
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

2-1-2011 

Analog integrated circuit design in ultra-thin oxide CMOS Analog integrated circuit design in ultra-thin oxide CMOS 

technologies with significant direct tunneling-induced gate current technologies with significant direct tunneling-induced gate current 

Eric Bohannon 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Bohannon, Eric, "Analog integrated circuit design in ultra-thin oxide CMOS technologies with significant 
direct tunneling-induced gate current" (2011). Thesis. Rochester Institute of Technology. Accessed from 

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please 
contact repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/12?utm_source=repository.rit.edu%2Ftheses%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


 

 

ANALOG INTEGRATED CIRCUIT DESIGN IN 

ULTRA-THIN OXIDE CMOS TECHNOLOGIES WITH 

SIGNIFICANT DIRECT TUNNELING-INDUCED GATE 

CURRENT 

by 

ERIC BOHANNON 

 

A DISSERTATION  

Submitted in partial fulfillment of the requirements  

For the degree of Doctor of Philosophy  

in  

Microsystems Engineering 

at the 

Rochester Institute of Technology 

 

February 2011 

 

Author: _________________________________________________________________ 

Microsystems Engineering Program 

Certified by: _____________________________________________________________ 

P.R. Mukund, Ph.D. 

Professor of Electrical Engineering 

Approved by: ____________________________________________________________ 

Bruce W. Smith, Ph.D. 

Director of Microsystems Engineering Program 

Certified by: _____________________________________________________________ 

Harvey J. Palmer, Ph.D. 

Dean, Kate Gleason College of Engineering 



ii 

 

NOTICE OF COPYRIGHT 

 
© 2011 

 

Eric Bohannon 

 
 

 

REPRODUCTION PERMISSION STATEMENT  

 

Permission Granted  

 

TITLE:  

 

“Analog Integrated Circuit Design in Ultra-Thin Oxide CMOS Technologies with Significant Direct 

Tunneling-Induced Gate Current” 

 

I, Eric Bohannon, hereby grant permission to the Wallace Library of the Rochester Institute of Technology 

to reproduce my dissertation in whole or in part.  Any reproduction will not be for commercial use or profit. 

 

 

Signature of Author:         Date:    



iii 

 

Analog Integrated Circuit Design in Ultra-Thin Oxide CMOS 

Technologies with Significant Direct Tunneling-Induced Gate 

Current 
 

By 

 

Eric Bohannon 

 
Submitted by Eric Bohannon in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy in Microsystems Engineering and accepted on behalf of the Rochester Institute of Technology 

by the dissertation committee. 

 

We, the undersigned members of the Faculty of the Rochester Institute of Technology, certify that we have 

advised and/or supervised the candidate on the work described in this dissertation.  We further certify that 

we have reviewed the dissertation manuscript and approve it in partial fulfillment of the requirements of the 

degree of Doctor of Philosophy in Microsystems Engineering. 

 

Approved by: 
 

Dr. P.R. Mukund       
 (Committee Chair and Dissertation Advisor)               Date 

 

Mr. Clyde Washburn       

 

 

Dr. James E. Moon       

 

 

Dr. Sean Rommel       

 

 

Dr. Dhireesha Kudithipudi       

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

MICROSYSTEMS ENGINEERING PROGRAM 

ROCHESTER INSTITUTE OF TECHNOLOGY 

February 2011 

ABSTRACT 

Kate Gleason College of Engineering 

Rochester Institute of Technology 

 

 

Degree Doctor of Philosophy   Program Microsystems Engineering     

Name of Candidate Eric Bohannon 

Title Analog Integrated Circuit Design in Ultra-Thin Oxide CMOS Technologies with Significant 

Direct Tunneling-Induced Gate Current 

 

 

The ability to do mixed-signal IC design in a CMOS technology has been a driving force for 

manufacturing personal mobile electronic products such as cellular phones, digital audio players, 

and personal digital assistants.  As CMOS has moved to ultra-thin oxide technologies, where 

oxide thicknesses are less than 3 nm, this type of design has been threatened by the direct 

tunneling of carriers though the gate oxide.  This type of tunneling, which increases exponentially 

with decreasing oxide thickness, is a source of MOSFET gate current.  Its existence invalidates 

the simplifying design assumption of infinite gate resistance.  Its problems are typically avoided 

by switching to a high-κ/metal gate technology or by including a second thick(er) oxide 

transistor.  Both of these solutions come with undesirable increases in cost due to extra mask and 

processing steps.  Furthermore, digital circuit solutions to the problems created by direct 

tunneling are available, while analog circuit solutions are not.  Therefore, it is desirable that 

analog circuit solutions exist that allow the design of mixed-signal circuits with ultra-thin oxide 

MOSFETs.  This work presents a methodology that develops these solutions as a less costly 

alternative to high-κ/metal gate technologies or thick(er) oxide transistors.  The solutions focus on 

transistor sizing, DC biasing, and the design of current mirrors and differential amplifiers.  They 

attempt to minimize, balance, and cancel the negative effects of direct tunneling on analog design 

in traditional (non-high-κ/metal gate) ultra-thin oxide CMOS technologies.  They require only 

ultra-thin oxide devices and are investigated in a 65 nm CMOS technology with a nominal VDD of 

1 V and a physical oxide thickness of 1.25 nm.  A sub-1 V bandgap voltage reference that 

requires only ultra-thin oxide MOSFETs is presented (TC = 251.0 ppm/°C).  It utilizes the 

developed methodology and illustrates that it is capable of suppressing the negative effects of 
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CHAPTER 1  

INTRODUCTION 

The ability to do mixed-signal integrated circuit (IC) design
1
 in a 

complementary metal-oxide-semiconductor (CMOS) technology has been a driving force 

for manufacturing personal mobile electronic products such as cellular phones, digital 

audio players, and personal digital assistants [1].  These products are notorious for being 

extremely compact while providing functionality comparable to that of a personal 

computer.  Their demand has rapidly increased over the past ten years.  For example, in 

2000, the number of mobile subscribers was estimated at 650 million.  This number rose 

to 5 billion in 2010 [2]–[3].  This type of growth fuels competition between businesses to 

release their next-generation products.  Typical goals of these products include additional 

features and improved performance.  With regard to the electronics that meet these goals, 

they are often implemented in a scaled CMOS technology [4].  To minimize the time to 

market and ease the design process, it is desirable that the mixed-signal design techniques 

used in previous product generations apply in these scaled technologies. 

Over the past four decades, as CMOS has scaled, mixed-signal design techniques 

have been used in technologies with minimum channel lengths as large as 5 µm to as 

small as 22 nm.  The main motivating factor for this scaling has been the reduction in 

cost obtained by the increase in component density [5].  Another motivating factor is the 

increase in device frequency response, which has allowed radio-frequency (RF) circuitry 

to be implemented on-chip [6].  A third motivating factor for scaled CMOS technologies 

                                                 
1

A mixed-signal system is defined as a system that contains analog and digital components.
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is that device functionality, ideally, remains constant.  This translates into mixed-signal 

design techniques that can readily be applied to create system-on-chips (SoCs) and 

system-in-packages (SiPs) in any given technology [7].  Of course, in reality, device 

functionality is not independent of scaling.  For example, when a device is scaled, 

problems arise that must be taken into account by process engineers and circuit designers.  

Process engineers solve these problems with novel fabrication techniques [8].  Circuit 

designers solve these problems with creative circuit architectures.  These problems are 

often attacked with digital performance in mind because of the high demand for digital 

electronics.  This explains why digital metrics like switching speed, packing density, and 

power consumption are often given as reasons to move from one generation of CMOS to 

the next. 

Unfortunately, this approach to scaling has made life difficult for analog IC 

design engineers.  For example, given that processes are optimized for digital operation, 

analog performance metrics like supply voltage headroom, intrinsic gain, and 

signal-to-noise ratio (SNR), which often degrade with scaling, become secondary 

considerations [1], [9].  Process modifications are typically not made to mitigate these 

degradations out of fear they will disrupt digital operation.  This significantly increases 

the complexity of analog design in scaled CMOS technologies.  Fortunately, degradation 

in device performance is something analog designers have dealt with before.  In certain 

aspects, performance has been degrading ever since the switch from bipolar junction 

transistors (BJTs) to metal-oxide-semiconductor field-effect transistors (MOSFETs) [10].  

Designers overcame the switch to CMOS and its subsequent scaling by inventing circuit 

architectures that made mixed-signal design possible in scaled technologies [11].  This 
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trend will need to continue if future scaled CMOS technologies are going to be used to 

build next-generation electronics. 

In sub-100 nm channel length CMOS technologies, many problems are caused by 

the thin insulating layer between the gate and silicon channel.  This layer is often less 

than 3 nm thick [12].  In these so-called ultra-thin oxide technologies, carriers (electrons 

or holes) are able to tunnel directly through the oxide and conduct current.  This type of 

current, which is proportional to device area, is referred to as direct tunneling and is a 

source of gate current in MOSFETs [13]–[15].  Other sources include Fowler-Nordheim 

(FN) tunneling and hot electron-induced gate current, which are typically considered 

negligible under normal operating conditions in processes with the supply voltage less 

than or equal to 1 V [16]
2
.  However, direct tunneling has become a major problem.  In 

2007, the International Technology Roadmap for Semiconductors (ITRS) cited the 

shrinking oxide, and the resultant performance degradations caused by direct tunneling, 

as a grand challenge to device scaling [17].  For example, Figure 1.1 plots the 

drain-to-gate current ratio (βF_MOS ≡ |ID/IG|) vs. VGS and IG vs. VGS for an NMOS device 

with a channel width, W, of 20 µm and a channel length, L, of 5 µm in IBM’s 10SF 

65 nm technology (VDD = 1 V, tox = 1.25 nm) [18]–[20].  The figure shows βF_MOS values 

less than 20 and IG values in the µA range.  Compared to previous generations of CMOS, 

these results suggest direct tunneling-induced gate current is not negligible and must be 

considered when designing in traditional (non-high-κ/non-metal gate) ultra-thin oxide 

CMOS technologies [21]. 

                                                 
2

The terms gate current and direct tunneling will be used interchangeably throughout this work.  It is understood that 

sources other than direct tunneling can contribute to gate current, notably FN tunneling and hot electrons.  However, these currents are 

negligible in ultra-thin oxide CMOS technologies.  Given that this work focuses on these technologies, these sources will not be 

considered, making direct tunneling the dominant source of gate current. 
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Figure 1.1: Simulated βF_MOS vs. VGS and IG vs. VGS for an NMOS transistor with W = 20 µm and 

L = 5 µm. 

To overcome the challenge of direct tunneling, the ITRS called for a new gate 

stack to reduce its impact on circuit performance.  This new gate stack is made up of a 

high-κ dielectric and a metal gate electrode [22].  There are several potential problems 

with this structure.  First, compared to traditional CMOS technologies, this new gate 

stack comes with a significant increase in cost due to processing complexities [23]–[26].  

This implies that traditional ultra-thin oxide technologies will have longer lives in the 

economic forefront than previous generations of CMOS.  Second, high-κ/metal gate 

structures can result in threshold voltage pinning, mobility degradation, and phonon 

scattering [27]–[28].  Third, there is debate among the manufacturing community about 

whether the gate-first or the gate-last approach should be used when building the new 

gate stack [29].  Fourth, the high-κ/metal gate may not reduce direct tunneling to a point 

where it is negligible in analog design [30]–[31].  These problems suggest that circuit 

techniques are needed to minimize the negative effects of direct tunneling in existing and 

future ultra-thin oxide technologies. 
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The fact that non-negligible current can flow through the gate of a MOSFET 

invalidates the simplifying circuit design assumption of infinite gate resistance.  This 

impacts analog and digital design.  Typically, in digital applications, gate current is seen 

as a leakage source that contributes to overall power consumption.  Digital techniques to 

minimize the negative effects of this current were presented in [16], [32]–[34].  The 

impact of gate current on analog circuit design was studied in [18].  It was shown that 

gate current can degrade matching, reduce frequency response, increase noise, and render 

long-channel devices practically useless.  There have not been any published circuit 

techniques illustrating how these leaky devices can still be used for analog design.  

Instead, designers often opt for a set of complimentary thick(er) oxide devices, which 

have negligible gate current, to implement the analog component of a mixed-signal 

system [1].  By doing this, they increase cost and deviate from the true mixed-signal 

paradigm of designing an analog and digital system with a single set of complimentary 

devices.  Therefore, given that digital solutions are available and that traditional ultra-thin 

oxide CMOS technologies will be revenue generators for an extended period of time, 

analog circuit solutions are needed to allow useful mixed-signal design using only 

ultra-thin oxide MOSFETs.   

This work develops a methodology that allows the design of analog systems with 

ultra-thin oxide MOSFETs.  This methodology focuses on transistor sizing, DC biasing, 

and the design of current mirrors and differential amplifiers.  It attempts to minimize, 

balance, and cancel the negative effects of direct tunneling on analog design in traditional 

ultra-thin oxide CMOS technologies.  The methodology requires only ultra-thin oxide 

devices and is investigated in IBM’s 10SF 65 nm CMOS technology, which has a 
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nominal VDD of 1 V and a physical oxide thickness of 1.25 nm.  Theoretical analysis and 

simulation are used to develop the methodology.  The methodology does not aggravate 

existing analog nanoscale CMOS problems such as reduced voltage headroom, decreased 

intrinsic gain, and reduced SNR.  Note that the methodology focuses on low-frequency 

performance because the effects of direct tunneling have been shown to be negligible at 

higher frequencies [18]. 

A sub-1 V bandgap voltage reference is designed and implemented using the 

developed methodology in IBM’s 10SF 65 nm process.  It requires only ultra-thin oxide 

MOSFETs and its performance is used to illustrate that the negative effects of direct 

tunneling can be suppressed by following the techniques outlined in this document.  A 

voltage reference was chosen because of its ubiquitous nature and due to the fact that it is 

a fundamental precision analog system designed to produce a voltage independent of 

variations in the power supply (VDD), temperature (T), and process.  Voltage references 

are widely used in mixed-signal systems, such as digital-to-analog converters (DACs), 

analog-to-digital-converters (ADCs), DC-DC converters, operational amplifiers, and 

linear regulators [35].  They are built using differential amplifiers and current mirrors, 

which are both sensitive to gate current [36].  The developed methodology presents 

techniques that overcome these sensitivities.  Voltage references are also sensitive to 

mismatch between MOSFETs designed to be identical [37].  Given that gate current is 

proportional to device area, its negative effects seemingly limit the use of large-area 

transistors.  However, this work shows that the tradeoff between gate current and 

mismatch can be minimized via informed device sizing.  The voltage reference is used as 

a vehicle to prove that analog systems can be constructed with ultra-thin oxide 
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MOSFETs.  Its performance is compared to a thick-oxide voltage reference as a means of 

demonstrating that ultra-thin oxide MOSFETs can achieve performance similar to that of 

more expensive thick(er) oxide MOSFETs.   

This document is structured as follows
3
.  Chapter 2 covers the main objectives 

this work strived to accomplish.  Chapter 3 reviews the relevant background information 

relating to this work.  Chapter 4 presents the approach that was taken to meet the 

objectives outlined in Chapter 2.  Chapter 5 presents the results of this work and 

discusses their importance.  Chapter 6 concludes the document. 

                                                 
3

Discussions involving single transistors will be treated from the standpoint of an NMOS device unless otherwise noted. 
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CHAPTER 2  

OBJECTIVES 

The main goal of this work was to show that analog systems can be built using 

ultra-thin oxide MOSFETs.  In order to accomplish this goal, three objectives were 

realized.  These objectives are stated in the following three paragraphs. 

The first objective was to demonstrate that gate current creates serious problems 

for analog device performance.  This was accomplished by referencing existing literature 

and analyzing, via simulation, the effects of gate current on ultra-thin oxide MOSFETs in 

IBM’s 10SF 65 nm CMOS technology (tox = 1.25 nm, VDD = 1 V).  Where appropriate, 

theoretical analysis was used to illustrate how gate current hinders device performance. 

The second objective was to develop a methodology for implementing analog 

circuits with ultra-thin oxide MOSFETs.  Given that gate current is not the only problem 

faced by analog designers in ultra-thin oxide technologies, it was desirable that the 

methodology not introduce new problems or aggravate existing problems.  The developed 

methodology should coexist with other low-voltage techniques.  The need for a 

methodology was motivated by showing, via simulation, the negative impact gate current 

can have on transistor sizing, DC biasing, and the design of current mirrors and 

differential amplifiers. 

The third objective was to use the developed methodology to implement an 

analog system
4
 using only ultra-thin oxide MOSFETs.  The system chosen was a sub-1 V 

                                                 
4
 An analog system is defined as a circuit that makes use of fundamental building blocks such as 

amplifiers and current mirrors. 
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bandgap voltage reference.  The voltage reference was designed, simulated, and laid out.  

Monte Carlo and process corners analyses were used to study its performance.  The 

reference was compared to a thick-oxide version in the same technology as a means of 

demonstrating the developed methodology could produce results similar to those obtained 

using thick(er) oxide devices. 

It was a goal of this work to fabricate and test the designed voltage reference in 

order to prove the effectiveness of the developed methodology.  A sponsored fabrication 

was awarded based on technical merit via the MOSIS Educational Program [38].  The 

target technology was IBM’s 10SF technology.  The design, simulation, and layout of a 

2 mm x 2 mm chip was completed and sent to MOSIS.  However, for reasons beyond the 

author’s control, this fabrication was delayed over 2 years.  Therefore, fabrication results 

were unable to be included in this document.  However, if fabrication does eventually 

occur after the publishing of this document, the results will be made available via a 

scholarly journal.  Note that fabrication could have been pursued in a thick(er) oxide 

technology.  However, to prove the value of this work, it is desirable that the proposed 

solutions function when the problems caused by gate current are at their worst.  

Therefore, larger, less expensive technologies with thicker oxides and negligible gate 

current are not applicable.  This limits the fabrication of the voltage reference to 

expensive technologies with minimum channel lengths less than 100 nm, oxide 

thicknesses less than 2 nm, and nominal supply voltages less than 1 V.  Note that even 

though fabrication did not occur, the Rochester Institute of Technology chose to patent 

the developed sub-1 V bandgap voltage reference [39]. 
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CHAPTER 3  

BACKGROUND 

This chapter presents the relevant background for this work.  It has three major 

sections.  The first section reviews some of the difficulties involved in designing analog 

circuits in nanoscale CMOS technologies.  The second section reviews the physical 

mechanisms of gate current and notes how previous work has treated its impact on circuit 

design.  The last section reviews the fundamentals of voltage references, with a focus on 

those designed with supply voltages of 1 V or less. 

3.1 Analog Design in Nanoscale CMOS 

Nanoscale CMOS technologies are typically optimized for digital performance by 

providing faster speeds, lower power, and smaller area.  These optimizations often pose 

significant problems to analog design, such as reduced output resistance, smaller supply 

voltages, and increased variability [18].  This section reviews these problems and the 

techniques used to cope with them.  Its motivation stems from the main goal of this work, 

which is to show that analog systems can be built with ultra-thin oxide MOSFETs.  In 

order to accomplish this goal, this work starts with established techniques that solve the 

aforementioned problems.  These techniques include self-cascoding, sub-VTH operation, 

and body-biasing.  It is desired that these techniques, along with those developed in this 

work, be used in combination to show analog system design is possible using ultra-thin 

oxide MOSFETs. 
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3.1.1 Output Resistance Degradation 

 
Figure 3.1: Simplified cross section and symbol of an NMOS transistor.  The gate, drain, body, and 

source represent input/output terminals.  IDS is the drain-to-source current.  The drain and source regions are 

represented by heavily doped n-type regions (n+) while contacts to the body are represented by a heavily doped 

p-type (p+) region.  The substrate is p-type. 

Figure 3.1 shows the cross section and circuit representation of an ideal 

long-channel n-type MOSFET (NMOS) device.  The figure contains the gate, drain, 

source, and body terminals.  It also contains the heavily doped n-type (n
+
) drain/source 

regions along with a p-type substrate.  The oxide and metal layers represent the gate 

stack.  Perhaps the most important characteristic of this device is the current flowing 

from the drain terminal to the source terminal, labeled IDS in Figure 3.1.  The 

“square-law” approximation that is strictly valid only for long-channel devices is often 

used to model this current and is found in several textbooks on electronics and 

semiconductor devices [36], [40]–[48].  It serves as a basis for analog and digital circuit 

design, and is often the standard to which modern devices are held.  It is formulated as: 

��� � ����	2� ��� � ���� (3.1)

 

where µ is the mobility, COX is the oxide capacitance per unit area, W is the channel 

width, L is the channel length, VGS is the gate-to-source voltage, and VTH is the threshold 
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voltage.  This equation assumes the device is operated in the saturation region (VGS > VTH, 

VDS ≥ VDSsat, VDSsat ≈ VGS − VTH).  From an analog standpoint, one important outcome of 

this assumption is that IDS is independent of VDS, resulting in an infinite small-signal 

output resistance, rO.  This outcome is often used in textbooks to simplify amplifier and 

current mirror design [45].  However, in short-channel CMOS technologies, (3.1) is 

grossly inaccurate.  This inaccuracy results from the fact that devices are not always 

operated in the saturation region and even when they are, they suffer from several non-

ideal output-resistance-degrading short-channel effects.  Modifications to circuit 

architectures must be made to account for these non-idealities.  Some examples of 

short-channel effects include channel length modulation (CLM) [43], drain-induced 

barrier lowering (DIBL) [49], drain-induced threshold shift (DITS) [50], and substrate 

current-induced body effect (SCBE) [40]. 

3.1.1.1 Channel Length Modulation (CLM) 

 Channel length modulation typically occurs when a MOSFET is operated in the 

saturation region.  Ideally, in this region, the concentration of inversion charge along the 

surface of the channel is constant.  However, due to the varying potential difference 

between the gate and horizontal position in the substrate, it is not [43].  This causes the 

inversion charge concentration to decrease near the drain end of the channel.  As this 

charge concentration decreases, the effective channel length of the device decreases, 

causing IDS to increase (IDS ∝ 1/L).  Therefore, IDS is modulated by VDS via the changes in 

the substrate surface potential. 
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Channel length modulation can be modeled in several different ways [43].  Most 

of these models involve the idea of the channel being “pinched off”.  For example, 

pinchoff can be modeled as the channel location at which the inversion charge goes to 

zero.  This model requires the carriers to move at infinite speeds in order to travel 

through the depletion region [43].  The requirement of infinite speeds makes this 

approach physically implausible and mathematically intractable.  A different approach 

involves pinchoff being modeled as the VDS value at which carrier velocities saturate.  In 

this model, instead of going to zero, the inversion charge becomes saturated at some point 

along the channel [43].  This provides an improved physical explanation of CLM, which 

allows its effects to be accurately captured in compact models [15].   

Textbooks often model channel length modulation by introducing a multiplicative 

term into (3.1) [44]–[45].  This term contains λ, a constant, which is referred to as the 

channel length modulation coefficient.  It represents a first-order model of the change in 

IDS with VDS and is similar to the Early voltage of a BJT [44].  This dependence is 

typically modeled as [44]: 

��� � ����	2� ��� � �����1 � � � ��� (3.2)

 

where (1 + λ·VDS) is the added term.  The small-signal output resistance of this equation 

is approximately, rO ≈ 1/ λ·IDS, where it is assumed λ·VDS << 1.  This output resistance 

model is predominantly used in textbooks when designing analog circuits [44]–[45].  

Typically, to avoid the effects of channel length modulation, analog designers opt for 

long(er) channel devices.  By doing this, they increase the length of the region that has a 

constant concentration of inversion charge along the channel.  This effectively reduces 
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the λ term of (3.2), which implies an increase in rO.  For example, consider Figure 3.2 (a), 

which plots ID vs. VDS and rO vs. VDS for an NMOS transistor with a channel length of 

50 nm.  The device achieved a maximum output resistance of 259 kΩ.  Its output 

resistance was well below 200 kΩ for VDS > 0.5 V.  Figure 3.2 (b) shows the same plot 

for an NMOS transistor with a channel length of 1 µm.  It achieved a maximum output 

resistance of 384 kΩ and its output resistance was above 200 kΩ for VDS > 200 mV.  This 

simple example shows that increasing channel length can result in significant increases in 

device output resistance. 

  
Figure 3.2: (a) Simulated ID vs. VDS and rO vs. VDS for an NMOS transistor in the obtained 65 nm 

process.  W = 1 µm, L = 50 nm, and VGS = 0.3 V. (b) Simulated ID vs. VDS and rO vs. VDS for an NMOS transistor 

in the obtained 65 nm process.  W = 10 µm, L = 1 µm, and VGS = 0.3 V. 

3.1.1.2 Drain-Induced Barrier Lowering (DIBL) 

Another source of output resistance degradation is drain-induced barrier 

lowering (DIBL), which takes place in all regions of operation.  DIBL occurs when the 

potential barrier seen by electrons at the source terminal decreases due to increases in VDS 

[43], [49].  It is dependent upon the source and drain depletion regions.  The more of the 

channel these regions occupy, the more impact DIBL has on performance.  This leads to 

DIBL impacting short-channel devices more than long-channel devices.  When these 
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depletion regions occupy a significant portion of a short-channel device, the potential 

barrier seen by electrons at the source rapidly decreases with increases in VDS.  This 

implies that IDS increases with increasing VDS because more electrons can overcome the 

reduced barriers and contribute to current flow.  This results in IDS being dependent on 

VDS, which reduces rO.  If VDS becomes too large, a low-energy path is established from 

source to drain that is determined by VDS rather than VGS, causing punchthrough.  

Therefore, DIBL can be considered a precursor to punchthrough. 

 
Figure 3.3: Simulated ∆VTH vs. L for two NMOS transistors with different VDS voltages in the obtained 

65 nm process.  Each transistor had W = 1 µm and VGS = 0.3 V.  The VDS voltages were 0.1 V and 1.0 V.  

DIBL is typically modeled as a shift in VTH because it occurs over all regions of 

operation [43].  When DIBL occurs, transistors conduct more current than what would 

typically be expected for a given VGS.  For example, to measure DIBL, IDS vs. VGS plots 

are generated at different VDS values.  The VTH of each plot is then extracted.  The 

differences in VTH between these plots are representative of the impact of DIBL on 

performance.  For example, consider Figure 3.3, which plots ∆VTH vs. L for two 

identically sized NMOS transistors with equal VGS voltages but different VDS voltages.  

The effects of DIBL can be seen at smaller channel lengths, with differences in threshold 
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voltages of up to 50 mV.  Typically, with DIBL, IDS increases with increasing VDS, 

resulting in the effective VTH being reduced.  Therefore, IDS is modeled as being a 

function of VDS through VTH, which reduces rO.   

One technique that can be used to minimize the effects of DIBL is to design with 

longer channel devices.  This approach ensures that the drain and source depletion 

regions do not occupy a significant portion of the channel, restricting their impact on IDS.  

Another technique is to design with smaller VDS voltages.  This technique is effective 

because the change in VTH decreases with decreasing VDS. 

3.1.1.3 Drain-Induced Threshold Shift (DITS) 

Another source of output resistance degradation is drain-induced threshold shift 

(DITS), which describes the effect of VDS on IDS in long-channel MOSFETs [50]–[52].  

This is a relatively new phenomenon that occurs because of the halo and pocket implants 

[9], [18], [50].  These implants are designed to prevent punchthrough by adjusting VTH of 

short-channel devices.  Without these implants, VTH decreases significantly with 

decreasing L, resulting in excessive sub-threshold leakage current in digital circuits [53].  

The halo implant places two heavily doped p-type regions near the source and drain 

junctions.  The rest of the channel has a doping concentration less than that of these 

regions.  Therefore, as L decreases, the effective doping concentration of the channel 

increases because the higher concentration regions introduced by the halo implant occupy 

more of the channel.  This causes VTH to increase, which helps reduce sub-threshold 

leakage.  For example, consider Figure 3.4, which plots VTH vs. L for an NMOS transistor 

in the obtained 65 nm process.  As L was swept from 1 µm to 50 nm, VTH increased by 
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200 mV.  The increases in VTH with reductions in L are referred to as drain-induced 

threshold shift [50] or the reverse short-channel effect [43]. 

 
Figure 3.4: Simulated VTH vs. L of an NMOS transistor in the obtained 65 nm process.  W = 1 µm and 

VDS = 100 mV.  VGS = VDS = 0.3 V. 

The halo and pocket implants significantly impact the performance of 

long-channel devices.  They form potential barriers at both the source and drain ends of 

the channel due to their higher doping concentration.  Also, they make the channel look 

as if it has three different VTH values: one at the source end, one at the drain end, and one 

in the middle portion of the channel.  The threshold voltages at the source and drain ends 

are larger than the one in the middle because of the larger doping concentrations 

introduced at these ends.  For a long-channel device, the overall VTH is approximately 

equal to the middle VTH because the doping concentration in the middle dominates the 

channel.  As VGS increases and eventually approaches the middle VTH, the channel can be 

considered conductive because the conditions for inversion have been met.  However, the 

potential barriers created by the halo implant still exist.  Thus, as VDS increases, these 

barriers are modulated and more current than would be expected can flow through the 

channel.  This results in a DIBL-like mechanism for long-channel devices and is modeled 
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as shift in VTH.  This degrades rO because IDS is dependent upon VDS via VTH.  DITS 

creates a significant problem for analog designers because short-channel devices suffer 

from DIBL and CLM, while long-channel devices suffer from DITS.  Typically, analog 

designers use long(er) channels to maximize rO and minimize the effects of DIBL and 

CLM [44].  In nanoscale CMOS this cannot be done because of DITS, which makes it 

difficult to obtain the rO values realized in previous CMOS generations.  Process 

solutions to this problem have been suggested.  For example, in [54]–[56] it was shown 

that using a single-side halo significantly improves rO while still providing the desired 

VTH roll-up.  However, this approach can increase the difficulty of layout because the 

devices are no longer symmetric.  Therefore, for symmetric nanoscale devices, channel 

length selection plays a critical role in analog device performance. 

3.1.1.4 Substrate Current-Induced Body Effect (SCBE) 

Yet another source of output resistance degradation is the substrate 

current-induced body effect (SCBE) [15],[40].  It degrades rO under high-voltage 

conditions.  For example, if the applied drain voltage is too large, breakdown can occur in 

the pn junction formed by the drain and substrate.  When this happens, avalanche 

multiplication becomes the dominant mechanism of current flow in the device.  This 

results in an increase of current flowing from the drain terminal to the body terminal, 

effectively reducing IDS.  Thus IDS decreases with increases in VDS, which degrades rO.  

SCBE can be minimized by ensuring that applied voltages are less than or equal to VDD. 

3.1.2 Reductions in Supply Voltage 

Degradations in output resistance is not the only problem faced by analog 

designers.  Reduced supply voltages also pose significant challenges [57]–[63].  
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Examples of these challenges include decreased supply voltage headroom, inability to 

stack transistors, forced operation into the weak and moderate inversion regions, and 

reduced signal-to-noise ratio (SNR). 

3.1.2.1 Supply Voltage Scaling 

 
Figure 3.5: VDD and VTH vs. technology node.  VTH was extracted for an NMOS device with VGS = VDD, 

VDS = VDD, VBS = 0, L = LMIN, and W = WMIN.  LMIN and WMIN represent process minima for the channel length 

and channel width. 

