium that has the following properties: 

 Uniform: , permittivity (dielectric constant,) and , permeability, have 

constant value at all points 

 Isotropic:  and do not depend on direction of propagation 

 Nonconducting: , conductivity, and thus , current density 

 Free of “free charge”: , charge density 

 Nondispersive:  and are independent of frequency. 
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Then Maxwell‟s Equations are: 

  (3.1.14) 

  (3.1.15) 

  (3.1.16) 

  (3.1.17) 

 

Evaluating Maxwell‟s Equation in a medium leads to the following two equations 

  (3.1.18) 

 , (3.1.19) 

which are coupled transverse waves. The electric and magnetic field are also solutions to 

the Helmholtz and 3-dimension second order partial differential wave equation for 

vacuum when  

 . (3.1.20) 

For materials where , velocity, is less than , velocity in vacuum, the material 

is characterized by its index of refraction, 

 . (3.1.21) 

 

The intensity of the field is related to the flow of energy for the coupled electric 

and magnetic fields as described by the Poynting Vector,  
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 . (3.1.22) 

The Poynting vector cannot be detected at the very high frequencies associated with light, 

so what is detected is the temporal average of taken as an average over time, , 

determined by the detector time response. The time average of  is the flux density in 

units of [W/m
2
] and is called intensity of the light wave, 

 . (3.1.23) 

For an electric field represented by  and using  the 

expression for intensity can be reduced to 

  (3.1.24) 

where . Then for independent of time and , 

 . (3.1.25) 

Knowing that for large the integral , results in 

 . (3.1.26) 

The intensity of the field is proportional to the electric field amplitude squared. 

In actual practice the electric field at the object plane must be broken down into 

constituent parts for modeling. The above Fresnel propagation is based on 

monochromatic illumination and incorporating the finite limits of the aperture, , in the 
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definition of for (3.1.11), also assumes that the aperture can be adequately 

described.   

For broadband illumination in the visible region the propagation can be simulated 

at multiple wavelengths. Then a summation of the multiple wavelength aerial images 

approximates the actual image well. The difficulty in this scenario is the estimation of 

temporal coherence. 

To adequately describe the illumination field at aperture, , for the case when the 

field is spatially coherent is relatively easy. An arbitrary phase  can be assigned as in 

(3.1.4). However, for the spatially incoherent field this is not possible. In the spatially 

incoherent field case it is useful to evaluate the EOAM system as if the illumination field 

is a point source, and to use the aerial image of that point source as the system response. 

The system response from the point source is valid for spatial coherence; however, the 

effects of temporal coherence may introduce errors. The image from the aperture, , can 

then be approximated by proper sizing (magnification) and convolution with the system 

response as Fresnel propagation is linear and shift invariant [20]. 

2.0 Simulation of the EOAM system 

The purpose of the system is to create an aerial image for a finite amount of time 

that can be captured by another system for viewing, propagation or as a latent image. A 

wavefront (electro-magnetic field) and a mask are the inputs to the system. The output is 

an aerial image that has characteristics unique to the system inputs. The desired image is 

a result of the transfer of the wavefront and mask as well as the interactions of the various 

system functions. The mask may be designed such that it resembles the output aerial 
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image or it may be designed to contain information that changes the wavefront unique to 

the system. 

The input wavefront is allowed to enter the system for a finite time by the 

exposure control unit. The mask in the filter interface then modulates this wavefront. The 

resulting modified wavefront is then propagated a distance z1. The propagation of the 

wavefront results in a redistribution of the energy in the wavefront. The EOAM function 

then collects the energy and modifies the wavefront. The wavefront leaving the EOAM is 

then propagated a distance z2. The wavefront output is an electro-magnetic field that has 

an energy distribution that can be viewed, propagated, or captured. 

2.1 Function block diagram 

The function block diagram in Figure 8 illustrates the system relationships used in 

the simulation and for the physical EOAM device. Each of the components (inputs, 

output, and functions) is described in this section.  

I1 – Wavefront   

The wavefront is an electro-magnetic wave that is described in four-dimensional space. 

The wavefront is known by its electric component, which is a complex vector field,

, as a function of three-dimensional space and time. The wave must follow 

Maxwell‟s Equations as it propagates and interacts with space and matter.  
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Figure 8: Fresnel Wave Propagation System for Electro-optic Adaptive Microlens 

I2 – Mask >>  

The mask is a physical object that can modify the electro-magnetic wave. The mask is 

described by  which is a two-dimensional array of complex numbers. 

I3 – Control signals for pixels 

The EOAM device is controlled by addressing the array of pixels with various applied 

voltages. The applied voltage determines the relative phase shift introduced into the 

wavefront by each of the pixels. 

F1 – Exposure control  

The exposure control function allows for the input wavefront into the system and to 

transfer energy for a finite amount of time. The function is modeled by a rectangle 

function, . The output is the result of  multiplied by .  

F2 – Filter interface 



 

 

 

21 

The wavefront and mask are input into the filter interface. The interface controls the 

alignment of the two components and can be modeled by a multiplication of 

 by . The output of the filter interface is a modulated wavefront. 

F3 – Propagation  

The propagation function models the transfer of the wavefront through a medium. The 

medium is described by its optical properties, namely optical path distance , and the 

propagation is modeled by a convolution with the modulated wavefront.  

  (3.1.27) 

  (3.1.28) 

F4 – EOAM 

The EOAM element changes the wavefront by modifying the relative phase at each pixel. 

The model for the EOAM function is the multiplication of the wavefront with the pupil 

and the EOAM element. The pupil is a two-dimensional complex array that limits the 

energy transferred from the incoming wavefront to the output wavefront. The EOAM 

element changes the characteristics of the wavefront. 

  (3.1.29) 

 

F5 – Propagation   

The propagation function models the transfer of the wavefront through a medium. The 

medium is described by its optical properties, namely optical path distance , and the 

propagation is modeled by a convolution with the imaged wavefront.  
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  (3.1.30) 

  (3.1.31) 

 

O1 – Image  

The image is an electro-magnetic field that is known by its electric component, which is a 

complex vector field, . Here the intensity is proportional to electric field 

squared, 

 . (3.1.32) 

 

 

2.2  Assumptions for using this propagation model for the EOAM 

The model was implemented in Matlab® code with the following assumptions: 

a) Fresnel propagation 

b) Polarization independence 

c) Paraxial region for object and image 

d) Wavelength dependence 

e) Spatially incoherent illumination. 

The first three assumptions are based on the theory in section 1.0, Fresnel Propagation. 

This code is shown in Appendix A: setupworkspace160_3.m, lensf500bit_3.m, 

arrayfillbit_160.m, fPropfocal_160.m, and address_fbit.m. 

The wavelength dependence of the equations is handled by simulation at three 

separate values for lambda. The electric field at each wavelength is propagated 
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completely through the system and the intensity is found at the image plane. The final 

image is a summation of the three wavelength intensities. 

For spatially incoherent illumination each point of the mask can be treated as an 

independent point source with random phase. In the paraxial region of the system the 

image can be approximated by the convolution of the point spread function of the system 

with the appropriately scaled object. The scaling is based on geometric optics for a 

simple thin lens. Figure 9 and Figure 10 show sample input and output for a focal length 

500 micron lens with 256 by 256 micron square pupil having pixel size of 4 microns and 

dispersion index similar to quartz. The phase has been quantized to 4 levels between zero 

and 2 , with the regions between pixels approximated by averaging the phase of the 

adjacent pixels. The object and image distances are based on geometric paraxial Gaussian 

optics with magnification of -1.25. 
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Figure 9: Input mask for EOAM system. Mask represents group of incoherent 

point sources with random phase and transmission of 1.0 for all wavelengths. 
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Figure 10: Sample output image for EOAM system. Simulated wavelengths are 

587, 486, and 656 nm.  
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B. Electro-optic Adaptive Microlens materials in single cell device  

The EOAM materials properties are determined by mechanical, chemical, 

electrical, and optical factors. The mechanical and chemical characteristics relate mainly 

to the fabrication steps involved in building the EOAM device. Because the device was 

patterned using lithography, the optical properties are also determined during fabrication. 

The electrical and optical properties are the major contributors to the performance and 

ultimate utility of the EOAM device in imaging. 

The electro-optic material used in the device is a polymer-dispersed liquid crystal 

(PDLC) described by Ren et al[15]. A mixture of 26% by weight E48 LC and 74% UV 

curable prepolymer NOA81 was sandwiched between ITO coated glass slides and 

patterned to create a GRIN PDLC Fresnel lens. Figures 11 and 12 illustrate the structures 

of the molecular entities of E48 and in NOA81. The mixture was patterned by exposure 

with UV radiation that induced the monomers in NOA81 to polymerize. The rate of 

polymerization determines the droplet size of the micro domains of LC material that 

phase separate as the NOA81 polymerizes. It has been confirmed in the literature [23, 24] 

that the mean size of the droplets is dependent on the weight fraction of LC and the rate 

of polymerization.  

CN

4-cyano-4'-pentyl-1,1-biphenyl  

Figure 11: Chemical structure for E48 liquid crystal. 
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Figure 12: Chemical structure for NOA81. 

Several composite films (Samples 001-005) with 10 micrometer polystyrene 

spheres used as spacers on the substrate were cured and used for preliminary studies on 

single cell devices. The samples were exposed with a mercury arc source filtered at 365 

nm. Because the droplet size of the micro domains of LC were slightly larger than the 

wavelength of illumination, Sample 001, exposed at intensity of ~2.25 mW/cm
2
, 

appeared somewhat milky in color under white light illumination and the LC droplets 

scatter the light. In Sample 005, exposed at intensity of >50 mW/cm
2
, the droplet size 

was equal to or smaller than the wavelength of visible light and appeared clear. Figure 13 

shows transmission data collected on the two samples. Sample 005 had higher 

transmission but exhibits some loss of transmission at shorter wavelengths. This indicated 

that the droplet size was approximately on the order of the blue wavelengths.  

The next generation of single cell devices (shown in Figure 14) were fabricated 

utilizing patterned SU-8 photoresist as a spacer on the ITO glass slides and the 

E48/NOA81 precursor exposed at intensity of >50 mW/cm
2
. 
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Figure 13: PDLC at 24% by weight in NOA81 polymerized at different intensities. 

Sample transmission data includes losses due to two ITO coated glass slides. 

 

Figure 14: Image of single cell device made from E48/NOA81 utilizing patterned SU-8 

resist as the spacer. 

The samples were also evaluated using a Michelson interferometer to determine 

the relative phase shift induced by an applied field. The samples were inserted into the 
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measurement arm of the Michelson interferometer and a voltage was applied to the ITO 

layer of one slide, while the other ITO slide was grounded. The light path made a double 

pass through the sample with this configuration as shown in Figure 15. 

 

Figure 15: Diagram of dual beam interferometer test system used for single cell devices. 

The interferograms from the dual beam interferometer were captured on a digital 

camera back and analyzed using code written in MATLAB®. This code (Appendix B,   

datain_rerun_singlefile.m) allowed selection of an area of multiple interferograms for 

analysis of minimums and calculation of the relative shifts of the minimums. The 

interferograms were captured with different applied voltages and a sample of the output 

phases fit to 3
rd

 order splines is shown in Figure 16. A system to measure phase for 

reflective electro-optical micro-devices at visible wavelengths was presented at Optical 

Fabrication and Test Conference in 2006 [25].    
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Figure 16: Phase shift versus voltage for single cell device at three wavelengths. 

The single cell device was also evaluated at the red wavelength for sensitivity to 

polarization of the illumination. The PDLC as fabricated is reported to be polarization 

independent [15]. Interferograms were captured for the device with a linear polarizer 

inserted in the beam path ahead of the beam splitter. The resulting relative phase versus 

applied voltage is shown in Figure 17. A 100%(1-  ) confidence interval, with  = 0.05, 

was constructed on the regression of Relative Phase on Applied Voltage for P270. This 

confidence interval was used to compare the 3
rd

 order fit for P0 to the 3
rd

 order fit for the 

P270 regression. It was found that the estimated fit for P0 fell entirely within the 95% 

confidence interval for P270, so no significant difference between the two processes can 

be discerned at the  = 0.05 level. Note that this confidence interval is a realization of all 

possible intervals at this probability; this indicates that 95% of the time the true 
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regression (not the individual observations) will fall within the estimated upper and lower 

bounds of the interval. 

 

Figure 17. Comparison of phase shift with illumination of two different polarizations. 

 C. Control voltages for the arrayed pixel device 

The applied field for each pixel of the EOAM controlled the relative phase for 

that pixel. The simulation program (Appendix A, address_fbit.m) for addressing of pixels 

in the device array at various phase levels was written to incorporate the relative phase 

shift as a function of the material thickness, the applied field and the wavelength of 

illumination. The number of required phase levels for operation of the system was 

quantized and also incorporated in the simulation.  

To simplify the addressing of the device the work utilized only two phase levels. 

The imaging performance of the EOAM system can be enhanced by allowing more phase 
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levels. A voltage control device that allowed quantization of the applied field at 2
2
 levels 

was built on a breadboard for use in testing the EOAM devices. 

The power distributor design was based on the need to use one power supply with 

multiple outputs. The EOAM devices use applied voltage over a range of 0 to 300 volts 

AC or DC but do not conduct current. Accordingly, the distributor was designed for 

safety to limit current to less than 1 mA. If the EOAM device has current flow, it has 

failed and is no longer useable. Slow blow 10 mA fuses were assembled in-line on the 

power source leads, and ~300 k ohms resistors were added to the EOAM leads. The 

power supply varied from 0 to ~240 volts, and the distributor board was designed to have 

four levels plus ground. Figure 18 shows a diagram of the voltage distribution board. The 

voltage at each node for the EOAM is as follows:  

  (3.2.1)   

where R1 is the resistance before the node and R2 is the resistance after the node with the 

input voltage of Vin. 
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Figure 18: Diagram of voltage distribution board for EAOM device. 

DC voltage was used in testing the single cell devices and the first fabrication run 

of the 16 by 16 pixel devices. As the single cell and pixel devices had a long memory    

(> 30 seconds to return to off state) with DC applied voltage, the subsequent pixel 

devices were tested using an AC source at 60 Hz. 
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D. Fabrication process for the arrayed pixel device 

The fabrication processes for the EOAM made use of both newly developed and 

existing processes within the Semiconductor and Microsystems Fabrication Laboratory at 

RIT. Detailed instructions for the fabrication processes are given in Appendix C, Run 

Sheet for EOAM v1.5b, and illustrations of the fabrication processing steps are shown in 

Appendix D, EOAM_Process Rev1_5b.PPT. 

 

Figure 19: Sub array of pixels for EOAM device with 16 by 16 pixels. 

Figure 19 shows a sub array of 8 pixels (a through h) that are addressed 

individually. These are built up to create the four quadrants of the device. The routing 

layout for the device was optimized for the sub array. For a lens that is circularly 

symmetric to the optical axis, this arrangement of cells allows for multiplexing of the 

cells that are of equal radial distance from the optical axis (usually the center of the 

device). The code „address_fbit.m‟ calculates the quantization levels for the lens phase 

and thus the addressing needed for each pixel. Figure 20 shows an example of the 
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addressing a single quadrant for a 250 mm focal length microlens for phase quantized at 

2 and 4 levels. 

Figure 20: Addresses for 8 by 8 array of a single quadrant with 160 micrometer pixels. 

The design for wiring to bond pads utilized ICgraph by Mentor Graphics 

Corporation. Four sets of bonding pads are on the device, however access is only needed 

to one set. The others are redundant and also allow for redundant multiple contacts 

between the metal layers. 

Figures 21 through 24 show the layout of the EOAM device levels.  
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Figure 21 Metal 1of EOAM. 
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 Figure 22: Via 1 of EOAM. 
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Figure 23 Metal 2 of EOAM. 
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Figure 24 Spacer layer for EOAM. 

 

The fabrication process had 4 levels that required microlithographic patterning. 

Figure 25 is a diagram of a complete layer stack for one pixel. Metal 1 is the wiring for 

addressing the pixels. Metal 2 is the conductor that defines the lower electrode for each 

pixel. The ITO on the glass cover was attached to the ground electrode.  
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Figure 25 Layer stack for EOAM device. 

After fabrication of the first devices it was found that the metal 2 layer had a 

surface roughness that was too large and the variation in surface height of the pixel due to 

the contacts resulted in large optical path variations. This layer is the reflective mirror in 

the device and as such, should have specular rather than diffuse reflections. A new 

process was developed and implemented to polish the metal 2 surface. The thickness of 

the deposited aluminum was increased to 1.5 micrometers from 1.0 micrometers to 

ensure step coverage over the metal 1 and contact edges, and still allow for removal of 

metal 2 material. The chemical mechanical planarization (CMP) of the metal 2 was done 

on the Strausbaugh. This CMP process was optimized and was unique in the fact that the 

aluminum layer was patterned before CMP. If the metal was planarized first, then 

alignment to the underlying features would have been very difficult.  
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Figure 26: Examples of surface roughness before and after the CMP process [26] 

on device pixels.  

The devices were probed prior to CMP to verify the proper conductivity between 

the pads and the appropriate pixels for the device design. This allowed for sorting of good 

devices before CMP and also prevented scratching of the planarized surface.  

After CMP the spacer layer was patterned in SU-8 photoresist. The SU-8 is a 

negative photoresist and was cross linked with exposure at i-line and post development 

baking. A sample wafer completed to this step is shown in Figure 27. The SU-8 pattern 

established the region in which the electro-optic material would be deposited.  
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Figure 27: Hundred millimeter device wafer after all lithography steps completed. 