Figure 3.5 plots VDD and VTH vs. technology node for five different processes.  It 

shows VDD has reached a value of 1 V at the 65 nm node.  One major motivation for 

reducing VDD as technologies scale is to maintain electric field continuity [8], [12], [16], 

[43], [64]–[66].  This type of scaling is referred to as constant field scaling, where VDD 

and VTH are scaled at the same rate as W, L, and tox.  This type of scaling ensures that 

internal electric fields remain unchanged, which helps maintain functionality and 

reliability.  Figure 3.5 shows VDD did not change between the 90 nm and 65 nm nodes.  

This is due to the impact of sub-threshold leakage on the performance of digital circuits 

[53], [67]–[69].  This off-state leakage increases with reductions in VTH.  The impact of 

sub-threshold leakage is monitored by the sub-threshold slope, S, which is defined as the 

VGS required to change IDS by a decade when operating in the sub-threshold region.  
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Ideally, S remains constant with scaling (60 mV/dec) [43].  Assuming this is true and 

assuming VDD and VTH scale at the same rate, it becomes increasingly difficult to turn 

devices on and off with scaling because the VGS value needed to change IDS by a decade is 

a larger percentage of VTH and VDD.  This eats into digital noise margins, increases 

sub-threshold leakage, and makes it difficult to distinguish between weak and strong 

inversion.  In digital circuits with millions of transistors, circuit techniques must be 

employed to reduce the effects of sub-threshold leakage [53].  The pocket and halo 

implants were introduced to minimize the impact of this leakage [51].  Considering that 

these implants cause VTH to increase with reductions in L, it becomes more difficult to 

reduce VDD.  This can be seen by examining the VTH/VDD ratio for the different 

technologies in Figure 3.5.  For example, at the 0.25 µm node, VTH/VDD = 0.25.  However, 

at the 65 nm node, VTH/VDD = 0.32.  This shows that with scaling VTH is becoming a 

larger percentage of VDD, which suggests that increasing VTH to limit the impact of 

sub-threshold leakage will restrict further reductions in VDD. 

3.1.2.2 Reductions in Voltage Headroom 

In order to understand the impact of VDD reductions on analog supply voltage 

headroom, consider an amplifier designed in a technology with a nominal VDD of 3.3 V.  

This amplifier may be able to meet specification with VDD reduced to 2 V, giving it 1.3 V 

of voltage headroom.  Now, consider an amplifier designed in a scaled technology with a 

nominal VDD of 1 V.  This amplifier may be able to meet specification with VDD reduced 

to 0.9 V, giving it 100 mV of headroom.  Compared to the 3.3 V amplifier, the 1 V 

amplifier has 1.2 V less headroom.  Therefore, the 3.3 V amplifier is considered more 

robust to random VDD shifts caused by power supply noise and electrostatic discharge 
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(ESD) events [48].  The differences in headroom stem from the voltage needed across 

each transistor to keep them in a desired region of operation and the number of transistors 

that must be stacked to achieve a certain level of performance. 

3.1.2.3 Reduced Transistor Stacks 

Decreased supply voltages also limit the number of transistors that can be stacked 

in circuit architectures.  For example, assuming a device is in the saturation region and 

that VDSsat ≈ VGS − VTH, the total voltage needed across a stack of transistors to maintain 

saturation increases as the stack grows [36].  Therefore, in nanoscale technologies, where 

VDD scales faster than VTH, it becomes increasingly difficult to stack transistors without 

using a significant percentage of VDD.  One example of transistor stacking is cascoding, 

where devices are placed in series to enhance rO [44].  In amplifiers, this technique leads 

to large voltage gains.  If this technique is employed in nanoscale technologies, an 

amplifier’s input common-mode range (ICMR) may be reduced [48].  ICMR is typically 

defined as the range of input common-mode voltages that maintain a constant voltage 

gain.  A small ICMR limits an amplifier’s input voltage swing, making it difficult to 

process a wide range of voltages.  Also, if an amplifier is operated outside of this range, 

distortion could be introduced into the output because of changes in the amplifier’s 

small-signal characteristics. 

3.1.2.4 Weak and Moderate Inversion Operation 

Traditionally, transistors are desired to operate in the saturation region (VGS > VTH, 

VDS ≥ VDSsat).  If VDD and VTH decrease at the same rate, scaling does not impact the 

voltage requirements for saturation.  However, it was previously shown that VDD scales at 

a faster rate than VTH.  Therefore, to achieve the same saturation condition in a scaled 
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technology, a larger percentage of VDD is needed across the gate and source terminals.  

For example, consider a device operating with VGS = 1 V in a technology with 

VDD = 3.3 V and VTH = 0.7 V.  In this example, VGS/VDD = 0.30, which implies 30% of 

VDD is being used between the gate and source terminal of the transistor.  Now, consider a 

scaled device operating in a technology with VDD = 1 V and VTH = 0.28 V.  To achieve 

the same overdrive voltage (VGS − VTH) as the non-scaled device, VGS = 0.58 V.  In this 

example, VGS/VDD = 0.58, which implies 58% of VDD is being used from gate-to-source of 

this device.  Compared to the less-scaled device, this is a 28% increase, which shows the 

extra voltage that must be used in the scaled technology to maintain a constant overdrive 

voltage. 

To overcome this problem, devices can be operated in the weak and moderate 

inversion regions.  This goes against the traditional textbook convention of operating all 

devices in strong inversion, specifically the saturation region.  One motivation for using 

these regions is to remove the VGS > VTH requirement for strong inversion, thus making it 

easier to stack devices and increase signal swing.  To operate in weak inversion, VGS must 

be significantly less than VTH.  In this region, MOSFETs function similar to BJTs and are 

dominated by diffusion current [43]–[44].  Because BJTs are well understood, device 

models exist that can accurately predict behavior in this region.  Weak inversion is 

associated with small current densities because VGS << VTH [43]–[44].  This leads to weak 

inversion being used to achieve high output resistance (rO ∝ 1/IDS).  It also results in 

reduced frequency response compared to strong inversion because gm is reduced (fT ∝ gm, 

where is fT is the transition frequency and gm is the gate transconductance) [44].  
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Therefore, weak inversion is suited for low-power, low-frequency, and high-gain 

applications. 

If VGS is within a few thermal voltages (kT/q) of VTH, the transistor is said to be in 

the moderate inversion region [43].  This region is generally much more difficult to 

model than the weak or strong inversion regions because IDS contains both drift and 

diffusion components.  Interpolation is typically employed to model the moderate 

inversion region [43].  This results in fitting parameters and smoothing functions being 

used to ensure continuity of derivatives.  Because of these modeling difficulties, caution 

must be exercised when operating devices in this region. 

3.1.2.5 Reduced SNR 

In [18] and [70], the impact of VDD on SNR was investigated.  It was shown that 

for a target SNR, the total power consumption must be increased if VDD is decreased.  

This limits the achievable resolution of data converters designed for low-power 

applications [70]–[72].  For example, assuming converters are dominated by kT/C noise, 

on-chip capacitance must increase to achieve a desired SNR (SNR ∝ VDD
2
⋅C/kT).  

Typically, this capacitance consumes a large amount of area.  Therefore, to compensate 

the impact of VDD reductions on SNR, power and area generally increase. 

3.1.3 Modeling Complexity and Process Variations  

As CMOS has moved into the nanometer regime, modeling complexity and 

process variations have become major concerns for circuit designers.  These concerns 

stem from the atomistic dimensions of the devices and the limitations of the equipment 

fabricating them. 
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3.1.3.1 Modeling Complexity 

 Modeling transistor behavior has become increasingly difficult with scaling.  

This can be seen by comparing the relatively simple models used in older technologies 

[73] to the complex models used for nanoscale devices [15].  One reason is the 

introduction of new fabrication techniques, which include non-uniform doping profiles, 

stress/strain manipulation, salicide contacts, and source/drain extensions [66], [74]–[78].  

These techniques alter device operation and must be accounted for by models, thus 

increasing their complexity.  Another source of modeling difficulty stems from quantum 

mechanical effects caused by atomistic dimensions, large doping concentrations, and 

thin-oxides.  Examples of quantum mechanical effects include energy quantization, direct 

tunneling, and the sub-surface inversion layer [43], [79]–[81].  These effects increase 

significantly as channel lengths drop below 100 nm, doping concentrations reach 

10
19 

cm
−3

, and
 
oxide thicknesses approach 1 nm.  They also limit achievable device 

performance, which magnifies the need to describe them accurately in compact models 

[82]–[86].   

Leakage currents impose another complexity on device modeling.  Examples of 

these currents include direct tunneling, reverse biased pn junction leakage, sub-threshold 

leakage, hot-carrier injection, gate-induced drain leakage (GIDL), and channel 

punchthrough current [16].  These currents are extremely important to power 

consumption in digital circuits and must be modeled accurately to gauge power profiles. 

[53], [67], [87]–[88].  

Yet another source of modeling complexity stems from on-chip interconnects.  In 

digital circuits, the impedance associated with these interconnects results in power supply 
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noise and ground bounce [89]–[90].  As supply voltages decrease and device densities 

increase, the contributions from noisy interconnect increases, resulting in a growing need 

for accurate interconnect models.   

Novel fabrication techniques, quantum mechanical effects, and leakage currents 

greatly increase the difficulty of modeling modern MOSFETs.  This implies that IC 

designers cannot rely on absolute values generated by simulators.  Instead, they must 

have a working knowledge of these complexities such that circuit techniques can be used 

to minimize their effects. 

3.1.3.2 Process Variations 

Process variations result in electrical differences between devices designed to be 

identical.  They stem from limited precision in fabrication equipment.  There are two 

main types of variation: systematic and random [91].  Systemic variations occur between 

devices not close in on-chip proximity and are a result of on-chip gradients.  They can be 

minimized by laying out transistors in a symmetrical pattern with multiple fingers or by 

using common-centroid techniques [91].  Other sources of systematic variations include 

the shallow trench isolation (STI) stress effect and the well-proximity effect [92].  These 

effects can be minimized by using dummy transistors to ensure that the devices desired to 

be matched are an acceptable distance away from trenches and wells [92]. 

Random variations, often called mismatch, occur between devices close in 

proximity.  They are caused by statistical fluctuations in processing conditions or 

material properties [91].  Sources of random variation include random dopant 

fluctuations, oxide fluctuations, and edge roughness [93]–[94].  Ideally, the easiest way to 
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minimize random variations is to increase device area [37].  However, recent research has 

shown increases in device area may not always provide the expected improvements in 

device matching [95]–[97].  Therefore, measurements are needed to determine if 

matching improves with area.  For example, Figure 3.6 shows the general behavior of the 

MOSFET threshold voltage mismatch slope vs. L in an ultra-thin oxide CMOS process.  

Ideally, the mismatch slope would remain constant with changes in L.  However, the 

mismatch slope actually increases with increasing channel length and is largest for the 

devices with largest area, contradicting the expected results [95].  The impact of random 

variations on analog design has been studied extensively in literature.  These variations 

result in amplifier input offset voltage and current mismatch.  Along with increasing 

device area, circuit techniques like chopper stabilization, auto-zeroing, and correlated 

double sampling can be employed to minimize the effects of random variations on analog 

circuits [98]. 

 
Figure 3.6: General behavior of the MOSFET threshold voltage mismatch slope vs. L in an ultra-thin 

oxide CMOS process [95].  W is held constant. 

The impact of random variations on digital circuits has become extremely 

important in the nanoscale regime [99]–[102].  This is due to the atomistic dimensions of 

the transistors.  For example, the number of expected channel dopants in a 65 nm device 
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is on the order of 100 [103].  However, due to process control limitations, this number 

can vary significantly.  This greatly impacts the threshold voltage of minimum-length 

transistors.  For example, the standard deviation of the difference in threshold voltages 

between two devices designed to be identical, σ∆VTH, can be as high as 45 mV in a 65 nm 

process [94]–[95], [104]–[105].  This makes it difficult to reliably predict circuit 

performance [106]–[108].  Increasing transistor area is a potential solution to this 

problem, but doing so negates the density advantage obtained by moving to a smaller 

process. 

Process variations and complex models pose significant challenges to circuit 

designers in nanoscale CMOS technologies [109].  In [110], the term “designing for 

manufacturability” was used to describe the techniques that must be employed to 

overcome these challenges.  The authors noted that many of the effects described in this 

section will continue to worsen with scaling.  This implies designers can no longer rely 

on scaled processes to provide all-around superior performance.  They must learn to cope 

with these problems by designing with established architectures, utilizing proper layout 

techniques, and seeking circuit solutions that provide balance while cancelling undesired 

effects.  Also, Monte Carlo analyses must become an integral part of the design process 

[110].  A Monte Carlo analysis statistically evaluates performance in the presence of 

process, voltage, and temperature variations.  Previously, in larger technologies, it has 

been used as a sort of “final check” before a chip is taped out.  However, in nanoscale 

technologies, it can be used as a tool to understand the complex interactions between 

various devices within a circuit. 
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3.1.4 Circuit Solutions 

Several potential solutions have been suggested to cope with the problems created 

by output resistance degradation and reduced supply voltages.  Many of these are process 

solutions that require extra fabrication steps beyond what is needed for standard digital 

devices.  Examples include single-side halo transistors, thick-oxide transistors, 

high-voltage transistors, and floating-gate transistors [1], [7], [11], [111].  Due to these 

extra fabrication steps, these devices are considered “process options”, and are typically 

available in a standard process at an increased cost.  This makes them less attractive from 

a monetary standpoint and motivates the need to seek circuit solutions using standard 

digital devices.  The circuit solution approach was taken in this work, and for this reason, 

devices that represent process solutions were not considered.  Existing circuit solutions 

that use standard digital devices include body-biased and bulk-driven transistors, sub-VTH 

operation, and self-cascoding. 

3.1.4.1 Body-Biased and Bulk-Driven Transistors 

Body-biased transistors have been proposed as a solution to overcome the 

problems created from reduced supply voltages [88].  These transistors use the body 

terminal as a DC input.  They manipulate the VTH of a device by exploiting its 

dependence on VBS [16], [67].  For example, consider Figure 3.7, which plots VTH vs. VBS 

for two transistors with different channel lengths in the obtained 65 nm process.  The 

figure shows that VTH can change up to 100 mV with changes in VBS.  In digital 

applications, this is done to improve frequency response or reduce power consumption.  

In analog applications, a reduction in VTH could decrease the VDS needed to achieve 

saturation, which could increase signal swing or allow more transistors to be stacked. 
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Figure 3.7:  Simulated VTH vs. VBS for two NMOS transistors in the obtained 65 nm process.  One 

transistor had W = 10 µm and L = 1 µm.  The other transistor had W = 1 µm and L = 50 nm.  Both transistors 

had VGS = VDS = 0.3 V.  

Bulk-driven transistors have also been proposed as a solution to overcome the 

problems created by reduced supply voltages [11], [112]–[113].  The main difference 

between these transistors and body-biased transistors is that bulk-driven transistors use 

the body terminal as both an AC and DC input.  For example, Figure 3.8 shows a simple 

example of a differential bulk-driven amplifier.  The body terminals of transistors M1 and 

M2 are used as inputs to the amplifier.  Bulk-driven transistors rely on the body 

transconductance, gmb, to obtain small-signal performance [112].  They have been touted 

as the solution to analog design in low-voltage CMOS processes [114].  However, 

because they typically operate with VGS = VDD, the VDS required for saturation can 

become quite large [115].  This makes it difficult to achieve saturation, which limits their 

application.  Also, they potentially suffer from decreased gain, increased area, reduced 

frequency response, reduced matching, and increased noise [11].  Given these potential 

problems, bulk-driven transistors were not considered in this work. 

Body-biased and bulk-driven transistors require extra process steps to isolate the 

wells that make up their body terminals.  Processes that perform this isolation are referred 
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to as twin-well or triple-well and are becoming standard with scaling [40].  These 

transistors are still considered standard digital devices even though extra steps are 

required to form their wells because the rest of their physical dimensions are equal to the 

physical dimensions of standard digital transistors. 

VDD VDD

RL RL

IBIAS

M1 M2VBIAS

+_ +_

VIN1 VIN2

 
Figure 3.8: Simple example of a differential bulk-driven amplifier.  M1 and M2 represent the 

bulk-driven input differential pair, VIN1 and VIN2 are the bulk input voltages, IBIAS is the bias current, RL is the 

load resistor, and VDD is the supply voltage.  

3.1.4.2 Sub-VTH Operation  

Another potential solution to the shrinking supply voltage is sub-VTH design [11], 

[36].  This technique, which requires VGS < VTH, goes against traditional saturation region 

design.  If VGS << VTH, the device is said to operate in the weak inversion region, where it 

is dominated by diffusion current and functions similar to a BJT.  It can be shown that IDS 

in the sub-threshold region is formulated as [44]: 

��� � �� ������������ � �!�⁄ #1 � ���$� �!⁄ % (3.3)

 

where It is a current related to the diffusion constant (Dn), Vt, and the equilibrium 

concentration of electrons in the substrate (npo).  If VDS > 3Vt, IDS is approximately 

independent of VDS.  This implies that rO is infinite.  This is an important result because it 
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solves many of the voltage headroom and rO problems in nanoscale design.  However, as 

mentioned previously, because VGS << VTH, IDS is extremely small.  This restricts weak 

inversion operation to nano-power circuitry.  For example, consider Figure 3.9, which 

plots IDS vs. VGS for an NMOS transistor with W = 10 µm, L =1 µm, and VTH = 384 mV.  

At VGS voltages slightly less than VTH, IDS drops below 10 µA and at VGS voltages less 

than 0.3 V, IDS drops below 1 µA.  These current levels may be undesirable because they 

may have to be generated via large on-chip resistors [116].  Therefore, larger current 

values may be desired to reduce resistor area.  Also, large current values may be desired 

to increase frequency response.  This equates to increases in VGS, which forces the 

transistor to exit weak inversion and enter moderate inversion.  In this region, IDS is made 

up of drift and diffusion components, which, as mentioned previously, complicates 

modeling [43].  In this region there is a degradation of the large rO and small VDS values 

obtained in weak inversion.  However, compared to strong inversion, the moderate 

inversion region still provides adequate output resistance at smaller VDS values.  This 

potentially allows for larger signal swings and the ability to stack transistors. 

 
Figure 3.9: ID vs. VGS for an NMOS transistor in the obtained 65 nm process.  W = 10 µm, L = 1 µm, 

and VDS = 0.3 V.  
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3.1.4.3 Self-Cascoding 

 
Figure 3.10: Basic cascode structure. VIN is the input voltage, VOUT is the output voltage, VBIAS is the 

bias voltage for M2, and IOUT is the output current.  M1 and M2 form the basic cascode structure. 

Cascoding is a technique used to address degradations in rO [36], [40], [44], [48].  

An example of cascoding is shown in Figure 3.10, where M1 is the device being 

cascoded and M2 is the cascoding device.  The input voltage, VIN, drives the gate of M1.  

VBIAS is used to set the DC bias point on the gate of M2.  VOUT is the output voltage and 

IOUT is the output current.  This structure is heavily covered in textbooks and analyzed as 

a common source amplifier (M1) in series with a common gate amplifier (M2).  An 

equation for the small-signal DC output resistance of this structure can be written as [36]: 

&�'�( � )*+ � )*� � �,-� � ,-.��)*+)*�. (3.4)

 

Assuming gmb2 and rO1 + rO2 are negligible, this equation can be approximated as 

rO1(gm2rO2).  Compared to a single device, which has an output resistance of rO, this is a 

significant improvement, and is one of main reasons cascode structures are used in analog 

design.  The small-signal DC voltage gain of this structure is [36]: 

0�( � �1,-+)*+ � �,-� � ,-.��,-+)*+)*�2. (3.5)

 

This equation shows that a cascode structure is capable of producing an 

approximate voltage gain of −gm1rO1⋅gm2rO2 (ignoring the first term of (3.5) and assuming 
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gmb2 is negligible).  This is significantly greater than the intrinsic voltage gain of a single 

device (gmrO). 

 
Figure 3.11: Self-cascode structure [117].  VIN is the input voltage, VOUT is the output voltage, and IOUT 

is the output current.  M1 and M2 form the self-cascode structure. 

One disadvantage of the basic cascode is that a large VOUT may be required to 

obtain the output resistance enhancement.  If the saturation region of operation is 

assumed and the body effect ignored, then VOUT must be greater than 2·VDSsat 

(VDSsat = VGS − VTH).  In technologies with a VDD of 1 V, this minimum voltage 

requirement can eat into available headroom and limit signal swing.  Another 

disadvantage of this structure is the potential need for extra circuitry to generate VBIAS.  

This extra circuitry increases power compared to a single device. 

Self-cascoding is a potential solution to these problems [11], [113], [117]–[118].  

An example of self-cascoding is shown in Figure 3.11.  The main difference between this 

structure and the basic cascode is that the input voltage, VIN, drives the gates of M1 and 

M2.  Intuitively, this may seem incorrect.  For example, ignoring the body effect, and 

assuming that both devices operate in the saturation region, have equal dimensions, 

infinite rO values, and drain currents equal to IOUT, VGS1 would have to equal VGS2 to 

supply IOUT.  This can only occur if VDS1 = 0, which implies M1 is turned off and no 
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current flows through the structure.  Therefore, it appears self-cascoding does not work.  

However, if the aspect ratio of M2 is made larger than the aspect ratio of M1 (W2/L2 > 

W1/L1), the required VGS2 to supply IOUT is less than the required VGS1.  Considering that 

VGS1 = VG2, this can only occur if VS2 increases.  Therefore, increasing the aspect ratio of 

M2 relative to M1 results in VDS1 increasing because VS2 = VDS1.  Under these conditions, 

M1 turns on, allowing the self-cascode structure to function.  This analysis shows that the 

ratio of device aspect ratios is an important parameter.  A scale factor, SF, can be defined 

to characterize this relationship [118]: 

34 � �� ��⁄�+ �+⁄ . (3.6)

 

 As SF increases, VGS2 decreases, and the VDS2 value needed to saturate M2 also decreases 

(assuming VDSsat2 = VGS2 − VTH2).  This implies that the VOUT needed to place the 

self-cascode structure into saturation is smaller than the basic cascode.  This results in a 

savings of voltage headroom, which allows for larger signal swings.  Also, because the 

gates of M1 and M2 are tied together, no extra bias circuitry is needed for M2.  This 

results in a savings of power and area compared to the basic cascode.  Therefore, from a 

DC biasing standpoint, the self-cascode has several advantages over a basic cascode. 

The low-frequency small-signal performance of a self-cascode is equal to or 

better than that of a basic cascode.  For example, (3.7) shows that the low-frequency 

small-signal output resistance of a self-cascode is equal to that of the basic cascode [117] 

(see Appendix A).  Equation (3.8) shows that the low-frequency voltage gain of the 
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self-cascode is greater than that of the basic cascode by an additional term of gm2ro2 [117] 

(see Appendix A).   

&�'��5 � &�'�( � )*+ � )*� � �,-� � ,-.��)*+)*�. (3.7)

 0��5 � �1,-+)*+ � ,-�)*� � �,-� � ,-.��,-+)*+)*�2. (3.8)

 

Depending on the values of SF and IOUT, M1 or M2 could be forced into the 

sub-VTH region [117].  For example, SF could be large enough to force M2 in the sub-VTH 

region or IOUT could be small enough to force both devices into the sub-VTH region.  As 

stated previously, these regions of operation can potentially provide large rO at small VDS 

values.  Thus, the small-signal characteristics of each device may be improved by 

operating in these regions.  Note that care should be taken to ensure SF is not large 

enough to turn off M1 or M2.  One potential disadvantage of the self-cascode structure is 

the increased Miller capacitance from its input to the drain of M2.  This increased 

capacitance occurs because of the structure’s increased gain and it could create a second 

undesired dominant low-frequency pole when used in an amplifier configuration. 

Several other cascoding techniques have been proposed to help improve output 

resistance [113].  Examples include active cascoding, folded cascoding, gain-boosting, 

and wide-swing cascode structures.  These techniques use more devices than the basic or 

self-cascode structures.  For example, wide-swing cascode current mirrors require two 

reference currents and gain-boosted current mirrors require the use of an amplifier [36].  

As a result, they consume more area and power.  Therefore, these techniques were not 

considered in this work. 
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3.2  Gate Current 

The gate resistance of a MOSFET is often assumed to be infinite [36], [40], [45], 

[48].  This simplifying assumption allows the device to be analyzed as if no DC current is 

flowing through its gate terminal, which greatly simplifies circuit analysis and design.  

As CMOS has scaled to technologies with oxide thicknesses less than 3 nm, this 

assumption no longer holds, as significant amounts of carriers directly tunnel through the 

gate insulation.  These carriers contribute to a source of gate current, referred to as direct 

tunneling, that fundamentally changes MOSFET operation [119]–[120].  This section 

investigates these changes by reviewing the physical mechanisms behind direct tunneling 

and its impact on MOSFET modeling.  It also compares direct tunneling to base current 

of a BJT and notes its impact on current mirror design, frequency response, matching, 

noise, MOSFET capacitance, and temperature-sensitive circuits.  It concludes by 

discussing the use of high-κ dielectrics and metal gate electrodes as a solution to 

minimizing the impact of direct tunneling on circuit performance.  The terms gate current 

and direct tunneling are used interchangeably, even though direct tunneling is not the 

only source of gate current in CMOS technologies.  Specifically, Fowler-Nordheim (FN) 

tunneling and hot electrons can contribute to gate current [121]–[123].  However, in 

CMOS technologies with tox < 3 nm and VDD ≤ 1 V, these sources are often considered 

negligible under normal operating conditions [16].  Therefore, direct tunneling was 

assumed to be the dominant source of gate current. 

3.2.1 Tunneling Background 

Tunneling is a quantum mechanical phenomenon in which carriers can penetrate 

into and through a potential barrier.  It typically occurs between two conducting materials 
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separated by an insulator.  The insulator creates a potential barrier between the 

conducting materials.  If certain electrical and physical requirements are met, carriers can 

flow between the conducting materials by tunneling through this barrier.  Classically, this 

is impossible because these barriers represent a point at which the total system energy is 

completely potential.  Ideally, when classical carriers encounter these barriers, they are 

reflected.  If they were to overcome them, their potential energy would have to become 

more than that of the barrier itself.  For this to happen and to ensure conservation of 

energy, the kinetic energy of the carriers would have to be negative.  Negative kinetic 

energy violates the laws of classical physics and is one of the fundamental reasons why 

quantum mechanics is used to explain tunneling [124]. 

 
Figure 3.12: Tunneling in a rectangular potential barrier [124].  V(x) is the potential energy of the 

system and εk is the incident particle kinetic energy.  V0 is the barrier height and L is the barrier width.  The 

carrier is described by its wave function, Ψ(x). 

Quantum mechanically, carriers are described by their wave functions, which are 

continuous and used to determine the probability of finding a particle at a specific time 

and position [124].  When a carrier encounters a potential barrier, its wave function 

remains continuous, but has an exponential decay inside the barrier.  On the other side of 
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the barrier, the wave function is still continuous, which results in a finite probability that 

the carrier will tunnel through it.  For example, consider Figure 3.12, which shows 

quantum mechanical tunneling through a rectangular potential barrier [124].  V(x) is the 

potential energy of the system and εk is the incident particle kinetic energy.  The barrier is 

described by its height, V0, and its width, L.  The carrier is described by its wave function, 

Ψ(x).  The figure shows that Ψ(x) exponentially decays upon entering the barrier, but 

remains continuous and eventually makes it to the other side.  The probability of this 

occurring for the condition of εk < V0 is [124]: 

6� � 1
1 � 7�89:;�<�4>?�7 � >?�

 
(3.9)

 

where β
2
 = 2m(V0 − εk)/ħ

2
, ħ = 1.055 x 10

−34
 J-sec is Planck’s constant, and m is the 

carrier’s mass.  This equation shows that PT increases with decreases in barrier height and 

width.  In physical systems, the barrier width is related to the thickness of an insulating 

material.  The barrier height is related to the physical and electrical properties of the 

insulating and conducting materials.  Interestingly, PT is not guaranteed to be one when 

εk > V0, which implies some carriers will be reflected even though they possess more 

energy than the barrier [124]. 

Potential barriers are not always rectangular.  For example, they can be triangular 

or trapezoidal [16].  The Wentzel-Kramers-Brillouin (WKB) approximation is typically 

employed when deriving PT for these types of barriers [125].  Generally, once PT is 

known, the tunneling current density, JT, between the two conducting materials can be 

calculated using the following equation [49]: 
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where F1, F2, N1, and N2 are the Fermi-Dirac distributions and density of states functions 

of the two conducting materials (material 1 and material 2), m
*
 is the effective mass, and 

q is the electronic charge (1.602x10
−19

 C).  This equation shows that JT is dependent upon 

the product of the number of available carriers originating from material 1 and the 

number of empty states in material 2 [49]. 

3.2.2 Fowler-Nordheim Tunneling and Direct Tunneling 

 
Figure 3.13: Ideal energy band diagrams for: (a) Fowler Nordheim tunneling and (b) direct tunneling 

in an NMOS transistor.  EC and EV are the conduction and valence bands, tox is the oxide thickness, ΧB is the 

barrier height, VOX is the voltage across the oxide, and e- is the tunneling electron [16]. 

In MOSFETs, tunneling is typically analyzed as occurring between two pieces of 

silicon separated by a thin layer of silicon dioxide (SiO2).  One of the pieces of silicon 

represents the heavily doped gate electrode and the other piece represents either the 

silicon channel or the heavily doped source/drain junction.  Carriers can tunnel through 

the SiO2 via two different mechanisms: Fowler-Nordheim (FN) tunneling and direct 

tunneling.  The difference between these two types of tunneling is the shape of the 
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potential barrier the carriers must tunnel through.  In FN tunneling the potential barrier is 

triangular, while in direct tunneling it is trapezoidal [16], [126]–[127].  An example of 

these two types of tunneling is shown in Figure 3.13.  EC and EV are the conduction and 

valence bands, tox is the oxide thickness, ΧB is the barrier height, VOX is the voltage across 

the oxide, and e
-
 is the tunneling electron.  The shape of the potential barrier depends on 

VOX.  If VOX > ΧB, as shown in Figure 3.13 (a), a triangular potential barrier is formed, and 

FN tunneling is possible.  Note that FN tunneling is sometimes used to build flash 

electrically erasable read-only memory (Flash EEPROM) [128].  However, it is 

considered negligible in nanoscale CMOS because the supply voltages are typically much 

less than the barrier heights. 

 
Figure 3.14: Direct tunneling in an NMOS transistor.  EC and EV are the conduction and valence 

bands, VOX is the voltage across the oxide, tox is the oxide thickness, e- and h+ represent tunneling electrons and 

holes.  ΧB_ECB, ΧB_EVB, and ΧB_HVB represent the barrier heights for ECB, EVB, and HVB [14], [86]. 

If VOX < ΧB, as shown in Figure 3.13 (b), a trapezoidal potential barrier is formed, 

and direct tunneling is possible.  Direct tunneling is exponentially dependent upon tox and 
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becomes a non-negligible source of gate current in technologies with tox < 3 nm [49], 

[119]–[120], [129]–[130].  It represents a fundamental limitation to the scaling of CMOS 

technologies [8], [12], [64], [66], [85], [107]–[108], [131].  There are three major types of 

direct tunneling in MOSFETs.  They are shown in Figure 3.14 [14], [86].  The first is 

electrons tunneling from the conduction band (ECB).  The second is electrons tunneling 

from the valence band (EVB).  The third is holes tunneling from the valence band 

(HVB).  ECB and EVB are typically associated with NMOS devices and HVB is 

associated with p-type MOSFETs (PMOS).  The associated barrier heights for these three 

types of direct tunneling are ΧB_ECB = 3.1 eV, ΧB_EVB = 4.2 eV, and ΧB_HVB = 4.5 eV [132].  

Ignoring differences in threshold voltages and carrier mobilities, the direct tunneling 

current for a PMOS device will typically be less than that of an NMOS device because 

the barrier height for HVB is greater than the barrier heights for ECB and EVB.  This 

suggests that circuits should be designed with PMOS devices, or, more specifically, the 

device with the larger barrier height, to minimize direct tunneling currents. 

3.2.3 Modeling of Direct Tunneling 

Several attempts have been made at modeling direct tunneling in CMOS 

technologies [13], [14], [31], [132]–[136].  All of these models emphasize the 

exponential dependence of JT on tox and attempt to model direct tunneling over a broad 

range of terminal voltages and device sizes.  In [13] and [136], direct tunneling was 

partitioned into five components: IGCS, IGCD, IGS, IGD, and IGB.  These components are 

shown in Figure 3.15.  They flow simultaneously and their summation yields an equation 

for the total amount of gate current due to direct tunneling, IG: 

�� � ��L� � ��L� � ��� � ��� � ��M. (3.11)
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Figure 3.15: Components of direct tunneling in an NMOS transistor [136].  IGCS and IGCD flow into the 

channel, IGS flows into the source overlap region,  IGD flows into the drain overlap region, and IGB flows into the 

substrate. 

The IGCS and IGCD components are typically ECB, flow into the silicon channel 

and go to the source (IGCS) and drain (IGCD).  The IGS and IGD components are ECB and 

flow into the source (IGS) and drain (IGD) overlap regions.  IGB can be ECB or EVB and it 

flows to the body terminal.  It is important to understand how each component functions 

under different terminal voltages.  Figure 3.16 can be used to aid in this understanding 

[137].  The figure shows IGCS flowing into the source terminal and IGCD flowing into the 

drain terminal.  For an NMOS device, these components are strong functions of VGS and 

weak functions of VDS [136]–[137].  Therefore, because VGS is typically positive, these 

currents can be assumed to be flowing in the direction shown in Figure 3.16. 

Figure 3.16 shows IGS flowing into the source terminal and IGD flowing into the 

drain terminal.  IGS is a strong function of VGS and IGD is a strong function of VGD     

[136]–[137].  Similar to IGCS and IGCD, IGS can be assumed to be flowing in the direction 

shown in Figure 3.16.  However, this assumption cannot be made when analyzing IGD 

because VGD may be positive or negative.  If VGD is a large positive value, IGD flows in the 

direction shown in Figure 3.16.  If VGD is a large negative value, IGD flows opposite to 
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what is shown in Figure 3.16.  IGB is a strong function of VGB, which is typically positive, 

and can be assumed to flow in the direction shown in Figure 3.16.  IGB is often considered 

be negligible in nanoscale technologies [16]. 

IDS
IGSIGCS IGDIGCD

IGB

Gate

DrainSource

Body
 

Figure 3.16: DC components of direct tunneling in an NMOS transistor [137].  IGCS and IGCD flow 

directly into the source.  IGCD flows out of the source via the drain.  IGD can flow out of the source via the drain 

or out of the gate.  IGB flows out of the body. 

The previous paragraph noted that IGD can be bidirectional under normal 

operating conditions.  This significantly impacts IG.  For example, if VGS = 0 and 

VDS = VDD, then VGD = −VDD.  Because VGS = 0, IGCS, IGCD, and IGS can be considered 

negligible.  Assuming IGB is also negligible, IGD becomes the dominant component of IG.  

However, because VGD = −VDD, IGD is a large negative value, which results in IG 

becoming a large negative value.  This implies IG is flowing out of the gate terminal of 

an NMOS device, instead of into it.  On the other hand, if VGS = VDD and VDS = VDD, then 

VGD = 0 V.  In this example, IGCS, IGS, and IGD dominate and result in IG flowing into the 

gate.  These relationships show that the directionality and magnitude of IG is heavily 

dependent upon bias voltages. 

Device sizing also plays a critical role in determining IG.  In [13]–[14], and [136], 

it was shown that IGCS, IGCD, and IGB are proportional to W⋅L and IGS and IGD are 
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proportional to W⋅∆LOV, where ∆LOV is the overlap length between the source/drain and 

oxide.  In long-channel devices, IGCS and IGCD dominate because L >> ∆LOV.  However, in 

short-channel devices, IGS and IGD are comparable in magnitude to IGCS and IGCD because 

the difference between L and ∆LOV is reduced.  Therefore, L and ∆LOV play an important 

role in determining which components factor into IG. 

3.2.4 Impact of Direct Tunneling on Current Mirror Design 

 
Figure 3.17: Simple current mirror.  VDD is the supply voltage, IIN is the input current, IOUT is the 

output current, and VOUT is the output voltage.  M1 and M2 form the current mirror. 

The impact of gate current on analog design was studied in [18], [59]–[60], 

[138]–[141].  Each of these references notes that gate current presents significant 

challenges.  In [141], the authors explained how gate current impacts simple current 

mirrors.  A simple current mirror is shown in Figure 3.17.  IIN is the input current, IOUT is 

the output current, VOUT is the output voltage, and M1-M2 are the MOSFETs used to 

form the mirror.  The current gain of this mirror, including gate current, can be written as 

[141]: 

�*N��OP � �����+ � ��+ � ��� (3.12)

 

where ID1, ID2, IG1 and IG2 are the drain and gate currents of M1 and M2.  This equation 

shows that gate current degrades the current gain from its ideal value of ID2/ID1.  
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Specifically, if IG1 and IG2 are large and positive, the current gain is much less than 

desired, which results in IOUT being less than IIN.  As the current gain Ai decreases, the DC 

bias point of both transistors may change because IIN supplies more gate current to M1 

and M2.  This changes VGS1 and VGS2 to being less than what they normally would have 

been if IIN = ID1.  This change in bias point could impact the small-signal performance 

and frequency response of the mirror. 

If finite device output resistance is included in (3.12), the current gain depends on 

ro1 and ro2 along with IG1 and IG2, which increases its complexity [141].  Considering that 

degradations in output resistance occur with scaling, current mirror design in ultra-thin 

oxide technologies must overcome gain degradations caused by gate current and reduced 

device output resistances.  This makes the design of current mirrors, which are 

fundamental building blocks of analog circuits, more difficult in these technologies. 

3.2.5 Comparing Direct Tunneling to Base Current 

In [18] and [60] the authors compared MOSFET gate current, IG, to the base 

current, IB, of a BJT.  Both can be thought of as input currents; IG typically flows into the 

gate of an NMOS and IB typically flows into the base of an npn BJT.  Also, both currents 

are generally undesirable and degrade device performance.  If it can be shown that IG 

functions similar to IB, perhaps established BJT circuit techniques can be used to 

minimize the negative effects of IG.  This is a major motivating factor for comparing IG to 

IB. 

 The forward current gain, βF, of a BJT is defined as IC/IB, where IC is the collector 

current.  It is used to compare the undesired current, IB, to the desired current, IC, and has 
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implications for circuit design [44].  For example, IB could be considered negligible if 

βF > 1000.  However, if βF = 10, IB should be taken into account.  Typically, it is desired 

that βF be as large as possible.  Note that βF is ideally independent of the DC bias point 

and is set by process parameters such as the emitter/base doping concentration and the 

base width [44].  Thus, from a circuit design standpoint, βF is often treated as a constant 

value, which greatly simplifies analysis.  Note that βF does roll off at very high and very 

low currents. 

 
Figure 3.18: Logarithmic plot of βF_MOS vs. L of an NMOS transistor in the obtained 65 nm process.  

W = 10 µm and VGS = VDS = 1 V. 

Applying this analogy to MOSFETs results in βF_MOS ≡ |ID/IG|, where ID is the 

desired current and IG is the undesired current.  This was done in [18], where ID/IG was 

used as a performance metric to determine the impact of IG on MOSFETs.  The authors 

noted that ID/IG is a strong function of the DC bias point.  This is important because it 

shows that ID/IG cannot be treated as a constant value.  Assuming square law operation, 

using a simplified model for IG, and ignoring the dependence of IG on VDS, the authors 

showed that ID/IG is roughly proportional to 1/L
2
 (ID ∝ W/L, IG ∝ W⋅L, ID/IG ∝ 1/L

2
).   

This suggests that long-channel devices operate less like a traditional MOSFET because 
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they consume larger amounts of gate current relative to drain current, which implies that 

there is a point of diminishing returns when it comes to using long-channel devices.  For 

example, consider Figure 3.18, which plots the base 10 logarithm of βF_MOS vs. L for an 

NMOS transistor with W = 10 µm in the obtained 65 nm process.  The figure confirms 

that βF_MOS is dramatically reduced with increases in channel length.  This suggests that 

long-channel devices should be avoided in ultra-thin oxide CMOS technologies.  

However, L is often increased to improve output resistance (λ ∝ 1/L, see Section 3.1.1.1).  

If L is increased to a value where the device no longer operates like a MOSFET, the 

increased output resistance is meaningless.  This suggests that there is a direct tradeoff 

between device rO and βF_MOS.  Also, in [18], ID/IG was only shown to be proportional to 

1/L
2
 under constant terminal voltages (the saturation region of operation was assumed).  

The authors suggested increasing W as a means to increase ID without impacting ID/IG.  

However, if W is increased with constant drain current, ID/IG is dependent on W because 

the terminal voltages and region of operation may change.  This implies that increases in 

W with constant ID may reduce ID/IG.  This could cause the negative effects of IG to 

become more pronounced. 

3.2.6 Impact of Direct Tunneling on Analog Device Performance  

The impact of IG on MOSFET gate impedance was studied in [18] and [139].  The 

authors derived a frequency, fgate, which can be used as a metric to characterize the gate 

impedance.  For signal frequencies larger than fgate, the gate impedance was said to be 

capacitive and the device was said to behave like a traditional MOSFET.  Below fgate, the 

gate impedance was said to be mainly resistive and dominated by gate current.  The 

authors noted that fgate for a 65 nm technology was approximately 1 MHz.  This is an 
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important result because it shows that gate current significantly impacts the 

low-frequency performance of ultra-thin oxide MOSFETs and that its effects on 

high-frequency performance are negligible.   

The authors in [18] also studied the impact of IG on drain current mismatch.  They 

showed that drain current mismatch is dependent upon ID/IG, which limits achievable 

matching.  Typically, to ensure a constant aspect ratio and improve matching, W and L 

are linearly scaled.  However, following this approach in a technology with significant 

gate current can result in matching becoming worse as area increases.  For example, in 

[18], it was shown that linearly scaling W and L in a 65 nm technology resulted in an 

optimal matching point at a device area of approximately 10
3
 µm

2
.  Beyond this area, 

matching actually became worse.  However, the authors noted that matching could be 

improved if L is kept constant and W is scaled.  This approach increased power 

consumption because the aspect ratio increased and terminal voltages were kept constant.  

The impact of IG on drain current mismatch was not a major concern in this work because 

the area at which matching began to degrade was far greater than what was used.  

However, because gate current is proportional to area, matching improves at its expense.  

This suggests that matching and gate current trade off with each other.  Also, if there is a 

large difference in drain voltages between transistors designed to be identical, the IGD 

contributions from each device could be different.  This could lead to different amounts 

of gate current flowing through each device, which implies they are not electrically 

matched.  This suggests that care should be taken to ensure that devices which are 

designed to be identical have similar terminal voltages and similar areas such that their 

gate and drain currents are matched. 
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The impact of gate current on noise performance was studied in [44], [138], [142].  

It was shown that direct tunneling results in a shot noise component with a spectral 

density of SIG = 2qIG.  This noise component is similar to the shot noise associated with 

base current in BJTs.  Also, a 1/f noise component has been observed with direct 

tunneling [142].  Combined, these two components have been shown to create a noise 

corner frequency around 20 kHz.  Both of these noise sources have been shown to be less 

than the traditional thermal and 1/f noise sources associated with MOSFETs.  The fact 

that direct tunneling results in additional noise sources only magnifies the differences 

between conventional and ultra-thin oxide MOSFETs.  Perhaps the best approach to 

reducing the impact of these noise sources is to treat gate current itself as a noise source 

and minimize it as much as possible.  If this is accomplished, the device operates more 

like a conventional MOSFET and implies that traditional circuit techniques can be used 

to design analog circuits in ultra-thin oxide technologies. 

Degraded MOSFET capacitor (MOSCAP) performance is another consequence of 

gate current.  These capacitors use the gate and a shorted source/drain as terminals.  They 

are typically designed to take advantage of COX [43].  In [18], it was shown that gate 

current can seriously degrade the performance of circuits designed with MOSCAPs.  For 

example, a track and hold circuit designed using MOSCAPs in a 65 nm technology must 

be read within a few nanoseconds if the drop on a sampled value is to be limited to 1 mV 

[18].  This places severe restrictions on sampling frequencies and forces the use of other 

types of capacitors for track-and-hold circuits.  MOSCAPs are also used to decouple high 

frequency power supply noise in digital circuits [143].  However, if large amounts of DC 

gate current are flowing through them, they may actually introduce low-frequency noise 
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into the circuit.  Therefore, extreme caution must be exercised when using ultra-thin 

oxide MOSCAPs as decoupling capacitance. 

Direct tunneling has been shown to be relatively independent of temperature 

under constant terminal voltages [144]–[145].  This has implications for 

temperature-sensitive circuits such as voltage references.  Intuitively, one may assume 

that because gate current is independent of temperature, it would not impact the 

performance of voltage references.  However, if device terminal voltages change with 

temperature, gate current could also change with temperature.  This change impacts 

reference performance and was investigated in this work. 

3.2.7 Existing Circuit Solutions to Gate Current 

It is important to note that very few circuit techniques exist in the literature to 

minimize the negative effects of direct tunneling on analog performance.  In [146] and 

[147], the authors attempted to use gate leakage as a means to reduce amplifier offset.  

The downside of these techniques was the requirement of thick-oxide transistors.  This 

approach was not considered in this work because thick-oxide transistors represent a 

process solution. 

Several techniques exist to minimize the impact of gate current on digital 

performance [16], [34], [148]–[149].  In [16], the authors suggested the use of supply 

voltage scaling as a means of reducing gate leakage.  In [148], it was shown that pin 

reordering and NOR-based logic can be used to help minimize gate leakage.  In [149], it 

was stated that digital circuits designed in the presence of gate leakage will be able to 

meet noise margin as long as tox ≥ 1.1 nm.  In [34], the use of PMOS-based logic was 
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promoted over the use of NMOS-based logic because PMOS devices have larger barrier 

heights and thus contribute less gate current.  Given that these solutions exist for digital 

circuits, analog techniques are necessary if mixed-signal design is to be performed using 

ultra-thin oxide MOSFETs. 

3.2.8 Direct Tunneling and High-κ/Metal Gates 

Direct tunneling has become so problematic that changes to the gate dielectric and 

gate electrode must be made [12], [22], [31], [131], [150]–[153].  These changes 

represent a fundamental shift in CMOS technology because SiO2 and polysilicon have 

been used as the gate stack for many generations of CMOS technology.  SiO2 is targeted 

to be replaced by a high-κ dielectric and polysilicon is targeted to be replaced by a metal.  

This new gate stack is often referred to as the high-κ/metal gate. 

High-κ dielectrics are used to replace SiO2 because of their increased dielectric 

constant.  Compared to SiO2, they can be made thicker to achieve the same amount of 

capacitance per unit area.  This increased thickness results in reduced direct tunneling 

probability.  For example, if the high-κ capacitance, Chi-κ, is to be equal to the SiO2 

capacitance, CSiO2
, the thickness of the high-κ material, thi-κ, would need to be [153]: 

QRS�TU VRS�TV�	 Q�	 (3.13)

   

where κhi-κ and κox are the dielectric constants of the high-k material and SiO2.  This 

equation shows that for a desired tox, thi-κ is dependent upon the ratio κhi-κ and κox.  

Therefore, to limit direct tunneling, it is desired to have κhi-κ be as large as possible.  

Several high-κ materials have proposed as a possible replacement of SiO2.  These include 

silicon nitride (Si3N4), oxynitride (SiOxNy), zirconium oxide (ZrO2), hafnium oxide 
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(HfO2), aluminum oxide (Al2O3), and lanthanum oxide (La2O3) [154].  Also, it has been 

shown that many materials with a dielectric constant > 20 cannot be used because they 

have extremely small barrier heights [152].  This prevents their use because direct 

tunneling, as previously explained, is a strong function of the barrier height.  Materials 

with a dielectric constant between 8 and 20 have been shown to provide the thicknesses 

and barrier heights needed to significantly reduce direct tunneling [152], [154]. 

VTH pinning, mobility degradation, and phonon scattering are a major concern 

when selecting a high-κ dielectric [12], [22], [28].  Because of these problems, an 

interfacial layer of SiO2 has been proposed to be sandwiched between the high-κ 

dielectric and the silicon channel.  This layer takes advantages of the good bonding 

properties between Si and SiO2, resulting in less trapped charge and interface states.  The 

ability to control the thickness of the SiO2 layer is extremely difficult, which results in 

variability concerns [22].  In [28], a high-κ/metal gate process was presented that did not 

use an interfacial layer of SiO2. 

The use of high-κ materials will not totally eliminate direct tunneling [30]–[31].  

As technologies scale and high-κ materials become thinner, the problems created by 

direct tunneling will return.  This suggests that analog circuit techniques to minimize the 

negative effects of direct tunneling need to be developed. 

Metal gate electrodes are used to minimize the effects of poly-gate depletion 

[131].  The metal used must be compatible with the high-κ material such that their 

interface has minimal defects [155].  This greatly increases the complexities involved in 

fabricating the high-κ/metal gate structure.  In [155], a 45 nm CMOS process with a 
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high-κ/metal gate was presented.  It was noted that the metal used for the gate of 

the NMOS device was different than that of the PMOS device.  This hints at some of the 

difficulties involved in fabricating high-κ/metal gate structures. 

Ideally, migration to these new technologies would occur quickly because of 

improved performance and increased density.  However, heavy migration may be delayed 

by rising manufacturing costs and increased design complexities [23]–[26].  This implies 

that traditional (non-high-κ /non-metal gate) ultra-thin oxide technologies will have 

longer lives in the economic forefront than previous generations of CMOS.  Therefore, 

given that digital solutions are available and that traditional ultra-thin oxide CMOS 

technologies will be revenue generators for an extended period of time, analog circuit 

solutions are needed to allow useful mixed-signal design using only ultra-thin oxide 

MOSFETs. 

3.3 Voltage References 

Voltage references are precision analog circuits designed to produce a voltage 

independent of variations in temperature, process, and supply voltages [156].  They are 

used in several analog applications, such as DACs, ADCs, DC-DC converters, 

operational amplifiers, and linear regulators [35].  This widespread use shows their 

importance to analog design and motivates the study of problems that may impact their 

performance.  This section reviews the fundamentals of voltage references and the 

problems encountered when designing them in nanoscale CMOS technologies.  Also, it 

notes that no techniques exist to compensate the negative effects of gate current on their 

performance. 
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3.3.1 Temperature Independence and Bandgap Voltage References 

 
Figure 3.19: High-level circuit schematic of a bandgap voltage reference [44].  VDD is the  supply 

voltage, IBIAS is the bias current, VCTAT is the CTAT voltage, VPTAT is the PTAT voltage, k is Boltzmann’s 

constant, q is the electronic charge, T is the temperature, and K is a scale factor. 

Temperature independence is typically the most difficult specification for a 

voltage reference to achieve.  This difficulty stems from the fact that most electrical 

parameters vary with temperature [157].  To account for this variance, voltage references 

often attempt to sum two voltages; one that changes proportionally to absolute 

temperature (PTAT) with one that changes complementary to absolute temperature 

(CTAT).  Ideally, these two voltages would have equal but opposite temperature slopes 

such that their sum results in a voltage independent of temperature.  However, these 

voltages rarely have equal and opposite slopes, which necessitates the need to scale one 

of them by a constant.  Mathematically, this can be written: 

WX4 � L�Y� � Z · \�Y� (3.14)

 

where VCTAT is the CTAT voltage, VPTAT is the PTAT voltage, K is the constant, and VREF 

is the output voltage.  Figure 3.19 shows a high-level circuit schematic of a bandgap 
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voltage reference [44].  In order to achieve temperature independence, (3.14) is 

differentiated with respect to temperature, set equal to zero, and solved for K: 

Z � �]L�Y� ]^⁄]\�Y� ]^⁄ . (3.15)

 

Given that K is a constant, the temperature slopes of VPTAT and VCTAT must also be 

constant if VREF is to be independent of temperature.  This implies that VCTAT and VPTAT 

vary linearly with temperature.  Physically, it may seem highly improbable that a voltage 

naturally varies linearly with temperature.  However, to a first-order approximation, the 

voltage across a forward-biased diode varies linearly with temperature and has a slope of 

approximately −1.8 mV/°C [36], [40], [44].  For this reason, diodes are often used as 

CTAT voltage sources in voltage references.  If temperature-dependent non-idealities are 

included, the diode voltage can be written as [44], [158]: 

�O*�X � �7 � �1�_ � `�a:^ � a:�K · b�2 (3.16)

 

where VDIODE is the diode voltage, VGO is the bandgap voltage of the material being used, 

Vt is the thermal voltage, T is the temperature, E and G are temperature-independent 

constants, γ is related to the current flowing through the diode, and α is related to the 

carrier mobility.  This equation shows the true behavior of VDIODE with temperature and 

provides physical insights as to why its temperature slope is not constant [44].  It also 

shows that VDIODE is directly dependent upon the bandgap voltage of the material being 

used.  This dependence results in a special type of voltage reference, referred to as the 

bandgap voltage reference.   



56 

 

A PTAT voltage can be generated using two diodes with different emitter areas.  

For example, consider two diode-connected p-type/n-type/p-type (PNP) transistors, Q1 

and Q2.  If the emitter area of Q2 is N times the emitter area of Q1 and they operate at the 

same current, an equation for VEB2 − VEB1 can be written as [44]: 

XM� � XM+ � ∆XM � � ln�I�. (3.17)

 

This equation shows that ∆VEB is PTAT (∂∆VEB/∂T = ln(N) k/q) and dependent 

upon Vt and N.  If this equation is substituted into VPTAT of (3.14) and (3.16) is substituted 

into VCTAT of (3.14), the following equation is obtained [44]: 

WX4 � �7 � �1�_ � `�a:^ � a:�K · b�2 � � ln�I� · Z. (3.18)

 

This equation shows that VREF is directly dependent upon VGO.  More specifically, 

if [(γ − α)lnT − ln(E⋅G)] = ln(N)⋅K, VREF = VGO.  Therefore, the ideal output voltage is 

VGO.  This explains why references that use diodes in this manner are referred to as 

bandgap voltage references.  However, this output can only occur at a single temperature 

because N and K are constants while γ and α are functions of temperature.  The weak 

dependence of γ and α on temperature explains why bandgap voltage references often 

have a non-zero temperature coefficient.  References that attempt to compensate for this 

slope are referred to as curvature-compensated [159]–[160].  In most bandgap voltage 

reference architectures, K is set by resistor ratios.  This is important because it reduces 

the impact of resistor tolerances and resistor temperature coefficients.  Examples of 

bandgap voltage references can be found in [44], [161]–[164]. 
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3.3.1.1 The Use of Vertical PNP BJTs in Bandgap Voltage References 

 
Figure 3.20: Cross section of a vertical PNP BJT made out of a PMOS transistor [165].  The base is 

formed from the body terminal.  The emitter is formed from the source and drain terminals.  The collector is 

formed from the substrate. 

The previous subsection showed that the voltage across a forward-biased diode 

can be used as a CTAT voltage source.  In modern CMOS technologies, this diode is 

typically created using a vertical PNP BJT [165].  A cross section of this device is shown 

in Figure 3.20.  It can be made using a PMOS transistor.  The emitter terminal is formed 

by shorting the source and drain terminals, the base terminal is formed by the body 

terminal (well contact), and the collector terminal is formed by the substrate.  The device 

is unable to act like a MOSFET because of the shorted source and drain.  These PNPs 

typically exhibit poor BJT characteristics and generally cannot be used in circuit 

architectures where the collector would be used as an input or output.  However, if the 

base and collector are tied to the same potential, a diode is formed between the emitter 

and base [165].  This diode provides the temperature behavior described in the previous 

subsection, which implies that it can be used in the construction of voltage references.  

Many modern CMOS technologies characterize and model these devices for the sole 

purpose of voltage reference design [165]. 
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3.3.2 Startup Circuits, Process Variations, and Supply Voltage Dependence 

 
Figure 3.21: Example of different startup operating points that occur in bandgap voltage references 

Bandgap voltage references require startup circuits which force them into the 

proper region of operation [40], [44], [166].  They are needed because a feedback loop 

exists within the reference, which creates two regions of operation; one at an undesired 

negligible current and the other at a desired current.  For example, consider Figure 3.21, 

which shows the different startup operating points that can occur in bandgap voltage 

references.  The startup circuit operates by injecting a small current, which triggers the 

feedback loop and sets the reference to its desired operating point.  After this is done, the 

startup circuit turns off such that it does not further impact performance. 

Process variations also play an important role in the design of voltage references 

[35], [167]–[172].  In [35], current mirror mismatch, resistor mismatch, resistor tolerance, 

MOSFET mismatch, and BJT mismatch were shown to be the main source of 

performance degradation.  Of these sources, BJT mismatch and voltage offsets due to 

MOSFET mismatch are most important [35].  In [37], it was shown that matching can be 

improved by increasing device area.  Therefore, in voltage references, devices are made 

relatively large to minimize the impact of mismatch on performance.  This can be 
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understood by examining drain current mismatch, 
f∆g$O$  , and VGS mismatch, h∆��� .  In 

[173], it was shown that for devices biased in the saturation region and assuming square 

law operation, drain current mismatch between two devices designed to be identical can 

be written as: 

h∆O$�� � ijh∆k< l� � m,- · 0����� · √��o
�
 (3.19)

 

where 
f∆g$O$  is the standard deviation of the difference in drain currents between the two 

devices divided by ID, β = µCOXW/L, µ is the carrier mobility, COX is the oxide 

capacitance per unit area, gm is the gate transconductance, and AVTH is a 

technology-dependent parameter [37].  The β term of this equation is often assumed to be 

negligible.  Therefore, for a given AVTH and gm/ID, current mismatch can be reduced by 

increasing device area, reducing gm or increasing ID.  Increasing device area can also be 

applied to reduce VGS mismatch.  For example, an equation for the standard deviation of 

the difference in VGS voltages between two devices designed to be identical can be 

written as [173]: 

h∆��� � ijh∆k< · ��,-l
� � j0���√��l

�. (3.20)

   

Assuming the β term is negligible, this equation shows h∆���  can also be reduced 

by increasing device area.  Therefore, current and voltage matching can generally be 

improved by increasing device area. 
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Voltage references are also designed to maintain performance independent of 

VDD.  This functionality is tested by sweeping VDD and measuring the output voltage.  For 

a given VDD, the reference is said to function correctly if the output voltage is within an 

acceptable tolerance.  The maximum VDD is typically set by device breakdown voltages.  

The minimum VDD is typically set by transistor headroom requirements.  Avoiding 

transistor stacks is one technique used to ensure that references operate over a wide range 

of supply voltages. 

3.3.3 Traditional Bandgap Voltage References 

Traditional bandgap voltage references have an ideal output equal to the bandgap 

voltage of the material being used.  In CMOS, this usually equates to the bandgap of 

silicon, which is approximately 1.205 V [44].  A minimum VDD of 1.4 V is needed for 

these references because of transistor headroom requirements.  Therefore, if VDD is less 

than 1.4 V, traditional bandgap voltage references cannot be used.  Many nanoscale 

CMOS technologies have a VDD ≤ 1 V.  Therefore, a different type of reference is needed 

in these technologies.  These references are referred to as low-voltage references.  

Several different low-voltage architectures have been proposed.  Some are all-MOS while 

others are based on the bandgap approach.  Interestingly, several of these bandgap 

voltage references have not been shown to function with a VDD < 1.1 V [174]–[184].  

This may be due to reduced voltage headroom.  Therefore, these references were not 

considered in this work.  References that function with VDD ≤ 1 V are referred to as 

sub-1 V voltage references. 
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3.3.4 All-MOSFET Voltage References 

MOSFET-only voltage references attempt to achieve temperature independence 

by balancing the temperature behavior of a MOSFET’s threshold voltage with the 

temperature behavior of carrier mobility [157].  Several examples of this type of 

reference exist in literature [185]–[191].  One potential problem with this approach is the 

reliance on the temperature slope of VTH.  As CMOS has scaled, significant changes in 

device dimensions and channel doping have resulted in VTH becoming a strong function 

of parameters such as L and VDS.  This results in the VTH properties of nanoscale 

transistors differing from transistors of previous generations, which could make it 

difficult to port these references between technologies.  For this reason, only bandgap 

voltage references were considered in this work. 

3.3.5 Sub-1 V Bandgap Voltage References 

The basic idea behind a sub-1 V bandgap voltage reference is to force the output 

to be dependent upon a summation of PTAT and CTAT currents instead of a summation 

of PTAT and CTAT voltages.  For example, consider the sub-1 V bandgap voltage 

reference in [116].  A high-level schematic of this reference is shown in Figure 3.22.  Q1 

and Q2 are diode-connected PNP BJTs.  I1, I2, and I3 are voltage-controlled current 

sources (VCCSs).  They are designed to be equal.  VP and VM represent the voltages on 

the non-inverting and inverting input terminals of the error amplifier.  R1, R2, R3, and R4 

are resistors used to zero the temperature slope.  VREF is the output voltage.  

Diode-connected transistor Q2 has N times the emitter area of diode-connected transistor 

Q1 (AE2 = N⋅AE1).  The amplifier is used to ensure VEB1 = VEB2 + VR1.  If this is true, VR1 

is equal to the voltage difference of two forward-biased diodes with different emitter 
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areas operating at the same current.  Previously, in (3.17), it was shown that this results in 

a PTAT voltage.  This implies VR1 is PTAT, which results in IR1 being PTAT.  Because 

I1, I2, and I3 are equal, this implies they all supply IR1, which results in a PTAT current 

flowing into R4.  The CTAT current is generated by IR2 and IR3.  These currents, which 

are ideally equal, flow into R4 and are CTAT because they depend upon the 

forward-biased voltage of a diode.  As explained in [116] and [192], IR4 has a PTAT and 

CTAT current component, which allows R2, R3, and R4 to be chosen such that VREF is 

 ≤ 1 V and independent of T. 

 
Figure 3.22: Simplified representation of the voltage reference in [116].  VDD is the supply voltage, Q1 

and Q2 are diode-connected PNP BJTs.  I1, I2, and I3 are voltage-controlled current sources.  The error 

amplifier ensures VEB1 = VEB2 + VR1.  VP and VM represent the non-inverting and the inverting input voltages of 

the amplifier.  R1, R2, R3, and R4 are resistors used to zero the temperature slope and set the output voltage, 

VREF. 

The reference in Figure 3.22 is similar to the reference presented in [193].  The 

main difference between these references is the location of R2 and R3.  In [193], R2 and R3 

are in parallel with Q1 and Q2.  In this configuration, the effects of resistor tolerance and 

resistor mismatch have a significant impact on the current flowing through R2 and R3.  

Any variations of R2 and R3 directly changes the CTAT current they produce, which 



63 

 

modifies the absolute value of VREF and its temperature slope.  In [116], R2 and R3 are tied 

to VREF.  As explained in [116] and [192], if VREF is chosen to be equal to VEB1 at a 

desired temperature, the current through R2 and R3 is approximately zero at that 

temperature.  This effectively nulls the contributions of R2 and R3 at that temperature, 

reducing the impact of their variation on performance.  If this temperature is chosen 

wisely (i.e., room temperature, the middle of the temperature range, or the temperature at 

which the IC will be most used), the impact of R2 and R3 on performance is minimized.  