The E48/NOA81 mixture was deposited as a liquid and covered with the ITO 

glass slide. Photopolymerization of the PDLC bonds the ITO glass slide in place. A 

specialty UV exposure tool was assembled for use in photopolymerization of the 

E48/NOA81 mixture. This tool allowed for controlled intensity and thus control of the 

rate process for droplet formation of the LC domains. Figure 28 show a finished EOAM 

device. 
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Figure 28: Finished EOAM device. 

 

Detailed instructions for the fabrication processes are given in Appendix C, Run Sheet for 

EOAM v1.5b and illustrations of the fabrication processing steps are shown in Appendix 

D, EOAM_Process Rev1_5b.PPT.  

Arrayed pixel device builds 

The fabrication of the arrayed pixel EOAM devices was carried out with three 

iterations of device build runs. The first iteration validated the masks and the processing 

steps that were used. The initial masks for Metal 1 and Metal 2 had minor design errors 
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and were rebuilt. The first iteration of EOAM devices could only be tested with all pixels 

addressed to same voltage. The surface roughness for the Metal 2 layer was also 

identified with the initial run.  

The second iteration implemented the new masks, the CMP process, and adjusted 

film thicknesses of the layers to allow CMP. The third iteration repeated the processes 

used and greater care was taken to reduce contamination defects and improve yield to 

result in more devices for testing.  
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E. Device Testing 

1. Dual Beam Interferometer 

While each new build was ongoing, devices from the previous run were used for 

evaluation of phase versus applied voltage. The phase extraction method of using 

multiple interferograms with various applied voltage for analysis of minimums and their 

relative shifts as used for the single cell device was implemented for the pixel arrays 

addressed with same voltage. The results from this method proved to be unreliable. 

Changes in the optical path lengths of the dual beam interferometer system due to 

vibration and ambient temperature fluctuations caused the relative phase shifts to be 

unrepeatable. 

Figures 29 and 30 show a device in the dual beam interferometer test system. 

Figures 31 through Figure 33 are interferograms captured for a pixel device with all 

pixels address by same voltage. Figure 34 shows a plot of data from analysis of the 

interferograms from the dual beam interferometer. The line connects the data point in the 

order that the interferograms were collected (total time of about 10 minutes). As can be 

seen, the output phase is not predictable.  
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Figure 29: Dual beam interferometer test system with device and output image on card. 

 

Figure 30: Device with probes in dual beam interferometer test system. 
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Figure 31: Interferogram of device from dual beam interferometer test system. 

 

Figure 32: Interferogram of device from dual beam interferometer test system. 
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Figure 33: Interferogram of device from dual beam interferometer test system. 

 

Figure 34: Plot showing relative phase variability from dual beam interferometer test 

system analysis. 
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2. Single Beam Interferometer 

a. Theory  

A new method for extraction of the phase was needed. During the set up of the 

dual beam interferometer system it was noted that interference patterns could be 

generated by utilizing only the EOAM device in a single arm of the interferometer. The 

“surface” reflection of the device was known to exist; but had been considered as a 

nuisance reflection and needed to be minimized as it contributed to the „noise‟ 

component during device measurement and usage. With the dual beam system the 

reference beam wavefront and the device beam wavefront were to recombine and 

generate the appropriate interferogram; the “surface” reflection wavefront was 5 to 10 

times less intense and to be neglected.  

The reference beam mirror was taken out of the dual beam interferometer system 

to create the single arm interferometer system. The EOAM device acts as a Pohl fringe-

producing system [22] that can generate interferograms. The use of a single arm 

interferometer system for reflective micro-device phase measurement was presented at 

Optical Fabrication and Test Conference in 2010 [27]. Figure 35 shows a diagram of the 

single arm interferometer system used. 
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Figure 35: Single arm interferometer system diagram. 

 

Figures 36 and 37 show interferograms from the device tested in the single arm 

interferometer system. The interferograms include the active device area and the 

surrounding non-active electrical pad area (right side of image); the non-active area 

interferogram does not change with applied voltage. The non-active areas were masked 

with black tape as shown on the EOAM device in Figure 38. 
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Figure 36 Interferogram from EOAM device active area and surround at 0 volts. 

 

Figure 37 Interferogram from EOAM device active area and surround at 200 volts. 
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Figure 38: EOAM device with non-active area masked off by black tape. 

b. Reflection simulation of film stack 

The interferograms from the EOAM devices at varying voltage clearly show 

changes to the interference patterns. The interferograms are the result of constructive and 

destructive interference between the wavefront of the active device optical path and the 

wavefront of the non-changing optical path (reference wavefront) in the single arm 

interferometer system.  Simulation code was written in Matlab® to explore the 

approximate reflectance of the film stack for the EOAM device and is included in 
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Appendix E, g5_nm_PDLC.fig and g5_nm_PDLC.m. The optical properties of the film 

stack for the EOAM device are input and the algorithm models the reflectance [19] at the 

various interfaces based on the layers of the film stack. Figure 39 shows the estimate for 

reflectance into air of the EOAM device versus thickness of the ITO layer for 541 nm 

illumination at 2 degrees angle of incidence as 0.84 to 0.91.  This reflectance estimate 

includes the active device optical path and the wavefront from the non-changing optical 

path. Figure 40 gives the reflectance, 0 to 0.06, for the wavefront from the non-changing 

optical path that includes only the top four layers of the EOAM device. 



 

 

 

54 

 

Figure 39: Modeled reflectance for EOAM device (entire film stack). 
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Figure 40: Modeled reflectance for top 4 layers of EOAM device. 

 

c. Imaging theory for phase extraction 

Extraction of the blind phase from the interferograms was necessary to 

characterize the EOAM as a function of the applied voltage. An iterative algorithm 

(Appendix F, xu_2007_ph_ext_05182010_data_p.m) has been implemented for blind 

phase extraction for characterization of an electro-optic adaptive microlens device. The 
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EOAM was designed to operate in the visible wavelengths and due to its reflective nature 

it was possible to collect interferograms of the reference wavefront and the object 

wavefront using a common optical path. It is not possible to measure the reference and 

the object wavefronts independently for the reflective device; and therefore the algorithm 

has been developed for this case. To validate the code and better understand its region of 

usefulness a series of simulations were completed to verify the algorithm based on 

assumptions. 

Evaluation of optical surfaces is commonly accomplished via phase-shifting 

interferometry (PSI). PSI techniques have been used for more than forty years [28, 29]. 

All PSI techniques are based on multiple collections of the interference of a reference 

wavefront and an object wavefront at some point in space. An interferogram is a mapping 

of one of these collections of interference.  

In general each interferogram, collected as an image, is a record of the constructive 

and destructive interference of the reference and object wavefronts at a plane for some 

finite interval of time. The image irradiance collected at each point (x,y) of the detector is 

given by: 

  (3.4.1) 

where (x,y) is the relative phase of each image point and  is the relative phase 

difference between the reference and object wavefronts. Ao(x,y) is the electric field of the 

object wavefront and  Ar  is the electric field of the reference wavefront. It is assumed 

that the reference wavefront is non-varying across the image. 

Many of the modern methods of PSI require collection of multiple (n ≥ 3) 

interferograms [30-36] at varying phase differences between the reference and object 
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wavefronts. The requirement for multiple interferograms is due to the mathematical 

methods used for extraction of information from the interferograms. Equation (3.4.1) has 

four unknowns and thus requires three or more images to develop a solution.  

There are techniques that can derive the wavefront or extract the phase difference 

utilizing only two interferogram images [37, 38]; however these techniques require that 

the reference wavefront and the object wavefront be measurable independently of one 

another.   

A method utilizing an iterative algorithm for blind phase extraction [39] allows for 

extraction of the phase without measurement of the reference wavefront. This method 

was used as the starting point for development of a technique to extract phase for an 

electro-optic micro device that functions in the visible and is also reflective.  

The electro-optic micro device [27] was fabricated on a silicon substrate and allows 

for addressing of pixels. The device has an active layer of polymer dispersed liquid 

crystals (PDLC) that change alignment under an applied electric field. The alignment of 

the PDLC causes a change in the refractive index and thus alters the effective optical path 

length. The device is reflective and the incoming radiation makes a double pass through 

the PDLC before exiting.  

To characterize the change in optical path length with applied electric field the device 

was put into a Twyman-Green (dual beam) interferometer that was assembled on an 

electrical probe station [25]. Upon measurement and calculation of the phase change of 

the micro device, with replication of the results it was found that the arms of the 

interferometer were not stable. The extracted phase in data collected over a period of 20 

minutes varied by as much as pi due to the ambient air flow, temperature, and humidity.  
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In the optical setup and alignment process it was also noted that reflections from other 

surfaces of the device allow for collection of interferometric fringes. These “nuisance” 

fringes are a result of the upper layers of the electro-optic micro device and are noise to 

the device output. However, this ”nuisance” wavefront can be used as a reference 

wavefront in a single beam interferometer system [27]. This reference wavefront cannot 

be measured independently of the object wavefront exiting the device.  

A modified algorithm has been developed and tested. This new technique allows for 

relative phase extraction of the active layer of the micro device while utilizing the 

“nuisance” wavefront as the non-changing reference. This new technique is based on the 

blind phase shift extraction [39] technique previously published; however it requires a 

different set of assumptions., which are discussed in detail in the following section. The 

modified algorithm was tested via simulated interferograms and a comparison of 

extracted phase shifts to known inputs. Data is presented for extracted phase shifts from 

the reflective electro-optic micro device.  

d. Assumptions and algorithm 

The previously published iterative algorithm for blind phase extraction [39] combines 

the least square regression method and formulae that allow extraction of the unknown 

phase shift utilizing only the intensities of the two interferograms. While the algorithm 

requires far less measured or controlled input than other methods [28-38], it has a few 

stated assumptions and restrictions.  

Equation (3.4.1) is the basis for the two required interferograms and are given as  

  (3.4.2) 

 and  
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  (3.4.3) 

I1(x,y)  is given for  = 0, where as I2(x,y) includes a change in phase equal to . The 

algorithm [39] previously published requires that the following assumptions hold true: 

I. Ao(x,y) and (x,y) are the real amplitude and phase distributions of the 

object wave and the region of interest is large enough that the distribution 

of  is random. 

 

II. Ar is the constant amplitude of a plane reference wave. 

III. The arbitrary phase shift of the reference wave between two images is  

and 0 < <  

 

IV. Inputs of Ar > Ao maximum, as is the case in practice to guarantee correct 

recording. 

As stated, the algorithm previously published works well over a wide range of phase 

shift from 0.4 to 2.5 radians [39]. 

In this work the use of the algorithm has been extended to the case for the reflective 

electro-optical adaptive micro-device.  As such, the algorithm requires the two 

interferograms given in equation (3.4.2) and (3.4.3) as well as the following assumptions: 

i. Ao(x,y) and (x,y) are the real amplitude and phase distributions of the 

object wave and the region of interest is large enough that the distribution 

of  is random. 

 

ii. Ar is the constant amplitude of an unchanging reference wave. 

 

iii. The arbitrary phase shift of the object wave between two images is  and 

0 < <  

 

iv. Calculated Ar /Ao ratio of greater than one. 

 

v. Calculated values in the iterations of the least squares regression must 

remain real valued. 

This modified algorithm works well over a wider range of phase shift depending on 

the calculated Ar /Ao ratio as is shown in the Simulations section. 
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Assumption I and i are the same as both algorithms are designed to extract the phase 

change between the reference wavefront and an object wavefront based on equations 

(3.4.2) and (3.4.3).  

Assumption II, III, and IV are required because the initial algorithm is designed to 

extract the object wavefront, which can be back propagated to calculate the amplitude 

and phase distribution of the object. For this work the amplitude of the object wave and 

reference wave are assumed to be non-changing as the object is shifted in phase by  

between the two interferograms. Therefore assumptions II and III are changed to 

assumptions ii and iii. 

Assumption iv is required due to the reflective nature of the electro-optic micro 

device. However, as stated in [29, 38] and inferred by many using PSI, wavefront 

reconstruction by two-step interferometry requires Ar(x,y) to be chosen as a constant 

greater than the maximum of Ao(x,y). This is due to the image recording method on silver 

halide film. Due to the non-linearity of the foot of the image transfer curve the beam 

ratio,  

  (3.4.4) 

is stated in [40] as requiring a minimum R > 1. This requirement has been carried over 

for the use of digital image detectors, even though most digital detectors are linear down 

to much lower irradiances. For dual or multiple beam interferometers the wavefronts can 

be attenuated to ensure the beam ratio remains greater than one. Attenuation of the 

wavefronts independently is not possible with a single beam system as used with a 

reflective electro-optical adaptive micro-device [27]. 
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Assumption v is applied as a result of using the algorithm on simulated and 

experimental data. Further explanations and examples follow.   

Following the algorithm [39], using equations (3.4.2) and (3.4.3), the sum and the 

difference of the two interferograms are  

  (3.4.5) 

and  

 (3.4.6) 

Using assumption i and sin
2
[ (x,y) - ] + cos

2
[ (x,y) - ] = 1 with equations 

(3.4.5) and (3.4.6), the quadratic equation  

  (3.4.7) 

is obtained, where Io= Ao
2
, Ir= Ar

2
, p = I1 + I2 + 2 Ircos( ), q = [(I1 + I2 - 2 Ir)

2
 + (I2 - 

I1)
2
/tan

2
( )]/4, and the coordinates (x,y) are omitted from Ao, Io, I1, and I2. Solving for 

the real roots by assuring  and  are positive as in [39], the 

irradiance and electric field are found for the object wavefront, 

 

 

 (3.4.8) 

Here assumption iv is used; validation will be shown in the simulations.  

Rearrangement of equation (3.4.2) gives 

  (3.4.9) 

and  

  (3.4.10) 

is obtained by substitution of equation (9) into equation (5).  



 

 

 

62 

The object wavefront O(x,y) = Ao(x,y) exp(i (x,y) can be calculated with I1, I2, Ar and 

 using equations (3.4.8)-(3.4.10).  

Least squares regression can be used to find Ar and  by rearrangement of equation 

(3.4.6) as 

  (3.4.11) 

where  

  (3.4.12) 

and the summations for equation (3.4.13) are taken for the N x N pixels of the 

interferograms. The matrix, 

  (3.4.13) 

can be solved for values of Ir, c1, and c2 allowing calculation of the reference electric field  

Ar   and the phase shift  as 

  (3.4.14) 

Thus using I2, Ao and  the blind phase shift  is extracted.  

Because only the interferograms I1 and I2  are known, the initial value for  is chosen 

from 0.1 to 0.4 times  and the initial value for Ar is the square root of the average pixel 

irradiance of I1(x,y). With these initial values, Ao and  are calculated using equations 

(3.4.8)-(3.4.10). The least squares regression is then calculated and new values for the 

reference electric field, Ar, and the phase shift,  are obtained. This iterative process is 
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allowed to continue until the value for phase shift converges to a difference of less than 1 

x 10
-5

 radians.  

The flow of the algorithm is shown in Figure 41. In the process of executing the 

algorithm it is necessary to validate the calculated intermediate values to ensure that the 

assumptions hold true and that the intermediate values are real. These validation steps are 

also shown in Figure 41. The outputs at step 13 include the blind phase shift, , that 

results from the change of the optical path length of the object wavefront. 

 

Figure 41: Flow diagram of algorithm showing its process and validation steps. 

e. Simulations 

The algorithm was coded in MATLAB® for use with RGB JPEG images captured on 

a Nikon D50 camera back. Upon coding and testing of the algorithm it was found that the 
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equations and iteration steps can lead to various non-real solutions. In these cases the 

resulting calculation of the phase ( ) is not reliable. As such, the intermediate values for 

several of the variables are tested to validate assumption v. 

It is important to remember that the variables of Ao(x,y) and (x,y) are functions of 

the pixel position in the wavefront. For equations (3.4.9) and (3.4.10) the calculated 

cos( (x,y)) and sin( (x,y)) must be real for all pixels in each iteration step. Then 

calculated value of (x,y) will also be real. The least squares regression of the pixels data 

gives Ir, c1 and c2 that must be real, such that the calculated  from c1 and c2 will be real 

and in the range of 0 to . 

To validate the code and better understand its region of usefulness a series of 

simulations were completed. The region of interest for the simulations was driven by the 

need to extract phase from the electro-optic adaptive microlens. The algorithm was run to 

extract phase and appeared to function correctly for some cases, but failed to give reliable 

data for others.  
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Figure 42: Phase extraction simulated with varying Ar > Ao maximum. 

Simulations of interferograms were generated using the following equations: 

  (3.4.15) 

  (3.4.16) 

and 

  (3.4.17) 

where x and y are the pixel indices, is the arbitrary phase as the wavefronts propagate, 

and (x,y) is random phase error. The distribution of phase for (x,y) used is normal with 

parameters of =0 and = 2 /100. These interferograms were then used as inputs for 

phase extraction. Figure 42 shows output phase error for simulated data where the input 

Ar was set to 5 and the Ao value was incremented from 1 to 50. The simulated region over 
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this range of  Ar > Ao maximum clearly breaks assumption IV. However, as can be seen 

in the figure with varying  Ar /Ao ratio, the calculated phase error is small over the range 

of calculated  Ar /Ao ratio from 1 to 10. The plus symbol represents simulations where the 

value for  did not converge to the point where the change in alpha was less than 1 x 10
-3

 

in less than 100 iterations. The algorithm transforms the inputs of Ar and Ao to force the 

outputs to result in an Ar /Ao ratio of one or greater. It thus allows for calculation of object 

and reference wavefronts with the object having a greater intensity than the reference. 