Therefore, the reference in [116] has a significant advantage over [193]. 

Several other sub-1 V bandgap voltage references can be found in literature.  

Compared to [116], these references require extra circuitry to achieve the same 

performance [194]–[197].  This extra circuitry comes in the form of amplifiers, current 

mirrors, resistors, and diodes.  These elements increase power and area.  Therefore, these 

references were not considered in this work.  Instead, the reference in [116] was used as a 

starting point for designing a sub-1 V bandgap voltage reference with ultra-thin oxide 

MOSFETs.  

Sub-1 V bandgap voltage references are generally designed in one of two ways; in 

a technology with a nominal VDD > 1 V or with thick-oxide devices.  When designed in 

technologies with a VDD > 1 V, sub-1 V performance is claimed by measuring the 

reference output with VDD ≤ 1 V [194], [198]–[199].  One potential problem with this 

approach is portability.  For example, a sub-1 V reference that works in a 0.5 µm 

technology (nominal VDD = 3.3 V) may not be able to be ported to a 65 nm technology 

(nominal VDD = 1 V) because transistor performance between the two technologies is 
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drastically different.  Non-ideal effects, such as gate current and degraded device output 

resistance may not have been addressed in the reference designed in the 0.5 µm 

technology. 

When designed with thick-oxide devices, sub-1 V bandgap voltage references can 

be used in technologies with VDD ≤ 1 V.  However, these references are avoiding 

problems caused by gate current instead of using circuit techniques to solve them.  More 

importantly, there is no existing literature that addresses the problems presented to 

voltage references by gate current.  Given that large area devices are used in voltage 

references and that gate current is proportional to area, significant amounts of gate 

current could flow through a poorly designed ultra-thin oxide sub-1 V voltage reference.  

This work presents a methodology that accounts for this tradeoff.  The methodology is 

used to design and develop a sub-1 V bandgap voltage reference that is capable of 

functioning in the presence of gate current. 
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CHAPTER 4  

APPROACH 

 This chapter specifies the approach that was taken to achieve the objectives 

outlined in Chapter 2.  It is broken into nine sections.  The first section reviews the 

computing resources used in this work.  The second section presents BJT-like 

performance metrics that were used to determine the impact of gate current on the analog 

performance of ultra-thin oxide MOSFETs.  The third section motivates the use of 

body-biasing as a means of reducing the relative impact of gate current on analog design.  

The fourth and fifth sections describe the approach that was taken to minimize the 

negative effects of gate current on current mirrors and differential amplifiers.  The sixth 

section describes the AC simulation of amplifiers designed with ultra-thin oxide 

MOSFETs.  The seventh section studies the impact of gate current on sub-1 V bandgap 

voltage references.  The eighth section makes use of the previous seven sections as a 

methodology to develop an ultra-thin oxide MOSFET-only sub-1 V bandgap voltage 

reference.  The ninth section discusses topics that were not addressed in this work.  A 

simulation strategy subsection is provided in sections two, three, four, five, six, and eight.  

This subsection outlines the simulations that were performed to test the hypotheses of this 

work.  The results of these simulations are discussed in Chapter 5. 

4.1 Computing Resources 

The computing resources required for this work included circuit simulation 

software, a process design kit (PDK) of an ultra-thin oxide CMOS technology with 

significant gate current, and a device model.  Cadence was chosen as the circuit 
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simulation software.  Within Cadence, Virtuoso was used to construct circuit schematics 

and Spectre was used as the circuit simulator.  Analog Design Environment (ADE), 

which is a component of Cadence, was used to handle the inputs and outputs of Spectre.  

The PDK used in this work was IBM’s 65 nm standard logic (10SF) PDK.  This PDK 

completely describes IBM’s 65 nm standard logic process, which has a nominal VDD of 

1 V and a tox of 1.25 nm.  The fourth version of the Berkeley Short-channel Insulated 

Gate Field Effect Transistor Model (BSIM4) was chosen as the device model because of 

its common use within the analog IC design community [15].  Also, it provides a model 

for gate current that shows excellent correlation with physical measurement over device 

dimensions, terminal voltages, and temperature [136]. 

4.2 Gate Current Performance Metrics 

The previous chapter showed that gate current fundamentally degrades MOSFET 

behavior.  This degradation was characterized using the drain current to gate current ratio 

(βF_MOS ≡ |ID/IG|), which is similar to the forward current gain (βF = IC/IB) of a BJT.  This 

work proposes four new metrics to further characterize the impact of gate current on 

device performance.  These metrics are rooted in BJT theory and extend the analogy 

between gate current and base current.  They were used as a guide on how to size and 

bias ultra-thin oxide MOSFETs. 

The first metric, αF_MOS, is defined as ID/IS, where IS is the current through the 

source terminal.  It is analogous to the BJT metric αF, which is defined as IC/IE, where IE 

is the current through the emitter terminal [44].  In forward-biased BJTs, it is typically 

assumed that αF ≤ 1, which implies IE ≥ IC.  Assuming gate current is similar to base 

current, αF_MOS should also be ≤ 1, implying IS ≥ ID.  This assumption was made in [18], 
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where the impact of VDS on gate current was assumed to be negligible.  However, in 

Section 3.2.3, it was shown that the IGD component of gate current, which is a function of 

VGD, can impact the directionality of IG.  For example, consider an NMOS device with a 

large negative VGD.  This negative VGD results in a negative IGD.  Because the total gate 

current, IG, is a summation of five different components 

(IG = IGS + IGD + IGCS + IGCD + IGB), the negative contribution of IGD could force IG to 

become negative.  This would result in IG flowing out of the gate of an NMOS device, 

which implies ID > IS and αF_MOS > 1.  This is analogous to IB flowing out of the base of 

an npn BJT, which typically does not occur in the forward active region of operation.  

This suggests that IG is not similar to IB under all operating conditions, which implies that 

some BJT techniques used to compensate for IB may not be applicable to ultra-thin oxide 

MOSFETs. 

The second metric, rπ_MOS, is defined as (|∂IG/∂VGS|)
−1

.  It is analogous to the BJT 

small-signal resistance rπ, which is defined as (∂IB/∂VBE)
−1

.  For BJTs in the forward 

active region, rπ is used to characterize the input resistance of single transistor amplifiers 

[44].  In MOSFETs, rπ_MOS is ideally infinite because IG = 0.  In [18], the authors 

analyzed gg/IG, where gg = 1/rπ_MOS.  It was noted that rπ_MOS is finite and gg/IG can be 

studied similarly to gm/ID [18].  However, values for rπ_MOS were not given.  This work 

provides values for rπ_MOS and compares these values to the small-signal output 

resistance, rO.  If these two values are comparable in magnitude, then rπ_MOS may need to 

be considered when analyzing the small-signal performance of CMOS amplifiers. 
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The third metric, β0_MOS, is defined as |id/ig|, where id and ig are the small-signal 

drain and gate currents.  An equation for β0_MOS can be written as: 

<7_q*� � ]��]�� · j ]��]��l
�+ � ,- · )r_q*�. (4.1)

 

This equation shows that β0_MOS is equal to the product of gm and rπ_MOS.  It is 

analogous to the small-signal current gain β0 of a BJT, which is defined as ic/ib.  For BJTs 

in the forward active region, β0 is ideally equal to βF [18].  This equality is due to the fact 

that βF is ideally set by process parameters like the base width and emitter/base doping 

concentration, making it independent of the bias point.  β0_MOS is used to inspect the 

small-signal current gain of ultra-thin oxide MOSFETs.  Unlike BJTs, β0_MOS and βF_MOS 

were not expected to be equal because gate current is a dynamic function of bias point 

and device dimensions.  However, it was expected that β0_MOS and βF_MOS follow the same 

trends. 

The fourth metric, rµ_MOS, is defined as (|∂IG/∂VDS|)
−1

.  It is analogous to the BJT 

small-signal resistance rµ, which is defined as (∂IB/∂VCE)
−1

.  For BJTs in the forward 

active region, rµ is often assumed to be infinite, causing it to be ignored in circuit 

analysis [44].  In MOSFETs, rµ_MOS is ideally infinite because IG = 0.  This work 

investigated rµ_MOS to determine if it needs to be considered in ultra-thin oxide design.  It 

was desired that there was a region of VDS values where rµ_MOS was large enough to be 

ignored.  This region would represent an ideal DC bias point to minimize the small-signal 

impact of VDS on IG. 
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4.2.1 Simulation Strategy 

M1 M2

VDD

IBIAS

+_

ID2
VD2

+_+_

VBIAS

VG1 =

VBIAS

VG2 =

VBIAS

(a) (b)
 

Figure 4.1: Schematic of circuits used to extract gate current performance metrics.  VDD is the supply 

voltage, IBIAS is the bias current, VG1 is the gate voltage of M1, VD2 is the drain voltage of M2, and VG2 is the gate 

voltage of M2.  VBIAS is copied to the gates of M1 and M2 via VCVSs. 

The preceding metrics were extracted via simulation using the circuit shown in 

Figure 4.1.  Figure 4.1 (a) shows a transistor, M1, biased with a voltage-controlled 

voltage source (VCVS) and a DC current source, IBIAS.  IBIAS was used to force a desired 

amount of current into the drain of M1.  The VCVS forced VG1 = VBIAS without stealing 

any of IBIAS into the gate of M1.  The VCVS was responsible for supplying gate current to 

M1.  Therefore, all of IBIAS went into the drain of M1.  This circuit is representative of a 

diode-connected transistor because VG1 = VD1 = VBIAS.  This type of transistor is 

commonly used in current mirrors.  Because VGD1 = 0, the impact of IGD1 was negligible.  

Therefore, this circuit was used to study IG1 without considering the effects of IGD1.  

βF_MOS, β0_MOS, and rπ_MOS were extracted using the circuit in Figure 4.1 (a). 

Figure 4.1 (b) shows a transistor, M2, biased with a VCVS and a voltage source.  

This circuit was used to determine the impact of VGD and VDS on gate current.  The VCVS 

was used to copy VBIAS from Figure 4.1 (a) to the gate of M2.  This forced an equal 

gate-bias point between Figure 4.1 (a) and Figure 4.1 (b).  VD2 of Figure 4.1 (b) was 
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swept to determine the impact of VGD and VDS on IG.  βF_MOS, αF _MOS, and rµ_MOS were 

extracted using the circuit in Figure 4.1 (b). 

4.3 Impact of Body Biasing on Gate Current 

The impact of the MOSFET body voltage, VBODY, on gate current was also 

studied.  This study was motivated by the probability of a carrier directly tunneling 

through the oxide.  In [13], it was shown that this probability is a function of the voltage 

across the oxide, VOX, and can be approximated as: 

6� s *uQ*u ��
F�·M5·�vwx( · �Fy·M5·�vwx(z ·�vw

 (4.2)

 

where tox is the oxide thickness, χB is the barrier height, and BC is a physical constant 

[13].  The tunneling probability approaches zero as VOX goes to zero (lim�vw}7 6� � 0�.  
Therefore, if VOX can be written as a function of VBODY, PT could be potentially controlled 

by VBODY.  VOX can be expressed as [16]: 

*u � �M � 4M � \*�� � �� (4.3)

 

where VGB is the gate-to-body voltage, VFB is the flatband voltage, ψS is the surface 

potential, and VPOLY is the voltage drop due to poly-gate depletion.  This equation shows 

that VOX is dependent upon VBODY through VGB (VGB = VG − VBODY) [200].  Therefore, the 

probability of a carrier directly tunneling through the oxide is a function of VBODY through 

VGB. 

4.3.1 Simulation Strategy 

The dependence of IG on the body voltage was investigated using the circuits 

shown in Figure 4.2 and Figure 4.3.  In both of these figures, IBIAS was a DC bias current.  
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In Figure 4.2, VBIAS was copied from the gate of M1 to the gate of M2 via a VCVS.  VD2 

was held at a constant value.  VBODY was then swept.  This figure simulated the impact of 

VBODY on M2 under constant terminal voltages.  In Figure 4.3, VBIAS was copied from the 

drain of M3 to the gate of M3 via a VCVS.  VBODY was then swept.  This figure simulated 

the impact of VBODY on M3 under constant drain current.  βF_MOS and the percentage 

reduction in IG was extracted using the circuits in Figure 4.2 and Figure 4.3. 

M1 M2

VDD

IBIAS

+_

ID2
VD2

+_+_

VBIAS

VG1 =

VBIAS

VG2 =

VBIAS
+_

VBODY2

 
Figure 4.2: Schematic of circuit used to determine impact of body voltage on gate current with 

constant terminal voltages.  VDD is the supply voltage, IBIAS is the bias current, VG1 is the gate voltage of M1, VD2 

is the drain voltage of M2, VG2 is the gate voltage of M2, and VBODY2 is the body voltage of M2.  VBIAS is copied to 

the gates of M1 and M2 via VCVSs. 

 
Figure 4.3: Schematic of circuit used to determine impact of body voltage on gate current with 

constant drain current.  VDD is the supply voltage, IBIAS is the bias current, VG3 is the gate voltage of M3, and 

VBODY3 is the body voltage of M3.  VBIAS is copied to the gate of M3 via a VCVS. 
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4.4 The Design of Ultra-Thin Oxide CMOS Current Mirrors 

This section describes the approach that was taken to minimize the negative 

effects of gate current on current mirrors.  Note that gate current was not the only 

problem to consider when designing these circuits.  The previous chapter showed that 

degradation of device output resistance and reduced supply voltages also pose significant 

challenges to current mirrors.  Therefore, it was desired that the techniques used to 

minimize the effects of gate current do not aggravate these pre-existing problems.  This 

section is broken into three subsections.  The first subsection describes the design 

strategy for self-cascode current mirrors.  The second subsection describes the design 

strategy for triple self-cascode current mirrors.  The third subsection presents the 

simulation strategy. 

4.4.1 Self-Cascode Current Mirrors 

Figure 4.4 shows a self-cascode current mirror.  IIN is the input current, VOUT is the 

output voltage, IOUT is the output current, VBIAS is the bias voltage, and M1-M4 form the 

mirror.  This architecture was used as a starting point for studying the impact of gate 

current on current mirrors.  The motivation for using this circuit comes from the previous 

chapter, where it was shown that self-cascode structures can achieve large output 

resistances with minimal voltage overhead.  Also, they are able to achieve this type of 

performance in the saturation and sub-threshold regions of operation [117].  Ideally, the 

current gain for this structure is Ai = ID4/ID3.  However, when including gate current, it 

becomes: 

0S � �����F � ��+ � ��� � ��F � ���. (4.4)
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Figure 4.4: Self-cascode current mirror.  VDD is the supply voltage, IIN is the input current, VOUT is the 

output voltage, IOUT is the output current, and VBIAS is the gate voltage of M1-M4. 

This equation shows that the current gain is degraded by IG1-IG4.  To reduce the 

impact of IG1-IG4 on the current gain, transistors M1-M4 have to be sized and biased such 

that the amount of total gate current flowing through them is minimized.  The metrics 

described in the previous section were used as an aid for this purpose.  One concern of 

this structure was the gate-to-drain voltage of M4, VGD4.  If VGD4 << 0 and VBIAS is small, 

IG4 could flow out of the gate of M4.  This implies that IOUT is supplying gate current to 

M1-M3, which may not be desired because it could degrade ROUT.  This suggests that VGD 

should be minimized by ensuring that VOUT is not significantly larger than VBIAS. 

The circuit shown in Figure 4.5 can be used to further minimize the impact of gate 

current on current mirrors.  This figure is similar to Figure 4.4 except for the addition of a 

helper transistor, M5 [44].  This additional transistor was used to supply some of the gate 

current needed by M1-M4.  Assuming that M5 has a negligible amount of gate current, 

most of IIN should go into the drain of M3.  This implies that IOUT should mirror IIN 



74 

 

because M1-M4 have equal gate voltages and benefit from the high output resistance 

provided by the self-cascode structure.  Specifically, the current gain of Figure 4.15 is:  

�����F � ��� s �����F. (4.5)

 

M5 should be designed with a much smaller area compared to M1-M4 to ensure 

that its gate current is negligible.  Also, if the aspect ratio of M5 is large, VGS5 is relatively 

small, which helps reduce IG5 and VGD3.  If VGD3 is small, this implies IGD3 is small, which 

prevents IG3 from flowing out of the gate of M3. 
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IG3 IG4

IG1 IG2

IG5 = 0

 
Figure 4.5: Self-cascode current mirror with a helper transistor.  VDD is the supply voltage, IIN is the 

input current, VOUT is the output voltage, IOUT is the output current, and VBIAS is the gate voltage of M1-M4.  M5 

is the helper transistor.  It is used to block IIN from flowing into the gates of M1-M4. 

4.4.2 Triple Self-Cascode Current Mirrors 

Note that multiple devices could be placed in series to increase the output 

resistance of the self-cascode structure shown in Figure 3.11 [37].  Individual scale 

factors would need to be defined between each pair of devices.  Ideally, the bottom 

device of the structure would have the longest channel length and the top device of the 
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structure would have the shortest channel length.  The middle devices would have 

channel lengths in between those of the bottom device and the top device.  Device widths 

would be chosen such that the scale factor for each pair of series devices is greater than 

one.  Although these types of structures may increase output resistance, they also increase 

area and could potentially increase gate current, which may limit their practical use.  An 

example of a triple self-cascode structure (three devices in series) and a triple self-

cascode current mirror are shown in Figure 4.6.  Note that M7 in Figure 4.6 (b) is a 

helper transistor that serves the same purpose as M5 in Figure 4.5. 

 
Figure 4.6: (a) Triple self-cascode structure.  VIN is the input voltage, VOUT is the output voltage, and 

IOUT is the output current.  M1, M2, and M3 form the self-cascode structure. (b) Triple self-cascode current 

mirror.  VDD is the supply voltage, IIN is the input current, VOUT is the output voltage, IOUT is the output current, 

and VBIAS is the gate voltage of M1-M6.  M7 is a helper transistor.  It is used to block IIN from flowing into the 

gates of M1-M6. 

4.4.3 Simulation Strategy 

The circuits in Figure 4.4 and Figure 4.5 were simulated to determine if 

low-voltage current mirrors with large current gains and high output resistances can be 
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designed with ultra-thin oxide MOSFETs.  The output resistance of the triple 

self-cascode current mirror of Figure 4.6 (b) was simulated and compared to the output 

resistance of the self-cascode current mirror of Figure 4.5. 

4.5 The Design of Ultra-Thin Oxide CMOS Differential Amplifiers 

Like current mirrors, differential amplifiers are fundamental building blocks of 

analog circuit design.  Gate current can have a significant impact on their performance.  

This section describes the approach that was taken to minimize the negative effects of 

gate current on amplifiers.  It was a goal that this approach not aggravate existing 

problems such as degraded device output resistance and reduced supply voltages.  This 

section is broken into three subsections.  The first subsection describes the relationship 

between gate current and amplifier input current.  The second subsection describes the 

gate-balancing technique.  The third subsection presents a circuit technique that can be 

used to cancel amplifier input current.  The fourth subsection presents the simulation 

strategy. 

4.5.1 Amplifier Input Current 

Figure 4.7 shows a differential amplifier.  M1 and M2 form the input pair,  M3 is 

the tail current source, M4 and M5 form an active load, VDD is the supply voltage, VIN1 

and VIN2 are the common-mode input voltages, VBIAS is the bias voltage of M3, VDIO is the 

diode-connected voltage between M4 and M5, and VOUT is the output voltage.  By 

inspection, gate current flows into the gate terminals of the input pair, M1 and M2.  This 

fact invalidates the common assumption of negligible MOSFET amplifier input current 

and is important because differential input pairs are often made large to minimize input 

offset voltage [39].  Considering that gate current is proportional to device area, this 
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suggests that input offset voltage and ultra-thin oxide MOSFET amplifier input current 

trade off with each other. 

 
Figure 4.7: Differential amplifier.  M1 and M2 form the input pair.  M3 is the tail current source.  M4 

and M5 form an active load.  VDD is the supply voltage, VIN1 and VIN2 are the common-mode input voltages, VDIO 

is the diode-connected voltage of M4 and M5, VBIAS is the gate-bias voltage of M3, and VOUT is the output voltage. 

The amplifier input current can be quantified by two components: input bias 

current (IIN_B) and input offset current (IOS) [27].  IIN_B is defined as the average current 

flowing into the gates of M1 and M2: (IG1 + IG2)/2.  IOS is defined as the difference in 

current flowing into the gates of M1 and M2: IG1 − IG2.  Perhaps the best way to minimize 

the impact of these currents is to minimize their absolute value.  This can be 

accomplished by properly sizing M1 and M2 such that IG1 and IG2 are minimized (see 

Section 5.1.3).  To ensure that IG1 and IG2 are similar, biasing techniques could be 

employed such that VIN1 and VIN2 have similar common-mode voltages.  Note that the 

body biasing technique described in Section 4.3 could be potentially used to minimize 

IIN_B and IOS while still allowing for large area devices to decrease the input offset 

voltage. 



78 

 

4.5.2 Gate Balancing 

Gate current also creates imbalance in differential amplifiers.  For example, in 

Figure 4.7, ID1 is ideally equal to ID2 when VIN1 = VIN2.  This current equality is a direct 

result of VOUT ideally equaling VDIO.  These ideal equalities are fundamental to the 

balance of differential amplifiers.  However, this balance is disrupted by gate current.  

For example, if gate current flows out of M4 and M5, as shown in Figure 4.7, 

ID1 = ID4 + IG4 + IG5.  By inspection, ID2 = ID5.  Therefore, for ID1 to equal ID2, ID5 must 

equal ID4 + IG4 + IG5.  This equality is unlikely because ID4 and ID5 are similar and largely 

set by VDIO.  However, if this equality were to occur, VOUT would need to be smaller than 

VDIO such that ID5 increased to compensate for IG4 and IG5 flowing into M1.  This action 

would disrupt the voltage balance of the amplifier because VDIO would no longer equal 

VOUT.  Therefore, under normal operating conditions, VDIO ≠ VOUT and ID1 ≠ ID2 because 

M2 is not being supplied the same amount of gate current as M1. 

One approach to correct the amplifier imbalance of Figure 4.7 is to size M4 and 

M5 such that IG4 and IG5 are negligible.  However, this may not be possible in 

technologies with physical oxide thicknesses less than 2 nm or if large area devices are 

needed to meet matching requirements.  Therefore, another approach is needed.  One 

possibility is the gate-balancing technique shown in Figure 4.8, where VOUT ideally drives 

an equal amount of gate area as VDIO.  For example, VDIO drives the gates of M4 and M5 

while VOUT drives the gate of M6.  If L4 = L5 = L6, W4 = W5, and W6 = 2·W4, the gate area 

driven by VDIO is equal to the gate area driven by VOUT.  Therefore, VDIO and VOUT drive 

the equivalent of two M4 transistors.  Assuming IG4 = IG5, IG6 would ideally equal 2·IG4.  
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This implies that equal of amounts of gate current will be flowing into the drains of M1 

and M2, thus restoring the amplifier’s balance. 

The gate-balancing technique of Figure 4.8 assumes VD6 is similar to VOUT and 

VDIO.  If these voltages are not similar, the gate-to-drain overlap current of M6, IGD6, may 

cause IG6 to be different than 2·IG4 [19]–[20].  This could disrupt the balance of the 

amplifier.  Diode-connected transistors (M9 in Figure 4.8) or resistors can be used as 

voltage drop elements to force VD6 to be similar to VOUT and VDIO.  However, these 

elements must be used with caution.  They may reduce the amplifier’s output voltage 

swing.  For example, referring to Figure 4.8, more voltage will be required across VOUT’ 

to keep M9 in the desired region of operation. 

 
Figure 4.8: Balanced differential amplifier.  M1 and M2 form the input pair.  M3, M7, M8, and IBIAS 

form the bias network.  M4 and M5 form an active load.  VDD is the supply voltage, VIN1 and VIN2 are the 

common-mode input voltages, VBIAS is the gate-bias voltage for M3, VDIO is the diode-connected voltage of M4 

and M5, VOUT is the output voltage, and IOUT is the output current.  M6 is used to restore balance to the 

amplifier.  M9 is used to force similar drain voltages between M4, M5, and M6.  CC is the compensation 

capacitor. 

The gate-balancing technique is not restricted to the amplifier architecture shown 

in Figure 4.8.  M6 could be a dummy transistor or, more generally, it could be a transistor 
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that is driven to obtain some desired functionality.  It does not always have to be the input 

transistor of a second amplifier stage.  For example, in [193], a single-ended differential 

amplifier drives the gates of multiple transistors to create a sub-1 V bandgap voltage 

reference.  The gate balancing technique could be applied to such a circuit to aid in the 

creation of a sub-1 V bandgap voltage reference that accounts for gate current (see 

Section 4.8.1).  Also, referring to Figure 4.8, VOUT could drive the gates of two separate 

transistors, both sized equally to M4 and M5.  Furthermore, if VOUT drives three 

transistors, each sized equally to M4 and M5, VDIO could drive the gate of a dummy or 

biasing transistor with dimensions equal to M4 and M5.  This technique is general in 

nature and can be used where necessary to correct gate current-induced amplifier 

imbalance. 

 
Figure 4.9: Two-stage self-cascode operational amplifier.  SC1 and SC2 form the input pair.  SC4 and 

SC5 form the active load.  SC6 forms the second stage.  SC3, SC7, SC8, and IBIAS form the bias network.  VDD is 

the supply voltage.  VIN1 and VIN2 are the common-mode input voltages.  M9 is a diode-connected transistor used 

to force similar drain voltages between SC4, SC5, and SC6.  VOUT and VOUT' are the output voltages of the first 

and second stages.  CC is the compensation capacitor. 
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Applying the gate-balance technique in combination with self-cascode structures 

is advantageous because it minimizes the effects of drain voltage differences while also 

increasing the amplifier’s voltage gain.  For example, consider Figure 4.9, which shows a 

gate-balanced self-cascode two-stage amplifier.  If the cascoding devices are chosen to 

have relatively short channel lengths, their gate current will be minimal and thus the 

effects of drain voltage differences between them will be minimal.  Also, because of the 

shielding provided by these devices, the gate and drain voltages of the cascoded devices 

will be similar.  Therefore, the cascoded devices will ideally have equal voltages on all 

terminals and thus draw equal gate currents.  This is important because these devices 

have longer channel lengths and therefore draw more gate current than the cascoding 

devices.  The shielding provided by the cascoding devices allows the amplifier’s balance 

to be set by the gate currents of the cascoded devices.  This can be achieved by designing 

with a large SF.  Considering that gate current is generally undesirable, it may not be a 

good strategy to intentionally increase the gate current of the device being cascoded as a 

means of dwarfing the gate current through the cascoding device.  Instead, the gate 

current through both devices should be minimized in such a way that their total 

contribution can be made as small as possible.  However, if the impact of drain voltage 

differences between cascoding devices cannot be made negligible by sizing and biasing 

techniques, a diode-connected transistor can be used to minimize the voltage differences.  

For example, in Figure 4.9, M9 can be used to force the drain voltages of SC4-SC6 to be 

similar.  This ensures that the gate currents of the cascoding devices of SC4-SC6 are 

similar and helps maintain gate current balance between all of these devices. 
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4.5.3 Input Current Cancellation 
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Figure 4.10: Differential amplifier with input current cancellation.  M1 and M2 form the input pair.  

M12 is the tail current source.  M4 and M5 form an active load.  M16 is a helper transistor.  VDD is the supply 

voltage, VCOM is the common-mode input voltage, VDIO is the diode-connected voltage of M4 and M5, VBIAS is the 

gate-bias voltage of M10-M13,  IBIAS is the bias current, and VOUT is the output voltage.  CC is the compensation 

capacitor.  The input current cancellation network is formed by the error amplifier, M3, M7-M9, M11, and 

M15.  VS is the source voltage of M15 and VE is the output voltage of the error amplifier. 

One technique that could be used to cancel the effects of amplifier input current is 

shown in Figure 4.10.  M1-M2, M4-M6, M10, and M12-M14 form a two-stage 

differential amplifier similar to that of Figure 4.8.  M16 is a helper transistor used to 

block gate current from flowing into M10-M13.  The input current cancellation network 

is formed by the error amplifier, M3, M7-M9, M11, and M15.  The network attempts to 

minimize the input current provided by the input common-mode voltage sources, VCOM, 

to M1 and M2.  This effectively increases the amplifier’s low-frequency input resistance.  

The technique works as follows.  M15 is sized equal to M1-M2.  The error amplifier 

forces the tail voltage of M1 and M2, VTAIL, to be equal to the source voltage of M15, VS.  

M3 is used to bias the drain terminal of M15.  It is equal in size to M4 and M5 and has 

the same gate bias voltage as M4 and M5.  Therefore, M15 ideally supplies the same 
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amount of drain current as M4 and M5.  M11 is used to bias the source terminal of M15.  

Its width is equal to half the width of M12 and its channel length is the same as that of 

M12.  Therefore, M11 sources half the current of M12, which is ideally equal to the 

source current flowing through either M1 or M2.  These bias conditions force M15 to 

have the same drain current and the same source current as M1 and M2.  If this is true, 

M15 must have the same terminal voltages as M1 and M2.  Specifically, 

VGS15 = VGS1 = VGS2 and VDS15 = VDS1 = VDS2.  This implies that all three of these 

transistors draw the same amount of gate current.  The gate current of M15 is supplied by 

M7, which is regulated by the error amplifier.  The error amplifier also regulates M8 and 

M9.  This implies that the gate currents of M1 and M2 are supplied by M8 and M9.  If 

M8 and M9 supply IG1 and IG2, then the VCOM voltage sources are not supplying gate 

current, effectively increasing the input resistance of the amplifier.  Note that the gate 

balancing technique can be applied between M3, M4, M5, and M6.  A similar technique 

can be applied using BJTs [201]. 

The error amplifier of Figure 4.10 allows the input resistance of the amplifier to 

remain high with changes in VCOM.  For example, as VCOM increases, VTAIL increases such 

that the drain currents of M1 and M2 do not change.  The output voltage of the error 

amplifier, VE, is adjusted such that VS = VTAIL and ID7 = ID8 = ID9 = IG15 = IG1 = IG2.  An 

example of a transistor-level implementation of the error amplifier is shown in Figure 

4.11.  The amplifier has a PMOS differential input stage.  This type of input stage was 

chosen because VTAIL of Figure 4.10 has a relatively small absolute voltage, making it 

easier to bias with a PMOS input pair than an NMOS input pair.  M9 is the second stage 
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of the amplifier.  A second stage was used to increase the output voltage swing and to 

balance the gate currents between M7, M8 and M9. 
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Figure 4.11:  Transistor-level schematic of the error amplifier in Figure 4.10.  M1 and M2 form the 

input pair.  M3, M4, M5, and IBIAS form the bias network.  M7 and M8 form an active load.  VDD is the supply 

voltage, VTAILis connected to the tail voltage of M1 and M2 in Figure 4.10, VS is connected to the source voltage 

of M15 in Figure 4.10, VBIAS is the gate-bias voltage for M3, VDIO is the diode-connected voltage of M7 and M8, 

VE is the output voltage and is connected to the gate terminals of M7, M8, and M9 in Figure 4.10.  M9 is the 

second stage of the amplifier.  It is used to restore balance to the amplifier.  CC is the compensation capacitor. 

4.5.4 Simulation Strategy 

The circuit in Figure 4.7 was simulated to show that gate current disrupts the 

balance of differential amplifiers.  The two-stage self-cascode operational amplifier 

shown in Figure 4.9 was simulated to show that amplifier balance can be restored using 

the gate balancing technique.  Also, the voltage gain, AV = vout'/vin, where vin is the 

small-signal input voltage and vout' is the small-signal output voltage was simulated for 

the two-stage self-cascode operational amplifier shown in Figure 4.9.  The results were 

compared to the voltage gain of the simple operational amplifier shown in Figure 4.8.  

This was done to show the voltage gain enhancement that can be achieved using 

self-cascode structures.  A self-cascode version of the differential amplifier of Figure 
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4.10 was simulated to show that amplifier input resistance can be increased by applying 

the input current cancellation technique.  The results were compared to the two-stage 

self-cascode amplifier of Figure 4.9. 

4.6 The AC Simulation of Ultra-Thin Oxide CMOS Amplifiers 
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Figure 4.12: Circuit technique used to maintain the DC bias point when performing amplifier AC 

simulations [48].  VP and VM represent the amplifier’s non-inverting and inverting input voltages, VFB is the 

feedback voltage, VIN is the small-signal input voltage, RC_BIAS and CBIAS create a low-pass filter, and the VCVS is 

used to copy the DC component of VFB to VBIAS. 

Gate current also impacts the simulation of amplifiers.  For example, when 

performing an AC simulation on an amplifier, a DC bias point must be chosen.  This bias 

point is important because it plays a role in determining small-signal transistor 

parameters like gm, rO, and Cgs [44].  These parameters are used by simulators to calculate 

an amplifier’s open-loop AC response.  Typically, when performing an AC simulation, 

the correct DC bias point is the one found in the closed-loop configuration [48].  

However, when the feedback loop is broken, this bias point is lost.  To break the 

feedback loop but maintain the bias point, a simple circuit technique is employed.  This 

technique, which is shown in Figure 4.12, uses a VCVS, a resistor (RC_BIAS), and a 

capacitor (CBIAS) [48].  VP and VM represent the amplifier’s non-inverting and inverting 

input terminal voltages, VFB is the feedback voltage, VIN is the small-signal input voltage, 
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and VBIAS is the DC bias voltage to be copied from the output (VFB) to the input (VM).  

Assuming that VP is set by external circuitry (for example, a bandgap voltage reference), 

this technique sizes RC_BIAS and CBIAS such that they form a low-pass filter that can 

transfer the DC value of VFB through the VCVS to VBIAS.  Example values of RC_BIAS and 

CBIAS are 100 MΩ and 500 µF.  Their exact values are not important; they just need to be 

sized large enough to force VBIAS to be the DC value of VFB.  The VCVS is used to 

prevent any current flow through RC_BIAS.  This is important, because in closed-loop 

operation VFB is connected to VM, which is typically the gate of a MOSFET that ideally 

draws no DC current.  The VCVS also prevents RC_BIAS and CBIAS from loading down the 

feedback network.  The other alternative to this approach is to use ideal voltages sources 

on the amplifier’s input terminals.  However, if this is done, the impact of process 

variations on the DC bias point cannot be simulated. 

The technique shown in Figure 4.12 fails if non-negligible input current flows 

into the inverting or non-inverting input terminals of the amplifier.  In ultra-thin oxide 

CMOS, this input current could be gate current due to direct tunneling.  In the 

closed-loop configuration, the input current through the amplifier’s inverting input 

terminal is provided by VFB.  If the loop is broken and the technique in Figure 4.12 

applied, VFB no longer supplies this current, which changes its DC bias point.  The circuit 

shown in Figure 4.13 represents a potential solution to this problem.  This figure is 

similar to Figure 4.12 except for the addition of the amplifier input current (IIN_A), 

feedback output current (IL), two current-controlled current sources (CCCSs), an inductor 

(LBIAS), and a resistor (RL_BIAS). 
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Figure 4.13: Circuit technique used to maintain the DC bias point when performing amplifier AC 

simulations in the presence of non-negligible amplifier input current.  VP and VM represent the amplifier’s 

non-inverting and inverting input voltages, VFB is the feedback voltage, VIN is the small-signal input voltage, 

RC_BIAS and CBIAS create a low-pass filter, and the VCVS is used to copy the DC component of VFB to VBIAS.  IIN_A 

and IIN_B represent the amplifier input current.  RL_BIAS and LBIAS from a low-pass filter that transfers the DC 

current component of IIN_A via two CCCSs to VFB. 

The DC voltage transfer of VFB to VBIAS works exactly the same as in Figure 4.12.  

The DC current transfer works as follows.  The input current through the inverting 

terminal, IIN_A, is copied to the CCCS connected to RL_BIAS and LBIAS.  IIN_A contains a DC 

component and an AC component.  The DC component comes from VBIAS and the AC 

component comes from the small-signal input voltage, VIN.  RL_BIAS and LBIAS are used to 

filter the AC component.  This is done by making LBIAS relatively large and RL_BIAS 

relatively small.  Example values of RL_BIAS and LBIAS are 1 kΩ and 1 mH.  At DC, LBIAS 

acts like a short and thus the DC component of IIN_A flows through it.  At frequencies 

greater than DC, the impedance of LBIAS increases while the impedance of RL_BIAS remains 

the same.  Therefore, if the impedance of RL_BIAS is much smaller than LBIAS at these 

frequencies, the high frequency components of IIN_A will flow through RL_BIAS.  This 

implies IL is equal to the DC component of IIN_A.  This current is what is needed at the 

output node to maintain the amplifier’s DC bias point.  The CCCS connected to VFB is 

used to copy IL to the output node.  This forces VBIAS = VFB and IIN_A = IL, which restores 
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the correct DC bias point.  This technique can be used to maintain DC bias point stability 

when performing AC simulations of closed-loop amplifiers. 

4.6.1 Simulation Strategy 

The buffer amplifier shown in Figure 4.16 (see Section 4.8.1) was simulated using 

the techniques shown in Figure 4.12 and Figure 4.13.  The open-loop DC bias point of 

each technique was recorded and compared to the closed-loop DC bias point to determine 

which technique provided better accuracy.  The amplifier output resistance of each 

technique was also recorded and compared. 

4.7 Impact of Gate Current on Sub-1 V Bandgap Voltage References 

This section describes the approach that was taken to minimize the negative 

effects of gate current on sub-1 V bandgap voltage references.  A mathematical analysis 

was performed on the voltage reference shown in Figure 3.22 (see Appendix B.1).  

Assuming no gate current, an equation for the output voltage, VREF, can be written as: 

WX4 � ��� ln�I� � 3�XM+3� � �  (4.6)

  

where N = AE2/AE1, B = R2/R1, M = R4/R1, I1 = I2 = I3, and R2 = R3.  Assuming that the 

temperature slope of the resistors is negligible, this equation contains a PTAT component 

dependent upon the difference in VEB voltages of two forward-biased PNP BJTs 

(see (3.17)) and a CTAT component dependent upon the VEB voltage of a PNP BJT.  

Therefore, it can be differentiated with respect to temperature, set equal to zero, and 

solved for B to determine the R2/R1 ratio that forces VREF to remain constant with 

temperature.  If this is done, an equation for B can be written as: 
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� � �3m]XM+]^ ]�ln �I�]^� o. (4.7)

 

This equation is of the same form as (3.15).  Therefore, it fulfills the requirements 

of a bandgap voltage reference.  Given that (4.7)  can be used to solve for B, M can be 

solved for by rewriting (4.6): 

� � �WX43XM+ � �� ln�I� � 3V���. (4.8)

 

Given that N is known, B is obtained from (4.7), and VEB1 is obtained from 

simulation, the only unknown in this equation is VREF.  As noted in [116] and [192], if 

VREF is set equal to VEB1 at a desired temperature, the contributions of R2 and R3 are 

effectively nulled.  Applying this to (4.8) yields: 

� � XM+� ln�I�. (4.9)

 

This equation shows M is ideally independent of R2 and R3 and mathematically 

proves that allowing VREF to equal VEB1 effectively nulls their contributions at a desired 

temperature. 

To account for amplifier non-idealities, the circuit shown in Figure 4.14 can be 

analyzed.  This circuit is a schematic representation of the voltage reference in [116] (see 

Figure 3.22) that includes input offset voltage (VOS), input bias current (IIN_B), and input 

offset current (IOS).  The input offset voltage is modeled using a voltage source between 

the inverting terminal of the amplifier and the node connecting I1 and Q1.  The input 

offset voltage represents the amount of voltage needed to balance the common-mode 
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response.  The input bias current and input offset current represent the gate current 

flowing into the input terminals of the error amplifier.   

 
Figure 4.14: Sub-1 V bandgap voltage reference including amplifier input offset voltage and amplifier 

input current.  Q1 and Q2 are diode-connected PNP BJTs.  I1, I2, and I3 are voltage-controlled current sources.  

The error amplifier ensures VEB1 + VOS = VEB2 + VR1.  VP and VM represent the non-inverting and inverting input 

voltages of the amplifier.  R1, R2, R3, and R4 are resistors used to zero the temperature slope and set the output 

voltage, VREF.  IIN_B and IOS represent the input bias current and the input offset current of the amplifier. 

The model for IIN_B and IOS is explained in Appendix B.2.  Using Figure 4.14, an 

equation for VREF can be written as (see Appendix B.2): 

WX4 � ��� ln�I� � 3�XM+3� � � � *���� � 2�3� � � � �OP_M&+��3� � � . (4.10)

 

This equation shows that VREF is a function of Vt, VEB1, VOS and IIN_B.  VOS and 

IIN_B are undesirable and introduce non-idealities that degrade performance.  In CMOS 

technologies with tox > 3 nm, IIN_B is negligible and can be ignored.  Therefore, in these 

technologies, the main source of non-ideality is VOS.  To reduce its impact on 

performance, transistor area is increased [35], [37].  However, in CMOS technologies 

with tox < 3 nm, IIN_B, which is proportional to device area, is not negligible.  Therefore, 

increasing area to improve performance is a difficult strategy to employ because the 
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impact of IIN_B is increased.  A circuit technique is needed to reduce the impact of IIN_B 

while allowing device area to be increased such that the effects of VOS are reduced. 

 
Figure 4.15: Sub-1 V bandgap voltage reference that minimizes the effects of amplifier input current.  

Q1 and Q2 are diode-connected PNP BJTs.  I1, I2, and I3 are voltage-controlled current sources.  The error 

amplifier ensures VEB1 = VEB2 + VR1.  VP and VM represent the non-inverting and inverting input voltages of the 

amplifier.  R1, R2, R3, and R4 are resistors used to zero the temperature slope and set the buffer voltage, VBUFFER.  

VBUFFER is the voltage transferred by the buffer to output of the reference, VREF.  The buffer is added to drain 

the input current of the error amplifier out of I3.  ML and ILOAD represent the load transistor and load current. 

The circuit shown in Figure 4.15 attempts to reduce the impact of gate current 

with the addition of a buffer amplifier.  The non-inverting input terminal of the buffer is 

used to drain IIN_B from I3.  Note that I3 contains IIN_B because I1 and I2, which both 

supply IIN_B to the error amplifier, are mirrors and designed to be equal to I3.  If the 

non-inverting input terminal of the buffer drains all of IIN_B from I3, no amplifier input 

current flows into R4 and transistor area can be increased to minimize the effects of VOS.  

This implies (4.6) can be used to approximate VBUFFER, which is forced to equal to VREF 

by the action of the buffer because no amplifier input current flows into R4.  In 

technologies with significant gate current, this technique can be employed when 

designing a bandgap voltage reference of the forms presented in [116] and [193].  If not 
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used, the input current from the error amplifier, which has a nonlinear temperature 

coefficient, degrades performance by flowing into R4.  This causes the absolute voltage of 

the reference to change and it also creates a non-zero temperature slope. 

4.8 The Design of an Ultra-Thin Oxide Sub-1 V Bandgap Voltage 

Reference 

This section describes the transistor-level design of the voltage reference shown 

in Figure 4.15.  It is broken into six subsections.  The first subsection describes how 

self-cascode structures and the gate-balancing technique were applied in the design of the 

voltage reference.  The second subsection describes a novel startup circuit that accounts 

for the presence of gate current.  The third subsection describes the impact of amplifier 

input current on the performance of the reference.  The fourth subsection describes the 

design tradeoff between power and area.  The fifth subsection discusses amplifier 

compensation.  The last subsection presents the simulation strategy. 

4.8.1 Self-Cascoding and Gate-Balancing 

Figure 4.16 shows a transistor-level schematic of the voltage reference in Figure 

4.15. The transistor pairs labeled SCX represent self-cascode structures.  SC1-SC5 form 

the error amplifier, SC6-SC8 form I1-I3, SC9-SC10 form the bias network for the error 

amplifier, and SC11-SC19 form the buffer amplifier.  ML and ILOAD form the load. 

The gate-balancing technique presented in Figure 4.8 was applied in Figure 4.16 

between nodes VA and VB.  VB drives the gates of SC4, SC5, and SC16.  SC4 and SC5 are 

equal in area.  SC16 is twice the area of SC4 and SC5.  Therefore, VB drives the 

equivalent of four equally sized self-cascode structures.  VA drives the gates of SC6-SC9, 

which are equal in area to SC4.  Therefore, VA and VB drive an equal amount of gate area.  
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If each of these self-cascode structures leak an equal amount of gate current, the error 

amplifier should remain balanced. 
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Figure 4.16: Transistor level schematic of Figure 4.15.  SC1-SC5, SC9, SC10, and M20 form the error 

amplifier.  SC6-SC8 form I1-I3.  SC13-S19 form the buffer amplifier.  SC22, SC23, M24, M25, Q3 and Q4 form 

the startup circuit.  ML and ILOAD form the load transistor and load current.  R1, R2, R3, and R4 are resistors used 

to zero the temperature slope and set the buffer voltage, VBUFFER.  CC1, CC2, and RC2 form the compensation 

networks for the error amplifier and the buffer amplifier. 

This technique was also applied between nodes VC and VD.  VD drives the gates of 

SC14 and SC15, which have equal areas.  VC drives the gate of SC17, which is twice the 

area of SC14.  Therefore, VC and VD both drive the equivalent of two equally sized 

self-cascode structures, which allows the buffer to remain balanced.  M20 is a 

diode-connected transistor used to minimize the drain voltage differences between SC9 

and SC4-SC8.  M21 is a diode-connected transistor used to minimize the drain voltage 
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differences between SC16 and SC4-SC5.  Note that a PMOS device was used to 

minimize the drain voltage differences in lieu of an NMOS device (see M9 in Figure 4.8) 

to maximize the voltage drop for a given device area and drain current.  The voltage drop 

increased because the threshold voltage of the PMOS transistor was greater than the 

threshold voltage of the NMOS transistor.  Also, the carrier mobility of the PMOS 

transistor was less than the carrier mobility of the NMOS transistor.  

4.8.2 Startup   

Figure 4.16 contains a startup circuit specifically designed to minimize the impact 

of gate current on voltage reference performance.  The startup circuit is made up of 

SC22, SC23, M24, M25, Q3, and Q4.  The startup circuit works as follows: SC22, SC23, 

Q3, and Q4 are used to bias M24 and M25.  If the reference fails to start, negligible 

current flows through Q1 and Q2.  Therefore, the gate voltages of M24 and M25 will be 

larger than their source voltages.  This will cause them to begin conducting.  The current 

out of their source terminals will be fed directly into the emitter terminals of Q1 and Q2.  

This causes the emitter voltages of Q1 and Q2 to rise, forcing SC1 and SC2 to conduct.  

The conduction of these self-cascode structures forces the feedback loop of the amplifier 

to place the reference in the desired operating condition.  Once in this condition, the 

startup circuit turns off because VGS24 and VGS25 are extremely small.  

The negative effects of gate current are balanced and minimized because the gate 

and source terminals of M24 and M25 are designed to change similarly with temperature.  

This occurs because these terminals are all connected to an emitter terminal of a 

diode-connected PNP BJT.  If M24 and M25 are sized equally, they leak the same 
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amount of gate current because they have equal voltages on their terminals.  This 

balances their gate current contribution.  Minimization occurs by sizing SC22, SC23, Q3, 

and Q4 such that VGS24 and VGS25 are as small as possible over the temperature range of 

the voltage reference. 

4.8.3 Impact of Amplifier Input Current 

Equation (4.10) showed that IIN_B factored directly into the output voltage of the 

reference.  In Figure 4.16, this current is represented by IG1 and IG2.  Although gate 

current is ideally independent of temperature under constant terminal voltage conditions 

(see [144]–[145]), IG1 and IG2 change with temperature via the terminal voltages of SC1 

and SC2.  These currents are CTAT because VGS1 and VGS2 are CTAT.  VGS1 and VGS2 are 

CTAT because VG1 and VG2 are ideally equal to the emitter voltage of Q1, which is a 

forward-biased diode with a temperature slope of ≈ −1.8 mV/°C [157].  To minimize the 

impact of IIN_B on performance, IR1 can be increased.  For example, (B.20) can be solved 

for R1 and the result can be substituted into (4.10) to obtain: 

WX4 � ��� ln�I� � 3�XM+3� � � � *���� � 2�3� � � � �OP_M�∆XM+ � *�����W+�3� � �� . (4.11)

 

The third term of this equation is dependent upon the ratio of IIN_B to IR1.  As IR1 

increases, the relative impact of this term decreases, thus reducing the impact of IIN_B.  

This assumes that IIN_B does not increase at the same rate as IR1.  Referring to Figure 4.16, 

this can be understood by assuming IR1 = ID2.  Therefore, as IR1 increases, ID2 increases.  

Assuming that βF_MOS increases with increases in drain current (see Section 5.1.3), the 



96 

 

relative impact of IIN_B will decrease, which implies that increasing IR1 reduces the impact 

of IIN_B on performance. 

The buffer is used to minimize the impact of amplifier input current on 

performance.  For example, VGS1 = VGS2 = VGS11 = VGS12 at a specific temperature because 

VREF is designed to equal VEB1 at that specific temperature,.  This ensures that the gate 

current mirrored by SC1 and SC2 into SC8 is equal to the gate current drawn by SC11 

and SC12 at the temperature where VREF = VEB1.  Therefore, at this specific temperature, 

SC11 prevents this current from flowing into R4 and impacting the ideal performance of 

the reference.  As temperature changes, VEB1  no longer equals VREF, resulting in VGS1 and 

VGS2 not equaling VGS11 and VGS12.  Therefore, the gate current of SC11 is slightly 

different than what is mirrored into SC8 by SC1 and SC2.  This is undesired and suggests 

a small amount of gate current will flow into R4.  Because IIN_B is CTAT, more CTAT 

current than expected is flowing.  To account for this extra CTAT current, R2 and R3 can 

be slightly increased.  By increasing R2 and R3, the CTAT currents IR2 and IR3 are 

reduced, which forces the total CTAT current flowing into R4 to be closer to what it 

would be if no gate current were flowing into R4.  The net effect of this technique is an 

increase in B. 

4.8.4 Power and Area Tradeoffs 

The amount of current flowing in each of the current mirrors of Figure 4.16 has a 

significant impact on total power consumption and area.  Equation (B.4) shows that this 

current is directly dependent upon R1.  Therefore, to reduce power, R1 should be large.  

This results in larger R2, R3, and R4 values, which increases the total area of the reference.  
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For example, if N = 8 and IR1 = 2 µA, R1 = 26.9 kΩ.  In the obtained technology, a 

precision poly resistor of this value can be made using an area of 69.5 µm
2
 (W = 1 µm, 

L = 69.5 µm).  On the other hand, if N = 8 and IR1 = 12 µA, R1 = 4.5 kΩ.  In the obtained 

technology, a precision poly resistor of this value can be made using an area of 11.5 µm
2
 

(W = 1 µm, L = 11.5 µm).  This example demonstrates the tradeoff between resistor area 

and power.  IR1 should be selected based on the application in which the reference is 

going to be used.  For example, in a low-power application, IR1 would be small and 

resistor area would be large.  In area-sensitive applications, IR1 could be increased, which 

would result in less overall area consumed by the reference.  Note that the operating 

temperature range of the reference and the voltage headroom needed across SC6 and SC7 

may limit increases in IR1.  Specifically, as IR1 increases, the voltage across Q1 and Q2 

increases, which implies the voltage headroom of I1 and I2 decreases.  As temperature 

decreases, the voltage headroom across I1 and I2 further decreases because of the CTAT 

nature of Q1 and Q2.  This decrease in voltage headroom may cause I1, I2, and I3 to stop 

acting like current mirrors, thus degrading reference performance.  Therefore, increases 

in IR1 are limited by the voltage headroom requirements of SC6-SC8 in Figure 4.16. 

Another concern of the voltage reference in Figure 4.16 is the total number of 

resistors.  It is desirable to minimize the number of resistors to reduce area.  To achieve 

the highest degree of matching between the resistors, they should be composed of series 

and parallel strings of a unit resistor, RU [116].  As shown in Figure 4.17, this can lead to 

a seemingly excessive number of resistors.  For example, if R1 = 5 kΩ, B = 30, and 

M = 15: R2 = R3 = 150 kΩ and R4 = 75 kΩ.  If R1 = RU, R2 and R3 would each be made 
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using 30 unit resistors while R4 would be made using 15 resistors.  Therefore, 76 total 

unit resistors would be needed for R1-R4. 

 
Figure 4.17: High-level schematic of [116] with excessive resistors.  VDD is the supply voltage, Q1 and 

Q2 are diode-connected PNP BJTs.  I1, I2, and I3 are voltage-controlled current sources.  The error amplifier 

ensures VEB1 = VEB2 + VR1.  VP and VM represent the voltages on the non-inverting and inverting terminals of the 

amplifier.  R1, R2, R3, and R4 are represented by series or parallel combinations a unit resistor (RU).  VREF is the 

output voltage. 

 
Figure 4.18: High-level schematic of [116] with combined resistors.  VDD is the supply voltage, Q1 and 

Q2 are diode-connected PNP BJTs.  I1, I2, and I3 are voltage-controlled current sources.  The error amplifier 

ensures VEB1 = VEB2 + VR1.  VP and VM represent the voltages on the non-inverting and inverting terminals of the 

amplifier.  R1, R2, R3, and R4 are represented by series or parallel combinations a unit resistor (RU).  VREF is the 

output voltage. 
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To decrease the total number of resistors, the technique presented in [116] can be 

used.  First, R1 is made using parallel combinations of RU.  Next, the resistors making up 

R2 and R3 are combined.  This can be done by recognizing that ideally VP = VM.  

Therefore, one end of R2 and one end of R3 are both ideally connected to VP = VM.  The 

other end of R2 and the other end of R3 are both physically connected to VREF.  This 

implies that R2 and R3 can be analyzed as if they are in parallel and suggests they can be 

combined [116].  The limit of combination occurs when the combined portions of R2 and 

R3 degrade performance.  This can be observed by performing Monte Carlo and process 

corners analyses.  If this technique is applied in the previous example, the number of 

resistors can be reduced from 76 to 16 (see Figure 4.18). 

4.8.5 Amplifier Compensation 

The error amplifier and buffer amplifier in Figure 4.16 must be compensated.  

The compensation of the error amplifier is achieved using a capacitor, CC1, with one end 

tied to VA and the other end tied to VDD.  The compensation of the buffer is achieved 

using a series combination of a resistor (RC2) and capacitor (CC2) between VC and VREF.  

These compensation techniques are heavily covered in textbooks [36], [40], [44], [48].  

Their effectiveness is determined by performing an AC simulation and calculating the 

phase and gain margins.  To ensure stability, the phase margin should be ≥ 45° and the 

gain margin should be ≥ −10 db [44].  The capacitors used in these techniques cannot be 

made using ultra-thin oxide MOSFETs (see Section 3.2.6).  To avoid the effects of gate 

current they can be made by using reverse-biased diode capacitance, 

metal-insulator-metal capacitance, or metal-oxide-metal capacitance. 
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4.8.6 Simulation Strategy 

An ultra-thin oxide version of the voltage reference shown in Figure 3.22 was 

compared to thick and ultra-thin oxide versions of the reference presented in [116].  The 

thick-oxide reference was designed to show that a sub-1 V bandgap voltage reference can 

achieve a high level of performance in a nanoscale CMOS technology.  Monte Carlo 

analyses were used to evaluate its results.  All of the transistors in the thick-oxide 

reference were then switched to ultra-thin oxide and the reference was re-simulated.  This 

was done to show the performance degradations caused by gate current.  A ultra-thin 

oxide version of Figure 4.16 was then designed and simulated.  A Monte Carlo analysis 

was performed and the results were compared to the previous two references.  Five other 

analyses were used to characterize the ultra-thin oxide sub-1 V bandgap voltage 

reference.  The first was a +/− 3-sigma process corners simulation of VREF vs. T.  The 

second was a +/− 3-sigma process corners simulation of VREF vs. VDD.  The third was a 

transient startup corners analysis of VREF vs. time (t).  The fourth was a simulation to 

study the impact of loading (ML and ILOAD in Figure 4.16) on performance.  The fifth was 

a sensitivity analysis, which was performed to determine which of BSIM4’s direct 

tunneling parameters the reference was most sensitive too. 

Large-area devices (W⋅L > 100 µm
2
) were used in this work.  The motivation for 

using device areas this large stems from the matching typically required in voltage 

references [35].  However, because gate current increases with area, matching and gate 

current trade off with each other.  The impact of this tradeoff was determined by 

performing Monte Carlo analyses.  For example, when designing the ultra-thin oxide 

bandgap voltage reference of Figure 4.16, a starting area was chosen for each device.  A 
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Monte Carlo analysis was performed on the voltage reference.  Device area was then 

increased and the Monte Carlo analysis was re-run.  This process was repeated until the 

best possible performance was obtained.  The optimum device area occurred when the 

combined negative effects of gate current and mismatch were at a minimum.  When the 

device area was smaller than optimum, performance was constrained by mismatch.  

When device area was larger than optimum, performance was constrained by gate 

current.  This approach represents a design methodology that can be employed when the 

combined negative effects of mismatch and gate current need to be minimized. 

4.9 Topics Not Addressed in This Work 

No attempts were made to model direct tunneling in this work.  There were two 

major reasons for not modeling.  First, accurate models already exist [13], [14], [31], 

[132]–[136].  Many of these models show excellent correlation with measurement across 

a wide range of device dimensions, terminal voltages, and temperature.  Also, the 

physical basis of these models are similar in the sense that they all depend on the five 

components of direct tunneling described in Section 3.2.3 (IGCS, IGCD, IGS, IGD, IGB).  This 

implies that the academic community generally agrees on how direct tunneling should be 

modeled.  Many of these models were developed over 10 years ago.  This suggests they 

have been subjected to academic scrutiny, without failure, for this period of time.  Also, 

the model presented in [136] is a part of BSIM4, which is widely used in industry.  For 

example, IBM relies on BSIM4 to model its 65 nm 10SF technology [15].  This implies 

ultra-thin oxide CMOS circuits are being designed using the BSIM4 direct tunneling 

model, which validates its ability to accurately predict behavior.  Given that models like 

this exist, any new attempt may be redundant and of little additional value. 
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The second reason for not attempting to model direct tunneling was the lack of 

published circuit techniques to deal with its negative effects on analog design.  This lack 

of publications directly motivated this work and implied any headway that could be made 

in this area had potential value.  Specifically, this work aimed to be the first to provide 

analog circuit solutions to direct tunneling.  These solutions were not based on a simple 

direct tunneling equation.  There is no “square-law” equivalent for direct tunneling.  Most 

compact models rely on approximations, fitting parameters, and smoothing functions to 

correctly describe its behavior.  This type of modeling is not exclusive to direct tunneling 

and is therefore not a concern [15].  Physical intuition was used to develop circuit 

solutions.  Specifically, this work used the fact that direct tunneling is modeled as having 

five components which are strong functions of a particular set of voltages.  Also, it made 

use of the approximation that βF_MOS is roughly proportional to 1/L
2 

[18].  Therefore, even 

though a single self-contained equation was not used, the proposed circuit solutions are 

rooted in accepted theory and physically verified models. 
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CHAPTER 5  

RESULTS 

This chapter presents the results of this work.  It has seven sections.  The first six 

sections presents simulation results from the six simulation strategy subsections of the 

previous chapter.  The first section presents simulation results of the gate current metrics 

described in Section 4.2.  It also contains a subsection that presents a channel length 

selection methodology for ultra-thin oxide MOSFETs.  The second section presents 

simulation results that characterize the impact of body biasing on gate current 

(Section 4.3).  The third, fourth, and fifth sections present simulation results of the 

current mirror and amplifier techniques described in Sections 4.4, 4.5, and 4.6.  The sixth 

section presents simulation results comparing the thick-oxide voltage reference presented 

in [116] to the ultra-thin oxide voltage reference described in Section 4.8.  The last 

section presents the design of a chip that was awarded via the MOSIS Education Program 

[38]. 

5.1 Gate Current Performance Metrics 

This section presents simulation results of the gate current metrics described in 

Section 4.2.  It has three subsections.  The simulation results from the first subsection 

characterize the impact of gate current on diode-connected transistors.  The simulation 

results from the second subsection characterize the impact of VDS on gate current.  The 

last subsection presents a channel length selection methodology for ultra-thin oxide 

MOSFETs. 
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5.1.1 Impact of Gate Current on Diode-Connected Transistors 

  
Figure 5.1: (a) βF_MOS vs. IBIAS.  (b) β0_MOS vs. IBIAS.  Both graphs refer to the circuit shown in Figure 

4.1 (a).  Transistor area was held constant at 100 µm2.  The legends specify L. 

The circuit in Figure 4.1 (a) was simulated to determine the impact of gate current 

on transistors with VGD = 0.  Under this condition, the ultra-thin oxide MOSFET acts 

similar to a BJT because IGD has negligible impact on the directionality of IG.  Two 

scenarios were simulated.  The first scenario kept device area constant at 100 µm
2
 while 

varying L and IBIAS.  This was done to determine the impact of L and IBIAS on βF_MOS, 

β0_MOS, and rπ_MOS.  The results for this scenario are shown in Figure 5.1 and Figure 5.2.   

Figure 5.1 (a) plots βF_MOS vs. IBIAS and Figure 5.1 (b) plots β0_MOS vs. IBIAS.  The 

results show that βF_MOS and β0_MOS increase significantly with reductions in L.  For 

example, as L decreased from 4 µm to 500 nm  (IBIAS = 5 µA), βF_MOS increased from 30 

to 310 and β0_MOS increased from 50 to 490.  These results confirm what was presented in 

[18], which is that βF_MOS and β0_MOS both increase significantly with reductions in L. 

Figure 5.1 also shows that βF_MOS and β0_MOS increase significantly with increases 

in IBIAS.  For example, as IBIAS increased from 1 µA to 20 µA, βF_MOS increased from 89 to 

275 and β0_MOS increased from 137 to 445.  As IBIAS increases, the transistor approaches 

saturation and the dominant current mechanism changes from diffusion to drift.  This 
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causes the device to act more like a MOSFET and less like a BJT.  The results from 

Figure 5.1 (b) suggest that βF_MOS and β0_MOS can be increased at the expense of power 

and voltage by increasing the bias current. 

  
Figure 5.2: (a) β0_MOS/βF_MOS vs. IBIAS.  (b) rπ_MOS vs. IBIAS.  Both graphs refer to the circuit shown in 

Figure 4.1 (a).  Transistor area was held constant at 100 µm2.  The legends specify L. 