The usefulness of the algorithm for extracting phase is greatly increased by applying the 

requirement of assumption iv. This is the case needed for the electro-optic adaptive 

microlens. 

As can be seen in Figure 43 the useful range of phase for calculated  is limited by 

the output Ar /Ao ratio. Only data with calculated  error of less than 2 /100 are plotted; 

the dot symbols indicate input Ar /Ao ratio and the circle symbols indicate calculated 

output Ar /Ao ratio for simulations with the input phase. The useful range of  for the 

algorithm can also be seen in Figure 43. The circle symbols of output Ar /Ao ratio map the 

valid region for which the value of  can be extracted. This valid region for output Ar /Ao 

ratios greater than 5 includes a wider range of , 0.1 to >2.5 radians, than the algorithm 

previously published [39].  
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Figure 43: Phase with errors less than 2 /100 comparing input and output Ar/Ao ratio. 

 

f. Summary of phase extraction from devices 

The electro-optic adaptive microlens was fabricated on a silicon substrate using 

standard microlithography techniques, with a film stack as shown in Figure 44. The 

aluminum layer is highly reflective, approximately 85-95%, and the upper layers of the 

film stack combine to give a reflectivity of approximately 5-15%.  The reflectance from 

the upper layers is used as the reference wavefront in the phase extraction algorithm. The 

object path traverses the electro-optic material twice and is reflected from the aluminum 

interface. The electro-optic material used in the micro-device is polymer dispersed liquid 

crystals (PDLC) [15]. 



 

 

 

68 

 

Figure 44: Layers of materials used in the reflective micro-device. 

 

Figure 45: Diagram of single arm interferometer system used to collect interferograms. 

Interferograms were collected from the micro-device utilizing an optical and 

electrical test system set up as a single arm interferometer[27]. As shown in Figure 45, 

the reference wavefront for the interferometer and the object wavefront travel the same 

path in the optical system. The object wavefront makes a double pass through the PDLC. 
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The refractive index of the PDLC is controlled by applying an electric field across the 

PDLC layer[15]. The top electrode is indium tin oxide (ITO) coated on the cover glass. 

The bottom electrode is polished aluminum of the metal 2 layer that has been patterned as 

pixels and is contacted to the metal 1 layer. The metal 1 layer is routed to the pads on the 

outer edge of the micro-device.  The field is applied as 60 Hz AC from 3-240 volts 

through the probe pins.  

Images were collected from a single arm interferometer of electro-optic adaptive 

microlens devices as the input voltage to the device was varied. Figure 46 shows two 

sample interferograms. The device itself is made up of an array of 16 by 16 pixels that are 

on a pitch of 160 micrometers. The device pixels were addressed with the same voltages 

for image capture. The images were then analyzed utilizing the algorithm with 

assumptions i to v to estimate the phase change due to applied field across the PDLC.  

 

Figure 46: Interferograms of PDLC device at 3 volts (left) and 240 volts (right). 
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Figure 47 is a plot of repeated runs of the algorithm across nine 256x256 pixel 

regions of the interferograms. The plus symbols indicate that the value for  did not 

converge to the point where the change in alpha was less than 1 x 10
-5

 in less than 200 

iterations and the x symbols indicate that the values for calculated cos( (x,y)) or 

sin( (x,y)) were complex so the iteration cycle was terminated. The diamond symbols 

represent  values where the change in alpha was less than 1 x 10
-5

 and the phase 

extraction was successful. The star symbol was plotted to show the average value of  for 

the successful iterations at each voltage. The variations in  at each voltage are due to the 

regions for which the algorithm was run (each region was 256 by 256 pixels of the 

interferograms). The calculated Ar /Ao ratio for this device was 2.35, which is in the range 

for valid extraction of  from approximately 0.1 to 2.0 rad as shown in Figure 43. The 

object wave has about 5.5 times the energy of the reference wave. 
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Figure 47: Sample phase extraction from interferograms of electro-optic adaptive 

microlens devices. 
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F. Summary of EOAM Results 

Single cell transmission devices were used for initial characterization of the 

PDLC process and were evaluated based on double arm interferometer with two passes 

through the device  

The electro-optic adaptive microlens (EOAM) system was designed and built. 

Three fabrication cycles were completed for the reflective device wafers. The wafers had 

multiple devices with 160 m pixels in an16x16 array. The devices were designed at two 

focal lengths and with 2 and 4 phase levels. 

The EOAM devices from fabrication cycles 1 and 2 were evaluated based on 

double arm interferometer. This method of characterization of phase was found to be 

unstable. 

The EOAM devices from fabrication cycles 2 and 3 were evaluated based on 

single arm interferometer. This method of characterization of phase was found to be 

stable. With applied voltage of 240 V AC, the EOAM devices were limited in phase 

change to less than  radians. 

Code was written and utilized for the following four tasks: 

1. Simulation of imaging device 

a. setupworkspace160_3.m 

b. lensf500bit_3.m 

c. arrayfillbit_160.m 

d. fPropfocal_160.m 

e. address_fbit.m 

2. Simulation of film stack 

a. g5_nm_PDLC.fig 

b. g5_nm_PDLC.m 

c. multilayer_Guenther_interface5.m 

d. multilayer_Guether_zzzface5_cycle_542.m 
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3. Blind phase extraction 

a. datain_phase_extract_file6.m 

b. gen_phase_ex_06102008.m 

c. simple_phase_ex_05162008.m 

d. singlearm_Iaverage_0802.m 

e. singlearm_Image_grab_03242010_plot.m 

f. xu_2007_ph_ext_020102010_data_p.m 

g. xu_2007_phase_extract_working10132008.m 

4. Analysis of devices 

a. datareal_plotting_phase_BW_03242010.m 

b. datareal_plotting_phase_RGB_03242010.m 

c. plot_datareal_A.m 

d. s_strehl_02122009.m 

e. spot_strehl_09292009.m 

f. testA0Ar01152009.m 

The objectives completed were: 

1. Design of an EOA Microlens. 

2. Modeling and simulation of a near field wave propagation system. 

3. Build an adaptive optical element that is electronically controlled by 

addressing the 2-dimensional array of pixels. 

4. Test and analyze the EOAM in a wave propagation system.  

Three iterations of the EOAM devices with PDLC were built and 26 devices were 

optically tested. The first build had aluminum surface roughness leading to high scatter 

and the phase shift could not be quantified. The aluminum CMP process was 

implemented for the second and third builds. For optical device testing the phase shift 

was extracted using a newly developed method for blind phase extraction. 

Problems related to PDLC material and process were: 

1. 2  phase change not possible ( n ~ 0.03, thickness~11 m) 

2. shorting of device due to high drive voltage 

3. Delaminating of device  
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Figure 48: Delta phase versus electro-optic material thickness for n. 

Need new electro-optic material with index change at low voltage ( n ~ 0.23, 

thickness~1.6 m, V< 10 volts). Figure 48 shows the design space for the electro-optic 

material phase change based on equation (3.4.18). The red dotted area represents the 

PDLC used with n ~ 0.03 and a thickness needed of 20 micrometers.  

Delta phase is calculated as: 

  (3.4.18) 

New process steps developed for the EOAM device fabrication were: 

1. CMP of Metal 2 (patterned aluminum over via in TEOS to aluminum) 

2. Patterning for Spacer layer (SU-8 negative i-line photoresist) 

3. PDLC precursor mixture  

4. PDLC fill and cover with ITO glass slide 

5. UV exposure to cure PDLC and attach slide. 
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V. Conclusions 

The goal of the present research was to demonstrate the viability of an electro-

optic adaptive microlens (EOAM) system in imaging applications requiring broadband 

illumination in the visible region. Building an electro-optic adaptive microlens system 

utilizing polymer dispersed liquid crystals (PDLC) and pixel addressing was unique. The 

EOAM devices that were built modify the light path in the visible wavelengths; however, 

the designed lens effect was not realized because the PDLC change in phase for the film 

stack was limited to approximately 2 radians. Processes for design, fabrication, and 

testing of an electro-optic adaptive microlens (EOAM) system were however 

implemented. Software code was developed for design and simulation of the EOAM; and 

new fabrication processes for building reflective devices were developed and 

characterized. In addition, a new algorithm for blind phase extraction for characterization 

of an optical device that acts as a Pohl fringe producing system was developed, simulated 

and implemented in code. The development of a design model for the EOAM system and 

validating it with the images formed by a real electro-optic adaptive microlens system has 

provided the knowledge base needed for implementation of adaptive electro-optic lenses 

for the visible region, and, a process which can be used for further improvement of the 

microsystem. The model parameters can be adjusted for new electro-optic materials that 

may become available that do not have the limitations of PDLC. 

The processes implemented here for design, fabrication, and testing of an electro-

optic adaptive microlens (EOAM) system can be applied to a pixilated phase-only spatial 

light modulator (SLM). The pixel size, PDLC layer thickness, and resulting drive 

voltages can be adjusted and optimize to implement a system for relative phase changes 
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of less than one radian. Such a SLM would be useful element in optical systems needing 

small phase aberration corrections. 
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Appendix A: setupworkspace160_3.m, lensf500bit_3.m, arrayfillbit_160.m, 

fPropfocal_160.m, and address_fbit.m  

function [N, FIG, LAMBDA, LZ, Q, FocaL, DIA, PIXEL, D0, X0, Y0] = 

setupworkspace160_3(fig); % **** 
% setup workspace for quartz >>> LAMBDA n k  
% 
%   (for synthetic fused silica) 
%   LAMBDA [microns]    n           k   nvslope [delta n per V/micron]  
%   nd  .5875618        1.45846     0   .0015       is .030 per 20 
%   nF  .4861327        1.46313     0   .0015 
%   nC  .6562816        1.45637     0   .0015 
% 
%   Vd = ( nd - 1 ) / (nF - nC) 
% 
global N FIG LAMBDA LZ Q FocaL DIA PIXEL scale D0 X0 Y0 DF MAG show sh 

zmag scrsz 
start_clock = clock 
set(0,'Units','pixels'); 
scrsz = get(0,'ScreenSize'); 
show=1; sh= 0; 
N = 30 
FIG = fig 
LAMBDA = [0.5875618        1.45846     0    0.0015, 
          0.4861327        1.46312     0    0.0015, 
          0.6562816        1.45636     0    0.0015] 

  
Vd = ( LAMBDA(1,2) - 1.0)/ (LAMBDA(2,2)-LAMBDA(3,2)) 

  
%for lensf500 
LZ = 20;         % lens thickness in microns 
Q = 2           % quantize levels 
zmag = 1.1        % times focal length for z1 value 
FocaL = 150000;        % FocaL length in microns 
PIXEL = 160       % PIXEL pitch in microns 
if PIXEL > 16 
    scale= PIXEL/16     % scale is microns per display  "pixel units" 
else 
    scale = 1 
end; 
DIA = 368*scale;        % lens DIAmeter in microns 
D0= 1          % input diameter for ef0 aperture 
DF = 50;    % size of mask 
X0=0           % input center for ef0 aperture 
Y0=0            %input center for ef0 aperture 

  
[f500bit, FIG] = lensf500bit_3(1); 
[zbit, FIG] = arrayfillbit_160(f500bit,1); 
dB = fPropfocal_160(zbit); 
address_fbit(f500bit) 
Q, PIXEL, D0, FocaL, MAG, scale 
end_clock=clock 
elapsed_time= etime(end_clock, start_clock) 
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function [f500bit, FIG] = lensf500bit_3(ask); 
% build at 2D lens in complex array z with Q (Quantized levels of 

phase) 
%    zout = exp(i 2pi n LZ /LAMBDA * exp(-i pi r^2 / (LAMBDA FocaL) )    
%                   n index, LZ thickness, FocaL length of lens 
%                
%                   DIA DIAmeter, PIXEL pitch in microns including 

border 
% 
%USAGE run: 
%       [N, FIG, LAMBDA, LZ, Q, FocaL, DIA, PIXEL, D0, X0, Y0] = 

setupworkspaceNFIGLAMBDA_2(1); 
%        
% 
% 
global N FIG LAMBDA LZ Q FocaL DIA PIXEL D0 X0 Y0 
close all 

  
%LZ          % lens thickness in microns 
%Q           % Quantize levels 
%FocaL         % FocaL length in microns 
%DIA         % lens DIAiameter in microns 
%PIXEL          % PIXEL pitch in microns 

  
    N=floor(DIA/PIXEL)+3 
    if rem(N,2)==1 
        N= N+1 
    end; 
if ask == 1 
maskname=strcat('lens','FocaL',num2str(round(FocaL)),'N',num2str(N)); 

  
prompt  = {'Enter matrix size: ','Enter mask name: ','Enter FocaL 

length: ', ... 
        'Enter DIAmeter: ','Enter Quantize levels: ','Enter x 0ffset: 

','Enter y offset: ', ... 
        'Enter PIXEL size: '}; 
title   = 'Input for creating MASK for Imaging simulation'; 
lines= 1; 
def     = {num2str(N),maskname, ... 
        

num2str(FocaL),num2str(DIA),num2str(Q),num2str(X0),num2str(Y0),num2str(

PIXEL)}; 
datas  = inputdlg(prompt,title,lines,def); 

  
datas 
if isempty(datas)  
    close(FIG); 
    return; 
end; 
tic 
N=str2num(datas{1}); 
maskname1=datas{2}; 
FocaL=str2num(datas{3}); 
DIA=str2num(datas{4}); 
Q=str2num(datas{5}); 
X0=str2num(datas{6}); 
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Y0=str2num(datas{7}); 
PIXEL=str2num(datas{8}); 
end; 
Xlens=-PIXEL/2 
Ylens=-PIXEL/2 

  
 maskname=strcat('lens','DIA',num2str(round(DIA)),'N',num2str(N)); 

  
r = DIA/2; 
%start clock 
%tic; 
lx = ((N/2 +1)*PIXEL +Xlens)- r; 
hx = ((N/2 -1)*PIXEL +Xlens)+ r; 
ly = ((N/2 +1)*PIXEL +Ylens)- r; 
hy = ((N/2 -1)*PIXEL +Ylens)+ r; 
%   lx,hx,ly,hy 

    
if lx < PIXEL | ly < PIXEL  
    error('counter  < N'); 
    else if hx > N*PIXEL | hy > N*PIXEL  
        error('counter > N'); 
    end; 
end; 
% 

  
xl = (-N/2)*PIXEL 
xh = ((N/2)-1)*PIXEL 

  
[X,Y] = meshgrid(xl:(PIXEL):xh); 

  
R = sqrt((X-Xlens).^2 + (Y-Ylens).^2) + eps; 
z = ((sign(r-R))+1)/2.* exp(i * 2 * pi * LAMBDA(1,2) * LZ / LAMBDA(1,1) 

)... 
    .* exp(-i * pi *R.^2 / (LAMBDA(1,1) * FocaL) ); 

  

  
%Quantizes the phase in Q levels 

  
zmag= abs(z); 
%angle(z)*180/pi; %fix for angle?????????? 
zang= ( round(angle(z)/(2*pi/Q)) ); %discretizes the phase 
for m=1:N 
for n=1:N 
  if zang(n,m)< 0 
      zang(n,m)= zang(n,m)+Q; 
  end; 
end; 
end; 
%zang 
z= zmag.* exp(i.*zang.*(2*pi/Q)); 

  
if ask == 1 
FIG=showproj(FIG+1,N,z,maskname); 
%FIG=showproj(FIG+1,N,zang,'zang'); 
end;        
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% 

  

  
% zout now in units of microns !!!!!!! 
 f500bit = zang; 
assignin('base','f500bit',f500bit); 
toc 
return; 

 

function [zbit, FIG] = arrayfillbit_160(arrayin, ask); 
% build at 2D lens in complex array z with 
%    zbit =  
%                   n rows   m columns 
%                
%                   PIXEL size in microns 
% 
%USAGE run before this:  
%           [f500, FIG] = lensf500_2(Q, 1); 
%        
% 
% 
% 
global N FIG LAMBDA LZ Q FocaL DIA PIXEL scale D0 X0 Y0  
N=512 
%close all 

  
%PIXEL = pin;     % pitch = pixel size plus border in microns 
z = arrayin; 
insize=size(z) 

  
shn = N- PIXEL*insize(1)/scale 
shm = N- PIXEL*insize(2)/scale; 

  
if shn < 0 | shm < 0 
    error('PIXEL*insize()/scale  > N in arrayfillbit'); 
end;   
% 
%take z array and expand it to zbit array for PIXEL size of PIXEL 
% 
zbit=zeros(N); 

  
Pscale = PIXEL/scale 
temp= ones(Pscale); 
for m=1:insize(2) 
for n=1:insize(1) 

     
    temp=temp*z(n,m); 
zbit(Pscale*n-(Pscale-1):Pscale*n,Pscale*m-(Pscale-

1):Pscale*m)=temp(1:Pscale,1:Pscale); 

  
temp= ones(Pscale); 
end; 
end; 
% fill in linear estimate for border on 1 micron 
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for m = Pscale:Pscale:insize(2)*Pscale 
    for n = 1:insize(1)*Pscale 
        zbit(n,m)= (zbit(n,m)+zbit(n,m+1))/2; 
    end; 
end; 
for n = Pscale:Pscale:insize(1)*Pscale 
    for m = 1:insize(2)*Pscale 
        zbit(n,m)= (zbit(n,m)+zbit(n+1,m))/2; 
    end; 
end; 
% zbit now in units of microns !!!!!!! 