Figure 5.2 (a) plots β0_MOS/βF_MOS vs. IBIAS.  The results show that β0_MOS/βF_MOS is 

greater than one over a wide range of bias currents and channel lengths.  This implies that 

β0_MOS and βF_MOS are not equal, which demonstrates a difference between ultra-thin oxide 

MOSFETs and BJTs, where βF ideally equals β0.  However, the plot shows that 

β0_MOS/βF_MOS does not change significantly with changes in L and IBIAS.  For example, as 

IBIAS increased from 5 µA to 80 µA (L = 1 µm), β0_MOS/βF_MOS only changed 3.125% (1.6 

to 1.65).  This implies that β0_MOS is typically greater than βF_MOS and that their ratio 

remains relatively constant over a wide range of bias currents. 

Figure 5.2 (b) plots rπ_MOS vs. IBIAS.  The results show that rπ_MOS is a strong 

function of L.  For example, as L increased from 500 nm to 4 µm (IBIAS = 4 µA), rπ_MOS 

decreased from 3.5 MΩ to 0.6 MΩ.  This suggests that the effects of rπ_MOS may become 

important when designing with long-channel ultra-thin oxide MOSFETs.  rπ_MOS is also a 

strong function of bias current.  For example, as IBIAS increased from 2 µA to 18 µA 
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(L = 500 nm), rπ_MOS decreased from 7.1 MΩ to 1.6 MΩ.  Therefore, rπ_MOS generally 

increases with decreasing IBIAS and decreasing L.  This suggests that the effects of rπ_MOS 

can be minimized by using low-power short-channel devices. 

  
Figure 5.3: (a) βF_MOS vs. IBIAS.  (b) β0_MOS vs. IBIAS.  Both graphs refer to the circuit shown in Figure 

4.1 (a).  L = 1 µm in both graphs.  The legends specify W. 

The second scenario in which Figure 4.1 was simulated kept L constant at 1 µm 

while varying W and IBIAS.  This was done to determine the impact of W on βF_MOS and 

β0_MOS.  The results are shown in Figure 5.3.  The plots show that βF_MOS and β0_MOS 

generally increase with increasing IBIAS.  For example, in Figure 5.3 (a), βF_MOS increased 

from 486 to 830 as IBIAS increased from 20 µA to 80 µA (W = 25 µm).  Likewise, in 

Figure 5.3 (b), β0_MOS increased from 800 to 1330 as IBIAS increased from 20 µA to 80 µA 

(W = 25 µm).  These metrics increase with increases in IBIAS because the device is 

approaching saturation and operating more like a MOSFET and less like a BJT. 

Figure 5.3 also shows that βF_MOS and β0_MOS decrease with increasing W.  For 

example, in Figure 5.3 (a), βF_MOS decreased from 630 to 270 as W increased from 25 µm 

to 200 µm (IBIAS = 40 µA).  Likewise, in Figure 5.3 (b), β0_MOS decreased from 1030 to 

444 as W increased from 25 µm to 200 µm (IBIAS = 40 µA).  The reduction of βF_MOS and 
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β0_MOS with increases in W seems to disagree with what was claimed in [18], where 

βF_MOS was shown to be relatively independent of W.  This discrepancy may be due to the 

fact that constant current was used in Figure 5.3 whereas constant voltage was used in 

[18].  Increasing W with constant current results in a reduction of VBIAS and smaller 

βF_MOS values because the MOSFET (drift current) approaches the sub-VTH region and 

begins to act like a BJT (diffusion current) [44].  Therefore, in current-mode circuits, 

βF_MOS cannot be considered to be independent of W.  However, increasing W with 

constant voltage, and maintaining saturation, results in increased power and relatively 

constant βF_MOS and β0_MOS values [18].  Therefore, the impact of W on βF_MOS and β0_MOS 

is a function of the type of design (current or voltage) being performed. 

5.1.2 Impact of VDS on Gate Current 

The circuit in Figure 4.1 (b) was simulated to determine the impact of VDS and 

IBIAS on IG, αF_MOS, βF_MOS, and rµ_MOS.  Transistor dimensions of W = 100 µm and 

L = 1 µm were chosen for this simulation.  The results are shown in Figure 5.4 and Figure 

5.5. 

Figure 5.4 (a) plots IG vs. VDS.  This plot shows that the directionality of IG is a 

function of VDS for small IBIAS values.  For example, as VDS increased from 0.45 V to 

1.0 V for IBIAS = 2 µA, IG decreased from 10 nA to −81 nA.  This shows that the negative 

contributions of IGD can be strong enough to change the direction of IG.  It also suggests 

that at a certain VDS value, IG = 0 and βF_MOS ≈ ∞.  However, to achieve this condition, a 

relatively large amount of voltage must be placed across the drain and source terminals of 

the device.  In technologies with supply voltages of 1 V or less, increasing VDS above 
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0.5 V to maximize βF_MOS may not be practical.  The plot also shows that the 

directionality of IG remains constant (positive) as IBIAS increases.  For example, as VDS 

increased from 0.15 V to 1.0 V for IBIAS = 32 µA, IG decreased from 98 nA to 30 nA.  

This suggests that IG can be made unidirectional at the expense of power by designing 

with larger bias currents. 

  
Figure 5.4: (a) IG vs. VDS.  (b) αF_MOS vs. VDS.  Both graphs refer to the circuit shown in Figure 4.1 (b).  

L = 1 µm and W = 100 µm for both graphs.  The legends specify IBIAS. 

The impact of IG’s bi-directionality is shown in Figure 5.4 (b), which plots αF_MOS 

vs. VDS.  In BJTs, αF is typically less than one.  However, as shown in Figure 5.4 (b), 

αF_MOS can be greater than one.  For example, as VDS increased from 0.2 V to 1.0 V for 

IBIAS = 4 µA, αF_MOS increased from 0.99 to 1.01.  This demonstrates a difference between 

ultra-thin oxide MOSFETs and BJTs.  This difference only occurs at relatively small bias 

currents.  Therefore, to avoid the bi-directionality of IG, IBIAS should be increased such 

that the positive contributions of IGCS, IGCD, and IGS dominate the negative contribution of 

IGD. 

Figure 5.5 (a) plots βF_MOS vs. VDS.  The plot shows that βF_MOS increases with 

increasing VDS.  For example, as VDS increased from 0.1 V to 0.4 V for IBIAS = 2 µA, 
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βF_MOS increased from 97 to 188.  The increases in βF_MOS with increasing VDS can be 

explained by reduced rO and the increasing negative contributions of IGD.  Specifically, as 

VDS increases, MOSFET output resistance generally decreases (larger ID) and IG generally 

decreases due to the increasing negative contributions of IGD.  The plot also shows that 

βF_MOS increases with increasing IBIAS.  For example, as IBIAS increased from 2 µA to 

16 µA for VDS = 0.2 V, βF_MOS increased from 116 to 233.  The increases in βF_MOS with 

increasing IBIAS occur because of reduced rO and because the device tends to operate more 

like a MOSFET and less like a BJT. 

  
Figure 5.5: (a) βF_MOS vs. VDS.  (b) rµ_MOS vs. VDS.  Both graphs refer to the circuit shown in Figure 

4.1 (b).  L = 1 µm and W = 100 µm for both graphs.  The legends specify IBIAS. 

Figure 5.5 (b) plots rµ_MOS vs. VDS.  In general, the results show that rµ_MOS is large 

enough to be considered negligible in most applications.  For example, as VDS increased 

from 0.4 V to 0.8 V for IBIAS = 2 µA, rµ_MOS decreased from 30 MΩ to 5 MΩ.  These 

small-signal resistance values are generally much larger than anything they would be in 

parallel with.  Therefore, the effects of rµ_MOS can generally be assumed negligible in 

ultra-thin oxide analog CMOS design. 
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5.1.3 Channel Length Selection Methodology 

 
Figure 5.6: Simulated |∂VTH/∂L| vs. L and βF_MOS vs. L for NMOS and PMOS transistors with 

W·L = 100 µm2 and ID = 10 µA. 

The preceding analysis has shown that gate current is a strong function of channel 

length.  The use of long-channel ultra-thin oxide devices is generally restricted because 

βF_MOS is roughly proportional to 1/L
2
.  This proportionality suggests L should be set to 

the process minimum.  However, this is not practical for several reasons.  First, L is 

typically increased to improve ro-degrading effects such as drain-induced barrier 

lowering and channel length modulation [44].  Second, due to the halo implant, the 

threshold voltage, VTH, rapidly increases as L decreases [50], [52].  Therefore, for a given 

ID and MOSFET aspect ratio (AR ≡ W/L), operating at smaller channel lengths increases 

VTH and the required gate-to-source voltage, VGS, to supply the drain current.  This limits 

voltage headroom, which is a major concern in technologies with VDD ≤ 1 V [18].  Third, 

the rapid increases in VTH caused by the halo implant limits achievable matching [95].  

For example, consider Figure 5.6 which plots |∂VTH/∂L| vs. L and βF_MOS vs. L for NMOS 

and PMOS devices in the obtained 65 nm technology.  As L approaches the process 

minimum, |∂VTH/∂L| becomes exponential-like and approaches a maximum value of 

2 mV/nm in NMOS devices.  Operating on the exponential-like portion of this curve 
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exacerbates mismatch because small differences in L result in significant differences in 

VTH [95]. 

The previous paragraph suggests that a minimum analog channel length, LMIN_A, is 

needed to balance gate current with ro-degradations, reduced supply voltages, and 

mismatch.  The ITRS defines LMIN_A as 5·LMIN, where LMIN is the process minimum [17].  

This approach yields a value of LMIN_A = 250 nm in the obtained technology 

(LMIN = 50 nm).  Referring to Figure 5.6, this can be validated by observing that |∂VTH/∂L| 

is approximately 200 µV/nm for both devices.  It can also be seen that βF_MOS is relatively 

large, approximately 580 for both devices.  Therefore, for traditional ultra-thin oxide 

CMOS technologies, an LMIN_A value in the 200 nm to 300 nm range helps reduce the 

impact of ro-degradations, reduced supply voltages, and matching limitations while still 

allowing for relatively large βF_MOS values. 

The restriction of long-channel devices stems from βF_MOS being proportional to 

1/L
2
.  This proportionality suggests that a maximum analog channel length, LMAX_A, is 

needed to prevent extremely small βF_MOS values.  One approach is to restrict βF_MOS to a 

minimum value, βF_MOS_MIN..  For example, assuming that ID and the device area are 

known from matching considerations, L can be increased until βF_MOS = βF_MOS_MIN.  The 

channel length at which this equality occurs represents LMAX_A. 

Figure 5.7 plots LMAX_A vs. ID for NMOS and PMOS devices with an area of 

100 µm
2
.  A βF_MOS_MIN value of 100 was chosen.  The results show that LMAX_A increases 

as ID increases for both devices.  For example, the NMOS LMAX_A changed from 1 µm to 

3.3 µm as ID changed from 2 µA to 64 µA.  One possible explanation for this behavior is 



112 

 

as follows.  For a relatively small drain current, the device operates in the weak inversion 

region.  In this region, MOSFETs function similar to BJTs because they are dominated by 

diffusion current [44].  In traditional ultra-thin oxide CMOS technologies, this BJT-like 

behavior is more-pronounced because MOSFET gate current is somewhat similar to BJT 

base current [18].  Therefore, for a given L, βF_MOS will be smaller for a MOSFET 

operated in the weak inversion region (small ID) compared to a MOSFET operated in the 

strong inversion region (large ID) because it acts more like a BJT in the weak inversion 

region.  Of course, for either region, βF_MOS decreases with increases in L.  To increase 

LMAX_A and generally avoid operating in the weak and moderate inversion regions, ID can 

be increased or device area can be decreased.  However, both of these approaches should 

be weighed against power limitations, voltage headroom, and matching requirements. 

 
Figure 5.7: Simulated LMAX vs. ID for NMOS and PMOS transistors with W·L = 100 µm2 for  

βF_MOS_MIN = 100. 

Figure 5.7 also shows that the LMAX_A of the PMOS device is consistently shorter 

than the LMAX_A of the NMOS device.  One possible explanation for this stems from 

differences in |VGS|.  For example, assuming a constant ID and equal device dimensions, 

|VGSP| could be greater than VGSN because of differences in threshold voltage (|VTHP| > 
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VTHN) or channel mobility (µn > µp).  Gate current is a strong function of |VGS| and a weak 

function of threshold voltage and channel mobility [13], [136].  Therefore, for a given ID, 

|IGP| will be larger than IGN (βF_MOS_P < βF_MOS_N) because |VGSP| > VGSN.  As L increases, 

βF_MOS_P will approach βF_MOS_MIN quicker than βF_MOS_N because |IGP| > IGN.  This results 

in the LMAX_A of the PMOS device being shorter than the LMAX_A of the NMOS device. 

5.2 Impact of Body Biasing on Gate Current 

This section presents simulation results that characterize the impact of body 

biasing on gate current.  It is broken into two subsections.  The first subsection presents 

the results for constant terminal voltages (Figure 4.2).  The second subsection presents 

the results for constant drain current (Figure 4.3). 

5.2.1 Constant Terminal Voltages 

The circuit in Figure 4.2 was simulated to determine the impact of VBS on IG when 

a MOSFET is under constant terminal voltages.  With respect to an NMOS transistor 

under constant terminal voltage conditions, increases in VBS decrease VTH and therefore 

increase ID.  IG is not a strong function of VTH [13], [136].  Therefore, increasing VBS 

yields larger βF_MOS values because ID increases and IG remains relatively constant.  For 

example, consider Figure 5.8, which plots βF_MOS vs. |VBS| and the percent reduction in IG 

vs. |VBS| for an NMOS transistor and a PMOS transistor under constant terminal voltages.  

Both devices were designed with W = 100 µm and L = 1 µm.  Note that VBS of the NMOS 

device and VSB of the PMOS device were both kept greater than 0 V.  The results show 

that βF_MOS increases significantly with increases in |VBS|.  For example, βF_MOS increased 

from approximately 240 to 1200 for both devices as |VBS| was swept from 0 V to 0.5 V.  

Note that |VBS| was not swept above this voltage to avoid forward-biasing the 
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body-to-source diode.  The increases in βF_MOS were not caused by significant reductions 

in IG.  For example, Figure 5.8 (b) shows that IG was reduced by a maximum of 10% for 

both devices across the entire voltage range.  This small decrease can mostly likely be 

attributed to the dependence of the probability of direct tunneling on the gate-to-body 

voltage, VGB [13].  Therefore, the improvements in βF_MOS can be mostly attributed to 

significant increases in ID. 

  
Figure 5.8: Simulated (a) βF_MOS vs. |VBS| and (b) percent reduction in IG vs. |VBS| for an NMOS 

transistor and a PMOS transistor under a constant voltage condition.  Each transistor was sized with 

W = 100 µm and L = 1 µm and had an ID of 16 µA at |VBS| = 0 V.  VBS of the NMOS device and VSB of the PMOS 

device were both kept greater than 0 V. 

One potential application of the constant terminal voltage condition is forward 

body-biased transistors.  Forward body biasing is used in digital circuits to reduce critical 

path delay [88].  Along with reducing delay, Figure 5.8 suggests it also helps reduce the 

relative impact of gate current. 

5.2.2 Constant Drain Current 

The circuit in Figure 4.3 was simulated to determine the impact of VBS on IG for a 

MOSFET with constant drain current.  With respect to an NMOS transistor under 

constant drain current conditions, increases in VBS decrease VTH and thus reduce the VGS 
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value needed to supply ID.  IG is a strong function of VGS [13], [136].  Therefore, 

increasing VBS yields larger βF_MOS values because IG decreases with reductions in VGS.  

For example, Figure 5.9  plots βF_MOS vs. |VBS| and the percent reduction in IG vs. |VBS| for 

an NMOS transistor and a PMOS transistor under constant drain current.  Both transistors 

were designed with W = 100 µm and L = 1 µm.  The results show βF_MOS values similar to 

those of the constant voltage condition of Figure 5.8.  However, the increases in βF_MOS 

are not caused by increases in ID.  Instead, they are caused by significant reductions in IG.  

For example, as |VBS| was swept from 0 V to 0.5 V, IG was reduced by approximately 

80% for both devices.  Therefore, the improvements in βF_MOS can be attributed to 

significant reductions in IG. 

  
Figure 5.9: Simulated (a) βF_MOS vs. |VBS| and (b) percent reduction in IG vs. |VBS| for an NMOS 

transistor and a PMOS transistor under a constant current condition.  Each transistor was sized with 

W = 100 µm and L = 1 µm and had an ID of 16 µA at |VBS| = 0 V.  VBS of the NMOS device and VSB of the PMOS 

device were both kept greater than 0 V. 

One potential application of the constant drain current condition is the input 

differential pair of an amplifier.  For example, MOSFET input pairs often have their body 

terminals tied to a power or ground and their source terminals tied to the output node of a 

current mirror.  By tying their body and source terminals together, the total amount of 
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gate current flowing through an input pair can be significantly reduced, resulting in less 

amplifier input current.  The only downside of this technique is that the input pair must 

be placed in a separate well. 

5.3 The Design of Ultra-Thin Oxide CMOS Current Mirrors 

This section presents simulation results of the current mirror techniques described 

in Section 4.4.  It is broken into four subsections.  The first subsection presents a current 

mirror comparison.  The second subsection presents the results of self-cascode current 

mirrors.  The third subsection presents the results of self-cascode current mirrors with a 

helper transistor.  The fourth subsection presents the results of triple self-cascode current 

mirrors. 

5.3.1 Current Mirror Comparison 

 
Figure 5.10: Basic Cascode Current Mirror.  VDD is the supply voltage, IIN is the input current, VOUT is 

the output voltage, IOUT is the output current.  VBIAS1 is the gate-bias voltage of M3 and M4.  VBIAS2 is the 

gate-bias voltage of M1 and M2.  M1-M4 form the basic cascode current mirror. 

The impact of gate current on current mirrors was investigated by simulating a 

simple current mirror (Figure 3.17), a cascode current mirror (Figure 5.10), and a 

self-cascode current mirror (Figure 4.4).  For all three mirrors, IIN was set to 2 µA and the 
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desired current gain was Ai = 1.  The transistor dimensions for the simple and cascode 

mirrors were W = 10 µm and L = 10 µm.  The self-cascode current mirror was designed 

using self-cascode structures where the devices being cascoded had W = 10 µm and 

L = 10 µm and the cascoding devices had W = 30 µm and L = 3.33 µm.  The results are 

shown in Figure 5.11.  Figure 5.11 (a) plots Ai vs. VOUT for all three mirrors.  The results 

show that the desired current gain was not achieved by any of the mirrors.  For example, 

the current gain of the simple current mirror went from 0.69 to 0.95 as VOUT increased 

from 0.2 V to 1.0 V.  This was expected considering the simple current mirror relies on 

single devices that exhibit poor output resistance. 

  
Figure 5.11: (a) Ai vs. VOUT for the three types of current mirrors noted in the legend (IIN = 2 µA).  

W = 10 µm and L = 10 µm for all devices in the simple and basic cascode current mirrors.  The cascoded devices 

of the self-cascode current mirror were designed with W = 10 µm and L = 10 µm.  The cascoding devices of the 

self-cascode current mirror were designed with W = 30 µm and L = 3.33 µm  (b) ROUT vs. VOUT for a simple 

current mirror with W = 10 µm and L = 10 µm.  The legend specifies IIN. 

Figure 5.11 (b) plots ROUT vs. VOUT for the simple current mirror for four different 

IIN values.  The results show that the output resistance of the simple current mirror was 

never greater than 400 kΩ for all simulated values of IIN.  These results quantify the poor 

output resistance of single transistors in nanoscale CMOS technologies. 
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Figure 5.11 (a) shows that the current gain of the basic cascode current mirror 

saturated at approximately 0.4.  The current gain saturated at this value because IIN 

supplied significant gate current to four relatively large transistors.  It took approximately 

400 mV across the current mirror to achieve this saturation.  Considering that VDD = 1 V, 

this may be too much voltage headroom to spend on a current mirror.  These results 

explain why basic cascode structures are generally avoided in nanoscale CMOS 

technologies. 

Figure 5.11 (a) shows that the current gain of the self-cascode current mirror 

saturated at approximately 0.6.  However, unlike the cascode current mirror, it only took 

150 mV across VOUT to achieve this saturation.  This was a significant improvement over 

the basic cascode current mirror and suggested that a reliable current mirror could be 

designed if the gain degradations caused by gate current could be overcome. 

5.3.2 Self-Cascode Current Mirrors 

To reduce the impact of gate current on the self-cascode current mirror of Figure 

4.4, transistors M1-M4 should be sized such that their gate current is minimized.  This 

can be accomplished using the channel length selection methodology outlined 

Section 5.1.3.  For example, assuming IIN, IOUT, and the area needed for M1 and M2 to 

meet matching requirements are known, L1-L2 can be set equal to LMAX_A and L3-L4 can be 

set equal to LMIN_A.  Setting L3 and L4 equal to LMIN_A helps minimize the gate current of 

M3 and M4 and also increases SF3 and SF4, which allows the current mirror to provide 

high output resistances at low output voltages.  The only unknowns with this approach 

are W3 and W4, which can be used to set SF3 and SF4. 
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Figure 5.12: (a) Ai vs. VOUT  and (b) ROUT vs. VOUT for a self-cascode current mirror with IIN = 2 µA.  

Both graphs refer to Figure 4.4.  The cascoded devices were designed with W = 100 µm and L = 1 µm.  The 

cascoding devices were designed with L = 0.25 µm.  The legends specify the width of the cascoding transistors. 

Figure 5.12 plots Ai vs. VOUT and the output resistance, ROUT, vs. VOUT for an 

NMOS self-cascode current mirror with a desired unity current gain and an IIN of 2 µA.  

The cascoded transistors of the mirror had an area of 100 µm
2
 and a channel length of 

LMAX_A (LMAX_A_2µA = 1 µm).  The cascoding devices of the mirror were sized with 

L = LMIN_A = 0.25 µm.  The width of the cascoding device, WTOP, was a variable.  WTOP 

values of 100 µm and 200 µm were simulated.  The mirror with a WTOP value of 200 µm 

had an SF value of 8 while the mirror with a WTOP value of 100 µm had an SF value of 4.  

The results show that strategically sized self-cascode current mirrors are capable of 

minimizing the impact of IG on the current gain under relatively small currents while still 

producing high output resistances at low output voltages.  For example, the output 

resistance of the mirror with WTOP = 100 µm reached a value of 1 MΩ at VOUT = 0.1 V.  

Its current gain was within 5% of the desired value for 0.1 V ≤ VOUT ≤ 0.6 V.  The mirror 

achieved a peak output resistance of 3.1 MΩ at VOUT = 0.33 V.  WTOP had a noticeable 

impact on the output resistance.  For example, the difference in output resistance between 

the two WTOP values was 1.6 MΩ at VOUT = 0.2 V.  This suggests that at relatively small 
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input currents, large output resistances with minimal voltage overhead can be obtained by 

increasing SF via the width of the cascoding transistor. 

  
Figure 5.13: (a) Ai vs. VOUT  and (b) ROUT vs. VOUT for a self-cascode current mirror with IIN = 16 µA.  

Both graphs refer to Figure 4.4.  The cascoded devices were designed with W = 100 µm and L = 1 µm.  The 

cascoding devices were designed with L = 0.25 µm.  The legends specify the width of the cascoding transistors. 

Figure 5.13 plots Ai vs. VOUT and the output resistance, ROUT, vs. VOUT for an 

NMOS self-cascode current mirror with a desired unity current gain and an IIN of 16 µA.  

The cascoded devices had an area of 100 µm
2
 and a channel length of LMAX_A 

(LMAX_A_16µA = 2 µm).  The cascoding devices of were sized with L = LMIN_A = 0.25 µm.  

The width of the cascoding device, WTOP, was a variable.  WTOP values of 100 µm and 

200 µm were simulated.  The mirror with a WTOP value of 200 µm had an SF value of 32 

while the mirror with a WTOP value of 100 µm had an SF value of 16.  The results show 

that strategically sized self-cascode current mirrors are capable of minimizing the impact 

of IG on the current gain under relatively large current conditions while producing high 

output resistances at low output voltages.  For example, the output resistance of the 

mirror with WTOP = 200 µm reached a value of 1.39 MΩ at VOUT = 0.5 V.  Its current gain 

was within 5% of the desired value for 0.1 V ≤ VOUT ≤ 1 V.  The impact of WTOP on 

performance was not as noticeable in Figure 5.13.  For example, the difference in output 



121 

 

resistance between the two WTOP values was only 180 kΩ at VOUT = 0.2 V.  This suggests 

that at relatively large input currents, SF can be reduced by decreasing the width of the 

cascoding transistor without a significant impact on current mirror performance. 

One concern with the architecture of Figure 4.4 is the bi-directionality of IG4.  

Ideally, IG4 flows into the gate of M4 and is supplied by IIN.  However, if the gate-to-drain 

voltage of M4, VGD4, is large and negative, IG4 could flow out of the gate of M4 [17].  

This is caused by the gate-to-drain overlap current, IGD4, which is a strong function of 

VGD4 and it suggests IOUT is directly supplying IG4 and indirectly supplying some of 

IG1-IG3 [13], [136].  This could potentially degrade ROUT as VOUT increases because VOUT 

would be supplying an undesired current.  For example, consider the 2 µA self-cascode 

current mirror of Figure 5.12, where Ai increased by 0.19 and ROUT decreased by 1.3 MΩ 

as VOUT increased from 0.6 V to 1.0 V.  These degradations were caused by IOUT directly 

supplying IG4 and indirectly supplying some of IG1-IG3.  To avoid this problem, IIN can be 

chosen large enough such that IG4 is always supplied by IIN or VOUT can be restricted to a 

voltage range where IG4 is always supplied by IIN. 

A self-cascode current mirror (Figure 4.4) was compared to a simple current 

mirror (Figure 3.17) to illustrate the output resistance enhancements that can be obtained 

by following the channel length selection methodology of Section 5.1.3.  The simple 

current mirror was designed using W = 100 µm and L = 1 µm.  The self-cascode current 

mirror was designed using self-cascode structures where the devices being cascoded had 

W = 100 µm and L = 1 µm and the cascoding devices had W = 100 µm and 

L = LMIN_A = 0.25 µm.  The desired current gain was Ai = 1.  The results are shown in 
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Figure 5.14 for IIN values of 2 µA and 16 µA.  Figure 5.14  (a) plots ROUT vs. VOUT for the 

self-cascode current mirror.  The plot shows that the self-cascode current mirror achieves 

relatively high output resistances across a wide voltage range.  For example, the 2 µA 

self-cascode current mirror had an output resistance greater than 1 MΩ for 

0.2 V ≤ VOUT ≤ 1.0 V.  The 16 µA self-cascode current mirror had an output resistance 

greater than 1 MΩ for 0.31 V ≤ VOUT ≤ 1.0 V. 

  
Figure 5.14: (a) ROUT vs. VOUT for the self-cascode current mirror of Figure 4.4.  The cascoded devices 

were designed with W = 100 µm and L = 1 µm.  The cascoding devices were designed with W = 100 µm and 

L = 0.25 µm.  The legend specifies IIN.  (b) ROUT_SC/ROUT_SIMPLE vs. VOUT.  The simple current mirror was designed 

with W = 100 µm and L = 1 µm.  The legend specifies IIN. 

Figure 5.14 (b) plots the ratio of output resistances between the two mirrors vs. 

VOUT.  The plot shows that the self-cascode current mirror is capable of consistently 

providing 5-to-10 times the output resistance of a simple current mirror across a wide 

voltage range.  For example, the 2 µA self-cascode current mirror had an output 

resistance at least five times that of the simple current mirror for 0.38 V ≤ VOUT ≤ 0.77 V.  

The 16 µA self-cascode current mirror had an output resistance at least ten times that of 

the simple current mirror for 0.15 V ≤ VOUT ≤ 1.0 V.  These results suggest that 
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self-cascode current mirrors represent a desirable low-voltage alternative to simple 

current mirrors in ultra-thin oxide technologies. 

5.3.3 Self-Cascode Current Mirrors with a Helper Transistor 

Proper sizing and biasing may not always be enough to overcome the current gain 

degradations of (4.4).  For example, the channel length selection methodology described 

in Section 5.1.3 may fail if the desired current gain is greater than one or if channel 

lengths longer than LMAX_A are used for M1 and M2 of Figure 4.4. 

As the desired current gain increases, the widths of M2 and M4 are scaled to be Ai 

times larger than M1 and M3 (W4 = Ai·W3, W2 = Ai·W1).  Therefore, as Ai increases, IG2 

and IG4 will increase because of the increases in area of M2 and M4 (IG ∝ W·L).  This will 

cause more of IIN to flow into the gates of M2 and M4, thus further degrading the current 

gain. 

Assuming constant area, βF_MOS1 and βF_MOS2 will decrease if channel lengths 

longer than LMAX_A are used for M1 and M2 in Figure 4.4 (βF_MOS ∝ 1/L
2
) [19]–[20].  This 

will cause IG1 and IG2 to increase and thus degrade Ai.  One possible solution to these 

problems is shown in Figure 4.5.  This figure is similar to Figure 4.4 except for the 

addition of a helper transistor, M5.  This additional transistor is used to supply gate 

current to M1-M4.  A similar technique has been applied using BJTs [44].  Assuming that 

M5 is relatively small, its gate current is negligible.  This forces all of IIN into the drain of 

M3 and implies that IOUT will mirror IIN because of the high output resistance provided by 

the self-cascode structures. 
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Figure 5.15:  (a) Ai vs. VOUT and (b) ROUT vs. VOUT for the self-cascode current mirror of Figure 4.4.  

The cascoded devices were designed with W = 20 µm and L = 5 µm.  The cascoding devices were designed with 

W = 40 µm and L = 1.25 µm.  IIN was 2 µA.  The legends specify the desired current gain. 

  
Figure 5.16:  (a) Ai vs. VOUT and (b) ROUT vs. VOUT for the self-cascode current mirror of Figure 4.5.  

The cascoded devices were designed with W = 20 µm and L = 5 µm.  The cascoding devices were designed with 

W = 40 µm and L = 1.25 µm.  IIN was 2 µA.  The helper transistor was designed with W = 5 µm, L = 0.5 µm.  The 

legends specify the desired current gain. 

Figure 5.15 and Figure 5.16 plot Ai vs. VOUT and ROUT vs. VOUT for four 

self-cascode current mirrors: two without a helper transistor (Figure 4.4, Figure 5.15) and 

two with a helper transistor (Figure 4.5, Figure 5.16).  For all four mirrors, IIN was 2 µA, 

and the MOSFETs were sized as follows: L1 = L2 = 5 µm, W1 = 20 µm, W2 = Ai·20 µm, 

L3 = L4 = 1.25 µm, W3 = 40 µm, W4 = Ai ·40 um, L5 = 0.5 µm, and W5 = 5 µm.  Target Ai 

values of 2 and 8 were chosen.  Figure 5.15 (a) shows that the current gain was 

significantly lower than its desired value for both mirrors without a helper transistor.  For 
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example, the helper-less mirror with a desired current gain of 2 achieved a maximum 

gain of 1.69 and the mirror with a desired current gain of 8 achieved a maximum gain of 

4.95.  Figure 5.16 (a) shows that both mirrors with a helper transistor were within 5% of 

their target gain value for 0.1 V ≤ VOUT ≤ 1 V.  With respect to output resistance, Figure 

5.16 (b) shows that ROUT of the mirrors with a helper transistor was larger than those 

without a helper transistor.  For example, the mirror with a helper transistor and desired 

current gain of 2 had an output resistance at least 0.5 MΩ greater than that of the 

helper-less mirror for 0.39 V ≤ VOUT ≤ 1 V.  For the mirrors with a desired current gain of 

8, the mirror with a helper transistor had an ROUT greater than 1 MΩ for 

0.28 V ≤ VOUT ≤ 0.88 V, while the helper-less mirror never achieved an ROUT of 1 MΩ. 

5.3.4 Triple Self-Cascode Current Mirrors 

The triple self-cascode current mirror of Figure 4.6 was simulated to determine 

the impact of an extra self-cascode on mirror performance.  The triple self-cascode 

current mirror was designed with W = 100 µm for all transistors.  The bottom transistors 

had channel lengths of 1 µm, the middle transistors had channel lengths of 0.5 µm, and 

the top transistors had channel lengths of 0.25 µm.  The helper transistor was designed 

with W = 5 µm and L = 0.5 µm.  

The results are shown in Figure 5.17 for input currents of 2 µA, 4 µA, 8 µA, and 

16 µA.  Figure 5.17 (a) plots Ai vs. VOUT.  The plot shows that the current gain of the 

triple self-cascode current mirror was within 5% of its target value across the four 

different input currents for 0.28 V ≤ VOUT ≤ 0.60 V.  This suggests that the triple 
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self-cascode current mirror is capable of providing the desired current gain across a wide 

range of output voltages and input currents. 

  
Figure 5.17:  (a) Ai vs. VOUT for the triple self-cascode current mirror of Figure 4.6 (b).  The cascoded 

devices of the triple self-cascode current mirror were designed with W = 100 µm and L = 1 µm.  The middle 

cascoding devices of the triple self-cascode current mirror were designed with W = 100 µm and L = 0.5 µm.  The 

top cascoding devices of the triple self-cascode current mirror were designed with W = 100 µm and L = 0.25 µm.  

The legend specifies IIN. (b)  ROUT_TRIPLE_SC/ROUT_SC vs. VOUT.  The cascoded devices of the self-cascode current 

mirror were designed with W = 100 µm and L = 1 µm.  The cascoding devices of the self-cascode current mirror 

were designed with W = 100 µm and L = 0.25 µm.  The legend specifies IIN. 

Figure 5.17 (b) plots the ratio of output resistances between the triple self-cascode 

current mirror and a self-cascode current mirror (Figure 4.5) vs. VOUT for the same input 

currents as Figure 5.17 (a).  The self-cascode current mirror was designed with 

W = 100 µm for all transistors.  The cascoded transistors had channel lengths of 1 µm and 

the cascoding transistors had channel lengths of 0.25 µm.  The helper transistor was 

designed with W = 5 µm and L = 0.5 µm.  Figure 5.17 (b) shows that the triple 

self-cascode current mirror achieves a greater output resistance than the self-cascode 

current mirror over a wide range of output voltages and input currents.  For example, the 

triple self-cascode current mirror had an output resistance at least 1.1 times greater than 

the self-cascode current mirror for 0.2 V ≤ VOUT ≤ 0.8 V.  The increase in output 

resistance is due to the rO of the added device.  However, this increase in output 
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resistance may not be significant enough to warrant the use of the third area-consuming 

device in most applications. 

5.4 The Design of Ultra-Thin Oxide CMOS Differential Amplifiers 

This section presents simulation results of the amplifier techniques described in 

Section 4.5.  It is broken into three subsections.  The first subsection characterizes the 

gate-balancing technique.  The second subsection presents results comparing the voltage 

gain of a self-cascode amplifier to a simple amplifier  The third subsection presents 

results characterizing the input current cancellation technique of Figure 4.10. 

5.4.1 Gate Balancing 

The simple differential amplifier of Figure 4.7 was simulated to show the 

imbalance created by gate current.  Figure 5.18 (a) plots ID1 − ID2 vs. IBIAS and 

VDIO − VOUT vs. IBIAS for the differential amplifier of Figure 4.7.  M1, M2, and M3 were 

sized with W = 20 µm and L = 5 µm.  M4 and M5 were sized with W = 40 µm and 

L = 5 µm.  The results show that gate current can cause extreme imbalance.  For example, 

VDIO − VOUT reached a peak value of 200 mV at IBIAS = 2 µA and was greater than 30 mV 

for 2 µA ≤ IBIAS ≤ 256 µA.  ID1 − ID2 reached a peak value of 4.2 µA at IBIAS = 256 µA and 

was greater than 260 nA for 2 µA ≤ IBIAS ≤ 256 µA. 

To rectify this problem, the gate-balance technique described in Section 4.5.2 was 

implemented using the self-cascode amplifier shown in Figure 4.9.  For example, Figure 

5.18 (b) plots ID1 − ID2 vs. IBIAS and VDIO − VOUT vs. IBIAS for the self-cascode amplifier of 

Figure 4.9.  SC1 and SC2 were sized with W = 100 µm, L = 1 µm, and SF = 8.  SC4 and 

SC5 were sized with W = 200 µm, L = 1 µm, and SF = 8.  SC3 was sized with 
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W = 50 µm, L = 2 µm, and SF = 16.  All cascoding transistors were sized with 

L = LMIN_A = 0.25 µm.  Note that a helper transistor could be added between the gate of 

SC3 and the drain of SC8 to improve the current gain.  The results show a significant 

improvement compared to Figure 5.18 (a).  For example, VDIO − VOUT reached a peak 

value of 2 mV at IBIAS = 2 µA and ID1 − ID2 reached a peak value of 11 nA at 

IBIAS = 256 µA. 

  
Figure 5.18: (a) ID1 − ID2 vs. IBIAS and VDIO − VOUT vs. IBIAS for the unbalanced amplifier of  Figure 4.7.  

(b) ID1 − ID2 vs. IBIAS and VDIO − VOUT vs. IBIAS for the balanced self-cascode amplifier of Figure 4.9.  VIN1 and VIN2 

of both amplifier’s were biased at 650 mV. 

5.4.2 Amplifier Gain Comparison 

Figure 5.19 compares the voltage gain of a balanced self-cascode amplifier 

(Figure 4.9) with a balanced simple amplifier (Figure 4.8).  The transistors of the simple 

amplifier were sized equally to the cascoded transistors of the self-cascode amplifier.  

The results show that the self-cascode amplifier is able to produce a relatively large 

voltage gain (72.98 dB) compared to the simple amplifier (51.68 dB).  This suggests that 

the combined use of the gate-balance technique with cautiously sized self-cascode 

structures can minimize the impact of gate current and ro-degradations while allowing for 

the design of relatively high-gain amplifiers. 
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Figure 5.19: AV vs. Frequency for the balanced simple amplifier (Figure 4.8) and the balanced self-

cascode amplifier (Figure 4.9).  IBIAS = 16 µA.  The load capacitance was 1 pF.  VIN1 and VIN2 of both amplifier’s 

were biased at 650 mV.  The intrinsic gain of M1 in Figure 4.8  was 27.87 dB. 

5.4.3 Input Current Cancellation 

A self-cascode version of the differential amplifier of Figure 4.10 was simulated 

to show that amplifier input resistance can be increased by applying the input current 

cancellation technique described in Section 4.5.3.  M1, M2, and M15 were sized with 

W = 20 µm and L = 5 µm.  The bias current of the differential amplifier and the error 

amplifier was set equal to 1 µA.  All current mirrors were made using self-cascode 

structures with WBOT = 10 µm, LBOT = 1 µm, WTOP = 10 µm, and LTOP = 0.25 µm.  M7, 

M8, and M9 of Figure 4.10 were sized with W = 1 µm and L = 1 µm.  M16 of Figure 4.10 

and M6 of Figure 4.11were also sized with W = 1 µm and L = 1 µm.  The results are 

shown in Figure 5.20, which plots gate current vs.  VCOM for the amplifier with the input 

current cancellation technique applied and an amplifier without the input current 

cancellation technique.  The amplifier without the input current cancellation technique 

was the same as the amplifier with the technique except that it did not have M3, M7-M9, 

M11, M15, and the error amplifier.   
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Figure 5.20: (a) IG vs. VCOM and (b) AV vs. Frequency for two self-cascode differential amplifiers.  

IG_Cancel and AV_Cancel refer to an amplifier with input current cancelation (Figure 4.10).  IG refers to an amplifier 

without input current cancellation.  The amplifier without input current cancellations was the same as the 

amplifier with input current cancellation except that it did not have M3, M7-M9, M11, M15, and the error 

amplifier of Figure 4.10. 

Figure 5.20 (a) shows that the gate current supplied by VCOM for the amplifier 

with input current cancellation, IG_Cancel, was significantly less than IG, the gate current 

supplied by VCOM for the amplifier without cancellation.  For example IG_Cancel had a 

minimum value of approximately 3 nA and a maximum value of approximately 7 nA for 

400 mV ≤ VCOM ≤ 800 mV.  IG had a minimum value of approximately 80 nA and a 

maximum value of approximately 180 nA across the same common-mode input range.  

Figure 5.20 (b) plots the voltage gain, AV, vs. frequency for each amplifier.  The results 

show that the voltage gain of the amplifier with cancellation, AV_Cancel, is approximately 

equal to the voltage gain without cancellation, AV.  This suggests that the cancellation 

technique does not modify the nominal voltage gain of the amplifier.  These results 

suggest that the input current cancellation technique can be used to significantly increase 

amplifier input resistance.  Also, it allows for longer channel lengths to be used in input 

differential pairs. 
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5.5 The AC Simulation of Ultra-Thin Oxide CMOS Amplifiers 

The impact of gate current on the AC simulation of ultra-thin oxide amplifiers 

was investigated using the voltage reference shown in Figure 4.16.  The feedback loop of 

the buffer was broken and the traditional technique described in Section 4.6  was applied 

[48].  An AC simulation was performed and ROUT of the buffer along with the DC bias 

point of VREF were recorded.  The new technique described in Section 4.6, which attempts 

to account for non-negligible amplifier input current, was then applied and the simulation 

was re-run. 

  
Figure 5.21: (a) VREF vs. T and (b) ROUT vs. frequency for the AC Simulation techniques described in 

Section 4.6. 

The results of these two simulations are shown in Figure 5.21.  Figure 5.21 (a) 

plots VREF vs. temperature (°C).  The correct DC bias point for VREF was the value 

simulated when the amplifier was in the closed-loop configuration.  The results show that 

the traditional technique led to differences in VREF of up to 34 mV across the operating 

temperature range, while the new technique was able to maintain the correct DC bias 

point. 
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Figure 5.21 (b) plots ROUT vs. frequency for both techniques.  The plot shows 

significant differences in output resistance between the traditional technique and the new 

technique.  For example, the traditional technique simulated a DC output resistance of 

217 kΩ while the new technique simulated a DC output resistance of 195 kΩ.  These 

results suggest that the new technique described in Section 4.6 should be applied when 

performing AC simulations on feedback amplifiers in technologies with non-negligible 

gate current. 

5.6 The Design of an Ultra-Thin Oxide Sub-1 V Bandgap Voltage 

Reference 

This section presents simulation results comparing the thick-oxide sub-1 V 

bandgap voltage reference presented in [116] to the ultra-thin oxide sub-1 V bandgap 

voltage reference described in Section 4.8.  It contains three subsections.  The first 

subsection presents the results of the thick-oxide voltage reference.  The second 

subsection presents the results of the thick-to-ultra-thin voltage reference.  The third 

subsection presents the results of the ultra-thin oxide voltage reference. 

5.6.1 Thick-Oxide Sub-1 V Bandgap Voltage Reference 

A thick-oxide version of the reference presented in [116] and [192] (see Figure 

3.22) was designed and simulated in IBM’s 10SF technology.  The basis for this design 

came from a previous design that was fabricated in a 0.13 µm CMOS technology.  

Thick-oxide transistors were used to minimize the effect of gate current on performance.  

Self-cascode structures were used for all current mirrors, which were designed with drain 

currents of 2.5 µA at T = 25 °C.  The thick-oxide voltage reference consumed 

approximately 15 µW of total power at T = 25 °C.  The cascoding transistors of the 
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PMOS mirrors were sized with W = 400 µm and L = 0.25 µm.  The cascoded transistors 

of the PMOS mirrors were sized with W = 160 µm and L = 2.5 µm.  The cascoding 

transistors of the NMOS mirrors were sized with W = 400 µm and L = 0.25 µm.  The 

cascoded transistors of the NMOS mirrors were sized with W = 80 µm and L = 2.5 µm.  

The NMOS input pair of the error amplifier was sized with W = 800 µm and L = 0.5 µm.  

A self-cascode structure was not used for the input pair so that the voltage headroom 

could be increased. 

Seventy-two 3.2 µm x 3.2 µm
 
diode-connected PNP transistors were used for Q2 

of Figure 3.22.  Nine 3.2 µm x 3.2 µm diode-connected PNP transistors were used for Q1 

of Figure 3.22.  The ratio of emitter areas between Q2 and Q1 was 8:1.  VEB1 was found 

in simulation to be 653 mV at T = 25 °C,  ∂VEB1/∂T was found to be approximately 

−1.8 mV/°C, and  ∂∆VEB/∂T (see (3.17)) was found to be approximately 181 µV/°C.   

From these numbers, (4.7) was used to calculate R2/R1 and R3/R1 values of 30.  

Equation (4.8) was used to calculate an R4/R1 ratio of approximately 12.  R1 was designed 

using a combination of three parallel precision poly-silicon unit resistors, with the unit 

resistance being 64.74 kΩ (L = 80 µm, W = 0.5 µm).  R2 and R3 were combined into 11 

unit resistors (see Section 4.8.4).  R4 was designed using 4 unit resistors. 

The error amplifier was compensated using two vertical natural capacitors, which 

were both connected from the amplifier’s output to VDD [202].  Two capacitors were used 

to simplify the layout of the reference.  The first capacitor was 9.98 pF and was sized 

with W = 150.18 µm and L = 40.215 µm.  The second capacitor was 6.09 pF and was 

sized with W = 49.25 µm and L = 75.92 µm.  The worst-case phase margin of the error 

amplifier across process corners was 51°.  The worst-case gain margin of the error 
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amplifier across process corners was −20 dB.  Dummy transistors were included on the 

PMOS mirrors, NMOS mirrors, and NMOS input pair.  Dummy resistors were included 

in the resistor array. 

 
Figure 5.22: Monte Carlo analysis of VREF vs. T for the thick-oxide sub-1 V bandgap voltage reference 

presented in [116].  The graph shows 300 Monte Carlo runs across three different supply voltages (0.9 V, 1.0 V, 

and 1.1 V).  Each supply voltage simulated 100 runs. 

Once the design was complete, a Monte Carlo analysis was performed at VDD 

values of 0.9 V, 1.0 V, and 1.1 V.  The analysis had 300 total runs, with each VDD value 

simulating 100 runs.  Each single run simulated VREF vs. temperature.  The temperature 

range was −40 °C to 125 °C.  The results are shown in Figure 5.22, which plots VREF vs. 

temperature.  The results show that the minimum output voltage, VREF_MIN, was 646.4 mV 

and the maximum output voltage, VREF_MAX, was 669.6 mV.  Averaging these two 

together gives an average output voltage, VREF_AVG, of 658.0 mV.  This implies that VREF 

changed by ± 1.8% �����_��w�����_�g��·����_��� · 100�  over a temperature range of 165 °C.  The 

temperature coefficient was calculated as: 

L̂ � WX4_qYu � WX4_qOPWX4_Y�� · � q̂Yu � q̂OP� 10� (5.1)
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where TMAX = 125 °C is the maximum temperature and TMIN = −40 °C is the minimum 

temperature.  The temperature coefficient of the thick-oxide bandgap voltage reference 

was calculated to be 213.7 ppm/°C. 

5.6.2 Thick-to-Ultra-Thin Oxide Sub-1 V Bandgap Voltage Reference 

 
Figure 5.23: Comparison of the Monte Carlo analyses of the thick-oxide sub-1 V bandgap voltage 

reference presented in [116] and the thick-to-ultra-thin sub-1 V bandgap voltage reference shown in [116].  The 

graph shows 300 Monte Carlo runs across three different supply voltages (0.9 V, 1.0 V, and 1.1 V).  Each supply 

voltage simulated 100 runs. 

To show the effects of gate current on voltage reference performance, all of the 

devices in the thick-oxide reference were changed to ultra-thin oxide and the Monte 

Carlo analysis re-run.  The results are shown in Figure 5.23, which plots the Monte Carlo 

results of the thick-oxide reference and the thick-to-ultra-thin reference on the same axes.  

The graph shows that the effects of gate current are devastating.  For example, the 

performance metrics of the thick-to-ultra-thin oxide reference were: VREF_MIN = 57.4 mV, 

VREF_MAX = 1.006 V, VREF_AVG = 531.7 mV, a percent change of ± 89.2%, and 

TC = 10,821.4 ppm/°C.  These performance metrics were so poor that the 

thick-to-ultra-thin reference could not be considered a voltage reference.  The dominant 
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cause of this degradation was gate current, which demonstrates the necessity of a circuit 

methodology that can account for its presence. 

5.6.3 Ultra-Thin Oxide Sub-1 V Bandgap Voltage Reference 

This subsection contains eight subsections.  The first subsection presents the 

general design strategy of the ultra-thin oxide sub-1 V bandgap voltage reference.  The 

second subsection presents the impact of the error amplifier’s PMOS active load on 

performance.  The third subsection presents the impact of the error amplifier’s input pair 

on performance.  The fourth subsection presents the impact of gate current flowing into 

the output node on performance.  The fifth subsection presents the results of Monte Carlo 

and process corners analyses that were performed on the reference.  The sixth subsection 

presents results of startup analyses that were performed on the reference.  The seventh 

subsection presents results of transistor loading analyses that were performed on the 

reference.  The last subsection presents results of a sensitivity analysis that was 

performed on the reference. 

5.6.3.1 General Design Strategy 

The ultra-thin oxide voltage reference of Figure 4.16 was designed to investigate 

if the developed methodology could overcome the problems observed in Figure 5.23.  

The techniques described in Sections 4.2-4.8 were used in this design.  Specifically, the 

gate-balancing technique was applied to both the error amplifier and buffer amplifier (see 

Section 4.5.2).  Diode-connected transistors were used to minimize IGD differences 

between SC9 and SC16 (see Section 4.8.1).  Self-cascode structures were used to 

maximize output resistance while still allowing for low-voltage operation.  They were 
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sized using the channel length selection methodology described in Section 5.1.3.  This 

was done to minimize the total amount of gate current while still allowing for large-area 

devices to achieve a high degree of matching. 

The self-cascode current mirrors were designed to have nominal drain currents of 

3.3 µA at T = 25 °C.  The reference consumed approximately 37 µW of total power at 

T = 25 °C.  Note that the nominal drain current was made larger than the nominal drain 

current of the thick-oxide reference (2.5 µA).  This was done because the relative effects 

of gate current decrease with increasing bias current (see Section 5.1.3).  However, 

increases in the nominal drain current beyond 3.3 µA were limited by the minimum 

voltage headroom needed across the PMOS current mirrors, which was found to be 

approximately 100 mV (see Section 4.8.1).  Specifically, VEB1, which is a CTAT voltage, 

limited the current mirror’s voltage headroom at cold temperatures.  The voltage 

headroom was further limited by reductions in the supply voltage and the slow process 

corner.  Therefore, the nominal drain current was found by setting the temperature to the 

process minimum (−40 °C), supply voltage to the process minimum (0.9 V), the process 

corner to slow, and verifying that the PMOS mirrors had at least 100 mV of headroom. 

The cascoding transistors of the PMOS mirrors were designed with W = 408.0 µm 

and L = 0.25 µm.  The cascoded transistors of the PMOS mirrors were designed with 

W = 204.0 µm and L = 1.0 µm.  The cascoding transistors of the NMOS mirrors were 

designed with W = 204.0 µm and L = 0.25 µm.  The cascoded transistors of the NMOS 

mirrors were designed with W = 102.0 µm and L = 1.0 µm.  The area of the self-cascode 

current mirrors in the ultra-thin oxide reference (204 µm
2
 for the PMOS mirrors, 102 µm

2 
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for the
 
NMOS mirrors) was significantly less than the area of the self-cascode current 

mirrors in the thick-oxide reference (400 µm
2
 for the PMOS mirrors, 200 µm

2 
for the 

NMOS mirrors).  This implies that the ultra-thin oxide reference may not match as well 

as the thick-oxide reference and illustrates a tradeoff between matching and gate current 

in ultra-thin oxide technologies. 

Relatively large aspect ratios were used on the cascoded devices in the ultra-thin 

oxide reference (204/1 for the PMOS mirrors, 102/1 for the NMOS mirrors) compared to 

the thick-oxide reference (64/1 for the PMOS mirrors, 32/1 for the NMOS mirrors).  This 

was done to minimize the relative impact of gate current (βF_MOS ∝ 1/L
2
) on the ultra-thin 

oxide voltage reference.  It also placed the ultra-thin oxide current mirrors into the 

sub-threshold region of operation, where it was shown in Section 3.1.4.2 that high device 

output resistance could be obtained.  One possible downside to this approach is degraded 

drain current matching.  For example, when designing in saturation, ID is roughly 

proportional to (VGS − VTH), which suggests that using small aspect ratios and thus large 

VGS bias voltages helps wash out VTH mismatch.  However, in this design, device area was 

relatively large and VTH mismatch was not a major concern. 

The area of the NMOS current mirrors was less than the area of the PMOS current 

mirrors.  This was done because the current matching of the PMOS mirrors was more 

important than the current matching in the NMOS current mirrors.  For example, 

referring to Figure 4.15, the critical currents to be matched are I1, I2, and I3, which are 

made up of PMOS self-cascode current mirrors in the transistor implementation.  Also, 
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by making the NMOS current mirrors smaller, the impact of IGD differences on SC3, 

SC10, SC13, and SC18 due to different output voltages is less of a concern. 

The channel lengths of all mirror cascoding transistors were set to LMIN_A 

(0.25 µm) to minimize the impact of IGD on current mirror performance.  The width of 

each mirror cascoding transistor was chosen to be equal to the width of the transistor it 

was cascoding.  This approach helped increase SF of each self-cascode structure while 

keeping the area of the cascoding transistors relatively small.  The channel lengths of the 

transistors being cascoded were chosen to be 1 µm because that was the maximum analog 

channel length for the given temperature range, device area, and bias current (see Figure 

5.7).  Note that if the bias current were to be increased, the channel lengths of the 

cascoded transistors could potentially be increased. 

Seventy-two 3.2 µm x 3.2 µm
 
diode-connected PNP transistors were used for Q2 

of Figure 4.16.  Nine 3.2 µm x 3.2 µm diode-connected PNP transistors were used for Q1 

of Figure 4.16.  The ratio of emitter areas between Q2 and Q1 was 8:1.  Note that the area 

of Q1 and Q2 could have been increased to decrease VEB1 and VEB2 such that a larger 

nominal drain current could have been used.  However, it was found via simulation that 

further increasing the area of Q1 and Q2 had minimal impact on the nominal drain 

current.  VEB1 was found in simulation to be 653 mV at T = 25 °C,  ∂VEB1/∂T was found to 

be approximately −1.8 mV/°C, and  ∂∆VEB/∂T (see (3.17)) was found to be approximately 

181 µV/°C.  These values are identical to the thick-oxide voltage reference because both 

references were designed using the same PNP BJTs.  From these numbers, R2/R1 and 

R3/R1 were calculated to be 30 and the R4/R1 ratio was calculated to be 12.  R1 was 
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designed using a combination of three parallel precision poly-silicon unit resistors, with 

the unit resistance being 48.6 kΩ (L = 60.0 µm, W = 0.5 µm).  R2 and R3 were combined 

using 14 unit resistors.  The actual ratio used for R2/R1 and R3/R1 was 31 (not 30) because 

of the CTAT gate current mirrored from the input of the error amplifier into R4 (see 

Section 4.8.3).  R4 was designed using 4 unit resistors. 

The error amplifier was compensated using a 16 pF (W = 49.465 µm, 

L = 195.645 µm) vertical natural capacitor connected from its output to VDD [202].  The 

worst-case phase margin of the error amplifier across process corners was 47°.  The 

worst-case gain margin of the error amplifier across process corners was −12 dB.  The 

buffer amplifier was compensated using an 8 pF (W = 72.965 µm, L = 67.66 µm) vertical 

natural capacitor in series with four unit resistors in parallel (W = 60 µm, L = 0.5 µm, 

RPARALLEL = 48.6 kΩ/4 = 12.15  kΩ).  The resistor and capacitor compensation network 

was connected between VREF and VC of Figure 4.16.  The worst-case phase margin of the 

buffer amplifier across process corners was 50°.  The worst-case gain margin of the 

buffer amplifier across process corners was −10 dB.   

5.6.3.2 Impact of Error Amplifier’s PMOS Active Load 

The channel lengths of the cascoded transistors in the PMOS active load of the 

error amplifier had a significant impact on reference performance.  For example, to 

ideally avoid the effects of gate current, the channel lengths of these devices would be 

made as small as possible.  However, if the channel length is made too short, the 

source-to-gate voltage across SC4 and SC5 drops below 100 mV under hot temperatures 

at the fast NMOS process corner and the fast PMOS process corner.  For example, 
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consider Figure 5.24, which plots VREF vs. T and VSG5 vs. T for VDD = 0.9 V at the fast 

NMOS process corner and the fast PMOS process corner.  The cascoded transistors of the 

PMOS mirrors were sized with W = 400 µm and L = 0.25 µm.  The cascoding transistors 

of the PMOS mirrors were sized with W = 800 µm and L = 0.25 µm.  The plot shows that 

at temperatures greater than 100 °C, VSG5 dropped below 100 mV.  The self-cascode 

structures needed approximately 100 mV of voltage headroom to function as adequate 

current mirrors.  If VSG5 is less than 100 mV when T > 100 °C the active load of the error 

amplifier no longer functions as a current mirror. 

 
Figure 5.24: VREF vs. T and VSG of SC5 vs. T for VDD = 0.9 V at the fast NMOS process corner and the 

fast PMOS process corner for the voltage reference of Figure 4.16.  The cascoded transistors of the PMOS 

mirrors were sized with W = 400 µm and L = 0.25 µm.  The cascoding transistors of the PMOS were sized with 

W = 800 µm and L = 0.25 µm. 

The desired mirroring action of the reference was further degraded because 

SC6-SC9 had VSD voltages much larger than 100 mV at temperatures greater than 100 °C.  

This implies that the currents in SC6-SC9 were not similar to the currents in SC4 and 

SC5 at temperatures above 100 °C because of significant differences in VSD.  This 

resulted in VREF having a large temperature slope at hot temperatures.  For example, VREF 

only changed 7.3 mV as T increased from −40 °C to 100 °C, but it changed 6.4 mV as T 
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increased from 100 °C to 125 °C.  This large change at hot temperatures was due to 

decreased VSG voltages across the active load of the error amplifier.  This problem was 

solved by increasing the channel length of all the PMOS cascoded transistors to 1 µm and 

decreasing the width to 204 µm.  This approach allowed current mirror area to increase 

from 100 µm
2
 to 204 µm

2
 (improved matching) and also reduced the aspect ratio of the 

PMOS current mirrors from 1600 to 200.  The reduction in aspect ratio forced the VSG 

voltage of the active load to increase because the drain current remained constant.  This 

increase in VSG voltage improved the relative performance of the PMOS current mirrors 

such that they had more than 100 mV of headroom across the entire temperature range. 

5.6.3.3 Impact of Error Amplifier’s Input Pair 

The input pair of both the error amplifier and the buffer amplifier had dimensions 

of W = 100 µm and L = 1 µm.  A self-cascode structure was not used for either input pair 

so that the voltage headroom could be increased.  This approach also limited the amount 

of gate current that was mirrored into R4.  The area of the thick-oxide reference’s input 

pair (400 µm
2
) was significantly larger than that of ultra-thin oxide reference (100 µm

2
).  

This difference was due to the input current of the error amplifier.  Specifically, the input 

current of the error amplifier in the thick-oxide reference was negligible.  However, it 

was not negligible in the ultra-thin oxide reference.  The buffer was used to limit the 

amount of error amplifier input current that got mirrored into R4 (see Section 4.7).  

However, the presence of the buffer does not imply that the input pair can be made 

arbitrarily large.  The amount of input current drained by the buffer is a function of 

temperature and supply voltage.  Therefore, it was necessary to size the input pair of the 

error amplifier such that the buffer would do an adequate job of draining the input current 
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across changes in temperature and supply voltage, while still being able to obtain a high 

degree of matching. 

Dummy transistors were added to the input pair of both the error amplifier and the 

buffer amplifier.  The gate, drain, and source terminals of the dummy transistors were 

tied to the source terminals of the transistors for which they were acting as dummies.  

Their body terminals were tied to the substrate.  This suggests that these transistors would 

have non-zero gate-to-bulk current, IGB.  However, it was found via simulation that the 

IGB component of these transistors was largely negligible and thus it did not impact the 

performance of the voltage reference.  Note that the body biasing technique described in 

Section 4.3 could have been used to further reduce the impact of gate current on 

performance.  However, this technique was not applied because the reference was 

designed to be used in a standard CMOS process that does not provide a separate well for 

the body terminal. 

The channel length of the input pair of the error amplifier had a significant impact 

on performance.  For example, to ideally avoid the effects of gate current, this channel 

length would be made as small as possible.  However, if the channel length is made too 

short, the VDS voltage across the input pair approaches zero under cold temperatures at the 

fast NMOS process corner and slow PMOS process corner.  For example, consider 

Figure 5.25, which plots VREF vs. T and VDS of the input pair vs. T for VDD = 0.9 V at the 

fast NMOS process corner and the slow PMOS process corner.  The input pair was sized 

with W = 400 µm and L = 0.25 µm.  The plot shows that at temperatures less than 0 °C, 

VDS of the input pair dropped below 60 mV.  This resulted in VREF having a large 
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temperature slope.  For example, VREF only changed 0.6 mV as T decreased from 125 °C 

to 0 °C, but it changed 35.7 mV as T decreased from 0 °C to −40 °C.  This large voltage 

change at cold temperatures was due to the low VDS voltages on the input pair of the error 

amplifier. 

 
Figure 5.25:  VREF vs. T and VDS of the error amplifier’s input pair vs. T for VDD = 0.9 V at the fast 

NMOS process corner and the slow PMOS process corner.  The input pair was sized with W = 400 µm and 

L = 0.25 µm. 

This problem was solved by increasing the channel length of the input pair to 

1 µm and decreasing the width to 100 µm.  This approach allowed the area to remain 

constant at 100 µm
2
 and also reduced the aspect ratio of the input pair from 1600 to 100.  

This forced the VGS voltage of the input pair to increase because the drain current 

remained constant.  This increase in VGS voltage was mostly due to a reduction in the 

source voltage, not an increase in gate voltage.  The gate voltage remained constant 

because the gate terminal is connected to a diode-connected PNP, which provides the 

same voltage regardless of the size or aspect ratio of the input pair.  Therefore, VGS 

increased because of reductions in the source voltage.  The drain voltage of the input pair, 

which was set by the PMOS active load, remained roughly constant.  Therefore, VDS of 

the input pair increased as L increased because the drain voltage remained constant and 
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the source voltage decreased.  One observed advantage of increasing the channel length 

of the input pair was a decrease in the difference in drain voltages between SC3 and 

SC10.  This resulted in improved NMOS current mirror performance. 

5.6.3.4 Impact of Gate Current Flowing into the Output 

 
Figure 5.26: IG2 − IG12 vs. T and VGS2 − VGS12 (∆VGS) vs. T for VDD = 1.1 V at the slow NMOS process 

corner and the slow PMOS process corner. 