  
%shift to center at N/2 +1 

  
zbit = circshift(zbit,[floor(shn/2)+1 floor(shm/2)+1]); 

  
if ask == 1 
    maskname=strcat('zbit','scale',num2str(scale)); 
    FIG=showproj(FIG+1,N,zbit,maskname); 
%   FIG=showproj(FIG+1,N,angle(zbit),'angle zbit'); 
end; 

  
return; 

 

function dB = fPropfocal_160(bitdata); % **** 
% Propagate an input illumination aperture e-field ef0, distance z1  
%     to an EOAM eoam1 in complex array of size N, 
%     then Propagate distance z2 to ouput e-field ef2, 
%                                    
%     and plot 
% 
%USAGE run before this: 
%           [zfill, FIG] = arrayfillbit_3(f500,1); 
% 
% 
global N FIG LAMBDA LZ Q FocaL DIA PIXEL scale D0 X0 Y0  z1 z2 show sh 

zmag 
global NT levels gen0 sizSelCh maxelN 
global ef0 eoam1 eoami ef2 Prop1 Prop2 MAG 

  
gen0 = 0;   NT =1        % globals for testing???????? 
close all 

  
%N=30; For testing 
%eoami = angle(data)./(2*pi/Q);  % in bit units from -(Q/2)+1 to Q/2 
%min(min(eoami)) 
%max(max(eoami)) 
%zmag = 2; 
slamb = size(LAMBDA,1) 
LZphase = zeros(slamb,1); 
ephase = zeros(N, N, slamb, 'double'); 
ephase(:,:,1) = angle(zmag * exp(i*bitdata*(2*pi/Q))); 
if slamb>1 
    LZphase(1) = mod((LAMBDA(1,2)*LZ*2*pi/LAMBDA(1,1)), 2*pi); 
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    Vpm = ((ephase(:,:,1)*LAMBDA(1,1)/(LZ*2*pi))/LAMBDA(1,4)); 
    for m = 2:slamb 
        LZphase(m) = mod((LAMBDA(m,2)*LZ*2*pi/LAMBDA(m,1)), 2*pi); 
        ephase(:,:,m) = (LZphase(m)-LZphase(1) + 

(LAMBDA(m,4)*LZ*2*pi/LAMBDA(m,1))*Vpm); 
    end; 
end; 

  

  
%NT1= sizSelCh; 
if gen0 ==0 
    NT1 = NT; 
end; 

  
dB=zeros(NT1,1); 
%show=1; sh= 0; FIG=0; 
%       LAMBDA = [0.6328 1.5 0];  % [wavelength n k] 
n1 = 1.000;             % index of air for z1 
n2 = 1.000;             % index of medium for z2 
%NA=                        % NA for object side of system 
%Q =                      % total system OPL in microns 

  
%D0= 30;      X0=0;       Y0=0;    %input diameter and center for ef0 

aperture 
d1= 256;    x1= 0;    y1= 0;     %input diameter and center for eoam1 

aperture 
d2= 300;    x2=0;    y2= 0;     %input diameter and center for ef2 

aperture 

  
z0 = 0 
z1= zmag*FocaL   %(d1/2)/NA for only filled eoam1    %calculated z 

distances 
z2 = 1/(1/FocaL -1/z1) 

  
dlens_d=zeros(N,N,3,'double'); 

  
if gen0 == 0 

  
dlens_d(:,:,:) = 1.0 * exp(i * ephase(:,:,:) );    %lens in complex 

array  

  

  
FIG=showproj3(FIG+1,N,dlens_d, 'dlens_d'); 
%FIG=showproj(FIG+1,N,dlens_d(:,:,2), 'dlens_F'); 
%FIG=showproj(FIG+1,N,dlens_d(:,:,3), 'dlens_C'); 

  
[e0, FIG] = rect(1, D0, X0, Y0, sh);         % aperture at z0 
[e1, FIG] = rect(1, d1, x1, y1, sh);        % aperture at z1 
[e2, FIG] = rect(1, d2, x2, y2, sh);        % aperture at z2 

  
[Prop1, FIG] = chirp_Pscale(1,z1,sh);   %use upchirp for fresnel 

propagation kernel 
[Prop2, FIG] = chirp_Pscale(1,z2,sh);   %use upchirp for fresnel 

propagation kernel 
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assignin('base','e0',e0);       % puts arrays into workspace 
assignin('base','e1',e1); 
assignin('base','e2',e2); 
assignin('base','Prop1',Prop1); 
assignin('base','Prop2',Prop2); 
assignin('base','dlens_d',dlens_d); 

  
ef0 = e0;       % phase assumed constant????? 
ef1 = ncconv3(ef0,Prop1);        % fresnel Propagation --normalized 

power  

  

  
%else 
 %   disp ( ['  in looop with globals used'] ); 

     
end; 

  
for b = 1 : NT1 

     
    dBx=99999; 
 %   [ran1,ran2]= vect2smatrix(data(b,:)); 
 %   fixN = (N+maxelN)/2 +maxelN/2; 
 %   ran1(fixN+2*y1,fixN+2*x1)=0; 
 %   ran2(fixN+2*y2,fixN+2*x2)=0; 
 %   ran1=fftshift(ran1); 
 %   ran2=fftshift(ran2); 
%ran1(N,N)=0; 
%ran1a(1:N,1:N)=ran1(1:N,1:N); 
%ran2(N,N)=0; 
%ran2a(1:N,1:N)=ran2(1:N,1:N); 

  

  

     
eoam_d= ncmult3(e1,dlens_d);  

  
ef1e1= ncmult3(ef1,eoam_d); 

  
% normalize power to 1 at EOAM 
%for m=1:slamb 
%norm(m)=sum(sum(ef1e1(:,:,m).*conj(ef1e1(:,:,m))))       % Power = 1 

of wave front amplitude 
%ef1e1(:,:,m) = ef1e1(:,:,m)./(norm(m)^0.5); 
%end; 

  
pow1=sum(sum(ef1e1.*conj(ef1e1))) 

  
%f2 = (1/(i*LAMBDA*z2))*exp(-i*2*pi*z2/LAMBDA).*ncconv2(f1e1,Prop2); 
ef2 = ncconv3(ef1e1,Prop2);        % fresnel propagation --normalized 

power 
ef2e2 = ncmult3(e2,ef2); 
zI3 = ncSUMintensity3(ef2e2); 
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ef22 = ncconv3(ef2,Prop2);        % fresnel propagation --normalized 

power 

  
%ef222 = ncconv2(ef22,Prop2);        % fresnel propagation --normalized 

power 

  
%f2222 = ncconv2(ef222,Prop2);        % fresnel propagation --

normalized power 
%ef2222e2= (ef2222).*e2; 

  
assignin('base','ef2e2',ef2e2); 
assignin('base','zI3',zI3); 

  
pow2=sum(sum(ef2e2.*conj(ef2e2))) 

  
%count = count+1; 

  
totalpow= pow1.*pow2 
%disp ( [trialI triale3 pow1 pow2 pow3 totalpow] ); 
dBx= -10*log10(totalpow./pow1) 

  
%dB(:,:,:,b)= dBx 

  
if show ==1 
    maskname=strcat('fProp3',' N',num2str(N)); 

     
masknamef0   =strcat(maskname,' ef0'   ); 
masknamef1   =strcat(maskname,' ef1'   ); 
masknamef1e1 =strcat(maskname,' ef1e1' ); 
masknamef2   =strcat(maskname,' ef2 z2'   ); 
masknamef22 =strcat(maskname,' ef2 pastz2' ); 
masknamef2e2 =strcat(maskname,' ef2e2' ); 
masknameoam_d =strcat(maskname,' eoam' ); 
%masknamef2222 =strcat(maskname,' ef24z2' ); 
%masknamef2222e2 =strcat(maskname,' ef24z2e2' ); 

  

  
    FIG=showproj(FIG+1,N,ef0,   masknamef0   ); 
    FIG=showproj3(FIG+1,N,ef1,   masknamef1   ); 
    FIG=showproj3(FIG+1,N,eoam_d,   masknameoam_d   ); 
    FIG=showproj3(FIG+1,N,ef1e1, masknamef1e1 ); 
    FIG=showproj3(FIG+1,N,ef2,   masknamef2   );  
%    FIG=showproj3(FIG+1,N,ef2e2, masknamef2e2 ); 
%    FIG=showproj3(FIG+1,N,ef22, masknamef22 ); 
    FIG=showproj_color3(FIG+1,zI3, masknamef2e2 ); 
    %FIG=showproj(FIG+1,N,ef2222, masknamef2222 ); 
    %FIG=showproj(FIG+1,N,ef2222e2, masknamef2222e2 ); 
    %FIG=showplot(FIG+1,N,ef2e2, masknamef2e2 ); 
end; 

  
%output info on lens system 
so = z1 
si = 1/(1/FocaL -1/so) 
z2 
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MAG= -si/so 

  
convolwithinputscale(zI3); 

     
end; 
return; 

 

function address_fbit(fbit); 
% calculate the number of pixel radii that are distinct 
% 
% 
% 
global N FIG add0 add1 add2 add3 PIXEL scrsz 
maskname='address_fbit'; 
ask=1;imshowmag=3000; 
fbitsize=size(fbit) 
N=fbitsize(1) 
znor=fbit; 
zN=znor(N/2+1:N,N/2+1:N); 
zNv(1:(N/2)^2)=zN; 
%zsort=sort(zv); 
zmin=min(zNv); 
%counter=1000001 
%while min(zv)<100 
%    zmin = min(zv); 
%for i=1:(N/2)^2 
%    if zv(i) == zmin 
%        zv(i)=counter; 
%    end;end; 
%    counter= counter+1; 
%end; 
%zv=zv-1000000       
levelmax = max(zNv) 

  

  

  
if ask == 1 
    font=12; 
larray = length(zN); 
    figure(FIG+1); 
    set(FIG+1,'Name',['Display of ',maskname]); 
    set(FIG+1,'Position',[scrsz(3)*.5 scrsz(4)*.53 scrsz(3)*.4 

scrsz(4)*.4]) 
imshow(zN,[],'InitialMagnification',imshowmag) 
text(0,0,['Real Part of 

',maskname],'FontSize',font,'VerticalAlignment','bottom'); 
    zmin = num2str(min(min(real(zN))),'%+6.4g'); 
    zmax = num2str(max(max(real(zN))),'%+6.4g'); 
    text(0,larray,['min=',zmin,' max=',zmax],'FontSize',font-

4,'VerticalAlignment','top'); 
figure(FIG+2); 
set(FIG+2,'Position',[scrsz(3)*.5 scrsz(4)*.53 scrsz(3)*.4 

scrsz(4)*.4]) 
plot(zNv,':bd') 
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end; 

  
for i = 1:N/2 
    zNN(1:N/2, i)=zNv(((i-1)*(N/2)+1):(i*(N/2))); 
end; 
zNN 
z88=zNN(1:8,1:8) 

  
if ask == 1 
    figure(FIG+3); 
    set(FIG+3,'Position',[scrsz(3)*.5 scrsz(4)*.53 scrsz(3)*.4 

scrsz(4)*.4]) 
plot(z88,':bd') 
    font=12; 
larray = length(zN); 
    figure(FIG+4); 
    set(FIG+4,'Name',['Display of z88']); 
    set(FIG+4,'Position',[scrsz(3)*.5 scrsz(4)*.53 scrsz(3)*.4 

scrsz(4)*.4]) 
imshow(z88,[],'InitialMagnification',imshowmag) 
text(0,0,['Real Part of 

',maskname],'FontSize',font,'VerticalAlignment','bottom'); 
    zmin = num2str(min(min(real(z88))),'%+6.4g'); 
    zmax = num2str(max(max(real(z88))),'%+6.4g'); 
    text(0,larray,['min=',zmin,' max=',zmax],'FontSize',font-

4,'VerticalAlignment','top'); 
end; 
add0= find(z88 ==0) 
add1= find(z88 ==1) 
add2= find(z88 ==2) 
add3= find(z88 ==3) 

  
assignin('base','add0',add0); 
assignin('base','add1',add1); 
assignin('base','add2',add2); 
assignin('base','add3',add3); 
assignin('base','levelmax',levelmax); 
assignin('base','z88',z88); 
%toc 
return; 
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Appendix B:  datain_rerun_singlefile.m 

 
%function datain_rerun31_singlefile.m 
%Dale Ewbank 10/26/2005 
% select files and assign voltage and color for Phase vs Voltage 

analysis 
% 
rerunning =  1 % 1 for rerun with data in workspace, 0 for new 
prompt  = {'Running data files(0 for NEW, 1 for rerun, 2 for single 

file):'} 
            title   = ['Input datain_rerun31.m']; 
            lines= 1; 
            def     = {num2str(rerunning)}; 
            datas  = inputdlg(prompt,title,lines,def); 
            if isempty(datas)  
                close all; 
                disp(['User canceled datain_rerun31_singlefile.m']) 
                return; 
            end; 
            rerunning =str2num(datas{1}); 

             
            if rerunning == 2 
                prompt  = {'ReRunning file#: '} 
                title   = ['Input datain_rerun31_singlefile.m']; 
                lines= 1; 
                def     = {'99'}; 
                datas  = inputdlg(prompt,title,lines,def); 
                if isempty(datas)  
                    close all; 
                    disp(['User canceled datain_rerun31.m']) 
                    return; 
                end; 
                Nsingle =str2num(datas{1}); 
            end; 
if rerunning == 0 
    clear; rerunning =0; 
end; 
close all hidden; 
imtool close all; 
global Nsample fig 
tic 

  
hsize = 64; 
fig =2;  
fig_reuseask=0; 
fig_reuse2ask=1; 
start_sample=1; 
Nsample = 70; 
N=1         % number of "samples" to extract per image 
if rerunning == 1 |rerunning == 2 
    N = 3   % number of "samples" to extract per image 
    Ntemp=size(sNmins); 
    Nsample =Ntemp(1) 
    clear temp1 temp2 temp3 rad_pix12 rad_pix31 
end; 
sample = 1; ss12 = 1; ss31 = 1; 
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set(0,'Units','pixels') 
scrsz = get(0,'ScreenSize') 

  
while sample < Nsample & rerunning == 0 
[filename, pathname]=uigetfile({'*.tif';'*.jpg';'*.bmp';'*.*'},['Select 

Image > ',num2str(sample)]); 
    if isequal(filename,0) 
       disp('User selected Cancel. Ending file selection.') 
       Nsample = sample -1 
    else 
       temppath= pathname; 
       disp(['User selected', fullfile(temppath, filename)]) 
       sfile{sample}=filename; 
       sample = sample +1; 
    end; 
end; 

  
wave=0.5875618; % 0.4861327 for blue,  0.6562816 for red,  0.5875618 

for green, 999 for all 
    if wave == 0.4861327 
        color = 3; 
        colorr = 'b';  
    elseif wave == 0.5875618 
            color = 2;  
        colorr = 'g'; 
    elseif wave == 0.6562816 
        color = 1; 
        colorr = 'r'; 
    else 
        wave = 999; 
        color = 3 ; 
        colorr = 'b'; 
    end; 
% test read to find files size and setup variables 
if rerunning == 0 
    moon1 = imread(fullfile(temppath, sfile{Nsample})); 
    [rmax, cmax, ncolor] = size(moon1) 
    r2use = rmax/2-(round(N/2)*hsize) 
    svolt = zeros(Nsample,1); 
    scolorr{1}=colorr 
    sNmins=ones(Nsample,1); sNminst= sNmins(1); 
    xx1=ones(Nsample,1)*(hsize); xx1t=xx1(1); 
    xx6=ones(Nsample,1)*(cmax-xx1(1)); xx6t=xx6(1); 
end; 

  
%create filter for smoothing 
    sigma = 0.5*hsize; 
    h2 = fspecial('gaussian',[hsize hsize/4],sigma); 
if rerunning == 0   
    svoltt=0; 
    for sample = start_sample : Nsample 

  
            prompt  = {'Enter Voltage: ','Enter color> b g or r: ', ... 
                }; 
            title   = ['Input ',sfile{sample}]; 
            lines= 1; 
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            def     = {num2str(svoltt),colorr}; 
            datas  = inputdlg(prompt,title,lines,def); 
            if isempty(datas)  
                close(FIG); 
                return; 
            end; 
            svolt(sample)=str2num(datas{1}); 
            scolorr{sample}=datas{2}; 
            colorr=datas{2}; 
            if sample > 1 
               svoltt= svolt(sample)+(svolt(sample)-svolt(sample-1)); 
            end; 
    end; 
end; 
if rerunning == 2 
        start_sample= Nsingle 
        Nsample=Nsingle 
    end; 
for sample = start_sample : Nsample 

     
    rad_pix12(sample)=0; 
    rad_pix31(sample)=0; 
        moon1 = imread(fullfile(temppath, sfile{sample})); 
switch scolorr{sample} 
    case 'b' 
        wave = 0.4861327 
        color = 3;colorr='b'; 
    case 'g' 
        wave = 0.5875618 
        color = 2;colorr='g';  
    case 'r' 
        wave = 0.6562816 
        color = 1;colorr='r'; 
    otherwise 
        disp(' Error on color input, please restart') 
        return; 
    end; 
% pull region of image for finding fringe minimums 
[x2,y2,I2,rect2] = imcrop(moon1,[1 r2use-hsize/2 cmax N*hsize]); 
%imtool(h2,[]); 

  
%imtool(I2f,[]); 

  
if fig_reuseask == 0 
    fig_reuse = 1;  
    figure(fig_reuse); 
    set(fig_reuse,'Position',[1 scrsz(4)*0.5 scrsz(3)*.8 

scrsz(4)*0.40]);  
else 
        fig= fig+1; 
        fig_reuse=fig; 
end; 
    figure(fig_reuse); 
    clf('reset'); 
    set(fig_reuse,'Position',[1 scrsz(4)*0.5 scrsz(3)*.8 

scrsz(4)*0.40]); 
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    set(fig_reuse,'Name',['#',num2str(sample),' of ',num2str(Nsample),' 

', sfile{sample},' for minimums']); 
    for n = 1 : N 
        plot(I2(hsize/2+(n-1)*hsize,:,color),colorr);hold all; 
    end; 

     

  
    %find minimums between xx5 xx6 
if rerunning == 0     
    prompt  = {'How many minimuns? ','Enter xx1 for left of minimums: 

', ... 
        'Enter xx6 for right of minimums: '}; 
    title   = ['Input ',sfile{sample},'for ',scolorr{sample}]; 
    lines= 1; 
    def     = {num2str(sNminst),num2str(xx1t),num2str(xx6t)}; 
    datas  = inputdlg(prompt,title,lines,def); 
    if isempty(datas)  
        disp('NO or bad DATA'); 
        return; 
    end; 
    sNmins(sample)=str2num(datas{1}); 
    xx1(sample)=str2num(datas{2}); 
    xx6(sample)=str2num(datas{3}); 
    sNminst=sNmins(sample); 
    xx1t=xx1(sample); 
    xx6t=xx6(sample); 
end; 
if rerunning == 1 |rerunning == 2 
        I2f = imfilter(I2,h2); 
    xxrange=[xx1(sample):xx6(sample)]; 
    I2fm= ones(N*hsize, cmax, ncolor)*999; 

  

           
        if fig_reuse2ask == 0 
            fig_reuse2 = 2;  
            figure(fig_reuse2); 
            set(fig_reuse2,'Position',[1 scrsz(4)*0.03 scrsz(3)*.8 

scrsz(4)*0.40]); 
        else 
            fig=fig+1; 
            fig_reuse2=fig; 
        end; 
        figure(fig_reuse2); 
        clf('reset'); 
        set(fig_reuse2,'Position',[1 scrsz(4)*0.03 scrsz(3)*.8 

scrsz(4)*0.40]); 
        set(fig_reuse2,'Name',['filter/marker #',num2str(sample),' of 

',num2str(Nsample),' ', sfile{sample},' for minimums']); 

  
    for n = 1 : N 
        marker = imextendedmin(I2f(hsize/2+(n-

1)*hsize,xxrange,color),hsize*N); 
        plot(I2f(hsize/2+(n-1)*hsize,:,color),colorr);hold all; 
        I2fm(hsize/2+(n-1)*hsize,xxrange,color) = 

imimposemin(I2f(hsize/2+(n-1)*hsize,xxrange,color),marker); 
        plot(I2fm(hsize/2+(n-1)*hsize,:,color),'k');hold all; 
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        ind1 = find(I2fm(hsize/2+(n-1)*hsize,xxrange,color) == 0); 
        K=size(ind1); 
        xmin=zeros(3,1) 
        switch sNmins(sample)   % 3 used for rad_pix31, and is ahead of 

first minuimum 
            case 1 
                lm1 = ind1(1); 
                hm1 = ind1(K(2)); 
                xmin(1) = xx1(sample) + round((lm1 + hm1) /2); 

  
            case 2 
                lm1 = ind1(1); 
                hm2 = ind1(K(2)); 
                temp =0; 
                    for i = 2:K(2) 
                        if temp == 0 & abs( ind1(i) - ind1(i-1) ) > 1 
                            hm1 = ind1(i-1); 
                            lm2 = ind1(i); 
                            temp = +1; 
                        end; 
                    end; 

  
                xmin(1) = xx1(sample) + round((lm1 + hm1) /2); 
                xmin(2) = xx1(sample) + round((lm2 + hm2) /2); 

  
            case 3 
                lm3 = ind1(1); 
                hm1 = ind1(K(2)); 
                temp =0; 
                    for i = 2:K(2) 
                        if temp == 0 & abs( ind1(i) - ind1(i-1) ) > 1 
                            hm3 = ind1(i-1); 
                            lm1 = ind1(i); 
                            temp = 1; 
                        end; 
                    end; 

  
                xmin(1) = xx1(sample) + round((lm1 + hm1) /2) 
                xmin(3) = xx1(sample) + round((lm3 + hm3) /2);        
                otherwise 
                disp('MINIMUMS FAILED'); 
            end; 

  

  
        scatter(xmin(1),I2f(hsize/2+(n-

1)*hsize,xmin(1),color),100,colorr);hold all; 
        if xmin(2) ~= 0 
            scatter(xmin(2),I2f(hsize/2+(n-

1)*hsize,xmin(2),color),100,'k');hold all; 
        end; 
        if xmin(3) ~= 0; 
            scatter(xmin(3),I2f(hsize/2+(n-

1)*hsize,xmin(3),color),100,'k');hold all; 
        end; 
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        temp1(n)=xmin(1) 
        temp2(n)=xmin(2) 
        temp3(n)=xmin(3) 
            end; 
        xmin = [mean(temp1) mean(temp2) mean(temp3)] 
        %xmin(1) = mean(temp1) 
        %xmin(2) = mean(temp2) 
        %xmin(3) = mean(temp3) 
        if xmin(2)~= 0; 
            rad_pix12(sample)= 2*pi/(xmin(2)-xmin(1)) 
        end; 
        if xmin(3)~= 0  
            rad_pix31(sample)= 2*pi/(xmin(1)-xmin(3)) 
        end; 

  
        PX1(sample)=xmin(1) 
        PX2(sample)=xmin(2) 
        PX3(sample)=xmin(3) 
    end; 
end; 
if rerunning == 1 |rerunning == 2 
    if rerunning == 2 
        Nsample =Ntemp(1); % resetting Nsample 
        sample = Nsample; 
    end; 
    ind2 = find(svolt == 100) 
    ind12 = find(rad_pix12 ~= 0) 
    %rad_pix12(ind12)= (PX2(ind12)-PX1(ind12)) 
    %rad_pix12(ind12) = 2*pi/rad_pix12(ind12) 
    rad_12 =mean(rad_pix12(ind12)) 

  
    PX1_mean=mean(PX1(ind2)) 
    Phaseshift = mean(rad_pix12(ind12))*(PX1 - mean(PX1(ind2))) 

  

  
    fig=fig+1;  figure(fig); 
    set(fig,'Position',[1 scrsz(4)*0.5 scrsz(3)*.8 scrsz(4)*0.40]); 
        set(fig,'Name',['Pixels of ',num2str(Nsample),'files versus 

Voltage', sfile{sample},' for ',scolorr{sample}]); 
        plot(svolt,PX1,[scolorr{sample},':x']);hold all; 
        plot(svolt,PX2,'o');hold all; 
        plot(svolt,PX3,'*');hold all; 
        xlabel('Volts','FontSize',16) 
        ylabel('Pixel column','FontSize',16) 

  
    fig=fig+1;  figure(fig); 
    set(fig,'Position',[1 scrsz(4)*0.03 scrsz(3)*.8 scrsz(4)*0.40]); 
        set(fig,'Name',['Phase ',num2str(Phaseshift(sample)),' of 

',num2str(Nsample),' versus Voltage', sfile{sample},' for 

',scolorr{sample}]); 
        plot(svolt,Phaseshift,[scolorr{sample},':*']);hold all; 
        if exist('rad_pix31','var') == 1 
            ind31 = find(rad_pix31 ~= 0) 
            rad_31 =mean(rad_pix31(ind31)) 
            Phaseshift3 = mean(rad_pix31(ind31))*(PX1 - 

mean(PX1(ind2))) 
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            plot(svolt,Phaseshift3,['k','x']);hold all; 
        end; 
        xlabel('Volts','FontSize',16) 
        ylabel('Phase [radians]','FontSize',16) 
end; 
   toc  
    clear moon1 
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Appendix C: Run Sheet for EOAM v1.5b 

 

Run Sheet for EOAM v1.5b 

 

Third run of EOAM device wafers 

 

Step 1) 

Obtain 4” Silicon Wafers  

 

Step 2) 

RCA Clean of Silicon Wafers 

Process Steps: 

1) RCA Clean 

- APM(SCI): 10 Minute Soak 

- DI Water: 5 Minute Rinse 

- Dilute HF: 1 Minute Soak 

- DI Water: 5 Minute Rinse 

- HPM: 10 Minute Soak 

- DI Water: 5 Minute Rinse 

2) Surface Defect Metrology Using the Tencor Surfscan tool. 

Process Tools: 

1) Wet Bench: RCA MOS Clean 

2) Tencor 364 Surfscan 

 

Step 3) 

Growth of ~1 micron of Isolation Oxide 

-Wet Oxide growth in Bruce Furnace (Tube 1) 

Process Steps: 

1) Thermal Processing in Bruce Furnace 

- Run Program 888 (Furnace Warmup) 
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- Run Program 168 (1 micron wet oxide) 

2) Oxide Thickness Metrology on Control Wafer C1 

Process Tools: 

1) Bruce Furnace (Tube 1) 

2) Nanospec 

 

Step 4) 

Deposition of Metal #1 

-Sputtering of  ~0.5 m Aluminum  

Process Steps: 

1) Aluminum Sputtering in CVC 601 

-Argon Flow: 18.0 sccm 

-Flow Pressure: 5.0 mTorr 

-Power: 1500 Watts (approx. 460 V and 3.26 Amps) 

-Target: 8” Target 

2) Aluminum Thickness Metrology on Control Wafer  

Sputtering Paramters: 

1) Approximate Time: 1020  seconds 

2) Desired Thickness: 0.5 m 

3) Resulting Thickness: 0.41 m 

Process Tools: 

1) CVC 601 Sputter 

2) Nanospec 

 

Step 5) 

Patterning of Mask #1 in Photoresist 

-Suss MA 150 Aligner 

Process Steps: 

1) Coating of Photoresist on SVG Track 

 - Material: Shipley 1813 

- Program: Program 1  
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 - Thickness: 1.25 m 

2) Exposure in Suss MA 150 Aligner (broadband) 

-Mask Metal 1 

-Actual Dose: 76 mJ/cm
2
 

-Resolution: 1.0 micron 

3) Develop SVG Track 

 -Program: 1 

4) Photoresist Defect Metrology on Device Wafers 

Process Tools: 

1) SVG Track 

2) Suss MA 

3) Nanospec 

 

Step 6) 

Etching of Metal 1 

Metal Wet Etch followed by ashing of Photoresist in Branson Asher 

Process Steps: 

1) Etch in Metal Wet Etch 

 -When the tank has reached 50C, place the wafers in the tank until the aluminum 

clears and then give them an additional 10%. 

 -After completing an aluminum etch, rinse the wafers for 5 minutes in the rinse 

tank before transferring to the rinser/dryer. 

2) Ash Wafers in Branson 3200 Asher 

3) Pattern Defect Metrology 

Etch Parameters: 

1) Expected Time: 2.5 Minutes 

2) Expected Rate: 2646 A/min 

Process Tools: 

1) Metal Wet Etch Bench 

2) Branson 3200 Asher 

3) Nanospec 
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Step 7) 

Deposit Oxide Layer #2 

CVD techniques via the AME P5000 

Process Steps: 

1) Deposit ~1 micron of Oxide 

 -Process: 1 Micron TEOS Low Stress 

 -Desired Thickness: 10064 Angstroms 

 2) Oxide Thickness Metrology on Dummy Wafer 

Process Tools: 

1) AME P5000 

2) Nanometrics Spectrophotometers 

 

Step 8) 

Patterning of Mask #2 in photoresist 

Suss MA 150 Aligner 

Process Steps: 

1) Coating of Photoresist on SVG Track 

 - Material: Shipley 1813 

- Program: Program 1 

 - Thickness: 1.2 m 

2) Exposure in Suss MA 150 Aligner (broadband) 

-Mask Via 

-Actual Dose: 103.2 mJ/cm^2 

-Resolution: 1.0 micron 

3) Develop SVG Track 

 -Program: 1 

4) Photoresist Defect Metrology on Device Wafers 

Process Tools: 

1) SVG Track 

2) Suss MA 
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3) Nanospec 

 

Step 9) 

Etching of Via Pattern onto oxide Layer 

BOE Wet Etch followed by ashing of photoresist in Branson 3200 Asher 

Process Steps: 

1-1) Etch in BOE  

 -Controlled Etch of Specified Time 

 -5 Minute Rinse 

 -Dry in Spin/Rinse Dryer 

3) Pattern Defect Metrology 

Etch Parameters: 

1) Desired Rate: 586 A/min 

2) Etch Rate: 1479 A/min 

3) Etch Time: 7:40 min 

 

 

Process Tools: 

1) Drytek Quad 

2) Branson 3200 Asher 

3) Nanospec 

 

Step 10) 

Deposition of Metal #2 

Sputtering of 1.50 - 2.00 m Aluminum  (1.0 m used in previous runs) 

Process Steps: 

1) Aluminum Sputtering in CVC 601 

-Argon Flow: 18.0 sccm 

-Flow Pressure: 5.0 mTorr 

-Power: 1500 Watts (approx. 460 V and 3.26 Amps) 

-Target: 8” Target 
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2) Aluminum Thickness Metrology on Control Wafer  

Sputtering Paramters: 

1) Approximate Time: 3000  seconds Adjust for thickness 

2) Desired Thickness: 1.50 m 

Process Tools: 

1) CVC 601 Sputter 

2) Nanospec 

 

Step 11) 

Patterning of Mask #2 in photoresist 

Suss MA 150 Aligner 

Process Steps: 

1) Coating of Photoresist on SVG Track 

 - Material: Shipley 1813 

- Program: Program 1 

 - Thickness: 1.2 m 

2) Exposure in Suss MA 150 Aligner (broadband) 

-Mask Metal 2 

-Actual Dose: 97.2 mJ/cm^2 

-Resolution: 1.0 micron 

3) Develop SVG Track 

 -Program: 1 

4) Photoresist Defect Metrology on Device Wafers 

Process Tools: 

1) SVG Track 

2) Suss MA 

3) Nanospec 

 

Step 12) 

Etching of Metal 2 

Metal Wet Etch followed by ashing of Photoresist in Branson Asher 
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Process Steps: 

1) Etch in Metal Wet Etch 

 -When the tank has reached 50C, place the wafers in the tank until the aluminum 

clears and then give them an additional 10%. 

 -After completing an aluminum etch, rinse the wafers for 5 minutes in the rinse 

tank before transferring to the rinser/dryer. 

2) Ash Wafers in Branson 3200 Asher 

3) Pattern Defect Metrology 

Etch Parameters: 

1) Expected Time: 7.5 Minutes 

2) Expected Rate: 2646 A/min 

Process Tools: 

1) Metal Wet Etch Bench 

2) Branson 3200 Asher 

3) Nanospec 

 

Step 13) 

Probe of EOAM devices 

 -Verify contact between pads and pixels 

 -Verify pads not shorted to each other 

 

Step 14) (Newly developed process) 

CMP of Metal 2 

Objective:  

Create mirror like finish of metal on pixel areas 

Process Tools: 

Strausbaugh 

 

Step 15) (Newly developed process) 

Objective:  

Patterning of Spacer Layer in photoresist –12 microns thickness 
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Method:  

Patterning of fourth photoresist mask using Suss MA 150 Aligner 

Process Steps: 

1) Coating of Photoresist on Hand Coater 

 -Material: SU-8 

 -Ramp up spinner to 2400 RPM for 5 s 

 -Hold at 2400  RPM for 40 s 

 -Ramp Down 

2) Soft Bake at 95 Degrees Centigrade 

 - Bake at 65 Degrees Centigrade for 2 minutes 

 - Bake at 95 Degrees Centigrade for 5 minutes 

3) Exposure in Suss Mask Aligner (365 nm) 

-Mask #4 

-Dose to Clear: approx. 180 mJ/cm^2 

-Thickness: 20.0 micron 

4) Post Exposure Bake 

 - Bake at 65 Degrees Centigrade for 1 minute 

 - Bake at 95 Degrees Centigrade for 2 minutes 

5) Develop on wet bench using RER-600 Developer 

 - Develop using RER-600 for 3 minutes 

 - Rinse in IPO 

6) Hard Bake 

 - Bake at 65 Degrees Centigrade for 1 minute 

 - Bake at 95 Degrees Centigrade for 2 minutes 

 - Bake at 150 Degrees Centigrade for 5 minutes 

6) Photoresist Defect Metrology on Device Wafers 

Process Tools: 

1) Hand Spinner 

2) Wet Development Bench 

3) Nanometrics Spectrophotometers 
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Step 16)  

Objective:  

Dice wafers into separate devices 

Method: Dice wafer so that individual „good‟ device have “handling die attached”. 

Process Tools: 

Tempress 4 Inch Wafer Saw 

 

Step 17) (Newly developed process) 

Objective:  

Fill Layer with PDLC and cover with ITO Glass Slide 

Method: 

The cell will be filled with PDLC manually before a prefabricated ITO glass slide is 

placed over the lens area. 

 

Step 18) (Newly developed process)  

Objective:  

UV Exposure to cure 

Method:  

Completed dvice will be exposed to ultraviolet light via exposure. 