In Section 4.8.3, it was noted that at a specific temperature, the gate current 

mirrored by SC1 and SC2 into SC8 is equal to the gate current drawn by SC11 and SC12.  

Therefore, at this specific temperature, SC11 prevents this current from flowing into R4 

and impacting the performance of the reference.  As temperature changes, VEB1  no longer 

equals VREF, resulting in VGS1 and VGS2 not equaling VGS11 and VGS12.  Therefore, the gate 

current of SC11 is slightly different than what is mirrored into SC8 by SC1 and SC2.  

This is undesired and suggests that some gate current will flow into R4 (see 

Section 4.8.3).  For example, consider Figure 5.26, which plots |IG2 − IG12| vs. T and 

VGS2 − VGS12 vs. T for VDD = 1.1 V at the slow NMOS process corner and the slow PMOS 

process corner.  The plot shows that |IG2 − IG12| and VGS2 − VGS12 are relatively minimized 

around room temperature.  This occurred because R2 and R3 were sized such that 
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VEB1 = VREF at this temperature.  As the temperature changed, VEB1 no longer equaled 

VREF.  However, |IG2 − IG12| and VGS2 − VGS12 were still both relatively minimized.  

Specifically, as the temperature increased from 27 °C to 125 °C, IG2 − IG12 changed from 

2.1 nA to 11.5 nA and VGS2 − VGS12 changed from −3.1 mV to 24.1 mV.  As the 

temperature decreased from 27 °C to −40 °C, |IG2 − IG12| changed from 2.1 nA to 20.4 nA 

and VGS2 − VGS12 changed from −3.1 mV to −20.4 mV.  |IG2 − IG12| and VGS2 − VGS12 were 

minimized by applying the channel length selection methodology developed in 

Section 5.1.3. 

5.6.3.5 Monte Carlo and Process Corners Analyses 

  
Figure 5.27: (a) Monte Carlo analysis of VREF vs. T for the ultra-thin-oxide sub-1 V bandgap voltage 

reference shown in Figure 4.16.  The graph shows 300 Monte Carlo runs across three different supply voltages 

(0.9 V, 1.0 V, and 1.1 V).  Each supply voltage simulated 100 runs. (b) Comparison of the Monte Carlo analyses 

of the ultra-thin-oxide sub-1 V bandgap voltage reference shown of Figure 4.16 and the thick-oxide bandgap 

voltage reference presented in [116]. 

Once the design was complete, the Monte Carlo analysis performed on the 

previous two references was performed on the ultra-thin oxide reference.  The results are 

shown in Figure 5.27.  Figure 5.27 (a) shows that VREF_MIN = 650.0 mV, 

VREF_MAX = 677.7 mV, VREF_AVG = 664.0 mV, the percent change was ± 2.1%, and 

TC = 251.0 ppm/°C.  Table 5.1 compares the  statistics of all three references.  Figure 
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5.27 (b)  plots the Monte Carlo results of the thick-oxide reference and the ultra-thin 

oxide reference on the same axes.  The results show that the ultra-thin oxide reference of 

Figure 4.16 compares favorably to the thick-oxide reference and provides significant 

improvements over the ultra-thin oxide version of [116].  VREF_AVG and TC of the 

ultra-thin oxide voltage reference in Figure 4.16 are similar to the thick-oxide version of 

[116].  For example, the difference in average voltages between these two references is 

only 6.0 mV and the difference in temperature coefficients is only 37.3 ppm/°C. 

Voltage Ref. VREF_MIN (mV) VREF_MAX (mV) VREF_AVG (mV) % change  TC (ppm/°C) 

Thick - [116] 646.4 669.6 658.0 1.8 213.7 

Ultra-Thin - [116] 57.4 1,006.0 531.7 89.2 10,821.4 

Ultra-Thin - Fig. 4.14 650.0 677.7 664.0 2.1 251.0 

Table 5.1: Comparison of the simulated voltage references. 

 
Figure 5.28: Process Corners analysis of VREF vs. T for the ultra-thin oxide sub-1 V bandgap voltage 

reference shown in Figure 4.16. 

A +/− 3-sigma process corners simulation of VREF vs. T was performed on the 

ultra-thin oxide voltage reference.  The temperature range was swept from −40 °C to 

125 °C.  The following MOSFET process corners were simulated: SS, SF, TT, FS, and 

FF.  The following VDD process corners were simulated: 0.9 V, 1.0 V, and 1.1 V.  The 

process corners for the passive elements (resistors and capacitors) were set equal to the 

MOSFET process corner if the MOSFET process corner was equal to SS or FF.  
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Otherwise the passive element process corner was set equal to its typical value.  There 

were 15 total corners in this simulation.  The results are shown in Figure 5.28.  The figure 

shows that VREF_MIN = 654.6 mV, VREF_MAX = 677.2 mV, VREF_AVG = 666.8 mV, the percent 

change was ± 1.6%, and TC = 189.0 ppm/°C.  These results show that the voltage 

dispersion across process corners was similar to the Monte Carlo voltage dispersion.  

This suggests that the ultra-thin oxide voltage reference will function as desired in the 

presence of systematic and random process variations. 

5.6.3.6 Startup Analyses 

  
Figure 5.29: (a) Process Corners analysis of VREF vs. VDD for the ultra-thin oxide sub-1 V bandgap 

voltage reference shown in Figure 4.16. (b) VREF vs. t for a VDD rise time of 1 µs for the ultra-thin oxide sub-1 V 

bandgap voltage reference shown in Figure 4.16. 

A +/− 3-sigma DC startup process corners analysis of VREF vs. VDD was performed 

on the ultra-thin oxide reference.  The following MOSFET process corners were 

simulated: SS, SF, TT, FS, and FF.  The following T process corners were simulated: 

−40 °C, 25 °C, and 125 °C.  The process corners for the passive elements (resistors and 

capacitors) were set equal to the MOSFET process corner if the MOSFET process corner 

was equal to SS or FF.  Otherwise the passive element process corner was set equal to its 

typical value.  There were 15 total process corners for this simulation.  The results are 
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shown in Figure 5.29 (a).  The results show that for all corners VREF was relatively settled 

for 0.9 V ≥ VDD ≥ 1.1 V.  Under this supply voltage range the minimum VREF was 

656.4 mV and the maximum VREF was 677.2 mV.  These results suggest that the voltage 

reference is capable of starting correctly when VDD is ramped from zero to a final voltage 

between 0.9 V and 1.1 V. 

  
Figure 5.30: (a) VREF vs. t for a VDD rise time of 10 ms for the ultra-thin oxide sub-1 V bandgap voltage 

reference shown in Figure 4.16. (b) VREF vs. t for a VDD rise time of 10 s for the ultra-thin oxide sub-1 V bandgap 

voltage reference shown in Figure 4.16. 

A transient startup process corners analysis of VREF vs. time (t) was performed on 

the ultra-thin oxide voltage reference.  After an initial delay, VDD was stepped to its final 

value at a variable rise time.  The simulated rise times were 1 µs, 10 ms, and 1 s.  The 

following MOSFET process corners were simulated: SS, SF, TT, FS, and FF.  The 

following T process corners were simulated: −40 °C, 25 °C, and 125 °C.  The following 

VDD process corners were simulated: 0.9 V, 1.0 V, and 1.1 V.  The corners for the passive 

elements (resistors and capacitors) were set equal to the MOSFET process corner if the 

MOSFET process corner was equal to SS or FF.  Otherwise the passive element process 

corner was set equal to its typical value.  There were 45 total corners for this simulation.  

The results are shown in Figure 5.29 (b) and Figure 5.30.  Figure 5.29 (b) plots VREF vs. t 
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for a VDD rise time of 1 µs and an initial delay of 3 µs.  The results show that VREF was 

settled to within 1% of its final value across all 45 corners within 11.5 µs of the supply 

ramp.  Figure 5.30 (a) plots VREF vs. t for a VDD rise time of 10 ms and an initial delay of 

3 ms.  The results show that VREF was settled to within 1% of its final value across all 45 

corners within 8.1 ms of the supply ramp.  Figure 5.30 (b) plots VREF vs. t for a VDD rise 

time of 10 s and an initial delay of 1.5 s.  The results show that VREF was settled to within 

1% of its final value across all 45 corners within 8.6 s of the supply ramp.  These results 

suggest that the voltage reference starts properly under transient power supply ramps 

across process, voltage, and temperature corners. 

5.6.3.7 Transistor Loading 

The impact of transistor loading on the voltage reference was also simulated.  

This simulation was performed because ultra-thin oxide MOSFETs draw gate current, 

which suggests that the voltage reference must be able to supply gate current to a loading 

transistor without changing its voltage or temperature characteristics.  VREF was loaded 

down with the gate of an NMOS transistor that had a PTAT current source connected to 

its source terminal (see ML and ILOAD in Figure 4.16).  The current source had a 

temperature slope of 170 nA/°C and a room temperature value of 50 µA.  The width of 

the loading transistor was set equal to 100 µm.  A +/− 3-sigma process corners simulation 

of VREF vs. T was then performed.  The temperature range was swept from −40 °C to 

125 °C.  The following MOSFET process corners were simulated: SS, SF, TT, FS, and 

FF.  The following VDD process corners were simulated: 0.9 V, 1.0 V, and 1.1 V.  The 

process corners for the passive elements (resistors and capacitors) were set equal to the 

MOSFET process corner if the MOSFET process corner was equal to SS or FF.  
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Otherwise the passive element process corner was set equal to its typical value.  Three 

loading transistor channel lengths were simulated: 0.5 µm, 1 µm, and 2 µm.  There were 

45 total process corners in this simulation. 

  
Figure 5.31: (a) Process Corners analysis of VREF vs. T for the ultra-thin oxide sub-1 V bandgap voltage 

reference shown in Figure 4.16.  (b) Process Corners analysis of IG of the loading transistor vs. T for the 

ultra-thin oxide sub-1 V bandgap voltage reference shown in Figure 4.16.  VREF was loaded down with the gate 

of an NMOS transistor that had a PTAT current source connected to its source terminal (see ML and ILOAD in 

Figure 4.16).  The current source had a temperature slope of 170 nA/°C and a value of 50 µA at T = 25 °C.  

Three loading transistor channel lengths were simulated: 0.5 µm, 1 µm, and 2 µm.  The width of the loading 

transistor was set equal to 100 µm. 

The results of the loading analysis are shown in Figure 5.31.  Figure 5.31 (a) plots 

VREF vs. T across all 45 corners.  The results show that VREF is relatively independent of 

the loading transistor.  Specifically, there was no noticeable difference between Figure 

5.31 (a) and Figure 5.28, which was unloaded.  Figure 5.31 (b) plots IG of the loading 

transistor vs. T.  The plots show that the buffer was able to provide up to 720 nA of gate 

current to the loading transistor.  These results suggest that the voltage reference is 

capable of providing load current while maintaining its voltage and temperature 

characteristics.
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5.6.3.8 Sensitivity Analysis 

A sensitivity analysis was performed on the ultra-thin oxide voltage reference.  

This analysis was done to determine which of BSIM4’s direct tunneling parameters the 

reference was most sensitive too.  This analysis could be used to potentially help explain 

why measured results do not match those obtained in simulation.  For example, if the 

reference showed extreme sensitivity to a single direct tunneling model parameter and the 

measured results did not match those obtained in simulation, this model parameter may 

need to be adjusted such that future measured results match those obtained in simulation.  

BSIM4 has 21 total direct tunneling parameters [136].  Each of these 21 parameters is 

separately populated for the NMOS transistor and the PMOS transistor.  In the sensitivity 

analysis, each of these parameters was varied ±100%, in 10% increments, in the same 

direction, for the both types of devices.  The VREF vs. T curve at the TT process corner 

with VDD = 1.0 V was used to get the signature of each parameter. 

 
Figure 5.32: Sensitivity analysis of VREF vs. T for the BSIM4 direct tunneling model parameter aigc.  

VDD = 1.0 V.  The process corner was TT. 

The reference showed a high degree of sensitivity to the BSIM4 direct tunneling 

model parameter aigc, which is the major fitting parameter for IGCS and IGCD.  For 
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example, Figure 5.32 plots VREF vs. T for aigc under three conditions: not-varied, varied 

−10%, and varied −20%.  Under the not varied condition, VREF_MAX was 663.4 mV and 

VREF_MIN was 663.1 mV.  When aigc was varied −10%, VREF_MAX decreased to 656.5 mV 

and VREF_MIN decreased to 393.7 mV.  When aigc was varied −20%, VREF_MAX further 

decreased to 556.3 mV and VREF_MIN further decreased to 259.3 mV.  These results 

suggest that aigc must be characterized correctly if simulation results are going to match 

measurements. 

 
Figure 5.33: Sensitivity analysis of VREF vs. T for the BSIM4 direct tunneling model parameter 

poxedge.  VDD = 1.0 V.  The process corner was TT. 

The reference showed a moderate degree of sensitivity to the BSIM4 direct 

tunneling model parameter poxedge, which is the major fitting factor for the oxide 

thickness.  For example, Figure 5.33 plots VREF vs. T for poxedge under three conditions: 

not varied, varied −10%, and varied −20%.  Under the not-varied condition, VREF_MAX was 

663.4 mV and VREF_MIN was 663.1 mV.  When poxedge was varied −10%, VREF_MAX 

decreased to 662.8 mV and VREF_MIN decreased to 661.6 mV.  When poxedge was varied 

−20%, VREF_MAX further decreased to 660.3 mV and VREF_MIN further decreased to 

641.8 mV.  These results suggest that moderate variations in poxedge could significantly 
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impact performance and that poxedge must be characterized relatively well if simulation 

results are expected to match measurements. 

 
Figure 5.34: Sensitivity analysis of VREF vs. T for the BSIM4 direct tunneling model parameter aigsd.  

VDD = 1.0 V.  The process corner was TT. 

The reference also showed a moderate degree of sensitivity to the BSIM4 direct 

tunneling model parameter aigsd, which is the major fitting parameter for IGS and IGD.  

For example, Figure 5.34 plots VREF vs. T for aigsd under three conditions: not varied, 

varied −10%, and varied −20%.  Under the not-varied condition, VREF_MAX was 663.4 mV 

and VREF_MIN was 663.1 mV.  When aigsd was varied −10%, VREF_MAX decreased to 

662.7 mV and VREF_MIN decreased to 662 mV.  When aigsd was varied −20%, VREF_MAX 

further decreased to 661.4 mV and VREF_MIN further decreased to 654.5 mV.  These results 

suggest that moderate variations in aigsd could significantly impact performance and that 

aigsd must be characterized relatively well if simulation results are expected to match 

measurements. 

The reference showed a low degree of sensitivity to the BSIM4 direct tunneling 

model parameter toxref, which is the nominal gate oxide thickness for direct tunneling.  

For example, Figure 5.35 plots VREF vs. T for toxref under three conditions: not varied, 
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varied −50%, and varied +50%.  Under the not-varied condition, VREF_MAX was 663.4 mV 

and VREF_MIN was 663.1 mV.  When toxref was varied −50%, VREF_MAX increased to 

665.4 mV and VREF_MIN increased to 664.2 mV.  When toxref was varied +50%, VREF_MAX 

decreased to 662.4 mV and VREF_MIN decreased to 659.4 mV.  These results suggest that 

large variations in toxref will not significantly impact performance.  Considering that 

direct tunneling exponentially increases with decreasing oxide thickness, this implies that 

the developed voltage reference is able to maintain performance with changes in oxide 

thickness. 

 
Figure 5.35: Sensitivity analysis of VREF vs. T for the BSIM4 direct tunneling model parameter toxref.  

VDD = 1.0 V.  The process corner was TT. 

5.7 Sponsored Fabrication 

A sponsored fabrication of this work was awarded based on technical merit via 

the MOSIS Educational Program [38].  The target technology was IBM’s 10SF 

technology.  The design, simulation, and layout of a 2 mm x 2 mm chip was completed 

and sent to MOSIS.  The design had 44 input/output pads.  Forty die were to be shipped 

for testing.  Twenty of these die were to be unpackaged and were to be tested on a 



156 

 

thermal chuck.  The remaining twenty die were to be sealed in a moisture-insensitive 

conformally coated QFP44a package and tested in a thermal chamber [203].   

The chip contained the design of seven different sub-1 V bandgap voltage 

references.  Six of these references were variations on the ultra-thin oxide reference of 

Figure 4.16.  The first reference was the standard ultra-thin oxide reference described in 

the previous subsection.  Note that R2/R1 of this reference was 31.  The second reference 

was the same as the standard ultra-thin oxide reference except that the body terminals of 

all transistors were tied to their source terminals.  Specifically, the body terminals of the 

input pairs of the error amplifier and the buffer amplifier of Figure 4.16 were tied to their 

source terminals.  The body terminals of all cascoding transistors were also tied to their 

source terminals.  This was done to minimize the amount of gate current flowing through 

each transistor (see Section 4.3).  R2/R1 of this reference was 30, which shows a slight 

decrease compared to the standard reference.  This decrease in R2/R1 occurred because 

less error amplifier input current was mirrored into the output node (see Section 4.8.3). 

The third reference was a standard ultra-thin oxide reference with no metal fill.  

The metal fill was to going to be placed by IBM’s automatic metal filling process.  This 

reference was then going to be compared to the standard reference to determine if the 

manually metal filled reference performed better than the automatically metal filled 

reference.  The fourth reference was a rotated version of the standard reference.  The 

reference was rotated 90°.  It was going to be compared to the standard reference to 

determine if rotation had any effect on angled implants such that the rotated reference 

performed differently than the non-rotated reference.  The fifth reference was a CTAT 
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version of the standard reference.  This reference was given a CTAT output slope as a 

precaution to direct tunneling model imperfections.  R2/R1 of this reference was 27.  If the 

measured results of the standard reference showed a PTAT slope, this reference should 

have shown less of a CTAT slope than was seen in simulation.  The sixth reference was a 

PTAT version of the standard reference.  This reference was given a PTAT output slope 

as a precaution to direct tunneling model imperfections.  R2/R1 of this reference was 33.  

If the measured results of the standard reference showed a CTAT slope, this reference 

should have shown less of a PTAT slope than was seen in simulation.  The seventh 

reference was the thick-oxide reference of Figure 3.22.  The design of this reference was 

the same as described in Section 5.6.1. 

 
Figure 5.36: Layout of the standard ultra-thin oxide sub-1 V bandgap voltage reference of Figure 4.16 

(202.165 µm by 198.1 µm). 

All seven references were designed using interdigitation and common centroid 

layout techniques [91].  Guard rings were used to isolate resistors and different types of 

transistors.  Figure 5.36 shows the layout of the standard ultra-thin oxide bandgap voltage 
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reference.  It occupied an area of 202.165 µm by 198.1 µm.  Figure 5.37 shows the layout 

of the thick-oxide reference.  It occupied an area of 183.17 µm by 187.69 µm.  Figure 

5.38 shows the layout of the body-biased version of the standard ultra-thin oxide 

reference.  It occupied an area of 248.265 µm by 209.43 µm. 

 
Figure 5.37: Layout of the thick-oxide bandgap voltage reference of Figure 3.22  (183.17 µm by 

187.69 µm). 

 
Figure 5.38: Layout of the body-biased version of the standard ultra-thin oxide bandgap voltage 

reference of Figure 4.16 (248.265 µm by 209.43 µm). 
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The chip contained the layout of three isolated transistors: a triple-well NFET, a 

dual-well NFET, and a dual-well PFET.  Each transistor was designed with W = 100 µm 

and L = 1 µm.  These transistors were going to be used to validate the BJT-like metrics of 

Section 4.2 and the sizing strategies of Section 5.1.3.  They could have also been used to 

validate the direct tunneling model of BSIM4. 

The chip contained the design of three NMOS self-cascode current mirrors (see 

Figure 4.4 and Figure 4.5).  The first mirror was designed with a desired unity current 

gain.  The cascoded transistors had W = 102 µm and L = 2 µm.  The cascoding transistors 

had W = 204 µm and L = 0.25 µm.  The second mirror was also designed with a desired 

unity current gain.  The cascoded transistors had W = 204 µm and L = 1 µm.  The 

cascoding transistors had W = 204 µm and L = 0.25 µm.  The third current mirror was 

designed with a desired current gain of eight.  The cascoded transistors had W = 40 µm 

and L = 5 µm.  The cascoding transistors had W = 40 µm and L = 1.25 µm.  All three 

current mirrors were designed using interdigitation and common centroid techniques.  

Guard rings were used to isolate different types of transistors.  It was desired that these 

mirrors be used to validate the current mirror design strategies of Section 4.4. 

The chip also contained the design of an ultra-thin oxide operational amplifier.  

The amplifier was sized equally to the buffer amplifier of the standard ultra-thin oxide 

sub-1 V bandgap voltage reference described in the previous section.  It was desired that 

this amplifier be used to validate the amplifier design strategies of Section 4.5. 

Figure 5.39  shows the complete layout of the chip.  Note that ESD protection was 

included.  Specifically, RC clamps were used for power supply pads.  Double diodes and 
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SCRs were used for signal pads [204].  Note that all simulations were performed with the 

ESD protection present.  Nine metal layers were available and were used for routing. 

 
Figure 5.39: Complete layout of the designed chip. 

For reasons beyond the author’s control, the fabrication of the designed chip was 

delayed over 2 years.  Therefore, fabrication results were unable to be included in this 

document.  However, if fabrication does eventually occur after the publishing of this 

document, the results will be made available via a scholarly journal. 
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CHAPTER 6  

CONCLUSION 

This work developed a methodology that allows the design of analog systems 

with ultra-thin oxide MOSFETs.  This methodology focused on transistor sizing, DC 

biasing, and the design of current mirrors and differential amplifiers.  It attempted to 

minimize, balance, and cancel the negative effects of direct tunneling on analog design in 

traditional (non-high-κ/metal gate) ultra-thin oxide CMOS technologies.  It showed that 

the tradeoff between gate current and mismatch can be minimized via informed device 

sizing.  The methodology required only ultra-thin oxide devices and was investigated in 

IBM’s 10SF 65 nm CMOS technology, which has a nominal VDD of 1 V and a physical 

oxide thickness of 1.25 nm.  Theoretical analysis and simulation were used to develop the 

methodology.  The methodology attempted to not aggravate existing analog nanoscale 

CMOS problems such as reduced voltage headroom, decreased intrinsic gain, and 

reduced SNR.  It focused on low-frequency performance because the effects of direct 

tunneling are negligible at higher frequencies.  The results suggest that the methodology 

is effective and can be utilized to design useful analog circuits with traditional ultra-thin 

oxide MOSFETs. 

A sub-1 V bandgap voltage reference was designed and implemented using the 

developed methodology in IBM’s 10SF 65 nm process.  It required only ultra-thin oxide 

MOSFETs and its performance was used to illustrate that the negative effects of direct 

tunneling can be suppressed by following the developed methodology.  The voltage 

reference was used as a vehicle to prove that analog systems can be constructed with 
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ultra-thin oxide MOSFETs.  Its performance (TC = 251.0 ppm/°C) was compared to a 

thick-oxide voltage reference (TC = 213.7 ppm/°C) as a means of demonstrating that 

ultra-thin oxide MOSFETs can achieve performance similar to that of thick(er) oxide 

MOSFETs.  The results suggest that the developed methodology can be used to design 

analog systems with ultra-thin oxide MOSFETs. 

A sponsored fabrication of this work was awarded based on technical merit via 

the MOSIS Educational Program.  The target technology was IBM’s 10SF technology.  

The design, simulation, and layout of a 2 mm x 2 mm chip was completed and sent to 

MOSIS.  However, for reasons beyond the author’s control, this fabrication was delayed 

over 2 years.  Therefore, fabrication results were unable to be included in this document.  

If fabrication were to occur after the publishing of this document, it would be 

recommended that the measurements outlined in Section 5.7 be taken and that the results 

be made available via a scholarly journal. 
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APPENDIX A  

Low-Frequency Small-Signal Analysis of the Self-Cascode Amplifier 

A.1. Derivation of GM, ROUT, and AV of the Self-Cascode Amplifier 

 
Figure A.1: Low-frequency small-signal equivalent of a self-cascode amplifier. 

From [44], the ideal small-signal voltage gain of an amplifier, AV, is defined as 

−GM⋅ROUT, where GM is the short-circuit transconductance and ROUT is the output 

resistance.  Specifically, GM and ROUT are defined as [44]: 

bq � �9�'��S ����!U7 (A.1)

 

&*N� � ���'�9�'� ����U7 (A.2)

 

where iout is the small-signal output current, vin is the small-signal input voltage, and vout 

is the small-signal output voltage.  Referring to Figure A.1, ROUT of the self-cascode 

structure can be solved by using (A.2) to write two expressions for iout: 



164 

 

9�'� � ��'� � ��+)�� � ,-���+ � ,-.���+. (A.3)

 

9�'� � ��+)�+ . (A.4)

 

Setting these two equations equal to another and solving for vD1 yields: 

��+ � ��'�)�+)�� � )7+)���,-� � ,-.�� � )�+. (A.5)

 

Plugging (A.5)  into (A.4) and solving for vout/iout gives an expression for ROUT: 

&*N� � ��'�9�'� � )�� � )7+)���,-� � ,-.�� � )�+. (A.6)

 

To solve for GM, Figure (A.1) is used to write two expressions for iout: 

9�'� � ,-���S � ��+� � ��+)�� � ,-.���+. (A.7)

 

9�'� � ,-+�S � ��+)�+ . (A.8)

 

Setting these two equations equal to one another and solving for vD1 yields: 

��+ � �S �,-� � ,-+�)�+)��)�� � )�+)���,-� � ,-.�� � )�+. (A.9)

 

Plugging (A.9) into (A.8) and solving for iout/vin gives an expression for GM: 

bq � 9�'��S � ,-+)�+)���,-� � ,-.�� � ,-+)�+ � ,-�)��)�� � )�+)���,-� � ,-.�� � )�+ . (A.10)

 

Using (A.6) and (A.10) an expression for AV can be written as [44]: 

0� � �bq&*N� � �1,-+)�+)���,-� � ,-.�� � ,-+)�+ � ,-�)��2. (A.11)
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APPENDIX B  

Sub-1 V Voltage Reference Analyses 

B.1. Analysis of Ideal Sub-1 V Bandgap Voltage Reference 

 
Figure B.1: Simplified representation of the sub-1 V bandgap voltage reference presented in [116]. 

The current through the emitter of a diode-connected PNP BJT can be 

approximated as [44]: 

�X s @�0X���(�!  (B.1)

 

where JS is the saturation current density, AE is the emitter area, VEB is the emitter-base 

voltage, and Vt = kT/q is thermal voltage (k = 8.602e−5 eV/K is Boltzmann’s constant, T 

is temperature, and q = 1.602x10
−19

 C is the electronic charge).  Referring to Figure B.1, 

VM = VP = VEB1.  Therefore, the current through R1 can be written as: 

�W+ � �X� � �XM+ � XM�� &+⁄ � ΔXM &+⁄ . (B.2)

 

Given AE2 = N⋅AE1 and letting IE2 = IE1,  ∆VEB can be written as [44]:  

ΔXM � � ln�I�. (B.3)

 

Therefore, IR1 can be expressed as: 
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�W+ � �ln �I� &+⁄ . (B.4)

   

IR1 is a component of I2, which can be written as:  

�� � �W+ � �WF. (B.5)

 

IR3 can be expressed as: 

�WF � �XM+ � WX4� &F⁄ . (B.6)

 

Plugging (B.4) and (B.6) into (B.5) yields: 

�� � �ln �I� &+⁄ � �XM+ � WX4� &F.⁄  (B.7)

 

Letting R2 = R3, which implies IR2 = IR3, and assuming I1 = I2 = I3, an equation for IR4 can 

be written as: 

�W� � �W+ � 3�W�. (B.8)

 

Substituting (B.4) and (B.6) into (B.8) and writing an expression for VREF yields: 

WX4 � &� · �W� � &� m�ln �I�&+ � 3�XM+ � WX4�&� o. (B.9)

 

Rearranging and solving for VREF gives: 

WX4 � � ln�I�&�&� � 3XM+&+&�&+&� � 3&+&� . (B.10)

 

Letting R4 = M⋅R1 and R2 = B⋅R1, this equation can be simplified to: 

WX4 � ��� ln�I� � 3�XM+3� � � . (B.11)

 

Differentiating this equation with respect to temperature and setting the result equal to 

zero yields: 
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� � �3m]XM+]^ ]�ln �I�]^� o. (B.12)

 

This equation shows B is used to zero the temperature slope.  To set a desired output 

voltage, (B.11) can be written in terms of M as:   

� � �WX43XM+ � �� ln�I� � 3V���. (B.13)

 

If VEB1 = VREF, this equation can be written as: 

� � XM+� ln�I�. (B.14)

 

For a given N and a desired VEB1, this equation can be used to solve for M. 

B.2. Analysis of a Sub-1 V Bandgap Voltage Reference Including Offset 

Voltage, Input Bias Current, and Input Offset Current 

 
Figure B.2: Simplified representation of the sub-1 V bandgap voltage reference presented in [116].  

The schematic includes input offset voltage, input bias current, and input offset current. 

Referring to Figure B.2, the input bias current, IIN_B, is defined as:  

�OP_M � �\ � �P2  (B.15)
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where IP and IN are defined as the currents flowing into the non-inverting and inverting 

input terminals of the amplifier.  The input offset current is defined as:  

�*� � �\ � �P . (B.16)

 

Using (B.15) and (B.16), expressions for IP and IN can be written as: 

�\ � �OP_M � �*�2 . (B.17)

 

�P � �OP_M � �*�2 . (B.18)

 

These currents are taken into account by placing a current source with a value of 

IOS/2 between the non-inverting and inverting terminals of the amplifier.  This current 

source allows one to assume that IIN_B flows out of I1 and I2.  This allows I1, I2, and I3 to 

be treated as if they are equal, which simplifies analysis [44].  Therefore, an equation for 

IR4 can be written as: 

�W� � 2�WF � �W� � �W+ � �OP_M. (B.19)

 

Equations for IR1, IR2, and IR3 can be written as:  

�W+ � XM+ � *� � XM�&+ � ∆XM � *�&+ . (B.20)

 

�W� � XM+ � WX4&� . (B.21)

 

�WF � \ � WX4&F � XM+ � *� � WX4&F . (B.22)

 

Substituting (B.20), (B.21), and (B.22) into (B.19) yields: 
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WX4&� � �W� � 2jXM+ � *� � WX4&F l � XM+ � WX4&� � ∆XM � *�&+� �OP_M. 
(B.23)

 

Rearranging this equation and solving for VREF gives: 

WX4 � &�1&�&F∆XM � &+XM+�&F � 2&��2&+�&F&� � 2&�&� � &�&F�
� &�&��&F � 2&+�*�&+�&F&� � 2&�&� � &�&F� � &�&F&��OP_M&F&� � 2&�&� � &�&F. 

(B.24)

 

Letting R2 = R3 and using (B.3) for ∆VEB, VREF can be expressed as: 

WX4 � � ln�I�&�&� � 3XM+&+&�&+&� � 3&+&� � *�&��&� � 2&+�&+&� � 3&+&� � �OP_M&�&�3&� � &� . (B.25)

 

Letting R2 = B·R1 and R4 = M·R1, this equation can be simplified to: 

WX4 � ��� ln�I� � 3�XM+3� � � � *���� � 2�3� � � � �OP_M&+��3� � � . (B.26)

 

where the first term of this equation is equal to (B.11).  The second and third terms 

represent non-idealities caused by amplifier input offset voltage and amplifier input bias 

current. 
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