 Procedure: 

1.) UV Exposure with i-line head (Newly developed tool) 

- Required Dose: minimum 50 mW/cm
2
 for 120 seconds 
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Appendix D: EOAM_Process Rev1_5b 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 1

Rochester Institute of Technology

Microelectronic Engineering

ROCHESTER INSTITUTE OF TECHNOLOGY
MICROSYSTEMS ENGINEERING

EOAM -- Process v1.5b

Silicon substrate (625)

Thermal oxide (0.5)

Metal 1- Al (0.5)

Metal 2- Al (1.5)

TEOS (1.0)

Glass (1092) with ITO (0.1)

Electro-optic material (12)

Thickness in m (x.x) not to scale

Spacer material (12)

 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 2

Rochester Institute of Technology

Microelectronic Engineering

Step 1:

Obtain 4”

Substrates

EOAM -- Process v1.5b
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© 20 January 2011 Dale Ewbank

EOAM Process

Page 3

Rochester Institute of Technology

Microelectronic Engineering

Step 2:

RCA Clean

EOAM -- Process v1.5b

 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 4

Rochester Institute of Technology

Microelectronic Engineering

Step 3:

Grow >500 nm Thermal Oxide

EOAM -- Process v1.5b
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© 20 January 2011 Dale Ewbank

EOAM Process

Page 5

Rochester Institute of Technology

Microelectronic Engineering

Step 4: 

Deposit Metal 1

EOAM -- Process v1.5b

 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 6

Rochester Institute of Technology

Microelectronic Engineering

Step 5:

Pattern photoresist for Metal 1

EOAM -- Process v1.5b
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© 20 January 2011 Dale Ewbank

EOAM Process

Page 7

Rochester Institute of Technology

Microelectronic Engineering

Step 6:

Etch Metal 1

EOAM -- Process v1.5b

 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 8

Rochester Institute of Technology

Microelectronic Engineering

Step 6 continued :

Strip Resist

EOAM -- Process v1.5b
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© 20 January 2011 Dale Ewbank

EOAM Process

Page 9

Rochester Institute of Technology

Microelectronic Engineering

Step 7: 

Deposit PECVD of TEOS Silicon Dioxide

EOAM -- Process v1.5b

 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 10

Rochester Institute of Technology

Microelectronic Engineering

Step 8:

Pattern photoresist for Vias

EOAM -- Process v1.5b
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© 20 January 2011 Dale Ewbank

EOAM Process

Page 11

Rochester Institute of Technology

Microelectronic Engineering

Step 9: 

Etch Vias into TEOS

EOAM -- Process v1.5b

 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 12

Rochester Institute of Technology

Microelectronic Engineering

Step 9 continued:

Strip resist

EOAM -- Process v1.5b
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© 20 January 2011 Dale Ewbank

EOAM Process

Page 13

Rochester Institute of Technology

Microelectronic Engineering

Step 10:

Deposit Metal 2

EOAM -- Process v1.5b

 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 14

Rochester Institute of Technology

Microelectronic Engineering

Step 11:

Pattern Photoresist for Metal 2

EOAM -- Process v1.5b
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© 20 January 2011 Dale Ewbank

EOAM Process

Page 15

Rochester Institute of Technology

Microelectronic Engineering

Step 12:

Etch Metal 2

EOAM -- Process v1.5b

 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 16

Rochester Institute of Technology

Microelectronic Engineering

Step 12 continued :

Strip resist

EOAM -- Process v1.5b
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© 20 January 2011 Dale Ewbank

EOAM Process

Page 17

Rochester Institute of Technology

Microelectronic Engineering

Step 13:

Probe  to verify contact between pads and pixels

EOAM -- Process v1.5b

 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 18

Rochester Institute of Technology

Microelectronic Engineering

Step 14:

CMP Metal 2 (Newly developed process)

EOAM -- Process v1.5b
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© 20 January 2011 Dale Ewbank

EOAM Process

Page 19

Rochester Institute of Technology

Microelectronic Engineering

Step 15:

Pattern Spacer layer (Newly developed process)

EOAM -- Process v1.5b

 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 20

Rochester Institute of Technology

Microelectronic Engineering

Step 16:

Dice wafer into separate devices

EOAM -- Process v1.5b
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© 20 January 2011 Dale Ewbank

EOAM Process

Page 21

Rochester Institute of Technology

Microelectronic Engineering

Step 17:

Fill with PDLC precursor (Newly developed process)

EOAM -- Process v1.5b

 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 22

Rochester Institute of Technology

Microelectronic Engineering

Step 17  continued:

Cover with ITO glass slide (Newly developed process)

EOAM -- Process v1.5b
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© 20 January 2011 Dale Ewbank

EOAM Process

Page 23

Rochester Institute of Technology

Microelectronic Engineering

Step 18:

UV Exposure to cure PDLC (Newly developed process and tool)

EOAM -- Process v1.5b

 

 

© 20 January 2011 Dale Ewbank

EOAM Process

Page 24

Rochester Institute of Technology

Microelectronic Engineering

EOAM layers

Silicon substrate (625)

Thermal oxide (0.5)

Metal 1- Al (0.5)

Metal 2- Al (1.2)

PECVD TEOS (1.0)

Glass (1092) with ITO (0.1)

Electro-optic material (12)

Thickness in m (x.x) not to scale

Spacer material (12)

EOAM -- Process v1.5b
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Appendix E: g5_nm_PDLC.fig and g5_nm_PDLC.m 

 

function varargout = g5_nm_PDLC(varargin) 

%*****************              updated 01082009 DEE see line 409 

%                                   to correct complex number display 

% G5_NM_PDLC M-file for g5_nm_PDLC.fig 

%      G5_NM_PDLC, by itself, creates a new G5_NM_PDLC or raises the 

existing 

%      singleton*. 

% 

%      H = G5_NM_PDLC returns the handle to a new G5_NM_PDLC or the 

handle to 

%      the existing singleton*. 

% 

%      G5_NM_PDLC('CALLBACK',hObject,eventData,handles,...) calls the 

local 

%      function named CALLBACK in G5_NM_PDLC.M with the given input 

arguments. 

% 

%      G5_NM_PDLC('Property','Value',...) creates a new G5_NM_PDLC or 

raises 

%      the existing singleton*.  Starting from the left, property value 

pairs are 

%      applied to the GUI before g4_nm_Dvary_OpeningFunction gets 

called.  An 

%      unrecognized property name or invalid value makes property 

application 

%      stop.  All inputs are passed to g5_nm_PDLC_OpeningFcn via 

varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 

one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

 

% Edit the above text to modify the response to help g5_nm_PDLC 

 

% Last Modified by GUIDE v2.5 29-Sep-2010 14:30:35 

 

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @g5_nm_PDLC_OpeningFcn, ... 

                   'gui_OutputFcn',  @g5_nm_PDLC_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

 

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
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else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

 

% --- Executes just before g5_nm_PDLC is made visible. 

function g5_nm_PDLC_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to g5_nm_PDLC (see VARARGIN) 

 

% Choose default command line output for g5_nm_PDLC 

handles.output = hObject; 

 

% Update handles structure 

guidata(hObject, handles); 

 

initialize_gui(hObject, handles, false); 

 

% UIWAIT makes g5_nm_PDLC wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

 

 

% --- Outputs from this function are returned to the command line. 

function varargout = g5_nm_PDLC_OutputFcn(hObject, eventdata, handles) 

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Get default command line output from handles structure 

varargout{1} = handles.output; 

 

 

% function selectlayer_SelectionChangeFcn(hObject, eventdata, handles) 

% % hObject    handle to unitgroup (see GCBO) 

% % eventdata  reserved - to be defined in a future version of MATLAB 

% % handles    structure with handles and user data (see GUIDATA) 

% set(handles.text4, 'String', 'setting'); 

% switch hObject 

%     case handles.layer3 

%         handles.metricdata.layer=3; 

%     case handles.layer4 

%         handles.metricdata.layer=4; 

%     case handles.layer5 

%         handles.metricdata.layer=5; 

%     otherwise 

%         handles.metricdata.layer=2;    %handles.layer2 

% end 

% guidata(hObject,handles) 

% set(handles.R, 'String',handles.metricdata.layer); 

% guidata(handles.figure1, handles); 

 

% -------------------------------------------------------------------- 
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% --- Executes during object creation, after setting all properties. 

function n1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to n1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background, change 

%       'usewhitebg' to 0 to use default.  See ISPC and COMPUTER. 

usewhitebg = 1; 

if usewhitebg 

    set(hObject,'BackgroundColor','white'); 

else 

    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))

; 

end 

 

 

 

function n1_Callback(hObject, eventdata, handles) 

% hObject    handle to n1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of n1 as text 

%        str2double(get(hObject,'String')) returns contents of n1 as a 

double 

n1 = str2double(get(hObject, 'String')); 

if isnan(n1) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

handles.metricdata.n1 = n1; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function m1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to m1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background, change 

%       'usewhitebg' to 0 to use default.  See ISPC and COMPUTER. 

usewhitebg = 1; 

if usewhitebg 

    set(hObject,'BackgroundColor','white'); 

else 

    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))

; 

end 

 

 

 

function m1_Callback(hObject, eventdata, handles) 
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% hObject    handle to m1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of m1 as text 

%        str2double(get(hObject,'String')) returns contents of m1 as a 

double 

m1 = (get(hObject, 'String')); 

if ischar(m1) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a char','Error'); 

end 

 

% Save the new m1 value 

handles.metricdata.m1 = m1; 

guidata(hObject,handles) 

 

% --- Executes on button press in calculate. 

function calculate_Callback(hObject, eventdata, handles) 

% hObject    handle to calculate (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

axes(handles.axes1); 

cla; 

% 

%function multilayer_Guenther_interface_7resist 

%DEE 02/06/2007 

%  Calculates Reflectance from film stack at angle of incidence. 

%   Based on Guenther "Modern Optics" pg. 120-128 

% 

% set-up parameters 

%global E1 E2 media_name n stack D lambda k r t tD 

Aname='multilayer_Guenther_interface_7resist.m'; 

media_name=[handles.metricdata.m1 handles.metricdata.m2 

handles.metricdata.m3 ... 

            handles.metricdata.m4 handles.metricdata.m5 

handles.metricdata.m6] 

% 

% Input for multilayer film stack 

% n >> complex index of refraction 

% D >> thickness in [nm] 

% lambda >>    units of [nm] 

% ******************************************************************* 

n=[ handles.metricdata.n1 handles.metricdata.n2 handles.metricdata.n3 

... 

    handles.metricdata.n4 handles.metricdata.n5 handles.metricdata.n6  

] 

D=[ handles.metricdata.z1 handles.metricdata.z2 handles.metricdata.z3 

... 

    handles.metricdata.z4 handles.metricdata.z5 handles.metricdata.z6] 

Drange=400 

lambda=handles.metricdata.lambda 

theta_id=handles.metricdata.angleI 

% theta_id=10 %degrees 

Dvary=handles.metricdata.layer     % choose layer 2 through inter-1 
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interface=handles.metricdata.Ninterfaces    % choose interface for 

reflectance calculation of stack 

 

stack=size(n) 

Rstack=zeros(2,stack(2)); 

Dtemp=D(Dvary) 

theta_i=theta_id*pi/180   % [degrees]*pi/180 = [radians] 

                    % [radians] angle of incidence in layer 1 (top 

layer of stack "usually air") 

EfTE=[1 

    0]      % E field final TE 

EfTM=[1 

    0]      % E field final TM 

% set angle of illumination ******************************** 

theta=ones(1,stack(2))*99; 

theta(1)=theta_i; 

for j=2 : stack(2)                  % what happens if theta >= 90 

degrees? 

    theta(j)=asin((n(j-1)/n(j))*sin(theta(j-1))); 

end; 

 

% for inter = 2 : interface 

inter =  interface 

    if Dtemp > 500 

        Dmin=Dtemp-Drange/2; 

        Dmax=Dtemp+Drange/2; 

    else 

        Dmin=1; 

        Dmax=Dtemp+1; 

    end; 

    Erange=Dmax-Dmin+1 

    Evary=zeros(2,1,Erange); 

 

r=zeros(1,inter);         t=ones(1,inter); % fresnel coefficents 

rho=ones(1,inter);                           % reflection coefficent 

for stack 

 

Es=ones(2,1,inter)*7;    Ep=ones(2,1,inter)*6;    % E-field at bottom 

of layer 

I=ones(2,2,inter)*9;        % interface transfer matrix 

T=ones(2,2,inter)*99;       % bulk film tranfer matrix (phase and 

absorption??) 

M=zeros(2,2,inter);         % composite I*T for each transfer layer 

 

Mfs=[1 0 

    0 1]; 

Mfp=[1 0 

    0 1]; 

 

    %  run for TE pol=1 and then for TM pol=2 polarization 

    for pol = 1:2 

        if pol ==1 

            N=n.*cos(theta)     % complex effective index TE for each 

layer 

        else 

            N=n./cos(theta)     % complex effective index TM for each 

layer 
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        end; 

delta=2.*pi.*n.*cos(theta).*D/lambda    % phase difference for single 

pass thru layer 

for vary= Dmin : Dmax 

D(Dvary)=vary-1; 

%delta(Dvary)=2*pi*N(Dvary)*D(Dvary)/lambda;   % phase for effective 

N????? 

delta(Dvary)=2*pi*n(Dvary)*cos(theta(Dvary))*D(Dvary)/lambda;   % phase 

difference for single pass thru layer 

% 

    for j=2:inter 

        r(j)=(N(j-1)-N(j))/(N(j-1)+N(j)); 

        t(j)= 2*N(j-1)/(N(j-1)+N(j)); 

 

        I(:,:,j)=[1/t(j) r(j)/t(j) 

                r(j)/t(j) 1/t(j)]; 

        T(:,:,j)=[exp(i*delta(j)) 0 

                0 exp(-i*delta(j))]; 

 

        M(:,:,j)=I(:,:,j)*T(:,:,j); 

 

    end; 

    MT=[1 0 

        0 1]; 

        for j= 2:inter 

            if j == inter 

                MT=MT*I(:,:,j); 

            else 

                MT=MT*I(:,:,j)*T(:,:,j)  ; 

            end; 

        end; 

        if pol == 1 

            Es=MT*EfTE; 

            Evary(:,:,(vary-Dmin+1))=Es; 

            rhoTE=Es(2,1)./Es(1,1); 

            RstackTE=rhoTE.*conj(rhoTE); 

            RTE(vary-Dmin+1)=RstackTE; 

            if (vary-Dmin+1) == (Erange-1)/2 

                Rstack(1,inter)=RstackTE; 

            end; 

        else 

            Ep=MT*EfTM; 

            Evary(:,:,(vary-Dmin+1))=Ep; 

            rhoTM=Ep(2,1)./Ep(1,1); 

            RstackTM=rhoTM.*conj(rhoTM); 

            RTM(vary-Dmin+1)=RstackTM; 

            if (vary-Dmin+1) == (Erange-1)/2 

                Rstack(2,inter)=RstackTM; 

            end; 

        end; 

    end; 

 

 

    if pol ==1 

 

%         figure(inter) 

%         set(inter,'Name',['Display from ',Aname]); 
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        plot((Dmin:1:(Dmax)),RTE,'b'); hold all; 

        title(['Reflectance of ',num2str(inter),' layer film stack  vs 

layer ',num2str(Dvary),' thickness']); hold all; 

        [maxRTE,ImaxRTE]=max(RTE); 

        [minRTE,IminRTE]=min(RTE); 

        Fresnel_rTE=r 

        ReflectanceTE=r.*conj(r) 

   else 

        [maxRTM,ImaxRTM]=max(RTM); 

        [minRTM,IminRTM]=min(RTM); 

%         figure(inter) 

        plot((Dmin:1:(Dmax)),RTM,'-.g'); hold all; 

            xlabel(['layer ',num2str(Dvary),' thickness 

[nm]'],'FontSize',10); 

            ylabel(['Reflectance (incidence of ',num2str(theta_id),' 

degrees)'],'FontSize',10); 

             legend(['TE ',num2str(minRTE),' at ',num2str(IminRTE-

1+Dmin),... 

                     'nm  ',num2str(maxRTE),' at ',num2str(ImaxRTE-

1+Dmin),'nm  ',num2str(RTE(Erange))],... 

                    ['TM ',num2str(minRTM),' at ',num2str(IminRTM-

1+Dmin),... 

                     'nm  ',num2str(maxRTM),' at ',num2str(ImaxRTM-

1+Dmin),'nm  ',num2str(RTM(Erange))]); 

             legend('location','Best'); 

             legend('boxoff'); 

             Fresnel_rTM=r 

             ReflectanceTM=r.*conj(r) 

    end; 

end; 

D(Dvary)=Dtemp; 

 

media_name 

n 

% end; 

ReflectanceTE 

ReflectanceTM 

R=[ReflectanceTE ReflectanceTM] 

set(handles.R, 'String', Dvary); 

 

 

 

% --- Executes on button press in reset. 

function reset_Callback(hObject, eventdata, handles) 

% hObject    handle to reset (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

initialize_gui(gcbf, handles, true); 

 

 

% -------------------------------------------------------------------- 

 

function initialize_gui(fig_handle, handles, isreset) 

% If the metricdata field is present and the reset flag is false, it 

means 
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% we are we are just re-initializing a GUI by calling it from the cmd 

line 

% while it is up. So, bail out as we dont want to reset the data. 

if isfield(handles, 'metricdata') && ~isreset 

    return; 

end 

handles.metricdata.m1 = 'air'; 

handles.metricdata.m2 = 'glass'; 

handles.metricdata.m3 = 'ITO'; 

handles.metricdata.m4 = 'PDLC'; 

handles.metricdata.m5 = 'Al'; 

handles.metricdata.m6 = 'SiO2'; 

handles.metricdata.Ninterfaces = 6; 

handles.metricdata.n1 = 1; 

handles.metricdata.n2 = 1.5; 

handles.metricdata.n3 = 1.93-0.0i; 

handles.metricdata.n4 = 1.6-0.0i; 

handles.metricdata.n5 = 0.769-6.08i; 

handles.metricdata.n6 = 4.297488-.07i; 

handles.metricdata.z1 = 1000; 

handles.metricdata.z2 = 100000; 

handles.metricdata.z3 = 120; 

handles.metricdata.z4 = 10000; 

handles.metricdata.z5 = 500; 

handles.metricdata.z6 = 10000; 

handles.metricdata.lambda = 541; 

handles.metricdata.angleI = 2; 

handles.metricdata.layer = 3; 

plot(handles.metricdata.n1,handles.metricdata.z1); 

 

set(handles.m1,  'String', handles.metricdata.m1); 

set(handles.m2,  'String', handles.metricdata.m2); 

set(handles.m3,  'String', handles.metricdata.m3); 

set(handles.m4,  'String', handles.metricdata.m4); 

set(handles.m5,  'String', handles.metricdata.m5); 

set(handles.m6,  'String', handles.metricdata.m6); 

set(handles.Ninterfaces,  'String',handles.metricdata.Ninterfaces); 

set(handles.n1, 'String', num2str(handles.metricdata.n1)); 

set(handles.n2, 'String', num2str(handles.metricdata.n2)); 

set(handles.n3, 'String', num2str(handles.metricdata.n3)); 

set(handles.n4, 'String', num2str(handles.metricdata.n4)); 

set(handles.n5, 'String', num2str(handles.metricdata.n5)); 

set(handles.n6, 'String', num2str(handles.metricdata.n6)); 

set(handles.z1,  'String', handles.metricdata.z1); 

set(handles.z2,  'String', handles.metricdata.z2); 

set(handles.z3,  'String', handles.metricdata.z3); 

set(handles.z4,  'String', handles.metricdata.z4); 

set(handles.z5,  'String', handles.metricdata.z5); 

set(handles.z6,  'String', handles.metricdata.z6); 

set(handles.lambda,  'String', handles.metricdata.lambda); 

set(handles.angleI,  'String', handles.metricdata.angleI); 

set(handles.R, 'String', 0); 

 

 

set(handles.selectlayer, 'SelectedObject', handles.layer3); 

 

set(handles.text4, 'String', '[nm] <g5_nm_PDLC> 2010 DEE'); 
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% Update handles structure 

guidata(handles.figure1, handles); 

 

 

 

 

 

 

function z1_Callback(hObject, eventdata, handles) 

% hObject    handle to z1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of z1 as text 

z1=        str2double(get(hObject,'String')) %returns contents of z1 as 

a double 

if isnan(z1) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

% Save the new z1 value 

handles.metricdata.z1 = z1; 

guidata(hObject,handles) 

 

 

% --- Executes during object creation, after setting all properties. 

function z1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to z1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

usewhitebg = 1; 

if usewhitebg 

    set(hObject,'BackgroundColor','white'); 

else 

    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))

; 

end 

 

 

 

 

 

 

 

 

function lambda_Callback(hObject, eventdata, handles) 

% hObject    handle to lambda (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
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% Hints: get(hObject,'String') returns contents of lambda as text 

%        str2double(get(hObject,'String')) returns contents of lambda 

as a double 

lambda=        str2double(get(hObject,'String')) %returns contents of 

lambda as a double 

if isnan(lambda) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

% Save the new lambda value 

handles.metricdata.lambda = lambda; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function lambda_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to lambda (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

% if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

%     set(hObject,'BackgroundColor','white'); 

% end 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

%  new variablessss     **************** 

 

 

 

function m2_Callback(hObject, eventdata, handles) 

% hObject    handle to m2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of m2 as text 

%        str2double(get(hObject,'String')) returns contents of m2 as a 

double 

m2 = (get(hObject, 'String')); 

if ischar(m2) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a char','Error'); 

end 

 

% Save the new m2 value 

handles.metricdata.m2 = m2; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function m2_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to m2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function m3_Callback(hObject, eventdata, handles) 

% hObject    handle to m3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of m3 as text 

%        str2double(get(hObject,'String')) returns contents of m3 as a 

double 

m3 = (get(hObject, 'String')); 

if ischar(m3) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a char','Error'); 

end 

 

% Save the new m3 value 

handles.metricdata.m3 = m3; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function m3_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to m3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function m4_Callback(hObject, eventdata, handles) 

% hObject    handle to m4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of m4 as text 

%        str2double(get(hObject,'String')) returns contents of m4 as a 

double 

m4 = (get(hObject, 'String')); 

if ischar(m4) 

    set(hObject, 'String', 0); 
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    errordlg('Input must be a char','Error'); 

end 

 

% Save the new m4 value 

handles.metricdata.m4 = m4; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function m4_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to m4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function m5_Callback(hObject, eventdata, handles) 

% hObject    handle to m5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of m5 as text 

%        str2double(get(hObject,'String')) returns contents of m5 as a 

double 

m5 = (get(hObject, 'String')); 

if ischar(m5) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a char','Error'); 

end 

 

% Save the new m5 value 

handles.metricdata.m5 = m5; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function m5_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to m5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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function m6_Callback(hObject, eventdata, handles) 

% hObject    handle to m6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of m6 as text 

%        str2double(get(hObject,'String')) returns contents of m6 as a 

double 

m6 = (get(hObject, 'String')); 

if ischar(m6) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a char','Error'); 

end 

 

% Save the new m6 value 

handles.metricdata.m6 = m6; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function m6_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to m6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

 

 

function n2_Callback(hObject, eventdata, handles) 

% hObject    handle to n2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of n2 as text 

%        str2double(get(hObject,'String')) returns contents of n2 as a 

double 

n2 = str2double(get(hObject, 'String')); 

if isnan(n2) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

handles.metricdata.n2 = n2; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function n2_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to n2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function n3_Callback(hObject, eventdata, handles) 

% hObject    handle to n3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of n3 as text 

%        str2double(get(hObject,'String')) returns contents of n3 as a 

double 

n3 = str2double(get(hObject, 'String')); 

if isnan(n3) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

handles.metricdata.n3 = n3; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function n3_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to n3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function n4_Callback(hObject, eventdata, handles) 

% hObject    handle to n4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of n4 as text 

%        str2double(get(hObject,'String')) returns contents of n4 as a 

double 

n4 = str2double(get(hObject, 'String')); 

if isnan(n4) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 
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handles.metricdata.n4 = n4; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function n4_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to n4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function n5_Callback(hObject, eventdata, handles) 

% hObject    handle to n5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of n5 as text 

%        str2double(get(hObject,'String')) returns contents of n5 as a 

double 

n5 = str2double(get(hObject, 'String')); 

if isnan(n5) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

handles.metricdata.n5 = n5; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function n5_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to n5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function n6_Callback(hObject, eventdata, handles) 

% hObject    handle to n6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of n6 as text 
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%        str2double(get(hObject,'String')) returns contents of n6 as a 

double 

n6 = str2double(get(hObject, 'String')); 

if isnan(n6) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

handles.metricdata.n6 = n6; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function n6_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to n6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function z2_Callback(hObject, eventdata, handles) 

% hObject    handle to z2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of z2 as text 

%        str2double(get(hObject,'String')) returns contents of z2 as a 

double 

z2 = str2double(get(hObject, 'String')); 

if isnan(z2) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

handles.metricdata.z2 = z2; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function z2_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to z2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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function z3_Callback(hObject, eventdata, handles) 

% hObject    handle to z3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of z3 as text 

%        str2double(get(hObject,'String')) returns contents of z3 as a 

double 

z3 = str2double(get(hObject, 'String')); 

if isnan(z3) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

handles.metricdata.z3 = z3; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function z3_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to z3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function z4_Callback(hObject, eventdata, handles) 

% hObject    handle to z4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of z4 as text 

%        str2double(get(hObject,'String')) returns contents of z4 as a 

double 

z4 = str2double(get(hObject, 'String')); 

if isnan(z4) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

handles.metricdata.z4 = z4; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function z4_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to z4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 



136 

 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function z5_Callback(hObject, eventdata, handles) 

% hObject    handle to z5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of z5 as text 

%        str2double(get(hObject,'String')) returns contents of z5 as a 

double 

z5 = str2double(get(hObject, 'String')); 

if isnan(z5) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

handles.metricdata.z5 = z5; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function z5_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to z5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function z6_Callback(hObject, eventdata, handles) 

% hObject    handle to z6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of z6 as text 

%        str2double(get(hObject,'String')) returns contents of z6 as a 

double 

z6 = str2double(get(hObject, 'String')); 

if isnan(z6) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

handles.metricdata.z6 = z6; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 
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function z6_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to z6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

 

% % --- Executes on button press in radiobutton20. 

% function radiobutton20_Callback(hObject, eventdata, handles) 

% % hObject    handle to radiobutton20 (see GCBO) 

% % eventdata  reserved - to be defined in a future version of MATLAB 

% % handles    structure with handles and user data (see GUIDATA) 

% 

% % Hint: get(hObject,'Value') returns toggle state of radiobutton20 

 

 

 

 

 

function angleI_Callback(hObject, eventdata, handles) 

% hObject    handle to angleI (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

angleI=        str2double(get(hObject,'String')) %returns contents of 

angleI as a double 

if isnan(angleI) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end 

% Save the new angleI value 

handles.metricdata.angleI = angleI; 

guidata(hObject,handles) 

 

% --- Executes during object creation, after setting all properties. 

function angleI_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to angleI (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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% -------------------------------------------------------------------- 

function selectlayer_SelectionChangeFcn(hObject, eventdata, handles) 

% hObject    handle to selectlayer (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

set(handles.text4, 'String', 'setting'); 

switch hObject 

    case handles.layer3 

        handles.metricdata.layer=3; 

    case handles.layer4 

        handles.metricdata.layer=4; 

    case handles.layer5 

        handles.metricdata.layer=5; 

    otherwise 

        handles.metricdata.layer=2;    %handles.layer2 

end 

guidata(hObject,handles) 

 

 

 

function Ninterfaces_Callback(hObject, eventdata, handles) 

% hObject    handle to Ninterfaces (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of Ninterfaces as text 

%        str2double(get(hObject,'String')) returns contents of 

Ninterfaces as a double 

Ninterfaces=        str2double(get(hObject,'String')) %returns contents 

of Ninterfaces as a double 

if isnan(Ninterfaces) 

    set(hObject, 'String', 5); 

    errordlg('Input must be a number','Error'); 

end 

% Save the new Ninterfaces value 

handles.metricdata.Ninterfaces = Ninterfaces; 

guidata(hObject,handles) 

 

 

% --- Executes during object creation, after setting all properties. 

function Ninterfaces_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to Ninterfaces (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns 

called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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Appendix F: xu_2007_ph_ext_05182010_data_p.m 

 

%function xu_2007_ph_ext_05182010_data_p.m 
%Dale Ewbank from xu_2007.pdf 
% case 'g' 
%         wave = 0.5435; 
%         color = 2;colorr='g'; 

  
% select files and assign voltage and color for Phase vs Voltage 

analysis 
% for jpg from Nikon D50 of single arm interferometer 
% NOTE: For Ao > Ar see line 204  ************************************* 
% 
close all hidden; 
imtool close all; 
global Nsample fig dataout 
tic 
clear  IR C1 C2 dataout datahold Iout 
set(0,'Units','pixels') 
scrsz = get(0,'ScreenSize') 
testing=0; 

  
Iaverage=3; 
sam=1; 
xxbegin=800; 
xxstep=500; 
xxtimes=1; 
xxend=xxbegin+(xxtimes-1)*xxstep; 
yybegin=300; 
yystep=xxstep; 
yytimes=1; 
yyend=yybegin+(yytimes-1)*yystep; 
step=0; 
for xx = xxbegin:xxstep:xxend 
    for yy = yybegin:yystep:yyend 
    % Pixel to select 
    step=step+1; 
            xxx=0 + xx; %; 
            yyy=yy; % 
            blocksize=512; 
            dALPHA= 0.00001;    %change in calculated ALPHA to stop 

interation 
            compare=1 ; % number of file to compare to  
            Aname='xu_2007_ph_ext_05182010_data_p' 
            %see kend to stop loop ~line 177 
            pixel=[xxx yyy blocksize blocksize]; 
            I=zeros(blocksize,blocksize,2); 
            Istdev=zeros(blocksize,blocksize,2); 

     

  
rerunning =  0; % 0 for rerun with data in workspace,   2-98 for new 
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if xx == xxbegin & yy==yybegin 

     
prompt  = {'Running data files(0 for start iterations, 2-98, 99 for 

Itest):',... 
            'number of file to compare to: '} 
            mtitle   = ['Input ',Aname]; 
            lines= 1; 
            def     = {num2str(rerunning),num2str(compare)}; 
            datas  = inputdlg(prompt,mtitle,lines,def); 
            if isempty(datas)  
                close all; 
                disp(['User canceled ',Aname]) 
                return; 
            end; 
            rerunning =str2num(datas{1}); 
            compare=str2num(datas{2}); 
end; % xx if  
%             if rerunning == 2 
%                 prompt  = {'ReRunning file2#: '} 
%                 mtitle   = ['Input ',Aname]; 
%                 lines= 1; 
%                 def     = {'99'}; 
%                 datas  = inputdlg(prompt,mtitle,lines,def); 
%                 if isempty(datas)  
%                     close all; 
%                     disp(['User canceled ',Aname]) 
%                     return; 
%                 end; 
%                 Nsingle =str2num(datas{1}); 
%             end; 
if rerunning ==99 % 99 is for test algorithm 
    scolorr ='r'; 
    testing=99; 
    svolt=[0 100]; 
    xx=xxend; 
end; 
if rerunning >= 0 
    Aname='xu_2007_ph_ext_05182010_data_p'; 
    filestouse=''; 
    hsize = 8; 
    fig =1;  
    fig_reuseask=0; 
    fig_reuse2ask=1; 
%     sam=1; 
    Nsample = 98;    

  
        Iaverage=3; 
%         scolorr='r'; 
%         % Pixel to select 
%             xxx=1200; 
%             yyy=870; 
%             blocksize=32; 
%             pixel=[xxx yyy blocksize blocksize] 
%         I=zeros(blocksize,blocksize,2); 
%         Istdev=zeros(blocksize,blocksize,2);     
end; 
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while rerunning >= 1 & rerunning <= 98 
    svoltt=0; 
    scolorr='g'; % green 
    while sam <= Nsample & Iaverage ~= 99 
        prompt  = {'Averaging data files(1 for start, 2 or more), 99 

for done:',... 
            'Enter Voltage: ','Enter color> b g or r: '} 
            mtitle   = ['Input ',Aname]; 
            lines= 1; 
            def     = {num2str(Iaverage),num2str(svoltt),scolorr}; 
            datas  = inputdlg(prompt,mtitle,lines,def); 
            if isempty(datas)  
                disp(['User canceled inputs for',Aname]) 
                datas{1}='99';datas{2}='0';datas{3}=scolorr; 
                sfiles='endoffiles' 
%                 return; 
            end; 
            Iaverage =str2num(datas{1}); 
            svoltt=str2num(datas{2}); 
            scolorr=datas{3}; 
            if Iaverage ~= 99  
        [Iarray, I(:,:,sam), Istdev(:,:,sam), svolt(sam), scolorr, 

sfiles]=singlearm_Iaverage_10282008_noplot... 
            (svoltt, Iaverage, scolorr, pixel, filestouse); 
            end; 
            Afiles(1,sam) = {sfiles}; 
        if sam > 1 & Iaverage ~= 99 
            svoltt= svolt(sam)+(svolt(sam)-svolt(sam-1)); 
        end; 
        if Iaverage ==99 
            rerunning=0; 
            Nsample=sam-1; 
        end; 
        sam=sam+1; 
    end; 
%     rerunning=1; 
end; 
switch scolorr 
    case 'b' 
        wave = 0.4861327; 
        color = 3;colorr='b'; 
    case 'g' 
        wave = 0.5435; 
        color = 2;colorr='g';  
    case 'r' 
        wave = 0.6562816; 
        color = 1;colorr='r'; 
    otherwise 
        disp(' Error on color input, please restart') 
        return; 
    end; 
if  testing ==99 
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    M=2 
else 
            Ntemp=size(Afiles); 
            Nsample =Ntemp(2)-1; 
            filestouse=Afiles; 
            M=Nsample   ; 

  
    [Iarray, I(:,:,1), Istdev(:,:,1), svolt(compare), scolorr, 

sfiles]=singlearm_Iaverage_10282008_noplot... 
            (svolt(compare), Iaverage, scolorr, pixel, 

filestouse{compare});   
end; 
dataout=zeros(M,10); 
for jjj= 1:M 
if jjj ~= compare 
if rerunning ~= 99 
        [Iarray, I(:,:,2), Istdev(:,:,2), svolt(jjj), scolorr, 

sfiles]=singlearm_Iaverage_10282008_noplot... 
            (svolt(jjj), 3, scolorr, pixel, filestouse{jjj});  
        [X,Y] = meshgrid(1:1:blocksize); 
figure(1); 
        surf(X,Y,I(:,:,1)); %hold all; 
        xlabel('I(:,:,1)  versus X,Y '); 
% end; 
    figure(2); 
        surf(X,Y,I(:,:,2)); %hold all; 
        xlabel('I(:,:,2)  versus X,Y '); 
end; 
% % if jjj==2 
% %     rerunning == 1  % |rerunning == 2 
% %     clear dd1 dd2 temp D DD C CC S SS 
% % %     Ntemp=size(I); 
% % %     Nsample =Ntemp(3) 
% % temp_svolt=svolt 
%         if  testing ~=4 
%             Ntemp=size(Afiles); 
%             Nsample =Ntemp(2)-1; 
%             filestouse=Afiles; 
%         end; 
%    [Iarray, I(:,:,1), Istdev(:,:,1), svolt(1), scolorr, 

sfiles]=singlearm_Iaverage_0802... 
%             (svolt(compare), 3, scolorr, pixel, filestouse{compare});   

  

        

  

  

     
% if rerunning ==1 
%     clear fit12w fit13w fit17w plotI plotIstdev 
%     djCopy=[ 0:pi/M:(M-1)*pi/M] 
%     djCopy=djCopy' 
%     dj=djCopy 
% end; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Start here when analyzing data 
if rerunning == 1 | 99 % 99 is for test algorithm 
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    % data for test input******************************************* 

     
    [X,Y] = meshgrid(1:1:blocksize); 
    xmax=blocksize; 
    ymax=blocksize; 
    Ao=8 ;%*rand   ; %     Ao=1*(X+Y)/(2*blocksize) 
    Ar=ones(blocksize,blocksize,1)*3.0; 

     
    test_phi=pi*.3;  %test_phi=pi*rand ; %radians 
    test_alpha= pi*.2 ; %radians 
    if rerunning == 99 & jjj==2   
        arb=pi/4; %arbitary initial phase 
        I=zeros(blocksize,blocksize,2); 
        rXY=rand(blocksize,blocksize)*0.05; noise=10; 
        test_phi=0.6*((2*pi*X/xmax).^2+5*(2*pi*Y/ymax))+rXY ; %radians 
        test_alpha= pi*.2 ; %test_alpha= pi*rand ; %radians 
%         I(:,:,1)=(Ao.*cos(arb+test_phi)+ Ar*cos(arb)).^2 ; 
%         I(:,:,2)=(Ao.*cos(arb+test_phi-test_alpha)+ Ar*cos(arb)).^2 ; 
        I(:,:,1)=(Ao.*exp(i*(arb+test_phi))+ Ar*exp(i*(arb))).* ... 
            conj((Ao.*exp(i*(arb+test_phi))+ 

Ar*exp(i*(arb))))+rand(blocksize,blocksize)*noise ; 
        I(:,:,2)=(Ao.*exp(i*(arb+test_phi-test_alpha))+ 

Ar*exp(i*(arb))).* ... 
            conj((Ao.*exp(i*(arb+test_phi-test_alpha))+ 

Ar*exp(i*(arb))))-rand(blocksize,blocksize)*noise;  

         
        fig=100;figure(fig); 
        surf(X,Y,test_phi);hold all; 
        xlabel('test_phi  versus X,Y ') 
    end; 
if jjj == 2 
    figure(fig+1); 
        surf(X,Y,I(:,:,1)); %hold all; 
        xlabel('I(:,:,1)  versus X,Y '); 
% end; 
    figure(fig+2); 
        surf(X,Y,I(:,:,2)); %hold all; 
        xlabel('I(:,:,2)  versus X,Y '); 
        end; 
        %************************************************************** 

         
    %solving the problem????? 
    kend=200; 
    kendd=1; 
    ALPHA=zeros(kend,1); 
    AR=zeros(kend,1); 
    AO=zeros(blocksize,blocksize,kendd); 
    IO=zeros(blocksize,blocksize,kendd); 
    cPHI=zeros(blocksize,blocksize,kendd); 
    sPHI=zeros(blocksize,blocksize,kendd); 
    AOout=[99 99]; 
    ALPHA(1)= pi*0.3; 

     
%     AR(1)=1.0 
    AR(1)=mean(mean(I(:,:,1)))^0.5; 
    k=1 
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while k < kend    %begin k loop 
    dropline=1; 
    k=k+1; 
    p=I(:,:,1)+I(:,:,2)+(AR(k-1)^2)*2*cos(ALPHA(k-1)); 
%     q=((I(:,:,1)+I(:,:,2)-2*AR(k-1)^2).^2 + (I(:,:,1)-I(:,:,2)).^2 

... 
%         /(tan(ALPHA(k-1)/2))^2)/4 
q=((I(:,:,1)+I(:,:,2)-2*AR(k-1)^2).^2 + (I(:,:,1)-I(:,:,2)).^2 ... 
        /(tan(ALPHA(k-1)/2))^2)/4; 

     
%     p2m4q=p.^2-4*q; 
%     pmp2m4q=p-abs(p2m4q).^0.5; 
    p2m4q=p.^2-4*q; 
    pmp2m4q=p-abs(p2m4q).^0.5; 
    IO(:,:,kendd)= abs(pmp2m4q)/2; 
    AO(:,:,kendd)= (abs((p-abs(p.^2-4*q).^0.5)/2)).^0.5; 

     
    % is it best to calculate phi or cos(phi) ????? 

     
%     PHIc=acos(( I(:,:,1)-AO(:,:,k).^2-AR(k-1)^2)./(2*AR(k-

1).*AO(:,:,k))) 
%     PHIs=asin((I(:,:,2)-I(:,:,1))/(2*AR(k-1).*AO(:,:,k)*sin(ALPHA(k-

1)))+... 
%         (I(:,:,1)-AO(:,:,k).^2-AR(k-1)^2)*tan(ALPHA(k-1)/2)/(2*AR(k-

1).*AO(:,:,k))) 

     
    cPHI(:,:,kendd)=(( I(:,:,1)-IO(:,:,kendd)-AR(k-1)^2)./(2*AR(k-

1).*AO(:,:,kendd))); 
    temp1=(I(:,:,2)-I(:,:,1))./(2*AR(k-1).*AO(:,:,kendd)*sin(ALPHA(k-

1))); 
     temp2=   (I(:,:,1)-IO(:,:,kendd)-AR(k-1)^2)*tan(ALPHA(k-

1)/2)./(2*AR(k-1).*AO(:,:,kendd)); 
sPHI(:,:,kendd)=(temp1 +temp2); 
if ~isreal(cPHI) | ~isreal(sPHI) 
    dropline =9; 
    disp(['cPHI or sPHI is complex at k=',num2str(k),'; canceled at 

line ', num2str(dropline) ,Aname]) 
%     FinalAR=AR(k) 
%     FinalAlpha=ALPHA(k) 
    AOout=[mean(mean(AO)) mean(var(AO))]; 
    %     return 
dataout(jjj,:)= [k AOout AR(k-1) svolt(compare) svolt(jjj) ALPHA(k-1) 

dropline xxx yyy] 
break 
end; 
PHI=atan2(sPHI(:,:,kendd),cPHI(:,:,kendd)); 
%     figure(1); 
%         rose(test_phi(:)) 
%         xlabel('test_phi rose ') 
if ~isreal(PHI) 
    dropline =6; 
    disp(['PHI is complex at k =',num2str(k),' canceled at line ', 

num2str(dropline) ,Aname] ) 
    AOout=[mean(mean(AO)) mean(var(AO))]; 
dataout(jjj,:)= [k AOout AR(k-1) svolt(compare) svolt(jjj) ALPHA(k-1) 

dropline xxx yyy] 
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break 
end; 
if jjj == 2 

     
figure(fig+3); 
set(fig+3,'Position',[1 scrsz(4)*.5 scrsz(3)*.3 scrsz(4)*.3]) 
        rose(PHI(:)); 
        xlabel('aPHI rose '); 
end; 
%     % difffphi=rem(test_phi,pi)-rem(aPHI,pi)   
%     difffphi=exp(i*test_phi)-exp(i*PHI) 
%     difff(k)=sum(sum(difffphi)) 
%     % if abs(difff(k)) > 3*blocksize 
%     %     disp(['PHI does not match canceled at line ', 

num2str(dropline) ,Aname] ) 
%     %     cPHI(:,:,k) 
%     %     sPHI(:,:,k) 
%     %     return; 
%     % end; 
    %solve for IR c1 c2 
    %x = A\b 
if rerunning == 99   
    aamatrix=[blocksize^2 sum(sum(cos(test_phi))) 

sum(sum(sin(test_phi))) 
    sum(sum(cos(test_phi))) sum(sum(cos(test_phi).^2)) 

sum(sum(cos(test_phi).*sin(test_phi))) 
    sum(sum(sin(test_phi))) sum(sum(cos(test_phi).*sin(test_phi))) 

sum(sum(sin(test_phi).^2))]; 

        
bbmatrix=[sum(sum(I(:,:,2)-Ao.^2)) 
    sum(sum((I(:,:,2)-Ao.^2).*cos(test_phi))) 
    sum(sum((I(:,:,2)-Ao.^2).*sin(test_phi)))]; 
xxmatrix=aamatrix\bbmatrix; 
end; 
% % amatrix=[blocksize^2 sum(sum(cos(aPHI))) sum(sum(sin(aPHI))) 
% %     sum(sum(cos(aPHI))) sum(sum(cos(aPHI).^2)) 

sum(sum(cos(aPHI).*sin(aPHI))) 
% %     sum(sum(sin(aPHI))) sum(sum(cos(aPHI).*sin(aPHI))) 

sum(sum(sin(aPHI).^2))] 
% %         
% % bmatrix=[sum(sum(I(:,:,2)-IO(:,:,k))) 
% %     sum(sum((I(:,:,2)-IO(:,:,k)).*cos(aPHI))) 
% %     sum(sum((I(:,:,2)-IO(:,:,k)).*sin(aPHI)))] 
amatrix=[blocksize^2 sum(sum(cPHI(:,:,kendd))) 

sum(sum(sPHI(:,:,kendd))) 
sum(sum(cPHI(:,:,kendd))) sum(sum(cPHI(:,:,kendd).^2)) 

sum(sum(cPHI(:,:,kendd).*sPHI(:,:,kendd))) 
sum(sum(sPHI(:,:,kendd))) sum(sum(cPHI(:,:,kendd).*sPHI(:,:,kendd))) 

sum(sum(sPHI(:,:,kendd).^2))]; 

        
bmatrix=[sum(sum(I(:,:,2)-IO(:,:,kendd))) 
    sum(sum((I(:,:,2)-IO(:,:,kendd)).*cPHI(:,:,kendd))) 
    sum(sum((I(:,:,2)-IO(:,:,kendd)).*sPHI(:,:,kendd)))]; 

  
xmatrix=amatrix\bmatrix; 
IR(k)=xmatrix(1); 
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C1(k)=xmatrix(2); 
C2(k)=xmatrix(3); 
% x=pinv(amatrix)*bmatrix  test matrix 
    % C1x=sum(sum(2*Ao*Ar*cos(test_alpha))); 
    % C2x=sum(sum(2*Ao*Ar*sin(test_alpha))); 
    % C2x_C1x=C2x/C1x; 
% signC1(k)=sign(C1(k)) 
% signC2(k)=sign(C2(k)) 
if ~isreal(C2) | ~isreal(C1) 
    dropline =5 
    disp(['C2 or C1 is complex at k=',num2str(k),'; canceled at line ', 

num2str(dropline) ,Aname] ) 
%     FinalAR=AR(k) 
%     FinalAlpha=ALPHA(k) 
%     test_alpha 
AOout=[mean(mean(AO)) mean(var(AO))]; 
dataout(jjj,:)= [k AOout AR(k-1) svolt(compare) svolt(jjj) ALPHA(k-1) 

dropline xxx yyy]; 
break 
end; 
ALPHA(k)=atan2(C2(k),C1(k)); 

  
AR(k)=IR(k)^0.5; 
if ~isreal(ALPHA) | pi-abs(ALPHA(k)) < 0.001 
    dropline =4 
    disp(['ALPHA(',num2str(k),') is complex or pi; canceled at line ', 

num2str(dropline) ,Aname]) 
%     FinalAR=AR(k) 
%     FinalAlpha=ALPHA(k) 
%     test_alpha 
AOout=[mean(mean(AO)) mean(var(AO))]; 
dataout(jjj,:)= [k AOout AR(k-1) svolt(compare) svolt(jjj) ALPHA(k-1) 

dropline xxx yyy] 
break 
end; 
if abs(ALPHA(k-1)-ALPHA(k))< dALPHA 
    dropline =2 
AOout=[mean(mean(AO)) mean(var(AO))]; 
    dataout(jjj,:)= [k AOout AR(k) svolt(compare) svolt(jjj) ALPHA(k) 

dropline xxx yyy] 
    rerunning=0; 
break 
end; 

     
    end; % end k loop 

  
if dropline == 1 
    dropline =3;    AOout=[mean(mean(AO)) mean(var(AO))]; 
dataout(jjj,:)= [k AOout AR(k) svolt(compare) svolt(jjj) ALPHA(k) 

dropline xxx yyy] 
rerunning=0 ;   
end; 
end; % end rerunning ==99 

    
                 Iout(:,:,1)=AO.^2 + AR(k)^2 + 2.*AO.*AR(k).*cPHI; 
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                 Iout(:,:,2)=AO.^2 + AR(k)^2 + 

2.*AO.*AR(k).*(cPHI*cos(ALPHA(k))+sPHI*sin(ALPHA(k))); 
            fig=1000+jjj; 
%                     if sam??? > 2 
%                         close(fig); 
%                     end; 
                    figure(fig); 
                    set(fig,'Position',[1 scrsz(4)*.03 scrsz(3)*.4 

scrsz(4)*.4]) 
                    plot(X(1,:),I(blocksize/2,:,1),'b');hold all; 
                    plot(X(1,:),I(blocksize/2,:,2),'r');hold all; 
                    plot(X(1,:),Iout(blocksize/2,:,1),'-.g');hold all; 
                    plot(X(1,:),Iout(blocksize/2,:,2),'-.k');hold all; 
                    xlabel([num2str(jjj),'I(1,:,1)blue   I(1,:,2)red    

Iout(1,:,1)green  Iout(1,:,2)black']) 
end; % end jjj ~= compare 
end; % end of jjj loop 
if step ==1 
    datahold=zeros(xxtimes*yytimes,M,10); 
end; 
    datahold(step,:,:)= dataout; 
    xxyylabel= [step]; 
fig=999; 
figure(fig); 
set(fig,'Position',[1 scrsz(4)*.03 scrsz(3)*.4 scrsz(4)*.4]) 
plot(dataout(:,6),dataout(:,7),'-.d');hold all; 
xlabel([colorr,' Phase versus svolt']); 

  
legend (num2str(xxyylabel),'Location','NorthWest'); 

  

  
    end; % end yy loop 
end; % end xx loop 
datareal=real(datahold) 
toc 

  

  
droplines={'1 is default'; ... 
['2 diamond is end at less than dALPHA ',num2str(dALPHA),' line 

369'];... 
'3 +  is end at k loop line 379';... 
'4 o  Alpha is complex or pi line 359';... 
'5 *  C2 or C1 is complex line 346';... 
'6 ^  PHI is complex line 286';... 
'9 x  cPHI or sPHI is complex line 272'} 

  
% Plot of only "GOOD" DATA 
set(0,'Units','pixels') 
scrsz = get(0,'ScreenSize') 
counter=size(datareal) 
fig=998; 
figure(fig); 
set(fig,'Position',[1 scrsz(4)*.03 scrsz(3)*.4 scrsz(4)*.4]); 
goodsum=zeros(1,counter(2)); 
goodn=zeros(1,counter(2)); 
for x=1:counter(1) 
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    for y=1:counter(2) 
    switch datareal(x,y,8) 
        case 2 
            mark='dg'; 
        case 3 
            mark='+r'; 
        case 4 
            mark='or'; 
        case 5 
            mark='*r'; 
        case 6 
            mark='^r'; 
        case 9 
            mark='xr'; 
        otherwise 
            mark='sk'; 
     end; 

      
plot(datareal(x,y,6),datareal(x,y,7),mark);hold all; 
        if datareal(x,y,8) == 2 
         goodsum(y)=goodsum(y)+datareal(x,y,7); 
         goodn(y)=goodn(y)+1; 
        end; 

  
    end; 

     
    end; 
    goodphase=goodsum(:)./goodn(:) 
          plot(datareal(1,:,6),goodphase,'hk','MarkerSize',15);hold 

all; 
xlabel('Volts AC @ 60 HZ','FontWeight','bold'); 
ylabel('Radians','FontWeight','bold'); 
title('Relative Phase versus Input Voltage','FontWeight','bold'); 
%    
ARsum=[];AOsum=[];ARcount=0; 
for x=1:counter(1) 

     
    for y=1:counter(2) 
        if datareal(x,y,8)==2 
            ARsum=[ARsum datareal(x,y,4)]; 
            AOsum=[AOsum datareal(x,y,2)]; 
            ARcount=ARcount+1; 
        end; 
    end; 
end; 
ARcount=ARcount 
AOmean=mean(AOsum) 
ARmean=mean(ARsum) 
AR_AOratio=ARmean/AOmean 
Transmission_AR=ARmean^2/(ARmean^2+AOmean^2) 
Transmission_AO=AOmean^2/(ARmean^2+AOmean^2) 
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